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Resumo

Reconhecimento de atividade humana é uma área de investigação multidisci-
plinar que tem atraído o interesse de investigadores especializados em aprendiza-
gem automática, visão por computador e medicina. Esta área tem diversas apli-
cações: sistemas de vigilância, interação homem-máquina, análise de desportos,
robôs colaborativos, saúde e automóveis autónomos. Capturar atividade humana
apresenta dificuldades técnicas como oclusão, iluminação insuficiente, seguimento
erróneo e questões éticas. O movimento humano pode ser ambíguo e com múlti-
plas intenções. A forma como interagimos com outros seres humanos e objetos cria
uma combinação quase infinita de variações de como fazemos as coisas. O objetivo
desta dissertação é desenvolver um sistema capaz de reconhecer e prever a ativi-
dade humana usando técnicas de aprendizagem automática para extrair significado
de características calculadas a partir de articulações do corpo humano capturado
pela câmara Kinect. Propomos uma arquitetura hierárquica e modular que real-
iza segmentação temporal de sequências de ações, anotação semi-supervisionada de
sub-atividades utilizando técnicas de clustering, reconhecimento de sub-atividade
frame-a-frame em tempo real usando classificadores binários de random decision
forests logo a partir dos primeiros instantes da ação e previsão de atividade em
tempo real baseada em conditional random fields para modelar a estrutura das
sequências de ações para obter as futuras possibilidades.

Gravámos um novo conjunto de dados contendo sequências de ações agressivas
com um total de 72 sequências, 360 amostras de 8 ações distintas realizadas por
12 sujeitos. Efetuamos testes extensivos com dois conjuntos de dados, compara-
ndo o desempenho de reconhecimento de vários classificadores supervisionados
treinados com dados anotados manualmente ou com dados anotados de forma
semi-supervisionada. Aprendemos como a qualidade dos conjuntos de treino afeta
os resultados que dependem também da complexidade das ações que estão a ser re-
conhecidas. Conseguímos obter melhores resultados que algumas das abordagens
existentes na literatura em reconhecimento de atividade, efetuamos o reconheci-
mento de forma antecipada e obtivemos resultados encorajadores na previsão de
atividades.

Palavras-chave: Kinect, RGB-D, deteção de articulações, segmentação tem-
poral, anotação, análise movimento humano, reconhecimento de ações, previsão
de ações, antecipação, aprendizagem automática.
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Abstract

Human Activity Recognition is an interdisciplinary research area that has been
attracting interest from several research communities specialized in machine learn-
ing, computer vision, and medical research. The potential applications range from
surveillance systems, human computer interfaces, sports analysis, digital assis-
tants, collaborative robots, health-care and self-driving cars. Capturing human
activity presents technical difficulties like occlusion, insufficient lighting, unreli-
able tracking and ethical concerns. Human motion can be ambiguous and have
multiple intents. The complexity of our lives and how we interact with other hu-
mans and objects prompt to a nearly infinite combination of variations in how we
do things.

The focus of this dissertation is to develop a system capable of recognizing and
predicting human activity using machine learning techniques to extract mean-
ing from features computed from relevant joints of the human body captured
by the skeleton tracker of the Kinect sensor. We propose a modular framework
that performs off-line temporal segmentation of sequences of actions, off-line semi-
unsupervised labeling of sub-activities via clustering techniques, real-time frame-
by-frame sub-activity recognition using random decision forest binary classifiers
right from the very first frames of the action and real-time activity prediction with
conditional random fields to model the sequential structure of sequences of actions
to reason about future possibilities. We recorded a new dataset containing long se-
quences of aggressive actions with a total of 72 sequences, 360 samples of 8 distinct
actions performed by 12 subjects. We experimented extensively with two different
datasets, compared the recognition performance of several supervised classifiers
trained with manually labeled data versus semi-unsupervised labeled data. We
learned how the quality of the training data affects the results which also depends
on the complexity of the actions being recognized. We outperformed state-of-
the-art activity recognition approaches, performed early action recognition and
obtained encouraging results in activity prediction.

Keywords: Kinect, RGB-D, skeletal-tracking, temporal segmentation, label-
ing, human motion analysis, action recognition, action prediction, anticipation,
machine learning.
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Chapter 1

Introduction

"Intellectual growth should commence at birth and cease only at death."

Albert Einstein

Understanding human behavior in intricate real-life scenarios is one of the

greatest challenges in the areas of computer vision and machine learning. It is

a very complex task which encompasses multiple aspects: from recognizing the

activities that humans are performing, to recognizing the objects present in the

environment and how humans interact with the recognized objects or with other

humans. The ability to understand human behavior would foster the creation

of new applications and benefit existing ones. Examples include video surveil-

lance systems, human-computer interaction, robotics for human collaboration and

autonomous vehicles.

Most of the previous research in human activity recognition has been focused

in 2D images and videos, with emphasis on recognizing human poses and objects.

Recent advances in Red Green Blue - Depth (RGB-D) sensors have encouraged

the development of next-gen applications that attempt to solve complex problems.

RGB-D sensors provide access to 3D depth information, amongst other features.

This extra dimension has enabled researchers to obtain accurate 3D structures

of the scenes, objects and human poses, thus significantly improving computer

1



Chapter 1. Introduction

vision solutions. This development in technology has spawned several sub-fields

of research that focus on 3D object recognition, 3D scene understanding and 3D

action recognition. The relative low price of RGB-D has made them accessible to

consumers and researchers, leading to an increase of visual data collected about

people performing actions, to a point where the most recent dataset has 56 thou-

sand video samples and 4 million frames (Shahroudy et al., 2016). However, even

with recent advances, a system that performs real-time generic action recognition

and prediction is still a rare thing.

Human Activity Recognition (HAR) and Human Activity Prediction (HAP)

is very challenging (Aggarwal and Ryoo, 2011; Ryoo, 2011; Kong and Fu, 2015).

Aside from image acquisition problems like background clutter, partial occlusion,

changes in scale, viewpoint and lighting, human motion analysis is difficult for

several reasons. The way in which each individual executes a given action will

vary because of their inherent anatomy and habits, giving different expressions to

actions within the same class. On the other hand, actions from different classes

might be difficult to differentiate if they are very similar. Actions can take place

over long periods of time, with infinite combinations of sub-activities. Humans can

perform different actions to achieve the same goal. These nuances and ambiguities

make the process of extracting meaningful information from data a very arduous

task.

Due to the acceleration of technology, we now live in a data-driven era. This

has enabled the application of multiple Machine Learning (ML) methods which

require large amounts of labeled data to learn upon. The application of these

ML methods to HAR require large datasets of human activity. Annotating large

datasets of human behavior is time consuming, error prone and requires knowledge

of the specific event. Finally, HAR must be done in real-time with a response time

that will allow the system to act upon the recognized activity, sometimes before

its completion.
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Chapter 1. Introduction

1.1 Problem Statement

The focus of this dissertation is to address some of the key challenges in the field of

HAR through the proposal and study of a hierarchical model designed to represent

a human motion understanding system (Prediction and Recognition Framework

(PRECOG)) with several layers of abstraction, from low-level data acquisition to

high-level action prediction. The approach consists of decomposing an activity

(sequence of actions) into several recognizable and predictable actions with ML

techniques that use features computed from the estimated position of the skeleton

joints in 3D, provided by Microsoft’s Kinect sensor.

This approach was presented to address the following challenges in the field

of HAR: (i) the ever increasing necessity of large amounts of labeled data; (ii)

recognize generic human actions in real-time, before their completion; (iii) combine

real-time action recognition and prediction into a system capable of understanding

and foreseeing human motion from observable patterns. Figure 1.1 illustrates

how different ML techniques i.e., K-means clustering, Random Decision Forests

(RF), and Conditional Random Fields (CRF) are combined to perform temporal

segmentation, clustering, detection and classification of human postures and finally

given the sequential nature of high-level activities, anticipate the next action that

the human subject will perform.

We evaluate our approach with two datasets which contemplate several differ-

ent scenarios. The approach is first validated in the PRECOG dataset (recorded

by us) which contains long sequences of aggressive actions. Then, we experimented

with the Cornell Activity Dataset (CAD)-120 dataset which has sequences of long

daily activities. This allowed us to submit our approach to a variety of situations

evaluating the system’s robustness. We also validate our approach by conducting

real-time experiments. Our approach presents a solution to several of the problems

described above and advances the understanding of human motion a step closer

to the understanding that humans perform, continuously, effortlessly and quite

accurately.
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Figure 1.1: The system architecture of PRECOG comprising two main sec-
tions. (a) Workflow of the semi-unsupervised labeling process responsible for
labeling the human activity data and train the classifiers (OFFLINE ). (b) Work-
flow of the real-time action recognition and prediction process (ONLINE ).

1.2 Objectives

The aim of this dissertation will be accomplished by fulfilling the following research

objectives:

• Capture, label and publish a dataset of human activity containing full se-

quences of actions in RGB-D data.

• Reduce the amount of input required by a human judge to label a human ac-

tivity dataset by proposing a method to perform semi-unsupervised labeling

of data.

• Measure the impact of the noise introduced by semi-unsupervised labeling

of human activity used for training.
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• Perform real-time action recognition of complex human activities using ML

algorithms.

• Model the hierarchical structure of sequences of actions to perform real-time

action prediction of the next action that will occur.

1.3 Contribution of Research

The contributions of this thesis are the following: 1) A newly recorded and pub-

lished dataset for RGB-D human action recognition, which contains 72 videos

of sequences of activities collected from 12 subjects, instead of isolated actions.

At the moment of its recording we did not find datasets with long sequences of

actions publicly available; 2) We present and compare several methods for per-

forming temporal segmentation of sequences of actions; 3) We demonstrate that

semi-unsupervised labeling of RGB-D videos containing human activity is pos-

sible depending on the complexity/similarity of the actions; 4) We compare the

performance of our framework trained with manually labeled data versus semi-

unsupervised labeled data; 5) We implement and demonstrate a framework capa-

ble of recognizing human activity in real-time and perform early recognition, often

based only on the initial frames of the action, obtaining results that surpass the

state-of-the art for similar datasets, including parallel work developed during the

span of this thesis (Koppula et al., 2013; Nirjon et al., 2014; Gaglio et al., 2015;

Cippitelli et al., 2016); 6) We demonstrate that CRF can be used to anticipate

the next possible action performed by a subject based on the history of actions

executed.

Below we present the scientific publications that resulted from our research:

• D. Jardim, L. Nunes and M. S. Dias, “Human activity recognition and

prediction”, in Proceedings of the Doctoral Consortium in The International

Conference on Pattern Recognition Applications (ICPRAM), SCITEPRESS

Digital Library, 2015, pp. 24–32.
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• D. Jardim, L. Nunes and M. S. Dias, “Automatic human activity seg-

mentation and labeling in rgb-d videos”, in Proceedings of the 8th Inter-

national KES Conference on Inteligent Decision Technologies (KES-IDT),

Springer International Publishing, 2016, p. 383.

• D. Jardim, L. Nunes and M. S. Dias, “Impact of automated action la-

beling in classification of human actions in RBG-D videos”, in Pro-

ceedings of the 22nd European Conference in Artificial Intelligence (ECAI),

IOS Press, 2016, p. 1632.

• D. Jardim, L. Nunes and M. S. Dias, “Human activity recognition from

automatically labeled data in RGB-D videos”, in Proceedings of the 8th

Computer Science and Electronic Engineering Conference (CEEC), IEEE

Press, 2016, p. 89.

• D. Jardim, L. Nunes and M. S. Dias, “Predicting human activities in

sequences of actions in RGB-D videos”, in Proceedings of 9th Interna-

tional Conference on Machine Vision (ICMV 2016), SPIE Digital Library,

2017. Best Presentation Award

1.4 Thesis Structure

In this section, we provide an overview of the thesis structure and the main sections

of each chapter. In Chapter 2, we review the current state of the art in the field

of human activity recognition and prediction. The chapter is organized in four

major sections: a review of the current state of the art in the field of human

motion analysis with different activity recognition methodologies, an overview of

the HAP field, a brief discussion of the publicly available datasets, and how 3D

vision was revolutionized thanks to the availability of low-cost and light-weight

RGB-D sensors such as the Microsoft Kinect sensor.

In Chapter 3, we present the hierarchical model describing our proposal for ac-

tion recognition and prediction. In our methodology, the hierarchical model spans
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through four levels of abstraction with a bottom-up approach, ranging from low-

level data acquisition from the sensor, feature extraction and engineering, low-level

action recognition to high-level action prediction (see Section 3.1). We propose

a method to perform semi-unsupervised labeling of human activity in RGB-D

videos with a combination of temporal segmentation and clustering methods with

the purpose of reducing the amount of input required from a human judge to label

a human activity dataset. Finally, we described our own recorded and labeled

PRECOG dataset which contains sequences of aggressive actions.

In Chapter 4 we validate our temporal segmentation and clustering methods

for performing semi-unsupervised labeling of human activity in RGB-D videos (see

Section 4.3). We demonstrate two different methods to perform real-time human

activity recognition using machine learning classifiers with results that outperform

state of the art approaches. We explore the importance of having data accurately

labeled with a series of experiments. These experiments compare the performance

of the recognition classifiers trained with semi-unsupervised labeled data versus

manually labeled data and present the results (see Section 4.4).

In Chapter 5 we implement our full hierarchical model to accomplish action

recognition and prediction. We demonstrate the ability of our approach to perform

early activity recognition. From the conducted experiments the system has proven

itself capable of classifying the correct action with only a few frames of the action

(see Section 5.2). An additional set of experiments is conducted to validate our

two approaches to perform activity prediction: n-gram action prediction and CRF

action prediction. Again we perform experiments to compare the performance of

the classifiers trained with data generated from the semi-unsupervised labeled data

versus data manually labeled (see Sections 5.3, 5.4).

In Chapter 6, we conclude the thesis and discuss future directions of research.

The final results are compiled in a journal article that is currently under evalua-

tion.
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Chapter 2

State of the Art

"An investment in knowledge pays the best interest."

Benjamin Franklin

Human activity recognition is a computer vision problem in which activities

performed by humans from video data are automatically recognized. HAR is an

important and challenging task in the area of computer vision research (Aggarwal

and Ryoo, 2011). The goal of HAR is to analyze and detect ongoing activities

from video. Although significant progress has been made, recognizing human ac-

tivities from video sequences or still images is a challenging task due to problems,

such as background clutter, partial occlusion, changes in scale, viewpoint, light-

ing, and appearance (Vrigkas et al., 2015). Most of the existing systems designed

to identify specific activities in a live feed or search in video archives still rely

on human resources. Manual analysis of video is labor intensive, fatiguing, and

error prone. Solving the problem of recognizing human activities from video can

lead to improvements in several application fields (Figure 2.1) like surveillance

systems, human computer interfaces, sports video analysis, digital shopping assis-

tants, video retrieval, gaming and health care (Niu et al., 2004; Intille and Bobick,

1999; Nirjon et al., 2014; Popa et al., 2012; Keller et al., 2011).
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Figure 2.1: Multiple applications for action recognition, sports, human-robot
collaborative scenarios and digital assistants.

Source: Li et al. (2012); Hawkins et al. (2013); Elgendi et al. (2012)

Some of the earliest work on extracting useful information through video anal-

ysis was performed by J. O’Rourke and Badler (1980) in which images were fitted

to an explicit constraint model of human motion, with constraints on human joint

motion, and constraints based on the imaging process. Also Rashid (1980) did

some work on understanding the motion of 2D points in which he was able to

infer 3D position. Driven by application demands, this field has seen a relevant

growth in the past decade with multiple applications such as surveillance systems,

human computer interfaces, video retrieval, gaming and quality-of-life devices for

the elderly (Niu et al., 2004; Intille and Bobick, 1999; Nirjon et al., 2014; Popa

et al., 2012; Keller et al., 2011).

Most of the activity recognition research focused only on recognizing the actions

after they occurred and were not suited to perform early recognition of unfinished

actions. In real world scenarios it should be more useful to have the ability to

predict the current ongoing activity before the activity is fully executed. This

fostered a new field of research called Human activity prediction. First steps were

given through early detection on simple actions Ryoo (2011) to more recently the

ability to perform activity anticipation with a few seconds ahead in time Koppula

and Saxena (2016). Below, we provide an overview of the fields of Human activity

recognition and prediction, the existing datasets and the sensors used to record

them.
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2.1 Human Activity Recognition

Initially the main focus of human activity recognition was to recognize simple hu-

man actions such as walking and running (Gavrila, 1999). Now, that problem is

well explored and researchers are moving towards recognition of complex realistic

human activities involving multiple persons and objects. In the review written

by Aggarwal and Ryoo (2011) an approach-based taxonomy was chosen to cate-

gorize the activity recognition methodologies which are divided into three main

categories: statistical approaches, syntactic approaches and description based ap-

proaches. Since then this categorization was adopted in other surveys by Vish-

wakarma and Agrawal (2013) and Onofri et al. (2016).

Single-layered approaches (Bobick and Wilson, 1997; Yamato et al., 1992;

Starner et al., 1998) typically represent and recognize human activities directly

based on sequences of images and are suited for the recognition of gestures and

actions with sequential characteristics. Hierarchical approaches represent high-

level human activities that are composed of other simpler activities (Aggarwal

and Ryoo, 2011). Since we are interested in recognizing high-level human activ-

ities we will focus on the hierarchical approaches. Hierarchical approaches can

be seen as statistical, syntactic and description-based (Damen and Hogg, 2009;

Gupta et al., 2009; Intille and Bobick, 1999; Pinhanez and Bobick, 1998; Ryoo

and Aggarwal, 2009; Yu and Aggarwal, 2006).

2.1.1 Statistical Approaches

This approach uses multiple layers of statistical state-based models (usually two)

such as Hidden Markov Models (HMM) (Rabiner and Juang, 1986) and Dynamic

Bayesian Networks (DBN) (Fox et al., 2009) to recognize activities with sequen-

tial structures. At the lower-layer, atomic actions are recognized from sequences

of feature vectors which are converted to a sequence of atomic actions. Then the

upper-layer treats this sequence of atomic actions as observations generated by the
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lower-layer models. For each model, a probability of the model generating a se-

quence of observations is calculated to measure the likelihood of a match between

the activity and the input image sequence. One of the most fundamental forms

of the hierarchical statistical approach was presented by Oliver et al. (2002) using

layered Hidden Markov models. In this approach, the bottom layer HMM recog-

nize atomic actions of a single person by matching the models with the sequence of

feature vectors extracted from videos. The upper layer HMM represent a high-level

activity as a sequence of atomic actions. The authors Nguyen et al. (2005) have

also constructed hierarchical HMM of two layers to recognize complex sequential

activities. These approaches are especially suited to recognize sequential activities

(Damen and Hogg, 2009; Yu and Aggarwal, 2006). With enough training data,

statistical models are able to reliably recognize activities even with noisy inputs.

The major limitation of statistical approaches is their inability to recognize activi-

ties with complex temporal structures, such as an activity composed of concurrent

sub-events (Ivanov and Bobick, 2000).

2.1.2 Syntactic Approaches

Syntactic approaches model human activities as a string of symbols, where each

symbol corresponds to an atomic-level action which has to be recognized first.

Human activities are represented as a set of production rules generating a string

of atomic actions, and they are recognized by adopting parsing techniques from

the field of programming languages such as Context-Free-Grammars (CFG) and

Stochastic Context-Free-Grammars (SCFG). A hierarchical approach to the recog-

nition of high-level activities using SCFG was proposed by Ivanov and Bobick

(2000) where they divided the framework into two layers: the lower layer used

HMM for the recognition of simple actions, and the higher layer used stochas-

tic parsing techniques for the recognition of high-level activities. The authors in

Moore and Essa (2002) extended the work described by Ivanov and Bobick (2000)

using SCFG for the recognition of activities, focusing on multi-tasked activities.

They were able to recognize human activities happening in a blackjack card game,
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such as “a dealer dealt a card to a player” with a high accuracy level. This approach

also struggles to recognize concurrent activities. Syntactic approaches model a

high-level activity as a string of atomic-level activities that compose them. The

temporal ordering of these atomic-level activities has to be strictly sequential.

Therefore, they tend to have difficulties when an unknown observation interferes

with the system.

2.1.3 Description-based approaches

This approach is a recognition approach that explicitly maintains spatio-temporal

structures of human activities. It represents a high-level human activity in terms

of simpler activities as sub-events, describing their temporal, spatial and logi-

cal relationships. The recognition of the activity is performed by searching the

sub-events satisfying the relations specified in its representation. In description-

based approaches, a time interval is usually associated with an occurring sub-event

to specify necessary temporal relationships among sub-events. Many researchers

(Pinhanez and Bobick, 1998; Nevatia et al., 2003; Vu et al., 2003; Ryoo and Aggar-

wal, 2006) have adopted the temporal predicates specified by Allen (2013). These

predicates are: before, meets, overlaps, during, starts, finishes and equals. Re-

searchers Pinhanez and Bobick (1998) have created a system that recognizes the

top-level activity by checking which sub-events have already occurred and which

have not. They were able to recognize cooking activities in a kitchen environment

such as “picking up a bowl”. The atomic-level actions were manually labeled from

the video in the experiments, and recognition was successful even when one of the

atomic actions was not provided.

A description-based approach to analyze plays in American football was de-

signed by Intille and Bobick (1999). Using simple temporal predicates (before and

around), they have shown that complex human activities can be represented by

listing the temporal constraints in a format similar to those of programming lan-

guages. This representation was done using three levels of hierarchy: atomic-level,

individual-level and team-level activities. More recently Ryoo and Aggarwal (2009)
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proposed a probabilistic extension to their framework that is able to compensate

for the failures of its low-level components. Description-based approaches are frag-

ile when their low-level components are noisy. This limitation has been overtaken

by Ryoo and Aggarwal (2009), where they have used a logistic regression to model

the probability distribution of an activity, and used it to detect the activity even

when some of its sub-events have been misclassified. Human activities with com-

plex temporal structures can be represented and recognized by description-based

approaches which can successfully handle concurrent organized sub-events. The

major drawback of description-based approaches is their inability to compensate

for the failures of low-level components (e.g., gesture detection failure). This issue

has been addressed in some recent work done by Gupta et al. (2009) and Ryoo and

Aggarwal (2009) where they introduce a probabilistic semantic-level recognition

to cope with imperfect lower-layers.

Hoai et al. (2011) use a supervised framework which provides a systematic algo-

rithm for time series segmentation and action recognition. The recognition model

was trained discriminatively using multi-class Support Vector Machines (SVM),

while segmentation inference was done efficiently with dynamic programming,

though the proposed method yielded encouraging results on standard datasets,

its requirement for fully labeled data for training inevitably limits its applicability

to small training sets with a small number of actions. Another approach by Shi

et al. (2011) presents a discriminative semi-Markov model approach, and define a

set of features over boundary frames, segments as well as neighboring segments.

They efficiently solve the inference problem of simultaneously segmentation and

recognition using a Viterbi-like dynamic programming algorithm. Hoai and De la

Torre (2012) propose Maximum Margin Temporal Clustering (MMTC), a learn-

ing framework that simultaneously performs temporal segmentation and learns a

multi-class SVM for separating temporal clusters. They divide time series into a

set of disjoint segments such that each segment belongs to a cluster. Maximum

Margin Temporal Clustering (MMTC) maximizes the cluster separability using

the SVM score as the measure of separability. The results obtained overcame the

state-of-the-art algorithms at the time. The authors in Zhou et al. (2013) pose
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the problem of learning motion primitives (actions) as a temporal clustering task,

and derive, bottom-up, an unsupervised hierarchical framework called hierarchical

aligned cluster analysis (HACA). HACA finds a partition of a given multidimen-

sional time series into m disjoint segments such that each segment belongs to

one of k clusters representing an action. Using motion capture data HACA is

able to achieve competitive detection performances (77%) for human actions in a

completely unsupervised fashion.

There are some approaches which combine motion information and object prop-

erties (Ramirez-Amaro et al., 2015; Wachter and Asfour, 2015). In Ramirez-Amaro

et al. (2015) the authors abstract the problem in two stages. First, by recognizing

general motions such as moving, not moving or tool used. Second, by reasoning

about more specific activities (Reach, Take, etc.) given the current context, i.e. us-

ing the identified motions and the objects of interest as input information. They’ve

obtained an accuracy classification of 92%. Wachter and Asfour (2015) propose a

two-level hierarchical action segmentation (HAS) approach that takes into account

contact relations between human end effectors, the scene, and between objects in

the scene, using 6D pose trajectories extracted from marker-based tracking sys-

tem. This work shows that HAS allows the identification of meaningful segments in

complex human demonstrations without over-segmentation and without omitting

important demonstration key frames.

2.1.4 Human activity detection from RGB-D videos

Recently, with the availability of affordable RGB-D sensors, which capture RGB-

D data and in some cases are capable of providing joint level information in a

non-invasive way, allowed the developers to abstract away from Computer Vision

(CV) techniques and use 3D points to model postures. A parallel study (Koppula

et al., 2013) using the Kinect sensor considers the problem of extracting a descrip-

tive labeling of the sequence of sub-activities being performed by a human, and

more importantly, of their interactions with the objects in the form of associated

affordances. The learning problem is formulated using a structural support vector
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machine (SSVM) approach, where labelings over various alternate temporal seg-

mentations are considered as latent variables. The method obtained an accuracy

of 79.4% for affordance, 63.4% for sub-activity and 75.0% for high-level activity

labeling.

In Hussein et al. (2013) the covariance matrix for skeleton joint locations over

time is used as a discriminative descriptor for a sequence of actions. To encode

the relationship between joint movement and time, multiple covariance matrices

are deployed over sub-sequences in a hierarchical fashion. Their experiments show

that using the covariance descriptor with an off-the-shelf classification algorithm

one can obtain an accuracy of 90.53% in action recognition on multiple datasets.

In a parallel work Gowayyed et al. (2013) propose a descriptor for 2D trajec-

tories: Histogram of Oriented Displacements (HOD). Each displacement in the

trajectory votes with its length in a histogram of orientation angles. 3D trajecto-

ries are described by the HOD of their three projections. HOD is used to describe

the 3D trajectories of body joints to recognize human actions. The descriptor is

fixed-length, scale-invariant and speed-invariant. Experiments on several datasets

show that this approach can achieve a classification accuracy of 91.26%.

The method developed by Jia et al. (2014) addressed an interesting problem

of transferring depth information to a target of RGB action data (depth data is

not available) and used both RGB data and the learned depth data for action

recognition. By borrowing an auxiliary dataset, with both RGB and depth data

they are capable of uncovering missing depth information in the target data, cou-

ple two modalities (RGB and depth) and capture structure information. From

their experiments they achieved superior performance over existing methods with

accuracy values of 92.09%.

More directly related to our research, Nirjon et al. (2014) developed a sys-

tem called Kintense which is a real-time system for detecting aggressive actions

from streaming 3D skeleton joint coordinates obtained from Kinect sensors. In

two multi-person households it achieves up to 90.0% accuracy in action detection

with a combination of supervised classifiers to recognize a set of predefined actions
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helped by human feedback to reduce false alarms. In the following year Gaglio

et al. (2015) presented another Kinect based approach which also uses the joints of

the human body, combining three different machine learning techniques (K-means

clustering, support vector machines, and hidden Markov models) to recognize the

body postures while performing an activity, modeling each activity as a spatiotem-

poral evolution of known postures with an average accuracy of 92.5%. Recently

Cippitelli et al. (2016) proposed an activity recognition algorithm also using skele-

ton data extracted by RGB-D sensors. They extract key poses from the skeleton

to compose a feature vector. These key poses are associated using a clustering

algorithm. They perform action recognition with the help of a multi-class support

vector machine and managed to outperform some of the state-of-the-art results.

The activity recognition approach presented in this thesis differs from the pre-

viously discussed approaches in a number of key aspects: (i) depending on the

complexity and ambiguity of the actions our approach does not require a fully

annotated dataset to train the classifiers, it only requires a high-level class iden-

tification from a human judge; (ii) we tested our approach in long sequences of

actions, instead of short isolated actions, this added an extra layer of complexity

which required some experimentation with supervised and unsupervised temporal

segmentation methods; (iii) our multi-class action recognition method is capable

of real-time action recognition outperforming some of the some of the state-of-

the-art results while offering early recognition right from the initial frames of the

action being performed.

2.2 Human Activity Prediction

In our daily activities we perform prediction or anticipation when interacting with

other humans or with objects. Prediction of human activity made by computers

can be applied in surveillance systems (Ziebart et al., 2009), safety systems (Keller

et al., 2011), autonomous vehicles and shopping assistances (Popa et al., 2012)

(Figure 2.2).
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Figure 2.2: Possible applications for activity prediction, autonomous vehicles,
surveillance systems and human-robot collaborative scenarios.

Source: Waymo Alphabet (2017); TAV IT (2017); Nikolaidis et al. (2013)

HAP is a probabilistic process of inferring ongoing activities from videos (Ryoo,

2011). The problem of predicting unknown variables had a major breakthrough in

1961 with the work developed by Kalman and Bucy (1961) commonly known as

the Kálmán filter. This algorithm works in a two-step process. In the prediction

step, the Kálmán filter produces estimates of the current state variables, along with

their uncertainties. Once the outcome of the next measurement (including random

noise) is observed, these estimates are updated using a weighted average, with

more weight being given to estimates with higher certainty. It has been applied in

guidance, control of vehicles and time series analysis. The Kálmán filter can also be

applied in HAP as we have seen in Pentland and Liu (1999); Ziebart et al. (2009).

One of the earliest approaches that we have found tried to model and predict

human behavior when driving an automobile from Pentland and Liu (1999). Their

goal is to recognize human driving behaviors accurately and anticipate the human’s

behavior for several seconds into the future. They consider the human as a device

with a large number of internal mental states, each with its own particular control

behavior and interstate transition probabilities. The states of the model can be

hierarchically organized to describe both short-term and longer-term behaviors; for

instance, in the case of driving an automobile, the longer-term behaviors might be

passing, following, and turning, while shorter-term behaviors would be maintaining

lane position and releasing the brake. The authors introduced the concept of

Multiple Dynamic Models (MDM) which defends that the most complex model

of human behavior is to have several alternative models of the person’s dynamics.

Then, at each instant, they make observations of the person’s state, decide which
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model applies, and give a response based on that model. This multiple model

approach produces a generalized maximum likelihood estimate of the current and

future values of the state variables. With this approach they have accurately

categorized human driving actions very soon after the beginning of the action.

There are other recent works that also address the task of early recognition (Ryoo,

2011; Hoai and De La Torre, 2014).

Another type of prediction was addressed by Ziebart et al. (2009) where a

robot should predict the future locations of people and plan routes that will avoid

disrupting the person’s natural behavior due to the robot’s proximity, while still

efficiently achieving its objectives using a soft-max version of goal-based planning.

They represent the sequence of actions that lead to a person’s future position

using a deterministic Markov Decision Process (MDP) over a grid representing

the environment. People do not move in a perfectly predictable manner, so the

robot has to reason probabilistically about their future locations. By maximizing

the entropy of the distribution of trajectories, which are subject to the constraint

of matching the reward of the person’s behavior in expectation, they obtain a

distribution over trajectories. One interesting feature is the fact that the feature-

based cost function learned using this approach allows accurate generalization to

changes in the environment. Although to successfully predict the future trajec-

tory of a person through an environment the authors require a setting where the

human behavior is fully observable and not very crowded. In another approach

Ryoo and Aggarwal (2006) tries to construct an intelligent system which will per-

form early recognition from live video streams in real-time. They introduce two

new human activity prediction approaches which are able to cope with videos

from unfinished activities. Integral bag-of-words is a probabilistic activity predic-

tion approach that constructs integral histograms to represent human activities.

Simply put, the idea is to measure the similarity between a video and the ac-

tivity model by comparing their histogram representations. The other approach

is called Dynamic bag-of-words which considers the sequential nature of human

activities, while maintaining the bag-of-words advantages to handle noisy obser-

vation. The motivation is to divide the activity model and the observed sequence
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into multiple segments to find the structural similarity between them. That is,

the bag-of-words paradigm is applied to match the interval segments, while the

segments themselves are sequentially organized based on their recursive activity

prediction formulation. They’ve managed to correctly predict ongoing activities

even when the videos provided contain less than the first half of the activity.

Kitani et al. (2012) address the task of inferring the future actions of peo-

ple while modeling the effect of the physical environment on the choice of hu-

man actions with prior knowledge of goals. They have focused on the problem

of trajectory-based human activity analysis exploring the interplay between fea-

tures of the environment and pedestrian trajectories. To integrate the aspects of

prior knowledge into modeling human activity, they have leveraged recent progress

in semantic scene labeling and inverse optimal control. Semantic scene labeling

provides a way to recognize physical scene features such as pavement, grass, tree,

building and cars, playing a critical role in advancing the representational power of

human activity models. The authors propose a Hidden variable Markov Decision

Process (HMDP) model which incorporates uncertainty (e.g., probabilistic physi-

cal scene features) and noisy observations (e.g., imperfect tracker) into the activity

model to express the dynamics of the decision-making process. Since the proposed

method encapsulates activities in terms of physical scene features and not physical

location, it is also able to generalize to novel scenes transferring knowledge. They

are able to forecast possible destinations of the pedestrians through a path, but

this evaluation is limited to the physical features of the environments.

Li et al. (2012) propose a framework for long-duration, complex activity, pre-

diction by discovering the causal relationships between constituent actions and the

predictable characteristics of activities. This approach uses the observed action

units as context to predict the next possible action unit, or predict the intention

and effect of the whole activity. The efficiency of their method was tested on the

complex activity of playing a tennis game and predicting who will win the game

with a relative success (0.65 of certainty with 60% of observed game). Recently

Koppula and Saxena (2016) developed a framework where their goal is to enable

robots to predict the future activities as well as the details of how a human is going
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to perform them in short-term (e.g., 1-10 seconds). With an anticipatory temporal

conditional random field (ATCRF), they start modeling the past with a standard

CRF but augmented with the trajectories and with nodes/edges representing the

object affordances, sub-activities, and trajectories in the future. Their algorithm

obtains an activity anticipation accuracy of 84.1%, 74.4% and 62.2% for 1, 3 and

10 seconds of anticipation. We refer the reader to Aggarwal and Ryoo (2011);

Vishwakarma and Agrawal (2013); Onofri et al. (2016) for in-depth surveys of the

field.

2.3 Datasets

With the release of Microsoft Kinect, several research groups collected different

datasets to perform research on 3D action recognition and to evaluate different

methods in this field. An initial research was conducted to analyze several datasets

from different sources like MSR-Action3D (Li et al., 2010) which was one of the ear-

liest ones which started the research in depth-based action analysis and contained

depth samples of sequences of gaming actions e.g. forward punch, side-boxing,

forward kick, side kick, tennis swing, tennis serve, golf swing, etc. MSRDailyAc-

tivity3D dataset (Wang et al., 2012) contains 320 samples of 16 daily activities

with higher intra-class variation: drink, eat, read book, call cellphone, write on a

paper, use laptop, use vacuum cleaner, cheer up, sit still, toss paper, play game,

lay down on sofa, walk, play guitar, stand up, sit down. Also the LIRIS (Labo-

ratoire d’InfoRmatique en Image et Systèmes d’information) dataset (Wolf et al.,

2014) which contains (gray/rgb/depth) videos of people performing various activ-

ities taken from daily life (discussing, telephone calls, giving an item etc.). The

CMU (Carnegie Mellon University) MoCap dataset1 contains marker positions and

skeleton movement capture using motion capture techniques. It contains actions

of a variety of categories like Human Interaction, Interaction with Environment,

Locomotion Physical Activities and Sports, Situations and Scenarios and finally

Test Motions.
1
http://mocap.cs.cmu.edu/
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In a latter phase of our research we discovered the CAD-60 (Sung et al., 2011)

and the CAD-120 (Koppula et al., 2013) dataset 2. The CAD-60 features: 60

RGB-D videos; 4 subjects: two male, two female, one left-handed; 5 different

environments: office, kitchen, bedroom, bathroom, and living room; 12 activi-

ties: rinsing mouth, brushing teeth, wearing contact lens, talking on the phone,

drinking water, opening pill container, cooking (chopping), cooking (stirring), talk-

ing on couch, relaxing on couch, writing on white-board, working on computer.

The CAD-120 features: 120 RGB-D videos of long daily activities; 4 subjects:

two male, two female, one left-handed; 10 high-level activities: making cereal,

taking medicine, stacking objects, unstacking objects, microwaving food, pick-

ing objects, cleaning objects, taking food, arranging objects, having a meal; 10

sub-activity labels: reaching, moving, pouring, eating, drinking, opening, placing,

closing, scrubbing, null; 12 object affordance labels: reachable, movable, pourable,

pour to, containable, drinkable, openable, placeable, closable, scrubbable, scrub-

ber, stationary and also containing tracked skeletons. Like our dataset, CAD-120

is the only dataset that we found which contains long sequences of actions, thus

we will compare some our methods to see if they scale to other domain of actions.

The most recent recorded dataset that we are aware of is NTU RGB+D

(Shahroudy et al., 2016) which is a large-scale dataset for RGB+D human action

recognition with more than 56 thousands of video samples and 4 million frames,

collected from 40 distinct subjects. This dataset is the only dataset recorded with

Kinect v2 and contains 60 different action classes including daily, mutual, and

health-related actions. Unfortunately, this dataset was discovered in a very late

phase of our research so it was impossible for us to use it in our experiments. Table

2.1 shows the comparison between some of the discussed datasets amongst others

with our PRECOG RGB+D dataset.
2
http://pr.cs.cornell.edu/humanactivities/data.php
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Table 2.1: Comparison between publicly available RGB-D human activity
datasets. The majority of the datasets were recorded with the Kinect V1 sensor.

Datasets Samples Classes Subjects Views Sensor Modalities Year

MSR-Action3D 567 20 10 1 N/A D+3DJoints 2010

CAD-60 60 12 4 - Kinect v1 RGB+D+3DJoints 2011

RGBD-HuDaAct 1189 13 30 1 Kinect v1 RGB+D 2011

MSRDailyActivity3D 320 16 10 1 Kinect v1 RGB+D+3DJoints 2012

Act42 6844 14 24 4 Kinect v1 RGB+D 2012

CAD-120 120 10+10 4 - Kinect v1 RGB+D+3DJoints 2013

3D Action Pairs 360 12 10 1 Kinect v1 RGB+D+3DJoints 2013

Multiview 3D Event 3815 8 8 3 Kinect v1 RGB+D+3DJoints 2013

PRECOG 360 8 12 1 Kinect v1 RGB+D+3DJoints 2014

Online RGB+D Action 336 7 24 1 Kinect v1 RGB+D+3DJoints 2014

Northwestern-UCLA 1475 10 10 3 Kinect v1 RGB+D+3DJoints 2014

UWA3D Multiview 900 30 10 1 Kinect v1 RGB+D+3DJoints 2014

Office Activity 1180 20 10 3 Kinect v1 RGB+D 2014

UTD-MHAD 861 27 8 1 Kinect v1 RGB+D+3DJoints+ID 2015

UWA3D Multiview II 1075 30 10 5 Kinect v1 RGB+D+3DJoints 2015

NTU RGB+D 56880 60 40 80 Kinect v2 RGB+D+IR+3DJoints 2016

2.4 RGB-D Sensors

RGB-D sensors lead to a boost of new applications in the field of 3D vision. These

sensors allied with machine learning techniques to aid in feature representation

and decision making can be used for 3D mapping and localization, navigation,

path planning, object recognition and human tracking. An example of this is

the skeleton tracking algorithm associated with Kinect, which employs a random

decision forest trained with 1 million examples to infer the position of the joints of

the human body. This is one of many possibilities that apply intelligent machine

learning techniques to this new type of data obtained by these sensors. In this

chapter we discuss the existing RGB-D sensors, some of the publicly available

datasets and the PRECOG dataset recorded by us also available to the public.

RGB-D sensors combine RGB color information with per-pixel depth informa-

tion providing a much more similar input to our own senses than a simple 2D

23



Chapter 2. State of the Art

image. Nowadays consumer RGB-D sensors cost less than $200. Although these

sensors have existed for years (Swiss Ranger SR4000 3, PMD Tech products 4), the

cost of these sensors was around $10,000 each, making it impossible for its mass

dissemination.

Several low-cost RGB-D sensors are now available to the consumer such as,

Asus Xtion PRO LIVE, Intel RealSense Series, Structure Sensor and Microsoft

Kinect V1 and V2. Kinect V1 (Figure 2.3) was released in November 2010 (with

per-pixel depth sensing technology developed by PrimeSense), creating a signifi-

cant change in the use of gaming devices in the end-consumer market. After a

preview at the E3 game convention in the Windows Media Centre Environment,

the product was made available in North America on November 4, 2010 and more

than 24 million units have been sold.

Figure 2.3: Kinect for Windows Sensor Components which allows the sensor
to capture RGB and depth frames

Source: Microsoft Corporation (2016b)

Kinect performs skeletal tracking which allows the sensor to recognize people

and follow their actions. Using the infrared (IR) camera, Kinect can recognize up

to six users in the field of view of the sensor. Of these, up to two users can be

tracked in detail. An application can locate the joints (Figure 2.4) of the tracked

users in space and track their movements over time.
3
http://hptg.com/industrial/

4
http://www.pmdtec.com/
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Figure 2.4: Skeleton joints of the human body that are captured by the Kinect
sensor and can be accessed through the Kinect SDK

Source: Microsoft Corporation (2016c)

For each frame, the depth image captured is processed by the Kinect runtime

into skeleton data. Skeleton data contains 3D position data. The position of a

skeleton and each of the skeleton joints (if active tracking is enabled) are stored

as (x, y, z) coordinates. Skeleton space coordinates are expressed in meters. The

x-, y-, and z-axes are the body axes of the depth sensor as shown in Figure 2.5.

This feature will be the most relevant for our goal of human activity recognition

and prediction.

Figure 2.5: Kinect right-handed coordinate system used to describe the posi-
tions of the skeleton joints in 3D

Source: Microsoft Corporation (2016a)
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In 2014 Microsoft released the second-generation Kinect for Windows (Figure

2.6), based on the same core technology as Kinect for Xbox One. It has greater

accuracy with three times the fidelity of its predecessor and can track without

visible light by using an active IR sensor. It has a 60% wider field of vision that

can detect a user up to 3 feet from the sensor, compared to six feet for the original

Kinect, and can track up to 6 skeletons at once.

Figure 2.6: Kinect V2 sensor

Source: Microsoft Corporation (2017)

2.5 Discussion

The complexity and ambiguity of human activity combined with uncontrolled en-

vironments, explains the difficulty of deploying human activity recognition systems

into real-word scenarios. Recently, some of that complexity has been reduced due

to the recent rise of low-cost RGB-D sensors which allowed researchers to abstract

from computer vision techniques and focus on modeling human behavior alone.

Nevertheless there is still room for improvement.

Manually labeled datasets are required to perform supervised learning. In order

to simplify the cumbersome task of labeling human activity datasets we propose

a clustering-based method for semi-unsupervised labeling of human activity. We

also demonstrate that it is possible to implement a system capable of recognizing
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human actions in sequences of actions with results that overcome the current state

of the art (see Chapter 4) and perform action prediction (see Chapter 5) of the

next immediate action by discovering patterns in hierarchical structures (high-

level sequences containing low-level atomic actions) unlike existing state of the

approaches that perform early recognition (action recognition before the action is

completed) or prediction ahead in time in seconds.
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Methodology

"The roots of education are bitter, but the fruit is sweet."

Aristotle

In this chapter, we describe our conceptual approach for the development of

an activity recognition and prediction system. The proposed approach addresses

key issues in the field of HAR, namely the dependence on human judges to label

large amounts of data required to train the classifiers and create the models, the

performance of existing activity recognition systems which can still be improved

and finally, the creation of a solution that combines action recognition with action

prediction in sequences of actions.

This chapter is organized in six distinct sections that describe the following

topics: (i) an overview of the solution concept and the definitions, (ii) how to

reduce the human input required for labeling data, (iii) how to perform real-time

action recognition and how to make it as early as possible, (iv) perform structured

prediction in sequences/patterns of actions, (v) the release of the public PRE-

COG dataset and (vi) the potential advantages and shortcomings of the proposed

approach.
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3.1 Solution Concept and Definitions

Computer science has a wide array of methodological approaches (Peffers et al.,

2007). For this specific project we will adopt a module-oriented build-and-test

approach. This approach consists in identifying a necessity for a given software

module to be implemented, which algorithms should be used, the actual imple-

mentation of the module and exhaustive testing with adequate data and validation

of the results.

Based on the proposed methodology a conceptual approach for the development

of the activity recognition and prediction system has been defined. The solution

was designed with a hierarchical model in mind. This model is illustrated in Figure

3.1.

Figure 3.1: Conceptual hierarchical model used to describe the action recog-
nition and prediction process with several layers of abstraction.

The action recognition and prediction process is described by the hierarchical

model through four levels of abstraction with a bottom-up approach, ranging from

low-level data acquisition from the sensor, feature extraction and feature engineer-

ing to design the input of the classification algorithms, low-level or atomic action

recognition to high-level action prediction. This solution has the advantage of fa-

cilitating and guiding the development of the system in layers where each layer can
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have several exchangeable modules, maximizing the component reutilization. We

adopted the following feature extraction method (Figure 3.2). For every skeleton

frame sfi, a feature vector fvi representing the movement of the human subject is

computed. Each skeleton joint Ji has its position defined by a three-dimensional

vector [X, Y, Z] that will be used to compute several features. The number of

selected joints Jn and the number of computed features fn will vary depending on

the purpose and application.

sf1 = [J0, J1, J2, J3, ..., Jn] sfi = ith frame fv1 = [f0, f1, f2, f3, ..., fn]

sf2 = [J0, J1, J2, J3, ..., Jn] Ji = ith joint position in 3D fv2 = [f0, f1, f2, f3, ..., fn]

sf3 = [J0, J1, J2, J3, ..., Jn] ! fi = feature, i = 1, 2, ...N ! fv3 = [f0, f1, f2, f3, ..., fn]

.

.

. fvi = [f0, f1, f2, f3, ..., fn]
.

.

.

sfN = [J0, J1, J2, J3, ..., Jn] fvN = [f0, f1, f2, f3, ..., fn]

Figure 3.2: For every skeleton frame sfi and selected joint Ji we compute a
feature fi that will be added to the corresponding feature vector fvi.

Below, we describe the key terminology and concepts used in our approach:

Action: The literal definition of an action is the fact or process of doing

something, typically to achieve a goal. In this particular case the word action is

used to describe a single human motion performed by one or more body parts.

For example picking up a glass can be considered an action.

Sequence of actions: A sequence of actions describes a high-level human

behavior that it is composed of multiple (low-level) actions. This aggregation

of low-level actions compose repeatable patterns that can be identified and used

to perform prediction. For example preparing breakfast, is composed of several

actions, such as picking up a bowl, pouring cereals and then pouring milk.

Action recognition: This describes the process of recognizing low-level ac-

tions performed by a human, with the help of machine learning methods, that were

trained to classify actions from a set of features computed from skeleton frames

data.
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Early action recognition: Early action recognition as the name implies is

the process of recognizing an action as soon as possible and preferably before the

execution of the action ends. Some of the initial pursuits in action recognition only

recognized the action after its execution (Dollar et al., 2005; Gorelick et al., 2007).

A system with this feature is useful in a wide scope of scenarios and applications

where response time is critical, for example in a surveillance scenario.

Action prediction: Action prediction is the process of predicting the next

action that will be executed by a human subject in any given moment in time.

The predicted action should be a part of a sequence of actions which as previously

said, compose repeatable patterns that are identifiable by the system.

3.2 Semi-unsupervised Labeling of RGB-D videos

Machine learning can be divided into unsupervised learning and supervised learn-

ing. Unsupervised learning does not require labeled data, whereas supervised

learning does. Labeled data consists of unlabeled data associated with a label, tag

or class which provides useful information. The labeling of data is often done by

human judges that are asked to assign a label to a piece of unlabeled data. De-

spite the increase of human understanding methods, many problems still remain

open, including modeling of human poses, handling occlusions, and annotating

data. One of the tasks that we had to perform when we recorded our dataset with

the Kinect sensor was to manually label the sequences frame-by-frame. Manual

analysis of video is labor intensive, fatiguing, and error prone.

Given these issues, we propose a method with the pipeline illustrated in Figure

3.3 that tries to simplify and automate the data labeling process, reducing the

amount of input required by a human to label a dataset of human activity and

consequently model and train a classifier capable of recognizing human activity

in real-time. The proposed method will be divided in the following steps: (i)

temporal segmentation of sequences of actions, (ii) clustering of temporal segments
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Figure 3.3: Proposed pipeline for reducing the amount of input required by a
human judge to label a dataset of human activity.

representing an action and (iii) cluster to class association performed by a human

judge.

Temporal segmentation: is a process which consists in dividing sequences

of actions into well-defined segments which represent an action as illustrated in

Figure 3.4 and it is very important to understand and build computational models

of human activity (Zhou et al., 2013). Ideally, temporal segmentation will group

frames that are part of a specific action into one segment with clear boundaries

that will represent a complete action. Temporal segmentation presents several

challenges: the variability in the temporal scale of human actions, overlapping

of the current action with the next, the complexity of representing articulated

motion, and the exponential nature of all possible movement combinations.

The considered datasets for our experiments contain sequences of actions, so

our very first task was to devise a method which automatically decomposes the

33



Chapter 3. Methodology

Figure 3.4: Example of a motion capture sequence segmentation by Zhou et al.
(2013) where a full sequence of actions is decomposed into simpler actions.

sequence in temporal segments where each segment represents an isolated action.

We propose three distinct approaches for temporal segmentation. The first ap-

proach is unsupervised (application oriented), based on heuristics and uses the

absolute velocity of the skeleton joints to create temporal segments. The second is

also unsupervised and it is based on Warped K-means (WKM) which is a general

purpose segmentation-based partitional clustering procedure. The final approach

is a supervised method which uses different kinds of models trained to recognize

the neighboring frames between any two actions in a sequence.

Clustering of temporal segments: consists in using a clustering algorithm

to group all the temporal segments found by our temporal segmentation method

into different clusters which will represent different actions, based on the similarity

of the movements performed by the human subject. In order to perform clustering

of the temporal segments, first we have to sample the segments for several joints

in order to generate the data that will be used for clustering. Figure 3.5 illustrates

how we propose to perform sampling.

Given a temporal segment like the one in the yellow shaded region, we take

a snapshot of that region of four selected joints (wrist-right; wrist-left; ankle-

right; ankle-left), then using our motion measuring method we assign the most

active joint of the skeleton to that segment, in this case it is the wrist-right. This

procedure is replicated for all the temporal segments found, and ideally it will
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Figure 3.5: Example of a sampled temporal segment represented by a vertical
cut for all the selected joints.

correspond to the number of actions that compose the sequence. The number of

actions found is ignored and will not be used as a feature to allow the system to

abstract to scenarios where sequences contain a variable number of actions. The

sampling procedure can be portrayed as stacking the joints time-line one on top

of another and making vertical slices to extract samples of data that correspond

to temporal segments where an action has occurred. For each sampled segment,

several features will be computed to create a feature vector that will be fed to

several clustering algorithms. In order to facilitate the clustering process we will

apply a body filtering method where its purpose is to find the most active joints of

the segment and make a decision whether the action is being performed mostly by

upper body joints or lower body joints. This will be useful to reduce the confusion

between actions where multiple joints are moving at the same time. The expected
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result is that in all the samples created from the dataset, patterns will appear that

could be clustered by similarity corresponding to the same or similar actions.

Cluster to class association: A human judge will be required to identify

the corresponding class of a cluster which represents an action. This classification

will be propagated through the entire dataset, replacing the assigned cluster with

the identified class by the human judge. Instead of manually labeling each and

every frame of the captured data, the human judge only has to label the different

classes that were automatically found by our proposed method. A summarized

description of the semi-unsupervised labeling process is described by Algorithm 1.

Algorithm 1 High-level description of the semi-unsupervised labeling process of
RGB-D videos containing human activity
1: procedure Semi-unsupervised labeling of RGB-D videos(sequences)

2: for all <sequences> do

3: perform temporal segmentation

4: sample sequence based on temporal segmentation

5: group samples based on the most active joint

6: feature vector  compute features for each sample

7: training data  add feature vector to training data

8: end for

9: for all <most active joints> do

10: apply body filtering

11: clusters execute clustering algorithm (training data)

12: apply cluster labels to the temporal segments

13: end for

14: manually assign an action class to a cluster of sampled temporal segments

15: end procedure
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3.3 Real-time Action Recognition

According to Aggarwal and Ryoo (2011), human activity can be categorized into

four different levels: gestures, actions, interactions and group activities. We are

interested in recognizing high-level human activities. Most of the past research in

human activity recognition has focused on recognizing human activity from still

images or from 2D videos (Gavrila, 1999; Oliver et al., 2002; Niu et al., 2004).

Estimating the human pose over shorter time scales is the primary focus of these

works. Currently, having access to a 3D camera which provides RGB-D videos

enables us to robustly estimate human poses and use this information for learning

complex human activities. We propose two distinct methods to perform action

recognition: (i) temporal segment action recognition and (ii) frame-by-frame ac-

tion recognition. Both will use the position of the skeleton joints extracted from

the skeleton frames which are captured by the Kinect sensor and then, with the

help of supervised learning methods we will train a machine learning algorithm to

classify different human actions. The proposed method to perform action recog-

nition should be able of handling variations in distance between the body and the

Kinect sensor, skeleton orientation, and speed of the actions.

Figure 3.6: Pipeline of the modular framework designed to perform action
recognition. Offline modules are used to process the data and extract the fea-
tures that will be used to train the classifiers with different feature sets for each
module. The online modules are used to perform real-time action recognition.

Figure 3.6 illustrates how we designed our framework considering the already

addressed tasks of temporal segmentation, clustering and labeling, with the ad-

dition of new modules for training of the classifiers and for action recognition.

Choosing a modular framework allowed us to isolate each task in one module giv-

ing us the ability to fully replace a module if required or if a better solution is
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presented. Although the Kinect sensor provides raw data containing the color and

depth values for every pixel in the video, we will not use that information. We will

rely solely on the Kinect skeletal tracking for obtaining the skeleton frames which

contain the locations of the various joints of the human skeleton being tracked

in 3D. From the locations of the skeleton joints we will compute several metrics

that will be used as features, like the absolute speed of each joint, velocity vector

of each joint, accumulated displacement of each joint, flexion and extension an-

gle between two bones and bone orientation. Since every module is oriented to

a specific problem, the set of extracted features has to be specific. For example,

to cluster temporal segments average values which represent the whole temporal

segment will be computed, where for real-time action recognition, the features

will be computed for every frame. The first three modules of the framework work

off-line and are responsible for processing and preparing the data that will be used

to train several classifiers. The last module runs in real-time and is the module

responsible for recognizing a given action.

Temporal segment action recognition: This approach consists in classify-

ing the actions by their temporal segment as a whole, similar to the research from

Cippitelli et al. (2016) where a feature vector representing the whole activity is

created and used for classification. Each instance of the feature vector is created

by averaging the values of the features for all the frames within each temporal seg-

ment. The main stages of this approach which are described in detail in Chapter

4, are:

• Movement detection. If the average movement of all the joints of the skeleton

are above a threshold value, then the subject is moving. The threshold

value was calculated by averaging the minimum movement value for all the

sequences.

• Skeleton Features Extraction. The coordinates of the skeleton joints and

bones orientations which represent human postures are extracted to compute

several activity features.
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• Temporal Segment Creation. Several skeleton frames are stored to create

a temporal segment with a length that corresponds to the average length

computed from all the temporal segments in the dataset.

• Activity Features Computation. A feature vector representing the average

values of all the features from the skeleton frames which are comprised in

the temporal segment.

• Classification. The classification is performed using binary classifiers, where

each classifier was trained to recognize a specific action which occurs over

the duration of a temporal segment.

A possible downside of this approach, is that requires a minimum amount

of skeleton frames in order to create the temporal segment that will be used to

generate the feature vector for classification. This could mean that the response

time in which the system performs the classification will suffer a delay of several

frames. Algorithm 2 describes in pseudocode how the action classification for

temporal segments is performed.

Algorithm 2 High-level description of the process to perform action recognition
of temporal segments.
1: procedure Temporal segment action recognition(skeletonframe)

2: if <subject is moving> then

3: frames  add skeleton frame

4: if <has enough frames> then

5: temporal segment  create temporal segment from frames

6: action feature vector  compute feature vector from the temporal segment

7: classification  classify activity feature vector

8: return classification

9: end if

10: end if

11: end procedure

39



Chapter 3. Methodology

Frame-by-frame action recognition: Is our proposal for real-time activity

recognition which starts from skeleton joints and computes a vector of features for

each captured frame from the Kinect sensor. Again we use binary classifiers for

recognition purposes, where each class represents a different action. The features

and the feature vector computed in this method are the same as in the previous

method. The training data generated for each classifier contains frame instances

of a given action labeled as positive examples and also frame instances for the

remaining actions labeled as negative examples. The main stages of this method

are:

• Movement detection (same as before).

• Skeleton features extraction (same as before).

• Frame-by-frame features computation. A feature vector representing the

action at a given skeleton frame is created and used for classification.

• Classification. The classification is performed using multi-class and binary

classifiers which implement a voting selection approach to select the best

possible classification.

The first step of the action recognition process is to measure the average dis-

placement of all the joints of the skeleton to decide if the subject is moving. If

the subject is moving an instance of the feature vector is computed from the cap-

tured skeleton frame from the Kinect sensor and fed to the classifiers. From all

the correct classifications we select the classification with the lowest error. This is

described in more detail in Algorithm 3.

3.4 Real-time Action Prediction

Although recent years have seen an increase of research and development in sys-

tems specialized in human activity recognition (Wolf et al., 2014; Koppula et al.,
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Algorithm 3 High-level description of our method to perform frame-by-frame
action recognition implementing a best action voting strategy.
1: procedure Frame-by-frame action recognition(skeletonframe)
2: if <subject is moving> then
3: action feature vector  compute features from the skeleton frame
4: for all binary classifiers do
5: classification  classify activity feature vector
6: store classification
7: end for
8: best classification  select correct classification with lowest error rate
9: return best classification

10: else
11: return subject not moving
12: end if
13: end procedure

2013; Ramirez-Amaro et al., 2015; Wachter and Asfour, 2015; Gaglio et al., 2015;

Cippitelli et al., 2016; Onofri et al., 2016) the same cannot be said about systems

specialized in human activity prediction (Ryoo, 2011; Kitani et al., 2012; Koppula

and Saxena, 2016). This is the point in which our research distinguishes itself

from most of the existing approaches. We propose a system capable of not only

recognizing but also predicting human activity using machine learning techniques.

Our goal is to recognize as early as possible the current action being performed

by a human and predict the next/future activity that will occur. For example,

in a industrial manufacturing scenario, if a robot can anticipate the actions of a

human worker, it can provide him tools and parts when he requires them.

We would like to perform action prediction in the context of long activities

or sequences of actions which have a hierarchical structure where a sequence is

composed by several actions. By knowing the sub-activities performed in the

past and the hierarchical structure of the activities we expect that we can predict

the next action that will occur in the sequence. We propose two methods to

perform action prediction: (i) N-gram action prediction where we will perform

experiments with several machine learning classifiers like: Multilayer Perceptron

(MLP) (Kubat, 1999), SVM using pairwise classification (Platt, 1998), RF with

n-grams of variable size (Breiman, 2001) and (ii) CRF based approach, which are

mostly used in Natural Language Processing (NLP) problems. CRF are suited
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for labeling structured data, they model rich contextual relations and are capable

of learning and inferring a small and discrete label space such as our sequences

of actions (Blei et al., 2004). CRF have been used in a parallel work to model

the sequential nature of actions in a sequence (Koppula and Saxena, 2016), but

where other approaches try to predict an outcome or anticipate ahead in time

(seconds), we try to predict what will be the next action of a subject. There are

several activities where a human subject performs certain actions as a sequence

of actions. With that premise we would like to prove that given the observations

of a scene containing a human performing an action a for time t, it is possible to

predict the possible action a+ 1 in a sequence of actions, obtaining a distribution

over the future possibilities (Figure 3.7). These observations will be captured by a

Kinect sensor which will help us obtain the human pose using Microsoft’s skeleton

tracker.

Figure 3.7: Illustration of the expected prediction process that the system
will perform given the current recognized action and the history of recognized
actions.

The goal is to label the history of previous actions with a tag that represents

the next possible action. Manually labeled data and data labeled by our binary

action recognition classifiers will be used to create our training set that will be fed

to the different prediction classifiers.

42



Chapter 3. Methodology

Figure 3.8 illustrates the pipeline of the modular framework capable of per-

forming action recognition and prediction. An (action prediction) module will

be implemented, responsible for the prediction of the next action that will occur

based on the information received from the action recognition module of the cur-

rent action being observed. The action prediction module, will work in real-time,

keeping track of the history of the actions being recognized and will generate the

feature vector for the prediction classifier based on that history.

Figure 3.8: Complete pipeline of the modular framework designed to perform
action prediction. The difference here is the addition of a new on-line module
responsible for performing real-time action prediction.
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Given the history of actions the prediction classifier has to predict the label of

the future action that will occur in that sequence. Algorithm 4 gives an overview

of the prediction process.

Algorithm 4 High-level description of the action prediction process which is
capable of predicting actions based on the current recognized action and the history
of actions recognized.
1: procedure Action prediction(skeletonframe)
2: if <subject is moving> then
3: activity feature vector  compute features from the skeleton frame
4: for all binary classifiers do
5: action classification  classify activity feature vector
6: store action classification
7: end for
8: best classification  select correct classification with lowest error rate
9: actions history  add best classification action

10: prediction feature vector  compute feature vector from history of actions
11: prediction classification  classify prediction feature vector
12: return prediction
13: else
14: return subject not moving
15: end if
16: end procedure

N-Gram Action Prediction: An n-gram model is a type of probabilistic

language model for predicting the next item in such a sequence in the form of a

(n � 1) � order Markov model (Jurafsky and Martin, 2009). Widely used in the

fields of computational linguistics and probability, an n-gram is an n-character

slice of a longer sequence of text or speech. The items can be phonemes, syllables,

letters, words or base pairs according to the application. The n-grams typically

are collected from a text or speech corpus. In our case the items will represent

a sequence of sub-activities. The n-grams are composed by combinations of the

actions of the sequence where the last action is the attribute to be used as the class.

For example, the sequence “right-punch, left-punch, side-right-kick, side-left-kick,

front-left-kick ” would compose the following n-grams:

• 3 combinations of the tri-gram: “right-punch, left-punch, side-right-kick ”.
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• 4 combinations of the quad-gram: “right-punch, left-punch, side-right-kick,

side-left-kick ”.

• 5 combinations of the penta-gram: “right-punch, left-punch, side-right-kick,

side-left-kick, front-left-kick ”.

Conditional Random Fields Action Prediction: Conditional random

fields (Sutton and McCallum, 2010) model rich contextual relations conditioned

on several features as input. Usually CRF are used in computational linguistics

(NLP) to perform tasks like: word breaker, POS tagging, and named entity recog-

nition where the goal is to label a sentence (a sequence of words or tokens) with

tags like adjective, noun, preposition, verb, adverb, article. We propose a parallel

approach where a sequence of actions can be seen as a sequence of text and each

action is seen as a word. Our intent is to use CRF to predict the next action given

the current action performed and the history of actions performed. Just like any

classifier, we’ll first need to decide on a set of feature functions fi. In a CRF for

our model, each feature function will be a function that takes as input:

• a sequence of actions s.

• the position i of a action in the sequence.

• the label li of the current word.

• the label hi of the history of the previous actions.

By restricting our features to depend on only the current action and on the

history of the previous actions, we are building the special case of a linear-chain

CRF (Figure 3.9).

To create the training data, we will gather all the existing sequences of actions

and for each sequence, we perform all the possible combinations of current action –

history of actions – next action, computing a distribution over the possible future

actions (Table 3.1).
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Figure 3.9: Graphical model of a linear-chain CRF that models our predic-
tion approach which depends on the current action and the previous recognized
actions.

Source: Sutton and McCallum (2010)

Table 3.1: Example of the instances generated for the training corpus from
a single sequence of actions. This will be repeated for all the sequences of the
dataset.

Current action History of actions Predicted action

RightPunch RightPunch Side LeftKick

SideLeftKick RightPunch SideLeftKick LeftPunch

LeftPunch RightPunch SideLeftKickLeft Punch SideRightKick

SideRightKick RightPunch SideLeftKick LeftPunch SideRightKick FrontRightKick

Each record of the training corpus represents a sequence of actions (like a

matrix) and each row describes an action to be predicted. To a column size N,

the first N �1 columns are used as input data to generate the binary features and

train the model. The nth column is the action that the model should predict.

3.5 PRECOG Dataset

When we started this research the majority of the available datasets contained

only isolated actions. This represented a problem since we proposed ourselves

to perform action recognition and prediction in sequences of actions composed

by single actions. We saw this as a chance to create a new dataset that contains
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sequences of actions. In a real world situation we expect to have a subject perform

a sequence of actions instead of a single isolated action like portrayed in most

of the previous discussed datasets. With this in mind we recorded a dataset

containing sequences of aggressive actions performed by 12 different subjects, 9

male and 3 female with no fighting experience. We chose the Kinect sensor to

record the dataset because since its release it has become the standard to record

and collect human activity datasets as shown in Table 2.1. We used the Kinect

sensor indoors, fixed in a front-view, with artificial lighting to record the dataset

with sequences of combat movements composed of 8 different actions: right-punch;

left-punch; elbow-strike; back-fist; right-front-kick; left-front-kick; right-side-kick;

left-side-kick. Using combinations of those 8 actions we created 6 distinct sequences

(each sequence contains 5 actions, Table 3.2). Of the 12 subjects recorded, each

subject performed 6 different sequences. A total of 72 sequences, 360 actions were

recorded.

Table 3.2: Description of the sequences of actions that were captured. The
layout of the actions in the sequences was carefully selected in order to guarantee
some logical patterns and repetitions in the sequences.

Action 1 Action 2 Action 3 Action 4 Action 5

1 right punch left punch side right kick side left kick front right kick

2 right punch side left kick left punch side right kick front right kick

3 right punch front left kick side left kick back fist front right kick

4 back fist left punch side right kick side left kick front left kick

5 back fist side right kick right punch front left kick side left kick

6 back fist side right kick front right kick elbow strike side left kick

The data was collected in .xed files which contains RBG, depth and skeleton

information (Figure 3.10), we also exported the skeleton data to .csv format where

each column of the Comma Separated Value (CSV) file refers to a specific skeleton

joint and each row contains the 3D position per joint, for every captured frame.

RBG videos were recorded in the resolution of 640 X 480 and the depth frames

with a resolution of 320 x 240 (Figure 3.11). Kinect is able to track 20 joints of
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Figure 3.10: Microsoft provides visualization tool which allows users to explore
the 3D, Depth and RBG view of a recorded .xed file.

a subject’s skeleton. Skeleton frames are generated at the rate of 30 frames per

second, and each frame consists of the 3D coordinates of 20 body joints along with

their tracking states (tracked, inferred, or not tracked). Although we recorded

RGB and depth information, our framework relies exclusively on the position of

the skeleton joints to extract relevant features.

Figure 3.11: Selection of five depth frames from a recorded sequence where
each frame correspond to a different action from a total of five actions.

The dataset1 is fully annotated and available for public usage. Along with

the dataset we released source code to an application which allows researchers

and developers to visualize each sequence of the dataset in real-time (Figure 3.12)

while providing a starting tool for development.

3.6 Discussion

Supervised machine learning techniques require representative labeled training

sets. In order to obtain those representative training sets, data acquisition is
1
https://github.com/DavidJardim/precog_dataset_16
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Figure 3.12: Visualization tool released with the dataset

required. Data acquisition can be seen as the most expensive task in machine

learning, because it requires the collection of the data and then the correct label-

ing of all the samples which is usually done by human judges. With our proposal

for semi-unsupervised labeling of human activity RGB-D videos we expect to re-

duce the amount of input required by a human judge to label a dataset. We

foresee some difficulties in labeling similar or ambiguous actions since we rely only

on the skeleton joints and ignore any contextual information. For instance, from

the system’s point of view what is the difference between picking up a glass or a

cellphone?

Our approaches to activity recognition will run in real-time providing a very

short response time and will rely only on the information of the skeleton joints.

Since they are similar to other approaches in the state of the art, they might find

it difficult as well to recognize similar actions. It is unknown how the system will

respond if presented with a new activity for which it has never been trained, will

it be able to recover and continue recognition? Since it is impossible to train a

system for each and every possible and existing action, the detection of unknown

activities still remains an issue for this kind of systems.
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We are confident that with our prediction approach we will be able to predict

the next action that will occur in a sequence of actions as long as the scope of the

sequences is limited. It is impossible to foresee all the possible combinations of

actions in the real world. This means that this approach has a limited application

to scenarios where certain patterns and combinations of actions are expected. This

approach might reveal a low intolerance to error since it depends highly on the

action recognition module to provide the correct recognized action to generate the

history of previous actions and perform the correct prediction.

The PRECOG dataset remains as a very important contribution of this re-

search, since as far as we know, it is one of the few RGB-D datasets that contains

long sequences of actions composed by shorter actions. One of its limitations is

that it was recorded with a single sensor providing only a front view of the sub-

jects. In a perfect scenario, the recordings should be done with several sensors

providing a 360

� view of the subject. We could not use the Kinect V2 sensor to

perform the data collections because the sensor was not available to the public at

the time.
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Semi-unsupervised Labeling and

Recognition of Human Activity

"The good life is one inspired by love and guided by knowledge."

Bertrand Russel

In this chapter, we apply our temporal segmentation and clustering methods

for semi-unsupervised labeling of RGB-D videos of human activity by modeling

the skeleton movement. We also address the problem of real-time human activity

recognition using semi-unsupervised and manually labeled training data. This

chapter is structured as follows: in Section 4.1 we describe the experimental setup;

in Section 4.2 we demonstrate our several temporal segmentation approaches; in

Section 4.3 we show how our approach can be used to perform semi-unsupervised

labeling of human activity; in Section 4.4 we perform real-time human activity

recognition using two different methods (temporal segmentation recognition and

frame-by-frame action recognition); and in Section 4.5 we discuss the results.

51



Chapter 4. Action Labeling and Recognition

4.1 Experimental Setup

The performance of our solution for semi-unsupervised labeling and recognition

of human activity will be evaluated on two public 3D human activity datasets:

PRECOG dataset and the Cornell Activity Dataset 120. The PRECOG dataset

features 72 RGB-D video sequences of aggressive actions; 12 subjects; 6 distinct

sequences of actions with 8 aggressive actions. The CAD-120 dataset features:

120 RGB-D videos of long daily activities; 4 subjects: two male, two female, one

left-handed; 10 high-level activities; 10 sub-activities and 12 object affordance la-

bels. The clustering algorithms will use euclidean distance as the distance function

with a maximum of 500 iterations (this value was obtained by verifying experi-

mentally the number of typical iterations for the stabilization of the clusters). The

classification methods will be tested by using k -fold cross-validation.

We are using the Kinect for Windows SDK which provides the tools and APIs,

both native and managed, required to develop Kinect-enabled applications in C#

for Microsoft Windows. We used WEKA (Eibe Frank and Witten, 2016) for the

implementations of learning algorithms that we applied to our data. WEKA con-

tains tools for data pre-processing, classification, regression, clustering, association

rules, and visualization. WEKA can be used as a stand-alone application (Figure

4.1) or as an API imported into a Java project. We had to use IKVM.NET 1

which is an implementation of Java for Mono and the Microsoft .NET Framework.

IKVM.NET enables Java and .NET interoperability allowing us to use the WEKA

API (Java) in our C# .NET application.

4.2 Temporal Segmentation

In this section we describe the features used to perform temporal segmentation,

and how to compute them. Then we present the experimental results for the Ab-

solute speed-based segmentation method, Warped K-means segmentation method
1
http://www.ikvm.net/
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Figure 4.1: WEKA Workbench

and the Classifier-based segmentation method, detailed in sub-sections 4.2.2, 4.2.3,

4.2.4 respectively.

4.2.1 Features

Kinect tracks 20 joints from the human body in 3D with X,Y,Z information, of

those 20 joints we highlighted five: spine-base, wrist-right, wrist-left, ankle-right

and ankle-left (Figure 4.2). These five joints were selected to extract features that

will be used to perform temporal segmentation. This choice was supported by

several approaches from related work (Koppula et al., 2013; Nirjon et al., 2014;

Gaglio et al., 2015; Cippitelli et al., 2016) which use similar subsets of joints for

evaluation of their proposed algorithms and concluded that it is not required to

use all the joints of the skeleton to obtain knowledge from the skeleton movement.

The size of the feature vector will affect the accuracy of the classifiers but also the

response time. The greater the size of the feature vector, the longer the response

time.

The joint positions returned by the Skeletal Tracking (ST) are affected by

noise and in some cases joint occlusion might occur. In these situations, when

the ST is unable to track a certain joint the joint data is inferred by calculating
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Figure 4.2: Illustration of the five skeleton joints selected (in green) to extract
features that will be used in the temporal segmentation methods.

it from other tracked joints. Since the data is calculated, confidence in the data

is very low. The first step was to obtain the skeleton joints independent of their

position in the camera reference frame. To achieve this we considered the spine-

base as the origin of the skeleton and computed the position of each joint as

the following: normalizedJointPosition = jointPosition � spineBasePosition.

Based on the normalized joint position, absolute speed is calculated for each joint

frame-by-frame. Speed is the distance traveled in meters divided by the time in

milliseconds it took to travel this distance (Eq. 4.1).

|si| =
����
d(Ji)

�t

���� , Ji = ith joint position in 3D (4.1)

Distance (Eq. 4.2) is calculated by the difference of the position in two consec-

utive frames: distance = jointPosition(frame n + 1) � jointPosition(frame n).

The Kinect sensor captures 30 frames per second (FPS), so �t = 33, 3 milliseconds.

di =

p
(x1 � x2)

2
+ (y1 � y2)

2
+ (z1 � z2)

2 (4.2)

Figure 4.3 illustrates the absolute speed of the right ankle over time through a

sequence of actions. Although not required for our use cases, the skeleton height

could also be normalized to handle varying distances of the subjects to the sensor.
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Figure 4.3: Absolute speed of the right ankle while performing actions on a
sequence. It is possible to observe two moments in time where the absolute
speed has increased, roughly [100, 140] and [160, 220]. These two moments refer
to actions where the right ankle was moving significantly.

4.2.2 Absolute Speed-based Segmentation

We empirically observed that during the execution of each action some joints

moved more than others. By measuring that movement and comparing it with

other joints it would be possible to discern which joint is predominant in a cer-

tain action and assign a temporal segment to each joint. This information will

be useful to perform the labeling of the temporal segments. Figure 4.4 shows a

timeline which represents the movement of the right ankle. It is possible to dis-

cern two regions where that joint has a significant higher absolute speed. These

two regions clearly depict moments in time where an action was performed that

involved mainly the right leg.

Figure 4.4: Regions of interest found by selecting frames in which the absolute
speed of the moving joint was greater than the double of the standard deviation
and above the average absolute speed. In this specific situation, two regions of
interest were found, corresponding to two kicks.
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Our first step was to create these regions which we denominated regions of

interest. This was achieved by selecting frames in which the absolute speed value

was above the standard deviation multiplied by a factor of two. We then selected

all the neighboring frames that were above the average value with a tolerance of 3

frames below the average. This data was collected for four different joints: right

and left ankle, right and left wrist. We then searched for overlapping regions.

While the user performs a kick the rest of his body moves, specially the hands to

maintain the body’s balance. Overlapping regions were removed by considering

only the joint moving at a higher average speed in each frame. Figure 4.5 illus-

trates an example result of our automatic segmentation method. Each color of

the plot represents a temporal segment to which we assigned a joint as being the

dominant joint for that action. We obtained 5 temporal segments which success-

fully correspond to the number of actions that the sequence contains, in this case:

right-punch; left-punch; front-right-kick; front-left-kick; side-right-kick.

Figure 4.5: Absolute speed-based segmentation VS manual segmentation of a
sequence. The upper chart illustrates the segmentation obtained by our absolute
speed-based segmentation method. The bottom chart illustrates a segmentation
based on the manual labeling of the frames of the sequence.

We applied the absolute speed-based segmentation method to all the 72 video

sequences of our PRECOG dataset. Table 4.1 shows the average results per

sequence for our absolute speed-based temporal segmentation. To measure the

results we made a frame-by-frame comparison between corresponding temporal

segments. Corresponding temporal segments are temporal segments which occur

roughly at the same window-frame in the same sequence. An average segmenta-

tion accuracy of 83.04% is an interesting result. The difference in segmentation
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accuracy between sequences can be explained by the actions that compose the

sequences. Sequences 5 and 6 contain actions with a low intensity of movement

(back-fist and elbow-strike). The movement of the remaining joints while perform-

ing those actions, is very similar to support the action being performed. This

makes the task of temporal segmentation based on the absolute speed of the joints

difficult to perform.

Table 4.1: Average temporal segmentation accuracy per sequence for our ab-
solute speed-based temporal segmentation method. (Sequence description avail-
able in Table 3.2).

Sequence 1 2 3 4 5 6 Average

Segmentation Accuracy (%) 94.23 89.66 73.55 89.44 76.31 75.03 83.04

4.2.3 Warped K-means Segmentation

Warped K-Means (WKM) is a multi-purpose partitional clustering procedure that

minimizes the Sum of Squared Errors criterion, while imposing a hard sequentiality

constraint in the classification step (Leiva and Vidal, 2013). Action segmentation

is a data partitioning problem, and can be addressed as a data clustering problem

similar to those solved in Leiva and Vidal (2013) by WKM. This algorithm was,

to the best of our knowledge, used to cluster trajectories derived from mouse and

touch input and never used for the purpose of clustering human joint trajectories.

Our intention is to apply WKM to the trajectories defined by the joints of the

skeleton while the subject is performing an action. Figure 4.6 illustrates how

WKM clusters an arbitrary shape.

For each sequence we had to process the data so that it could be used by the

WKM algorithm. The first task was to automatically remove regions from the

sequence where the subject was not moving. When we recorded the dataset some

subjects did not execute the actions immediately, so in the beginning of most of

the sequences there is a small region where the subject is stationary. This also

happens at the end of the sequence were the person in charge of managing the

capture would take some time to stop the recording after the subject has finished
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Figure 4.6: Application of WKM clustering of an arbitrary shape. This shape
could be hand drawn and the separation of segments would occur when the
intensity of the motion decreased.

Source: Leiva and Vidal (2013)

performing the actions. An example of this is illustrated in Figure 4.7 with the

highlighted regions.

Figure 4.7: Highlighted regions of the sequence where the user is stationary.
The absolute speed at those frames is almost zero.

In order to detect if the subject was moving we implemented a method to

measure the average displacement of all the joints of the skeleton during a small

time frame (five frames). If the average displacement is greater than a threshold

defined from observation, we conclude that the subject is moving. This approach

was successful in identifying stationary frames. For example sequence 1 performed

by subject 1, from manually labeled data, action only begun at the frame 37 and

ended at frame 211. Our method concluded that the subject initiated moving at

frame 38(+1) and stopped at frame 207(-4). After removing the stationary frames

we selected four joints (right and left ankle, right and left wrist) and calculated

the average speed of these joints separately by referential axis. This would leave
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us with 3 feature vectors representing the average speed of the four joints in X,Y

and Z.

Each feature vector was saved as a column in a text file and then processed by

WKM which will generate the following information for each sequence: bound-

aries; clusters; centroids; local energy; total energy; iterations; number of transfers;

cost.. For a more detailed description of these features please refer to Leiva and

Vidal (2013). The most relevant information is the boundaries which will be used

to segment the sequence. A simplified explanation of the process is described by

Algorithm 5.

Algorithm 5 Pseudo-code describing how we apply the Warped K-means method
to perform temporal segmentation of all the sequences.
1: procedure WKM clustering(sequences)
2: for all <sequences> do
3: check for subject movement
4: remove stationary frames
5: data export speed per joint and per axis
6: segments execute WKM(data)
7: end for
8: end procedure

Figure 4.8 illustrates an example of WKM segmentation. The bottom-most row

shows the ground-truth segmentation, top-most row is the segmentation obtained

when performing WKM. We noticed that WKM has limitations in dealing with

the frames between the actions or accurately detecting the ending of an action.

The second action of the sequence (in red), the WKM temporal segment has nearly

twice the length of the manual segmentation.

Figure 4.8: WKM temporal segmentation VS manual temporal segmentation.
For this sequence in particular it is visible that the WKM temporal segmenta-
tion method introduces an offset in almost all the segments with some of them
overlapping the following segments.
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Table 4.2 shows the average segmentation accuracy obtained by WKM. In a

frame-by-frame comparison the results are far from optimal. Since Warped K-

Means (WKM) is a multi-purpose partitional clustering procedure we expected

better results but unfortunately with an average segmentation accuracy of 55.23%

this approach is not reliable enough to be used in our framework.

Table 4.2: Average temporal segmentation accuracy per sequence for our ap-
plication of the Warped K-means temporal segmentation method to sequences
of human activity.

Sequence 1 2 3 4 5 6 Average

Segmentation Accuracy (%) 63.55 49.74 40.86 45.20 45.17 59.02 55.23

4.2.4 Classifier-based Segmentation

Our previous segmentations methods fall in the category of unsupervised methods

which do not require training data. Since the results were far from optimal we

decided to experiment with a supervised method, where different kinds of models

such as Hidden Markov Models (Bashir et al., 2007), Neural Networks (Hofmann

and Buhmann, 1998) or Random Forests (Breiman, 2001) can be trained using

manually segmented and labeled trajectories to perform segmentation of sequences

of actions.

Figure 4.9 illustrates how a sequence is partitioned into the several actions

that compose it (each color represents an action) then, highlighted in grey are

the neighboring segments for each action which are not labeled to any action in

particular. Since we proposed a method to perform action recognition in real-

time on a frame-by-frame basis in our methodology, we decided to apply the same

concept here and treat these neighboring segments as another action and train a

classifier to recognize it. If the recognition of this action which we called No-Action

revealed to be successful, then the sequence could be partitioned based on that

information.
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Figure 4.9: Manual temporal segmentation where each colored segment repre-
sents an action of the sequence and the grey segments represent the neighboring
frames between actions.

In order to generate the training data we selected certain attributes that would

be used as features. We selected speed in meters per second and orientation of

four joints (right and left ankle, right and left wrist). Based on the position of

the joints we calculated the speed of each joint (Eq. 4.3) instead of the absolute

speed used in our absolute speed-based segmentation method for X,Y and Z. This

calculation is performed in every 33 milliseconds which corresponds to the time

between each frame captured by the Kinect sensor. Where the distance in meters

per axis is again, calculated by the Equation 4.2.

si =
d(Ji)

�t

, Ji = ith joint position in 3D (4.3)

The bone orientation is provided in two forms:

• A hierarchical rotation based on a bone relationship defined on the skeleton

joint structure.

• An absolute orientation in Kinect camera coordinates.

We experimented with both forms of rotation and although with a marginal

difference, obtained better results with the absolute rotation of the bone. The

orientation information is provided in form of quaternions and rotation matrices.

Thus, the feature vector has 49 attributes:

• 3D speed vector for 4 joints, for XYZ=12.
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• 3x3 orientation matrix for 4 bones = 36.

• action label = 1.

Since we want to perform action recognition for each frame of the sequence,

each instance of the training data corresponds to a feature vector calculated from

a frame of the sequence. We used a Random Forest of 100 trees to create a binary

classifier model trained with a total of 142938 instances. In order to test the results

we used k-fold cross-validation with the option of 10 folds. The training data has

two classes: No-Action which corresponds to the neighboring frames of the actions,

and In-Action which corresponds to any manually labeled action contained in the

sequence. From 15882 instances, 93.14% were correctly classified, a more detailed

description of the results can be found in Table 4.3.

Table 4.3: Detailed accuracy results showing precision, recall and f-measure
in classifying the No-action and In-Action frames.

Class Precision Recall F-Measure

No-Action 0.938 0.850 0.892

In-Action 0.928 0.972 0.950

Given an unknown sequence of actions, we ask the classifier to label each frame

of the sequence as No-Action or In-Action and with that labeling we can easily

obtain the classifier-based temporal segmentation (Figure 4.10).

Figure 4.10: Classifier based temporal segmentation VS manual temporal seg-
mentation. The significantly high segmentation accuracy of the classifier-based
segmentation reflects the precision values above 90% in No-Action and In-Action
classification.
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4.3 Semi-unsupervised Labeling of Human Activ-

ity

In this section, we describe our experiments to perform semi-unsupervised labeling

of human activity in RGB-D videos on two activity datasets (PRECOG and CAD-

120). An action can be represented by the poses that the human body takes over

time while performing an action. Each pose respects certain positions, degrees of

freedom, constraints and orientation of joints of the skeleton. Our hypothesis is

that with the correct features extracted from the skeleton tracker it is possible to

cluster patterns that model the movements performed by the subjects.

4.3.1 Features

In order to limit the size of our feature vectors and based on related work (Nirjon

et al., 2014) we compute the features described in Table 4.4 for the upper-skeleton

joints (left elbow, left wrist, right elbow and right wrist) and also for the lower-

skeleton joints (left knee, left ankle, right knee, right ankle). We experimented

with more joints and the difference was marginal, even worst in some cases. Again

we normalize the positions of the joints by redefining the 3D coordinates of all 20

skeleton joints using the spine joint as the frame of reference (Figure 4.11).

Table 4.4: These are the features that will be computed from the skeleton
frames captured by the Kinect sensor and fed to a clustering algorithm.

Description Count

absolute speed of each joint (4 joints) 4
velocity vector of each joint (4 joints) 12
accumulated displacement of each joint (4 joints) 12
flexion and extension angle between two bones 4
bone orientation (3x3 matrix) 36

The first feature that we computed was the absolute speed of each joint where

absolute speed =

��distance
�t

�� with distance = final position� initial position. As for

the velocity vector, suppose the position of a joint at time t is given by the position
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Figure 4.11: Illustration of the eight skeleton joints selected (in yellow) to
extract features that will be used in the clustering of temporal segments. The
hip joint (blue) will be used as the frame reference of the skeleton to normalize
the positions of the joints.

Source: Kinect for Windows SDK 1.8 (2017)

vector s(t) = (s1(t), s2(t), s3(t)). Then the velocity vector v(t) is the derivative of

the position, v =

(ds)
(dt) = (

ds1
dt ,

ds2
dt ,

ds3
dt ). The displacement vector in 3D quantifies

both the distance and direction of the motion executed by a joint while performing

an action. We also computed the flexion/extension angle of the elbows and the

knees (Figure 4.12) using the law of cosines. Given the position of three joints in

the 3D space ( a = right shoulder, b = right elbow, c= right wrist) the angle � is

defined by Equation 4.4.

� = arccos

✓
a

2
+ b

2 � c

2

2ab

◆
, for XYZ (4.4)

Experiments were made with different combinations of features to create the

feature vector (Jardim et al., 2016c). The best results were obtained with the

64



Chapter 4. Action Labeling and Recognition

Figure 4.12: Flexion and extension describe bone movements that affect the
angles between two bones of the body. Flexion decreases the angles between the
bones and extension increases the angle between the bones. We calculated these
angles for the elbow and knee joints to be used as features.

Source: Tonye Ogele CNX (2017)

following feature vector of size = 20:

• absolute speed (m/s) of each joint (4 joints), for XYZ = 4.

• normalized displacement in meters of each joint (4 joints), for XYZ = 12.

• flexion and extension angle between two bones (4 joints) = 4.

The clustering algorithm requires a fixed-length feature vector to be computed

from each temporal segment found by our method. The sequences have variable

length because different subjects take different amounts of time to perform the

same actions, in the same way, the temporal segments found will also have variable

length. Given the N� length of a temporal segment ts = (ts1, ts2, ..., tsN), where

N is the window-size, we calculate the average value for each feature into a K-length

sequence k = (k1, k2, ..., kN) before it is sent to the clustering algorithm, where

K is the size of the feature vector and it will vary depending on the combination

of features used.

65



Chapter 4. Action Labeling and Recognition

We tested two clustering algorithms: K-Means (Hartigan and Wong, 1979)

and Hierarchical Clustering (Moore and Essa, 2002). K-means is a very well

known algorithm and its aim is to partition n observations into k clusters in

which each observation belongs to the cluster with the nearest mean. Hierarchical

Clustering is a method of cluster analysis which seeks to build a hierarchy of

clusters, we adopted the agglomerative approach which is a bottom up approach:

each observation begins in its own cluster, and pairs of clusters are combined as one

moves up the hierarchy. We made various experiments and combinations with the

features described above that were used to constitute the feature vectors for the

clustering algorithm and obtained different results depending on the features used.

In K-Means we used Euclidean distance as the distance function (which measures

the distance between two individual instances) with a maximum of 500 iterations,

for Hierarchical Clustering the distance function used was WARD, which finds the

distance of the change caused by merging the cluster, again with a maximum of 500

iterations. In the initial experiments we tried to cluster all the temporal segments

with information from all the joints at the same time but the performance was low

(Table 4.5) with ambiguous results.

Table 4.5: Confusion matrix action-wise clustering results for hierarchical clus-
tering algorithm applied on all the temporal segments found on all the sequences
of the PRECOG dataset. With a total of eight distinct actions, where each clus-
ter represents a different action without applying the body filtering method.

Action Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8

Right punch 0.0% 0.0% 8.16% 14.29% 0.0% 6.12% 69.36% 2.04%
Left punch 0.0% 3.03% 0.0% 78.79% 0.0 % 0.0% 18.18% 0.0%
Back fist 3.85% 15.38% 40.38% 13.46% 0.0% 0.0% 26.92% 0.0%
Elbow strike 0.0% 10.53% 52.63% 15.79% 0.0% 0.0% 21.05% 0.0%
Front right kick 14.29% 75.0% 1.79% 3.57% 0.0% 1.79% 3.57% 0.0%
Side right kick 33.75% 58.75% 0.0% 0.0% 3.75% 1.25% 1.25% 1.25%
Front left kick 0.0% 7.89% 0.0% 2.63% 7.89% 52.63% 0.0% 28.95%
Side left kick 5.13% 2.56% 2.56% 0.0% 26.92% 30.77% 3.85% 28.21%

Nevertheless we observed that different actions that were performed with the

same body part were assigned to the same cluster. This information can be used

to reduce the ambiguity of the data to be clustered and simplify the clustering

process by clustering the temporal segments by body part and then by action.

With this in mind, we implemented a method that divides the temporal segments

in two groups: upper-body actions and lower-body actions. This is done based on
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the most active joint that was assigned by the sampling method, for example, if

the most active joint of a given segment is the right wrist, that temporal segment

will be labeled as upper-body action. Table 4.6 shows the clustering results of the

temporal segments contained in Sequence 1 using the K-means algorithm. Some of

the temporal segments that refer to a Side right kick were labeled as a Front right

kick, this is understandable since both actions are very similar and performed by

the same body part.

Table 4.6: Confusion matrix action-wise clustering results for K-means clus-
tering algorithm applied on the temporal segment found on Sequence 1. Each
cluster represents a different action.

Action Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Right punch 91.67% 0.0% 0.0% 8.33% 0.0%
Left punch 0.0% 100.0% 0.0% 0.0% 0.0%
Front right kick 8.33% 0.0% 91.67% 0.0% 0.0%
Side right kick 0.0% 0.0% 33.33% 66.67% 0.0%
Side left kick 0.0% 0.0% 8.33% 8.33% 83.33%

Research from Kaur and Kaur (2013) refers that K-Means is usually more

efficient in terms of its run-time, specially when dealing with large datasets, on

the other hand Hierarchical Clustering, although slower in execution, has higher

clustering performance. We confirmed these results, since our dataset is rela-

tively small and we are performing clustering on sub-sets of identical sequences

performed by different subjects, Hierarchical Clustering obtained better results in

the tests (Table 4.7). Again, similar actions still represent a difficult task for the

clustering process. For the sake of simplicity, we portray the comparison of these

two clustering algorithms only for Sequence 1 of the dataset. From here on, all

the clustering/labeling results were obtained via Hierarchical Clustering.

Table 4.8 shows the clustering results for all the sequences (high-level activities)

and its sub-activities. The results are promising and consistently above 80% except

for the Elbow strike action which is confused with the Back fist action (these two

actions are very similar and performed by the same body part).

In order to verify the scalability of our approach we executed the same pro-

cess described in Algorithm 1 using the CAD-120 dataset, which proved to be a
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Table 4.7: Confusion matrix action-wise clustering results for hierarchical clus-
tering algorithm applied on the temporal segment found on Sequence 1. Each
cluster represents a different action.

Action Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Right punch 100.0% 0.0% 0.0% 0.0% 0.0%
Left punch 0.0% 100.0% 0.0% 0.0% 0.0%
Front right kick 0.0% 0.0% 75.0% 0.0% 25.0%
Side left kick 0.0% 0.0% 0.0% 100.0% 0.0%
Side right kick 0.0% 0.0% 16.67% 0.0% 83.33%

Table 4.8: Confusion matrix action-wise clustering results for hierarchical clus-
tering algorithm applied on all the temporal segments found on all the sequences
of the PRECOG dataset. With a total of eight distinct actions, where each clus-
ter represents a different action. Here the body filtering method is applied to
distinguish upper-body actions from lower-body actions and only then we apply
the clustering of actions.

Action Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8

Right punch 89.58% 2.08% 8.33% 0.0% 0.0% 0.0% 0.0% 0.0%
Left punch 4.17% 95.83% 0.0% 0.0% 0.0 % 0.0% 0.0% 0.0%
Back fist 13.89% 0.0% 80.56% 5.56% 0.0% 0.0% 0.0% 0.0%
Elbow strike 0.0% 0.0% 33.33% 66.67% 0.0% 0.0% 0.0% 0.0%
Front right kick 0.0% 0.0% 0.0% 0.0% 83.33% 14.58% 0.0% 2.08%
Side right kick 0.0% 0.0% 0.0% 0.0% 16.67% 80.0% 0.0% 3.33%
Front left kick 0.0% 0.0% 0.0% 0.0% 0.0% 2.78% 83.33% 13.89%
Side left kick 0.0% 0.0% 0.0% 0.0% 0.0% 4.17% 5.56% 90.28%

challenging dataset for semi-unsupervised labeling. The presence of a left-handed

subject makes it very difficult for the clustering algorithm to group similar actions

if they are performed with different joints. The results obtained were far from

optimal (Table 4.9). The actions in this dataset are very distinct from the actions

of our dataset. Some of the labellings make sense, Opening and Closing as Eat-

ing and Drinking are very similar and using only the skeleton information is very

difficult to distinguish them. To mitigate these ambiguities Koppula et al. (2013)

added scene/object recognition and tracking to aid the process of learning human

activities.

Given the amount of incorrectly clustered instances our hypothesis is that if we

train the classifiers with this labeling the classifiers will be induced to error and the

model will fail to recognize accurately the actions in real-time. Our expectation is

that models that deal well with noise could correct some of the labeling problems
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Table 4.9: Confusion matrix action-wise clustering results for hierarchical clus-
tering algorithm applied on all the temporal segments found on all the sequences
of the CAD-120 dataset. With a total of eight distinct actions, where each cluster
represents a different action.

Action Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8

Reaching 12.10% 42.74% 0.0% 6.85% 17.74% 0.0% 5.24% 15.32%
Moving 10.31% 14.38% 1.88% 29.38% 28.13 % 0.0% 4.06% 11.98%
Pouring 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 0.0%
Eating 0.0% 0.0% 0.0% 62.50% 0.0% 0.0% 0.0% 37.50%
Drinking 0.0% 0.0% 0.0% 69.23% 0.0% 0.0% 0.0% 30.77%
Opening 0.0% 0.0% 71.15% 0.0% 1.92% 1.92% 0.0% 25.0%
Placing 15.69% 0.0% 23.53% 9.15% 0.65% 34.64% 8.50% 7.84%
Closing 0.0% 0.0% 100.0% 0.0% 0.0% 0.0% 0.0% 0.0%

by generalizing well. This lead us to essay a few experiments based on this data, if

nothing else, as a baseline for other results. Experiments to validate this hypothesis

are shown in the next section.

4.4 Human Activity Recognition

This section describes the experimental results of our temporal segment and frame-

by-frame action recognition approaches. We test our model on the PRECOG and

the CAD-120 datasets. In order to train the classifiers we have to generate the

training data. We have two versions of each dataset: manually labeled (frame-

by-frame) and automatically labeled (temporal segment). For the automatically

labeled dataset we created a procedure that, given the label of the temporal seg-

ment, applies the same label to all the frames within that segment, resulting in a

dataset labeled frame-by-frame. To verify our hypothesis, we experimented with

several supervised learning models: MLP (Rumelhart et al., 1986; Kubat, 1999);

SVM using pairwise classification (Platt, 1998) and RF which are a combination

of tree predictors (Breiman, 2001). Using distinct classifiers allowed us to verify

if different machine learning methods obtained different results and also compare

the performance of our action recognition framework trained with data labeled in

a semi-unsupervised way, versus data manually labeled.

69



Chapter 4. Action Labeling and Recognition

4.4.1 Features

For each labeled frame we compute an activity feature vector which is given as

input to the classifier together with the label of the action. The wrist-right; wrist-

left; ankle-right; ankle-left joints were selected to compute the velocity vector and

the elbow-right; elbow-left; knee-right; knee-left; joints were selected to extract the

bone orientation as shown in Figure 4.13.

Figure 4.13: Illustration of the eight skeleton joints selected to extract features
that will be used to generate the activity feature vector. The hip joint (blue)
will be used as the frame reference of the skeleton to normalize the positions of
the joints.

Source: Kinect for Windows SDK 1.8 (2017)

The 3D coordinates are with respect to the hip joint which will be used as a

frame of reference centered at the Kinect sensor point of view. Frames from the

camera are converted into feature vectors which are invariant to relative position

and orientation of the body since we normalized their positions. The computed

activity feature vector is comprised of the following features with size = 49:

• velocity vector [X, Y, Z] of each joint, Ji (4 joints) = 12.
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• bone orientation obtained from a quaternion (3x3 matrix)(4 joints) = 36.

• label of the action = 1.

The bone orientation is provided by the Kinect SDK which returns a BoneRo-

tation object that has a rotation matrix and a quaternion vector (Figure 4.14). To

calculate the absolute orientation of each bone, we have to multiply the rotation

matrix of the bone by the rotation matrices of the parents (up to the root joint).

Figure 4.14: The absolute subject rotation in camera space coordinates is
provided by the hip center joint. This means that the subject object space is
centered at the hip center joint. The x axis is horizontal, the y axis is vertical
and the z axis refers to the depth.

Source: Kinect for Windows SDK 1.8 (2017)

4.4.2 Temporal Segment Recognition

To evaluate our temporal segment recognition approach k -fold cross-validation will

be used to randomly split the data in the training set into k smaller sets with a

single sub-set being left out as a test-set with k=10. The results obtained in the

tables below represent the average recognition accuracy values of 30 trials using
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random seed values with the corresponding standard deviation to quantify the

amount of variation in performance that occurred in each trial.

Table 4.10 shows the average recognition accuracy obtained for three distinct

multi-class classifiers (MLP, SVM and RF) trained with all the actions from the

manually labeled training set and the results are significantly below the state-of-

the-art (Nirjon et al., 2014). There is a clear difference in performance between

the ML methods. RF has nearly 10% increase in performance compared to MLP

and SVM.

Table 4.10: Temporal segment classification accuracy (%) using multi-class
classifiers trained with semi-unsupervised labeled data and corresponding stan-
dard deviation between trials for the PRECOG dataset.

Action MLP SVM RF

right-punch 69.80 ±0.83% 72.08 ±0.17% 80.89 ±1.00%
left-punch 70.22 ±0.77% 72.03 ±0.21% 81.30 ±1.28%
front-right-kick 70.11 ±1.03% 72.01 ±0.20% 81.37 ±0.88%
front-left-kick 69.99 ±0.92% 72.11 ±0.17% 81.39 ±1.11%
side-right-kick 69.97 ±0.72% 72.07 ±0.19% 81.57 ±0.83%
side-left-kick 70.10 ±0.87% 72.10 ±0.17% 81.54 ±1.67%
backfist 69.88 ±0.80% 72.10 ±0.17% 80.97 ±0.81%
elbow-strike 70.04 ±0.75% 72.04 ±0.20% 81.12 ±0.80%

Based on the binary classifiers approach from (Nirjon et al., 2014) we trained

eight binary supervised classifiers using manually labeled data for recognizing the

eight aggressive actions contained in our dataset. Each classifier is trained to

distinguish one action from all others. This approach (binary classifiers) produced

the best results in Nirjon et al. (2014) using SVM classifiers. Table 4.11 clearly

shows the difference between using binary-classifiers versus multi-class classifiers

with the obvious advantage of using binary classifiers with average accuracies

above 91% in recognizing an action surpassing the average results from Nirjon

et al. (2014) of 90%. In this case the difference in accuracy between classifiers is

reduced, but again RF manages to obtain the best results.

We also present a detailed accuracy by class in Table 4.12 referring only to the

RF classifier. Even with these results is important to outline that a multi-class
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Table 4.11: Temporal segment classification accuracy (%) using multi-class
classifiers trained with manually labeled data and corresponding standard devi-
ation between trials for the PRECOG dataset.

Action MLP SVM RF

right-punch 94.24 ±0.44% 91.52 ±0.17% 90.08 ±0.37%
left-punch 89.09 ±0.44% 92.50 ±0.26% 92.21 ±0.37%
front-right-kick 88.14 ±0.96% 87.95 ±0.21% 93.20 ±0.53%
front-left-kick 89.96 ±0.79% 90.42 ±0.28% 91.97 ±0.48%
side-right-kick 91.22 ±0.16% 91.92 ±0.07% 94.53 ±0.57%
side-left-kick 83.62 ±0.97% 84.76 ±0.23% 91.74 ±0.51%
backfist 92.55 ±0.32% 92.77 ±0.00% 93.58 ±0.46%
elbow-strike 95.02 ±0.28% 96.66 ±0.00% 96.66 ±0.00%

classifier has the advantage of always being able to provide a classification for a

given instance.

Table 4.12: Temporal segment recognition results on our PRECOG dataset
showing precision, recall and f-measure for action recognition of the binary clas-
sifiers using manually labeled data with random forests algorithm.

Precision Recall F-Measure Class

0.923 0.902 0.912 right-punch
0.943 0.702 0.805 left-punch
0.945 0.809 0.872 front-right-kick
0.953 0.888 0.919 front-left-kick
0.872 0.812 0.841 side-right-kick
0.929 0.872 0.899 side-left-kick
0.919 0.861 0.889 backfist
0.993 0.552 0.709 elbow-strike

Table 4.13 shows the results of the repetition of the previous experiment with

the fundamental difference of using a training set labeled by our semi-unsupervised

labeling pipeline. As before, the MLP classifier has the worst performance and RF

performs the best. MLP in comparison to the values of Table 4.11 has the largest

decrease in performance, in some cases more than 10%. Concerning SVM and RF

the difference is much less, never surpassing 3%.

As expected, the usage of semi-unsupervised labeling affects the accuracy of

the classifiers. This can be explained by the error that our automatic labeling

method introduces. This error is caused by frames that might be added to the
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Table 4.13: Temporal segment classification accuracy (%) using multi-class
classifiers trained with semi-unsupervised labeled data and corresponding stan-
dard deviation between trials for the PRECOG dataset.

Action MLP SVM RF

right-punch 83.82 ±0.81% 88.29 ±0.16% 89.40 ±0.48%
left-punch 82.43 ±1.31% 90.20 ±0.00% 90.84 ±0.33%
front-right-kick 81.22 ±0.74% 90.75 ±0.07% 90.00 ±0.49%
front-left-kick 89.99 ±0.76% 87.91 ±0.13% 90.99 ±0.25%
side-right-kick 82.80 ±1.18% 87.88 ±0.07% 89.57 ±0.57%
side-left-kick 84.99 ±0.86% 90.28 ±0.05% 90.56 ±0.68%
backfist 83.09 ±1.44% 87.60 ±0.00% 90.05 ±0.41%
elbow-strike 95.90 ±0.31% 96.83 ±0.00% 96.83 ±0.00%

segment where in fact they do not belong to the action, or the opposite, frames

that belong to the action are left out of the segment. Another source for error is

our clustering and labeling method which confuses similar actions that lead to an

incorrect labeling. Nonetheless, the difference is relatively small, and depending

on the application, it could be negligible and remove the necessity of having to

rely on human resources to manually label data. Again, we present a detailed

accuracy by class in Table 4.14 referring only to the RF classifier.

Table 4.14: Temporal segment recognition results on our PRECOG dataset
showing precision, recall and f-measure for action recognition of the binary clas-
sifiers using semi-unsupervised labeled data with random forests algorithm.

Precision Recall F-Measure Class

0.872 0.921 0.896 right-punch
0.924 0.923 0.924 left-punch
0.876 0.951 0.912 front-right-kick
0.903 0.916 0.910 front-left-kick
0.891 0.919 0.905 side-right-kick
0.883 0.936 0.909 side-left-kick
0.898 0.928 0.913 backfist
0.931 0.976 0.953 elbow-strike

Finally, in Table 4.15 we calculate the difference in performance for each clas-

sifier accuracy using manually labeled data and semi-unsupervised labeled data.

In some cases, the classifier that was trained using semi-unsupervised labeled data

outperformed its counterpart.

74



Chapter 4. Action Labeling and Recognition

Table 4.15: Difference in classification accuracy (%) between models that were
trained with manually labeled data versus semi-unsupervised labeled data for
each binary classifier per action. Negative values represent the loss in accuracy
of the models trained with the semi-unsupervised data.

Action MLP SVM RF

right-punch -10.42 % -3.23 % -0.68 %
left-punch -6.66 % -2.30 % -1.37 %
front-right-kick -6.92 % 2.80 % -3.2 %
front-left-kick 0.03 % -2.51 % -0.98 %
side-right-kick -8.42 % -4.04 % -4.96 %
side-left-kick 1.37 % 5.52 % -1.18 %
backfist -9.46 % -5.17 % -3.53 %
elbow-strike 0.88 % 0.17 % 0.17 %

average -4.95 % -1.09 % -1.97 %

All the results presented here were obtained off-line in WEKA. When we tried

to replicate the results in real-time, we noticed the shortcoming of this approach.

The issue with temporal segment recognition is that several frames are required to

compute an instance of the feature vector. How many frames have to be captured

to compute the feature vector? Actions have varying length and duration. If the

number of frames is reduced, their average value might not be representative of an

action, but if we use too many the recognition will occur with a delay of n-frames

and it will not be useful. In summary this approach might be useful, but only for

off-line classification because it requires access to the whole sequence of actions.

4.4.3 Frame-by-frame Recognition

The frame-by-frame recognition uses the same activity feature vector as the tempo-

ral segment recognition approach. Instead of computing the activity feature vector

for a set of frames, we compute a new activity feature vector for every frame cap-

tured by the Kinect sensor. This approach will be evaluated using 10-fold cross

validation with random forest classifier and the global performance is given by the

average precision, recall and f-measure. High accuracy results were obtained with

this approach for the PRECOG dataset using manually labeled data (Table 4.16),

where the average precision and recall are 97.3% and 98.3%, respectively.
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Table 4.16: Frame-by-frame recognition results on our PRECOG dataset show-
ing precision, recall and f-measure for action recognition of the binary classifiers
using manually labeled data with random forests algorithm.

Action Correct Incorrect Precision Recall F-Measure

right-punch 97.45% 2.55% 0.969 0.976 0.949
left-punch 98.34% 1.66% 0.981 0.984 0.983
front-right-kick 97.53% 2.47% 0.974 0.983 0.978
front-left-kick 98.29% 1.71% 0.981 0.985 0.983
side-right-kick 96.35% 3.65% 0.959 0.977 0.968
side-left-kick 97.84% 2.16% 0.975 0.985 0.980
backfist 97.17% 2.83% 0.964 0.989 0.976
elbow-strike 97.65% 2.35% 0.984 0.983 0.983

Our results were significantly higher than the results presented in Nirjon et al.

(2014) of an action recognition accuracy of 90%, obtained using binary classifiers

also. The results are in-line with more recent approaches (Gaglio et al., 2015;

Cippitelli et al., 2016) using datasets with similar actions. Our approach has an

advantage on performance: while Gaglio et al. (2015) performs the recognition

of a sequence (i.e., posture analysis and activity recognition) in about 1 second,

we perform the same task for every captured frame from the Kinect sensor (30

frames/s).

Table 4.17: Frame-by-frame recognition results on our PRECOG dataset show-
ing precision, recall and f-measure for action recognition of the binary classifiers
using semi-unsupervised labeled data with random forests algorithm.

Action Correct Incorrect Precision Recall F-Measure

right-punch 88.90% 11.10% 0.867 0.887 0.877
left-punch 94.59% 5.41% 0.951 0.934 0.942
front-right-kick 80.65% 19.35% 0.799 0.831 0.810
front-left-kick 80.80% 19.20% 0.807 0.814 0.811
side-right-kick 78.10% 21.90% 0.787 0.811 0.790
side-left-kick 88.86% 11.14% 0.888 0.905 0.896
backfist 78.85% 21.15% 0.770 0.828 0.798
elbow-strike 75.00% 25.00% 0.714 0.837 0.771

We repeated the same experiments using data automatically labeled to train

the binary classifiers (4.17). Again and as expected there was a decrease in recog-

nition accuracy. The clustering results from Table 4.8 imply that there will be

data mislabeled, this will add noise to the training set and induce the classifiers to
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error leading to a decrease of the average precision and recall to 82.3% and 85.6%,

respectively. The action with the highest accuracy is the left-punch, very likely

because it is the only action executed mainly by the left arm of the subject.

We also evaluate the performance of our approach on the CAD-120 dataset.

In this dataset the limitations of Kinect’s tracking algorithm are more evident.

Almost in every sequence and due to partial occlusions, one or more joints were

mis-detected resulting in unnatural poses. When this occurs the skeleton tracker

tries to infer the joints position according to the global skeleton. If a joint is not

clearly visible it makes the whole recognition process more difficult and unreliable.

To mitigate this we implemented a simple linear interpolation method that will

interpolate the position of the joints when the tracker is unable to infer them.

The interpolation is done for all the frames in between the last known position

and the next known position. Figure 4.15 illustrates an example of interpolated

joints versus not tracked joints.

Figure 4.15: Real-time output of the action recognition application being
performed on the CAD-120 dataset. (a) When occlusion occurs the Kinect sensor
loses track of the joints which then are represented in red. (b) Interpolated joints
(blue) are computed and replace the not tracked joints.

The evaluation setting proposed is the same as with our dataset, 10-fold cross-

validation which means that the system is trained on 90% of the data and that

10% is used for testing. For this dataset, since the skeleton is also captured using

Microsoft SDK, we could easily compute the same features that we computed for

our dataset.
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Table 4.18: Frame-by-frame recognition results on the CAD-120 dataset show-
ing precision, recall and f-measure for action recognition of the binary classifiers
using manually labeled data with random forests algorithm.

Action Correct Incorrect Precision Recall F-Measure

reaching 96.89% 3.11% 0.952 0.953 0.952
moving 100.00% 0.00% 1.000 1.000 1.000
pouring 99.99% 0.01% 1.000 1.000 1.000
eating 100.00% 0.00% 1.000 1.000 1.000
drinking 99.59% 0.41% 0.997 0.993 0.995
opening 100.00% 0.00% 1.000 1.000 1.000
placing 96.81% 3.19% 0.958 0.943 0.950
closing 99.99% 0.01% 1.000 1.000 1.000

The highest performance for the proposed algorithm was obtained with the RF

classifier, and the performance in terms of precision and recall, for each activity,

is shown in Table 4.18. The recognition performance achieved with this dataset

surpasses the results obtained by Koppula and Saxena (2016) in recognizing sub-

activities in the same dataset. We obtained similar recognition performance with

the work of Cippitelli et al. (2016), although a direct comparison cannot be made

since they used a different dataset (KARD dataset from Gaglio et al. (2015)).

Our hypothesis is that, one of the reasons for this result is the amount of data

generated for training, since we use every frame to create an instance of the feature

vector we have for example 535823 instances for the moving sub-activity which is

a considerable amount of training data for a single action.

Our semi-unsupervised labeling method did not scale well for this dataset.

Nevertheless we trained the classifiers with the automatically labeled data. The

results are presented in Table 4.19 and the low precision obtained clearly illustrates

that correctly labeled training data is very important to obtain relevant results.

Finally, Figure 4.16 illustrates a snapshot of our application performing real-

time classification in the PRECOG dataset. The label Classified informs that the

recognized action at the current frame from the Kinect sensor is a side-left-kick,

which matches the Manual label which is taken from the manually labeled data.
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Table 4.19: Frame-by-frame recognition results on the CAD-120 dataset show-
ing precision, recall and f-measure for action recognition of the binary classifiers
using semi-unsupervised labeled data with random forests algorithm.

Action Correct Incorrect Precision Recall F-Measure

reaching 66.74% 33.26% 0.636 0.529 0.578
moving 68.52% 31.48% 0.697 0.773 0.733
pouring 61.00% 39.00% 0.612 0.614 0.613
eating 56.99% 43.01% 0.565 0.589 0.577
drinking 65.95% 34.05% 0.624 0.563 0.592
opening 65.43% 34.57% 0.630 0.584 0.606
placing 60.31% 39.69% 0.583 0.505 0.541
closing 66.99% 33.01% 0.683 0.747 0.714

Figure 4.16: Illustration of our PRECOG application performing real-time
action recognition. It displays the skeleton tracked by the Kinect sensor, the
ground-truth labeling and the classified action.

4.5 Discussion

In this chapter we explored: (i) temporal segmentation of human activity, (ii)

a semi-unsupervised labeling method of RGB-D videos which models skeleton

movement using clustering algorithms and (iii) the problem of real-time human

activity recognition using semi-unsupervised and manually labeled training data

with extensive analysis of the proposed approaches on two datasets.

We experimented with several methods for performing temporal segmentation

of human activity. Completely unsupervised human activity segmentation is a

very challenging problem, even the state-of-the-art approaches have limitations
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with applicability confined to short sequences of actions. Approaches which are

based on thresholds of movements reveal to be highly dependent on the data and

do not scale well when applied directly to another dataset. Our best results were

obtained with a supervised method by learning the optimal labeling from multiple

temporal segmentation hypotheses of various sequences. This approach has the

limitation of being unable to deal with new actions. These results helped us

to implement the first module (temporal segmentation) of our framework whose

ultimate goal is to recognize and predict human activity in a sequence of actions.

We considered a semi-unsupervised method to label sequences of actions com-

prised by several sub-activities performed over long periods of time recorded with

the Kinect sensor. We formulated the labeling/annotation problem as a cluster-

ing problem, and showed that a temporal segmentation and clustering algorithm

can be used to label identical sub-activities performed by different users, thus

reducing the amount of input required from a human judge to label a human ac-

tivity dataset. Results indicate that ambiguous actions are difficult to label and

improvements to the semi-unsupervised labeling/annotation method are required

to guarantee the scalability of the approach to different datasets with ambiguous

actions.

Extensive experiments for real-time action recognition were performed with

comparisons between several supervised classifiers used on the state-of-the-art to

recognize human activity. The two different methods that we proposed to perform

real-time action recognition (temporal segment recognition and frame-by-frame

recognition) were tested with manually labeled and semi-unsupervised labeled

training sets. We showed that our frame-by-frame recognition method using man-

ually labeled data surpasses the state-of-the-art approaches for similar actions.

The usage of semi-unsupervised labeled data for training resulted in a decrease in

performance due to the error that our labeling method introduces. The limitation

of these type of supervised approaches is the inability to deal with new actions.

In a real life scenario it is possible to have captured frames that will not belong

to any of the trained actions, the classifier will simply output the class which has

the higher probability even if it represents a different action.
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After exploring in depth the action recognition problem we believe that the

next logical step is to address the prediction of human activity. In Chapter 5 we

present our proposal to model the relation of actions and sequences of actions,

which can be used to predict the future actions based on the recognition of the

past actions.
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Chapter 5

Early Recognition and Prediction of

Human Activity

"Education is the most powerful weapon which you can use to change the world."

Nelson Mandela

Our goal is to predict what a human subject will do next based on the current

action that he is performing and the history of actions that were performed. Given

the history of actions performed by a human for time t in the past and the current

action a being performed, we intend to predict the next possible action a’. For

example, if a human subject has picked a glass of water, what will be the outcome?

Will he drink the water? Or will he spill it on the sink?

In this chapter, we demonstrate our approach for early recognition of human

activity and how we address the problem of real-time human activity prediction

using n-grams and conditional random fields. This chapter is structured as follows:

in Section 5.1 we describe the experimental setup; in Section 5.2 we demonstrate

our early recognition approach; in Section 5.3 we show how n-grams can be used

to perform action prediction; in Section 5.4 we perform real-time human activ-

ity prediction using conditional random fields; and in Section 5.5 we discuss the

results.
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5.1 Experimental Setup

The performance of our solution for early recognition and prediction of human

activity will be evaluated on two public 3D human activity datasets: PRECOG

dataset and the CAD-120 dataset. The classification methods will be evaluated

by using k -fold cross-validation. A combination of the Kinect for Windows SDK,

WEKA and CRFSharp 1 which is a Conditional Random Fields library imple-

mented in .NET(C#) was used to implement and conduct the experiments.

5.2 Early Recognition

The purpose of early recognition is to recognize unfinished activities as opposed

to the after-the-fact classification of completed activities (Ryoo, 2011). Early

recognition has been approached by Ryoo (2011); Mainprice and Berenson (2013);

Hoai and De La Torre (2014) amongst others in the past and in most cases they

were able to correctly classify ongoing activities, even when less of the first half of

video containing the activity was provided. Early recognition of human activity

is important to our approach because it will allow us to build a responsive and

proactive system, where the classification is done as soon as possible. Figure

5.1 shows sequential frames from a temporal segment that correspond to the same

action. Ideally all these frames should be labeled as the same action, independently

of where they are located in the temporal segment. We present a very simple

approach which is directly related to the design of our recognition framework.

Since we proposed a real-time recognition method which is performed on every

captured frame, we observed that our system was able to frequently recognize the

current action right from the very first frames of the temporal segment.

In order to test the ability of our approach to recognize ongoing activities at an

early stage, we measured the system recognition performances at the beginning of

each temporal segment which represents a sub-activity. Specifically we select the
1
https://github.com/zhongkaifu/CRFSharp

84



Chapter 5. Action Prediction

Figure 5.1: Illustration of a sample of depth frames (non-continuous) that
were captured while the user was performing a right-punch.

first five frames of each temporal segment. Figure 5.2 describe the classification

accuracy for the first five frames of the activities. With accuracy values between

85% and 98% these experimental results confirm that the proposed approach is

able to correctly recognize this type of short-span human activities even at their

earlier stage.

Figure 5.2: Frame-by-frame classification result of the first five frames of every
temporal segment (which represents an action) contained in the test data.

During the experiments for early recognition we identified another interesting

feature of our system: the ability to perform early recognition of the sub-activity

which surpasses the ground-truth classification. Take the example of Figure 5.3,

which illustrates a snapshot of the application recognizing a specific frame from the

Kinect sensor that was manually labeled as None but in fact it should have been

labeled as side-right-kick. Since the dataset was manually labeled by a human, the

labeling might be incorrect in some frames. This might occur on the extremities of

the temporal segment where these frames could be left unlabeled as None. These

results, although very interesting, are a by-product of our real-time frame-by-frame

action recognition. This is a reinforcement of the quality of our action recognition
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method, which shows the ability to generalize and correctly classify instances that

might not have been identified with the correct label even by a human judge.

Figure 5.3: Screenshot of the PRECOG application performing early action
recognition. From the image, it is possible to observe that a correct classification
of the action by the classifier was done, even when the ground-truth frame was
not manually labeled as an action frame.

5.3 N-Gram Action Prediction

To perform action prediction with n-grams, we have to recognize the actions being

performed by a human subject and store them in a list of past actions. In this

specific case an n-gram is defined as a contiguous sequence of n actions, therefore

this method requires knowledge of at least the two previous actions performed.

The second column of Table 5.1 shows the probability of accurately predicting the

next action using the Bayes theorem with noiseless data. The following columns

show the performance of our approach using several classifiers trained with semi-

unsupervised labeled data. The results are very similar between columns 3-5 and,

as expected, the accuracy improves as we add more actions as input. Compared

with column 2, we notice a loss of performance. Since our frame-by-frame action

recognition method does not have a perfect accuracy of 100%, the training data

generated by a classifier for this prediction method might have some mislabeled

actions. For example, we might have the following labels assigned to a sequence of
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actions as follows: “right-punch, left-punch, NONE, side-left-kick, front-left-kick ”.

NONE represents a situation where the activity recognition module was unable

to assign a label to the observed action. The third action of the sequence labeled

as NONE would affect negatively the training. This means that the prediction

accuracy will be highly dependent on the ability of the system to correctly recog-

nize the actions performed by the subject to build the correct n-grams that were

used to train the models. When the whole sequence is known (n-gram = 5), the

classifiers converge identically and obtain the same prediction accuracy.

Table 5.1: Prediction accuracy comparison for the next action between differ-
ent classifiers and with an increasing number of actions (n-grams) as input.

n-gram Ground-Truth SMO RF MLP

3 83.3% 77.7% 79.2% 77.7%
4 91.7% 86.8% 79.2% 89.6%
5 100% 95.8% 95.8% 95.8%

5.4 Conditional Random Fields Action Prediction

The proposed method applies conditional random fields to obtain a distribution of

the future possible actions that will occur by sampling sequences of actions. We

see fit the application of CRF to this problem due to their sequence modeling na-

ture and structured prediction ability in a Part-of-Speech Tagging (POS) fashion

as in NLP problems. Constructed on top of the frame-by-frame action recognition

module from Chapter 4, we will group the classified frames into temporal seg-

ments that represent the current action that it is being performed, and for every

recognized action store it in a list representing the history of actions. The pair

action and history of actions comprises the feature vector. Every sequence of the

PRECOG and the CAD-120 dataset was sampled into a list of pairs that include

possible actions and the corresponding history of actions. This data will be used

to train the models and perform the experiments, validated by using 10-fold cross

validation. For each fold, the data is split 90% for training and 10% for testing.
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The CAD-120 dataset is larger than the PRECOG and the sequences are com-

posed by more sub-activities thus, the amount of data generated for training the

CRF classifier is greater (Table 5.2).

Table 5.2: Training and testing corpus used for the PRECOG and the CAD-
120 dataset. The 72 sequences of the dataset were sampled into 722 actions
combinations which then were randomly split into training and testing.

Training Testing

PRECOG sequences 65 7
CAD-120 sequences 100 12

PRECOG actions combinations 650 72
CAD-120 actions combinations 5766 640

From Algorithm 4 when the recognition module classifies a new action we ask

what is the most likely action that will occur next? We used manually labeled

data and semi-unsupervised labeled data to train two classifiers. From the results

in Table 5.3 for the PRECOG dataset and as expected, the classifier trained with

data manually labeled performs better, using the semi-unsupervised labeled data

resulted in a decrease of performance of 1.8%. This loss in performance is accept-

able if we take into account that with this approach we can build a framework

capable of recognizing and predicting actions in a semi-unsupervised fashion.

Table 5.3: Accuracy (%) comparison of the proposed prediction method for
the PRECOG and the CAD-120 dataset, trained with ground-truth data vs data
labeled with our semi-unsupervised labeling method using conditional random
fields.

Dataset Manually labeled data Semi-unsupervised labeled data

PRECOG 91.7% 89.9%
CAD-120 86.27% 54.08%

Parallel work from Koppula and Saxena (2016) also addresses activity antic-

ipation, but in a different way. While we attempt to predict the next possible

action that might occur, independent of any measure of time, they try to perform

activity anticipation for a specific amount of time. They reach activity anticipa-

tion accuracies of 75.4%, 69.2% and 58.1% for anticipation times of 1, 3 and 10

seconds, respectively. Although our approach and objective are distinct, we will
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evaluate and experiment on their CAD-120 human activity RGB-D dataset. We

report the results obtained by 10-fold cross validation by averaging across the folds.

Table 5.3 also shows the metrics for anticipating the next possible sub-activity on

the CAD-120 dataset. Using ground-truth data for training CRF we managed an

average anticipation accuracy of 86.27%. Although our results present a higher

anticipation accuracy than the results obtained by Koppula and Saxena (2016) it

would be incorrect to say that we outperformed their approach since we propose

to achieve different goals.

The confusion matrix for the action prediction results for the CAD-120 dataset

using ground-truth labeled data is shown in Table 5.4, where it is possible to

observe that even with a greater variation of sub-activities our approach is able to

anticipate future possibilities based on the history of actions performed.

Table 5.4: Confusion matrix for action prediction performed on the CAD-120
dataset where the models were created with data manually labeled.

reaching moving placing drinking eating opening closing pouring

94.24% 1.67% 2.41% 0.00% 1.27% 0.40% 0.00% 0.00% reaching
9.28% 77.88% 1.17% 0.00% 0.00% 11.67% 0.00% 0.00% moving

0.00% 0.00% 99.72% 0.00% 0.28% 0.00% 0.00% 0.00% placing
0.00% 0.00% 18.56% 73.20% 8.25% 0.00% 0.00% 0.00% drinking
0.00% 0.00% 3.51% 0.00% 96.49% 0.00% 0.00% 0.00% eating
2.66% 5.56% 2.17% 0.00% 0.00% 89.61% 0.00% 0.00% opening
6.49% 0.00% 0.00% 0.00% 0.00% 12.99% 80.52% 0.00% closing
0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% pouring

As for Table 5.5 which illustrates the confusion matrix when using the semi-

unsupervised labeled data to train the action recognition classifiers, the difference

is obvious and it is immediately noticeable that our approach struggles if the train-

ing data is incorrectly labeled. The current state of our semi-unsupervised labeling

approach invalidates the usage of semi-unsupervised labeling data to perform ac-

tivity prediction since the average prediction accuracy obtained was 54.08%. This

reveals a limitation of our approach, the success of each module of the applica-

tion pipeline is directly related to the performance of the previous module. The

performance of the activity recognition module depends on the accuracy of the

semi-unsupervised labeling method, and the performance of the activity predic-

tion module is affected by the accuracy of the activity recognition module. For this
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prediction approach to be successful the training data has to be labeled correctly

and the actions have to be correctly recognized in real-time.

Table 5.5: Confusion matrix for action prediction performed on the CAD-120
dataset where the models were created with data labeled by action recognition
classifiers that were trained with data labeled by our semi-unsupervised labeling
method.

reaching moving placing drinking eating opening closing pouring

80.22% 7.91% 4.95% 0.63% 2.79% 2.07% 0.18% 1.26% reaching
12.77% 73.02% 2.58% 0.38% 1.29% 8.81% 0.23% 0.91% moving

9.60% 11.30% 70.74% 0.77% 2.32% 3.87% 0.15% 1.24% placing
23.29% 17.08% 19.88% 24.22% 8.07% 3.42% 0.62% 3.42% drinking
14.80% 15.05% 10.71% 1.79% 52.04% 4.08% 0.26% 1.28% eating
19.12% 26.89% 8.40% 1.26% 2.73% 39.50% 0.84% 1.26% opening
25.55% 25.91% 13.14% 3.28% 6.57% 10.95% 12.77% 1.82% closing

22.87% 23.97% 10.47% 1.65% 4.13% 7.71% 0.55% 28.65% pouring

5.5 Discussion

In this chapter, we considered the problem of early activity recognition and activity

prediction. In Chapter 4 we presented the skeleton visualizer from the PRECOG

application where it is possible to observe and classify in real-time the actions being

performed by a subject. In this chapter we implemented and added the action

prediction module to the application pipeline. The application is now capable

of performing action recognition and prediction in real-time (Figure 5.4). In a

real-world application the system would be trained and configurable to respond to

certain observable events/actions and act accordingly.

Encouraging results were obtained using manually labeled data to train the

prediction classifiers. We observed that the prediction accuracy depends on the

data, in this case the complexity of the actions, and also, depends highly on the

performance of the previous modules of the pipeline. The performance of the

prediction module depends on the ability of the recognition module to correctly

recognize an action, which in turn depends on the temporal segmentation and

labeling accuracy to generate a good training set.
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Figure 5.4: Screenshot of the PRECOG application performing real-time ac-
tion recognition and prediction. The labels in white refer to the ground-truth
labeled action and prediction. The labels in yellow refer to the recognized and
the predicted action.

We consider that we were able to answer our research question which was to

create a system capable of performing real-time action recognition and prediction.

We demonstrated that it is possible to predict the next possible action based on

the current recognized action and the history of the previous recognized actions.

The sequence of human sub-activities was modeled using n-grams and conditional

random fields in a POS fashion as in NLP problems.

This approach has some limitations that could be addressed in the future work.

This kind of prediction will only work if the subject is performing known actions

to the recognition classifier and those actions can be used to create a sequence

of actions known to the prediction classifier. If an unknown action is performed,

how should the system react? This said, it is impossible for a system to try and

predict every possible future action, as the possibilities are infinite. Furthermore,

the system’s ability to recover from mislabeled actions is still poor, although a

semi-supervised labeling (as explained in Chapter 4), and possibly retraining after

batches of corrections could improve results with minor user intervention. In the

event of mislabeling an action, the incorrect action will be added to the history

of actions, leading the classifier to make an incorrect prediction. The proposed

system could be applied to scenarios where certain behaviors are expected and
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can be anticipated (collaborative environments for humans and robots, industry

automation, etc).
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Conclusions and Future Work

"Education is the passport to the future, for tomorrow belongs to those who prepare

for it today."

Malcolm X

6.1 Conclusions

The ability to analyze images or videos and understand humans and their sur-

roundings has multiple real-world applications such as surveillance systems, self-

driving cars, robot assistants in collaborative environments, etc. Human observa-

tion and understanding is a natural task that we humans perform with relative

ease. On the other hand, replicating the same task with a computer is extremely

complex and presents multiple challenges. These challenges include, inadequate

environment and recording settings, temporal variations, context, human inten-

tion, infinite number of possible actions, ambiguity of actions, occlusions, noise

and the cost of labeling large amounts of data required for training. In this dis-

sertation, we addressed some of these challenges by proposing a framework for

human activity recognition and prediction using machine learning algorithms.
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In our approach, we use the 3D position of the skeleton joints captured by the

Kinect sensor to compute features that model human actions and allow us to train

classifiers specialized in activity recognition and prediction. The action recognition

and prediction process is described by a hierarchical model through four levels of

abstraction. A bottom-up approach, ranging from low-level data acquisition from

the sensor, feature extraction and feature engineering to design the input of the

classification algorithms, low-level or atomic action recognition to high-level action

prediction. We recorded and published a new RGB-D dataset, called PRECOG

dataset, containing 72 high-level sequences of aggressive actions with male and

female subjects. Unlike most of the available datasets which describe isolated

actions, the PRECOG dataset is hierarchical and sequential as expected in real-

life situations.

Machine learning requires large amounts of labeled data for training. “Big

data” is hard to organize, analyze and label. The cost of labeling large amounts

of data is one of the main concerns for ML applications. To address this issue,

we proposed a method to perform semi-unsupervised labeling of human activity

in RGB-D videos. We demonstrated how temporal segmentation, clustering and

filtering techniques can be combined to achieve semi-unsupervised labeling of hu-

man activity. The advantage of this proposal is that instead of annotating a whole

dataset, the human judge only has to label the classes that were identified by our

method. We compared the performance of several supervised classifiers used in

recent work by other authors to recognize human activity. This work clarified the

difference between using manually versus semi-unsupervised labeled data, where

the goal was to ascertain the impact of the noise introduced by semi-unsupervised

labeling on action classification. Our results showed that, for a dataset of simple

combat actions, captured with a standard Kinect sensor with no special acquisition

conditions, a temporal segmentation and clustering algorithm can be used to label

identical actions performed by different users. Encouraging results were obtained

with our PRECOG dataset, as for the CAD-120 dataset the results were less fa-

vorable. The CAD-120 dataset contains more ambiguous actions which highlights

how challenging it is to create a general method that scales to multi-classes of
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actions. A task that even humans have difficulties in performing accurately when

dealing with ambiguous actions and have to resort to contextual information to

aid the decision.

We presented two distinct approaches for human activity recognition: tempo-

ral segment action recognition and frame-by-frame action recognition. For each

approach we presented a series of validation experiments: comparison between

well-known classifiers, multi-class classifiers versus binary classifiers and measured

the impact of using training data labeled in a semi-unsupervised fashion versus

data manually labeled by a human judge. In these experiments, the frame-by-

frame action recognition approach (employing binary classifiers and a voting policy

for the best action based on the classification error with data manually labeled),

is able to overcome state-of-the-art results in datasets with similar actions with

average precisions of 0.973 and 0.982 for the PRECOG and CAD-120 datasets

respectively. This approach has the ability to perform action recognition right

from the first frames of the temporal segment. Using data labeled with our semi-

unsupervised labeling method brought a decrease of average precision in action

recognition of 0.150 for the PRECOG dataset and a decrease of 0.359 for the

CAD-120 dataset, highlighting the importance of having data correctly labeled

for training. These experiments allowed us to observe and validate the accuracy,

robustness and readiness of our approach, all key characteristics required by real-

time monitoring systems.

Humans have the ability to effortlessly anticipate a given situation into mul-

tiple future possibilities. This is a very challenging task for a computer since the

possibilities are endless. While we perform our daily activities, we repeat certain

patterns of sequences of actions. Instead of trying to predict each possible future,

we proposed a method that uses CRF to recognize patterns of actions to perform

activity prediction. Due to the wide application of CRF in labeling sequential

data, we saw fit their application to label structured data such as sequences of

actions. Unlike other contemporary and parallel approaches, that take into ac-

count the context of the scene or perform object recognition in order to obtain

more information, our approach relies solely on the features extracted from the
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movement of the joints of the subject’s skeleton to recognize and predict human

activity. We presented several validation experiments and obtained the best per-

formance when using manually labeled data for training and obtained an average

prediction accuracy of 91.7% and 86.27% for the PRECOG and CAD-120 datasets

respectively. Although we obtained a higher score in performance than the state

of the art approach, this score is for predicting the next immediate possible action

for every captured frame, while the state of the art approach predicts seconds

ahead in the future. Depending on the application, one type of prediction can be

more adequate than the other.

In summary, we have demonstrated how 3D sensing technology, feature en-

gineering and machine learning enabled the resolution of a very challenging task

which is to recognize and predict human activity. We validated our approach with

multiple experiments in tasks similar to those used in the state of the art. In

some scenarios we have outperformed the state-of-the-art in human activity un-

derstanding and matched some different contemporary approaches. The ability to

recognize and anticipate what a person might do next has a myriad of applications

which, with the current tendency of big-data generation and retrieval, will only

improve with time.

6.2 Future Work

One of the limitations of our approach is that a human judge is always required

to assign a label to a set of temporal segments clustered by a clustering method.

Completely unsupervised labeling of human activity data is very challenging. It

requires accurate general-purpose temporal segmentation and correct clustering of

actions (even if they are ambiguous). A generic and scalable method capable of

performing unsupervised labeling of human activity, in an accurate way, is what

future research should aim for (regardless of the dataset and the classes of actions).

One possible way to improve our semi-unsupervised labeling method would be to

filter the instances that are closest to the centroid of the cluster and use them as
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candidates to train the classifiers. The instances that are above a certain distance

from the centroid of the cluster could be labeled off-line by the previously trained

classifier.

Another limitation of the approach proposed in this thesis, is the inability of

our activity prediction method to handle unknown actions. If an action occurs

that the system does not recognize, a domino effect might occur and the system

might not be able to cope. A failure detection event must be implemented to allow

the system to restart action anticipation as soon as a new activity is classified. In

order to perform human activity prediction with our approach, a certain order

of sub-activities and patterns is expected. This limits the range of applications

where our system can be deployed. We expected that some of the ML algorithms

that were used, would be able to overcome the noise introduced by the semi-

unsupervised labeling method (since they are known to behave relatively well in

noisy scenarios), unfortunately this did not happen.

With the current reform of personal data protection rules in the EU, the col-

lection and management of personal data has to abide to strict legal conditions. In

the future and depending on the application, HAR systems will have to ensure the

privacy of the subjects being monitored. Data anonymization has to be performed

and the sensors used might only extract anonymous features. For example RGB-D

sensors manage to preserve much more privacy than traditional video cameras if

the RGB feed is ignored. Higher level of privacy can be obtained by using the

skeleton joints to represent a person. Although the recent advances in RGB-D

sensors fostered the development of promising approaches, an improvement of the

skeleton tracking process is required in order to deal with joint occlusions and

frame loss which affect the accuracy and capability of response of a HAR system

based in RGB-D technology.

The future research of this area will be highly encouraged and dictated by

applications. As the need for surveillance of public facilities, development of au-

tonomous vehicles and autonomous robots increases, we believe that human mo-

tion analysis and anticipation will become part of our everyday lives.
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