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Abstract 

 

In this dissertation it is presented an empirical study that focus the period from 3 January 

2007 to 1 October 2018, about the interactions between stock markets of Europe, United 

States of America (USA) and Asia, by implementing a generalized vector autoregressive 

(VAR) model and a dynamic conditional correlation (DCC) model. 

For this purpose, three different stock market indices (Euro Stoxx 50 - Europe, S&P 500 

– USA, and Nikkei 225 – Asia) were chosen to be representative of each geography they 

concern, in order to inquire if the indices are related between each other or not. 

In general, the empirical results allow to conclude that returns of S&P 500 and Euro Stoxx 

50 returns depend on their own past returns. Additionally, Euro Stoxx 50 returns are 

influenced by past returns of S&P 500 and there is no evidence of causality relationship 

from Nikkei 225 returns to any of the other indices returns. 

Moreover, the conditional analysis of the pairwise correlations reveals that these are 

positive. The results presented by the DCC model indicate that it provides an accurate 

description of the dynamics of the correlations between the time series analysed for the 

purpose of this dissertation. 

 

JEL classification: 

G10; C32; C51 

Keywords: Correlations, Stock market returns co-movements, Volatility, VAR, DCC, 

Multivariate GARCH models  
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Resumo 

 

No presente trabalho, é apresentado um estudo empírico com base no período entre 3 de 

Janeiro de 2007 e 1 de Outubro de 2018, acerca das interações entre os mercados de 

capitais da Europa, Estados Unidos da América (EUA) e Ásia, através da estimação do 

modelo VAR e do modelo DCC.  

Para este propósito, foram escolhidos três índices de ações representativos da geografia a 

que dizem respeito (Euro Stoxx 50 – Europa, S&P 500 – EUA e Nikkei 225 – Ásia) de 

modo averiguar se os índices estão relacionados entre si ou não. 

Em termos gerais, os resultados obtidos permitiram concluir que as taxas de rendibilidade 

dos índices S&P 500 e Euro Stoxx 50 dependem das suas rendibilidades passadas, as 

rendibilidades do Euro Stoxx 50 são influenciados pelas rendibilidades passadas do S&P 

500 e não há evidências de causalidade nem do S&P 500 nem do Nikkei 225 para as 

rendibilidades dos restantes índices. Adicionalmente, a análise das correlações 

condicionais a pares revela que estas são positivas. Os resultados produzidos pelo modelo 

DCC revelam que este é um modelo apropriado para descrever as dinâmicas 

correlacionais entre as várias séries temporais em questão. 
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1. Introduction 

 

Financial markets provide many opportunities, but it can also cause tremendous losses to 

investors. In order to be prepared to entry into this world, it is necessary to balance the 

reward and the risk. Therefore, it is very important to have knowledge about volatility 

since it is the main source of risk. To make more adequate investment choices, forecasting 

arises as a tool to create a better financial strategy  

Although traditional research in financial economics has been concentrated on the 

conditional mean of stock market returns, the most recent developments in international 

stock markets have increased the interest and concern for investors, regulators and 

researchers towards the volatility of such returns. The number of crashes and the size of 

their effects have forced them all to look more carefully to the level and behaviour of 

volatility throughout time (Matei, 2009). Researchers are changing their attention towards 

development and the improvement of econometric models to produce accurate forecasts 

of returns’ volatility. Moreover, it is known that forecast is highly sensitive to the choice 

of the volatility model. It is also known that volatility tends to cluster in periods: small 

changes tend to be followed by small changes, and vice versa. This event, when the 

standard deviation varies over time, is called conditional heteroscedasticity. 

Heteroscedasticity means fluctuating variance (Orskaug, 2009).  In addition, volatility 

over time has shown to be autocorrelated, which means that today’s volatility depends on 

the past volatility. The conditional heteroskedastic models developed for such purpose 

present special importance due to the extended concern in both the academic and applied 

literature for volatility modelling. Further investigations were conducted in this field and 

many models were constructed over time with the goal to create a model which estimates 

a more accurate and realistic value of the volatility in a conditional way. This is the 

challenge that motivates researchers to develop or modify the present available models.  

Over the last few decades, a strong increase in globalization resulted in a greater 

integration in the dynamics of several asset prices. The worldwide financial crisis in 2008 

demonstrated how correlations between different global equity markets changed over 

time. Considering financial innovations and enhanced connectivity between international 

stock exchanges, predicting and studying the prevailing co-movement in markets seems 

to assume an extreme importance when modelling equity prices and returns. While the 
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first moment of equity prices (the mean) exhibits similar movements across markets, the 

co-movement in the volatilities also presents a large degree of similarity.  

Volatility of an underlying asset return is represented by its standard deviation. Studying 

the volatility can have many applications in the financial domain, among which, for 

example, there is the analysis and calculation of the value at risk (VaR) of a financial 

position. 

For this matter, traditional time series tools such as autoregressive moving average 

(ARMA) models (Box et al., 1970.) for the conditional mean were extended to essentially 

analogous models but for the conditional variance. According to the methods used to 

estimate the conditional volatility, the GARCH family models arise, being the most 

composed models.  

There are multivariate models developed for ARMA and GARCH models, with the 

purpose of explaining the variations and changes over the time on the mean and volatility, 

respectively, for a set of multiple time series. 

A method used for the multivariate analysis is the vector autoregression (VAR), a natural 

extension of the univariate autoregressive (AR) model to dynamic multivariate time 

series. This is one of the most effective and flexible models for the analysis of the mean 

behaviour of multivariate time series, and it is especially useful not only for explaining 

the dynamic behaviour of economic and financial time series but also to forecasting.  

Another multivariate approach to study time series can be the extension from a univariate 

GARCH to a multivariate GARCH model. This models are used to understand the 

behaviour and possible patterns of volatility of the time series over the time. With this 

extension from univariate to multivariate analysis, there is a door opened to improve 

decision tools. The main challenge in constructing multivariate GARCH models is to 

make them parsimonious1 enough, but still maintain the flexibility. 

 

Among the GARCH multivariate models, one approach is to decompose the conditional 

covariance matrix into conditional standard deviations and a conditional correlation 

matrix – Constant Conditional Correlation (CCC) model (Bollerslev, 1990). In this 

model, the conditional correlation is assumed to be constant over time, and only the 

 
1 Parsimonious: simplest model with the least assumptions and variables but with greatest explanatory 

power. 
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conditional standard deviation is time-varying. Assuming that conditional correlation is 

constant over time is not always reasonable, therefore an extension of the CCC-GARCH 

model, for which the conditional correlation matrix is designed to vary over the time 

arises with the name of Dynamic Conditional Correlation (DCC) model (Engle and 

Sheppard, 2001).   

The key contribution of this study is to use the VAR-DCC, an econometric model 

approach, applied to financial markets, in order to model the dependency between three 

economical indices, geographically far. No study has used this model type to model these 

specific time series data as a system. It is a contribution to the literature, not only for using 

a VAR model but also to use univariate and multivariate GARCH models in the 

estimation over the same data set.

 

This approach will allow us to observe volatility 

behaviour of each market – the individual volatility magnitude – but also between all the 

stock markets in study. Nowadays markets are connected and affect each other when 

certain events occur. This study allows us to understand and measure that dependency 

and the existent relationships among the three stock markets subject to analysis in this 

dissertation. 
 

Indices are used by people to measure risk, since they work as benchmarks of, for 

example, industrial sectors and business performance in stock markets. Moreover, indices 

provide historical data which help investors to have a broader perspective of the 

tendencies in the markets and, from that, to take conclusions. As a result, it is possible to 

compare indices based on their historical and present prices or also on their sector and 

purpose. The main advantage by using stock indices is the simplified approach of tracking 

performances of stock markets without the need to measure each stock individually. By 

analysing the indices, we achieve dimensionality reduction of the series to be analysed. 

The indices chosen to be analysed were S&P 500 (American index), EuroStoxx50 

(European index) and Nikkei (Asian index). The choice of these indices was based on 

their influence in regional and global financial markets, so each of the index is 

representative of the respective region they belong. The S&P 500 Index is a market-

capitalization-weighted index of the five hundred largest U.S. publicly traded nationally 

recognized companies by their value in the market. The index is widely regarded as the 

best reference of large-cap U.S. equities. The S&P 500 focuses on the U.S. market's large-

cap sector. The Euro STOXX 50 Index is a market capitalization weighted stock index of 

the fifty largest European companies operating within Eurozone countries and its 

https://www.investopedia.com/terms/m/marketcapitalization.asp
https://www.investopedia.com/terms/e/eurozone.asp
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components are selected from the Euro STOXX Index. The Nikkei 225 is the leading 

index of Japanese stocks. It is a price-weighted index composed of Japan's top two 

hundred twenty-five nationally recognized companies traded on the Tokyo Stock 

Exchange. So and Tse (2009) concluded that Asian markets are becoming progressively 

more integrated and that evidence of their co-movements during periods of financial 

distress is growing in strength. Hyde, Nguyen and Bredin (2007) found evidence of 

significant increases in correlation during the Asian crisis is largely limited to crisis 

countries and that correlations with the US and Europe did not systematically increased 

throughout this period. 

The data used in this study consists on the three mentioned indices daily Adjusted Closing 

Prices, in points. After collecting this data, it was transformed according to models’ 

requirements, namely the continuously compound returns. The unit of measure for all the 

indices is points, in order to value the securities listed on each of them. Data series cover 

the period from 3 January 2007 to 1 October 2018 and were collected at a Bloomberg 

terminal, in Microsoft Office Excel CSV format. To process the data, it will be used 

RStudio, a software programme for statistical analysis that reads the CSV file input. 

The stock markets in Europe, Asia and the U.S. were closed on different days as a result 

of holidays. To address this, adjustments were necessary, and as Wang and Firth (2004), 

we omitted the observations with missing values. Following this modification in the time 

series, there are a total of 2940 daily observations. 

In this study, we modelled the three indices time series into a multivariate VAR-DCC 

model. This study is organised as follows: Section 2 addresses the Literature Review for 

the relevant models. Section 3 presents the methodology and introduces the models used 

in this study. Section 4 reports the empirical study and respective estimation results. 

Section 5 presents the final discussion of the results of the study, its limitations and 

eventual suggestions for future research on this topic.   

https://www.investopedia.com/terms/p/priceweightedindex.asp
https://www.investopedia.com/terms/b/bluechip.asp
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2. Literature review 
 

In the last years ARMA and GARCH models have been used to model conditional mean 

and conditional variance. An autoregressive (AR) model, in its simplest form, is a model 

in which one uses the statistical properties of the past behaviour of a given variable to 

predict its behaviour in the future. Some of the most important volatility models are the 

autoregressive conditional heteroskedastic (ARCH) model proposed by Engle (1982), the 

generalized ARCH (GARCH) model developed by Bollerslev (1986), the exponential 

GARCH (EGARCH), among many others.  

 

2.1 VAR Models 

 

Vector autoregressive models are included in a class that studies and describes the 

dependency of returns between different time series. 

Multivariate simultaneous equations models were widely used for applied econometrics 

analysis. By that time, macroeconomic time series observations were longer and more 

frequent. Hence, the need of a model that could describe the dynamic structure of the 

variables was clear, and this was how this model emerged. Sims (1980) developed vector 

autoregressive (VAR) models. According to his paper, VAR models provide consistent 

and realistic approach to data description, forecasting, structural inference, and policy 

analysis. 

The VAR framework provides a systematic way to capture powerful dynamics of more 

than one time series, i.e. a multivariate analysis with a simple and direct interpretation of 

the statistical output that came with this model estimations 

Eun and Shim (1989), by estimating a VAR model, examined the international 

transmission mechanism of stock market movements. This study included nine markets, 

from December 1979 to December 1985. These authors found that U.S.A. fast growth 

contaminates other markets, but any foreign market can significantly explain U.S.A. 

market movements. 

Liu et al. (1998), by applying a VAR, explored the dynamical structure of six different 

equity markets (U.S.A., Japan, Hong Kong, Singapore, Taiwan, and Thailand). These 

authors performed tests using as data the daily stock returns from January 1985 to 
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December 1990. Their results state that the U.S.A. market plays a dominant role in 

influencing the other markets as well as that both Japan and Singapore, together, have a 

substantial and persistent impact on the other Asian markets. 

In general markets, developed and emerging, can move together over the short run. 

Janakiramanan and Lamba (1998) and Cha and Cheung (1998) investigate linkages 

between Asia Pacific and the USA equity markets using VAR models. These authors 

determined that the USA has a significant influence on these markets. 

Arouri et al. (2011) used a VAR-GARCH approach to investigate the return linkage and 

volatility transmission among oil and stock markets in Gulf Cooperation Council 

countries.  

Mensi et al. (2013) used a VAR-GARCH model to explore the return volatility 

transmission between the S&P 500 and commodity prices indices for energy, food, gold 

and beverages, from 2000 to 2011. The results for return and volatility spillovers 

exhibited significant transmission, with the S&P 500 strongly influencing the oil and gold 

markets. Moreover, this study observed that the highest conditional correlations were 

between the S&P 500 and commodity markets.  

Selmi and Hachicha (2014) examined, for the period of 2004 until 2012, the role of oil 

prices, credit, financial and commercial linkages in the transmission of the industrial 

market crisis that occurred during the period of analysis. They used a VAR-DCC model 

and found that credit linkage had a significant role in the subprime, financial and global 

crises.  

Bunnag (2015) examined co-movements and spillovers in oil futures using three types of 

multivariate VAR models - VAR (1)-diagonal VECH, the VAR (1)-diagonal BEKK and 

the VAR (1)-CCC models. Their results revealed that the estimates of the MGARCH 

parameters were statistically significant in almost all cases.  In another study, Bunnag 

(2015) examined the oil futures and the carbon emissions futures volatility co-movements 

and spillovers for crude oil, gasoline and heat oil and also for carbon emissions. The data 

used was daily information from 2009 to 2014 and three MGARCH models - VAR (3)-

diagonal VECH, the VAR (3)-diagonal BEKK and the VAR (3)-CCC. The results pointed 

for oil futures volatility to have an impactful effect on carbon emissions futures volatility. 
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2.2 ARCH Model 
 

The Autoregressive conditional heteroskedasticity (ARCH) model is the first conditional 

heteroskedasticity model for time series data (Engle, 1982). 

Bera and Higgins (1993, p.315) stated that “a major contribution of the ARCH literature 

is the finding that apparent changes in the volatility of economic time series may be 

predictable and result from a specific type of nonlinear dependence rather than exogenous 

structural changes in variables.” 

In ARCH literature, some interpretations of the process can be found. Lamoureux and 

Lastrapes (1990) point out that the conditional heteroskedasticity may be originated by a 

time dependence in the rate of information arrival to the market. They use the daily 

trading volume of stock markets as a representation for the information arrival and 

confirm its significance. Mizrach (1990) associates ARCH models with the errors of the 

economic agents’ learning processes.  

Alternative models were further researched. One of them was developed by Bollerslev 

(1986), who proposed a useful extension of this model known as the generalized ARCH 

(GARCH).  

 

2.3 GARCH Models 
 

Since in empirical applications ARCH (𝑞) models had many lags and numbers of 

parameters to estimate, Bollerslev (1986) proposed a more parsimonious specification 

when compared to ARCH model, the Generalized Autoregressive Conditional 

Heteroskedasticity (GARCH) model. A low order GARCH model can have the same 

properties of a higher order ARCH model without the problems related with the 

estimation of many parameters, subject to the non-negativity restrictions (Engle e 

Bollerslev, 1986) - which further explains the wide preference for its use in practice. 

Financial volatilities move together more or less closely over time across assets and 

markets. Hence, it is essential to consider the dependence in the correlation of asset 

returns. The success of the autoregressive conditional heteroscedasticity (ARCH) model 

and the univariate GARCH model in capturing the time-varying variances of economic 

data in the univariate case have motivated many researchers to extend these models to the 
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multivariate dimension.  One method to estimate the covariance matrix between the assets 

is to extend the univariate GARCH into a multivariate GARCH (MGARCH) model. 

Some of these models not only give us the possibility to correlate the volatilities and the 

co-volatilities of the different series, but also allow us to analyse a large quantity of data 

of different series at the same time. The specifications for these kinds of models have 

been developing. Some of these specifications are present in a range of papers surveyed 

by Bollerslev, Engle, and Nelson (1994) and more recently by Bauwens et al. (2006) and 

Silvennoinen and Teräsvirta (2008). Multivariate GARCH models specify equations for 

how the variances and covariances move over time (Orskaug, 2009). A disadvantage of 

the multivariate approach is that the number of parameters to estimate in the GARCH 

equation increases rapidly, which limits the number of assets that can be included. Thus, 

the main challenge of these kind of models is to make them parsimonious enough, but 

still maintain the flexibility.  

Since correlations between asset returns and markets are important in many financial 

applications, multivariate volatility models were also extended to describe the time–

varying feature of the correlations. 

Further investigations of financial crises and contagion provided additional evidence that 

there is significant transmission across markets (Kaminsky et al, 1999; Bae et al., 2003). 

Worthington and Higgs (2004) presented evidence of the transmission of return and 

volatility between nine developed and emerging Asia-Pacific markets finding significant 

spillovers across markets using multivariate GARCH models.  

Elder (2003) developed an analytical expression for an impulse-response function for a 

VAR with multivariate GARCH errors. He also presented the appropriate interpretation 

of an impulse-response function for such models and propose interesting empirical issues 

that can be addressed within the framework he developed. 

Schröder and Schüler (2003) made an attempt to measure the Europe-wide systemic risk 

in banking. The existence of systemic risk justify why banks are regulated and supervised. 

As a measure of this kind of risk, they applied the conditional correlations between pairs 

of national bank stock indices of the European countries. The correlations measured the 

linear relationships amongst the residuals of the ARMA models and were estimated with 

GARCH models, which considered the influence of the national stock market index and 
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a short-term interest rate as explanatory factors. Once these residuals mainly reflect bank 

specific factors, the authors concluded they were suitable to measure the systemic risk. 

Valiani (2004) implemented a Multivariate GARCH (MGARCH) specification to 

estimate the time-varying correlations of underlying assets and related currency forwards 

so that it was possible to hedge the currency exposure risk in an international portfolio 

context. His empirical investigation indicates that the optimal multivariate GARCH 

dynamic hedging strategy can catch the currency fluctuations in its best possible way and 

over-performs the risk controlling process. 

One approach to make the model more flexible and accurate is to decompose the 

conditional covariance matrix into conditional standard deviations and a conditional 

correlation matrix. The first model of this type was the CCC-GARCH model introduced 

by Bollerslev (1990). In this model, the conditional correlation is assumed constant over 

time, and only the conditional standard deviation is time varying, so the correlation matrix 

is time invariant. The assumption that the conditional correlation is constant over time is 

not always reasonable. One step forward was done by Engle and Sheppard (2001) with 

the introduction of the DCC-GARCH model, which is an extension of the CCC-GARCH 

model, for which the conditional correlation matrix is designed to vary over the time. 

Several specifications of correlation matrix have been suggested, but the most relevant 

one was the DCC-GARCH.  

The idea behind models in this class is that the covariance matrix can be decomposed into 

conditional standard deviations and also in a correlation matrix, with both conditional 

standard deviations and correlation matrix are designed to be time-varying. The main 

advantage of this model is to be able to estimate large time-varying covariance matrices 

(Engle and Sheppard, 2001). 

Engle (2002) claims that DCC model, when performed, offers more realistic empirical 

results. Tas (2008), concluded that the conditional correlation models are more viable in 

terms of estimation and interpretation of parameters. The DCC-GARCH model is more 

realistic than the CCC-GARCH model. 

Engle (2002) developed an empirical study a bivariate DCC-MGARCH (between two 

series) to estimate conditional correlations between DJIA and NASDAQ indices, stock 

and bonds and exchange rates by using US daily time series data of ten years. His results 

lead to conclude that the DCC model is more accurate than other multivariate GARCH 
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models, regardless the criteria chosen. He suggested in his paper that this version of DCC 

model provides a great approximation to a variety of time varying correlation processes. 

The comparison of this model with simple multivariate GARCH demonstrated that the 

DCC is the most precise model. Empirical examples from conventional financial 

applications are very encouraging as they reveal important time varying features that 

might otherwise be hard to quantify.  

Another significant topic in financial econometrics is the asymmetric behaviour of the 

conditional variances. The rationale behind it, is that negative shocks, when compared to 

positive shocks of similar magnitude, have a different effect on the conditional variance 

evolution. 

Ang and Chen (2002) examined the possibility of asymmetries in correlations among 

stock market in general and also on portfolios of domestic stocks in the USA. By using 

weekly data, from July 1963 and December 1998, they concluded that the correlations 

between the returns of portfolios and the market change, in general, from bear to bull 

market periods. 

Cappiello et al. (2006), by using an asymmetric generalized-DCC (AG-DCC) 

specification, studied the evolution of asymmetries in conditional variances and 

correlations among three groups of countries (Europe, Australia and North America). 

Their results led to the conclusion that equity returns reveal strong evidence of 

asymmetries in conditional volatility. Also, they found evidence that the asymmetric 

conditional correlations increase more sharply in reaction to bad news in equity markets. 

Similarly, Aielli (2008) and Palandri (2009) extended the DCC model of Engle (2002) to 

an asymmetric DCC model, a generalization of the DCC model. These authors used 

several asymmetric variants of the DCC model.  

Chiang et al. (2007) applied a DCC model to nine Asian stocks and confirm a contagion 

effect during the Asian crisis.   

Ho et al. (2009) used several multivariate GARCH models in order to examine the 

evidence of asymmetry and time-varying conditional correlations between five sectors of 

Industrial Production of the USA.   

Büttner and Hayo (2011) applied a bivariate DCC model so that they could extract 

dynamic conditional correlations between European stock markets.  
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Lahrech and Sylwester (2011) employed DCC multivariate GARCH models to examine 

the dynamic linkage between U.S. and Latin American stock markets. Their findings 

suggest an increase in the degree of co-movement between Latin American equity 

markets and U.S. equity ones. 

Efimova and Serletis (2014) present on their paper an empirical application of various 

univariate and multivariate GARCH models – including DCC model – applied to energy 

markets in the USA. Their findings include the capacity, through DCC model, to observe 

relevant the interactions between three commodity and respective volatilities and the 

spillover effects direction. Since the dataset is large and the structure from multivariate 

models is strong, there is the possibility to study the magnitude of spillover effects and 

forecast performances.  
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3. Methodology 

 

The key model of this study is a VAR-DCC model, whose theoretical aspects were 

presented before in more detail.  

The data were collected from a relevant source and, after that, several tests were carried 

out on RStudio. The data was modified in order to fit the models used in the empirical 

part and we had to understand and conclude about the statistical significance of the tests 

in order to take conclusions to achieve the purpose of this study. 

Before employing the VAR-DCC model, and after the needed transformations in data, 

there were several steps to perform.  

As a first step, after obtaining the prices of each index, we applied the natural logarithm 

to compute the continuously compounded daily returns: 

 
𝑅𝑖,𝑡 = 𝑙𝑛(𝑃𝑖,𝑡) − 𝑙𝑛(𝑃𝑖,𝑡−1) = 𝑙𝑛(

𝑃𝑖,𝑡

𝑃𝑖,𝑡−1
) 

 

 

Where 𝑃𝑖,𝑡 is the price of the stock market 𝑖 at moment 𝑡 and 𝑡 = 1, 2, 3, … , 𝑇. 

The returns will allow us to estimate the models relevant for this study, since having 

stationarity data is imperative to proceed.  

From the moment that the data is properly transformed, time series can be used in the 

models referred before and we could initiate the estimation process.  

The general characteristics of each model used in this empirical study are introduced in 

the following sub-sections. Furthermore, the features of the tests employed are presented 

in the Section 4. 

 

3.1 From ARMA to ARCH model 

 

The autoregressive moving-average (ARMA) models include the concepts of “AR” and 

“MA” models intending to keep the number of parameters small. The ARMA model was 

initially proposed by Box, Jenkins and Reinsel (1995). An ARMA model is a model in 

which one uses the statistical properties of the past behaviour of a variable 𝑦𝑡  to predict 

its pattern in the future. Thus, we can predict the value of the variable 𝑦t+1 by considering 

(1) 
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the sum of the weighted values that 𝑦𝑡 took in the previous period and then add the error 

term ɛ𝑡 .  

This model is usually presented in the form of an ARMA (p, q) process, in which “p” is 

the order of the autoregressive part and “q” is the order of the moving average part. 

The generalized ARMA (p,q) model can be defined as: 

𝑟𝑡 =  𝑐 +  𝜀𝑡 + ∑ ∅𝑖

𝑝

𝑖=1

𝑟𝑡−𝑖 + ∑ 𝜑𝑖𝜀𝑡−𝑗

𝑞

𝑗=1

 

Where 𝑟𝑡 is a given time series data, c is a constant, ∅ and  𝜑 are the parameters of the 

model and random variables 𝜀𝑡 and 𝜀𝑡−𝑖 are white noise error terms. Error terms are 

generally assumed to be independent identically distributed random variables sampled 

from a normal distribution with zero mean. In other words, it is assumed that each random 

variable has the same probability distribution as the other random variables, and all are 

mutually independent. However, this assumption may be considered unrealistic.  

Engle (1982) developed the ARCH model. This model captures the tendency of financial 

variables to move between high and low volatility. Previous research either assumed the 

volatility to be constant or used simple methods to achieve approximations. As stated 

before, there was the need for a more realistic and consistent model to measure risk. 

In this case, the error terms are split into a stochastic part and a time-dependent standard 

deviation. It has the following form: 

𝜀𝑡 =  𝜎𝑡𝑧𝑡 

Where the random variable 𝑧𝑡 is a strong white noise process and 𝜎𝑡
2 – conditional 

variance - is modelled by: 

𝜎𝑡
2 =  𝛼0 +  ∑ 𝛼𝑖

𝑞

𝑖=1

𝜀𝑡−𝑖
2  

Where 𝛼0 , 𝛼𝑖.> 0. 

ARCH models concern to explain clustered errors, as well as nonlinearities. One 

characteristic of ARCH models is the power of forecast changes from one period to 

another.  

(2) 

(3) 

(4) 



 An Analysis Between Risk and Returns of Financial Stock Market Indices 
 

15 
 

3.2 From ARCH to GARCH model 
 

Even though the ARCH model has a simple form, one of its weaknesses is that it requires 

many parameters to describe appropriately the volatility process. Therefore, alternative 

models were further developed, namely by Bollerslev (1986), who proposed an extension 

known as the generalized ARCH (GARCH) model. Comparatively with ARCH model, 

the Generalized Autoregressive Centralized Heteroskedastic model is more 

parsimonious, since GARCH estimation with less parameters can be as effective as a 

ARCH model with more parameters.  For instance, a GARCH (1,1) can explain the same 

as an ARCH (16) model. In GARCH models, the number of parameters results from the 

values of p and q. As stated by Matei (2009), whilst ARCH includes the feature of 

autocorrelation observed in return volatility of most financial assets, GARCH improves 

ARCH by adding a more general feature of conditional heteroskedasticity. GARCH 

model comparably to ARCH model has been shown to perform better in explaining and 

predicting conditional volatilities than the ARCH model. 

The conditional variance determined through GARCH is a weighted average of past 

errors, converging here with the same logical of ARCH model.  

The GARCH (p, q) model is defined as: 

𝑟𝑡 =  𝜇𝑡 +  𝑢𝑡 

𝑢𝑡 = 𝜎𝑡𝑧𝑡 

𝜎𝑡
2 =  𝑤 + ∑ 𝛼𝑖

𝑞

𝑖=1

𝜀𝑡−𝑖
2 +  ∑ 𝛽𝑖

𝑝

𝑗=1

𝜎𝑡−𝑗
2  

Where 𝑟𝑡 represents the log return of an asset at time 𝑡, 𝑢𝑡  is the conditional mean-

corrected return of an asset at time 𝑡, μ𝑡 is the expected value of the conditional 𝑟𝑡, 𝜎𝑡
2 

represents the conditional variance at time t conditioned on the history. Finally, 𝛼𝑖 and 𝛽𝑖 

the parameters of the model and 𝑧𝑡 the sequence of independent and identically distributed 

standardized random variables.  

The conditional variance fluctuates over time, dependent on the squared errors and past 

conditional variance. In case of the volatility is serially dependent, the time series will 

have periods of high volatility followed by periods of low volatility. This periodical 

dependence of volatility is often referred to as volatility clustering. The success of the 

(5) 

(6) 

(7) 



 An Analysis Between Risk and Returns of Financial Stock Market Indices 
 

16 
 

autoregressive conditional heteroscedasticity (ARCH) model and the univariate GARCH 

model in capturing the time-varying variances of economic data in the univariate case 

have motivated many researchers to extend these models to the multivariate dimension.  

“While univariate descriptions are useful and important, problems of risk assessment, 

asset allocation, hedging in futures markets and options pricing require a multivariate 

framework, since high volatilities are often observed in the same time periods across 

different assets” (Li and Fan, 2005, p.87). Another important weakness of GARCH model 

is that it does not distinguish between positive and negative movements in the market.  

Some extensions of ARMA and GARCH models were developed in order to model the 

dependency between more than one time series of returns.  

 

3.3 Multivariate GARCH models 
 

Correlations between asset returns and markets are important in many financial 

applications. One of the most remarkable models for volatility is the class of multivariate 

generalized autoregressive conditional heteroscedasticity (MGARCH) models. These 

models allow us to specify a dynamic process for the entire time varying variance–

covariance matrix of the time series thus jointly modelling the first and second moments 

(Orskaug, 2009).  

This extension of a univariate GARCH model to an N-variate model requires allowing 

the conditional variance-covariance matrix of the N-dimensional zero mean random 

variables, t, depend on the elements of the information set.  

The most challenging stage in MGARCH modelling may be to provide a realistic but 

parsimonious specification of the variance matrix ensuring its positivity. A drawback of 

this approach is that the number of parameters to be estimated in the GARCH equation 

increases rapidly, which limits the number of assets that can be addressed to the model.  

The multivariate GARCH models is defined as: 

𝑟𝑡 =  𝜇𝑡 +  𝛼𝑡 

𝛼𝑡 =  𝐻𝑡𝑧𝑡 

(8) 

(9) 



 An Analysis Between Risk and Returns of Financial Stock Market Indices 
 

17 
 

Where 𝑟𝑡 is a 𝑛 𝑥 1 vector of the logarithmic returns of n assets at time t, αt the 𝑛 𝑥 1 

vector of mean-corrected returns of n assets at time t, μ𝑡 the 𝑛 𝑥 1 vector of the expected 

value of the conditional 𝑟𝑡, 𝑧𝑡 the 𝑛 𝑥 1 vector of identically distributed errors and 𝐻𝑡 the 

𝑛 𝑥 𝑛 matrix of conditional variances of αt at time t. 

As in the univariate case,  𝑎𝑡 is uncorrelated in time. However, this does not mean that 

there is no serial dependence, but that the dependence is non-linear. What remains to be 

specified is the conditional covariance matrix, 𝐻𝑡.  

𝐻𝑡 can have different specifications. This matrix increases very rapidly, as the dimension 

of 𝑎𝑡 increases.  Since it is dependent of the time t, it must be inverted in each iteration, 

which makes the computation challenging - unless n is small. This fact causes difficulties 

in the estimation of the models. Thus, an important goal whilst building MGARCH 

models is to make them parsimonious enough, but still maintain the flexibility (Orskaug, 

2009). 

In order to turn the estimation more accurate, many multivariate GARCH have been 

studied and developed. These models distinguish each other’s by the type of 

specifications, which can be divided into four classifications: 

1. Models of the conditional covariance matrix: in this category the conditional 

covariance matrices, 𝐻𝑡, are modelled directly.  

2. Factor models: in this class of models, the conditional covariance matrices are 

motivated by parsimony. 

3. Models of conditional variances and correlations: models in this category are built 

on the idea of modelling the conditional variances and correlations instead of immediately 

modelling the conditional covariance matrix.  

4. Nonparametric and semiparametric approaches: these models form an alternative 

to parametric estimation of the conditional covariance structure. The advantage of these 

models is that they do not impose a particular structure on the data.  

Among the multivariate models developed, two of them are particularly important in the 

evolution of this type of model. They are the Constant Conditional Correlation (CCC-
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GARCH) and Dynamic Conditional Correlation (DCC-GARCH) models which are 

explained in detail in the following section.  

Bollerslev (1990) developed a relatively flexible model known as Constant Conditional 

Correlation (CCC) model. This approach allowed the combination of a univariate 

GARCH model, with the assumption of a constant correlation between time series over 

the time. 

The conditional covariance matrix is decomposed into conditional standard deviations 

and a correlation matrix as:  

𝐻𝑡 = 𝐷𝑡𝑅𝑡𝐷𝑡 

where 𝐷 is the conditional standard deviation, and 𝑅 the correlation matrix.  

Models of conditional variances and correlations can be classified in two groups: those 

with a constant correlation matrix and those when the correlation matrix is time-varying. 

In this case, the CCC model exhibit constant correlation matrix, therefore the correlation 

matrix is time invariant, then 𝑅𝑡 = 𝑅. Hence it becomes:  

𝐻𝑡 = 𝐷𝑡𝑅𝐷𝑡 

Several specifications of 𝑅𝑡 have been suggested, but the most recent and significant one 

may be the DCC-GARCH. This model is a conventional parametric MGARCH model.  

DCC model was introduced by Engle and Sheppard (2001). The idea of the DCC model 

is that the covariance matrix, 𝐻𝑡, can be decomposed into conditional standard deviations, 

Dt, and a correlation matrix, 𝑅𝑡 (Orskaug, 2009).  

In the DCC-GARCH model both 𝐷𝑡 and 𝑅𝑡 are designed to be time-varying therefore the 

model is defined as: 

𝐻𝑡 = 𝐷𝑡𝑅𝑡𝐷𝑡 

This model formulates the volatilities of returns in one set of equations and the 

correlations between them in another set thus, treating them as independent stochastic 

processes, entailing more flexibility and different parameterizations. 

The comparison of DCC model with some other simple multivariate GARCH, and several 

other estimators, revealed that DCC is often the most accurate (Peng and Deng, 2010). 

(10) 

(11) 

(12) 
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This specification of time-varying correlations was widely studied by Engle and Sheppard 

(2001). The DCC model assumes that returns from k assets are conditionally multivariate 

normal with zero expected value and covariance matrix 𝐻𝑡. 

𝑟𝑡 | 𝐹𝑡−1 ~ 𝑁(0, 𝐻𝑡)    where    𝐻𝑡  ≡  𝐷𝑡𝑅𝑡𝐷𝑡 

R𝑡 is the time varying correlation matrix containing the conditional correlations, is made 

up from the time dependent correlations; it is called the time varying correlation matrix.  

𝐷𝑡 is the diagonal matrix of time varying standard deviations implied by the estimation 

made with a univariate GARCH model. 

The proposed elements of  𝐷𝑡 can be written as univariate GARCH model as: 

ℎ𝑖𝑡  =  𝑤𝑖  +  ∑ 𝛼𝑖𝑝𝑟𝑖𝑡−𝑝
2

𝑃𝑖

𝑝=1

 +  ∑ 𝛽𝑖𝑞𝑟𝑖𝑡−𝑞
2

𝑄𝑖

𝑞=1

  

For 𝑖 =  1, 2, 3, … , 𝑛 with the usual GARCH restrictions for non-negativity and 

stationarity being imposed. The set P and Q for each series indicates the lag lengths 

chosen may not be the same as in GARCH (p, q) model.  

The log likelihood function resulting from DCC can be expressed as: 

𝑟𝑡 | 𝐹𝑡−1 ~ 𝑁(0, 𝐷𝑡𝑅𝑡𝐷𝑡) 

𝐿 = − 
1

2
 ∑ (𝑛 𝑙𝑜𝑔(2𝜋) + 𝑙𝑜𝑔|𝐻𝑡| +

𝑡
𝑟𝑡

′𝐻𝑡
−1𝑟𝑡) 

𝐿 = − 
1

2
 ∑ (𝑛 𝑙𝑜𝑔(2𝜋) + 𝑙𝑜𝑔|𝐷𝑡𝑅𝑡𝐷𝑡| +

𝑡
𝑟𝑡

′𝐷𝑡
−1𝑅𝑡

−1𝐷𝑡
−1𝑟𝑡) 

𝐿 = − 
1

2
 ∑ (𝑛 𝑙𝑜𝑔(2𝜋) + 2𝑙𝑜𝑔|𝐷𝑡| + 𝑙𝑜𝑔|𝑅𝑡| + 𝜀𝑡

′𝑅𝑡
−1𝜀𝑡)

𝑡
 

Where 𝜀𝑡 ~ 𝑁(0, 𝑅𝑡)  are the errors standardized by their conditional standard deviations. 

 

3.4 VAR Model  
 

Essentially, the multivariate VAR model is an extension of the univariate autoregressive 

model. This model is useful for modelling the mean or the first order moment (mean) of 

the series. There are several multivariate time series models used for forecasting. Besides 

the ones referred above, this model is widely used. It was after the pioneering work of 

(13) 

(14) 

(15) 

(16) 
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Sims (1980), that VAR model have become one of the most popular to study correlated 

series. Some of the advantages of this model are its relative simplicity, flexibility, and 

ability to fit the data. It is also successful as a forecasting tool. 

Additionally, besides data description and forecasting, the VAR model can also be used 

for structural inference and policy analysis. Hence, in order to have an improved 

understanding of the time series, modelling and forecasting volatility has been a major 

area of time series research for some years now. Traditional econometric models assume 

a constant one-period forecast variances, which in general is not a plausible assumption.  

However, the model has some drawdowns namely data constraints (since it requires long 

time series), the fact of being computationally intensive. 

According to Sims (1980), a simple Vector Autoregression (VAR) model involves a set 

of K endogenous variables 𝑦𝑡 = (𝑦1𝑡, 𝑦2𝑡, … , 𝑦𝑘𝑡) for 𝑘 = 1, … , 𝐾. 

Consider a VAR model of order p: 

𝑦𝑡 = 𝐴1𝑌𝑡−1+… + 𝐴𝑝𝑦𝑡−𝑝 + 𝐵𝑥𝑡 + ɛ𝑡 , 

Where 𝑦𝑡  is a k-vector of stationary variables; 𝑥𝑡 is a vector of exogenous variables; 𝐴1, 

𝐴2,…, 𝐴𝑝 and 𝐵 are matrices of coefficients to be estimated and ɛt is a vector of 

innovations that may be simultaneously correlated but uncorrelated with their own lagged 

values and also with all of the right-hand side variables. The coefficients of each VAR 

model equation are estimated by Ordinary Least Squares (OLS) method. (Curto, 2018), 

the most commonly used method to estimate the parameters in a linear regression model. 

In general terms, a VAR model with 𝑘 time series consists of 𝑘 equations, one for each 

of the variables, where the regressors in all equations are lagged values of all the variables. 

(Curto, 2018). In our study, the VAR model contains three time series variables,𝑦1𝑡
, 𝑦2𝑡

 

and 𝑦3𝑡
, so it involves three equations. In one, the dependent variable is 𝑦1𝑡

; in the others 

the dependent variables are 𝑦2𝑡
  and 𝑦3𝑡

 respectively. Assuming that our VAR model 

contains one lagged value (𝑝 = 1), three endogenous variables (𝑘 = 3) and also letting a 

constant to be the only exogenous variable, the equations become: 

𝑦1𝑡
 =  𝑐1 + 𝑎11𝑦1𝑡−1

+ 𝑎12𝑦2𝑡−1
+ 𝑎13𝑦3𝑡−1

+ 𝜀1𝑡
 

𝑦2𝑡
 =  𝑐2 + 𝑎21𝑦1𝑡−1

+ 𝑎22𝑦2𝑡−1
+ 𝑎23𝑦3𝑡−1

+ 𝜀2𝑡
 

(17) 

(18) 

) (19) 
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𝑦3𝑡
 =  𝑐3 + 𝑎31𝑦1𝑡−1

+ 𝑎32𝑦2𝑡−1
+ 𝑎33𝑦3𝑡−1

+ 𝜀3𝑡
 

where  𝑎𝑖𝑗 and 𝑐𝑖 are the parameters to be estimated.  

The number of parameters to estimate in a VAR model increases with the number of 

variables (𝑘) and the number of lags (𝑝). 

 

 

 

  

(20) 
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4. Empirical study 

 

4.1 Relevance and purpose of the study 
 

In this chapter we present an empirical study that involves three stock market indices with 

different geographic locations. 

The main purpose of this study is to apply a VAR-DCC model in order to understand the 

dependency between three distinct financial markets, globally distributed. We chose this 

model in order to understand the transmissions of volatility among the three stock markets 

and its movement over the time. Furthermore, we would like to provide a complementary 

approach to the already existing empirical literature on the topic of transmissions in 

volatility through financial markets.  

 

4.2 Stationarity of the Adjusted Closing Prices 
 

Non-stationary data are unpredictable and cannot be forecasted. The results obtained 

when using non-stationary time series may be spurious and may indicate a relationship 

between variables where it does not even exist. In order to produce accurate results, the 

non-stationary data needs to be transformed into stationary data when the cointegration 

is not tested before. In the opposite side of non-stationary, the stationary process stands 

to a constant long-term mean and constant variance. Some of non-stationary processes 

are random walk with or without a drift (a slow steady change) and deterministic trends. 

A random walk - with or without a drift - can be transformed to a stationary process by 

differencing (taking the differences) and then the process becomes difference-stationary. 

In general, having non-stationary time series data in financial models can produce 

unreliable and spurious results and can lead to poor forecast. Hence, a way to overcome 

the problem is to transform the time series data so that it becomes stationary.  

As stated before, the data collected are prices, that in general are non-stationary process. 

Therefore, we transformed the non-stationary data into stationary, by computing the 

logarithmic returns and then taking the first differences of the prices, in order to remove 

trends in the data. Figures 1, 2 and 3 (see Appendix) present the plot of the Adjusted 

Closing Prices, before data transformation.  
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A unit root process is a stochastic trend in a time series. If time series have a unit root, it 

indicates a systematic pattern that is unpredictable. The Augmented Dickey-Fuller (ADF) 

test is used to determine whether a unit root is presented in a model. This is one of the 

most widely used test to examine the stationarity of time series. In this test the null 

hypothesis points for non-stationary of time series, i.e. there is a unit root.  

 

Table 1: Augmented Dickey-Fuller Test Unit Root Test for Logarithmic Returns  

 Returns  
S&P 500 

Test-Statistic value -43.0993 619.1839 928.7758 

Critical value for a significance level of: 

 

tau3   

phi2  

phi3   

 

1pct 

-3.96  

6.09 

8.27 

 

5pct 

-3.41 

4.68   

6.25  

 

 

10pct 

-3.12 

4.03   

5.34 

 
 

 Returns  
Euro Stoxx 50 

Test-Statistic value -41.0387 561.392 842.088 

Critical value for a significance level of: 

 

tau3   

phi2  

phi3   

 

1pct 

-3.96  

6.09 

8.27 

 

5pct 

-3.41 

4.68   

6.25  

 

 

10pct 

-3.12 

4.03   

5.34 

 

 Returns  
Nikkei 225 

Test-Statistic value -39.081 509.1109 763.6659 

Critical value for a significance level of: 

 

tau3   

phi2  

phi3   

 

1pct 

-3.96  

6.09 

8.27 

 

5pct 

-3.41 

4.68   

6.25  

 

 

10pct 

-3.12 

4.03   

5.34 

 
 

After analysing the information of Table 1, we reject the null and conclude that the results 

point for all the time series returns to be stationary. Hence, we concluded that all the 

logarithmic returns of the time series were stationary, since the values of the Test-

Statistic, for all the series, are greater than critical values, which led us to the rejection of 

the null hypothesis stated before.  

https://www.statisticshowto.datasciencecentral.com/stochastic-model/
https://www.statisticshowto.datasciencecentral.com/trend-analysis/
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Another test that can be used to test stationarity of time series is the KPSS test, developed 

by Kwiatkowski, Phillips, Schmidt and Shin (Kwiatkowski et al., 1992). 

 

Table 2: KPSS test for Logarithmic Returns 

 Returns  
S&P 500 

Returns Euro 

Stoxx 50 

Returns  

Nikkei 225 

Test-Statistic value 0.0752 0.055 0.064 

Critical value for a significance level of: 

10pct   

5pct  

2.5pct   

 

 

0.119  

0.146   

0.176 

 

0.119  

0.146   

0.176  

 

0.119  

0.146   

0.176 

 

After analysing the information of Table 2, we concluded that all the returns time series 

were stationary, since the values of the Test-Statistic, for all the series, were smaller than 

critical values, which led us to do not reject the null. Hence, the results of the test points 

for stationarity of time series and we found that the series are stationary after first order 

differencing. 

 

4.2.1 Plots and summary statistics of the Daily Returns 
 

Figures 1, 2 and 3 present the daily returns plots for the three indices. Daily returns exhibit 

volatility clustering. According to Mandelbrot (1963), volatility clustering pattern can be 

described as “large changes tend to be followed by large changes, of either sign, and small 

changes tend to be followed by small changes.”  

 

 

 

Figure 4: Daily returns of S&P 500 
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Ordered number of observations (from the oldest to the most recent, by date) 

https://www.linguee.pt/ingles-portugues/traducao/phenomenon.html
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Figure 5: Daily returns of Euro Stoxx 50 

 

 

 

Figure 6: Daily returns of Nikkei 225 

 

Figures 4, 5 and 6 represents graphically the plots of the daily returns of all the indices 

under analysis. Table 2 presents the stock market indices descriptive statistics. Average 

daily returns are positive across the three markets. The mean daily returns of S&P 500 is 

larger when compared to the others. The three markets display similar degrees of 

volatility, as indicated by their standard deviations. The standard deviations range 

between 1.2% and 1.6%. Nikkei 225 has the largest standard deviation. All series, except 

for S&P 500, have small negative skewness. Having negative skewness implies that large 

negative changes in the daily returns occur more often than positive ones. All time series 

of returns series display excess kurtosis, and when it occurs, it implies that large changes 
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happen more often than what would be the case if the time series followed a normal 

distribution (Mohammadi and Tan, 2015). 

Table 3: Summary Statistics 

 Returns  
S&P 500 

Returns  

Euro Stoxx 50 

Returns  

Nikkei 225 

     

Mean    0.0002271 0.0000000 0.0001526   

Median 0.0006216 9.335e-05 0.0005685   

Maximum 0.1095720 1.044e-01 0.1323458 

Minimum -0.0946951 -9.011e-02 -0.1211103 

Std. Dev. 0.0124818 0.01457082 0.01560029 

Skewness -0.3734458 -0.0615787 -0.4906104 

Kurtosis 10.92644 5.758 8.175313 
 

 

4.2.2 ACF and PACF plots 

 

The estimated Autocorrelation Function (ACF) is a graphical representation based on 

estimates for the true values of the autocorrelation coefficients. The ACF measures the 

existent relationship between a variable and its lag values and it is generally used to check 

for white noise. 

The Partial Autocorrelation Function (PACF) is the graphical representation of the partial 

autocorrelation coefficients. We can describe this plot as the autocorrelation of a variable 

with its final lag value with all intermediate lag values removed from the analysis.  

These plots graphically summarize the strength of a relationship with an observation in a 

time series with observations at prior time steps. 

For the purpose of this study, we considered twenty lags for analysis, since time series 

have short-term memory, so it is an appropriate choice of lag number in order to find the 

structure of autocorrelation over time. The dashed horizontal lines represent the 

approximate 95% confidence intervals. 
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S&P 500 

Euro Stoxx 50 

Nikkei 225 

 

Figure 7: ACF and PACF representations for time series logarithmic returns 
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From the analysis of the autocorrelation (ACF) and partial autocorrelation (PACF) plots 

for the time series returns, we concluded that these data exhibit autocorrelation on some 

lags, at 5% level of significance, since some of the lags bars (vertical lines) lie outside the 

horizontal lines.  

The procedure of analysing the plots of the ACF and PACF is subjective, relying on some 

assumptions such as no anomalies, level shifts, seasonal pulses or trends and assuming 

parameter and error variance constancy (error homogeneity) over the time. Hence, this 

process is only a predictor used for estimation and should not be used individually. In 

order to perform a more detailed analysis, in addition of looking at these plots, we can 

also perform a more formal test for the autocorrelation, the Ljung-Box test.  

 

4.2.3 Ljung-Box statistics (Portmanteau tests) 
 

The Ljung–Box test is a statistical tool to test whether all autocorrelation coefficients are 

zero (that is the null hypothesis), which means time series has been generated by a White-

Noise process, i.e., when there is no linear relation between the time series observations.  

 

Table 4: Ljung-Box Test 

 Returns  
S&P 500 

Returns Euro 

Stoxx 50 

Returns  

Nikkei 225 

Probability value (p-value) < 2.2e-16* 0.001122* 0.03786* 

 

Note: Significant values indicated with “*” at a 5% level, at least.  
 

As p-values, for all the time series in question, are smaller than 0.05 (that is the level of 

significance defined in statistics as the probability of rejecting a null hypothesis), we 

reject the null hypothesis of no serial correlation for the series of returns. The results of 

this test do not point for a White Noise process, confirming that autocorrelation 

coefficients are not equal to zero.  

 

4.2.4 Granger causality test 
 

Correlation does not necessarily imply causation. In econometrics there are plenty of 

correlations, which are purely spurious or pointless.  Granger (1969) analysed the 

question of whether x causes y is to see how much of the current y can be explained by 
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past values of 𝑥. Then, 𝑦 is said to be Granger-caused by 𝑥, if 𝑥 helps in the prediction of 

𝑦. Thus, Granger causality test is a statistical hypothesis test for determining whether one 

time series is useful in forecasting another and seeks particularly for the direction of 

causality between pairs of time series. Granger causality measures precedence and 

information content but per se it does not indicate causality in the common use of the 

term. When the Granger Causality test is computed, the data must be stationary – as we 

confirmed before.  
 

Table 5 – Granger causality test 

Null hypothesis: Returns of S&P 500 and Euro Stoxx 50 do not Granger-cause 

Returns of Nikkei 225 

p-value 0.3074 

Null hypothesis: Returns of S&P 500 and Nikkei 225 do not Granger-cause 

Returns of Euro Stoxx 50 

p-value < 2.2e-16* 

Null hypothesis: Returns of Euro Stoxx 50 and Nikkei 225 do not Granger-cause 

returns of S&P 500 

p-value 0.6955 
 

Note: Significant values indicated with “*” at a 5% level, at least 
 

The results of Granger causality test are summarized in Table 5.  

For the null hypothesis which states that returns of S&P 500 and Euro Stoxx 50 do not 

Granger-cause returns of Nikkei 225, since we do not reject the null.  

For the null hypothesis which states that returns of S&P 500 and Nikkei 225 do not 

Granger-cause returns of Euro Stoxx 50, we reject the null, since the p-value is 

statistically significant. Hence, the returns of S&P 500 and Nikkei 225 Granger-cause 

returns of Euro Stoxx 50. 

For the null hypothesis which states that returns of Euro Stoxx 50 and Nikkei 225 do not 

Granger-cause returns of S&P 500, we do not reject the null, then returns Euro Stoxx 50 

and Nikkei 225 do not Granger-cause returns of returns of S&P 500. 

  



 An Analysis Between Risk and Returns of Financial Stock Market Indices 
 

30 
 

4.3.  Vector Autoregressive (VAR) model 

 

One of the main uses of VAR models is forecasting. This model’s structure provides 

information about a variable’s or a group of variables’ forecasting ability for other 

variables. If a certain variable (or a group of variables) is found to be helpful for predicting 

another variable (or group of variables) then the former is said to Granger-cause the latter; 

otherwise it is said to fail to Granger-cause the latter. Hence, after analysing the results 

of the Granger causality test, we concluded that it would make sense to proceed to the 

estimation of a VAR model and we were more confident to validate the conclusions of 

VAR model that will be reported below  

In order to apply VAR models, the time series in study must be stationary. Hence, it is 

necessary to consider the logarithmic returns of the data series, and not the prices (levels).  

Therefore, by using this model we can only capture short-run dependencies between the 

three stock indices in analysis. 

For the purpose of the analysis between the interactions of the three stock market indices 

returns, we estimated the VAR model with 1 lag. We chose one lag to study this data due 

to the results of the Information Criteria test results in Appendix 1 (see Appendix). Based 

on this statistic, we selected the model in which the Information Criteria was the smallest 

(SC - Schwarz Criterion), since the more we increase the number of parameters to 

estimate (increasing lags of estimation), the more we penalise the model. Hence, we 

choose the most parsimonious model.  

An important concept to consider in this section is the returns spillover effects. In general, 

spillover effects can be described as the impact that apparently unrelated events in one 

country can have on the economies of other countries. There are positive spillover effects, 

but the most common case is the negative spillover effect (a negative domestic event 

impacts negatively other parts of the world). Spillover effects have been increasing since 

globalization and stock markets intensified the financial connections between economies. 

As mentioned, we examined the causal relations between the three stock market indices 

using a VAR (1) model, where the lag length of one came from the results of the 

Schwarz information Criterion test. Hence, we regress the daily return in each market 

on one lag of itself, and also as one lag of returns in each of the two other markets. 
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 Table 6: VAR Model - Estimates 

  Dependent Variables 

  Returns  
S&P 500 

Returns Euro 

Stoxx 50 

Returns  

Nikkei 225 

Past  

Returns 

Returns S&P 500 – lag 1 -0.0919890 

(8.97e-05)* 

0.4376083 

(<2e-16)* 

-0.0351172 

(0.23293) 

Returns Euro Stoxx 50 – lag 1 -0.0164060 

(0.414) 

-0.2569050 

(<2e-16)* 

-0.0003817 

(0.98791) 

Returns Nikkei 225 – lag 1 -0.0033716 

(0.818) 

0.0014341 

(0.931) 

-0.0486358 

(0.00835) 

Constant 0.0002683   -0.0001946 0.0001812   
 

Note: Significant values indicated with “*” at a 5% level, at least.  
 

 

Table 6 displays the results of the estimates on VAR model estimation among the stock 

markets returns, with p-values in parentheses.  

The first column reports the response of S&P 500 returns to its own lag, as well as lag 

returns in the other three markets.  

We could identify some patterns are evident from these results:  

(1) Both S&P 500 and Euro Stoxx 50 returns depend on their own past returns, suggesting 

the existence of their own spillovers over time; 

(2) Euro Stoxx 50 returns are influenced by past returns of S&P 500 (p-value is 

significant), but S&P current returns are not influenced by the returns in any of the other 

two markets; 

(3) There is no evidence of causality from Nikkei 225 returns to any of the other indices 

returns. 

 

4.3.1 ARCH Test  

 

In this step, we checked whether there is volatility clustering in the residuals of VAR 

model – whether there is ARCH effect. In statistics, the residuals of a model are the 

differences between observed and predicted values of data. They are a diagnostic measure 

used when assessing the quality of a model. 
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The null hypothesis states that there is no ARCH effect in the data analysed. Hence, if 

there is ARCH effect, the null hypothesis is rejected. In general terms, the ARCH test 

display how residual squares are related with past observations.  

 

Table 7 – ARCH Test for VAR Model 

p-value < 2.2e-16* 
 

Note: Significant values indicated with “*” at a 5% level, at least.  

 

Since the p-value is smaller than 0.05, we reject the null hypothesis, so this result points 

for the existence of ARCH effect. 

 

4.3.2 Ljung-Box test  
 

Table 8 – Multivariate Ljung-Box Test for 

VAR Model 

p-value < 2.2e-16* 
 

Note: Significant values indicated with “*” at a 5% level, at least. 
 

 

The test was applied on the residuals of the VAR model. The null hypothesis is the same 

as presented in Section 4.2.3. 

As p-value is smaller than 0.05 (that is the level of significance defined in statistics as the 

probability of rejecting a null hypothesis) we reject the null. The results of this test do not 

point for a White Noise process, confirming that autocorrelation coefficients are not equal 

to zero.  

The heteroscedasticity (or volatility clustering) phenomenon is observed and justifies the 

implementation of MGARCH models. 

 

4.3.3 Breusch and Godfrey Lagrange Multiplier (LM) test   

 

The test was applied on the residuals of the VAR model. For testing the lack of serial 

correlation in the errors of the model in question, the LM test proposed by Breusch and 
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Godfrey were implemented. The serial correlation LM test was used in order to test 

whether there is autocorrelation in the errors in our regression model. The null hypothesis 

states that the data has no serial correlation of any order up to p (which is the lag – in our 

model, 1).  

This test was carried out on the residuals obtained after fitting the VAR model on the 

three series.  
 

Table 9 – Breusch and Godfrey Lagrange 

Multiplier (LM) test 

 VAR Model residuals 

p-value 6.98e-09* 
 
 

Note: Significant values indicated with “*” at a 5% level, at least.  
 

 

The p-value is smaller than 0.05, so this result points for the existence of serial correlation, 

in other words, for autocorrelation in the errors of our model. The heteroscedasticity or 

volatility clustering phenomenon is observed and justifies the implementation of 

MGARCH models. 

 

4.4 Estimation of the Dynamic Conditional Correlation (DCC) Model 
 

In this study we a two-step procedure to estimate the DCC Multivariate GARCH model. 

The first step estimates a univariate GARCH (1,1) model – in this case we estimated three 

univariate GARCH (1,1) models since we have three time series under analysis - for each 

return series in the multivariate system. From this step, standardized residuals are 

generated, by maximizing the likelihood.  The obtained standardized residuals from the 

first step are then used to estimate the DCC parameters in the second step. 

The GARCH (1,1) is a symmetric model. In symmetric models, both negative and 

positive news have the same impact on volatility. The choice of the parameters (1,1) 

usually is enough to catch dependency in the data. According to Bollerslev, Chou and 

Kroner (1992), GARCH (1,1) is, in general, satisfactory when modelling financial assets 

returns volatility. Hence, we defined for our study orders 𝑝 =  1 and 𝑞 =  1.  

For the purpose of this study, in order to estimate the VAR-DCC model, we firstly 

specified and estimated an individual GARCH-type model for each time series. These 
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univariate GARCH models were estimated based on the returns of the three series. We 

assumed and used the same univariate volatility model specification for each of the three 

stock indices, and then replicated it three times. Hence, we had to specify a GARCH (1,1) 

model – and then we needed to estimate its parameters, that is to estimate the model itself. 

The model specifications of the Univariate GARCH (1,1) model are reported in Appendix 

2 (see Appendix) and the model estimation results in Appendix 3 (see Appendix). 

For modelling all the time series together, we combined and modelled them with a VAR 

(1) model to undertake the causality relationship of the series among them. 

For the purpose of this study, the estimation was conducted within a multivariate GARCH 

framework, which provides the interpretation of the conditional variance as a time-

varying risk measure. The proposed dynamic correlation structure consists in: 

𝑄𝑡 = (1 − ∑ 𝛼𝑚

𝑀

𝑚=1

−  ∑ 𝛽𝑛

𝑁

𝑛=1

)𝑄̅ + ∑ 𝛼𝑚

𝑀

𝑚=1

(𝜀𝑡−𝑚𝜀𝑡−𝑚
′ ) + ∑ 𝛽𝑛

𝑁

𝑛=1

𝑄𝑡−𝑛 

𝑅𝑡 = 𝑄𝑡
∗−1𝑄𝑡𝑄𝑡

∗−1 

Where 𝑚, 𝑛 =  1, 2, α is the news coefficients and β is the decay coefficient. 

To ensure a conditional correlation between -1 and 1, the model is mean reverting 

provided 𝛼 + 𝛽 <  1. Additionally, 𝑄̅ is the unconditional covariance of the standardized 

residuals resulting from the first stage estimation and 𝑄𝑡
∗ is a diagonal matrix composed 

of the square root of diagonal elements of 𝑄𝑡.  

Equation 14 (see Section 3.3.) represents a standard univariate GARCH model, and 

Equations 21 and 22 are referred to a DCC (𝑚, 𝑛) model. 

For the purpose of the estimation of the VAR-DCC model, we fit equations 14, 21 and 

22 to the VAR (1) residuals. We chose to adopt the most parsimonious specification (𝑚 =

𝑛 = 1).  

The entire output that represents DCC GARCH Fit estimation is presented in Appendix 

4 (see Appendix). From the analysis of Appendix 4 we found that twenty-six parameters 

were estimated by the model – twelve from VAR (1) model, nine for the univariate 

GARCH (1,1) models and only two parameters were required for the DCC. 

(21) 

(22) 
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The estimated values of all parameters related with the univariate GARCH and DCC 

models are summarized on Table 10. The model has nine parameters for the returns of 

the data series, of which six are significant. Furthermore, Joint dcca1 and dccb1 – the 

conditional correlation parameters - are presented and both significant.  The correlation 

between the variables is governed by the scalar parameters dcca1 and dccb1. 

Table 10 – VAR-DCC model estimation 

VAR (1) Estimates 

Optimal parameters: 
Returns 

S&P 500 

Returns Euro 

Stoxx 50 

Returns 

Nikkei 225 

Returns S&P 500 – lag 1 -0.09198896 -0.0164059731 -0.003371551 

Returns Euro Stoxx 50 – lag 1 0.43760832 -0.2569049835 0.001434094 

Returns Nikkei 225 – lag 1 -0.03511718 -0.0003816798 -0.048635775 

 p-value 

Returns S&P 500 – lag 1 8.748151e-05*  0.0000000* 0.232751710 

Returns Euro Stoxx 50 – lag 1 4.134430e-01  0.0000000* 0.987903759 

Returns Nikkei 225 – lag 1 8.183654e-01  0.9307083  0.008299389 

    

Univariate GARCH (1,1)  Estimates p-value 

Optimal parameters:    

Returns S&P 500 – Omega  0.000002 0.246164 

Returns S&P 500 – Alpha 1  0.122662 0.000000* 

Returns S&P 500 – Beta 1  0.860405 0.000000* 

Returns Euro Stoxx 50 – Omega  0.000003 0.228642 

Returns Euro Stoxx 50 – Alpha 1  0.095016 0.000008* 

Returns Euro Stoxx 50 – Beta 1  0.890102 0.000000* 

Returns Nikkei 225 – Omega  0.000006 0.909184 

Returns Nikkei 225 – Alpha 1  0.131214 0.000074* 

Returns Nikkei 225 – Beta 1  0.847615 0.000441* 

DCC (1,1)  Estimates p-value 

Optimal parameters:    

Joint dcca1  0.004974 0.001125* 

Joint dccb1  0.991373 0.000000* 
 

Note: Significant values indicated with “*” at a 5% level, at least.  

After analysing the p-values for the time series in Table 10, we were able to take some 

conclusions about the appropriateness of the model for the data under analysis. 

The optimal parameters of Omega, Alpha 1 and Beta 1 for the three returns are estimates 

for the univariate GARCH (1,1) model. With these results we could have estimated the 

conditional variance of S&P 500, Euro Stoxx 50 and Nikkei 225 returns, respectively:  

𝜎𝑡
2 = 0.000002 + 0.122662𝜇𝑡−1

2 + 0.860405 𝜎𝑡−1
2     (23) 
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𝜎𝑡
2 = 0.000003 + 0.095016 𝜇𝑡−1

2 + 0.890102 𝜎𝑡−1
2     

𝜎𝑡
2 = 0.000006 + 0.131214 𝜇𝑡−1

2 + 0.847615 𝜎𝑡−1
2     

As the parameters Alpha1 and Beta1 are jointly (and highly) significant for all the time 

series in question (returns of S&P 500, Euro Stoxx 50 and Nikkei 225), we can conclude 

that a GARCH (1,1), in terms of appropriateness to apply, is a model that fits the given 

time series for the purpose of the study. It is more accurate to look at these parameters 

simultaneously, rather than analyse only Alpha1.  

The joint estimated dcca1 and dcca2 parameters concern to the analysis for the DCC 

model. These two parameters are also jointly and highly significant, supporting the time-

varying nature of the conditional correlation. Hence, the DCC model is appropriate for 

the time series in question (rather than a model of constant conditional correlations), so it 

makes sense to analyse conditional correlations in a dynamic perspective. 

The results of the DCC model were encouraging as all the relevant parameters to take 

relevant conclusions for this study were found to be significant at 5% level of 

significance. Thus, the DCC model provides a more accurate description of the dynamics 

of the correlations between the time series in question.  

  

(24) 

(25) 
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4.5 Dynamical Conditional Correlations Plots 
 

The core of multivariate volatility models like the DCC is to allow for time-variation in 

the correlation between the financial assets – in this case, financial stock markets. 

Therefore, we were also able to extract the plots for the dynamical conditional 

correlations (Figures 7, 8 and 9) and for the conditional covariances (Figures 10, 11 and 

12). 

By observing the correlation structure of the plots of DCC model, we can conclude that 

there is a non-constant interaction of all the time series regarding conditional correlation. 

This interaction effect would be neglected if the three time-series of VAR residuals were 

only modelled in isolation, each with a univariate GARCH model. 

 

Figure 8 – Conditional Correlation between S&P 500 and Euro Stoxx 50 

 

Figure 9 – Conditional Correlation between S&P 500 and Nikkei 225 
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Figure 10 – Conditional Correlation between Euro Stoxx 50 and Nikkei 225 

 

Finally, in order to conclude the empirical data analysis section, we evaluate the patterns 

of pairwise dynamic correlations over the recent thirteen years across the three markets.  

The dynamic correlations exhibit two patterns: 

(1) High conditional correlations between S&P 500 and Euro Stoxx 50 (Figure 8) 

with the existence of one sharp rise in November 2008. 

(2) Medium correlation shown in Figures 9 and 10 with two maximum peaks 

occurring in February 2016 and February 2017 on the conditional correlation 

between S&P 500 and Nikkei 225 (Figure 9) and in early 2009 a pronounced drop 

in the conditional correlation between Euro Stoxx 50 and Nikkei 225 (Figure 10). 

The values observed for S&P 500 and Euro Stoxx 50 are comprised between 0.52 and 

0.72, for S&P 500 and Nikkei 225 between 0.10 and 0.30 and for Euro Stoxx 50 and 

Nikkei 225 between 0.18 and 0.42. 

Still, the Financial Crisis (period that starts in the end of 2008) made the all correlations 

increase considerably due to instability and financial contagion. 
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5. Conclusions, limitations and future research  
 

In this final section, we will review the contributions of this dissertation, as well as present 

its limitations and directions for future research. 

In finance, people are concerned about risk. If it is known that the returns of an investor 

follow, in average, a process, there is also some kind of concern about the risk of it. So, 

it is useful not only to compute conditional return, but also to consider risk measures, by 

using a second moment: the conditional variance. Conditional variance is, in fact, a time 

varying measure that we must take into consideration. GARCH models will allow us to 

model a time-varying variance. Hence, the past is going to be used to estimate current 

observations. With GARCH models it is assumed that data that is being modelled follows 

a non-constant variance, i.e., conditional heteroscedasticity models – it changes from one 

time to another.  

In this dissertation we analysed the relationship between three financial stock indices 

returns, geographically far, from 2007 to 2018. In order to conduct this study, a 

generalized VAR and dynamic conditional correlation models were implemented.  

Our models were estimated, throughout the empirical study, on a set of stationary 

variables. These variables are returns of stock market prices for the Europe, United States 

of America and Asia. This methodology allowed us to gather some of the following 

results. With the Granger causality test, we were able to conclude that returns of S&P 500 

and Euro Stoxx 50 do not Granger-cause returns of Nikkei 225, the returns of S&P 500 

and Nikkei 225 Granger-cause returns of Euro Stoxx 50 and returns of Euro Stoxx 50 and 

Nikkei 225 do not Granger-cause returns of returns of S&P 500. 

We initially employed a vector autoregressive (VAR) model to examine the relationship 

among stock market returns of the three geographical areas. With VAR results analysis 

we figured out that both S&P 500 and Euro Stoxx 50 returns depend on their own past 

returns; Euro Stoxx 50 returns are influenced by past returns of S&P 500 and there is no 

relevant evidence of causality from Nikkei 225 returns to any of the other indices returns. 

Janakiramanan and Lamba (1998) and Cha and Cheung (1998) examined possible 

linkages between Asia Pacific and the USA equity markets using VAR and they 

determined that the USA has a significant influence on these markets. In our study we 

were not able to converge our results with these authors conclusions.  
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As referred, we modelled all the time series together, combining them with a VAR (1) 

model in order to conclude about the causality relationship of the series among them. 

In general terms, the DCC model was estimated with three steps:  

1- Estimate VAR (1) model 

2- Estimate univariate GARCH (1,1) model  

3- Estimate multivariate DCC (1,1) model with the input from the steps 1. (residuals 

of VAR model) and 2. (three univariate GARCH (1,1) models). 

After analysing the patterns of the pairwise dynamic correlations over the recent thirteen 

years across the three time series under analysis, we concluded that highest conditional 

correlations pattern was found between S&P 500 and Euro Stoxx 50. Furthermore, the 

financial crisis that started in 2008 made all correlations increase significantly – financial 

contagion effect. Moreover, the results presented by this model suggest that it provides 

an accurate description of the dynamics of the correlations between the time series in 

question. Following Engle and Sheppard (2001) approach, the main advantage of this 

model is to be able to estimate large time-varying correlations with a two-step process: 

firstly the estimation of univariate GARCH models for each asset, and using the residuals 

of the Univariate GARCH model (which are already transformed and generated in the 

first stage), estimate a conditional correlation estimator. Furthermore, we in our study we 

confirmed, as Engle (2002) stated, that DCC model provides a great approximation to a 

variety of time varying correlation processes, being the most precise model.  

These results can have important implications and contributions for the existing literature, 

since it can give interesting insights on how these three markets have been related through 

time. Similarly, these results can inform institutions, corporations or individual investors 

to be aware and conscious of the existence of volatility spillovers in their decision making 

for important financial choices. 

In terms of limitations, although we tried to make the best analysis with the models used, 

this study does not provide a complete picture of what is demonstrated in other studies 

about DCC model. We did not analyse, for example, the six equations that explain the 

variance and covariance between the time series, which may contribute to a more 

complete, descriptive and deep analysis of the relationships between the three financial 

stock indices. This could be a future research topic.  
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As a final remark, we point out that, despite the extensive literature in the VAR and 

Multivariate GARCH models, future research could tend to be based on the study of more 

than three time series. An extension of this work could also be done by incorporating 

some other aspects, namely the inclusion of more models, to enrich the content of the 

empirical study and its conclusions Another interesting topic could be, additionally to 

extract prices, to include in the study some economic variables of each country in 

analysis, such as inflation, interest rates and GDP (Gross Domestic Product). 

Furthermore, besides the suggestions already mentioned, this dissertation lead to some 

findings that we did not anticipate from its beginning. As a suggestion for future research 

that could be used to explore such findings in future, we suggest the investigation of the 

analysis of the covariance matrix, the correlation matrix for the time 𝑛 (last observation 

before forecast) and the correlation matrix. From the current study it was possible to get 

the outputs with the estimation results for the referred matrices. By doing the VAR-DCC 

forecast for periods ahead (in this case we chose only one period ahead, so 𝑛 = 1), it is 

possible to get these estimates. 

As shown before in the Equation 12 (see Section 3.3.), in DCC-GARCH model 𝐷𝑡 and 

𝑅𝑡 are be time-varying. By applying the forecast to the time series, we were able to 

estimate 𝐻𝑡 and 𝑅𝑡 for one period ahead (since 𝑛 = 1). 𝐻𝑡 represents the covariance 

matrix decomposed and 𝑅𝑡 the correlation matrix. The first matrix below concerns to the 

𝐻𝑡 matrix and the following one to the 𝑅𝑡 matrix. The returns of S&P 500, Euro Stoxx 50 

and Nikkei 225 are represented, respectively, with the designations of r.SP500, r.SX5E 

and  r.NIKKEI. 

 

[
2.687685e − 05 2.521359𝑒 − 05 2.361756𝑒 − 06
2.521359e − 05 7.391372𝑒 − 05  6.061206𝑒 − 06
2.361756𝑒 − 06 6.061206𝑒 − 06 1.062656𝑒 − 04

] 

 

[
1.0000000 0.5656959 5 0.0441926 
0.5656959 1.0000000  0.068391
0.0441926 0.068391 1.0000000

] 

r.SP500 r.SX5E r.NIKKEI 

r.SP500 r.SX5E r.NIKKEI 

r.SP500        

r.SX5E       

r.NIKKEI 

r.SP500        

r.SX5E       

r.NIKKEI 
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In Appendix 5 (see Appendix) there are reported, among other estimation results, the 

forecast results for one period ahead or 𝑄𝑡 which is the decomposition of Cholesky for 

the correlations and guarantees the matrix to be positive-definite. 

These proposals for future research can be useful for further development on this topic. 
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7. Appendices 

 

 

Figure 1: Adjusted Closing Prices of S&P 500 

 

Figure 2: Adjusted Closing Prices of Euro Stoxx 50 

 

Figure 3: Adjusted Closing Prices of Nikkei 225 
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Appendix 1: Information Criteria to choose lag for VAR model 

AIC(n)  HQ(n)  SC(n) FPE(n) 
5      2      1      5 
 
$criteria 
1             2             3             4             5 
AIC(n) -2.624622e+01 -2.625775e+01 -2.625844e+01 -2.625495e+01 -2.6260
48e+01 
HQ(n)  -2.623740e+01 -2.624230e+01 -2.623637e+01 -2.622626e+01 -2.6225
18e+01 
SC(n)  -2.622171e+01 -2.621486e+01 -2.619716e+01 -2.617529e+01 -2.6162
45e+01 
FPE(n)  3.994020e-12  3.948243e-12  3.945539e-12  3.959316e-12  3.9374
65e-12 
6             7             8             9            10 
AIC(n) -2.625814e+01 -2.625781e+01 -2.625490e+01 -2.624951e+01 -2.6251
16e+01 
HQ(n)  -2.621622e+01 -2.620926e+01 -2.619973e+01 -2.618772e+01 -2.6182
75e+01 
SC(n)  -2.614172e+01 -2.612300e+01 -2.610171e+01 -2.607794e+01 -2.6061
21e+01 
FPE(n)  3.946694e-12  3.948029e-12  3.959520e-12  3.980910e-12  3.9743
58e-12 

 

 

Appendix 2: Univariate GARCH (1,1) specifications 

*---------------------------------* 
*       GARCH Model Spec          * 
*---------------------------------* 
 
Conditional Variance Dynamics 
------------------------------------ 
GARCH Model  : sGARCH(1,1) 
Variance Targeting : FALSE 
 
Conditional Mean Dynamics 
------------------------------------ 
Mean Model  : ARFIMA(1,0,1) 
Include Mean  : FALSE 
GARCH-in-Mean  : FALSE 
 
Conditional Distribution 
------------------------------------ 
Distribution :  norm 
Includes Skew :  FALSE 
Includes Shape :  FALSE 
Includes Lambda :  FALSE 
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Appendix 3: Univariate GARCH (1,1) model estimation 

 
 
*---------------------------------* 
*          GARCH Model Fit        * 
*---------------------------------* 
 
Conditional Variance Dynamics 
----------------------------------- 
GARCH Model : sGARCH(1,1) 
Mean Model : ARFIMA(1,0,1) 
Distribution : norm 
 
Optimal Parameters 
------------------------------------ 
Estimate  Std. Error  t value Pr(>|t|) 
ar1     0.639554    0.168726   3.7905 0.000150 
ma1    -0.670375    0.162688  -4.1206 0.000038 
omega   0.000002    0.000001   3.2053 0.001349 
alpha1  0.115605    0.008810  13.1221 0.000000 
beta1   0.875780    0.009022  97.0709 0.000000 
 
Robust Standard Errors: 
Estimate  Std. Error  t value Pr(>|t|) 
ar1     0.639554    0.194912  3.28125 0.001033 
ma1    -0.670375    0.188376 -3.55871 0.000373 
omega   0.000002    0.000004  0.56748 0.570386 
alpha1  0.115605    0.034645  3.33688 0.000847 
beta1   0.875780    0.040844 21.44205 0.000000 
 
LogLikelihood : 26836.13 
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Appendix 4: DCC-GARCH Fit  

*---------------------------------* 
*          DCC GARCH Fit          * 
*---------------------------------* 
 
Distribution         :  mvnorm 
Model                :  DCC(1,1) 
No. Parameters       :  26 
[VAR GARCH DCC UncQ] : [12+9+2+3] 
No. Series           :  3 
No. Obs.             :  2939 
Log-Likelihood       :  27783.31 
Av.Log-Likelihood    :  9.45  
 
Optimal Parameters 
----------------------------------- 
                   Estimate  Std. Error   t value Pr(>|t|) 
[r.SP500].omega    0.000002    0.000002   1.15972 0.246164 
[r.SP500].alpha1   0.122662    0.021378   5.73787 0.000000 
[r.SP500].beta1    0.860405    0.023944  35.93431 0.000000 
[r.SX5E].omega     0.000003    0.000003   1.20386 0.228642 
[r.SX5E].alpha1    0.095016    0.021228   4.47586 0.000008 
[r.SX5E].beta1     0.890102    0.024230  36.73512 0.000000 
[r.NIKKEI].omega   0.000006    0.000049   0.11407 0.909184 
[r.NIKKEI].alpha1  0.131214    0.033118   3.96208 0.000074 
[r.NIKKEI].beta1   0.847615    0.241189   3.51432 0.000441 
[Joint]dcca1       0.004974    0.001527   3.25721 0.001125 
[Joint]dccb1       0.991373    0.002862 346.37192 0.000000 
 
Information Criteria 
--------------------- 
                     
Akaike       -18.889 
Bayes        -18.836 
Shibata      -18.889 
Hannan-Quinn -18.870 
 
 
Elapsed time : 7.851225  
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Figure 11 - Conditional Covariance between S&P 500 and Euro Stoxx 50 

 

Figure 12 - Conditional Covariance between S&P 500 and Nikkei 225 

Figure 13 - Conditional Covariance between Euro Stoxx 50 and Nikkei 225 



 An Analysis Between Risk and Returns of Financial Stock Market Indices 
 

53 
 

Appendix 5: VAR-DCC Forecasting results------------------------------  

*       DCC GARCH Forecast        * 
*---------------------------------* 
 
Distribution         :  mvnorm 
Model                :  DCC(1,1) 
Horizon              :  1 
Roll Steps           :  0 
----------------------------------- 
 
0-roll forecast:  
, , 1 
 
        [,1]    [,2]    [,3] 
[1,] 1.00000 0.56570 0.04419 
[2,] 0.56570 1.00000 0.06839 
[3,] 0.04419 0.06839 1.00000 
 
> rcov(test) 
$`2939-01-01` 
, , T+1 
 
              r.SP500       r.SX5E     r.NIKKEI 
r.SP500  2.687685e-05 2.521359e-05 2.361756e-06 
r.SX5E   2.521359e-05 7.391372e-05 6.061206e-06 
r.NIKKEI 2.361756e-06 6.061206e-06 1.062656e-04 
 
> rcor(test) 
$`2939-01-01` 
, , T+1 
 
           r.SP500    r.SX5E  r.NIKKEI 
r.SP500  1.0000000 0.5656959 0.0441926 
r.SX5E   0.5656959 1.0000000 0.0683912 
r.NIKKEI 0.0441926 0.0683912 1.0000000 
 
> test@mforecast 
$H 
$H[[1]] 
, , 1 
 
             [,1]         [,2]         [,3] 
[1,] 2.687685e-05 2.521359e-05 2.361756e-06 
[2,] 2.521359e-05 7.391372e-05 6.061206e-06 
[3,] 2.361756e-06 6.061206e-06 1.062656e-04 
$R 
$R[[1]] 
, , 1 
 
          [,1]      [,2]      [,3] 
[1,] 1.0000000 0.5656959 0.0441926 
[2,] 0.5656959 1.0000000 0.0683912 
[3,] 0.0441926 0.0683912 1.0000000 
 
 
 
$Q 
$Q[[1]] 
, , 1 
 
           [,1]       [,2]       [,3] 
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[1,] 0.84586299 0.48386000 0.03859106 
[2,] 0.48386000 0.86491486 0.06039125 
[3,] 0.03859106 0.06039125 0.90151777 
 
 
 
$Rbar 
$Rbar[[1]] 
             [,1]        [,2]         [,3] 
[1,] 1.0000000000 0.658004731 0.0001665509 
[2,] 0.6580047312 1.000000000 0.0038244994 
[3,] 0.0001665509 0.003824499 1.0000000000 
 
 
$mu 
, , 1 
              [,1]        [,2]          [,3] 
[1,] -7.613911e-05 0.001413622 -0.0006161061 

 

 


