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II. Abstract 

The main objective of this dissertation is to investigate the asymmetric effects of shocks 

on volatility during the Global Financial Crisis of 2007 – 2009. Using daily logarithmic returns, 

we estimate univariate EGARCH and GJR models assuming three different conditional 

distributions: the Gaussian normal, Student’s t and Generalized Error Distribution. The stock 

indices under analysis, which include largest companies in the world, are S&P 500, NASDAQ, 

FTSE 100, DAX, CAC 40, NIKKEI 225 and HSI. The data ranges from September 15, 2006 to 

September 15, 2010, being split in two subsamples by the collapse of Lehman Brothers on 

September 15, 2008. 

Our results suggest that asymmetric effects are present in all stock markets analysed. In 

most cases, the impact becomes weaker after the Lehman Brothers bankruptcy, indicating that 

the negative shocks did not raise volatility as much as they did before the bankruptcy. EGARCH 

model with fatter tailed distributions appears to be the best in-sample predictive model. 

Moreover, we test the statistical significance of the change between asymmetry coefficient 

estimates of the EGARCH model, and conclude that the majority are not statistically significant, 

suggesting that the asymmetry coefficients do not depend on the sample period. 

 

Keywords: Volatility, Asymmetry effects, Global Financial Crisis, Stock Market Indices. 

JEL Classification: C32; C55. 
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III. Resumo 

O principal objetivo desta dissertação é investigar os efeitos assimétricos dos choques 

na volatilidade durante a Crise Financeira de 2007 – 2009. Usando rendibilidades logarítmicas 

diárias, são estimados dois modelos univariados, EGARCH e GJR, que assumem três 

distribuições condicionais: distribuição Gaussiana normal, Student’s t e Generalized Error 

Distribution. Os índices de ações analisados, que incluem grandes empresas mundiais, são S&P 

500, NASDAQ, FTSE 100, DAX, CAC 40, NIKKEI 225 e HSI. O período temporal dos dados 

começa a 15 de setembro de 2006 até 15 de setembro de 2010, sendo dividido em dois sub-

períodos pela falência do Lehman Brothers no dia 15 de setembro de 2008. 

 Os resultados sugerem que o efeito assimétrico está presente em todos os mercados 

acionistas que foram analisados. De um modo geral, o impacte torna-se mais fraco depois da 

falência do Lehman Brothers, indicando que os choques negativos não aumentam a volatilidade 

tanto como aumentam antes da falência. O modelo EGARCH com distribuições de caudas 

pesadas, é o melhor modelo para a previsão in-sample. Adicionalmente, é testada a significância 

estatística das diferenças entre as estimativas dos coeficientes de assimetria do modelo 

EGARCH. Concluiu-se que a maioria das diferenças não é estatisticamente significativa, 

sugerindo assim que os coeficientes de assimetria não dependem do período temporal dos 

dados. 

 

Palavras-Chave: Volatilidade, Efeito assimétrico, Crise Financeira, Índices de ações.   

Classificação JEL: C32; C55. 
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1. Introduction 

The Global Financial crisis of 2007 - 2009 forever reshaped the markets across the 

world. One particular moment stands out – September 15, 2008. On this day, a major investment 

bank Lehman Brothers went bankrupt, making it the largest bankruptcy in history and impelling 

even more the Global Financial Crisis. Stock markets lost trillions of dollars in market 

capitalization, and the recession quickly affected the real economy. Given the uncertainty, this 

period is characterized by violent price drops. For instance, the second week of October 2008, 

(i.e. October 6 – 10, 2008) was the worst week for markets in 112 years (Chaudhury, 2014). 

Volatility reached high levels as extreme daily movement occurred more frequently, hindering 

investor’s financial decisions in terms of risk modelling, hedging strategies, determination of 

cost of capital, portfolio selection and asset allocation, as well as pricing of primary and 

derivatives instruments. 

 In this context, and given that such market behaviour is rare, the present work is 

concerned with the study of volatility during the Global Financial Crisis. Furthermore, we make 

a particular emphasis on one of the stylized facts of asset returns: the asymmetry effect. 

Negative innovations have higher impact on volatility than positive innovations. The aim is to 

investigate the impact of the asymmetry, comparing the magnitude of the effect before and after 

the Lehman Brothers collapse. 

  The sudden risk aversion among investors within highly linked markets makes this crisis 

truly global. Taking this global integration into account, we examine the asymmetric effects 

(differentiating good and bad news) on volatility using data from seven different stock market 

indices. This allows us to compare the asymmetry, not only before and after the bankruptcy, 

but also across markets. 

 Different proxies and volatility models have been presented over the years, making the 

literature on this subject very extensive. Among them, the conditional heteroskedasticity 

models have become very popular and common in finance applications. According to Tsay 

(2013), conditional heteroskedastic models can be divided in two general classes: The 

autoregressive conditional heteroskedasticity models, such as ARCH and GARCH (Engle, 

1982; Bollerslev 1986), which use an exact function to govern the evolution of volatility; while 

the second class is stochastic volatility models, which use a stochastic equation to describe 

volatility. We use two extensions of models belonging to the first category. The EGARCH 
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(Nelson, 1991) and GJR (Glosten et al., 1993) models which incorporate the asymmetric effects 

and have been widely used by researchers.  

 This dissertation contributes to the existing literature of asymmetry effects on volatility 

in several ways. The seven indices under analysis are split in subsamples and we use two 

different asymmetric models with three different conditional distribution specifications, 

allowing comparison from different perspectives. Additionally, we test the statistical 

significance of the asymmetry changes after the Lehman Brothers bankruptcy.  

 From the empirical study two main conclusions arise. The first one is that the 

asymmetric effect of shocks is present in the equity markets analysed. Results indicate that the 

effect is less pronounced after the bankruptcy of Lehman Brothers. However, testing the 

statistical significance of the changes, reveals that some of them are not statistically significant. 

 The reminder of this work is organized as follows. Section 2 focuses on the literature 

review. First, we provide a general overview of some important works on volatility, including 

stylized facts, and then narrow our attention to the asymmetry effects research. In Section 3 we 

briefly discuss the Global Financial Crisis. In Section 4 a preliminary analysis is performed on 

the data. In section 5 we present the methodology, including models and a short discussion of 

conditional distributions. Section 6 shows the empirical results. Lastly, Section 7 presents the 

main conclusions. 

  



The Asymmetry Effect on Volatility during the GFC 

3 
 

2. Literature Review 

The behaviour of the stock market is not something that is easily addressed. Market 

participants face a lot of uncertainty that is intrinsic to it. The greater this uncertainty, the riskier 

it gets to make decisions. Volatility is related to risk, as it measures the spread of outcomes, 

either negative or positive. This market variable tells nothing about the direction of the stock 

price, but instead, it is a measure of how much asset returns fluctuate around its mean. Since 

the true volatility is unobservable (Tsay, 2013), different proxies have been developed over the 

years. Tsay (2013) divides volatility measures in three types: Volatility as the conditional 

standard deviation of daily returns; Implied volatility, derived from option contract prices; 

Realized volatility which consist in estimating daily volatility using high frequency financial 

data. Natenberg (1994) follows a different “real-word” option trader approach, and divides 

volatility in five types: Future volatility, which is the future distribution of prices of the 

underlying contract; Historical volatility, calculated based on the historical data; Forecast 

volatility, where based on stylized characteristics, volatility is estimated over a forecasting 

period; Implied volatility, which again, is obtained from theoretical option pricing model; 

Seasonal volatility, consisting in seasonal weather conditions that affect commodity prices.  

Moreover, Tsay (2013) classifies conditional volatility models into two categories: 

models that use an exact function to calculate the evolution of the volatility and on the other 

hand models that use a stochastic equation to describe volatility. Thus, in this chapter we focus 

on literature on time-varying conditional volatility type models of the first category, in 

particular the applications of popular ARCH (Engle, 1982), GARCH (Bollerslev, 1986) and 

various extensions which attempt to improve volatility capturing. Compilation by Bollerslev 

(2010) provides a list of several models and their acronyms that have been used in the literature. 

The importance comes from the fact that volatility can be used as parameter to numerous 

financial applications. In terms of pricing, Black and Scholes (1973) presented a theoretical 

valuation formula applicable to corporate liabilities and options. One of the inputs that plays a 

key role in the formula is the future volatility of the underlying asset during the life of the 

option. Prior to the Black-Sholes formula, pricing options required heavy mathematical 

calculations, that is why it is still a prevailing formula for option pricing until these days 

(Natenberg, 1994). For option traders, volatility sometimes is key for a successful strategy, as 

it dictates the likelihood for an option to end in-the-money or expire worthless. In the 

conditional volatility framework, several studies explored the option pricing using GARCH 
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type models, which have been proven useful in correcting price biases of the Black-Scholes 

formula and due to easy implementation. (Duan, 1995, 1996).  

In terms of portfolio selection and determination of cost of capital, volatility is essential 

to the investors and portfolio managers since it helps them to estimate the amount of risk they 

are comfortable with. Bollerslev, Engle and Wooldridge (1988) proposed a CAPM (Capital 

Asset Pricing Model) model that allowed the covariance matrix to vary over time following a 

GARCH process. Corhay and Rad (1996) estimate market model parameters adjusted for 

GARCH effects. In the same context, Bera, Bubnys and Park (1988) estimated individual 

securities and market portfolios betas based on ARCH model. They found out that this approach 

provided much more efficient beta estimates.  

Analysing asset prices volatility is also useful when establishing monetary and exchange 

rate policy. Market expectations are fundamental in shaping Central Bank’s decisions, as 

market instability can have consequences for the real economy (Balder, 1997). Lastrapes (1989) 

suggested that the dollar exchange rate modelled as ARCH process is not independent of shifts 

in U.S. monetary policy regimes. Conditional volatility models have been proven appropriate 

in the investigation of inflation targeting, as a proxy for uncertainty (Kontonikas, 2004).  

From a risk management perspective, the most well-know market risk measurement is 

the Value-at-Risk. The empirical research on this topic is enormous, and the discussion of such 

models is beyond the scope of this dissertation. Nevertheless, incorporating conditional 

volatility models such as GARCH can lead to better performing models in terms of estimating 

the worst loss (Hull and White, 1998). All in all, Engle (2001) argues that the ARCH and 

GARCH models have become standard tools where the volatility is the central issue. 

Substantial amount of literature is focused on the predictive ability of the GARCH type 

models, and comparison between them. The general conclusion is that forecasting performance 

depends on the model’s specifications, asset type, market data that is analysed, its frequency 

and forecast horizon. Poon and Granger (2003) reviewed 93 published and working papers that 

study forecasting performance of various volatility models. They classified the reviewed papers 

into four categories: historical volatility models, which include random walk, historical 

averages, moving averages, exponential weights, autoregressive models and fractionally 

integrated autoregressive absolute returns models; Any member of ARCH/GRACH family 

models; Option implied volatility models; and Stochastic volatility models. Models that 

involved comparison between historical volatility and GARCH, 22 (56%) studies favoured 
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historical volatility, against 17 (44%) that favoured GARCH family. Out of 18 papers that 

compare GARCH against implied volatility, only one paper found GARCH superior. Authors 

argue that the success of implied volatility results from the fact that these forecasts use a larger 

and more relevant information set when compared to other methods. One paper found GARCH 

better than stochastic volatility. An important remark made by the authors is that models that 

incorporate volatility asymmetry such as EGARCH and GJR usually perform better than 

GARCH.  

 

2.1 Stylized Facts about Financial Market Volatility 

Conventionally, it is believed that future price or returns of the financial assets are 

unpredictable. Nevertheless, financial data exhibit some persistent properties, which are 

common across assets, asset classes, markets and time periods. These statistical similarities are 

called Stylized Facts (Cont, 2001). 

 

2.1.1 Fat-tails 

Statistical validity of volatility depends on the distribution of the returns. Commonly, 

the distribution of the financial asset returns does not follow a normal distribution. It exhibits 

leptokurtosis or excess kurtosis, which means that the probability concentrates deeper into the 

tail when compared to the normal distribution. The returns distribution also tends to display a 

higher sharp centre (Praetz, 1972; Cont, 2001). The consequences of this departure are that the 

probability of very large returns, either positive or negative, are underestimated. In other words, 

violent price changes happen more often than captured. This has important implications from 

risk management perspective, as well as from empirical perspective (Fama, 1965). Mandelbrot 

(1963) argued that the tails of the returns are extraordinarily long, and suggested that, 

commodity such as cotton followed a Paretian stable distribution. Fama (1965) extended the 

analysis to stock prices and concluded that Mandelbrot hypothesis also applies. On the other 

hand, Praetz (1972) argued that a scaled t-distribution fits the stock market data better than 

Paretian stable and normal distribution. Lastrapes (1989) also verified that the unconditional 

distribution of foreign exchange growth rates is leptokurtic.  

Nevertheless, the use of normal distribution in the finance is widespread. There are 

trade-offs between normal and non-normal distributions, but they usually not worth it, as long 
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as the departure is not extreme. Conditional normality is often assumed due to ease of 

computation (Braun, Nelson and Sunier, 1995). Bollerslev (1987) presented a GARCH 

extension to allow for conditionally t-distributed errors. The author considered that the model 

fitted the data quite well. Nelson (1991) in his inaugural paper on EGARCH used the 

Generalized Error Distribution (GED) and the results showed that the conditional distribution 

of the errors had thicker tails than the normal. One general conclusion is that the asset returns 

distributions departs from normality, displaying leptokurtosis, and the common way to solve 

this problem is to adopt a conditional distribution with fatter tails (Bollerslev, Chou and Kroner, 

1992). Ultimately, Fama (1965) suggested that investors are not concerned with the name of 

the distribution given by the researchers. The main interest is the shape of the distribution, how 

well it describes the relative frequency and what is the probability of gains and losses to be 

greater than a given amount.  

 

2.1.2 Volatility Clustering  

Volatility clustering refers to the persistence of the shocks through time. Mandelbrot 

(1963: 418) stated that “(…) large changes tend to be followed by large changes - of either sign 

- and small changes tend to be followed by small changes (…)”, meaning that high volatility is 

likely to be followed by periods of high volatility, and low volatility tends to be followed by 

further low volatility. This property proves that there is some degree of regularity in the returns, 

and therefore the assumption that the returns are independent and identically distributed (i.i.d.) 

might be too strong. In practical terms, the market often has long periods of relatively low 

activity, followed by periods of high activity due to the information arrival that affects asset 

prices. It occurs in bunches rather than being evenly spaced over time (Praetz 1972; Brooks, 

2008). According to Ding, Granger and Engle (1993) if the markets are efficient, arrival of new 

information would impact stock prices. Given that  information comes in bunches, the 

distribution of the following return will depend on previous returns, but not necessarily 

implying that they are correlated.  Fama (1965) suggested that volatility clustering is likely due 

to investors’ ability to evaluate new information that comes into the market. It cannot always 

be evaluated precisely. Occasionally, new information will cause immediate large price 

movements, producing further reaction in the market. For example, during a market turmoil, 

participants are especially sensitive to new information, further increasing volatility. In other 



The Asymmetry Effect on Volatility during the GFC 

7 
 

cases, price changes will not generate substantial reaction in the market, simply because 

participants will take time to adjust their expectations. 

Overall, volatility is not constant over time and it has been one of the main incentives 

behind the development of ARCH and GARCH models. These are designed to deal with this 

issue (Engle, 2001). 

 

2.1.3 Long Memory 

Volatility is said to have long-memory, given that absolute and squared returns exhibit 

significant autocorrelation over long lags. It reflects long run dependencies between price 

changes. In line with the efficient market theory, asset returns contain little serial correlation, 

and dependence in asset returns is extremely slight or completely absent  (Fama, 1970), but it 

is possible that they might be dependent. Cont (2001) argues that the absence of serial 

correlation in returns, does not imply the independence of the returns. Independence implies 

that any nonlinear functions of returns, either absolute or squared, will also have no 

autocorrelation. However, this property does not hold. Taylor (1986) argued that absolute 

returns has significant positive serial correlation over long lags. Autocorrelation can be found 

in both, daily squared and absolute returns, but it seems that absolute returns show much 

stronger effect (Granger, Ding and Spear, 2000). Ding, Granger and Engle (1993) suggest that 

the power transformation of the absolute returns  has quite high autocorrelation for long lags, 

empirically proving that the property is strongest when exponent is around 1. This feature 

becomes weaker with weekly and monthly data. Granger, Ding and Spear (2000) found long 

memory property in stock indices, individual shares, commodity prices, interest rates and 

residuals of CAPM model.  

According to Ding, Granger and Engle (1993) if asset returns are an i.i.d. process any 

transformation is also an i.i.d. process. But considering that the absolute and squared returns 

autocorrelation is usually well outside confidence intervals, asset returns are not an i.i.d. 

process. The authors suggest that one possible explanation for such serial correlation in the 

transformed series can be the heteroskedasticity of the data, which is changing over time. Cont 

(2001: 230) argued that such nonlinear dependence reflects “(…) correlation in “volatility” of 

returns but not the returns themselves.”. 
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2.1.2 Asymmetry Effect 

Another important stylized property of the financial data is the asymmetry effect. There 

is a negative correlation between current returns and future volatility. Two explanations for 

asymmetry are popular in the literature: leverage effect and volatility feedback hypothesis, latter 

also referred as risk premium effect. Leverage effects and asymmetry are often used as 

synonyms. According to Engle and Ng (1993) the name “leverage effect” is often used simply 

because it is popular among researchers. We attempt to explore this property with more detail, 

since asymmetry is the main point of this dissertation.  

Early works of Black (1976) and Christie (1982) attributed asymmetry in the stock 

market volatility to the financial leverage. A drop in the equity value (negative return of a firm’s 

stock), will cause its debt to equity ratio to rise. Shareholders, who bear residual risk, will 

perceive their future cash flow and the stock itself, as being more risky, further increasing the 

volatility. Cheung and Ng (1992) concluded that small firms are more sensitive to the leverage 

effect. Shocks with same magnitude will produce bigger effect on conditional volatility of 

smaller firms as compared to large firms, thus the impact of shocks on volatility varies inversely 

with the firm size. The reason is that the impact of shocks on prices of small firms creates more 

uncertainty regarding its stability, and therefore resulting in larger prices fluctuations. This 

property has also been found present in market indices (Cheung and Ng, 1992; Engle and Ng, 

1993; Glosten, Jagannathan, and Runkle, 1993; Braun, Nelson and Sunier, 1995; Nelson, 1991). 

Schwert (1989) argued that although the leverage effect is more apparent during recessions 

periods, this factor explains only a small part of the variation of stock prices. Recently, McAleer 

(2014) and Caporin and Costola (2019) argued that asymmetry and leverage effect are two 

distinct phenomena. The authors state that leverage effect is a special case of asymmetry. 

Leverage effect imply that negative shocks lead to an increase in volatility, while positive 

shocks should lead to a decrease in volatility. On the other hand, asymmetry is when positive 

and negative shocks of the same size (in absolute terms) induce different magnitude changes in 

the conditional volatility. Furthermore, the authors argue that GJR and EGARCH models are 

in fact asymmetric but are not capable of showing leverage effects. Caporin and Costola (2019) 

concluded that TARCH and APARCH models also do not allow for leverage, while AGARCH 

allow for local leverage. 

The second explanation for asymmetric volatility is based on the existence of time 

varying risk premium (Pindyck, 1984; French, Schwert and Stambaugh, 1987; Campbell and 
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Hentschel, 1992). Evidence shows that the expected market risk premium is positively related 

to market volatility, and if increases in market risk premia due to increased volatility are not 

offset by decrease in risk-free rate, then rising market volatility should lead to drops in the stock 

price (Braun, Nelson and Sunier, 1995). According to Wu (2001), if volatility is priced, an 

anticipated increase in volatility raises the required return on equity, resulting in an instant stock 

price decline. Bollerslev and Zhou (2006) noted that volatility feedback also implies negative 

correlation between current returns and future volatility, given that a shock to the volatility will 

require an immediate return adjustment to compensate higher risk in the future. Typically to 

account for volatility feedback, models within the GARCH-in-mean framework are used, where 

the conditional mean equation includes a parameter called the risk premium parameter (Tsay, 

2013). Campbell and Hentschel (1992) argued that volatility feedback has little impact on 

returns but is more important during high volatility periods. According to Braun, Nelson and 

Sunier (1995) the impact of the volatility feedback depends on the strength of the link between 

market risk premium and market volatility, and whether the market risk premium is constant 

and how it evolves over time. 

Both theories seem to explain the same property but the causality behind them is 

different. Leverage effect describes how negative returns increase volatility, while volatility 

feedback describes how increase in volatility negatively impacts stock returns. Wu (2001) 

suggested that both effects may be interacting. The author provides a hypothetical example, 

where an anticipated increase in volatility due to a foreign market turmoil, will raise traders’ 

expectation of high volatility in the domestic market. When anticipating higher volatility and 

general uncertainty in the markets, traders will be hesitant to buy and willing to sell. The selling 

side will surpass the buying side, resulting in falling stock prices. As predicted by volatility 

feedback hypothesis, anticipated increase in volatility results in instant drop in the stock price. 

This stock price drop leads to an increase in the leverage ratio, as predicted by leverage effect 

hypothesis, consequently increasing volatility even more and a further drop in stock price.  

Which effect is stronger and generates more asymmetry remains an open question. 

Bollerslev, Litvinova and Tauchen (2006) examined both effects using high-frequency five-

minute S&P 500 futures returns. They found highly significant leverage effect at the intraday 

level, that lasts for several days. On the contrary, little or no evidence of volatility feedback was 

found. Sun and Wu (2018) studied the relationship between S&P 500 index returns and the 

squared VIX index (sometimes called as implied variance index) as the measure for volatility. 

Authors found evidence that nonparametric leverage effect is usually stronger than the 
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nonparametric volatility feedback effect, except during calm market conditions. Bollerslev and 

Zhou (2006) developed a theoretical framework to assess the linkages between returns and 

realized and implied volatility. Using S&P 500 index data, authors concluded that the leverage 

effect, is always stronger for implied volatility than realized volatility. Regarding the volatility 

feedback effects, results are unclear. The correlation between returns and volatility depends on 

volatility proxy. For realized volatility the relationship with returns is negative, while for the 

implied volatility the relationship is positive, but the estimates are marginally significant. 

Bekaert and Wu (2000) investigated both effects using the market portfolio and three portfolios 

with different leverage ratio, constructed from the Japanese NIKKEI 225 stock index. Their 

results indicate that volatility feedback is stronger when compared to the leverage effect. Wu 

(2001) developed model where dividend growth and dividend volatility are two individual 

sources of uncertainty. Both asymmetry effects explanations are considered in the model. 

According to the author’s results, volatility feedback and leverage effect are important in 

generating asymmetric volatility. Nevertheless, the author argues that the volatility feedback is 

the main determinant of asymmetry and can be very large during high volatility periods. Inkaya 

and Okur (2014) examined the interaction between leverage effect and volatility feedback rate 

for high-frequency five-minute ISE 30 index data. They suggest that both effects are significant 

during volatile periods and may be interacting. Authors also found evidence that increase in 

volatility does not always result in negative return, meaning that volatility feedback is not 

always present in the market behaviour. At the intraday level, the leverage effect also produced 

mixed results. The leverage parameter series alternated in sign, implying positive correlation 

between return and volatility. 

 

2.2 Asymmetry Effects on Volatility during financial turmoil 

During bearish market and financial crisis periods, overall volatility of the markets tends 

to rise, therefore making them more information-rich and attractive to analyse from asymmetry 

perspective. Thus, we further explore literature focused to some extent in addressing asymmetry 

effects within a crisis context. 

Leeves (2007) investigated the conditional volatility for Indonesia during the Asian 

Financial crisis that began roughly in the summer of 1997. The crisis was provoked when the 

Thai baht was cut from being pegged to the U.S. dollar. Devaluation of Indonesian rupiah at 

the end of 1997 and mid 1998 is also pointed out as one of the main drivers of the crisis. 
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Significant spillover effect led to substantial losses all over southeast Asia and Japan. Author 

applied three asymmetric models (GJR, NGARCH and AGARCH) to Jakarta Stock Exchange 

index, for a period starting in 1990 until 1999. Although asymmetry estimates were statistically 

insignificant in all three models, the NIC (News Impact Curve) suggested some level of 

asymmetric response. Moreover, the author re-estimated the parameters using only 1997-1999 

data, referring to it as the crisis period. In this scenario, asymmetry coefficients estimates 

become significant in all three models, indicating asymmetric response to shocks. Leeves 

further explore this period by obtaining parameters from a rolling regression of 400 

observations. His results show that the asymmetry effect estimates in all three models increased 

(in absolute value) in late 1997 matching the devaluation of rupiah. However, by the end of 

1999, the asymmetry estimates became negligible and even positive, suggesting that positive 

shocks started to have bigger impact on volatility. In the same historical context, Lim and Sek 

(2013) studied the Malaysian stock market. The authors use three subsamples to study the Asian 

financial crisis: January 1990 to June 1997 as the pre-crisis period, July 1997 to September 

1998 as the crisis period and October 1998 to December 2010 as the post-crisis period. Results 

from the in-sample analysis indicate that simple GARCH outperforms the EGARCH and 

TGARCH models in the pre-crisis and crisis periods. The TGARCH model is superior in the 

post-crisis subsample. One important remark made by the authors is that the asymmetry 

coefficients estimates are not statistically significant in the pre-crisis period. The out-of-sample 

results indicate that TGARCH is superior in the pre-crisis and post-crisis periods, while 

GARCH outperforms in the crisis period. Still in the Asia-Pacific region, Nor and Shamiri 

(2007) examined Malaysian KLCI and Singaporean STI indices, from January 1991 to 

December 2004. Authors compared the performance of GARCH, EGARCH and GJR models 

using three different distributions: Gaussian normal, Student’s t and Generalized Error 

Distribution. They found evidence of asymmetry effects in both markets. According to their 

results, asymmetric models with fatter tailed distributions outperform the symmetric GARCH. 

The best in-sample model for KLCI is the GJR with Student’s t conditional distribution, while 

for the STI index, no clear result is obtained since EGARCH and GJR with Student’s t provide 

equal log-likelihood. 

Addressing more recent events, Olbrys (2013) employs a univariate EGARCH approach 

to four stock markets: S&P 500 index as a benchmark market and three biggest CEEC (Central 

and Eastern European Countries) markets, WIG (Warsaw), PX (Prague) and BUX (Budapest). 

Furthermore, there conditional distributions were assumed for the innovations: normal, 
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Student’s t, and skewed t. Author focuses on three different timeframes: January 2007 to 

December 2011; February 2007 to March 2009 labelled as the down market; and from March 

2009 to March 2011 labelled as up market. The idea is to distinguish market moves during the 

Global Financial Crisis. The conclusions for the whole sample suggested that all four markets 

are more sensitive to negative returns than positive returns, confirming presence of asymmetry. 

Additionally, skewed t conditional distribution proved to be the most adequate. Regarding the 

down market, asymmetric effects are especially strong during this period for all markets. 

Volatility response to bad news is extremely pronounced for S&P 500 and WIG. As for the up 

market, model results are relatively poor, given the fact that most of the estimates are 

statistically insignificant. In general, these results demonstrate the connection between 

volatility asymmetry and the Global Financial Crisis. Kaur and Singh (2015) investigate the 

existence of asymmetry effects in BRIC countries after the Global Financial Crisis. They apply 

EGARCH-M and TGARCH-M models to the respective market indices, from July 2009 until 

June 2014. Furthermore, they separate their analysis between leverage and volatility feedback 

effect. TGARCH-M model results indicate that for the Brazilian Ibovespa index both leverage 

effects and volatility feedback coefficient estimates are statistically significant. Russian RTS 

and Indian CNX Nifty indices results only found leverage effect to be statistically significant, 

while Chinese  SSE Composite index show no presence of leverage effect nor volatility 

feedback. For EGARCH-M model, results point out to presence of leverage effect in all 

markets. As for the volatility feedback, again only Ibovespa coefficient estimate is significant. 

Additionally, they compare the results with MSCI Frontier Markets and Emerging Market 

indices. Leverage effects were found to be present in both indices, while volatility feedback is 

present in the Frontier Markets index. One noteworthy finding in the TGARCH-M model for 

Brazilian and Russian markets is regarding the ARCH coefficients, which are not statistically 

significant. Similar approach was used by Birau and Trivedi (2013). Authors found presence of 

asymmetry in BRIC countries from 2003 to 2013. Výrost and Baumöhl (2009) analyse S&P 

500 index volatility from July 2004 to August 2009. Like previous authors, they use EGARCH 

and TGARCH models to look for presence of asymmetric effects. They split the sample into 

two different timeframes with the same amount of observations. From July 2004 to January 

2007 as the pre-crisis period and from February 2007 until August 2009 as the crisis period. 

According to the authors, February 2007 was chosen as split date based on first problem 

announcements in the subprime mortgage market by the HSBC. To compare the asymmetry 

effects, they apply the NIC. Both models reveal existence of asymmetry in the pre-crisis data: 

good news are followed by significantly lower variance. Regarding the crisis series, asymmetry 
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effects were statistically significant in the EGARCH model, but the asymmetry coefficient 

estimate was lower (in absolute value) when compared to the pre-crisis period. When 

estimating the crisis series, TGARCH of higher order was applied, not allowing for a direct 

comparison with pre-crisis model specification. Nevertheless, the model also suggested 

asymmetry presence. Back to southeast Asia, Angabini and Wasiuzzaman (2011) tested the 

existence of asymmetry in the Malaysian KLCI index, covering the Global Financial Crisis. As 

previous authors, they split the data into two periods: from June 2000 until the end of 2007, 

thus not including the crisis, and from June 2000 to March 2010, which includes the Global 

Financial Crisis. Regarding the models applied, EGARCH and GJR both reveal presence of 

asymmetry regardless of the period. Authors report that the volatility is relatively constant from 

2001 to 2007 and seems to increase in the middle of 2007 until 2009. When comparing the 

results between the series, asymmetry effect increased 11.5% and 18.5% in EGARCH and GJR 

estimates respectively, proving that crisis ultimately impacted volatility response to negative 

returns. Although asymmetry effects are statistically significant, their results indicate that a 

simple GARCH model outperformed the asymmetric models. Olbrys and Majewska (2017) 

investigate the asymmetry impact on volatility for major European stock markets by using a 

univariate EGARCH approach, with three different distributions: normal, Student’s t and 

skewed t. Authors analysis cover a period from January 2003 to December 2016. Furthermore, 

they divide the data in three sub-samples, pre-GFC period, GFC period and post-GFC period, 

each one specific to its market. For FTSE 100 the GFC period ranges from October 2007 to 

February 2009; For CAC 40 the GFC period was defined from May 2007 to February 2009; 

Germany’s DAX the GFC period lasted from December 2007 to February 2009. Whole sample 

results revealed that negative innovations increase volatility considerably more than positive, 

confirming the evidence of negative asymmetry effects for all markets. Skewed t distribution 

was found to be more appropriate. The subsample results indicate presence of asymmetry 

effects, regardless of the index and period. However, the asymmetry effect for FTSE 100 and 

CAC 40 is stronger in the pre-GFC period than GFC period. DAX results indicate that out of 

three periods, the asymmetry is stronger in the GFC period, nevertheless the coefficient 

becomes positive in the post-GFC period, meaning that positive innovations have bigger impact 

on volatility. Concerning the conditional distribution, the normal distribution prevails in six out 

of nine possible cases. The authors Slimane, Mehanaoui and Kazi (2013) examined the intraday 

volatility transmission for the European market during the Global Financial Crisis. As in the 

previous study, they use FTSE 100, CAC 40 and DAX indices. Firstly, they perform a structural 

brake test on S&P 500 daily index, to identify the structural brake date. According to their 
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results, the date of the structural break is September 12, 2008, one trading day before the 

Lehman Brothers bankruptcy. Next, they apply a bivariate VAR EGARCH (Vector 

Autoregressive Exponential General Autoregressive Conditional Heteroscedasticity) model to 

the five-minute intraday data of the European markets, from July 1, 2008 to September 11, 2008 

defined as pre-turmoil period and from September 12, 2008 to November 28, 2008 defined as 

turmoil period. Authors found evidence that during the turmoil period positive innovations may 

have bigger impact on volatility than negative innovations, as opposed to what happens during 

calm periods. 

In sum, the results regarding the asymmetry effects during turbulent market conditions  

can be diverse, depending on the period under analysis, models applied and different statistical 

assumptions. 
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3. Crisis Background 

The Global Financial Crisis of 2007 – 2009 is certainly one on the most severe and 

global crisis in modern history. Markets in nearly every country, sector and industry, lost large 

amount of value in a relatively short period. Among many repercussions, this period is 

characterized by rising unemployment rates, decline in investment and GDP (Gross Domestic 

Product) contractions. Investors faced difficulties in diversifying their portfolios and companies 

saw their revenues drop. The volatility levels increased significantly and large daily fluctuations 

occurred more frequently. Such unusual behaviour can potentially be of great importance for 

portfolio optimization and management, risk assessment, hedging strategies and so on 

(Chaudhury, 2014). Overall, is estimated that from October 2007 to February 2009 worldwide 

equity market alone, lost more than $29 trillion (Bartram and Bodnar, 2009). 

The Subprime Mortgage crisis in early 2007 was the starting point. Banks, insurance 

companies and hedge funds created a large market for mortgage-backed securities and other 

complex derivatives that ultimately led to the bursting of the housing bubble. Mortgage crisis 

quickly spread to the banking industry as they were filled with these toxic products. Many 

financial institutions started to feel the pressure to find liquidity. During this period huge losses 

linked to subprime securities were reported and in March 2008, one of the United State’s 

investment bank Bear Stearns is sold to JP Morgan Chase for $240 million. Equity markets 

were relatively stable during the first two quarters of 2008, and mainly the financial sector was 

affected. Serious downturn started in mid-September. On September 10, 2008, Lehman 

Brothers, one of the biggest investment banks puts itself for sale. Five days later, the institution 

filled for Chapter 11 bankruptcy protection. At the time of the filling, Lehman Brothers had 

approximately 25,000 employees and more than $690 billion in assets, making it the largest 

bankruptcy in history. Initially Barclays was interested in buying the distressed bank, to expand 

its operations, but at the end the deal failed, and the U.S. regulators didn’t provide government 

bailout. Bank of America was also involved in the negotiations to buy Lehman Brothers, but 

instead purchased Merrill Lynch, another distressed institution, for $50 billion. On September 

16, 2008, the Federal Reserve Bank lent AIG, the biggest insurance company in the world that 

also was seriously troubled, $85 billion and took control of 79.9% of the company (Chaudhury, 

2014). At the end of 2008, the insurance company reported $99.3 billion loss, the biggest 

corporate loss in history. Barclays ended up buying the U.S. part of Lehman Brothers. At the 

beginning of October, U.S. president George Bush signed the Emergency Economic 

Stabilization Act of 2008, which allowed the United States Department of the Treasury to 
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purchase troubled assets from financial institutions. The law established the Troubled Asset 

Relief Program, a $700 billion plan to help the financial system. Similarly, on October 8, 2008, 

United Kingdom Treasury announced a £500 billion bank rescue package. Bartram and Bodnar 

(2009) provided a detailed timeline of events, starting February 7, 2007 until February 27, 2009.  
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4. Preliminary Analysis 

4.1 Data 

In our analysis we use the September 15, 2008 as the dividing point between two 

nonoverlapping subsamples, defined as calm period and turmoil period. It is difficult to specify 

the exact date of the beginning of the crisis, thus we use the collapse of Lehman Brothers as the 

central event. Our analysis covers a period of four years. From September 15, 2006 to 

September 15, 2008 as the calm period and from September 16, 2008 to September 15, 2010 as 

the turmoil period.  

The data was obtained from Yahoo Finance website and consists of seven equity indices 

from three different regions: S&P 500 and NASDAQ Composite from North American market; 

from the European market we selected United Kingdom’s FTSE 100, German DAX and French 

CAC 40; finally, to analyse the effects in the Asia-Pacific region, we use the NIKKEI 225 

representing the Japanese market and Hang Seng Index (HSI) from Hong Kong. Indices are a 

good proxy to represent the overall performance of the major public companies and the overall 

health of the economy. By using data from different regions, we analyse and compare volatility 

behaviour and how pronounced it is the asymmetry effect before and after the September 15, 

2008. 

Figure 1(a) illustrates the evolution of daily closing prices of the indices. Visually, two 

periods in all indices are very distinct. The equity market clearly entered downward trend after 

the Lehman’s bankruptcy, and only started to recover in early March 2009. With exception of 

HSI during 2006, all markets had similar co-movement, suggesting strong linkages between 

them. 

The closing prices were converted into daily logarithmic returns. The formula is given 

as follows: 

for 𝑡 = 1, … , 𝑇, in which 𝑟𝑡 denotes the return at time t, 𝑃𝑡 is the current price and 𝑃𝑡−1 the 

previous day’s closing price. Figure 1(b) shows the returns over the sample period. Volatility 

rose after the dividing point, as all indices exhibit large fluctuations starting mid-September 

2008, also evidencing the presence of volatility clustering. Large (small) price changes tend to  

 
𝑟𝑡 = ln (

𝑃𝑡

𝑃𝑡−1
) = ln ( 𝑃𝑡) − ln (𝑃𝑡−1) 

 

(1) 
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Figure 1. Time plots of: (a) Daily closing prices, and (b) Daily log returns of the indices under analysis. Red 

line indicates September 15, 2008.  

(a)                                                                                        (b)  
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be followed by large (small) changes of either sign, visually implying that market volatility 

changes overtime. Volatility clustering is the one of the foremost properties for the application 

of GARCH type models. These are specifically designed to deal with time varying volatility 

structure (Ding, Granger and Engle, 1993; Engle, 2001).  

 

4.2 Descriptive Statistics 

Table 1 presents the descriptive statistics for all indices, categorized for the calm period 

and turmoil period. The number of observations is different for each market and period due to 

differences in the trading days. The samples mean are all very close to zero and one sample t-

test results show that all means are not statistically different from zero. S&P 500, CAC 40 and 

NIKKEI 225 have negative means in both periods. On the contrary, DAX and HSI display 

positive mean during all four years. The remaining indices display negative mean in the calm 

period and positive in the turmoil period. Regarding the maximum and the minimum returns, 

the difference between them is significantly larger in the turmoil period, and there is an increase 

in the standard deviations when comparing the two subsamples, indicating higher volatility in 

the turmoil period for all indices. Except for the DAX, CAC 40 and HSI in the turmoil period, 

skewness values are negative, meaning that there is a higher probability of negative returns. All 

indices, specially in the turmoil period, exhibit higher kurtosis than the standard value of normal 

distribution, which is 3, meaning that the extreme events are more likely to occur and suggesting 

that distributions with fatter tails might fit the data better. According to Jarque-Bera (1987) test, 

the normal distribution hypothesis is rejected for all indices, regardless of the period.  
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 S&P 500 NASDAQ FTSE 100 DAX CAC 40 NIKKEI 225 HSI 

Period 
Calm 

Period 

Turmoil 

Period 

Calm 

Period 

Turmoil 

Period 

Calm 

Period 

Turmoil 

Period 

Calm 

Period 

Turmoil 

Period 

Calm 

Period 

Turmoil 

Period 

Calm 

Period 

Turmoil 

Period 

Calm 

Period 

Turmoil 

Period 

Dates 
15/09/2006 

15/09/2008 

16/09/2008 

15/09/2010 

15/09/2006 

15/09/2008 

16/09/2008 

15/09/2010 

15/09/2006 

15/09/2008 

16/09/2008 

15/09/2010 

15/09/2006 

15/09/2008 

16/09/2008 

15/09/2010 

15/09/2006 

15/09/2008 

16/09/2008 

15/09/2010 

15/09/2006 

12/09/2008 

16/09/2008 

14/09/2010 

15/09/2006 

12/09/2008 

16/09/2008 

15/09/2010 

Observations 503 504 503 504 506 506 507 508 510 512 491 486 491 497 

Mean 
-0.0001960 

(0.6937) 

-0.0001158 

(0.9045) 

-0.00004403 

(0.9359) 

0.00010754 

(0.9124) 

-0.0002404 

(0.658) 

0.00012912 

(0.8773) 

0.00005167 

(0.9207) 

0.00006315 

(0.9444) 

-0.0004044 

(0.4704) 

-0.0002039 

(0.8302) 

-0.0005624 

(0.3756) 

-0.0005410 

(0.607) 

0.00012802 

(0.879) 

0.00034588 

(0.7499) 

Minimum -0.0482830 -0.0946951 -0.0393586 -0.0958769 -0.0563689 -0.0926557 -0.0743346 -0.073355 -0.0707737 -0.0947154 -0.0581568 -0.1211103 -0.0905132 -0.1358202 

Maximum 0.0415349 0.109572 0.04106064 0.1115944 0.04640907 0.09384339 0.05761049 0.1079747 0.05833491 0.1059459 0.04182331 0.1323458 0.1018394 0.1340681 

Std. Dev. 0.01115711 0.02166424 0.01226366 0.02193248 0.01220507 0.01881105 0.01168698 0.0204136 0.01264334 0.02150299 0.01403817 0.02319387 0.01863649 0.02415429 

Skewness -0.3648347 -0.1586395 -0.1658774 -0.1289997 -0.1980645 -0.0444315 -0.6000901 0.3502741 -0.3677433 0.2768391 -0.3919851 -0.3352026 -0.1113306 0.1798251 

Kurtosis 4.779472 7.662545 3.7477458 6.75137 4.961886 8.311069 7.695607 7.895183 5.855861 7.613781 4.465363 8.902539 6.367114 8.951676 

Jarque-Bera 
79.02 

(0.0000) 

464.64 

(0.0000) 

14.512 

(0.0007) 

301.18 

(0.0000) 

86.113 

(0.0000) 

602.28 

(0.0000) 

502.45 

(0.0000) 

524.14 

(0.0000) 

187.68 

(0.0000) 

466.59 

(0.0000) 

57.567 

(0.0000) 

724.95 

(0.0000) 

237.04 

(0.0000) 

743.69 

(0.0000) 

Table 1. Descriptive statistics of daily logarithmic returns of S&P 500, NASDAQ Composite, FTSE 100, DAX, CAC 40, NIKKEI 225 and HSI indices divided by subsample. Numbers in 

parenthesis are p-values: For the mean is the conventional t-statistic; for the Jarque-Bera is the test statistic for the null hypothesis of normal distribution of sample log returns.  
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5. Methodology 

In this section we present the models as well as the estimation techniques used in this 

dissertation. We selected GARCH-type models which capture volatility as the conditional 

standard deviation. It is very unlikely that within the financial time series framework, the 

volatility will be constant over time, and such models are suitable to deal with this behaviour. 

We extend our analysis by using different distributional assumptions. 

Although not used in the estimation process, we discuss the general ARCH and GARCH 

models in order to provide a better insight of this class of models. 

Let 𝐹𝑡−1 be the past information set of all relevant variables available up to time 𝑡 − 1 

and 𝜇𝑡 conditional expected return, also expressed as 𝐸(𝑟𝑡|𝐹𝑡−1). The excess return, shock or 

innovation term at time 𝑡 than becomes: 

 𝜀𝑡 = 𝑟𝑡 − 𝜇𝑡 = 𝑟𝑡 − 𝐸(𝑟𝑡|𝐹𝑡−1),  𝜀𝑡~𝑁(0, 𝜎𝑡
2) 

 

(2) 

 

Engle and Ng (1993) referred that a positive 𝜀𝑡 shock suggests the arrival of good news, and on 

the other hand, a negative 𝜀𝑡 suggest bad news, since the return is lower than expected. 

The model for 𝑟𝑡 is called the mean equation, and typically follows an autoregressive 

process. The conditional variance of 𝑟𝑡 given the past information 𝐹𝑡−1 is then: 

 𝜎𝑡
2 = 𝑣𝑎𝑟(𝑟𝑡|𝐹𝑡−1) = 𝐸[(𝑟𝑡 − 𝜇𝑡)2|𝐹𝑡−1] = 𝑣𝑎𝑟(𝜀𝑡|𝐹𝑡−1) 

 

(3) 

 

so the rationale behind the ARCH model is to allow the conditional variance of innovations 𝜀𝑡 

to depend on previous values of squared innovations 𝜀𝑡
2. The general structure of ARCH(p) 

model of Engle (1982), where variance depends on p lags of squared errors is represented by: 

 𝑟𝑡 = 𝜇𝑡 + 𝜀𝑡 

𝜀𝑡 = 𝑧𝑡𝜎𝑡        𝑧𝑡~𝑁(0,1) 

𝜎𝑡
2 = 𝜔 + ∑ 𝛼𝑖𝜀𝑡−1

2

𝑝

𝑡=1

 , 

(4.1) 

 

 

(4.2) 

where 𝜔 and 𝛼𝑖 , 𝑖 𝜖[1, 𝑝], are nonnegative constants (i.e. 𝜔 > 0, and 𝛼𝑖 ≥ 0 for 𝑖 > 0) to assure 

that the conditional variance is strictly positive. {𝑧𝑡} is a sequence of independently and 

identically distributed (i.i.d) random variables with mean 0 and variance 1. In general, the 

conditional distribution assumed for 𝑧𝑡 is standard normal, and it generates some degree of 

unconditional excess kurtosis in ARCH, but insufficient to fully account for the fat-tails 
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characteristic of the asset returns (Bollerslev, Chou and Kroner, 1992). Nonetheless 

distributions like Student’s t and Generalized Error Distribution (GED) are often assumed 

(Tsay, 2013). 

Bollerslev (1986) introduced an extension to the model. The Generalized 

Autoregressive Conditional Heteroskedasticity (GARCH) is essentially an infinite order 

ARCH. The general form of GARCH(p,q) is as follows: 

 

𝜎𝑡
2 = 𝜔 + ∑ 𝛼𝑖𝜀𝑡−𝑖

2

𝑝

𝑖=1

+ ∑ 𝛽𝑗𝜎𝑡−𝑗
2

𝑞

𝑗=1

 (5) 

where 𝜔, 𝛼𝑖, 𝑖 𝜖[1, 𝑝], and  𝛽𝑗, 𝑗 𝜖[1, 𝑞], are nonnegative constants. The 𝛼𝑖 and 𝛽𝑖 coefficients 

are frequently referred as ARCH and GARCH terms respectively. The ARCH term indicates 

short-term persistence of shocks on volatility, while GARCH term represents the long-run 

persistence of shocks (Leeves, 2007). Usually, given its generalized form, GARCH model fits 

the data better than ARCH. Both models are good in capturing volatility clustering and rather 

simple specification made them widespread tools in the volatility modelling. The models also 

have some disadvantages. The ARCH responds slowly to large isolated shocks to the return 

series. Non-negativity constrains might be violated when the model is specified with large 

number of parameters. Both models are symmetrically constrained and fail to capture the 

asymmetric response of volatility to shocks. Bad news has the same impact as good news. 

 

5.1 Asymmetric models 

5.1.1 EGARCH 

To overcome the symmetric weakness of the GARCH model, Nelson (1991) proposed 

the Exponential GARCH (EGARCH). The model incorporates a component that generates 

more volatility if the shock is negative. There are several ways to express the model, and one 

of the possible specifications is as follows: 

𝑙𝑛 (𝜎𝑡
2) = 𝜔 + ∑ 𝛼𝑖

𝑞

𝑖=1

|𝜀𝑡−𝑖|

𝜎𝑡−𝑖
+ ∑ 𝛾𝑖

𝑞

𝑖=1

𝜀𝑡−𝑖

𝜎𝑡−𝑖
+ ∑ 𝛽𝑖 𝑙𝑛 𝜎𝑡−𝑖

2

𝑝

𝑖=1

 (6) 
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where 𝜔, 𝛼𝑖 , 𝛽𝑗  and 𝛾𝑖 are constant parameters. Due to its specification there is no non-negativity 

restriction on parameters. The logarithm of 𝜎𝑡
2, ensures that the conditional variance remains 

positive. The 𝛾𝑖 is the parameter responsible for allowing the conditional variance to respond 

asymmetrically to returns and it is tipically negative, allowing negative shocks to generate more 

volatility (Engle and Ng, 1993). 

 

5.1.2 GJR 

Another popular model used to capture asymmetry is the GJR (also known as Threshold 

GARCH). Proposed by Glosten, Jagannathan and Runkle (1993), it account for asymmetry by 

introducing an indicator or dummy variable. The conditional variance is now given by: 

 

𝜎𝑡
2 = 𝜔 + ∑(

𝑝

𝑖=1

𝛼𝑖 + 𝛾𝑖𝐼𝜀𝑡−𝑖<0
)𝜀𝑡−𝑖

2 + ∑ 𝛽𝑗𝜎𝑡−𝑗
2

𝑞

𝑗=1

 (7) 

where 𝐼𝜀𝑡−𝑖<0
= {

1 𝑖𝑓 𝜀𝑡−𝑖 < 0,
0 𝑖𝑓 𝜀𝑡−𝑖 > 0

  

and 𝜔, 𝛼𝑖 , 𝛾𝑖, 𝛽𝑗, are nonnegative parameters satisfying same conditions as in GARCH model. 

When the 𝜀𝑡−𝑖 is positive, the indicator variable in (7) is 0, contributing 𝛼𝑖𝜀𝑡−𝑖
2 . On the other 

hand, when the 𝜀𝑡−𝑖 is negative, the indicator variable in (7) is 1 and the contribution to the 𝜎𝑡
2 

is larger, (𝛼𝑖𝛾𝑖)𝜀𝑡−𝑖
2 , with 𝛾𝑖 > 0. The Threshold GARCH (or TGARCH) name comes from 

Zakoian (1994), who proposed a similar model. The difference between the two lies in the fact 

that the GJR models the conditional variance, while the TGARCH models the conditional 

standard deviation (Nor and Shamiri, 2007; Výrost and Baumöhl, 2009; Angabini and 

Wasiuzzaman, 2011). 

There are other GARCH-type models that  belong to the asymmetric class, notably the 

Asymmetric GARCH (AGARCH) of Engle (1990), Asymmetric Power ARCH (APARCH) 

model introduced by Ding, Granger, and Engle (1993) and Nonsymmetric GARCH 

(NGARCH) proposed by Engle and Ng (1993). For this dissertation we opted for EGARCH 

and GJR since they capture volatility in different ways and are predominant in the literature. 
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5.2 Conditional Distributions 

Considering that GARCH-type models are non-linear, a technique called Maximum 

Likelihood Estimation (MLE) is used. It consists in maximizing the likelihood function (i.e. 

finding values of the parameters that maximize the log likelihood function). Furthermore, the 

likelihood function can take different forms, depending on the conditional distribution assumed 

for the innovations. 

 Since the test for normality of the returns was rejected for all periods under analysis, it 

may be reasonable to use different distributional assumptions for the innovations. This also 

allows to compare the asymmetry effects on volatility between different conditional 

distributions for the same period and model. In this study, we follow the suggestion of Tsay 

(2013) and Nor and Shamiri (2007), and consider three conditional distributions: the Gaussian 

normal distribution, the Student’s t and the Generalized Error Distribution (GED).  

 

5.2.1 Normal Distribution 

The Gaussian distribution, commonly known as Normal, is perhaps one of the most 

widely used to estimate GARCH-type models. Several financial models assume that asset 

returns are i.i.d., therefore making their statistical properties tractable (Tsay, 2013). The 

conditional log-likelihood function for the innovations is given by: 

 

ℒ𝑁𝑜𝑟𝑚𝑎𝑙 = − ∑ [−
1

2
ln(𝜎𝑡

2) +
1

2

𝜀𝑡
2

𝜎𝑡
2]

𝑇

𝑡=1

 

 

 

(8) 

5.2.2 Student’s t 

Since extreme events occur more often than captured by the normal distribution, it might 

be appropriate to use a heavier-tailed distribution such as Student’s t. The conditional log 

likelihood function is: 

 

ℒ𝑆𝑡𝑢𝑑𝑒𝑛𝑡−𝑡 = ∏
𝛤((𝑣 + 1)/2)

𝛤(𝑣 ∕ 2)√(𝑣 − 2)𝜋

1

𝜎𝑡

𝑇

𝑡=1

(1 +
𝜀𝑡

2

(𝑣 − 2)𝜎𝑡
2)

−(𝑣+1)∕2

 

 

(9) 

where 𝑣 > 2, are the degrees of freedom, which can be prespecified or estimated jointly with 

other parameters. As the 𝑣 increases, the Student’s t gets closer to a Normal distribution. On 
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the contrary, the smaller the value of 𝑣, the fatter the tails. The 𝛤(𝑥) is the gamma function 

(i.e.𝛤(𝑥) = ∫ 𝑦𝑥−1ⅇ−𝑦 ⅆ𝑦
∞

0
). 

 

5.2.3 Generalized Error Distribution 

Finally, we assume the GED distribution for the innovations. Nelson (1991) when 

originally proposed the EGARCH model, assumed a GED distribution to account for 

nonnormality in the distribution of returns. The log likelihood function is as follows: 

ℒ𝐺𝐸𝐷 = ∑ {log (
𝑣

𝜆
) −

1

𝑧
|

𝜀𝑡

𝜎𝑡𝜆
|

𝑣

− (1 + 𝑣−1)𝑙𝑜𝑔(2) − log [𝛤 (
1

𝑣
)] −

1

2
log(𝜎𝑡

2)}

𝑇

𝑡=1

 

 

(10) 

where 𝜆 = [[2(−2∕𝑣)𝛤(1 ∕ 𝑣)(3 ∕ 𝑣)]
1∕2

]. Normal distribution is a special case of GED when 

𝑣 = 2. When 𝑣 < 2, the distribution of innovations has thicker tails than the normal. 

There are several alternatives for distributions densities that can be employed. These 

include: the Skew-Normal distribution, the Skew-Student’s t, the Skew-Generalized Error 

distribution, the Normal Inverse Gaussian distribution, the Generalized Hyperbolic and the 

Johnson’s SU distribution. Cont (2001) suggested that in order to be successful, a parametric 

model that describes the distribution of the stock returns must have at least four parameters: a 

location parameter, a scale parameter, a parameter that describes the decay of the tails and 

asymmetry parameter that allows different behaviours of left and right tail.  

The estimation of the models can also be performed with two other methods: the Quasi 

Maximum Likelihood (QML) and the Generalized Method of Moments (Bollerslev and 

Wooldridge, 1992; Bollerslev, Chou and Kroner, 1992). 
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6. Empirical Results 

Previously we introduced the dataset under analysis and the theoretical framework. This 

section is therefore dedicated to the application of asymmetric GARCH models and discussion 

of obtained results. We analyse seven different indices, split in two sub samples, employ 

EGARCH and GJR volatility models, and assume three conditional distributions for the 

innovations, which amounts to a total of 84 different specifications for the two asymmetric 

models. 

In practice, the first step to build a volatility model consist in specifying the conditional 

mean equation. Despite not being the central issue, it can have some impact on the estimates 

for the conditional variance equation. Typically, the serial correlation in the returns is 

negligible, if existing at all. The model for the conditional mean should be chosen to reflect 

properly the presence of any serial correlation in the returns. In some cases, demeaning the 

return series (i.e. removing the sample mean from each return if the mean is statistically 

different from zero) is enough. In other cases, fitting an ARMA(p,q) model is necessary. On 

rare occasions more complex models with dummy variables to account for seasonality or other 

effects might be required (Tsay, 2013). To determine which model is more suitable one can use 

trial and error approach, selecting the model that gives the minimum value for information 

criteria. Graphically, ACF and PACF are also used to determine the appropriate specification 

for the conditional mean.  

Bollerslev, Chou and Kroner (1992) noted that low order GARCH models seem 

sufficient to capture the variance dynamics over very long sample periods. Models with lag 

lengths 𝑝 and 𝑞 rarely exceed 2. In this dissertation all models are of 𝑝 = 1, 𝑞 = 1 order, 

allowing comparison between different types, indices and conditional distributions.  

One common procedure before fitting a volatility model is to check for the existence of 

ARCH effects. This is done in order to make sure that this type of models is needed for the data. 

The idea is to check mean equation squared residuals for conditional heteroskedasticity (Tsay, 

2013). Generally, two tests are used: the Ljung and Box (1978) test and the Lagrange Multiplier 

test (Engle, 1982). If the null hypothesis is rejected this suggests the presence of ARCH effects 

(i.e. presence of autocorrelation in 𝜀𝑡
2 series). ACF and PACF are also helpful for graphical 

confirmation. Overall, such effects have been found highly significant in equity markets 

(Bollerslev, Chou and Kroner, 1992). See Appendix 2 for the results of ARCH effects test. 
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The computations were performed using RStudio computer software. Asymmetric GARCH-

type models were estimated using the “rugarch” package (Ghalanos, 2019). 

 

6.1 North American markets analysis 

6.1.1 S&P 500 

To build the conditional mean equation we first test the date subsets for autocorrelation. 

The Ljung-Box test statistic with 20 lags show that both periods exhibit some serial correlation 

in the returns. Both periods are also dependent, as the test for absolute returns show serial 

correlation as well. The results are summarized in the Table 2. 

 Calm Period Turmoil Period 

LB(20) of  𝑟𝑡 32.554 (0.0377) 50.725 (0.0002) 

LB(20) of  |rt| 214.16 (2.2e-16) 997.81 (2.2e-16) 

Table  2. Ljung Box test results for serial correlation in daily log returns and daily absolute log returns of S&P 

500, distributed as 𝜒2(20). Numbers in parenthesis are p-values. 

Figure 2 shows the ACF and PACF, which also suggest autocorrelation in minor lags 

(short term dependence). 

Figure 2. Sample autocorrelation and partial autocorrelation functions of the log returns of S&P 500. 
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Thus, for the S&P 500 log returns in the calm period we considered an AR(1) and for 

the turmoil period an AR(3). See Appendix 1 for the models tested. 

 The estimation results for GJR(1,1) and EGARCH(1,1) models are reported in Table 3. 

 GJR(1,1) EGARCH(1,1) 

 Calm Period 

 Normal Student’s t GED Normal Student’s t GED 

𝜔 0.000002 

(0.0617) 

0.000001 

(0.6154) 

0.000001 

(0.6826) 

-0.306474 

(0.0000) 

-0.144852 

(0.0000) 

-0.244741 

(0.0000) 

𝛼1 0.000000 

(0.9999) 

0.000000 

(0.9999) 

0.000000 

(0.9999) 

0.040805 

(0.1165) 

0.030030 

(0.0067) 

0.046838 

(0.1352) 

𝛽1 0.912094 

(0.0000) 

0.921256 

(0.0000) 

0.916744 

(0.0000) 

0.966458 

(0.0000) 

0.985764 

(0.0000) 

0.985938 

(0.0000) 

𝛾1 0.139646 

(0.0000) 

0.155487 

(0.0058) 

0.147092 

(0.0157) 

-0.204362 

(0.0000) 

-0.240799 

(0.0000) 

-0.203513 

(0.0000) 

𝑣 - 
4.337417 

(0.0000) 

1.077343 

(0.0000) 
- 

3.649605 

(0.0001) 

1.109651 

(0.0000) 
Log-Likelihood 1606.331 1627.977 1629.233 1615.774 1633.483 1633.94 

AIC -6.3631 -6.4452 -6.4502 -6.4007 -6.4671 -6.4689 

BIC -6.3128 -6.3865 -6.3915 -6.3503 -6.4084 -6.4102 

ARCH [5] 0.4743 

(0.8912) 

0.4020 

(0.9121) 

0.5071 

(0.8815) 

1.1786 

(0.6808) 

0.8574 

(0.7757) 

1.1838 

(0.6793) 

 Turmoil Period 

𝜔 0.000003 

(0.3967) 

0.000002 

(0.5492) 

0.000002 

(0.5262) 

-0.169544 

(0.0000) 

-0.141204 

(0.0000) 

-0.146786 

(0.0005) 

𝛼1 0.011218 

(0.6430) 

0.006784 

(0.8170) 

0.013133 

(0.6789) 

0.150037 

(0.0000) 

0.145343 

(0.0180) 

0.150438 

(0.0004) 

𝛽1 0.907467 

(0.0000) 

0.905398 

(0.0000) 

0.902569 

(0.0000) 

0.979822 

(0.0000) 

0.984423 

(0.0000) 

0.984080 

(0.0000) 

𝛾1 0.127626 

(0.0075) 

0.142650 

(0.0047) 

0.132968 

(0.0129) 

-0.117291 

(0.0000) 

-0.135463 

(0.0001) 

-0.130852 

(0.0001) 

𝑣 - 7.796495 

(0.0078) 

1.328701 

(0.0000) 
- 

7.819388 

(0.0666) 

1.331364 

(0.0000) 
Log-Likelihood 1367.132 1372.514 1375.485 1368.369 1373.993 1376.756 

AIC -5.3934 -5.4108 -5.4226 -5.3983 -5.4166 -5.4276 

BIC -5.3264 -5.3354 -5.3472 -5.3313 -5.3412 -5.3522 

ARCH [5] 1.8486 

(0.5057) 

1.8997 

(0.4938) 

1.8721 

(0.5002) 

2.3568 

(0.3976) 

2.3341 

(0.4020) 

2.556 

(0.3609) 

Table 3. EGARCH(1,1) and GJR(1,1) model estimation results for S&P 500. AIC and BIC are the Akaike 

Information Criteria and Bayesian information Criteria respectively. ARCH [5] denotes the ARCH LM test at 

lag 5. Numbers in parenthesis are p-values. 

In the GJR model the estimated ARCH coefficients 𝛼1 are all very small and not 

statistically significant, meaning that there is no impact of squared errors on conditional 

volatility. The estimates for GARCH coefficients 𝛽1 are all statistically significant meaning that 

current volatility is affected by past volatility. All asymmetry coefficients 𝛾1 estimates are 

significant and positive, therefore volatility is affected more by negative shocks. The value of 
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the estimates becomes smaller in the turmoil period, indicating that bad news have smaller 

impact on volatility. Looking at the Log-likelihood and information criteria values, the best in-

sample predictive model in both periods is the model with GED distribution. To verify the 

adequacy of the specification, ARCH LM test using 5 lags is performed on residuals. The null 

hypothesis of no ARCH effects for all models is not rejected, thus models are correctly 

specified. 

Concerning the EGARCH results, the 𝛼1 coefficient estimates in the normal and GED 

distribution in the calm period is statistically insignificant. The asymmetry effect becomes less 

pronounced (i.e. the estimated values of 𝛾1 become less negative) in the turmoil period. These 

results are similar to the ones obtained by Výrost and Baumöhl (2009), which also reported 

lower absolute values of asymmetry coefficient estimates in the crisis subsample. Consistent 

with the GJR, distributions with fatter tails outperform the normal, being the GED distribution 

best in-sample predictive model. When compared against GJR, EGARCH models outperform 

for both periods. ARCH test on residuals indicates that the models are adequate.  

 

6.1.2 NASDAQ Composite 

To test the data for serial correlation and dependence, the Ljung-Box test was 

performed. According to the test results, only the turmoil period shows autocorrelation, since 

the null hypothesis of no autocorrelation is not rejected in the calm period. Concerning the 

dependence, both periods display autocorrelation in the absolute returns. See Table 4 for the 

results. 

 Calm Period Turmoil Period 

LB(20) of  𝑟𝑡 24.726 (0.2121) 43.34 (0.0018) 

LB(20) of  |rt| 157.41 (2.2e-16) 851.38 (2.2e-16) 

Table 4. Ljung Box test results for serial correlation in daily log returns and daily absolute log returns of 

NASDAQ, distributed as 𝜒2(20). Numbers in parenthesis are p-values. 

The ACF and PACF of the NASDAQ log returns are shown in Figure 3. In the calm 

period the first and seventh lags appears to be significant. Regarding the turmoil period the first 

three lags are significant suggesting presence of serial correlation. 
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Based on our results, the specification for the conditional mean for the NASDAQ are 

equal to the ones of S&P 500 (i.e. an AR(1) for the calm period and an AR(3) for the turmoil 

period). Models tested are presented in Appendix 1. 

Volatility model’s estimation results are presented in the Table 5.  

The obtained results for GJR show that none of the 𝜔 and 𝛼1 estimates are statistically 

significant, meaning that only the GARCH term is sufficient to predict the conditional volatility. 

Regarding the estimates for the asymmetry coefficient, only the in the normal distribution in 

the turmoil period, the estimate is not statistically significant. Unlike in the S&P 500 results, 

the impact of negative shocks is larger in the turmoil period, since the estimated values are 

greater. 

 In the EGARCH model, all the estimates for the coefficients are statistically significant 

at the 5 per cent level for both periods. In addition, all 𝛾1 coefficient estimates are more negative 

in the turmoil period, supporting the findings of the GJR model. 

For checking the model adequacy, the ARCH test high p-values suggest no serial 

correlation in the squared residuals. The best in-sample predictive models are the ones using 

the Student’s t distribution in the calm period, and GED distribution for the turmoil period. In 

Figure 3. Sample autocorrelation and partial autocorrelation functions of the log returns of NASDAQ. 
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both cases the EGARCH is superior to the GJR (based on maximum likelihood and information 

criteria). 

 GJR(1,1) EGARCH(1,1) 

 Calm Period 

 Normal Student’s t GED Normal Student’s t GED 

𝜔 0.000002 

(0.7281) 

0.000001 

(0.4730) 

0.000001 

(0.3953) 

-0.205549 

(0.0000) 

-0.151168 

(0.0000) 

-0.177287 

(0.0000) 

𝛼1 0.000000 

(0.9999) 

0.000003 

(0.9999) 

0.000000 

(0.9999) 

0.058304 

(0.0000) 

0.072763 

(0.0000) 

0.066132 

(0.0187) 

𝛽1 0.944254 

(0.0000) 

0.950445 

(0.0000) 

0.943158 

(0.0000) 

0.976596 

(0.0000) 

0.983234 

(0.0000) 

0.980420 

(0.0000) 

𝛾1 0.082919 

(0.0001) 

0.089055 

(0.0135) 

0.089625 

(0.0160) 

-0.099430 

(0.0000) 

-0.105953 

(0.0003) 

-0.104551 

(0.0002) 

𝑣 - 
8.597277  

(0.0026) 

1.479458  

(0.0000) 
- 

9.603244  

(0.0084) 

1.528258  

(0.0000) 
Log-Likelihood 1533.54 1539.24 1538.379 1537.406 1541.836 1541.09 

AIC -6.0737 -6.0924 -6.0890 -6.0891 -6.1027 -6.0998 

BIC -6.0234 -6.0337 -6.0302 -6.0387 -6.0440 -6.0410 

ARCH [5] 0.1524 

(0.9763) 

0.0139 

(0.9992) 

0.0345  

(0.9971) 

0.3174  

(0.9356) 

0.0979 

(0.9872) 

0.2064 

(0.9640) 

 Turmoil Period 

𝜔 0.000003 

(0.1761) 

0.000003 

(0.4553) 

0.000003 

(0.4640) 

-0.184031 

(0.0000) 

-0.153799 

(0.0000) 

-0.161997 

(0.0000) 

𝛼1 0.010081 

(0.2241) 

0.005827 

(0.8136) 

0.010243 

(0.7059) 

0.135476 

(0.0003) 

0.128265 

(0.0000) 

0.132415 

(0.0000) 

𝛽1 0.903789 

(0.0000) 

0.902414 

(0.0000) 

0.900134 

(0.0000) 

0.977904 

(0.0000) 

0.982699 

(0.0000) 

0.982007 

(0.0000) 

𝛾1 0.137515 

(0.1015) 

0.151311 

(0.0089) 

0.144087 

(0.0204) 

-0.133010 

(0.0000) 

-0.152199 

(0.0000) 

-0.148096 

(0.0000) 

𝑣 - 
8.153712  

(0.0069) 

1.371366  

(0.0000) 
- 

7.972033  

(0.0045) 

1.375077  

(0.0000) 
Log-Likelihood 1342.139 1347.463 1349.622 1343.482 1349.207 1351.001 

AIC -5.2942 -5.3114 -5.3199 -5.2995 -5.3183 -5.3254 

BIC -5.2272 -5.2360 -5.2445 -5.2325 -5.2429 -5.2500 

ARCH [5] 1.4563  

(0.6039) 

1.4781 

(0.5981) 

1.5374 

(0.5825) 

2.1578 

(0.4374) 

2.4210 

(0.3855) 

2.4027  

(0.3889) 

Table 5. EGARCH(1,1) and GJR(1,1) model estimation results for NASDAQ. AIC and BIC are the Akaike 

Information Criteria and Bayesian information Criteria respectively. ARCH [5] denotes the ARCH LM test at 

lag 5. Numbers in parenthesis are p-values. 

 

6.2 European markets analysis 

6.2.1 FTSE 100 

Similarly to the NASDAQ results for autocorrelation, the Ljung-Box test with 20 lags 

only detected autocorrelation in the turmoil period. Serial correlation is also present in the 

absolute log returns, meaning that they are dependent. The results are shown in the Table 6.  
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 Calm Period Turmoil Period 

LB(20) of  𝑟𝑡 26.549 (0.1484) 58.983 (1.022e-05) 

LB(20) of  |rt| 272.49 (2.2e-16) 621.79 (2.2e-16) 

Table 6. Ljung Box test results for serial correlation in daily log returns and daily absolute log returns of FTSE 100, 

distributed as 𝜒2(20). Numbers in parenthesis are p-values. 

Figure 4 shows the ACF and PACF of both subsamples of FTSE 100. Visually the calm 

period has significant autocorrelation in the first lag, and the turmoil period displays at lag 2, 3, 

4 and 5, supporting the results of Ljung-Box test. 

 Based on model tested (see Appendix 1) the conditional mean equations for FTSE 100 

are an AR(1) for the calm period, and an AR(5) for the turmoil period. 

The Table 7 shows the results for the volatility models estimates. 

In line with previous findings, the ARCH term in the GJR model is not statistically 

significant. The GARCH term is statistically significant and becomes greater in the turmoil 

period meaning that volatility persistence has increased (Leeves, 2007). The volatility response 

to negative shocks is smaller in the turmoil period, therefore negative innovations do not raise 

volatility as much as in the calm period. 

Figure 4. Sample autocorrelation and partial autocorrelation functions of the log returns of FTSE 100. 
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 Analysing the EGARCH model we can see that all the estimates for the coefficients are 

significant at conventional levels. Comparing the subsamples in terms of asymmetry it is rather 

inconclusive. For Student’s t and GED distributions, the coefficient estimates are more negative 

in the calm period, which is not the case for normal distribution. Consequently, the models with 

Student’s t and GED conditional distribution are less sensitive to negative shocks in the turmoil 

period. Olbrys and Majewska (2017) found similar results. In their analysis, the pre-GFC period 

has higher asymmetry coefficient estimates than GFC period. 

 No serial correlation was detected by the ARCH test performed on residuals and the 

models that performed best are the same as in North American indices. One particular aspect 

 GJR(1,1) EGARCH(1,1) 

 Calm Period 

 Normal Student’s t GED Normal Student’s t GED 

𝜔 0.000003 

(0.0001) 

0.000003 

(0.7567) 

0.000003 

(0.0554) 

-0.211340 

(0.0000) 

-0.198685 

(0.0000) 

-0.202694 

(0.0000) 

𝛼1 0.000012 

(0.9992) 

0.000003  

(0.9999) 

0.000000 

(0.9999) 

0.085040  

(0.0000) 

0.067749 

(0.0229) 

0.079368 

(0.0000) 

𝛽1 0.883817 

(0.0000) 

0.882328 

(0.0000) 

0.882232 

(0.0000) 

0.976252 

(0.00000) 

0.978420 

(0.0000) 

0.977742 

(0.0000) 

𝛾1 0.189237  

(0.0000) 

0.196971 

(0.1526) 

0.192548 

(0.0000) 

-0.143839 

(0.0000) 

-0.175685 

(0.0000) 

-0.154195 

(0.0000) 

𝑣 - 
10.289048 

(0.0180) 

1.632411 

(0.0000) 
- 

9.920458 

(0.0024) 

1.642567 

(0.0000) 
Log-Likelihood 1585.203 1589.506 1587.808 1588.731 1593.517 1591.106 

AIC -6.2419 -6.2550 -6.2483 -6.2559 -6.2708 -6.2613 

BIC -6.1918 -6.1965 -6.1898 -6.2057 -6.2123 -6.2028 

ARCH [5] 2.3236 

(0.4040) 

2.2339 

(0.4218) 

2.2685 

(0.4149) 

1.2308 

(0.6659) 

0.8395 

( 0.7811) 

1.0364 

(0.7221) 

 Turmoil Period 

𝜔 0.000004 

(0.6337) 

0.000004 

(0.5163) 

0.000004 

(0.3991) 

-0.190356 

(0.0000) 

-0.195275  

(0.0000) 

-0.189764 

(0.0000) 

𝛼1 0.000000 

(1.0000) 

0.000000 

(0.9999) 

0.000000 

(0.9999) 

0.118455 

(0.0000) 

0.107694 

(0.0000) 

0.106933 

(0.0006) 

𝛽1 0.904432 

(0.0000) 

0.906733 

(0.0000) 

0.905334 

(0.0000) 

0.978060 

(0.0000) 

0.977755 

(0.0000) 

0.978744 

(0.0000) 

𝛾1 0.149191 

(0.0149) 

0.138839 

(0.0142) 

0.141553 

(0.0056) 

-0.157212 

(0.0000) 

-0.149847  

(0.0000) 

-0.151831 

(0.0000) 

𝑣 - 8.594310  

(0.0071) 

1.441965 

(0.0000) 
- 

9.830562 

(0.0144) 

1.478604 

(0.0000) 
Log-Likelihood 1415.31 1420.836 1421.38 1418.517 1422.588 1423.366 

AIC -5.5546 -5.5725 -5.5746 -5.5673 -5.5794 -5.5825 

BIC -5.4711 -5.4806 -5.4827 -5.4837 -5.4875 -5.4906 

ARCH [5] 2.9702 

(0.2941) 

3.3949  

(0.2374) 

3.555 

(0.2188) 

4.238 

(0.1536) 

4.392 

(0.1417) 

4.539 

(0.1312) 

Table 7. EGARCH(1,1) and GJR(1,1) model estimation results for FTSE 100 AIC and BIC are the Akaike 

Information Criteria and Bayesian information Criteria respectively. ARCH [5] denotes the ARCH LM test at lag 

5. Numbers in parenthesis are p-values. 
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worth notice, is that the asymmetry coefficient in the GJR model with Student’s t conditional 

distribution in the calm period, is not statistically significant. 

 

6.2.2 DAX 

Running the Ljung-Box test to check for autocorrelation in the log returns of the German 

market, show presence only in the turmoil period. Like with the other indices, both subsamples 

are dependent. Table 8 presents the results of the test. 

 Calm Period Turmoil Period 

LB(20) of  𝑟𝑡 21.121 (0.3900) 33.078 (0.0331) 

LB(20) of  |rt| 109.94 (2.01e-14) 385.6 (2.2e-16) 

Table 8. Ljung Box test results for serial correlation in daily log returns and daily absolute log returns of DAX, 

distributed as 𝜒2(20). Numbers in parenthesis are p-values. 

Looking at the ACF and PACF shown in Figure 5, no significant serial correlation is 

found in the calm period, except for small one at lag 10. On the other hand, turmoil period 

suggests autocorrelation at lags 2, 4, 18 and 25. 

Figure 5. Sample autocorrelation and partial autocorrelation functions of the log returns of DAX. 
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Therefore, the DAX index log returns in the calm period is a white noise series without 

drift (i.e. the sample mean is not removed from the series). As for the turmoil period, we 

considered an AR(4). See Appendix 1 for the models tested.  

 The results for conditional volatility equation are presented in the Table 9. 

 GJR(1,1) EGARCH(1,1) 

 Calm Period 

 Normal Student’s t GED Normal Student’s t GED 

𝜔 0.000006 

(0.0000) 

0.000005 

(0.0000) 

0.000006 

(0.0000) 

-0.625978 

(0.0000) 

-0.537267 

(0.0000) 

-0.592589 

(0.0000) 

𝛼1 0.000000 

(0.9999) 

0.000000 

(0.9999) 

0.000000 

(0.9999) 

0.072968 

(0.0000) 

0.081061 

(0.0001) 

0.076646 

(0.0492) 

𝛽1 0.852881 

(0.0000) 

0.877259 

(0.0000) 

0.865429 

(0.0000) 

0.930707 

(0.0000) 

0.940607 

(0.0000) 

0.934591 

(0.0000) 

𝛾1 0.198975 

(0.0000) 

0.172973 

(0.0002) 

0.186357 

(0.0001) 

-0.190195 

(0.0000) 

-0.185480 

(0.0000) 

-0.190600 

(0.0000) 

𝑣 - 
8.629507 

(0.0021) 

1.468714 

(0.0000) 
- 

9.174399 

(0.0067) 

1.518027 

(0.0000) 
Log-Likelihood 1586.573 1594.793 1593.283 1594.366 1600.131 1599.304 

AIC -6.2429 -6.2714 -6.2654 -6.2736 -6.2924 -6.2892 

BIC -6.2095 -6.2297 -6.2237 -6.2403 -6.2507 -6.2475 

ARCH [5] 1.9112 

(0.4912) 

1.9966 

(0.4720) 

1.9505 

(0.4823) 

2.2004 

(0.4286) 

2.3989 

(0.3896) 

2.2914 

(0.4103) 

 Turmoil Period 

𝜔 0.000004 

(0.6102) 

0.000004 

(0.4615) 

0.000004 

(0.5082) 

-0.142554  

(0.0000) 

-0.155892  

(0.0000) 

-0.148103  

(0.0000) 

𝛼1 0.000000 

(0.9999) 

0.000000 

(0.9999) 

0.000000 

(0.9999) 

0.138371  

(0.0000) 

0.135746  

(0.0028) 

0.133543  

(0.0000) 

𝛽1 0.909536 

(0.0000) 

0.907682  

(0.0000) 

0.908851  

(0.0000) 

0.982748  

(0.0000) 

0.981587  

(0.0000) 

0.982798  

(0.0000) 

𝛾1 0.152203  

(0.02633) 

0.154301  

(0.0184) 

0.151980  

(0.0250) 

-0.127954  

(0.0000) 

-0.139435 

(0.0000) 

-0.136618  

(0.0000) 

𝑣 - 13.679730  

(0.1267) 

1.537058  

(0.0000) 
- 

12.069553  

(0.0014) 

1.517976  

(0.0000) 
Log-Likelihood 1358.041 1359.405 1361.343 1357.787 1359.647 1361.539 

AIC -5.3112 -5.3126 -5.3202 -5.3102 -5.3136 -5.3210 

BIC -5.2362 -5.2293 -5.2370 -5.2352 -5.2303 -5.2377 

ARCH [5] 
4.8433  

(0.1117) 

4.9814  

(0.1038) 

5.032  

(0.1010) 

6.8544  

(0.0377) 

6.946 

(0.0359) 

6.8995  

(0.0368) 

Table 9. EGARCH(1,1) and GJR(1,1) model estimation results for DAX. AIC and BIC are the Akaike 

Information Criteria and Bayesian information Criteria respectively. ARCH [5] denotes the ARCH LM test at 

lag 5. Numbers in parenthesis are p-values. 

No particular differences are found in the German market. The 𝛽1 estimates of GJR are 

statistically significant regardless of the period and higher after the Lehman Brothers 

bankruptcy. Again, the conditional volatility response to negative shocks is smaller in the 
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turmoil period. The best specification for the in-sample prediction in the GJR framework is the 

Student’s t distribution for the calm period and GED distribution for the turmoil period. 

 The asymmetry effect in the exponential model follows the same pattern. The estimates 

become less negative in the turmoil period. Once again, EGARCH outperforms GJR, being the 

model with Student’s t distribution best fit for the calm period, and GED distribution for turmoil 

period. 

 The presence of ARCH effect is detected for EGARCH model in the turmoil period, 

meaning that conditional heteroskedasticity present in the data is not completely captured. 

Olbrys e Majewska (2017) also reported similar difficulties regarding the DAX index. 

According to authors, the quality of EGARCH model in their analysis is rather low. 

 

6.2.3 CAC 40 

The autocorrelation findings in the French market are like in the previous markets. Only 

turmoil period log returns exhibit autocorrelation. The full series is dependent as strong 

autocorrelation is present in the absolute log returns. The results of the Ljung-Box test with 20 

lags are shown in the Table 10. 

 Calm Period Turmoil Period 

LB(20) of  𝑟𝑡 23.622 (0.2593) 47.462 (0.0005) 

LB(20) of  |rt| 189.97 (2.2e-16) 394.44 (2.2e-16) 

Table 10. Ljung Box test results for serial correlation in daily log returns and daily absolute log returns of CAC 40, 

distributed as 𝜒2(20). Numbers in parenthesis are p-values. 

Figure 6 gives the ACF and PACF graphs of the CAC 40 log returns, both subsamples 

exhibit some autocorrelation. In the calm period the first lag appears to be significant. In the 

turmoil period serial correlation is present at least at lags 2, 4 and 5.  

After checking several models (see Appendix 1), the conditional mean equations 

considered for the CAC 40 are AR(1) for the calm period, and AR(5) for the turmoil period. 

These specifications are the same as in the FTSE 100 index, suggesting similar behaviour in 

these markets before and after September 15, 2008. 
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GJR (1,1) and EGARCH (1,1) estimation results for the French market are reported in 

Table 11. 

Except for the ARCH term in the GJR models, all other GJR and EGARCH coefficients 

estimates are statistically significant. Both models have greater GARCH term in the turmoil 

period, pointing to an increase in the long-run persistence of volatility in the French market. 

Asymmetry estimates are relatively similar in both subsamples, but when comparing in 

terms of model, the results are conflicting. GJR estimates are smaller in the turmoil period (i.e. 

the impact of negative shocks is smaller), whereas the EGARCH are more negative (i.e. bigger 

impact of negative shocks). The results of the EGARCH are opposing the ones presented by 

Olbrys and Majewska (2017). Authors report stronger asymmetry effects in the pre-GFC 

period. 

 Once more the EGARCH provided better results in terms of in-sample predictive ability 

than GJR and the null hypothesis of the ARCH test on residuals is not rejected for all 

specifications, meaning there is no heteroskedasticity problem present in the residuals. 

 

 

Figure 6. Sample autocorrelation and partial autocorrelation functions of the log returns of CAC 40. 



The Asymmetry Effect on Volatility during the GFC 

38 
 

 GJR(1,1) EGARCH(1,1) 

 Calm Period 

 Normal Student’s t GED Normal Student’s t GED 

𝜔 0.000005 

(0.0000) 

0.000004 

(0.0000) 

0.000005 

(0.0000) 

-0.366086 

(0.0000) 

0.349195 

(0.0000) 

-0.354866 

(0.0000) 

𝛼1 0.000000 

(0.9999) 

0.000000 

(0.9999) 

0.000000 

(0.9999) 

0.032232 

(0.0286) 

0.038216 

(0.0201) 

0.032497 

(0.0098) 

𝛽1 0.865614 

(0.0000) 

0.873740 

(0.0000) 

0.868614 

(0.0000) 

0.959215 

(0.0000) 

0.961593 

(0.0000) 

0.960906 

(0.0000) 

𝛾1 0.201841 

(0.0000) 

0.195145 

(0.0000) 

0.198297 

(0.0000) 

-0.197041 

(0.0000) 

-0.201383 

(0.0000) 

-0.200112 

(0.0000) 

𝑣 - 
11.965798 

(0.0174) 

1.638776 

(0.0000) 
- 

13.097304 

(0.0499) 

1.695434 

(0.0000) 
Log-Likelihood 1569.235 1573.217 1571.732 1578.123 1580.691 1579.699 

AIC -6.1303 -6.1420 -6.1362 -6.1652 -6.1713 -6.1674 

BIC -6.0805 -6.0839 -6.0781 -6.1154 -6.1132 -6.1093 

ARCH [5] 3.508 

(0.2241) 

3.5071 

(0.2242) 

3.6043 

(0.2133) 

1.873 

(0.5000) 

2.2325 

(0.4221) 

2.118 

(0.4458) 

 Turmoil Period 

𝜔 0.000007 

(0.0000) 

0.000008 

(0.0000) 

0.000008 

(0.0000) 

-0.258934 

(0.0000) 

-0.281502 

(0.0000) 

-0.285187 

(0.0000) 

𝛼1 0.000000 

(0.9999) 

0.000000 

(0.9999) 

0.000000 

(0.9999) 

0.110514 

(0.0000) 

0.101369 

(0.0000) 

0.106252 

(0.0004) 

𝛽1 0.882153 

(0.0000) 

0.883359 

(0.0000) 

0.878970 

(0.0000) 

0.968223 

(0.0000) 

0.966025 

(0.0000) 

0.965753 

(0.0000) 

𝛾1 0.190324 

(0.0030) 

0.184531 

(0.0006) 

0.193877 

(0.0007) 

-0.205555 

(0.0000) 

-0.217316 

(0.0000) 

-0.216678 

(0.0000) 

𝑣 - 9.095452 

(0.0062) 

1.428916 

(0.0000) 
- 

9.521861 

(0.0115) 

1.444106 

(0.0000) 
Log-Likelihood 1341.349 1345.92 1347.745 1345.418 1349.65 1351.256 

AIC -5.2008 -5.2145 -5.2217 -5.2165 -5.2291 -5.2354 

BIC -5.1180 -5.1235 -5.1306 -5.1337 -5.1380 -5.1443 

ARCH [5] 2.756 

(0.3271) 

3.2218 

(0.2592) 

3.167 

(0.2664) 

2.5377 

(0.3642) 

2.9510 

(0.2970) 

2.9196 

(0.3017) 

Table 11. EGARCH(1,1) and GJR(1,1) model estimation results for CAC 40. AIC and BIC are the Akaike 

Information Criteria and Bayesian information Criteria respectively. ARCH [5] denotes the ARCH LM test at 

lag 5. Numbers in parenthesis are p-values. 

 

6.3 Asian markets analysis 

6.3.1 NIKKEI 225 

Contrasting with previous findings, the null hypothesis of the Ljung-Box test is not 

rejected, meaning that NIKKEI 225 log returns are not autocorrelated, regardless of the period. 

The null hypothesis is rejected when testing absolute log returns. Therefore, the daily log returns 

of the Japanese index are serially uncorrelated but dependent. Results are provided in Table 12.  
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 Calm Period Turmoil Period 

LB(20) of  𝑟𝑡 18.256 (0.5706) 19 (0.5218) 

LB(20) of  |rt| 256.41 (2.2e-16) 936.41 (2.2e-16) 

Table 12. Ljung Box test results for serial correlation in daily log returns and daily absolute log returns of 

NIKKEI 225, distributed as 𝜒2(20). Numbers in parenthesis are p-values. 

 Visually, with exception of the lag 21 in the turmoil period, both subsamples suggest no 

serial correlation, supporting the Ljung-Box test results. The ACF and PACF are given in Figure 

7. Considering no serial correlation in NIKKEI 225 log returns and to keep the models simple, 

the mean equation of both periods is as white noise process without drift. See Appendix 1 for 

models examined.  

The Table 13 summarizes the results for volatility models. 

The 𝛽1 estimates in the GJR decrease in the turmoil period, meaning that past 

conditional volatility has lesser impact on today’s conditional volatility. Regarding the 

EGARCH this is only verified in the Student’s t distribution case. 

The asymmetry behaviour is rather incoherent. EGARCH points out that the effect is 

less pronounced in the turmoil period, while GJR show an increase in 𝛾1 estimates with normal 

and GED distribution, and a decrease with Student’s t distribution.  

Figure 7. Sample autocorrelation and partial autocorrelation functions of the log returns of NIKKEI 225. 
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 Unlike in previous cases, the EGARCH with Student’s t distribution outperforms GJR 

in the calm period, but information criteria and Log-Likelihood point out that GJR with 

Student’s t distribution is better for in-sample prediction in the turmoil period. ARCH test 

results indicate that the best model for the calm period rejects the null hypothesis suggesting 

that there are ARCH effects that remained in the residuals. 

 GJR(1,1) EGARCH(1,1) 

 Calm Period 

 Normal Student’s t GED Normal Student’s t GED 

𝜔 0.000003 

(0.0283) 

0.000002 

(0.6288) 

0.000003 

(0.5077) 

-0.259811 

(0.0000) 

-0.163127 

(0.0000) 

-0.212376 

(0.0000) 

𝛼1 0.000000 

(0.9999) 

0.000000 

(0.9999) 

0.000000 

(0.9999) 

0.086062 

(0.0000) 

0.063445 

(0.0061) 

0.078167 

(0.0000) 

𝛽1 0.904746 

(0.0000) 

0.919014 

(0.0000) 

0.914452 

(0.0000) 

0.970810 

(0.0000) 

0.982030 

(0.0000) 

0.976428 

(0.0000) 

𝛾1 0.142457 

(0.0000) 

0.131159 

(0.0030) 

0.133791 

(0.0144) 

-0.148747 

0.0000) 

-0.148300 

(0.0000) 

-0.146558 

(0.0000) 

𝑣 - 
12.748668 

(0.0533) 

1.563245 

(0.0000) 
- 

11.428656 

(0.0167) 

1.571504 

(0.0000) 
Log-Likelihood 1451.136 1453.199 1454.002 1453.491 1456.484 1456.344 

AIC -5.9067 -5.9110 -5.9143 -5.9163 -5.9244 -5.9239 

BIC -5.8724 -5.8682 -5.8715 -5.8820 -5.8816 -5.8811 

ARCH [5] 1.3919 

(0.6212) 

2.182 

(0.4324) 

1.858 

(0.5035) 

4.169 

(0.1592) 

8.588 

(0.0145) 

5.663 

(0.0720) 

 Turmoil Period 

𝜔 0.000008 

(0.0002) 

0.000007 

(0.0077) 

0.000008 

(0.0001) 

-0.17674 

(0.0000) 

-0.17678 

(0.0000) 

-0.17841 

(0.0001) 

𝛼1 0.012615 

(0.2312) 

0.005631 

(0.5933) 

0.009984 

(0.3900) 

0.16436 

(0.0000) 

0.16116 

(0.0000) 

0.15873 

(0.0001) 

𝛽1 0.886688 

(0.0000) 

0.903311 

(0.0000) 

0.887980 

(0.0000) 

0.97843 

(0.0000) 

0.97848 

(0.0000) 

0.97842 

(0.0000) 

𝛾1 0.144476 

(0.0000) 

0.131032 

(0.0002) 

0.146149 

(0.0002) 

-0.10985 

(0.0000) 

-0.11018 

(0.0000) 

-0.11072 

(0.0000) 

𝑣 - 56.145315 

(0.5943) 

1.784430 

(0.0000) 
- 

66.18218 

(0.2707) 

1.79951 

(0.0000) 
Log-Likelihood 1267.18 1270.508 1267.765 1266.16 1266.146 1266.647 

AIC -5.1876 -5.1972 -5.1859 -5.1834 -5.1792 -5.1813 

BIC -5.1532 -5.1542 -5.1429 -5.1490 -5.1362 -5.1383 

ARCH [5] 2.8843 

(0.3070) 

4.0819 

(0.1667) 

3.048 

(0.2829) 

4.137 

(0.1619) 

4.317 

(0.1474) 

4.443 

(0.1380) 

Table 13. EGARCH(1,1) and GJR(1,1) model estimation results for NIKKEI 225. AIC and BIC are the Akaike 

Information Criteria and Bayesian information Criteria respectively. ARCH [5] denotes the ARCH LM test at 

lag 5. Numbers in parenthesis are p-values. 
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6.3.2 HSI 

The Table 14 shows the Ljung-Box test for the HSI index. Again, autocorrelation is 

found to be significant only in the turmoil period, although the null hypothesis is rejected by a 

small margin (considering 5% significance level). Regarding the absolute returns, the null 

hypothesis is rejected as in all other indices. 

 Calm Period Turmoil Period 

LB(20) of  𝑟𝑡 14.207 (0.8199) 32.315 (0.0401) 

LB(20) of  |rt| 256.41 (2.2e-16) 936.41 (2.2e-16) 

Table 14. Ljung Box test results for serial correlation in daily log returns and daily absolute log returns of HSI, 

distributed as 𝜒2(20). Numbers in parenthesis are p-values. 

The ACF and PACF of the HSI index (Figure 8) suggest minor serial correlation in lag 

1 for the calm period. For the turmoil period, serial correlation is significant at lags 9 and 10.  

Appendix 1 shows the mean equations considered for the HSI. Similar to the NIKKEI 

225, we keep the models simple, and find a white noise process without drift to be appropriate 

specification, outlining the fact that, in our analysis, the Asian markets are relatively distinct 

from North American and European. 

 

Figure 8. Sample autocorrelation and partial autocorrelation functions of the log returns of HSI. 
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Table 15 gives the results for the GJR and EGARCH models. 

 GJR(1,1) EGARCH(1,1) 

 Calm Period 

 Normal Student-t GED Normal Student-t GED 

𝜔 0.000012 

(0.0000) 

0.000009 

(0.0001) 

0.000010 

(0.0000) 

-0.40987 

(0.0067) 

-0.34587 

(0.0001) 

-0.36116 

(0.0026) 

𝛼1 0.062592 

(0.0000) 

0.061177 

(0.0011) 

0.059971 

(0.0005) 

0.24873 

(0.0000) 

0.24547 

(0.0000) 

0.24381 

(0.0000) 

𝛽1 0.815337 

(0.0000) 

0.827816 

(0.0000) 

0.828980 

(0.0000) 

0.94899 

(0.0000) 

0.95712 

(0.0000) 

0.95557 

(0.0000) 

𝛾1 0.184406 

(0.0000) 

0.184903 

(0.0006) 

0.181884 

(0.0005) 

-0.11233 

(0.0007) 

-0.11442 

(0.0006) 

-0.11384 

(0.0012) 

𝑣 - 
12.893038 

(0.0214) 

1.532515 

(0.0000) 
- 

12.84180 

(0.0976) 

1.54044 

(0.0000) 
Log-Likelihood 1340.337 1341.951 1343.52 1341.827 1343.527 1344.936 

AIC -5.4323 -5.4348 -5.4411 -5.4383 -5.4412 -5.4469 

BIC -5.3981 -5.3921 -5.3985 -5.4042 -5.3985 -5.4042 

ARCH [5] 5.390 

(0.0835) 

4.966 

(0.1046) 

5.153 

(0.0947) 

5.627 

(0.0735) 

5.141 

(0.0953) 

5.331 

(0.0861) 

 Turmoil Period 

𝜔 0.000002 

(0.5992) 

0.000002 

(0.6432) 

0.000002 

(0.6436) 

-0.059626 

(0.0000) 

-0.058479 

(0.0000) 

-0.059645 

(0.0000) 

𝛼1 0.029500 

(0.1803) 

0.030222 

(0.2043) 

0.029817 

(0.2064) 

0.130211 

(0.0000) 

0.130023 

(0.0000) 

0.130567 

(0.0000) 

𝛽1 0.914485 

(0.0000) 

0.915089 

(0.0000) 

0.914358 

(0.0000) 

0.993042 

(0.0000) 

0.993230 

(0.0000) 

0.993121 

(0.0000) 

𝛾1 0.099576 

(0.0175) 

0.097581 

(0.0261) 

0.099805 

(0.0262) 

-0.079231 

(0.0000) 

-0.078771 

(0.0005) 

-0.079553 

(0.0004) 

𝑣 - 43.284663 

(0.5096) 

1.863235 

(0.0000) 
- 

56.400117 

(0.6030) 

1.885984 

(0.0000) 
Log-Likelihood 1275.321 1275.561 1275.577 1277.137 1277.275 1277.315 

AIC -5.1263 -5.1232 -5.1233 -5.1336 -5.1301 -5.1303 

BIC -5.0924 -5.0808 -5.0809 -5.0997 -5.0877 -5.0879 

ARCH [5] 0.6716 

(0.8321) 

0.67397 

(0.8314) 

0.6744 

(0.8312) 

0.6887 

(0.8269) 

0.6935 

(0.8254) 

0.6892 

(0.8267) 

Table 15. EGARCH(1,1) and GJR(1,1) model estimation results for HSI. AIC and BIC are the Akaike 

Information Criteria and Bayesian information Criteria respectively. ARCH [5] denotes the ARCH LM test at 

lag 5. Numbers in parenthesis are p-values. 

For the GJR model, all estimates for coefficients are statistically significant at 5% level 

in the subsample prior to September 15, 2008 meaning that current volatility is affected not 

only by past volatility but also by immediate impact from shocks. In the turmoil period, GJR 

ARCH term is not statistically significant. The GARCH term estimates increase in both models. 

 The asymmetry estimates do not show strong differences in both models, and the effect 

becomes weaker, meaning that negative shocks do not increase volatility as much as in the calm 

period.  
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 EGARCH is superior to GJR and using the GED distribution for estimation provides the 

best results for in-sample prediction. The adequacy of the models is verified by the ARCH test. 

The null hypothesis of no serial correlation in the residuals is not rejected in all estimated 

models. 

 

6.4 Individual Analysis of the Asymmetry Effects 

Except for the NIKKEI 225 in the turmoil period, the results indicate that the EGARCH 

is better in-sample predictive model than GJR. Overall, based on Log-likelihood and 

information criteria values, the fit of the models is poorer in the turmoil period, suggesting that 

the log returns behaviour after the Lehman Brothers collapse is harder to capture and describe. 

Table 16 and 17 summarizes the estimates of the asymmetry coefficients.  

 Calm Period Turmoil Period 

 Normal Student’s t GED Normal Student’s t GED 

S&P500 

0.139646 

[0.021018] 

(0.0000) 

0.155487 

[0.067047] 

(0.0058) 

0.147092 

[0.060882] 

(0.0157) 

0.127626 

[0.047746] 

(0.0075) 

0.142650 

[0.050501] 

(0.0047) 

0.132968 

[0.053486] 

(0.0129) 

NASDAQ 

0.082919 

[0.014691] 

(0.0001) 

0.089055 

[0.036065] 

(0.0135) 

0.089625 

[0.037221] 

(0.0160) 

0.137515 

[0.083981] 

(0.1015) 

0.151311 

[0.057868] 

(0.0089) 

0.144087 

[0.062130] 

(0.0204) 

FTSE 100 

0.189237 

[0.034317] 

(0.0000) 

0.196971 

[0.137717] 

(0.1526) 

0.192548 

[0.034801] 

(0.0000) 

0.149191 

[0.061299] 

(0.0149) 

0.138839 

[0.056644] 

(0.0142) 

0.141553 

[0.051115] 

(0.0056) 

DAX 

0.198975 

[0.043890] 

(0.0000) 

0.172973 

[0.045814] 

(0.0002) 

0.186357 

[0.048786] 

(0.0001) 

0.152203 

[0.068521] 

(0.02633) 

0.154301 

[0.065475] 

(0.0184) 

0.151980 

[0.067788] 

(0.0250) 

CAC 40 

0.201841 

[0.040638] 

(0.0000) 

0.195145 

[0.043864] 

(0.0000) 

0.198297 

[0.044338] 

(0.0000) 

0.190324 

[ 0.047582] 

(0.0030) 

0.184531 

[0.053952] 

(0.0006) 

0.193877 

[0.057185] 

(0.0007) 

NIKKEI 225 

0.142457 

[0.019840] 

(0.0000) 

0.131159 

[0.044223] 

(0.0030) 

0.133791 

[0.054675] 

(0.0144) 

0.144476 

[0.036943] 

(0.0000) 

0.131032 

[0.035418] 

(0.0002) 

0.146149 

[0.039360] 

(0.0002) 

HSI 

0.184406 

[0.046753] 

(0.0000) 

0.184903 

[0.053823] 

(0.0006) 

0.181884 

[0.052461] 

(0.0005) 

0.099576 

[0.041911] 

(0.0175) 

0.097581 

[0.043853] 

(0.0261) 

0.099805 

[0.044877] 

(0.0262) 

Table 16. Summary of the asymmetry coefficient estimates of GJR(1,1). Numbers in brackets are standard 

errors. Numbers in parenthesis are p-values 

The GJR asymmetry coefficient estimates, in general, decrease in the turmoil period. 

The exception is the NASDAQ index and NIKKEI 225 with normal and GED conditional 

distributions, where the effect is stronger. In terms of statistical significance, NASDAQ with 

normal distribution in the turmoil period and FTSE 100 with Student’s t conditional distribution 

in the calm period, 𝛾1 estimates are the only ones that are not statistically significant.  
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 Calm Period Turmoil Period 

 Normal Student’s t GED Normal Student’s t GED 

S&P500 

-0.204362 

[0.029083] 

(0.0000) 

-0.240799 

[0.050671] 

(0.0000) 

-0.203513 

[0.009780] 

(0.0000) 

-0.117291 

[0.016321] 

(0.0000) 

-0.135463 

[0.035365] 

(0.0001) 

-0.130852 

[0.035770] 

(0.0001) 

NASDAQ 

-0.099430 

[0.013688] 

(0.0000) 

-0.105953 

[0.029395] 

(0.0003) 

-0.104551 

[0.027945] 

(0.0002) 

-0.133010 

[0.027045] 

(0.0000) 

-0.152199 

[0.026163] 

(0.0000) 

-0.148096 

[0.030156] 

(0.0000) 

FTSE 100 

-0.143839 

[0.015905] 

(0.0000) 

-0.175685 

[0.013919] 

(0.0000) 

-0.154195 

[0.025157] 

(0.0000) 

-0.157212 

[0.025286] 

(0.0000) 

-0.149847 

[0.029801] 

(0.0000) 

-0.151831 

[0.025833] 

(0.0000) 

DAX 

-0.190195 

[0.023157] 

(0.0000) 

-0.185480 

[0.023108] 

(0.0000) 

-0.190600 

[0.003616] 

(0.0000) 

-0.127954 

[0.025667] 

(0.0000) 

-0.139435 

[0.033448] 

(0.0000) 

-0.136618 

[0.030303] 

(0.0000) 

CAC 40 

-0.197041 

[0.023236] 

(0.0000) 

-0.201383 

[0.026884] 

(0.0000) 

-0.200112 

[0.025420] 

(0.0000) 

-0.205555 

[0.036656] 

(0.0000) 

-0.217316 

[0.040024] 

(0.0000) 

-0.216678 

[0.035234] 

(0.0000) 

NIKKEI 225 

-0.148747 

[0.016359] 

0.0000) 

-0.148300 

[0.023584] 

(0.0000) 

-0.146558 

[0.025835] 

(0.0000) 

-0.10985 

[0.017006] 

(0.0000) 

-0.11018 

[0.023956] 

(0.0000) 

-0.11072 

[0.015560] 

(0.0000) 

HSI 

-0.11233 

[0.032971] 

(0.0007) 

-0.11442 

[0.033389] 

(0.0006) 

-0.11384 

[0.035167] 

(0.0012) 

-0.079231 

[0.005724] 

(0.0000) 

-0.078771 

[0.022606] 

(0.0005) 

-0.079553 

[0.022425] 

(0.0004) 

Table 17. Summary of the asymmetry coefficient estimates of EGARCH(1,1). Numbers in brackets are standard 

errors. Numbers in parenthesis are p-values 

Additionally, ARCH coefficient estimates are all not statistically significant, indicating 

no immediate impact of innovations on conditional volatility. Kaur and Singh (2015) found 

similar results for Brazilian Ibovespa and Russian RTS indices with the TGARCH-M model.  

Concerning the asymmetry effects of the EGARCH model, all 𝛾1 estimates are 

statistically significant, meaning that the negative shocks increase conditional volatility more 

than positive shocks of the same magnitude, regardless of the period. Nevertheless, the 

S&P500, DAX, NIKKEI 225, HSI and FTSE 100 with Student’s t and GED conditional 

distribution estimates suggest that the effect becomes weaker in the turmoil period. 

Analysing the subsamples in terms of conditional distribution, log-likelihood and 

information criteria indicate that distributions with fatter tails outperform the normal in all 

cases. In general, the Student’s t conditional distribution better fitted the data from the calm 

period, while GED is better for the turmoil period. The exception are S&P 500 and HSI, where 

GED conditional distribution is superior in all cases. Models with Student’s t conditional 

distribution usually have higher asymmetry estimates (in absolute value). Comparing the 

asymmetry effects between indices, French CAC 40 has the highest estimates in the GJR model, 

with exception of the Student’s t in the calm period, in which FTSE 100 has the highest estimate, 

but it is not statistically significant, being French market estimate the second highest. S&P 500 
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shows the highest asymmetry estimates (i.e. most negative estimates) in the calm period for 

EGARCH model, while CAC 40 has the most negative estimates in the turmoil period. 

Although we found that, in the literature, dividing the series in subsamples and 

modelling its volatility is a common procedure, no attention is given to test if the difference 

between the coefficient estimates of the subsamples is statistically significant. Having this in 

mind, we attempt to close this gap by employing a z-test on the difference between the 

asymmetry estimates of the superior EGARCH model. The idea is to understand whether the 

increase or decrease of the asymmetry effect of two independent samples after the September 

15, 2008, is statistically significant. Therefore, the hypothesis tested is the equality of two 

coefficients and consists on the following: 

{
𝐻0: 𝛾𝐶 = 𝛾𝑇

𝐻𝑎: 𝛾𝐶 ≠ 𝛾𝑇
 

where the null hypothesis is that 𝛾𝐶 (asymmetry coefficient in the calm period) is equal to the 

𝛾𝑇 (asymmetry coefficient in the turmoil period). The formula of the test is as follows: 

𝑍 =
𝛾𝐶 − 𝛾𝑇

√(𝑆𝐸𝛾𝐶)2 + (𝑆𝐸𝛾𝑇)2
 (11) 

 

where (𝑆𝐸𝛾𝐶)2 and (𝑆𝐸𝛾𝑇)2 are the 𝛾𝐶 and 𝛾𝑇 are the variances for the coefficient estimators, 

respectively. The comparison is performed considering the conditional distribution of the 

coefficients estimates. Table 18 summarizes the z-test results. 

 Normal Student's t GED 
 z score p-value z score p-value z score p-value 

S&P500 -2.61086 0.009054 -1.70469 0.088381 -1.95942 0.050113 

NASDAQ 1.107827 0.267948 1.175192 0.239955 1.059145 0.289554 

FTSE 100 0.447673 0.654442 -0.78556 0.432454 -0.06556 0.772161 

DAX -1.80047 0.071861 -1.13261 0.257634 -1.76886 0.077061 

CAC 40 0.196174 0.844532 0.330458 0.741098 0.381295 0.703055 

NIKKEI -1.64838 0.099353 -1.13395 0.257214 -1.1883 0.234833 

HSI -0.98909 0.322663 -0.88411 0.376696 -0.82206 0.411077 

Table 18. z-test results. 

Only one difference between asymmetry coefficients estimates is statistically significant 

at 5% level. The EGARCH with normal distribution for the S&P index. For the remaining cases 

the null hypothesis is not rejected. If we relax the standard significance level assumption, and 
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consider 10% significance level, the null hypothesis is rejected in five more cases. The 

differences in the S&P 500 index for all conditional distributions become statistically 

significant. The remaining cases are DAX with normal and GED conditional distributions and 

NIKKEI 225 with normal conditional distribution. 

Overall, we conclude that the asymmetry effect is present in the stock market indices, 

regardless of the period. Bad news has bigger impact on volatility than good news. In general, 

the effect becomes weaker (except for NASDAQ and CAC 40) in the turmoil period, and one 

probable explanation for this is that after the collapse of the Lehman Brothers, the volatility 

was extremely high, consequently the bad news did not impact as much the already high 

volatility. Nevertheless, in most cases, the changes in the asymmetry coefficient estimates for 

the EGARCH model are not statistically significant, implying that the effect could remain the 

same. Asymmetry effect does not depend on the subsample period.  
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7. Conclusion 

 The main objective of this dissertation was to investigate the asymmetry effects on 

volatility during the Global Financial Crisis. In order to obtain a broader view, we analyse seven 

major stock market indices from three different regions: The North American market, 

composed by S&P 500 and NASDAQ Composite indices; The European market, composed by 

FTSE 100, DAX and CAC 40 indices; and NIKKEI 225 and Hang Seng (HSI) indices from 

Asia-Pacific region.  

 Regarding the sample periods, different approaches can be found in the literature. Using 

statistical methods such as structural break tests or graphically identifying market trends are 

among possible techniques. We use September 15, 2008 as the central event of the crisis. This 

date is better known as the collapse of the large investment bank Lehman Brothers. Thus, our 

analysis covers two non-overlapping subsamples of each index. The period of two years prior 

to the bankruptcy is labelled as clam period, while the turmoil period corresponds to two years 

after the bankruptcy. 

We estimate two univariate conditional volatility models based on daily logarithmic 

returns. The EGARCH and GJR models are considered standard tools to assess asymmetry 

effects on volatility and extensive literature proves the popularity among researchers. 

Furthermore, we assume three conditional distribution for the innovations: the Gaussian 

normal, the Student’s t and Generalized Error Distribution.  

According to the results obtained, it is possible to conclude that asymmetry effects are 

present in the indices analysed, regardless of the subsample. These findings are in line with the 

literature review and empirical studies. In general, the asymmetry coefficient estimates decrease 

in the turmoil period (except for NASDAQ and CAC 40), suggesting that the impact of negative 

shocks during turbulent markets is weaker when compared to calm market period. In the 

literature, mixed findings concerning asymmetry effect changes are reported. Given the 

leptokurtosis of the financial data, models with heavy tailed conditional distributions provides 

a better fit. Results also indicate that the Student’s t conditional distribution better fits the data 

prior to the Lehman Brothers bankruptcy, while GED conditional distribution provides better 

results for the subsample after the bankruptcy. Moreover, asymmetry estimates are generally 

higher in models that assume Student’s t distribution. Based on Log-likelihood and Information 

Criteria, the EGARCH model is superior to GJR for in-sample prediction. 
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To some extent, this dissertation can be considered as a study that compiles several 

techniques to examine asymmetry effects on volatility. A total of 84 different specifications are 

possible which allows to compare the effects from several perspectives. Perhaps, the key 

contribution of this work to the finance literature is that we test the statistical significance of 

the changes in the coefficient estimates using a z-test. We found evidence that overall, the 

change in the asymmetry estimates of the EGARCH model are not statistically significant, 

suggesting that the impact of the asymmetry effect does not change when comparing calm and 

turmoil periods. At 5% significance level only the change of S&P 500 with normal conditional 

distribution was statistically significant.  

Nevertheless, this work has several limitations. Although we chose the collapse of 

Lehman Brothers as reference point for the crisis, the period under analysis is limited to four 

years, meaning that extending or decreasing the period, can lead to different results. Another 

limitation is that we only analyse daily data of stock indices, and all of them can be considered 

mature markets. Nowadays, other more robust and up to date models can be applied to evaluate 

asymmetry effects. In fact, the limitations referred above can be taken as suggestions for further 

research. Extending the period under analysis to include the European debt crisis that started 

roughly in the beginning of 2009, reaching peaks in early 2012, is one of the possibilities. 

Instead of analysing non-overlapping subsamples, rolling regression approach as used by 

Leeves (2007) may be interesting. Using more complex models with different conditional 

distributions can also be relevant. The methodology can be applied to individual stocks, 

commodities such as gold or oil, currency pairs, bonds and other securities. Selecting high 

frequency intra-day data can provide unique insights, not evident in daily or weekly data. 

Furthermore, testing the statistical significance of the changes in asymmetry coefficient 

estimates on volatility may open completely new questions. 
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9. Appendices 

Appendix 1 – Determination of the conditional mean equations. 

 Appendix 1 shows the conditional mean equations specified for each index returns. The 

order determination was assessed based on log-likelihood, Akaike information criterion, 

Bayesian information criterion, as well as ACF and PACF functions. 

• S&P 500 

 Calm Period Turmoil Period 

 Log likelihood AIC BIC Log likelihood AIC BIC 

AR(1) 1554.48 -3102.97 -3090.31 1220.24 -2434.48 -2421.81 

AR(2) 1555.36 -3102.72 -3085.84 1225.51 -2443.02 -2426.13 

AR(3) - - - 1227.92 -2445.84 -2424.73 

Table 19. Conditional mean equation specifications tested for S&P 500 index. 

The conditional mean equations considered for the joint estimation are AR(1) for the 

calm period and AR(3) for the turmoil period. 

 AR(p)-GJR(1,1) AR(p)-EGARCH(1,1) 

 Calm Period 

 Normal Student’s t GED Normal Student’s t GED 

𝜇1 0.000045 

(0.8739) 

0.000608 

(0.0274) 

0.000930 

(0.0000) 

-0.000110 

(0.0000) 

0.000542 

(0.0169) 

0.000864 

(0.0000) 

𝜙1 -0.140276 

(0.0037) 

-0.088671 

(0.0329) 

-0.096092 

(0.0005) 

-0.136362 

(0.0037) 

-0.082692 

(0.0413) 

-0.091516 

(0.0000) 

 Turmoil Period 

𝜇1 0.000492 

(0.3369) 

0.001016 

(0.0373) 

0.001194 

(0.0289) 

0.000482 

(0.1015) 

0.001022 

(0.1637) 

0.001163 

(0.0449) 

𝜙1 -0.058164 

(0.2389) 

-0.068128 

(0.1315) 

-0.066314 

(0.1572) 

-0.067188 

(0.0002) 

-0.067704 

(0.1510) 

-0.069463 

(0.2100) 

𝜙2 -0.058379 

(0.2219) 

-0.055705 

(0.2313) 

-0.025240 

(0.6175) 

-0.049097 

(0.1658) 

-0.041618 

(0.3781) 

-0.015052 

(0.7614) 

𝜙3 -0.025353 

(0.5963) 

0.004808 

(0.9164) 

0.021809 

(0.6574) 

-0.003234 

(0.6078) 

0.016421 

(0.7209) 

0.032636 

(0.5039) 

Table 20. Conditional mean equation estimation results for S&P 500 index. 𝜙𝑖 denotes AR coefficients. 

Numbers in parenthesis are p-values.  
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• NASDAQ 

 Calm Period Turmoil Period 

 Log likelihood AIC BIC Log likelihood AIC BIC 

AR(1) 1502.94 -2999.89 -2987.23 1213.21 -2420.42 -2407.757 

AR(2) 1503.29 -2998.58 -2981.70 1216.84 -2425.68 -2408.79 

AR(3) - - - 1219.47 -2428.95 -2407.836 

Table 21. Conditional mean equation specifications tested for NASDAQ index. 

The conditional mean equations considered for the joint estimation are AR(1) for the 

calm period and AR(3) for the turmoil period. 

 AR(p)-GJR(1,1) AR(p)-EGARCH(1,1) 

 Calm Period 

 Normal Student’s t GED Normal Student’s t GED 

𝜇1 0.000110 

(0.8051) 

0.000535 

(0.1890) 

0.000608 

(0.1536) 

-0.000055 

(0.9159) 

0.000353 

(0.4791) 

0.000417 

(0.2223) 

𝜙1 -0.083060 

(0.0747) 

-0.069088 

(0.1171) 

-0.057411 

(0.2078) 

-0.083477 

(0.0083) 

-0.071006 

(0.2174) 

-0.062552 

(0.1431) 

 Turmoil Period 

𝜇1 0.000700 

(0.31507) 

0.001196 

(0.0309) 

0.001358 

(0.0162) 

0.000689 

(0.0908) 

0.001200 

(0.0206) 

0.001346 

(0.0013) 

𝜙1 -0.026298 

(0.59248) 

-0.034919 

(0.4407) 

-0.022504 

(0.5247) 

-0.053665 

(0.2721) 

-0.044497 

(0.3150) 

-0.030480 

(0.4231) 

𝜙2 -0.049532 

(0.31945) 

-0.060759 

(0.1907) 

-0.041012 

(0.3250) 

-0.041396 

(0.1783) 

-0.048168 

(0.2940) 

-0.030895 

(0.1047) 

𝜙3 -0.009421 

(0.84025) 

0.027970 

(0.5418) 

0.029813 

(0.4345) 

0.017041 

(0.7070) 

0.046375 

(0.2909) 

0.045628 

(0.2654) 

Table 22. Conditional mean equation estimation results for NASDAQ index. 𝜙𝑖 denotes AR coefficient. 

Numbers in parenthesis are p-values. 

• FTSE 100 

 Calm Period Turmoil Period 

 Log likelihood AIC BIC Log likelihood AIC BIC 

AR(0) 1511.91 -3019.81 -3011.36 - - - 

AR(0)* 1511.81 -3021.61 -3017.39 - - - 

AR(1) 1518.40 -3030.81 -3018.13 1293.34 -2580.67 -2568.00 

AR(2) - - - 1296.32 -2584.65 -2567.74 

AR(3) - - - 1298.21 -2586.41 -2565.28 

AR(4) - - - 1306.86 -2601.72 -2576.36 

AR(5) - - - 1311.83 -2609.65 -2580.07 

Table 23. Conditional mean equation specifications tested for FTSE 100 index. * Denotes the conditional mean 

equation without drift. 
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The conditional mean equations considered for the joint estimation are AR(1) for the 

calm period and AR(5) for the turmoil period. 

 AR(p)-GJR(1,1) AR(p)-EGARCH(1,1) 

 Calm Period 

 Normal Student’s t GED Normal Student’s t GED 

𝜇1 -0.000149 

 (0.6748) 

0.000120 

 (0.8409) 

0.000034 

 (0.9220) 

-0.000351 

 (0.3292) 

-0.000079 

 (0.424657) 

-0.000152 

 (0.63203) 

𝜙1 -0.074301 

 (0.1100) 

-0.062613 

 (0.1680) 

-0.064416 

 (0.1574) 

-0.061598 

 (0.1704) 

-0.048558 

 (0.213711) 

-0.052064 

 (0.24081) 

 Turmoil Period 

𝜇1 0.000537 

 (0.5181) 

0.000734 

 (0.2709) 

0.000861 

 (0.1136) 

0.000373 

 (0.4868) 

0.000535 

 (0.2957) 

0.000661 

 (0.0153) 

𝜙1 -0.013568 

 (0.7836) 

-0.006778 

 (0.8802) 

0.001281 

 (0.9714) 

-0.003626 

 (0.9394) 

-0.002662 

 (0.9527) 

0.003480 

 (0.7321) 

𝜙2 0.001173 

 (0.9807) 

-0.006778 

 (0.7989) 

-0.025560 

 (0.6085) 

0.010902 

 (0.8090) 

-0.005844 

 (0.8974) 

-0.017099 

 (0.7623) 

𝜙3 -0.045524 

 (0.3452) 

-0.026150 

 (0.5718) 

-0.011981 

 (0.7893) 

-0.036135   

 (0.4188) 

-0.020604 

 (0.6475) 

-0.007259  

 (0.6484) 

𝜙4 0.037472 

 (0.4093) 

0.048490 

 (0.2707) 

0.057411 

 (0.1741) 

0.046357 

 (0.2916) 

0.055423 

 (0.2029) 

0.062390 

 (0.0063) 

𝜙5 -0.006889 

 (0.8781) 

-0.052572 

 (0.2549) 

-0.043775 

 (0.2727) 

0.003529 

 (0.9332) 

-0.033720 

 (0.4539) 

-0.032115 

 (0.1422) 

Table 24. Conditional mean equation estimation results for FTSE 100 index. Numbers in parenthesis are             

p-values. 

• DAX 

 Calm Period Turmoil Period 

 Log likelihood AIC BIC Log likelihood AIC BIC 

AR(0) 1536.88 -3069.77 -3061.31 - - - 

AR(0)* 1536.88 -3071.76 -3067.53 - - - 

AR(1) 1538.44 -3070.88 -3058.20 1256.64 -2507.28 -2494.59 

AR(2) - - - 1259.02 -2510.04 -2493.11 

AR(3) - - - 1259.38 -2508.76 -2487.60 

AR(4) - - - 1261.67 -2511.34 -2485.96 

Table 25. Conditional mean equation specifications tested for DAX index. * Denotes the conditional mean 

equation without drift. 

The conditional mean equations considered for the joint estimation are white noise 

without drift for the calm period and AR(4) for the turmoil period. 
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 AR(p)-GJR(1,1) AR(p)-EGARCH(1,1) 

 Calm Period 

 Normal Student’s t GED Normal Student’s t GED 

 White Noise without Drift   

 Turmoil Period 

𝜇1 0.000233 

 (0.2013) 

0.000415 

 (0.5474) 

0.000484 

 (0.4689) 

0.000194 

 (0.3754) 

0.000351 

 (0.4671) 

0.000437  

 (0.0002) 

𝜙1 -0.007865 

 (0.8619) 

0.001461 

 (0.9743) 

0.006159  

 (0.8883) 

0.005817 

 (0.4061) 

0.015198 

 (0.7294) 

0.017411 

 (0.1093) 

𝜙2 -0.055219 

 (0.2326) 

-0.048960 

 (0.2938) 

-0.033357  

 (0.4925) 

-0.039694  

 (0.3692) 

-0.035185 

 (0.4351) 

-0.021608 

 (0.0001) 

𝜙3 -0.008860 

 (0.8431) 

0.002650 

 (0.9546) 

0.010504 

 (0.8153) 

0.005530 

 (0.7826) 

0.015237 

 (0.7330) 

0.022353 

 (0.3948) 

𝜙4 0.027152 

(0.5360) 

0.029549 

(0.4977) 

0.029950 

(0.4822) 

0.014570 

(0.6400) 

0.025264 

(0.5661) 

0.027148 

(0.0000) 

Table 26. Conditional mean equation estimation results for DAX index. 𝜙𝑖 denotes AR coefficients. Numbers in 

parenthesis are p-values. 

• CAC 40 

 Calm Period Turmoil Period 

 Log likelihood AIC BIC Log likelihood AIC BIC 

AR(1) 1510.52 -3015.05 -3002.35 1240.78 -2475.56 -2462.84 

AR(2) 1510.85 -3013.71 -2996.77 1243.21 -2478.42 -2461.47 

AR(3) - - - 1244.84 -2479.68 -2458.49 

AR(4) - - - 1248.45 -2484.89 -2459.46 

AR(5) - - - 1250.77 -2487.53 -2457.86 

Table 27. Conditional mean equation specifications tested for CAC 40 index.  

The conditional mean equations considered for the joint estimation are AR(1) for the 

calm period and AR(5) for the turmoil period. 
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 AR(p)-GJR(1,1) AR(p)-EGARCH(1,1) 

 Calm Period 

 Normal Student’s t GED Normal Student’s t GED 

𝜇1 -0.000158 

(0.6878) 

0.000067 

 (0.8587) 

0.000034 

 (0.9289) 

-0.000314 

 (0.3228) 

-0.000108 

 (0.7437) 

-0.000135 

 (0.6997) 

𝜙1 -0.079410 

 (0.0886) 

-0.083419 

 (0.0644) 

-0.083667 

 (0.0554) 

-0.072010 

 (0.1137) 

-0.076585 

 (0.0976) 

-0.077987 

 (0.0442) 

 Turmoil Period 

𝜇1 0.000159 

 (0.7914) 

0.000347 

 (0.5665) 

0.000316 

 (0.6158) 

-0.000382 

 (0.5506) 

-0.000136 

 (0.8293) 

-0.000128 

 (0.0002) 

𝜙1 -0.028286 

 (0.5480) 

-0.009000 

 (0.8398) 

-0.005916 

 (0.8888) 

-0.002722 

 (0.9538) 

0.017660  

 (0.6012) 

0.012986 

 (0.6110) 

𝜙2 -0.013848 

 (0.7669) 

-0.019952 

 (0.6602) 

-0.011353 

 (0.8159) 

0.014256  

 (0.7544) 

0.004582  

 (0.9332) 

0.010486 

 (0.6047) 

𝜙3 -0.029694 

 (0.5279) 

-0.018944 

 (0.6736) 

-0.014459 

 (0.7499) 

0.008744 

(0.8486) 

0.009926 

 (0.8276) 

0.012240  

 (0.2990) 

𝜙4 0.023989  

 (0.5732) 

0.037665 

 (0.3745) 

0.034760 

 (0.3435) 

0.039954 

 (0.3357) 

0.057555 

 (0.1837) 

0.053052 

 (0.0242) 

𝜙5 0.006237 

 (0.8874) 

-0.016667 

 (0.7045) 

-0.016978 

 (0.6883) 

0.024914 

 (0.5485) 

0.004035 

 (0.9286) 

-0.004297 

 (0.6059) 

Table 28. Conditional mean equation estimation results for CAC 40 index. 𝜙𝑖 denotes AR coefficients. Numbers 

in parenthesis are p-values. 

• NIKKEI 225 

 Calm Period Turmoil Period 

 Log likelihood AIC BIC Log likelihood AIC BIC 

AR(0) 1395.55 -2787.1 -2778.71 1142.48 -2280.96 -2272.59 

AR(0)* 1395.15 -2788.31 -2784.12 1142.35 -2282.7 -2278.51 

AR(1) 1396.12 -2786.24 -2773.66 1143.09 -2280.18 -2267.61 

Table 29. Conditional mean equation specifications tested for NIKKEI 225 index. * Denotes the conditional 

mean equation without drift. 

The conditional mean equations considered for the joint estimation are white noise 

without drift for both periods. 

 AR(p)-GJR(1,1) AR(p)-EGARCH(1,1) 

 Calm Period 

 Normal Student’s t GED Normal Student’s t GED 

 White Noise without Drift   

 Turmoil Period 

 White Noise without Drift   

Table 30. Conditional mean equation for NIKKEI 225 index. 
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• HSI 

 Calm Period Turmoil Period 

 Log likelihood AIC BIC Log likelihood AIC BIC 

AR(0) 1261.84 -2519.68 -2511.28 1143.46 -2282.92 -2274.51 

AR(0)* 1261.83 -2521.65 -2517.46 1143.41 -2284.82 -2280.61 

AR(1) 1263.96 -2521.52 -2509.33 1143.54 -2281.08 -2268.46 

Table 30. Conditional mean equation specifications tested for HSI index. * Denotes the conditional mean 

equation without drift. 

The conditional mean equations considered for the joint estimation are white noise 

without drift for both periods. 

 AR(p)-GJR(1,1) AR(p)-EGARCH(1,1) 

 Calm Period 

 Normal Student’s t GED Normal Student’s t GED 

 White Noise without Drift   

 Turmoil Period 

 White Noise without Drift   

Table 31. Conditional mean equation for HSI index. 

 

Appendix 2 – Testing for ARCH effects. 

Appendix 2 shows the results of the Ljung-Box and ARCH Lagrange Multiplier test on 

squared residuals of mean equation with 20 lags. 

 LB(20) of 𝜀𝑡
2 ARCH LM (20) of 𝜀𝑡

2 

 Calm Period Turmoil Period Calm Period Turmoil Period 

S&P500 
95.382 

(8.369e-12) 

626.76 

(2.2e-16) 

38.893 

(0.006875) 

185.35 

(2.2e-16) 

NASDAQ 
101.38 

(7.127e-13) 

546.17 

(2.2e-16) 

24.096 

(0.2382) 

216.66 

(2.2e-16) 

FTSE 100 
129.1 

(2.2e-16) 

374.03 

(2.2e-16) 

36.753 

(0.01253) 

227.85 

(2.2e-16) 

DAX 
99.664 

(1.447e-12) 

343.04 

(2.2e-16) 

63.772 

(1.828e-06) 

202.37 

(2.2e-16 

CAC 40 
98.173 

(2.671e-12) 

288.88 

(2.2e-16) 

37.566 

(0.01) 

64.896 

(1.213e-06) 

NIKKEI 
229.02 

(2.2e-16) 

778.29 

(2.2e-16) 

59.942 

(7.271e-06) 

377.05 

(2.2e-16) 

HSI 
227.43 

(2.2e-16) 

546.34 

(2.2e-16) 

101.58 

(6.568e-13) 

139.63 

(2.2e-16) 

Table 32. Summary of results of the Ljung-Box and ARCH LM tests with 20 lags. Numbers in parenthesis are 

p-values. 
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 ARCH effects of order 20 are present in all subsamples. The only exception is the 

NASDAQ index in the calm period, where ARCH LM test results do not reject the null of no 

ARCH effects. Nevertheless, Ljung-Box test results reject the null. 

 

Appendix 3 – List of RStudio packages used for auxiliary analysis. 

• ‘tseries’ by Trapletti, and Hornik (2019). 

• ‘psych’ by Revelle (2019) 

• ‘fDMA’ by Krzysztof (2018) 


