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Abstract  

Bitcoin has recently received special attention in economics and finance as the 

most popular blockchain technology.  This dissertation aims to discuss whether 

newly machine-leaning models perform better than traditional models in 

forecasting. Particularly, this study compares the accuracy of the prediction of 

bitcoin prices using two different models: Long-Short Term Memory (LSTM) 

versus Auto Regressive Integrated Moving Average (ARIMA), in terms of 

forecasting errors, and Python routines were used for such purpose. Bitcoin price 

time series ranges from 2017-06-18 to 2019-08-07, in a daily basis, sourced from 

the Federal Reserve Economic Data. To compare the results of both models, data 

was divided into two subsets: training (83.5%) and testing (16.5%). The literature 

usually indicates that LSTM outperforms ARIMA. In this dissertation, the results 

do confirm that LSTM forecasts of bitcoin prices improve on average ARIMA 

predictions by 92% and 94%, according to RMSE and MAE. 
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Resumo 

A Bitcoin tem recebido recentemente especial atenção em áreas como a economia 

e finanças por ser a mais popular tecnologia de blockchain. Esta dissertação tem 

como objetivo verificar se os novos modelos de machine-learning apresentam 

melhores resultados que os modelos tradicionais em previsões. Este estudo 

compara, em particular, a precisão da previsão do preço da Bitcoin usando dois 

modelos diferentes: Long-Short Term Memory (LSTM) versus Auto Regressive 

Integrated Moving Average (ARIMA), em termos de erros de previsão e aplicando 

rotinas do Python. A análise teve como base os preços diários da Bitcoin entre 18 

de junho de 2016 e 7 de agosto de 2019, retirados da base de dados da Reserva 

Federal. Para comparar os resultados dos dois modelos, os dados foram divididos 

em duas secções: o treino (83.5%) e o teste (16.5%). A literatura indica que o 

modelo LSTM tem uma melhor precisão que o ARIMA e nesta dissertação os 

resultados confirmam que o modelo LSTM melhora em média 92% e 94% a 

previsão do ARIMA, de acordo com o RMSE e o MAE. 
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1. Introduction 

Forecasting economical and financial time series data is a challenging mission 

due to uncertain events or incomplete information in the economies we live in. 

This situation produces high levels of volatility in time series. In order to predict 

more accurately, authors have applied over time more and more sophisticated 

forecasting techniques.  

The aim of this dissertation is to investigate whether the machine learning models 

offer or not better predictions than traditional models in terms of lower 

forecasting errors and higher accuracy in forecasts. More specifically, I will 

compare the Auto Regressive Integrated Moving Average (ARIMA) and Long-

Short Term Memory (LSTM), a specific type of Recurrent Neural Network 

(RNN).  

In this dissertation, I will use Spyder (Python 3.6) to run Python codes1 in order 

to estimate both models. Why Python? Python is a freeware /open source 

dynamic language and very appropriate to interactive development.  It is also 

widely used in machine learning and data science due to its library support. In 

order to run programs in Python it is necessary to import some important libraries 

for time series such as: NumPy providing efficient array operations; Matplotlib 

for plotting data; Pandas providing high performance tools for loading and 

handling data; Statsmodels providing statistical modelling and Scikit learn 

helping to develop and practice machine learning in Python. 

In recent years, bitcoin has been established as the world leading cryptocurrency 

taking the attention of consumers, businesses and investors. As a result of bitcoin 

network complexity, I would like to investigate some of the techniques of 

machine learning in order to forecast bitcoin prices.  

This remaining part of this dissertation is organized in six chapters. Chapter 2 

deals with a literature review and is divided in two parts. In the first one, I 

describe the functioning of the bitcoin and a blockchain, give a brief description 

                                                
1 See Annexes in Chapter 8 
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about what happened before the appearance of this cryptocurrency, present also 

some pros and cons of such currency, and describe some alternative 

cryptocurrencies that have recently challenged the bitcoin. In the second part, I 

present some previous research about the bitcoin including studies comparing 

traditional econometric models with newly machine-learning approaches. In 

Chapter 3, I provide some insights related to both models: ARIMA and LSTM, 

in terms of forecasting. To understand better the LSTM approach, I also introduce 

in this section the Artificial Neural Networks (ANN) and Recurrent Neural 

Network (RNN).  In Chapter 4, I describe the data used across this dissertation. 

In Chapter 5, I implement each model, step by step, in order to get the forecast 

of bitcoin prices according to our methodology. Also, I compare the results of 

both models in terms of forecasting errors, specifically Root Mean Squared Error 

(RMSE) and Moving Average Error (MAE). In Chapter 6, I summarize the 

results, stress the main findings of this dissertation, and will suggest also some 

points that may deserve further research.  
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2. Literature Review 

2.1 Bitcoin 

2.1.1. Pre-Bitcoin 

According to Nathan Reiff’s article (Reiff, 2019), one of the first attempts to 

create a cryptocurrency comes from Netherlands in late 1980s. Petrol stations 

were suffering from thefts and a group of people tried to link money to new 

smartcards instead of using cash.  

At the same time, an American cryptographer David Chaum introduced a 

different electronic cash, digiCash (Chaum, 1983). He developed a “blinding 

formula” to encrypt information to be passed among people. This tool could 

allow money to be sent safely between individuals only by checking the signature 

authenticity. This innovation played an important role in future cryptocurrencies. 

Some companies applied these fundamentals in the 1990s. The company with the 

greatest lasting impact was PayPal. This world known enterprise modernized 

person-to-person online payments. Individuals could quickly and securely 

transfer money via internet. One of the most successful applications was the e-

gold, which offered to users the chance to use money in exchange of physical 

gold or other metals.  

In 1998, Wei Dai developed an “anonymous, distributed electronic cash system”, 

called b-Money (Dai, 1998). This system was based on a digital pseudonym used 

to transfer currency through a decentralized network. The structure also included 

a contract in network as well rather than a third party. Even though it was not as 

successful as other cryptocurrencies were, Nakamoto (2008) referenced some 

points of B-money in his bitcoin whitepaper. 

Developed in mid-1990s, Hashcash (Back, 1997) was one of the most effective 

pre-bitcoin digital currencies. It used proof-of-work algorithms to create and 

distribute new coins. 
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The Bit Gold proposed by Szabo (2008) introduced a proof-of-work system, 

which is used in some ways in bitcoin’s mining network. In the next sub-section, 

I will explore the functioning of the main cryptocurrency – the bitcoin. 

 

2.1.2. Bitcoin and Blockchain  

A Blockchain is a distributed database of records that have been performed and 

shared among the involved parties. The majority of participants in the network 

revises each transaction. As soon as the information entered in the system, it can 

never be removed. The Bitcoin is the most popular example of the blockchain 

technology.  

“Bitcoin is a peer-to-peer electronic cash system” introduced in the well-known 

paper Nakamoto (2008). The peer-to-peer (P2P) mechanism allows an ownership 

transfer from one party to another without a third-party intervention (financial 

institution). Payments can be made over the internet without any control or cost 

of a central authority for the first time. Individuals who want to own bitcoins can 

either run a program on their own computer that implements bitcoin protocol, or 

create an account on a website that runs bitcoin for its users. The bitcoins are 

saved in a file called wallet, which the user may secure and backup. These 

programs connect to each other over the internet forming P2P networks, making 

the system resistant to a central attack (Zohar, 2015) and (Crosby et al., 2016). 

For now, Bitcoins are generated through a process of mining. Any member 

operates as a miner using their computer knowledge to maintain the network. 

Mining is a computationally process that requires miners to find a solution to a 

mathematical problem in order to create a new block into the blockchain. Miners 

resolve this issue by using the proof-of-work concept. This algorithm involves 

recurrently difficult mathematical problems until getting to a solution. The first 

miner to find a solution broadcasts it to the network to verify it. Once verified the 

block is added to the blockchain. Every ten minutes on average is found a new 

answer and a bitcoin is created. The bitcoin protocol is designed to generate a 
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new bitcoin gradually. The difficulty of solving problems is adjusted every two 

weeks at the rate of six blocks per hour. The size of the reward was initially 50 

(genesis block) and it is halved every four years, this implies that the number of 

bitcoins in circulation will never exceed 21 million. Once the last bitcoin is 

generated, miners will instead be rewarded with transactions fees (Zohar, 2015) 

and (Crosby et al., 2016). 

The core principle of bitcoin technology is public-key cryptographic. This 

method determines that each transaction is protected through a digital signature 

and verified by every node in the network. It uses an algorithm that generates two 

separate keys: the public key and private key. In this system, the sender sends his 

private key digitally signed to the public key of the receiver. In order to complete 

the transaction, the sender needs to prove his ownership and the receiver needs 

to verify that ownership by using the information received in the public key. The 

verifying nodes have to ensure that the spender owns the cryptocurrency through 

the digital signature and to confirm that the spender has enough cryptocurrencies 

in his account to complete the transaction by checking his account or validating 

in the public key. New transactions are checked against the blockchain to make 

sure that the bitcoins were already spent, thus solving the double spending 

problem. Each transaction has a digital signature and a hash containing all the 

chronological history of movements and peers that allows for easy detection in 

case of double-spending attacks. (Zohar, 2015) and (Crosby et al., 2016). 

According to Velde (2013), “bitcoin solves two challenges of digital money- 

controlling its creation and avoiding its duplication- at once.” Nakamoto (2008) 

showed that as long as attackers do not have more than 50% of the computer 

power of the network, the probability of a successful attack is almost null. 

In the next sub-section, I will discuss some of pros and cons of bitcoin.   

 

2.1.3. Pros and cons of Bitcoin 

Bitcoin as a new technology brings a wide range of benefits and risks to the table. 
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This cryptocurrency was specifically designed for fast transactions at low costs 

as said by Nakamoto (2008). A low-cost transaction is possible because there is 

no-single party intermediary. “Users have full control of their bitcoins and the 

freedom to send and receive bitcoins anytime, anywhere and from anyone.” as 

said by Nian & Lee (2015). Each bitcoin can only be processed by the user who 

has access to the private key, giving to him full control of his bitcoins. Bitcoin 

can also be considered as an alternative to other electronic methods of payment 

accepted by businesses. In its original form, the bitcoin protocol works 

essentially as a payment network, but it has potential for further innovation, as 

developed from other cryptocurrencies.  

In the previous years, Bitcoin has become a fixture in world financial news. 

However, should bitcoin be a considered a currency? Money is typically defined 

by economists as having three attributes: medium of exchange, a unit of account, 

and a store of value. “Bitcoin does not behave much like a currency according to 

the criteria widely used by economists. Instead, Bitcoin resembles a speculative 

investment similar to the Internet shocks of the late 1990s” (Yermack, 2015). In 

his point of view, Bitcoin has no intrinsic value since it is useless as a currency 

in the consumer theory. As said by Krugman (2018) “The modern dollar (…) is 

ultimately backed by the fact that the U.S government will accept it. Its 

purchasing power is also stabilized by the Federal Reserve.” “Bitcoin, by 

contrast, has no intrinsic value. (…) You have an asset whose price is almost 

purely speculative, and hence incredibility volatile.”  

According to data available in bitcoin websites, most of bitcoin transactions 

involve transfers between speculative investors and only a minority are used for 

purchases of goods and services. Bitcoins require the merchant and the consumer 

to wait on average 10 minutes of verification to finalize a transaction. According 

to Velde (2013), “A dollar bill in my hand cannot be anywhere else at the same 

time, my ownership of it is undoubted, and it can be exchanged immediately.” 

By contrast, “bitcoin try to emulate these properties of cash, but do so at some 

costs.” Yermack (2015) notes that a currency to role as a unit of account, 
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customers should be able to compare the price of goods. Bitcoin faces extreme 

volatility compared to other currencies on a daily-to-daily basis. Prices would 

change frequently in terms of bitcoins and, therefore, this uncertainty of market 

value would create distrust in transactions with bitcoins. When currency works 

as a store of value, the owner expects to receive the same economic value that 

the currency was worth when acquired it. Holding bitcoins even for a shorter 

period is quite risky due to the high volatility, which is inconsistent with the idea 

of stability of a currency as a store of value. Athey et al. (2016) reveal in their 

paper that users are not active and that many buy and hold bitcoins. Due to bitcoin 

potential users tend to save bitcoins than spend it, creating a moral hazard issue. 

The anonymity and ease of payments offered by Bitcoin may also facilitate 

criminal activities. Yermack (2015) gives the example of Silk Road internet 

portal used for selling illegal narcotics that only accepted bitcoins as payment. 

Nian & Lee (2015) present another major concern regarding Bitcoin which is 

money laundering and finance terrorist activity. Krugman (2018) reinforces the 

idea that bitcoin price might be influenced by some fraudulent activities, “Back 

in 2013 fraudulent activities by a single trader appear to have caused a sevenfold 

increase in Bitcoin’s price.” Stiglitz in a CNBC video on May 2019 said that “I 

actually think we should down the cryptocurrencies.” According to him, crypto 

is not the right way to create a more efficient global economy due to the lack of 

transparency related to illegal financial activities such as money laundering. 

However, bitcoin also offers protection against some forms of financial crimes 

since the mining process of verifying transactions solves the double-spending 

issue. It is hard to overcome the combined computer network.  

The regulatory landscapes continue to change across countries as governments 

struggle with the risks and benefits of bitcoin, for example in the incentives of 

tax evasion due to uncertain tax treatment in bitcoin network. For example, 

Schilling & Uhlig (2019) concludes that “Bitcoin block rewards are not a tax on 

bitcoin holders: they are financed with a Dollar tax.” For example, bitcoin is legal 

in USA and EU, but in China, only private persons can hold bitcoin. In December 
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2013, the People’s Bank of China, the central bank of China, banned Chinese 

banks from relationships with bitcoin exchanges (Bӧheme et al., 2015). 

Bitcoin is very different from the existing financial system for which regulators 

are used to deal with. Bitcoin can easily scale up and destabilize the economy 

and the financial markets. Krugman (2018) considers clearly that bitcoin is a 

bubble where early investors make a lot of money as new investors draw in, 

pulling even more people in the network. For him, this process will have a painful 

end.  

Finally, there is some intrinsic risks directly related to technology dependence of 

bitcoin. Athey et al., (2016) states “the risk of failure of a technology” like an 

operator error in the system, security flaws or even a malware that affects the 

hard drives and consequently the private keys. 

After the creation of bitcoin several other cryptocurrencies were introduced to 

mitigate some of the risks previously mentioned. In the next sub-section, I will 

describe briefly some alternative cryptocurrencies. 

 

2.1.4. Alternative cryptocurrencies  

Most of alt-coins are derived from bitcoin’s source code (“forks”). Some are 

implemented based on the blockchain model without using any of bitcoin’s code. 

Mostly, there are two separate applications of blockchain technology, one used 

predominantly as currency (alt-coin), whereas alt-chain are used for other 

purposes, not necessary currency (Antonopoulos, 2014). 

The first alt-chain appeared in August 2011, called Namecoin. In the same month, 

the first alt-coin IXCoin was launched with some new specifications as the major 

reward of 96 coins per block. In the following month, Tenebrix introduce an 

alternative concept of proof-to-work, namely script, an intense algorithm 

designed for password stretching. This last currency was one of the basis for the 

creation of Litecoin, which also applied a script proof-to-work algorithm. This 
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new cryptocurrency has a faster block generation time, target to 2.5 minutes 

instead of 10 minutes of bitcoin. In one-year time, several alt coins were created. 

In the beginning of 2013, there were about 20 alt coins and by the end of the same 

year, the number boomed to 200. In 2014, the growth of at coins continued, being 

500 most of them replicas of Litecoin (Antonopoulos, 2014). 

Alt-chains are alternative implementations of the blockchain, which are not 

necessary currency. Alt-chains are used an alternative platform such as a 

contract. Ethereum is an example of turing-complete contract processing and 

execution platform based on blockchain. An independent design with an own 

currency called ether, necessary to use for contract execution. Mostly, a contract 

is a program that runs in every node in the ethereum network. These contracts 

can collect date, send and receive payments, execute an infinite sort of 

computable actions and store ether (Antonopoulos, 2014). 

The future of cryptocurrencies is overall so bright. Bitcoin introduced a new form 

of de-centralized system. It has reproduced hundreds of incredible innovations, 

which has affected sectors such as economics, finance, science, baking and 

corporate governance.  

 

2.2. Previous research  

Since Bitcoin appears in 2008 (Nakamoto, 2008), many academic papers have 

focused on it from different perspectives. Some authors examined the bitcoin’s 

potential and its impact in other economic variables using traditional econometric 

approaches. The GARCH (Generalized Autoregressive Conditional 

Heteroskedasticity) framework showed several similarities between gold and US 

dollar in terms of hedging abilities and advantages in exchange. For Dyhrberg 

(2015), bitcoin has a position in financial markets and project management 

between gold and American dollar with clear advantages to risk adverse 

investors. Alternatively, some authors performed a cointegration analysis to 

examine the impact of some variables on bitcoin price. For ecample, Ciaian et 
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al., (2015) found a significant impact of global macro-financial development 

captured by the Down Jones index, exchange rate and oil price, only in the short-

run, by using the gold standard model by Barro (1979). In long-run, these 

variables do not determine the bitcoin price. Alternatively, Zhu et al. (2017) 

suggested that some factors such as Consumer Price Index, Down Jones industry 

average and Fed Funds Rate do have long run negative effect on bitcoin price, by 

applying VEC (Vector Error Correction) model. However, gold price is barely a 

factor to influence bitcoin price. Thus, bitcoin may not hedge against the gold 

price. “Bitcoin is more an asset rather than a currency.” Zhu et al. (2017). 

Due to the importance of forecasting in many branches of science, many 

specialists have developed a variety of the time series forecasting models. Time 

series forecasting is traditionally performed in econometrics using ARIMA 

models, which was generalized by Box and Jenkins (1970). Recently, specialists 

have been developed new techniques to address new challenges in forecasting by 

applying machine-learning models. Long Short-Term Memory is a special case 

of Recurrent Neural Network (RNN) that was introduced by Hochreiter & 

Schmidhuber (1997). Some years later, Schmidhuber et al., (1999) identified a 

weakness of LSTM models that do not clearly identify the end of a network In 

order to solve this shortcoming, the authors proposed the “forget gate” that 

enables the LSTM model to reset at any time. 

 

Even though it is a quite recent new approach, deep learning models have gained 

popularity in forecasting. The papers by Namin and Namin (2018) and 

Elmasdotter and Nystromer (2018) compared the effectiveness in forecasting 

time series of these two models. In the first paper, the authors predicted stock 

market indexes while in the second one, the authors forecasted the grocery store 

sales for two different scenarios: one day ahead and seven days ahead, for both 

models. In both cases, the authors split data into two subsets: training data and 

testing data (70/30) and (80/20), respectively. Therefore, the parameters of 

LSTM such as sequence length, dropout rate, epochs and neurons output layer 

were adapted according to each scenario. Still, the autoregressive order (p), the 
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order of differencing (d) and the moving average order (q) were adjusted for each 

model. In the first paper, the authors compiled the model with the mean squared 

error and Adam 2as the loss function and the optimization algorithm. In terms of 

error terms, in both papers, the LSTM over performs ARIMA in forecasting. In 

the first paper, the LSTM algorithm improved on average 85% the prediction 

compared to ARIMA in reduction of error terms for both financial and economic 

data. In the second paper, the LSTM model has a lower error overall for one-day 

and seven-days ahead scenarios, in terms of RMSE (Root Mean Square Error) 

and MAE (Mean Absolute Error). 

Research on predicting the bitcoin price has not been much developed. However, 

some authors have also compared machine-learning techniques with the 

traditional models in forecasting bitcoin prices. McNally (2016) concluded that 

traditional ARIMA model forecasting was worse than the neural non-linear 

network models (RNN and LSTM) in both criteria, accuracy rate and RMSE. In 

addition, the LSTM outperformed the RNN marginally but there was not 

significant difference between both, as the LSTM reaches the highest accuracy 

rate (53%) and the RMSE of 7%, slightly higher than the RNN. However, the 

LSTM takes 3.1 times longer to train applying the same network parameters due 

to the high number of activation functions and equations to be performed. Still, 

some authors investigated the power of some features on bitcoin price by using 

machine-learning optimization. Huisu et al. (2018) established a Rolling Window 

LSTM model to predict bitcoin price by selecting some input features relevant to 

macroeconomics, global currency ratios and blockchain information. The LSTM 

model with rolling window settings overperforms for example the simple LSTM 

and Neural Network models by using MAPE and RMSE.  

Other authors have developed some sentimental analysis by using machine-

learning optimization to measure the impact of some indicators such as the 

bitcoin related tweets or web search media results in bitcoin prices. Stenqvist and 

                                                
2 “Adam is an algorithm for first-order gradient-based optimization of stochastic objective 

functions, based on adaptive estimates of lower-order moments.” (Kingman and Ba, 2015). 
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Lonno (2017) analyzed 2.27 million bitcoin related tweets that could indicate a 

bitcoin price change in the near future. The predicted model, based on the 

intensity of sentiment fluctuations from one period to the next, showed that 

aggregating tweets sentiments over a 30 min period with four shifts forward, and 

a sentiment-limited change of 2.2%, yield an 83% accuracy prediction. The 

author suggested adapting machine learning to explore further the correlation 

between Bitcoin and tweet data. Matta et al. (2015) investigated the relationship 

between the bitcoin price and the volume of tweets and or web search media 

results. The authors found out a significant cross correlation between bitcoin 

price and Google Tends data by applying a sentimental analysis. The authors 

proved the importance of considering these particularities as predictors. 
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3. Forecasting Models Background 

3.1. Time Series Forecasting  

A time-series is a sequence of observations measured sequentially through time. 

The observations at different moments in the series correlate with each other in 

different ways. Since the successive observations are dependent, future values 

may be predicted from the past ones. “Forecasting is about predicting the future 

as accurately as possible, given all of the information available, including 

historical data and knowledge of any future events that might impact the 

forecasts”, as defined by Hyndman and Athanasopoulos (2018), p.9. 

There are several models used for time series forecasting that can be classified 

between linear and non-linear, univariate and multi-variate. Linear models are 

restricted by their assumption of linear behavior in parameters and/or variables, 

whereas non-linear models may fit more complex dynamics and functions 

accurately. However, linear models such as the ARIMA are well known for their 

accuracy and flexibility in the prediction of linear time series, and also for some 

occasionally well succeed short-term value or trend predictions in non-linear 

processes.  

When choosing forecasting models, it is important to separate the available data 

into two parts: training and test data, where training is used to estimate the 

parameters of a forecasting method and test is used to evaluate its accuracy 

(figure 3.1). 

 

Figure 3.1 – Time series divided into training data and test data.3 

The accuracy of forecasts can only be determined by considering how well a 

model performs on new data that were not used when fitting the model. It is 

                                                
3 Source: (Hyndman & Athanasopoulos, 2018), Chapter 3. 
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possible to measure the forecasting accuracy by estimating the forecasting errors, 

which is the difference between the observed value and its forecast, calculated in 

the testing set. When comparing data from the same scale, as it happens with 

bitcoin prices, scale-dependent errors are commonly used such as Mean Absolute 

Error (MAE) and Root Mean Squared Error (RMSE). 

In the following section, I will discuss these two different approaches relevant to 

forecast bitcoin price: i) traditional linear econometric models such as ARIMA 

and ii) non-linear machine learning models such as LSTM.  

 

3.2. Forecasting models  

3.2.1 ARIMA 

The Autoregressive Integrated Moving Average (ARIMA) is a linear model, 

which combines an AR process, a MA process and an integrated component, 

which involves differencing the time series to convert it into a stationary process.  

As seen in equation (3.1)4, the auto-regressive (AR) model expresses the time 

series 𝑥𝑡 at time 𝑡 as a linear regression of the previous 𝑝 observations, that is:  

𝑥𝑡 = 𝛼 + ∑ 𝜙𝑖

𝑝

𝑖=1

𝑥𝑡−𝑖 + 𝜀𝑡         (3.1) 

and where 𝜀𝑡 is the white noise residual term and 𝜙𝑖 are real parameters. 

In equation (3.2)4, the Moving averages (MA) use dependency between residual 

errors to forecast values in the next period. The model helps to adjust to 

unpredictable events. The 𝑞𝑡ℎorder moving average model denoted by MA (𝑞) 

is defined as follows: 

𝑥𝑡 = 𝛼 − 𝜃1𝜀𝑡−1 −  𝜃2𝜀𝑡−2 − ⋯ − 𝜃𝑞𝜀𝑡−𝑞 + 𝜀𝑡          (3.2)  

                                                
4 Source: (Pal & Prakash ,2017), Chapter 4. 



22 
 

where 𝛼 and 𝜃𝑖 are real parameters. 

The ARMA model combines the power of AR and MA components together. This 

way, an ARMA (𝑝, 𝑞) model incorporates the 𝑝𝑡ℎ order AR and 𝑞𝑡ℎ order MA 

model, respectively.  

We denote by Φ and θ the AR and MA coefficients vectors. The α and 𝜀𝑡 captures 

the intercept and the error term at time 𝑡. The complete ARMA(𝑝, 𝑞) model can 

be seen in detail in equation (3.3)4, that is: 

𝑥𝑡 = 𝛼 +  𝜙1𝑥𝑡−1 + 𝜙2𝑥𝑡−2 + ⋯ + 𝜙𝑝𝑥𝑡−𝑝   − 𝜃1𝜀𝑡−1 −  𝜃2𝜀𝑡−2 − ⋯

− 𝜃𝑞𝜀𝑡−𝑞 + 𝜀𝑡              (3.3)  

 

ARIMA is a generalization of the ARMA model by including integrated 

components, which are useful when data is non-stationary5. The ARIMA applies 

differencing on time series to remove non-stationary. The ARIMA (𝑝, 𝑑, 𝑞) 

represent the order for AR, MA, and differencing components. 

The autocorrelation function (ACF) measures how a series is correlated with 

itself at different lags. It can help guide of moving average number of lags (q). 

The partial autocorrelation (PACF) function can be interpreted as a regression of 

the time series against its past lags. At the same way, it can come up with a 

possible order of auto regressive term (p). It is also possible to evaluate the best 

ARIMA model by using the Akaike Information Criterion (AIC). After checking 

the residuals, it is possible to advance to forecasts calculations.  

The model is well known for its forecasting accuracy. However, as it is a linear 

model, ARIMA suffers from some limitations handling with non-linear 

problems, as it is expected to perform better in shorter time periods of forecasting. 

 

                                                
5 “Non-Stationary mostly arises due to the presence of trend and seasonality that affects the 

mean, variance, and autocorrelation at different points in time.”, (Pal & Prakash, 2017), 

Chapter 2. 
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3.2.2 Non-linear machine learning models 

To understand what the Long Short-Term Memory (LSTM) algorithm is and how 

it works, I will define and describe briefly the functioning of neural networks 

through Artificial Neural Networks (ANN) and Recurrent Neural Network 

(RNN). 

 

3.2.2.1. ANN 

ANNs are inspired by the neural connections, trying to predict the neural 

pathways and their behavior. As much robust and self-adapting the ANNs is, 

better solutions will be provided in forecasting non-linear problems. A neural 

network consists of simple processing units, the neurons, which are linked via 

connections. The strength of a connection between two neurons is called weight. 

Those weights can be implemented in a weight matrix or in a weight vector. The 

neurons can be grouped in the following layers: input layer, hidden layer and 

output layer. In figure 3.2, it can be observed an example of multiple layer neural 

network. 

Figure 3.2 – Multi-layer perceptron6. 

The network input is the result of the propagation function since it receives the 

outputs from other nodes and transforms them, based on connecting weights, into 

                                                
6 Source: (Pal & Prakash ,2017), Chapter 5. 
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the neural input that can be then processed by the activation function. It 

transforms the network input as well as the previous state into a new activation 

state with a threshold value playing an important role since it marks the position 

of the maximum gradient value of the activation function. The most commonly 

activation functions used are the sigmoid (sig), hyperbolic tangent (tan) and a 

Rectifying Linear Unit (ReLu), plotted in figure 3.3. The output function 

calculates the output value of the neuron from its activation state.  

 

Figure 3.3 – Activation functions7 

 

Depending on the learning strategy applied is possible to adjust the network to 

fit our needs. There are three types of learning: i) supervised learning: learning 

from the examples laid out by a supervisor, using a collection of training dataset; 

ii) unsupervised learning: modelling data without corresponding labels. With 

enough data, it is possible to create patterns from clustering and dimensional 

reduction; iii) reinforcement learning: using the information gathered by 

observing how the environment reacts to action. This type of machine learning is 

based on the interactions with the environment to learn which combination of 

actions yields the most favorable results. 

ANN are however not suitable for sequential data as the network has no memory 

of previous time steps it cannot model dependencies.  

                                                
7 Source: (Shukla & Fricklas, 2018), Chapter 7. 
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3.2.2.2. RNN 

The recurrent neural networks (RNNs) is different from a traditional neural 

network because it introduces a transition weight to send information over time. 

This transition weight means that the next state is dependent of the previous one. 

That means that the model has now memory. In RNNs, the hidden layers act as 

an internal storage of the information captured in the earlier stages. The term 

“recurrent” derived from the fact that the model performs the same task to every 

element of the sequence using the information obtained previously to predict the 

future values. RNN is represented in figure 3.4. 

Figure 3.4. Recurrent neural network with p time steps
8
. 

The RNNs have difficulties in learning long-range dependencies. For time series 

forecasting, going too many time steps back in the past would be problematic 

because the information obtained in the previous time steps either start to vanish 

or get significantly amplified. These events are called either vanishing or 

exploding gradient respectively. Long Short-Term Memory (LSTM) is a solution 

to these problems. 

 

                                                
8 Source: (Pal & Prakash, 2017), Chapter 5. 
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3.2.2.3. LSTM  

LSTM is a special type of RNN with additional elements to memorize the 

sequential data.  

 

The important element of LSTM is the cell state that transports information 

across the sequence chain. It works as the memory of the network. The cell state 

can actually carry only the relevant information in the sequence since the 

information can be removed or added via gates. The gates learn what information 

is pertinent to keep or forget during training. Therefore, the information of earlier 

stages has now impact on later stages in the sequence.  

LSTM introduces three new gates: the input (𝑜𝑡), forget (𝑔𝑡) and output (𝑐𝑡) 

gates, as seen in equations (3.4), (3.5) and (3.6)9, respectively. Gates contains 

sigmoid activations that squish the values between 0 and 1. Every time step has 

an internal hidden state (ℎ𝑡), which is the internal memory unit of the current 

timestep that considers the memory of the previous step but downsized by a 

fraction (𝑠𝑡) and the effect of internal hidden state but mixed with the input gate 

(𝑜𝑡). The input gate controls the fraction of the newly computed input to keep.  

Equations (3.7), (3.8) and (3.9)9 are related to the internal hidden state.  

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 +  𝑈𝑜𝑠𝑡−1)       (3.4) 

𝑔𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑔𝑥𝑡 +  𝑈𝑔𝑠𝑡−1)     (3.5) 

𝑐𝑡 = 𝑓𝑡⨀𝑐𝑡−1 + ℎ𝑡⨀𝑔𝑡         (3.6) 

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 +  𝑈𝑓𝑠𝑡−1)           (3.7) 

                                                
9 Equations Source: (Pal & Prakash, 2017), Chapter 5. 



27 
 

𝑠𝑡 = tanh(𝑐𝑡) ⨀𝑜𝑡          (3.8) 

ℎ𝑡 = 𝑓𝑡          (3.9) 

 

Now I will introduce briefly the functioning of each LSTM gate. Firstly, the 

forget gate agrees to what information should be kept within the update to the 

next step. The information from the previous hidden state and current input is 

combined through a sigmoid function. Values come out between 0 and 1. The 

closer to 0 means to forget, and the closer to 1 means to keep. Secondly, it is 

necessary to pass the previous hidden state and current input gate into a sigmoid 

function to transform values between 0 and 1, which means either not important 

or important, respectively. Then it is also needed to pass the hidden state and 

current input into the tanh function to squeeze values between -1 and 1. After 

multiplying both outputs, the sigmoid output will decide which information is 

important. At this moment, there are conditions to multiply the cell state by the 

forget vector. This might drop some values if we multiply by values close to zero. 

Then it takes the output from the input gate and do a pointwise addition to update 

the cell state with the important information, which give us the new cell state. 

Finally, the output gate decides what the next hidden state should be. The hidden 

state contains information from the previous inputs. It is necessary to pass the 

previous hidden state and current input into a sigmoid function and the modified 

cell state to the tanh function. After we multiply both to decide what information 

the hidden state will keep. The output is the hidden state. In detail, it is possible 

to verify the LSTM structure in the figure 3.5. The gating mechanism of LSTM 

allows memory transfer from over long-range timesteps. 



28 
 

 

Figure 3.5 – LSTM cell and its operations 10 

 

  

                                                
10 Source: (Nguyen, 2018) 
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4. Data 

The bitcoin price data11 (‘bprice’) ranges from “2017-06-18” to “2019-08-07” in 

a daily period. The total number of observations is 781 (n=781). Note that I have 

just considered historical data from the previous two years in order to remove 

monotonic data from the initial bitcoin years. Since 2017, the bitcoin price has 

become more volatile. On 13th October 2017 bitcoin price breaks the $5,000 for 

the first time, on 28th November 2017 the $10,000 and on 18th December 2017 

hits all time high just below $20,000. The bitcoin price time series can be 

observed in figure 4.1. Non-linear trend and non-stationarity are the first 

geometrical properties that can be highlight in figure 4.1. 

Figure 4.1 - Bitcoin Price time series 

I split the time series into train and test set by date “2019-04-01”, that is, the data 

prior to this date is the training data and the data from this data onward is the 

testing data. That means that we divide the sample into two subsets: 83.5% for 

training (652 days) and 16.5% for testing (129 days). The data can be visualized 

                                                
11 Coinbase, Coinbase Bitcoin [CBBTCUSD], retrieved from FRED, Federal Reserve Bank of 

St. Louis; https://fred.stlouisfed.org/series/CBBTCUSD (accessed 11.08.2019). 

https://fred.stlouisfed.org/series/CBBTCUSD
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once again in figure 4.2, where distinct colors (blue and orange) illustrates the 

train test and the test sets. 

Figure 4.2 - Bitcoin Price time series divided between training (blue) and testing (orange). 
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5. Models Implementation 

In this chapter, I will implement the methods of both models described in chapter 

3 in order to forecast the bitcoin price. All this analysis is developed using Python 

software codes.  

5.1. ARIMA 

Firstly, I check the stationarity of the original time series in levels (with and 

without trend) and the same for the first differences. For that, it will be used the 

Augmented Dickey- Fuller (ADF)12 test. The results are described in the table 

5.1. 

 

 

 

 

 

 

 

 

Table 5.1- ADF test results. Computed by author from Python output. 

(***), (**), (*) – rejection the null hypothesis at the 1%, 5% and 10% level respectively. 

The critical values for each level can be checked in table 5.2. 

 

 

 

 

 

 

 
 

 

Table 5.2- ADF critical values. Computed by author from Python output. 

 

By analyzing the results from table 5.1, we conclude that the bitcoin price is non-

stationary at level (since we do not reject the null, that is, existence of a unit root), 

                                                
12 Augmented Dickey- Fuller (ADF) test is used for testing the null hypothesis that a time series 

is a unit root against the alternative hyphothesis that the time series is stationary (Pal & Prakash 

,2017), Chapter 2. 

 

Model Specification ADF statistic  

Constant -0.219 

Constant and trend -0.512 

1st Differences -4.559 (***) 

Model Specification 1% 5% 10% 

Constant -3.439 -2.865 -2.569 

Constant and trend -3.971 -3.416 -3.130 

1st Differences -3.439 -2.865 -2.569 
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but stationary in the first-difference (since we reject the null of existence of a unit 

root), comparing the ADF Statistic with all critical values from table 5.2  

As mentioned previously, the well-known ARIMA (𝑝, 𝑑, 𝑞) defines the lag 

observations in the auto-regressive part (𝑝), the number of times of differencing 

(𝑑) and the size of moving average (𝑞). In the figure 5.1 and 5.2, it is possible to 

analyze the ACF, PACF and the first differences of this time series, respectively. 

From the analysis of the correlogram we observe that p=1 or p=2 will be the order 

of the auto-regressive part of the ARIMA model. 

Figure 5.1 - ACF and PACF function 

 

 

 

 

 

 

Figure 5.2 – First differences 

 

In order to select the best suitable ARIMA model, I used the AIC score for each 

combination of 𝑝, 𝑑, 𝑞. The detail of each combination can be checked in the 

table 5.3. In this particular case, the min AIC criteria states that the best suitable 

model is the ARIMA (1,1,1). 



33 
 

 

 

No. p D q AIC 

0 0 1 0 11,609.175 

1 1 1 1 11,608.536* 

2 1 1 0 11,610.824 

3 0 1 1 11,610.812 

4 2 1 1 11,609.803 

5 2 1 2 11,612.258 

Table 5.3- AIC score of different order ARIMA model. Computed by author from Python output. 

*Best suitable model (lower AIC) 

 

 

The results of ARIMA (1,1,1) are summarized in figure 5.3. Both first order auto-

regression (AR(1)) and moving average (MA(1)) processes are statistical 

significant since their coefficients are different from zero, which can be 

concluded by analyzing the associated p-values (are approximately zero, since 

lower that any significance level).  

Figure 5.3 - ARIMA (1,1,1) model results 
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The ARIMA (1,1,1) model is then used as the baseline forecasting model as the 

results indicate. 

 

Next, I will set in-sample lagged values for prediction. This model applies the 

previous value to make the next prediction. In the figure 5.4, it is compared the 

fitted and actual values for bitcoin prices ARIMA (1,1,1) forecasts that seem 

closely good. However, due to the weaknesses of this model the predictions are 

exactly coincident with one-lagged observations.   

Figure 5.4 - ARIMA (1,1,1) forecasting. Forecasts (blue line) and bitcoin observations (orange 

line). 

 

In figure 5.5, it is represented the residuals plot for ARIMA predictions. This 

figure compares the predict values of bitcoin price using ARIMA model (x-axis) 

and their residual13 values (y-axis). The residuals get larger moving from left to 

the right and there are few potential outliers, so there may be a few problems such 

as heteroscedasticity14.  

                                                
13 Difference between the observed value of the dependent variable (y) and the predicted value 

(�̂�). 
14 Systematic change in the spread of the residuals over the range of measured values. 
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Figure 5.5 – Residuals plot for ARIMA predictions  

 

Note that in this case, I used the entire dataset for time series analysis. Ideally, I 

would perform this analysis only on training dataset when developing the 

predictive model. 

Therefore, I will find the optimal ARIMA model using the out of time cross 

validation. In order to do so, I split the time series into training and testing data, 

83,5% and 16,5%, respectively. The results of ARIMA model forecasts can be 

observed in figure 5.6. The model seems to give a directionally correct forecast. 

However, the predicted forecasts are consistently below the actual observed 

values.  

Figure 5.6 - ARIMA (1,1,1) forecasting. Training data (blue line), testing data (orange line) 

and forecasts (green line). 
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5.2. LSTM 

In the previous section, I described a traditional model for time series analysis 

(ARIMA) to forecast a series at a future point in time from observations taking 

in the past. In this chapter, I will explore a method based on neural networks to 

obtain the prediction of the same time interval as before. More specifically, I will 

explore the Long Short-Term Memory (LSTM) model, which is a special 

algorithm of Recurrent Neural Networks (RNN), able of learning long-term 

dependencies.  

For the specific case, I considered a total number of observations of 781 daily 

bitcoin prices as previously. To be consistent with the ARIMA algorithm, I split 

the dataset into 83,5% into training and 16,5% testing, respectively.  

As a rule of thumb, whenever we use a neural network, you should normalize or 

scale our data. I will use the Min-MaxScaler from sklear. preprocessing library 

to scale data to a specific given range. In order to train LSTM, it is necessary to 

convert our data into the shape accepted by the LSTM. 

After converted our data into the desired format, it is time to create the LSTM 

network architecture. The LSTM model will be a sequential model with multiple 

layers. The sequential part allows us to create models layer-by-layer. It is limited 

in the case that it does not allow to create models that share layers or have 

multiple inputs or outputs. However, in our case, all layers have the same kind of 

information.  

The following step on the creation of the LSTM model is defining the layers in 

the neural network. The time series-forecasting model has an input layer, which 

feed into the LSTM layer and subsequently feed the output layer. The input layer 

only specifies the sequence length that ranges between 1 and -1. For this 

particular case, I defined a sequence length of 265. The LSTM layer has 160 

neurons or nodes with a dropout layer (0,5) that randomly drops 50% of the input 

before passing to the output layer, which has a single hidden neuron (dense layer 
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set to 1). I do not specify any batch size. Before start using the training data, it is 

crucial to compile our LSTM. The details about the LSTM layers shape can be 

checked in figure 5.7.  

Figure 5.7 - LSTM layers shape. 

 

Now is time to build the training model I defined in the previous few steps 

with 𝑥_𝑡𝑟𝑎𝑖𝑛 𝑦_𝑡𝑟𝑎𝑖𝑛 as variables, 100 epochs and a validation split of 20%. The 

cross-validation set is used to select the best performing algorithm. In this case, 

I define to reduce the mean squared error loss function and to optimize with the 

adam optimizer. The “val_loss” is the value of cost function for the cross-

validation data and “loss” is the value of cost function for training data.  

In figure 5.8, it is possible to verify a decreasing value loss and loss function that 

become almost stable after few epochs. After running the entire dataset few 

times, the model starts to learn and minimize loss function. 

Figure 5.8 - Value Loss and Loss Functions 
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Deep learning neural networks are trained using the stochastic gradient descent, 

which is an optimization algorithm that estimates the error gradient for the 

current state of the model from the training dataset, then updates the weights of 

the model (“learning rate”) using the back-propagation of errors algorithm. 

Thus, it is essential to rule the “learning rate” in the model. The learning rate is 

a hyperparameter used in the training of neural networks which sets how quickly 

the model is adapted to the problem. Smaller learning rates require more training 

epochs given the smaller changes made to the weights each update. In this 

particular case, I defined an automatic condition of optimizing the learning rate 

at a specific positive number of epochs.   

After setting LSTM model, I predict the bitcoin prices time series applying all 

the parameters previously mentioned. In the figure 5.9 is compared the actual and 

predicted values applying this model. This model seems to give quite good 

forecasts of bitcoin prices with a smother version of observation values. 

 

Figure 5.9 - LSTM forecasting. Observed values (orange line) and prediction values (blue line). 
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5.3 Results 

The results demonstrate how LSTM and ARIMA models perform when 

forecasting bitcoin prices. Each model predicts the bitcoin price in terms of its 

forecasting error value for both RMSE and MAE.  

MAE measures the average over the test sample of the absolute differences 

between prediction and actual observations where all individual differences have 

equal weight. RMSE is the square root of the average of squared differences 

between prediction and actual observation. A lower value for both measures 

implies better accuracy in prediction. Using 𝐹𝑡 as the forecast value, 𝐴𝑡 as the 

actual value and n the number of time steps, the MAE and RMSE can be defined 

as follows in equations (5.1) and (5.2)15. 

𝑀𝐴𝐸 =  
∑ |𝐴𝑡 −  𝐹𝑡 |𝑛

𝑡=1

𝑛
         (5.1) 

𝑅𝑀𝑆𝐸 =  √
∑ (𝐴𝑡 −  𝐹𝑡 )𝑛

𝑡=1

𝑛

2

      (5.2) 

RMSE using ARIMA and LSTM models is 4,725 and 361 respectively, yielding 

an average of 4,364 reduction of errors achieved by LSTM. At the same time, 

MAE shows a reduction of errors on average of 3.867 from ARIMA to LSTM 

model. These results clearly indicate that LSTM model improved ARIMA 

forecasts on average 92% and 94%, according to RMSE and MAE. The results 

details can be observed in table 5.4.  

Forecast 
RMSE % 

Reduction 

MAE % 

Reduction 

ARIMA LSTM ARIMA LSTM 

Bitcoin 

price 

4,725 361 92% 4,106 239 94% 

Table 5.4 - RMSE and MAE forecasting errors for both ARIMA and LSTM models. 

Results printed via Python. 

                                                
15 Equations source: (Elmasdotter & Nystrӧmer, 2018) 
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6. Conclusion 

Machine learning techniques have recently gained a lot of popularity among the 

international community. The main purpose of this dissertation was to know 

whether these newly approaches are more powerful than the traditional methods, 

or not. For this, I compared the accuracy of ARIMA versus LSTM forecasts for 

a daily time-series of bitcoin prices.  

For both models, I split the time series into training and testing data, 83.5% and 

16.5%, respectively, in order to compare them. In the case of the ARIMA model, 

the best suitable model was an ARIMA (1,1,1) using the min AIC criteria. This 

model gives a correct direction forecast; however, the prediction values are 

consistently below the real observations. In the case of the LSTM, I adjusted the 

parameters of the model as follows: a sequence length of 265, a LSTM layer with 

160 nodes, a dropout layer of 0.5, a dense layer set to 1, 100 periods and a 

validation split of 20%. This model seems to give a quite good forecast with a 

smoother curve than the actual observations.  

The results show that LSTM predictions have better precision in terms of 

forecasting errors: RMSE and MAE, they display on average an improvement of 

92% and 94%, respectively, with respect to the ARIMA model. These results 

confirm the literature insights, since the LSTM approach by large outperforms 

the ARIMA output as previously mentioned. 

Although this dissertation provides the expected results, some limitations should 

be highlighted. Firstly, the data size is relatively short, and the LSTM algorithm 

performs better in cases of longer time series. Secondly, bitcoin prices are not 

seasonally adjusted. The time series of Bitcoin prices presents seasonality in 

some months and even at the weekend users tend to make more transactions than 

during week days. After removing seasonality, the time series would be cleaner, 

and a higher forecasting performance would be obtained. Thirdly, daily data 

creates more volatility to the series than one might have desired. Hence, weekly 

data could be helpful to improve the accuracy of predictions as well.  
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A future extension of the analysis done in this dissertation could investigate the 

performance of simpler versions of neural networks such as ANN. It would be 

also interesting to forecast the bitcoin prices to few days in the future based on 

historical past information. Alternatively, it could be also created a rolling 

window model. These models focus on building a structure for time series 

prediction that will divide the series in several windows. Huisu et al. (2018) 

proved that the rolling window LSTM outperforms the normal LSTM in terms 

of validation errors. Not least important, it would be worthy to include some 

sentimental factors in the machine-learning optimization as previously 

mentioned in chapter 2.2. 

Even though the results were successful addressed, bitcoin prices should be very 

difficult to predict due to its high volatility and inherently speculative behaviour. 

As mentioned by Krugman (2018). “Bitcoin … whose price is almost purely 

speculative, and hence incredibility volatile … Who’s driving the price now? 

Nobody knows.” Even the most sophisticated machine-learning models will 

always have a certain level of error due to this fundamental uncertainty around a 

purely speculative variable.  

Cryptocurrencies are here to stay for the next couple of years. If Bitcoin loses 

reputation, other cryptocurrencies will emerge with better features. At the same 

time, machine-learning models have still a long road ahead. There is still a great 

potential to understand more precisely the behavior of bitcoin and other 

cryptocurrencies prices.  
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8. Annexes 

8.1 – ARIMA algorithm 

1. # Necessary Packages 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

import statsmodels.api as sm 

import statsmodels.formula.api as smf 

from statsmodels.tsa.stattools import adfuller 

from sklearn.metrics import mean_squared_error 

from pandas import read_csv 

from pandas import datetime 

from pandas import DataFrame 

from statsmodels.tsa.arima_model import ARIMA 

from matplotlib import pyplot 

2. # Bitcoin data 

data1 = pd.read_csv('bitcoin.csv', header=0) # importing the bitcoin data 

3. # visualize the data frame, first 10 elements 

print(data1.head(10)) 

4. #graphical representation 

data1.plot() 

plt.show() 

5. #read data again 

series = read_csv('bitcoin.csv', header=0, index_col=0) 

from statsmodels.graphics.tsaplots import acf, pacf 

from statsmodels.graphics.tsaplots import plot_acf, plot_pacf 

pyplot.figure() 

pyplot.subplot(211) 

plot_acf(series, ax=pyplot.gca(),lags=30) 

pyplot.subplot(212) 

plot_pacf(series, ax=pyplot.gca(),lags=30) 
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pyplot.show() 

6. # returns or first difference of the time series 

returns=series.diff() 

returns.plot() 

plt.show() 

from statsmodels.tsa.arima_model import ARIMA 

import pmdarima as pm 

model = pm.auto_arima(series, start_p=1, start_q=1, 

                      test='adf',       # use adftest to find optimal 'd' 

                      max_p=6, max_q=6, # maximum p and q 

                      m=1,              # frequency of series 

                      d=None,          # let model determine 'd' 

                      seasonal=False,  # No Seasonality 

                      start_P=0,  

                      D=0,  

                      trace=True, 

                      error_action='ignore',   

                      suppress_warnings=True,  

                      stepwise=True) 

print(model.summary()) 

7. # fit an ARIMA model for the series  

model = ARIMA (series, order=(1,1,1)) 

model_fit = model.fit(disp=0) 

print(model_fit.summary()) 

8. # plot residual errors 

residuals = DataFrame(model_fit.resid) 

fig, ax = plt.subplots(1,2) 

residuals.plot(title="Residuals", ax=ax[0]) 

residuals.plot(kind='kde', title='Density', ax=ax[1]) 

plt.show() 

print(residuals.describe()) 
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print(model_fit.aic) 

9. # Actual vs Fitted 

def forecast_accuracy(forecast, actual): 

    mape = np.mean(np.abs(forecast - actual)/np.abs(actual))  # MAPE 

    me = np.mean(forecast - actual)             # ME 

    mae = np.mean(np.abs(forecast - actual))    # MAE 

    mpe = np.mean((forecast - actual)/actual)   # MPE 

    rmse = np.mean((forecast - actual)**2)**.5  # RMSE 

    corr = np.corrcoef(forecast, actual)[0,1]   # corr 

    mins = np.amin(np.hstack([forecast[:,None],  

                              actual[:,None]]), axis=1) 

    maxs = np.amax(np.hstack([forecast[:,None],  

                              actual[:,None]]), axis=1) 

    minmax = 1 - np.mean(mins/maxs)             # minmax 

    #acf1 = acf(fc-test)[1]                      # ACF1 

    return({'mape':mape, 'me':me, 'mae': mae,  

            'mpe': mpe, 'rmse':rmse,  

            'corr':corr, 'minmax':minmax}) 

yy=model_fit.predict(652) 

xx=series.iloc[652:781,0] 

tt=forecast_accuracy(yy, xx) 

print('forecast accuracy',tt) 

pyplot.figure() 

plt.scatter(xx,yy, marker='o') 

pyplot.show() 

pyplot.figure() 

model_fit.plot_predict(652,781) 

model_fit.plot_predict(dynamic=False) 

pyplot.show() 

10. # separate data in training and test data (95% and 5%) 

forecast3, stderr, conf_int = model_fit.forecast(10) 
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print(forecast3) 

pyplot.plot(forecast3,color='green') 

pyplot.show() 

pyplot.figure() 

model_fit.plot_predict(752,791) 

pyplot.show() 

from math import sqrt 

from sklearn.metrics import mean_squared_error 

rms = sqrt(mean_squared_error(yy,xx)) 

print('RMSE', rms) 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

import statsmodels.api as sm 

import statsmodels.formula.api as smf 

from statsmodels.tsa.stattools import adfuller 

from sklearn.metrics import mean_squared_error 

from pandas import read_csv 

from pandas import datetime 

from pandas import DataFrame 

from statsmodels.tsa.arima_model import ARIMA 

from matplotlib import pyplot 

from statsmodels.tsa.arima_model import ARIMA 

from statsmodels.tsa.arima_model import ARMA 

from statsmodels.tsa.seasonal import seasonal_decompose 

11. # Bitcoin data 

data = pd.read_csv('bitcoin.csv')  

12. #divide into train and validation set 

train = data[:int(0.835*(len(data)))] 

valid = data[int(0.835*(len(data))):] 

13. #preprocessing (since arima takes univariate series as input) 
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train.drop('Date',axis=1,inplace=True) 

valid.drop('Date',axis=1,inplace=True) 

14. #plotting the data 

train['bprice'].plot() 

valid['bprice'].plot() 

15. #building the model 

from pmdarima import auto_arima 

model = auto_arima(train, trace=True, error_action='ignore', 

suppress_warnings=True) 

model.fit(train) 

forecast = model.predict(n_periods=len(valid)) 

forecast = pd.DataFrame(forecast,index = valid.index,columns=['Prediction']) 

16. #plot the predictions for validation set 

pyplot.figure() 

plt.figure(figsize=(10, 6)) 

plt.plot(train, label='Train') 

plt.plot(valid, label='Valid') 

plt.plot(forecast, label='Prediction') 

plt.show() 

17. #calculate rmse 

from math import sqrt 

from sklearn.metrics import mean_squared_error 

from sklearn.metrics import mean_absolute_error 

rms1 = sqrt(mean_squared_error(valid,forecast)) 

print('RMSE',rms1) 

print('MAE', mean_absolute_error(valid, forecast)) 
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8.2 – LSTM algorithm 

1. # Loading the data and the preprocessing 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

import statsmodels.api as sm 

import statsmodels.formula.api as smf 

from statsmodels.tsa.stattools import adfuller 

from sklearn.metrics import mean_squared_error 

from pandas import read_csv 

from pandas import datetime 

from pandas import DataFrame 

from statsmodels.tsa.arima_model import ARIMA 

from matplotlib import pyplot 

import seaborn as sns 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import MinMaxScaler 

from sklearn.metrics import mean_absolute_error 

from sklearn.metrics import mean_squared_error 

from sklearn.metrics import r2_score 

from math import sqrt 

2. # Bitcoin data 

df = pd.read_csv('C:/Users/jmendes009/Desktop/Bitcoin/Python/Bitcoin-Price-

Forecasting-master/bitcoin.csv') 

3. # visualize the data frame, first 10 elements 

df['Date'] = pd.to_datetime(df['Date']) 

df = df.set_index(['Date'], drop=True) 

df.head(10) 

4. #graphical representation 

plt.figure(figsize=(10, 6)) 

plt.title('Bitcoin price') 
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df['bprice'].plot(); 

5. #We split the data to train and test set by date “2019–04–01” (that is,  

the data prior to this date is the training data and the data from this data onward 

is the test data, and we visualize it again). 

split_date = pd.Timestamp('2019-04-1') 

df =  df['bprice'] 

trainf = df.loc[:split_date] 

testf = df.loc[split_date:] 

train2d = testf.values.reshape(-1,1) 

test2d = testf.values.reshape(-1,1) 

plt.figure(figsize=(10, 6)) 

ax = trainf.plot() 

testf.plot(ax=ax) 

plt.legend(['train', 'test']) 

plt.title('Bitcoin Price train vs test') 

plt.show() 

plt.figure(figsize=(10, 6)) 

plt.title('Bitcoin Price test') 

testf.plot(); 

plt.show()     

prices = read_csv('bitcoin.csv', header=0, index_col=0) 

prices.head() 

seq_length = 265 

minMax = MinMaxScaler() 

X = minMax.fit_transform(prices) 

X = X.squeeze() 

x = [] 

y = [] 

for i in range(len(prices) - seq_length): 

    x.append(X[i: i+(seq_length)-1]) 

    y.append(X[i+(seq_length)-1]) 



52 
 

x = np.array(x) 

y = np.array(y) 

 

x_train, x_test, y_train, y_test= train_test_split(x, y) 

print(x_train.shape) 

print(x_test.shape) 

print(y_test.shape) 

print(y_train.shape) 

x_train = x_train.reshape(-1, seq_length-1,1) 

x_test = x_test.reshape(-1, seq_length-1,1) 

6. # # Model building and training 

import keras 

from keras.layers import Input, LSTM, Activation, Dense 

from keras.models import Sequential, Model 

from keras.callbacks import LearningRateScheduler 

model = Sequential() 

input = Input((seq_length-1, 1)) 

X = LSTM(160, recurrent_dropout= 0.5)(input) 

X = Dense(1)(X) 

model = Model(input, X) 

model.compile(loss='mse', optimizer='adam') 

def reduce(epoch, lr): 

    if epoch%10 == 0: 

        return lr 

    return lr 

scheduler = LearningRateScheduler(reduce) 

history = model.fit(x_train, y_train, epochs=100, validation_split=0.2) 

pyplot.figure() 

plt.figure(figsize=(10, 6)) 

plt.plot(list(history.history['val_loss'])) 

plt.show() 
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pyplot.figure() 

plt.figure(figsize=(10, 6)) 

plt.plot(list(history.history['loss'])) 

plt.show() 

7. #Testing 

predictions = model.predict(x_test) 

from math import sqrt 

rms1 = (sqrt(mean_squared_error(y_test, predictions))) 

print('MAE1', mean_absolute_error(y_test, predictions)) 

print('RMSE1', rms1) 

mape1 = np.mean(np.abs(predictions - y_test)/np.abs(y_test)) 

print('MAPE1', mape1) 

pyplot.figure() 

plt.figure(figsize=(10, 6)) 

plt.scatter(y_test,predictions, marker='o') 

plt.show() 

pred = minMax.inverse_transform(predictions) 

#y_test=y_test.reshape(-1,1) 

pred = pred.squeeze() 

8. # test loss using mean absolute error 

from sklearn.metrics import mean_absolute_error 

from sklearn.metrics import mean_squared_error 

from sklearn.metrics import r2_score 

from math import sqrt 

y1_test=minMax.inverse_transform(y_test.reshape(-1,1)) 

y1_test=y1_test.squeeze() 

rms = (sqrt(mean_squared_error(y1_test, pred))) 

print('MAE',mean_absolute_error(y1_test, pred)) 

print('RMSE', rms) 

mape = np.mean(np.abs(pred - y1_test)/np.abs(y1_test)) 

print('MAPE', mape) 
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corr = (np.corrcoef(pred, y1_test)[0,1]) 

print('Corr' , corr) 

#print(y1_test-pred) 

mean=np.mean(y1_test) 

print('mean', mean) 

pyplot.figure() 

plt.figure(figsize=(10, 6)) 

plt.scatter(y1_test,pred, marker='o') 

plt.show() 

pyplot.figure() 

plt.figure(figsize=(10, 6)) 

plt.plot(y1_test) 

plt.plot(pred) 

plt.show() 

9. # plotting subset from the data 

pyplot.figure() 

plt.figure(figsize=(10, 6)) 

p = model.predict(x[387:516].reshape(-1, seq_length-1, 1)) 

p = minMax.inverse_transform(p) 

p = p.squeeze() 

plt.plot(p) 

plt.plot(minMax.inverse_transform(y[387:516].reshape(1,-1)).squeeze()) 

plt.show() 

10. # ploting data of the past 2 years 

pyplot.figure() 

plt.figure(figsize=(10, 6)) 

p = model.predict(x.reshape(-1, seq_length-1, 1)) 

p = minMax.inverse_transform(p) 

p = p.squeeze() 

pyplot.figure() 

plt.figure(figsize=(10, 6)) 
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plt.plot(p) 

plt.plot(minMax.inverse_transform(y.reshape(-1,1)).squeeze()) 

plt.show() 

 

 

 

 

 


