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Abstract 

 

In 1995, the Basel Committee on Banking Supervision emitted an amendment to the first Basel 

Accord, allowing financial institutions to develop internal risk models, based on the value-at-

risk (VaR), as opposed to using the regulator’s predefined model. From that point onwards, the 

scientific community has focused its efforts on improving the accuracy of the VaR models to 

reduce the capital requirements stipulated by the regulatory framework. In contrast, some 

authors proposed that the key towards disclosure optimization would not lie in improving the 

existing models, but in manipulating the estimated value. The most recent progress in this field 

employed dynamic programming (DP), based on Markov decision processes (MDPs), to create 

a daily report policy. However, the use of dynamic programming carries heavy costs for the 

solution; not only does the algorithm require an explicit transition probability matrix, the high 

computational storage requirements and inability to operate in continuous MDPs demand 

simplifying the problem. The purpose of this work is to introduce deep reinforcement learning 

as an alternative to solving problems characterized by a complex or continuous MDP. To this 

end, the author benchmarks the DP generated policy with one generated via proximal policy 

optimization. In conclusion, and despite the small number of employed learning iterations, the 

algorithm showcased a strong convergence with the optimal policy, allowing for the 

methodology to be used on the unrestricted problem, without incurring in simplifications such 

as action and state discretization. 
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Resumo 

 

Em 1995 foi emitida uma adenda ao Acordo de Basileia vigente, o Basileia I, que permitiu que 

as instituições financeiras optassem por desenvolver modelos internos de medição de risco, 

tendo por base o value-at-risk (VaR), ao invés de recorrer ao modelo estipulado pelo regulador. 

Desde então, a comunidade científica focou os seus esforços na melhoria da precisão dos 

modelos de VaR procurando assim reduzir os requisitos de capital definidos na regulamentação. 

No entanto, alguns autores propuseram que a chave para a optimização do reporte não estaria 

na melhoria dos modelos existentes, mas na manipulação do valor estimado. O progresso mais 

recente recorreu ao uso de programação dinâmica (DP), baseada em processos de decisão de 

Markov (MDP) para atingir este fim, criando uma regra de reporte diária. No entanto, o uso de 

DP acarreta custos para a solução, uma vez que por um lado, o algoritmo requer uma matriz de 

probabilidades de transição definida, e por outro, os elevados requisitos de armazenamento 

computacional e incapacidade de lidar com processos de decisão de Markov (MDP) contínuos, 

exigem a simplificação do problema em questão. Este trabalho visa introduzir deep 

reinforcement learning como uma alternativa a problemas caracterizados por um MDP 

contínuo ou complexo. Para o efeito, é realizado um benchmarking com a policy criada por 

programação dinâmica, recorrendo ao algoritmo proximal policy optimization. Em suma, e 

apesar do reduzido montante de iterações empregue, o algoritmo demonstrou fortes capacidades 

de convergência com a solução óptima, podendo ser empregue na estimativa do problema sem 

incorrer em simplificações. 
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1 Introduction 

 

In 1995, the Basel Committee on Banking Supervision issued an amendment to the first Basel 

Accord, Basel I. This amendment allowed financial institutions to develop internal risk models, 

based on the value-at-risk (VaR), as opposed to using the regulator’s predefined model. 

However, this liberty came at a cost, as the model’s ability to capture observed risk would be 

assessed on a yearly backtesting process, penalizing the market risk charge (MRC) as a function 

of the recorded violations. From this point onwards, the financial community focused its efforts 

on improving the accuracy of the VaR models to reduce the regulatory capital requirements. 

However, some authors proposed that the key towards disclosure optimization would not lie in 

improving the existing models, but in manipulating the estimated value. The most recent 

progress in this field employed dynamic programming (DP) based on Markov decision 

processes (MDPs), to create a daily report policy, based on the applicable regulation and the 

model’s ability to capture observed risk. An issue with the use of dynamic programming is the 

heavy cost involved. Firstly, the algorithm requires an explicit transition probability matrix, 

unfeasible in financial markets. This, paired with high computational storage requirements and 

an inability to operate in continuous MDPs, meant an alternative solution was needed.  

In recent years, neural networks (NNs) have seen a widespread growth, boosting the fields 

which rely on its use, from computer vision to data science. However, the usage of these 

techniques within the financial sector has been long overdue, partly, due to the concerns over 

the lack of transparency of black-box methodologies. The purpose of this work is to introduce 

deep reinforcement learning (DRL) as an alternative to solving problems characterized by 

MDPs, whose dynamics have proven to be too complex or hard to map, usually the case in 

financial markets. The introduced class of algorithms do not require an explicit transition 

matrix, and therefore require little information about the underlying environment’s dynamics. 

Furthermore, some versions have the ability to learn continuous action and state spaces. In 

short, the goal of reinforcement learning is to provide an optimal policy which maps states to 

actions through a repeated trial-and-error process. 

In order for the algorithm to be deemed viable to tackle this category of financial problems, its 

ability to converge towards a known optimal solution must be assessed, in other words, 

benchmarked, under the premise that should the algorithm prove capable of approximating a 
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simple problem’s solution, then surely its capability will be maintained when solving a complex 

environment, in which dynamic programming is not viable. For this purpose, proximal policy 

optimization (PPO), one of the most recent developments in DRL with improved convergence 

and stability in the continuous domain in comparison to its predecessors, has been selected to 

approximate the optimal solution computed by DP. In practice, the usage of algorithms with 

solid performance in discrete spaces, such as double dueling deep Q-network (DDQN), would 

be more appropriate for the selected benchmark as they can estimate the optimal solution faster 

and more efficiently – the algorithms in the policy gradient taxonomy, to which PPO belongs, 

tend to be stuck in local optima. 

The problem selected for benchmarking is that of optimizing the value at risk disclosure under 

the second Basel Accord, characterized by discrete action and state spaces. The reasoning 

behind this selection is due to the fact that the problem in question has a complex and 

demanding environment, regarding its space dimensions, which could benefit from proximal 

policy optimization’s ability of learning under continuous spaces. This would therefore avoid 

many of the pitfalls and simplifications incurred to make the problem tractable for dynamic 

programming. The solution consists in the creation of a policy, that is, a map from actions to 

spaces, in which the state corresponds to a tuple of (a) the time remaining until the backtesting 

process is resumed, in days, in which the multiplier is reviewed as a function of the incurred 

exceedances, (b) in exceedances recorded to date, and lastly, (c) the applicable multiplier, for 

the relevant period. The policy is constructed via a proximal policy optimization agent, which 

learns the dichotomy between reporting low VaR values, minimizing the short-run cost, and the 

occurrence of exceedances, in which the observed loss surpasses the reported expected loss, 

leading to the next year’s multiplier to be modified. 

The first part of this thesis introduces the applicable theoretical base, from the regulatory 

context which originates the need to optimize an internal model’s VaR disclosure, to the deep 

reinforcement learning theory, seeking to establish a link between dynamic programming and 

reinforcement learning. The focus then shifts to approximating the optimal policy generated by 

Seixas (2016), in addition to benchmarking the yielded solution with that of the mentioned 

author’s. Despite the small number of training iterations used in approximating the solution, the 

algorithm’s policy presented strong signs of convergence with the DP’s optimal policy, yielding 

similar results in behavior and incremental return, generated through the investment of the freed 

capital, whilst maintaining the institution’s exposure constant. 
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The thesis’ contribution to the field is therefore threefold: (a) it demonstrates the adequacy of 

deep learning in providing a solution to the Basel disclosure problem; (b) it paves the way for 

future improvements on the problem at hands via deep reinforcement learning; and lastly, (c) it 

introduces the class of deep reinforcement learning as a solution for optimization problems, a 

methodology long overlooked in the financial community. 
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2 Theoretical Framework 

 

2.1 Basel Accords 

 

In late 1974, in the wake of severe disturbances in the currency and banking markets, the G10 

central bank governors established the Committee on Banking Regulations and Supervisory 

Practices. This committee was posteriorly renamed to Banking Committee on Banking 

Supervision (BCBS). 

The BCBS was created as a regulatory body, providing a framework for global supervision and 

risk regulation. Nevertheless, the BCBS does not have legal power, nor has it pursued such 

goal. The institution’s purpose is, in short, to provide guidelines and standards on banking 

regulation, and to create a channel for cooperation and discussion between financial institutions. 

In July 1988, the Basel Committee on Banking Supervision presented a framework for 

measuring the capital adequacy, specifically, to establish the minimum levels of capital required 

for international banks. This documentation became known as Basel I, suggesting there would 

be further improvements to the document. The first Basel Accord focused mainly in credit risk, 

coupling the required capital level with the degree of credit risk in the institution’s portfolio. 

The latter’s assets would then be categorized into three buckets according to its risk, as 

perceived by the regulator. The regulation stipulated that financial institutions (FI) were 

required to hold a minimum of eight percent of capital in relation to risk-weighted assets – the 

capital adequacy ratio (CAR). Formally, this notion is expressed by the following formula: 

𝐶𝐴𝑅 =
𝑇𝑖𝑒𝑟 𝐼 𝐶𝑎𝑝𝑖𝑡𝑎𝑙 + 𝑇𝑖𝑒𝑟 𝐼𝐼 𝐶𝑎𝑝𝑖𝑡𝑎𝑙

𝑅𝑖𝑠𝑘 𝑤𝑒𝑖𝑔ℎ𝑒𝑑 𝑎𝑠𝑠𝑒𝑡𝑠 𝑓𝑜𝑟 𝑐𝑟𝑒𝑑𝑖𝑡 𝑟𝑖𝑠𝑘
100 , (1) 

where 𝑇𝑖𝑒𝑟 𝐼 𝐶𝑎𝑝𝑖𝑡𝑎𝑙, often referred to as core capital, comprises (a) paid up capital, (b) 

reserves and surplus, and (c) capital reserves and 𝑇𝑖𝑒𝑟 𝐼𝐼 𝐶𝑎𝑝𝑖𝑡𝑎𝑙, termed supplementary 

capital, refers to (a) undisclosed reserves, (b) revaluation reserves, (c) general provision and 

loss reserves, (d) hybrid (debt/equity) capital instruments, and € subordinated debt instruments. 

Additionally, the accord provided means of separating an institution’s assets into five different 

percentage categories, based on its risk nature, and accordingly, establishing each asset’s 

weight-factor.  
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Following general criticism that the standard approach defined in Basel I was incapable of 

accurately measuring risk, the BCBS incorporated market risk in capital requirements, 

reflecting the increasing tendency for FIs to increase their exposure to derivatives. In addition, 

the document introduced the ability for firms to self-regulate, as a means of encouraging risk 

taking and adequate measurement. The 1995 amendment to the first Basel Accord provided a 

framework for firms to assess the quality of their risk models through a backtesting process, as 

this methodology started to diffuse among FIs. Following this document, institutions were 

allowed to develop their own financial models to compute their market risk capital thresholds 

– the daily VaR. This archetype would be known as the Internal Model Approach (henceforth 

referred to as IMA). The backtesting process tied the market risk capital requirement, MRC, to 

both the portfolio’s risk, and the internal model’s quality. The market risk charge in a given day 

𝑡, would then correspond to the combination of two components, the general risk charge and 

the specific risk charge 

𝑀𝑅𝐶 = 𝐺𝑅𝐶 + 𝑆𝑅𝐶 , (2) 

where GRC and SRC correspond to the general and specific risk charges, respectively. Whereas 

the GRC depended directly on the model, SRC represented the specific risk charge, a buffer 

against idiosyncratic factors, including basis and event risks. The former corresponded to the 

maximum between the present day’s value-at-risk, and the average of the last sixty daily risk 

disclosures, multiplied by a factor, which became known as 𝑘 or the multiplier factor. The 

condition stated in the previous sentence reflects in the following mathematical expression 

 

𝐺𝑅𝐶𝑡 = max (𝑉𝑎𝑅𝑡,1%, 𝑘 ∗
1

60
∑ 𝑉𝑎𝑅𝑡−𝑖,1%

59

𝑖=0

) , (3) 

where the multiplier’s value, 𝑘, depended on the amount of violations verified during the 

backtesting process, and 𝑉𝑎𝑅𝑡,1% represents the 10-day value-at-risk computed at the 1% level.  
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Zone 
Number of 

Exceptions 

Potential 

Increase in K 

Multiplier 

Value (K) 

Cumulative 

Probability (%)1 

Green 0 to 4 0.00 3.00 [8.11;89.22] 

Yellow 5 0.40 3.40 95.88 

 6 0.50 3.50 98.63 

 7 0.65 3.65 99.60 

 8 0.75 3.75 99.89 

 9 0.85 3.85 99.97 

Red ≥10 1.00 4.00 99.97 

Table 1 – The Basel Penalty Zones 

 

The backtesting process would take place every 250 trading days, analyzing the entire period’s 

model estimates, with the VaR in question being computed at the 1% significance level.  Table 

1 summarizes the multiplier factor 𝑘’s states in relation to the recorded exceedances in the 

backtesting process for a given period. 

In 2004, the BCBS released Basel II, the second Basel Accord. The document sought to further 

improve the risk management and capital adequacy guidelines set by Basel I, sixteen years 

earlier.  The motivation behind this improvement lied in Basel I’s innability to differentiate risk, 

especially among members of the Organization for Economic Cooperation and Development 

(OECD), and the discrepancy between Basel I’s risk weights, and the actual economic risks. 

Whilst the first accord focused on credit risk, the new proposal integrated market (included in 

the 1996 ammendment) and operational risks on the minimum capital requirement computation. 

Another important addition in Basel II was the fact that assets’ credit rating played a major role 

in determining risk weights. Such reflected in riskier assets having larger weights, thus leading 

to a larger MRC. 

 

Basel II created a three pillar structure, (a) minimum capital requirements, (b) supervisory 

review process and lastly, (c) market discipline. Regarding the first pillar (a), its goal was to 

provide a framework for calculating the required capital level for specific risk types, namely 

credit, operational and market risks. The first branch provided FIs with several alternatives for 

computing each of the risk types, thus enabling firms to choose that which suits their risk 

                                                           
1  “The probability of obtaining a given number or fewer exceptions in a sample of 250 observations when the 
true coverage level is 99%” (Basel Committee on Banking Supervision, 1996).  



7 
 

profile, enabing exceptional loss or economic crysis endurance. Pillar number two (b) provided 

details regarding how supervision should be organized in order to ensure the implementation 

quality of internal processes and controls, resulting in additional capital levels when applicable. 

Said pillar relied on the use of banking stress tests to assess an institution’s strength in adverse 

economic scenarios. Lastly, the third pillar (c) concerns transparency, referring to mandatory 

disclosures within each FI to the general public, thus enabling symmetric market information, 

whilst facilitating FI comparison. 

 

At the time of the present work, the fourth Basel Accord was already showing signs of replacing 

its predecessor. However, since the content reflected throughout the document focuses on the 

second Basel Accord, the succeeding framework has not been further discussed. 

2.2 Value at Risk 

 

The value-at-risk is a statistical measure of potential loss, currently the market’s standard 

measure in assessing market risk. This concept can be defined as the maximum potential change 

in a financial portfolio’s value, with a certain probability, over an established period of time 

(Alexander, 2008).  

According to Artzner et al. (1999), a risk measure 𝜌(∙) is to be considered coherent should it 

abide by four principles: (a) the monotonicity condition, which states that if a portfolio has 

lower returns than another portfolio for every state of the world, the latter’s risk measure should 

be greater than the former’s; (b) the translation invariance property, which establishes that if an 

amount of cash is added to a portfolio, its risk measure should go down by the same amount; 

(c) the homogeneity requirement in turn, stated that changing the size of a portfolio by a factor 

λ, while keeping the relative amounts of different items in the portfolio the same, should result 

in the risk measure being multiplied by λ; and lastly, (d) the subadditivity axiom states that the 

risk measure for two portfolios after they have been merged, should be no greater than the sum 

of their risk measures before said transformation. These conditions are represented 

mathematically in table 2.  



8 
 

Condition Name Condition Expression  

Monotonicity 𝜌(𝑌) ≥ 𝜌(𝑋) 𝑖𝑓 𝑋 ≤ 𝑌  

Homogeneity 𝜌(𝛼𝑋) = 𝛼𝜌(𝑋), ∀ 𝛼 > 0  

Risk Free Condition 𝜌(𝑋 + 𝑘) = 𝜌(𝑋) − 𝑘, ∀ 𝑘  

Subadditivity 𝜌(𝑋 + 𝑌) ≤ 𝜌(𝑋) + 𝜌(𝑌)  

Table 2 – The four coherent risk measure conditions 

 

Value-at-risk satisfies the first three conditions, but is not guaranteed to satisfy the fourth 

condition, the subadditivity axiom.  

The value at risk can be described as the maximum loss which can be expected to occur if a 

portfolio is held static for a given amount of time ℎ, under a certain confidence level (1 − 𝛼) 

(Alexander, 2008). In a more practical view, it can be thought of as the amount of capital that 

must be added to a position to make its risk acceptable to regulators. This risk measure was 

introduced as an alternative to standard portfolio risk metrics, namely volatility and correlation, 

as these can only accurately measure risk when the asset’s or risk factor’s returns have a 

multivariate normal distribution. Value-at-risk encompasses a wide set of attractive features, 

namely the fact that it can easily be aggregated and disaggregated whilst taking into 

consideration the dependencies between its constituents; and its ability to not only measure the 

risk factor’s risk, but their sensitivities as well (Alexander, 2008).   

Considering a significance level, 𝛼, such that, 0 < 𝛼 < 1, its quantile for a given distribution 

is given by 

𝑃(𝑋 < 𝑥𝛼) = 𝛼 , (4) 

Thus, the quantile 𝛼 of distribution 𝑋, 𝑥𝛼, can be obtained according to  

𝑥𝛼 = 𝐹−1(𝛼) , (5) 

where 𝐹−1 represents the inverse of the distribution function. 

Recall the VaR corresponds to the maximum loss which is expected to be exceeded with 

probability 𝛼, when the portfolio is held static for ℎ days. Accordingly, it corresponds to the 

computation of the 𝛼 quantile of the discounted ℎ-day P&L distribution: 
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𝑃(𝑋ℎ < 𝑥ℎ𝑡,𝛼) = 𝛼 , (6) 

where 𝛼 corresponds to the significance level and 𝑋ℎ =
𝐵ℎ𝑡𝑃𝑡+ℎ−𝑃𝑡

𝑃𝑡
 represents the ℎ-day 

discounted return. 

According to the previous statement, and since the value-at-risk is an estimated loss, its value 

can be obtained by direct application of equation (5): 

𝑉𝑎𝑅ℎ,𝛼 = −𝐹𝐿
−1(𝛼) , (7) 

where 𝐹𝐿
−1(𝛼) represents the inverse cumulative distribution function of losses. 

By replacing the previous equation into (6) yields 

𝑉𝑎𝑅ℎ,𝛼 = −𝑥ℎ𝑡,𝛼 , (8) 

 

According to Simons (2000), the parametric linear framework is the most used of the three 

existing estimation methods, hence, this thesis’ focus. Within parametric methods, most 

research focuses on the use of normal distribution given its simplicity and the ability to use the 

ℎ-day square root, √ℎ, as a scaling rule for linear portfolios. It is important to note however, 

that this rule leads to a systematic underestimation of risk, where the degree of underestimation 

is aggravated the longer the time horizon, jump intensity2 and confidence level, failing to 

address the objective of the Basel Accords (Danielsson & Zigrand, 2003). Nevertheless, this 

thesis will focus on the normal parametric value-at-risk and its scaling rule, given its well-

known behavior and widespread use. 

Assuming the portfolio’s discounted returns, 𝑋ℎ,𝑡 are i.d.d. and normally distributed with mean 

µ and standard deviation 𝜎, i.e. 

𝑋𝑡,ℎ ~
𝑖𝑑𝑑

𝑁(𝜇ℎ𝑡, 𝜎ℎ𝑡
2 ) , (9) 

applying the normal standard transformation to the previous variable yields 

𝑃(𝑋ℎ𝑡 < 𝑥ℎ𝑡,𝛼) = 𝑃 (𝑍 <
𝑥ℎ𝑡,𝛼 − 𝜇ℎ𝑡

𝜎ℎ𝑡
) = 𝛼 , (10) 

where 𝑍 is a standard normal variable. 

                                                           
2 In The term jump refers to jump diffusion stochastic processes, models which aim at assessing the probability 
of two i.d.d. variables modeled under the same distribution, seeing their price move significantly and 
synchronously. 
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Applying equation (5) to the previous expression results in the portfolio’s standardized 

discounted return’s inverse cumulative function 

𝑥ℎ𝑡,𝛼 − 𝜇ℎ𝑡

𝜎ℎ𝑡
= Φ−1(𝛼) , (11) 

 

Because the normal distribution is symmetric around its mean, then the previous expression can 

be rewritten as 

𝜙−1(𝛼) = −𝜙−1(1 − 𝛼) , (12) 

 

Plugging the previous expression into (7) yields the formula of the value-at-risk with drift 

adjustment 

𝑉𝑎𝑅ℎ𝑡,𝛼 = 𝜙−1(1 − 𝛼)𝜎ℎ𝑡 − 𝜇ℎ𝑡  , (13) 

where 𝜇ℎ𝑡 represents the drift adjustment. 

Under the assumption that the portfolio’s expected return is the risk-free rate, 𝜇ℎ𝑡 = 0, and 

dropping the implicit dependence of VaR on time 𝑡, the previous expression can be further 

simplified as 

𝑉𝑎𝑅ℎ,𝛼 = 𝜙−1(1 − 𝛼)𝜎ℎ , (14) 

 

Under the assumption that the returns follow a normal distribution, the h-day VaR can be 

obtained resorting to the square root scaling rule, that is 

𝑉𝑎𝑅ℎ,𝛼 = √ℎ ∗ 𝑉𝑎𝑅1,𝛼 , (15) 

 

 

 

 

 

 



11 
 

2.3 Markov Decision Process 

 

Markov decision processes, or simply, MDP’s, are comprised of a set of spaces 𝒮, a vector of 

possible actions 𝒜, a transition and reward models. Miranda & Fackler (2002) sum up a MDP 

by a choice to be taken at each time step t, 𝑎𝑡, from the available relevant action set for the 

present state 𝑠𝑡, 𝒜(𝑠𝑡), earning a reward 𝑅𝑡 , from a function parametrized by both current state 

and selected action.  

 

Figure 1 – The figure shows the agent-environment interaction in a Markov decision process, where the agent interacts with 

the environment by performing the selected action, and the environment returns the reward and new state associated with the 

agent’s behavior. 

 

The transition model defines which state the environment transitions to, contingent on the 

present state and selected action,  

𝒫𝑠𝑠′
𝑎 = 𝑃(𝑠′|𝑠, 𝑎) = ℙ[𝑆𝑡+1 = 𝑠′|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] , (16) 

where ℙ denotes a probability function. 

The reward function on the other hand, defines the reward yielded at time step 𝑡, contingent on 

the current state 𝑠 and selected action 𝑎 

𝑅𝑡 = 𝑅(𝑠𝑡, 𝑎𝑡) , (17) 

 

These two components, the transition and rewards models, form the basis of a Markov decision 

process. 

Markov introduced the concept of memorylessness of a stochastic process, a key propriety of 

MDPs. This assumption states that each state pair is independent of past-occurrences, meaning, 

each state contains all the meaningful information from the history. In other words, the future 
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and past are conditionally independent given the present, since the current state contains all the 

required statistical information to decide upon the future.  

The concept of policy, represented by the symbol π, which corresponds to a mapping from 

states to actions, is meaningful throughout the course of this work. Policies can be deterministic 

or stochastic. The former corresponds to a policy in which the optimal action is solely 

determined by the current state. The probability of an action being selected in state 𝑠 under a 

deterministic policy 𝜋 is given by 

𝜋(𝑠) = 𝑎 , (18) 

whereas if the policy 𝜋 is stochastic, the action selection is contingent on a probability 

function 

𝜋(𝑎|𝑠) = ℙ[𝐴𝑡 = 𝑎|𝑆𝑡 = 𝑠] , (19) 

 

Value functions, 𝑣𝜋(𝑠) attribute a quantifiable goodness value to a given state under a policy 

𝜋, by attempting to capture its associated future reward. The latter corresponds to the sum of 

discounted future rewards, or expected return, given by 𝐺𝑡 

𝐺𝑡 = ∑ 𝛾𝑘−𝑡−1𝑅𝑘

𝑇

𝑘=𝑡+1

 , (20) 

where 𝛾 ∈ [0,1] represents the discount term, a factor by which to penalize future rewards.  

The state-value function of a given state 𝑠 at time 𝑡, corresponds to the expected reward the 

algorithm is to observe starting from state 𝑠 

𝑣𝜋(𝑠) = 𝔼𝜋[𝐺𝑡|𝑆𝑡 = 𝑠] 

            = 𝔼[𝑅𝑡+1 + 𝛾𝑣(𝑆𝑡+1)|𝑆𝑡 = 𝑠] , (21) 

  

where 𝔼𝜋[∙] represents the expected value of a given random variable considering the agent 

follows policy 𝜋.  

Whilst the value function focuses on individual states, the action-value function 𝑞𝜋, seeks 

attributing a fitness value for the action as well,  

𝑞𝜋(𝑠, 𝑎) = 𝔼𝜋[𝐺𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] 

                = 𝔼[𝑅𝑡+1 + 𝛾𝑞𝜋(𝑆𝑡+1, 𝐴𝑡+1)|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] , 

(22) 
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Using the probability distribution over all possible actions and q-values, that is, state-action 

values, the value function can be obtained by 

v𝜋(𝑠) = ∑ 𝑞𝜋(𝑠, 𝑎)𝜋(𝑎|𝑠)

𝑎∈𝒜

 , (23) 

 

The overall objective under the MDP framework is to compute the value function which 

maximizes the rewards, 𝑣𝜋∗
(𝑠) ≥ 𝑣𝜋(𝑠) ∀ 𝜋, 𝑠 ,  

𝑣∗(𝑠) = max
𝜋

𝑣𝜋(𝑠)  (24) 

𝑞∗(𝑠, 𝑎) = max
𝜋

𝑞𝜋(𝑠, 𝑎) , (25) 

 

The previous goals can be achieved via Bellman’s optimality equations 

v∗(𝑠) = max
𝑎

𝔼[𝑅𝑡+1 + 𝛾𝑣∗(𝑆𝑡+1)|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] (26) 

𝑞∗(𝑠, 𝑎) = 𝔼[𝑅𝑡+1 + 𝛾 max
𝑎′

𝑞∗(𝑆𝑡+1, 𝑎′)|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] , (27) 

 

The reinforcement learning models and concepts presented and used throughout this thesis, 

assume problems described by infinite horizon, stochastic transition model MDPs. 

 

2.4 Proximal Policy Optimization 

 

The current section presents, in a concise manner, the main ideas behind the proximal policy 

optimization algorithm, on which the agent applied in this thesis is based. For those unfamiliar 

with the topic, Appendix A attempts to shed light on the deep reinforcement learning algorithm 

taxonomy, starting with familiar concepts such as dynamic programming and Monte Carlo 

returns, to the present section’s algorithm’s predecessor, trust region policy optimization 

(TRPO). Note however, that the appendix merely scratches the surface in terms of 

reinforcement learning’s literature. It is important to mention that there are several important 

and widely used algorithms not present in the referred section, which form the cornerstone of 

deep reinforcement learning. For instance, asynchronous advantage actor-critic (A3C) and its 

synchronous and deterministic version (A2C), deterministic policy gradient (DPG), deep 

deterministic policy gradient (DDPG), both of which, model the policy as a deterministic 
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decision, distributed distributional DDPG (D4PG), actor-critic with experience replay (ACER), 

actor-critic using Kronecker-Factored trust region (ACKTR), soft actor-critic (SAC). However, 

in order to keep the algorithmic literature review as concise as possible, these have been left 

out of the present discussion. These algorithms form a clear timeline of deep reinforcement 

learning’s evolution, thus, understanding them, may help clarifying and solidifying the 

employed concepts. 

The trust region policy optimization algorithm introduced in Appendix A.III – Policy Gradient 

has a few shortcomings, namely, the computation of the Fisher matrix at every model parameter 

update, which is computationally expensive, and its requirement of large batches of rollouts to 

approximate the the Fisher matrix accurately. 

Proximal policy optimization (Schulman, et al., 2017) is an on-policy algorithm, able to learn 

control problems under discrete or continuous action spaces, which seeks providing the answer 

for the same question as its predecessor, TRPO, does: to what extent can the policy be updated, 

using the available information, without modifying it too largely, which would result in 

performance collapse. Whereas TRPO provides the answer relying on the use of a complex 

second-order method, PPO is comprised of a set of first-order equations, combined with a few 

tricks, which ensure the similarity between the old and new policies. 

Consider the probability ratio between the old and new policies 

𝑟(𝜃) =
𝜋(𝑎|𝑠, 𝜃)

𝜋(𝑎|𝑠, 𝜃𝑜𝑙𝑑)
  , (28) 

 

Under the previous construct, TRPO’s objective function can be represented as 

𝐽𝑇𝑅𝑃𝑂(𝜃) = 𝐸 [𝑟(𝜃)�̂�𝜋𝜃𝑜𝑙𝑑
(𝑠, 𝑎)] , (29) 

 

The previous equation represents another of TRPO’s shortcomings not mentioned in the 

previous paragraph. Should the distance between policies not be bounded, then the algorithm 

would suffer from instability, caused by large parameter updates and large policy ratios. PPO 

imposes a constraint on this ratio, by ensuring 𝑟(𝜃) stays within the range [1 − 𝜖, 1 + 𝜖], where 

𝜖 is the clipping hyperparameter. 
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The new objective function, a surrogate function, is referred to as the Clipped3 objective 

function, and is represented by 𝐽𝐶𝐿𝐼𝑃(𝜃) 

𝐽𝐶𝐿𝐼𝑃(𝜃) = 𝐸 [(𝑟(𝜃)�̂�𝜋𝜃𝑜𝑙𝑑
(𝑠, 𝑎), 𝑐𝑙𝑖𝑝(𝑟(𝜃), 1 − 𝜖, 1 + 𝜖)�̂�𝜋𝜃𝑜𝑙𝑑

(𝑠, 𝑎)) ] , (30) 

where 𝑐𝑙𝑖𝑝(∙) represents the clipping function, which ensures the first argument, is bounded by 

the remaining arguments. 

The introduced objective function takes the minimum between the policy’s ratio, and the 

clipped arguments, therefore preventing excessively large (𝜃) updates, especially when 

associated with very large rewards – which would result in extreme policy updates. 

The version of proximal policy optimization employed throughout this thesis, corresponds to 

the algorithm’s Clip or clipped version, under the actor-critic framework. In order to 

accommodate the actor-critic framework, the authors augmented the objective function with an 

error term on the value function, whilst adding an entropy term to encourage exploration. 

𝐽𝐶𝐿𝐼𝑃′(𝜃) = 𝐸 [𝐽𝐶𝐿𝐼𝑃(𝜃) − 𝑐1(𝑉𝜃(𝑠) − 𝑉𝑡𝑎𝑟𝑔𝑒𝑡)
2

+ 𝑐2𝐻(𝑠, 𝜋𝜃(𝑎|𝑠))] , (31) 

where 𝑐1 corresponds to the error term coefficient, and 𝑐2 to the entropy coefficient, both of 

which, are hyperparameters. 

Algorithm Proximal Policy Optimization with Clipped Objective 

1. Input: initial policy parameters 𝜃0, initial value function parameters 𝜙0 

2. for 𝑘 = 0,1,2, … do 

3.  Collect a set of partial trajectories 𝒟𝑘 = {𝜏𝑖} by running policy 𝜋𝑘 = 𝜋𝜃𝑘
  in the 

environment 

4.  Compute rewards-to-go �̂�𝑡 

5.  Compute advantages estimates, �̂�𝜋𝜃𝑜𝑙𝑑
𝑡, using any advantage estimation algorithm based on 

the current value function 𝑉𝜙𝑘
 

6.  Update the policy by maximizing the Clipped PPO objective: 

𝜃𝑘+1 = argmax
𝜃

ℒ𝜃𝑘
(𝜃) 

by taking K steps of minibatch stochastic gradient ascent via Adam where 

ℒ𝜃𝑘
= 𝔼𝑡~𝜋𝑘

[∑ [min (𝑟𝑡(𝜃)�̂�𝜋𝜃𝑜𝑙𝑑
𝑡, 𝑐𝑙𝑖𝑝(𝑟𝑡( 𝜃), 1 − 𝜖, 1 + 𝜖))]

𝑇

𝑡=0

�̂�𝜋𝜃𝑜𝑙𝑑
𝑡 ] 

 end for 

Algorithm 1 – Proximal policy optimization pseudo-code. 

 

  

                                                           
3 The function is not named PPO’s objective function, as the algorithm introduces two versions of the objective 

function, PPO-Penalty and PPO-Clip. However, the author opted for only introducing the latter as it 
corresponds to the version used in this thesis. 
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3 Literature Review 

 

Since the early 1990’s, Value-at-Risk has increasingly become the standard for risk measuring 

and management throughout a wide range of industries. However, the concept attained special 

relevance with the 1995 amendment to the first Basel Accord, which enabled FI’s to develop 

and use their own internal models, as described in section 2.1. Ever since, the literature on 

value-at-risk, ranging from its estimation to its optimization under the Basel Accord framework, 

has grown uninterruptedly. The present chapter focuses on introducing past findings on the 

subject at hands and summarizing the corresponding author’s findings. 

In 2007, Pérignon et al. (2007) introduced the notion that commercial banks tend to over-report 

their VaR estimate. The authors found three possible justifications for this fact. Firstly, incorrect 

risk aggregation methods induce higher VaR estimates by improperly accounting for the 

diversification effects. Secondly, banks tend to overstate their VaR metric to protect their 

reputation, as any evidence that the institutions are incapable of accurately measure their risk, 

would result in market-driven penalties. Lastly, a typical principal-agent problem takes place, 

where the risk manager voluntarily increases the VaR estimate to avoid attracting unwanted 

attention. Such behavior not only represents higher costs for the banks in terms of larger 

allocated capital and corresponding opportunity costs, but to the economy as well. Specifically, 

according to the author, the tendency to over-report risk leads to an exaggerate estimate of a 

bank’s implicit risk from an investor’s point of view, influencing its asset-pricing through the 

increase of required return on equity thus generating market distortions; furthermore, the 

excessive capital allocation leads to the rejection of funding for relevant projects, creating a 

loss of value for the economy.  

With the introduction of the second Basel Accord, McAleer (2008) suggested a set of ten 

practices which aimed at helping FIs monitor and measure market risk, in order to minimize 

the daily capital charge, in particular when the FI focuses in holding and moving cash, rather 

than on risky financial investments. The author provided insights on (a) choosing between 

volatility models; (b) the underlying distribution’s kurtosis and leverage effects; (c) the 

covariance and correlation relationship models; (d) the use of univariate or multivariate models 

to forecast the value-at-risk; (e) the underlying distribution’s type selection according to the 

volatility type (conditional, stochastic or realized; (f) optimal parameter selection; (g) 

assumption derivation; (h) forecasting model’s accuracy determination; the penultimate point, 
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(j) optimizing the FI’s exceedances, which constitutes the object of this thesis; and lastly, (k) 

exceedance management and its relationship with the public interest. 

In the aftermath of McAleer (2008)’s findings and recommendations on risk measurement and 

daily capital charge optimization, McAleer et al. (2009) introduced a model which attempted 

to design a rule to minimize the daily capital charges for institutions working under the Basel 

II regulation. This methodology, entitled the dynamic learning strategy (DYLES), was 

characterized by discrete and fast reactions whenever exceedances were recorded, being context 

sensitive in the sense that it accommodated past information, or violation history, onto its 

estimate, behaving more cautiously or conservatively when more exceedances had been 

recorded, and aggressively otherwise. 

The authors formalized DYLES as: 

min
Θ=[𝑃0,𝜃𝑃,𝜃𝑅]

1

250
∑ max [−𝑃𝑡𝑉𝑎𝑅(𝑡 − 1), [3 + 𝑘]

1

60
∑ −𝑃𝑡𝑉𝑎𝑅(𝑡 − 𝑝)

60

𝑝=1
 ]

250

𝑝=𝑗
 , (32) 

where 𝑃𝑡 is a variable which is tied to the number of recorded exceedances, representing how 

aggressive or conservative the estimate is regarding the estimated risk measure, the value-at-

risk; 𝜃𝑃 and 𝜃𝑅 are, respectively, the penalty per violation and the 25-day accumulated reward; 

p represents the backtesting time step, from 1 to 250; and k represents the applicable multiplier 

increment, applied to 3, from the value set [0.0; 0.4; 0.5; 0.65; 0.75; 0.85; 1], should there be 

more than 4 recorded exceedances in the previous financial year. Lastly, t represents, as usual, 

the date in which the system is being modeled in. The authors concluded that in all occasions, 

using the DYLES strategy led to higher capital savings when compared to a passive behavior, 

that is, disclosing the computed VaR, decreasing the capital requirements by 9.5%, on average, 

up to 14%, and reducing, on average, the number of violations from 12 to 8.  

Kuo et al. (2013) proposed a modification to the DYLES decision rule, attempting to 

incorporate the challenges faced by banks created by the Basel III reforms as noted by Allen et 

al. (2012). In order to do so, Kuo et al. (2013) added the current market cost of capital to the 

DYLES rule, naming it, MOD-DYLES. The improved model not only allowed higher cost 

savings when compared with the original DYLES methodology, but it also enabled its extension 

to other VaR computation methods (Kuo, et al., 2013).  The authors analyzed three strategies – 

standard unmanipulated disclosure, DYLES-based approach and the proposed MOD-DYLES 

model – for two VaR estimation methods, the constant variance-covariance, and the variance-

covariance GARCH methods. For the first estimation method, Kuo et al. (2013) observed that 
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MOD-DYLES introduced an average saving of 1.36% when compared to the passive standard 

disclosure approach, whilst drastically decreasing violations. Focusing on its predecessor, the 

modified algorithm managed to save, on average, an extra 0.10% per year, although as expected 

given their identical underlying exceedance constraints, the number of recorded violations 

matched. Regarding the second estimation model, the VC-GARCH, the proposed framework 

saved on average 1.09% and an extra 0.06% per year, respectfully, for the standard disclosure, 

in comparison with DYLES. 

Seixas (2016) sought to further exploit the concept first introduced by McAleer (2008) that the 

path to optimization should not focus exclusively on the VaR estimation method, but also on 

the percentage of the metric which should be disclosed, as a form of capital charge 

minimization. The researcher’s work emphasized the need to construct an optimal policy for 

the daily VaR disclosure, under the internal model approach, as proposed by the Basel II 

Accords. In order to do so, Seixas (2016) applied the dynamic programming methodology to 

the problem at hands, using a discrete MDP with infinite periods. The author managed to create 

a policy which minimized the daily capital charge, considering (a) the time remaining until the 

back process takes place, (b) the number of recorded exceedances until the moment of decision, 

and lastly, (c) the applicable multiplier as defined by the preceding financial year’s backtesting 

process. The policy generated tended to underreport the one-day value-at-risk, that is, to adopt 

an aggressive approach, which is consistent with McAleer et al. (2009)’s notes on risk 

manager’s behavior. The use of the dynamic programming framework allowed surpassing some 

of the limitations and obstacles faced by DYLES’s, namely, its employment being contingent 

on the portfolio at hands, and the parameter estimation problem, which would represent a 

different disclosure rule contingent on the underlying distribution. When compared to the 

standard option of disclosure based on a normal distribution’s strategy, Seixas (2016)’s 

proposal outperformed the normal strategy in 82% of the times, yielding an average saving of 

7.22% per day, when applied to a S&P500 portfolio. 
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4 Methodology 

 

The purpose of the current chapter is twofold. Firstly, it models the Basel framework introduced 

in section 2.1 into a Markov decision process suitable for deep reinforcement learning. 

Secondly, the author covers the introduction and assessment of an agent, based on proximal 

policy optimization under the actor-critic framework, which attempts to approximate Seixas 

(2016)’s solution to the Basel problem. 

4.1 Environment Model 

 

The problem at hands has been thoroughly introduced in chapter 2.1. The current section turns 

to formalizing the environment so it can be solved via DRL. 

Recall that the model, under the model-free reinforcement learning framework, is comprised of 

three components, the state and action spaces, and the reward function. The agent’s goal under 

the proposed environment, is to minimize the daily regulatory capital charge (𝑘 ∗ 𝑥 ∗ 𝑉𝑎𝑅𝑡) by 

optimizing the percentage of the value-at-risk to disclose, 𝑥. The problem represents a trade-

off between opting to minimize the short-term disclosure – thus obtaining larger daily rewards 

– and the long-term cost, in the shape of the applicable multiplier, a direct function of the 

incurred exceedances, which in turn, are partly4 dictated by the value-at-risk manipulation. 

The state-space is characterized by three key aspects: (a) the time remaining until the 

backtesting process takes place (TtoB); (b) the number of recorded exceedances in the current 

trading period (EC); and lastly, (c) the applicable multiplier (K) throughout the given period. 

The first constituent, TtoB, corresponds to how much time, measured in days, remains until the 

new regulatory backtesting process starts, that is, before the year’s disclosure is accounted for, 

and its quality assessed, considering 250 trading days. The variable’s natural behavior is then 

to decade from its maximum value, until 1, when the review procedure takes place.  

The second flag, represented by the acronym EC, accounts for the number of exceedances 

recorded in the current episode. The set of possible values for this variable starts at 0, where no 

exceedance has been registered, and its maximum value is set at 11. The reasoning for the 

limitation to 11 exceedances is due to the fact that any further violations would still place the 

                                                           
4 The idea of partial responsibility in the action selection in determining the next period’s applicable multiplier 
is due to the stochastic nature of the environment’s transitions. 
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FI on the highest multiplier, hence, rational behavior dictates that at this point, the institution 

would report a null value-at-risk, so as to decrease the short-term costs. However, the 

environment is modeled under the assumption that reaching the 10-exceedance threshold, 

would translate in the FI not being able to deploy its internal model, being forced by the 

regulator to use a standard risk model instead. For this reason, the agent is incentivized to avoid 

the 10th exceedance at all costs, being forced to report the maximum disclosure value, under the 

assumption that reaching said threshold would imply the FI incurring in high reputational costs. 

The third variable’s values correspond to those defined in table 1. Accordingly, the state space 

corresponds to a 3-dimensional vector, comprised of the three discrete variables defined above, 

that is, one where each observation is a tuple comprised of one element of each discrete group. 

Specifically, 𝒯 = {𝜏 | 𝜏 ∈ ℤ, 1 ≤ 𝑥 ≤ 250}, ℰ = {𝜖 | 𝜖 ∈ ℤ, 0 ≤ 𝑥 ≤ 11} and 𝒦 =

{3, 3.4 , 3.5 , 3.65 , 3.75, 3.85, 4, 10000}, which correspond to the time, exceedance and 

multiplier spaces, respectively. Accordingly, an observation under the current environment is 

defined as 

𝑠𝑡 = (𝜏 ∈ 𝒯, 𝜖 ∈  ℰ, 𝜅 ∈ 𝒦) , (33) 

Note, however, the inclusion of an additional multiplier in 𝒦, corresponding to 10000, which 

corresponds to a bankruptcy state, thus being represented by an extreme value, one which the 

institution would avoid at all cost. 

In turn, the action space comprises the possible disclosure values, in percentage of the reported 

value, corresponding to values in the interval ]0, 3] with increments of 1𝐸−3, that is, 

𝒜 = {𝑛/1000 | 𝑛 ∈ ℕ+, 𝑛 ≤ 3000} , (34) 

where reporting the space 𝒜’s ceiling corresponds to a situation where VaR disclosure is 

threefold, and vice-versa.  

 

Despite being a model-free algorithm, a simulator must be present to be able to generate new 

samples from which the agent can learn. Such simulator describes the transitioned state 𝑠𝑡+1, 

contingent on the current state 𝑠𝑡 and the selected action 𝑎𝑡, 𝒫𝑠𝑠′
𝑎 . For the purpose of solving the 

described problem, a simple transition simulator based on Seixas (2016) has been used. Such 

entity is governed by the table which follows 
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Event Probability 

No Exceedance 𝑃(𝑍 < 𝑉𝑎𝑅 ∗ 𝑥) 

Exceedance 1 − 𝑃(𝑍 < 𝑉𝑎𝑅 ∗ 𝑥)  − 𝑃(𝑍 > 𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝐶ℎ𝑎𝑟𝑔𝑒) 

Bankruptcy 𝑃(𝑍 > 𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝐶ℎ𝑎𝑟𝑔𝑒) 

Table 3 – Transition probabilities for the simulator 

where 𝑍 is a standardized normal distribution of profit and loss, under which, the probabilities 

are yielded by  

𝑃(𝑍 < 𝑉𝑎𝑅 ∗ 𝑥) = Φ(𝑥 ∗ 𝑉𝑎𝑅𝛼,ℎ, 𝜇, 𝜎) (35) 

𝑃(𝑍 > 𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝐶ℎ𝑎𝑟𝑔𝑒) = 1 − Φ(𝑘𝑡 ∗ 𝑉𝑎𝑅𝛼,ℎ ∗ √10, 𝜇, 𝜎) , (36) 

 

One of the critical aspects of reinforcement learning is the reward function. Such construction 

is target of a both feature engineering, and prior domain knowledge. A surrogate reward 

function is introduced to help the algorithm converge to the optimal policy faster and more 

accurately, given its episodic nature. Specifically, an additional reward is given when the 

backtesting process occurs. Mathematically, 𝑓(𝑎𝑡, 𝑠𝑡) is given by 

𝑓(𝑎𝑡, 𝑠𝑡) = 𝑓(𝑎𝑡, [ 𝑡𝑡𝑜𝑏, 𝑒𝑐, 𝑘]𝑡) = −𝑘𝑡 ∗ 𝑎𝑡 ∗ 𝑉𝑎𝑅1,0.01 ∗ √10 + 𝐼𝑡(𝑠𝑡) ∗ ℛ(𝑠𝑡) , (37) 

where 𝑉𝑎𝑅1,0.01 represents the one day value-at-risk computed at the 1% significance level, and 

𝐼𝑡(𝑠𝑡) is an indicator function, which takes the value one if the episode’s time remaining to 

backtesting (Ttob) equals one, and zero otherwise, 

𝐼𝑡(𝑠𝑡) = { 
1

0

𝑖𝑓

𝑖𝑓

𝑇𝑡𝑜𝐵𝑡 = 1

𝑇𝑡𝑜𝐵𝑡 = 0
 , (38) 

and ℛ(𝑠𝑡) corresponds to the terminal reward space, 

ℛ(𝑠𝑡) = −10𝐸3 ∗ {
𝑅(𝑘 = 0) + (𝐾𝑖 − 𝐾𝑖+1)/2 , 1 ≤ 𝑘 ≤ 6

0.1, 𝑘 = 0
0, 𝑘 = 7

  , (39) 

 

Applying the previous equation, yields the eight additional reward factors 

ℛ(𝑠𝑡) = [0.1, 0.3, 0.35, 0.425, 0.475, 0.525, 0.6, 0] ∗ (−10𝐸3) , (40) 

 

The introduced surrogate reward aims at accelerating learning by injecting domain knowledge 

directly into the reward space, filling in the gap left by the use of episodic reinforcement 
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learning (RL). By doing so, the long-term objective is hardcoded into the agent which would 

otherwise be unperceived, as under episodic RL the agent never reaches the next period where 

the multiplier revision is materialized. The additional reward space attempts to capture the 

multiplier distribution’s underlying structure, by measuring the difference between multipliers, 

and scaling the gradient to the reward distribution’s parameters, a behavior similar to that of 

McAleer et al. (2009). Notice that the last multiplier, associated with bankruptcy, has a null 

reward, which is counterintuitive, as rationale dictates such state should be associated with 

additional penalties – the additional rewards are negative, according to the standard reward 

distribution. The reasoning behind such formulation, is that the reward for defaults is extremely 

negative, hence, penalizing the behavior further will only hinder policy gradients by 

contributing to the occurrence of exploding gradients, whilst producing no additional 

information. However, the additional space introduces a bias towards exceedances up to 4 (with 

the lowest multiplier), as the agent may seek exploiting this lower penalty - or higher reward. 

Yet, due to the small number of iterations, the author saw fit adding it to accelerate learning. 

For researchers aiming to solve the problem with more iterations, it is not advisable to use the 

proposed modification without extensive testing. 

Note that during training, the reward function has been scaled to the [-1, 0] range, to prevent 

exploding gradients and to ease gradient descent’s functioning, as is typical in DRL literature. 

The algorithm’s network is the same for both actor and critic, 2 hidden layers, each containing 

64 neurons, the first layer using a Rectified Linear Unit (ReLu) (Agarap, 2019) activation 

function for both entities.  Activation functions are needed to create non-linear transformations, 

as a neural network is only capable of performing linear transformations without non-linear 

activation functions. To understand more deep learning concepts such as neural networks and 

their architectures, the reader is advised to delve into Goodfellow et al. (2016). 

Deep learning algorithms can prove troublesome to understand and implement, particularly for 

those delving in the class of algorithms for the first time. For this reason, and to remove some 

of the conceptual abstraction, the remainder of the present section attempts to represent in 

simple terms the operations performed in a simple version of PPO, that is, to create an 

implementation pseudo-code. In practice, typical implementations rely on the use of 

Generalized Advantage Estimators (GAE), multithreading, among other useful modifications 

to simplify and speed computations and help convergence. These have been omitted from the 
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representation. Yet, to demonstrate the easiness of the algorithms in accommodating a variety 

of situations, the scheme presents the process for both discrete and continuous actions. 

Algorithm Actor Critic PPO Implementation 

1. Define the learning constants 

1.1  E_MAX : Maximum number of episodes 

1.2  E_LEN : The episode’s length 

1.3  𝛾 : The discount factor 𝛾 

1.4  𝛼𝐴 : Actor’s Learning Rate 

1.5  𝛼𝐶: Critic’s Learning Rate 

1.6  MIN_BATCH_SIZE : Minimum batch size for updates 

1.7  A_UPDATE_STEPS: Actor’s update operation n-step loop length 

1.8  C_UPDATE_STEPS: Critic’s update operation n-step loop length 

1.9  𝜖: Surrogate objective function clip term 𝜖 

1.10  S_DIM : State space shape 

1.11  A_DIM : Action space shape 

   

2. Initialize the critic: 

2.1  Input layer: Dense layer  

          input: S_DIM 

          shape: [64, 1] 

          activation: ReLu 

          trainable: True 

2.2  Hidden Layer: Dense Layer 

          input: Input layer (2.1) 

          shape: [64, 1] 

          activation: ReLu  

          trainable: True 

2.3  Value Estimation Layer - Output Layer: Dense layer  

          input: Hidden Layer (2.2) 

          shape: 1 

          activation: None 

          trainable: True 

   

3. Define the critic’s Optimization Function: 

3.1  �̂�θ(𝑠, 𝑎) = 𝑟 − 𝑉(𝑠) 

3.2  Define the loss function: �̂�θ(𝑠, 𝑎)2 

3.3  Optimization function c_trainop:   

          Adam Optimizer: learning rate: 𝛼𝐶 

          minimization target: 3.2 

   

4. Define the actor (𝜋): 

4.1  Input layer: Dense layer  

          input: S_DIM 

          shape = [64, 1] 

          activation = Relu 

          trainable = True 

4.2  Hidden Layer: Dense layer  

          input: Input layer (4.1) 

          shape: [64, 1] 

          activation: ReLu 

          trainable: True 
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4.3  Action (𝜋) Layer - Output Layer : Dense Layer 

          input: Hidden Layer (4.2) 

          shape: A_DIM 

          activation: Softmax 

          trainable: True 

   

5. Define the old actor (𝜋𝑜𝑙𝑑): 

5.1  𝜋𝑜𝑙𝑑 = 𝜋, only the former is not trainable 

   

6. Define the Actor’s Optimization Function 

6.1  Compute the probability ratio 𝑟(𝜃) =
𝜋(𝑎|𝑠,𝜃)

𝜋(𝑎|𝑠,𝜃𝑜𝑙𝑑)
 

6.2  Compute the Surrogate Loss  𝑟(𝜃) ∗ �̂�θ(𝑠, 𝑎) 

6.3  Compute PPO’s Clipped Loss = − min (𝑟𝑡(𝜃)�̂�𝑡
𝜋𝑘 , 𝑐𝑙𝑖𝑝(𝑟𝑡( 𝜃), 1 − 𝜖, 1 + 𝜖)) 

6.4  Optimization Function a_trainop: 

          Adam Optimizer: learning rate: 𝛼𝐴, 

          minimization target: (6.3) 

   

7. Define the Update Function 

7.1  Receive input: state 𝑠, action 𝑎, reward 𝑅 

7.2  Replace 𝜋𝑜𝑙𝑑 with 𝜋 

7.3  Compute 𝑉(𝑠) using the Critic (2.) 

7.4  Compute the advantage function (3.1) 

7.5  Update the Actor using PPO’s clipping method: execute a_trainop for A_UPDATE_STEPS 

7.6  Update the Critic: execute c_trainop for C_UPDATE_STEPS 

   

8. Run the Simulation 

8.1  Build the environment env 

8.2  for ep in E_MAX 

8.2.1   Reset the environment and observe 𝑆 

8.2.2   Define the state, action and reward buffers 𝒟𝑠, 𝒟𝑎, 𝒟𝑟 

8.2.3   for 𝑡 in E_LEN: 

8.2.3.1    𝑎 = 𝜋(𝑠) 

8.2.3.2    Perform 𝑎 and observe S’ and 𝑅 

8.2.3.3    Add state, action and reward to the corresponding buffers 

𝒟𝑠+= 𝑠 

𝒟𝑎+= 𝑎 
𝒟𝑟+= 𝑅 

8.2.3.4    Set 𝑆′ = 𝑆 

8.2.5.5    If  𝑙𝑒𝑛𝑔𝑡ℎ(𝑆) ≥ 𝑀𝐼𝑁_𝐵𝐴𝑇𝐶𝐻_𝑆𝐼𝑍𝐸: 

8.2.5.5.1     Compute 𝑉(𝑆) using the Critic (2.) 

8.2.5.5.2     Compute the 𝑉(𝑠𝑡) for each reward in the buffer, inserting it into a buffer 

𝑉𝑡 = 𝑟𝑡 + 𝛾𝑉𝑡+1 

𝐷𝑟𝑑𝑖𝑠𝑐+= 𝑉𝑡 

8.2.5.5.3     Update PPO (7.) using 𝒟𝑠, 𝒟𝑎, 𝒟𝑟𝑑𝑖𝑠𝑐 

8.2.5.5.4     Set 𝒟𝑠 = 𝒟𝑎 = 𝒟𝑟 = 𝒟𝑟𝑑𝑖𝑠𝑐 = 𝐸𝑚𝑝𝑡𝑦 

8.2.4   end for 

8.3  end for 

Algorithm 2 – Actor Critic PPO implementation pseudo-code. 
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Throughout this thesis numerous advantages of using DRL versus DP have been appointed, 

with section 4.2.6 providing a more exhaustive list of the advantages of using the current class 

of algorithms. One of which, is the ease to adapt and modify the model’s architecture. The 

previous pseudo-code illustrates how both the actor and critic’s structure can be changed by 

simply plugging additional hidden layers, which can be done programmatically. Another 

mentioned key aspect is the ability to include continuous state and actions spaces. In fact, the 

inclusion of a continuous action space estimation merely involves a small change to the critic’s 

architecture, requiring the underlying distribution’s parameters – in the following case, a 

univariate Gaussian’s mean and standard deviation - to be optimized, instead of the critic’s 

network 𝜋. Specifically, the point 4. In the previous pseudo-code would be modified to the 

following 

Algorithm Actor Critic PPO Implementation – Actor under a Gaussian probability distribution 

4. Define the actor (𝜋): 

4.1  Input layer: Dense layer  

          input: S_DIM 

          shape [64, 1] 

          activation: ReLu 

          trainable: True 

4.2  𝜇 Layer: Dense layer  

          input: Input layer (4.1) 

          shape: A_DIM 

          activation: Tahn 

          trainable: True 

4.3  𝜎 Layer: Dense layer  

          input: Input layer (4.1) 

          shape: A_DIM 

          activation: Softplus 

          trainable: True 

4.4  return 𝑁~(𝜇, 𝜎) 

Algorithm 3 – A modification to Algorithm 2 to encompass continuous actions. 

 

4.2 Results 

 

The purpose of the current work is not to yield a policy better than that of  Seixas (2016)’s, 

given it represents an optimal policy, nor to fully reproduce the author’s result, but is instead, 

to demonstrate the capabilities of deep reinforcement learning in approximating a solution to 

the same problem, whilst bypassing some dynamic programming’s hindrances. Hence, the 

section will be divided into three parts. The first section will focus on the computational 

requirements used in training the model, whilst providing a few insights into the process of 
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estimating an increasingly optimal policy under the DRL framework. The second section shifts 

the attention towards analyzing the agent’s behavior and learning capabilities through the 

evolution of training metrics as a function of the agent’s training iterations. The subsequent 

chapter then assesses the convergence and yielded policy similarity to that of Seixas (2016)’s 

through a shallow statistical analysis, given the latter represents an optimal policy for the 

problem at hands. Finally, an evaluation of the estimated policy’s performance under a Monte 

Carlo simulation is made, in comparison with both Seixas (2016)’s and the non-manipulative 

strategies.  

4.2.1 Computational Considerations 

 

The results produced by an optimization algorithm which rely on the iterative method are 

greatly dictated by the amount of used iterations5 - the terms iteration and training iteration are 

used interchangeably throughout this thesis. Reinforcement learning is no different. DRL 

applications for complex environments, are usually solved using learning iterations in the order 

of millions. Despite not classifying as a very complex problem, the Basel model being solved 

in the present work, is far from a Mountain Car or Inverted Pendulum6 problem. As the chapter 

which follows demonstrates, only 70,000 iterations were used to train the model, far from the 

millions referenced in the previous sentence. The reasoning behind this decision falls back on 

financial constraints, as the training was fully funded by the author, from hyperparameter tuning 

– a critical aspect in deep models – to the actual training.  

The hardware used to deploy and train the model consisted of 32 2.7 GHz Intel Xeon E5 2686 

v4 CPUs, 2 NVIDIA Tesla M60 GPUs, with each GPU delivering up to 2.048 parallel 

processing cores and 8 GiB of GPU memory, hence, 16GB of GPU memory, and 244 GiB of 

                                                           
5 The term learning iteration refers to a point in which the model’s parameters are updated through the use of the 

environment samples, not the amount of complete sample trajectories – a full episode. 

6 The Inverted Pendulum and Mountain Car are two simple and classic environments used to benchmark 

reinforcement learning algorithms, typically solved in a few hundred learning iterations under agents with 

appropriate hyperparameter tuning and algorithm. 
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RAM7 with an approximate cost of 2.16€ per hour8 9. Considering each training iteration took, 

on average, 2.35 seconds, and 70,000 iterations were used, this represents an approximate cost 

of 355.32€, or 106.59€ when considering a 70% discount mentioned in footnote 9 and a training 

duration of approximately 45 hours. Under the specified conditions, training the model on 

1,000,000 learning iterations would correspond to an investment of approximately 5,076,000€ 

or, 1,522,800€ under a 70% discount, and around 27 days.  

The previous paragraph occluded hyperparameter tuning. In the case of proximal policy 

optimization, typical implementations contain around 16 hyperparameters – including actor and 

critic’s network architecture, in depth and width – eligible for optimization. Such process 

greatly increases the cost associated with learning a policy via deep reinforcement learning, 

should optimal performance be an objective. This procedure can be accelerated should there be 

prior domain knowledge, as experienced researchers are able to tell which parameters are worth 

tuning, and in which range. Nonetheless, this additional prior step, is bound to consume as much 

or more resources than the actual training, in both time and expenses. 

Before proceeding to analyzing the model’s training progress, it is worthwhile mentioning that 

simpler models, such as DDQN – double dueling deep Q-network, a variant of the deep Q-

learning model exposed in Appendix A.II – Deep Reinforcement Learning– might be more 

suitable for the problem at hands, since it corresponds to a discrete environment, where such 

algorithm has demonstrated sufficient convergence capabilities, requiring far less resources 

than PPO. However, the purpose of this thesis is to show that deep reinforcement learning, 

typically ignored by the financial research community, and policy gradient algorithms in 

particular, which unlock a variant of possibilities in the financial realm, display signs of strong 

convergence even for those with minimal knowledge on the subject – as is the author’s case. 

For these reasons, the author opted for employing PPO. 

                                                           
7 These resources are unnecessary when training the model. In fact, that model consumes little RAM, around 2GB, 

relying instead on the use of CPUs to asynchronously generate model samples, and GPUs to perform the 

computationally expensive linear algebra computations. Nonetheless, they constitute the employed hardware. 

8 In practice, when training the model one incurs in additional costs associated with storage, especially if the 

computation instance does not reside in the same location as the store instance. Nonetheless, such cost is negligible 

when considering the computational instance cost. 

9 Price reductions up to 70% are possible in several computation instance providers, by relying on the use of 

available instances whose price is dictated by supply and demand, much like financial markets. 
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4.2.2 Training Progress 

 

As exposed in the previous chapter, the model’s performance will be dictated not only by the 

specified hyperparameters, but largely by the number of performed learning iterations. Hence, 

assessing the algorithm’s learning capability as a function of the iterations becomes a critical 

aspect of the present analysis. In order to do so, a few progress metrics have been selected. Note 

however, that observation metrics such as the average of the iteration’s exceedances or 

multiplier do not qualify as robust metrics, as these are greatly influenced by both the episode’s 

starting conditions, and the agent’s randomness, materialized via entropy in policy gradient 

algorithms. The agent’s cumulative reward – a standard metric in the reinforcement learning 

literature – and the average time remaining to backtesting have been selected as proxy 

performance metrics, whose behavior is predictable for converging agents. In a nutshell, the 

cumulative reward is expected to become increasingly positive – away from -1, the bankruptcy 

state – whilst the second metric is expected to converge towards 0. 

As expected for a performing agent, the average scaled reward displays an upwards trend 

towards zero. This behavior corresponds to that of an agent which, on average, reports daily 

values which do not lead to bankruptcy, a sign of an appropriate reward function and long-term 

planning by the agent. The average reward exhibits an increasingly stable behavior with 

decreasing variance, which suggests a certain degree of convergence.  

 

Figure 2 – The training process’ average scaled rewards to the interval [-1, 0] as a function of training iterations. 
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The evolution of the average inverse of episode duration – time remaining to backtesting – 

decreases over time, exhibiting very small average durations on the first few hundred iterations, 

rapidly converging towards 0. These dynamics are consistent with that of an agent which 

understands the consequences of over-optimizing the short-term reward through very small 

disclosure, resulting in a bankruptcy state. The statement is compliant with figure 2, where the 

agent obtained large negative rewards beyond -1. Given the bankruptcy state’s reward 

corresponds to -1, the fact that for such cases, the agent obtained, on average, rewards smaller 

than -1, is consistent with the episode duration analysis, as in the latter, the agent steers away 

from the minimal episode duration, thus accumulating increasingly negative rewards, which are 

added to the final state – bankruptcy – thus yielding a reward smaller than -1.  

 

Figure 3 - The training process’ average time remaining to backtesting, or inverse episode duration as a function of training 

iterations. 
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4.2.3 Policy Analysis 

 

Given the produced policy is sub-optimal and has high variance, both of which, were expected, 

direct policy interpretation via graphs is not relevant, as a smooth policy was not learnt – see  

figure 6 and its discussion – and does not constitute this thesis’ goal. Yet, and despite the 

simulated benchmark to be performed in the next chapter, the current chapter compares each 

policies’ statistical indicators, to assess to what extent their outline differs. 

 

Disclosure RL DP 

Mean 0.955 1.016 

Standard deviation 0.248 0.439 

IQR 0.184 0.201 

𝑄1 0.832 0.860 

𝑄3 1.016 1.061 

Table 4 - The main statistical indicators for the reinforcement learning and dynamic programming policy’s disclosure, where 

𝐼𝑄𝑅, 𝑄1 and 𝑄2 represent, the interquartile range, first and third quartiles, respectively.  

The disclosure is measured in the interval ]0, 3] in accordance with equation (34). 

 

An initial comparison between each policies’ key statistical indicators suggests that the 

reinforcement learning policy reports, on average, lower percentages of the value-at-risk, 

regarding its counterpart, considering the entire policy. The artificial intelligence (AI) policy’s 

statistical indicators exhibit smaller standard deviation and interquartile-range. The optimal 

policy’s first quartile is larger than its AI counterpart, suggesting a less conservative behavior 

on the dynamic programming strategy, which is then compensated via higher disclosures, 

leading to a larger policy mean. Except for the last statement, these findings correspond to the 

opposite of the expected behavior. The previous table creates an illusion that the policy has 

converged, especially when combined with figure 4. The remainder of the current chapter will 

focus on explaining these results, and how they correlate with mean estimation convergence – 

typically referred to as convergence in mean – so as to unveil the actual convergence extent.  
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Figure 4 - Boxplot of the reinforcement learning and dynamic programming’s policies’ disclosure as a function of the 

multiplier index. The last multiplier, associated with bankruptcy, has been omitted. 

 

Figure 4 depicts a boxplot of the estimated policies generated for each of the possible multiplier 

values – except for last multiplier, which corresponds to a state of bankruptcy in which the 

concept of disclosure no longer makes sense. The graph highlights the fact that the RL policy 

seems to converge towards the optimal policy, in mean. However, the former showcases a 

higher disclosure dispersion, characterized by higher presence of outliers, in both amount and 

value, on average, 20% higher than its DP counterpart, on the upper whiskers. The idea of mean 

estimation convergence can be further explored by analyzing the disclosure boxplot as a 

function of exceedances for a given multiplier. 
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Figure 5 - Boxplot of the reinforcement learning and dynamic programming’s policies’ disclosure as a function of the number 

of exceedances, considering a multiplier equal to 3. The cases of 10 and 11 exceedances have been omitted 

 

Figure 5 depicts a different behavior in terms of policy convergence. Not only do the policies 

exhibit differences in their disclosure mean per exceedance – considering the same multiplier 

– but the reinforcement learning policy exhibits longer whiskers, and for most cases, a larger 

interquartile range. Comparing with the overall policy’s boxplot depicted in figure 4, whereas 

the RL’s individual exceedance boxes display significant differences regarding the optimal 

policy’s, the global boxplots present in the previous figure, in this case, considering the default 

multiplier, appear to converge. In other words, the policies appear to converge, in population 

mean, but not in sample mean. 
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Figure 6 - The reinforcement learning and dynamic programming (optimal)’s trajectory as a function of the time remaining to 

backtesting, for exceedances between 0 and 4, considering the default multiplier. 

 

Figure 6 represents each policies’ trajectory as a function of the time remaining to backtesting, 

considering the multiplier equal to 3. Both policies exhibit the same overall behavior, 

underreporting in the start of the period, converging towards a baseline as the backtesting 

process approaches. Nonetheless, and despite the RL agent’s apparent erratic behavior, they 

converge onto approximately the same value, and, overall, exhibit a similar increasing trend. 

Such behavior, analyzed and justified in section 4.2.1, is expected, given the small number of 

iterations.  
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Figure 7 - The reinforcement learning and dynamic programming (optimal)’s trajectory as a function of the time remaining 

for backtesting, for exceedances between 5 and 9, considering the default multiplier. 

 

The same pattern is observed in higher exceedance levels, where the RL policy exhibits a 

seemingly erratic behavior, though converging towards a point similar to that of its DP 

counterpart. Even so, the overall similarities between policies remain. Both agents disclose 

similar initial values, exhibiting akin smoothed trajectories through time. In fact, the pattern is 

observed throughout the entire policy, an indicator that the reinforcement agent began to grasp 

the environment’s dynamics. The long-term trend exhibited by both policies, in conjunction 

with the RL policies’ high variance behavior, sheds lights on the seemingly identical policy 

when analyzing the disclosure means in figure 4, and the relation with its long whiskers.  
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Figure 8 - The reinforcement learning and dynamic programming’s trajectory, where the RL map was smoothed via a 

Savitzky-Golay filter, as a function of the time remaining to backtesting, for exceedances between 0 and 4, considering the 

default multiplier. 

 

The presence of noise in the reinforcement learning policy hinders the perception of mean 

convergence. Figure 8 represents the same case as figure 6, only applying a Savitzky-Golay 

filter with 81 parameters and a polynomial of the 3rd order to help filter noise. The filtered image 

further supports the idea of mean convergence, as excluding noise, the RL policy appears to 

mimic Seixas (2016)’s policy, exhibiting a similar trend and overall pattern as time progresses, 

ultimately, converging towards values around 0.95 – which corresponds to reporting around 

95% of the value-at-risk on the eve of the backtesting process, considering 3 as the applicable 

multiplier.  
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Figure 9 - The correlation between the disclosed value and the state’s variables for the reinforcement learning and dynamic 

programming (optimal) policies. 

 

Figure 9 represents the correlation coefficients for each policy. The relationship between the 

number of exceedances and the disclosed amount, seems to be conserved – 0.32 in the optimal 

policy, and 0.29 in the reinforcement learning policy. However, the positive correlation with 

the time remaining to backtesting and the applicable multiplier, represented by 𝑇𝑡𝑜𝐵 and 𝐾, 

respectively, though small in Seixas (2016)’s, seems to have declined. This variance is 

particularly concerning in the case of the multiplier’s correlation, reducing from 0.11, a low 

significance level in the optimal policy, to 0.012, a virtually nonexistent relation. This behavior 

is expected, as seen in the previous graphs, the RL policy depicts high variance in comparison 

with the optimal policy, the latter being characterized by smooth and continuous movements. 

This behavior leads to a smaller Pearson correlation index, hence, smaller correlation terms.  

Recall the Pearson correlation index is given by 

𝑟𝑋,𝑌 =
𝐶𝑜𝑣(𝑋, 𝑌)

𝜎𝑋𝜎𝑌
 , (41) 

where 𝑋 and 𝑌 represent two jointly distributed real-valued random variables, 𝜎𝑋 and 𝜎𝑌 

correspond to 𝑋 and 𝑌’s standard deviation, respectively, and 𝐶𝑜𝑣(𝑋, 𝑌) represents the 

covariance between 𝑋 and 𝑌. 

The larger the random variable’s variance – and consequently, the standard deviation – the 

smaller the effect of their covariance on the Pearson correlation index. 
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Figure 10 - The disclosure’s histogram as a function of the multiplier, for the reinforcement learning and dynamic 

programming (optimal) policies. 

 

Figure 10 depicts the disclosure histogram as a function of the applicable multiplier, considering 

each manipulative strategy. Generically speaking, the policies’ histograms seems to be similar, 

exhibiting heavier tails on the right side as a function of the increasing multiplier. Such attribute 

is compliant with a risk-averse agent, which tends to report higher values to avoid further 
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exceedances, especially in the penultimate multiplier – which corresponds to 4.0 – where an 

additional exceedance, would lead to a very negative state. However, whereas the optimal 

policy’s histogram seems to be concentrated around a given mean, for each of the individual 

multipliers, the AI policy exhibits multiple and frequent peaks, leading to a distribution which, 

unlike the optimal policy, does not resemble a bell-shaped curve in most multipliers. In fact, 

the RL policy’s histogram seems to be characterized by a certain degree of skewness, right-

skewness for multipliers 3.5 to 3.85, and the left-skewness in the last multiplier, 4. These 

features can be summarized by observing the last histogram, which depict the policies’ 

population. Notice that the optimal policy exhibits a fairly smoothed and well-defined bell 

shape around 0.90% whilst the estimated policy is characterized by a plateau between 0.80% 

and 1.05%. 

Before proceeding to the Monte Carlo benchmarks, in which the actual return of the estimated 

policy can be assessed, a small simulation is introduced, which aims at establishing how 

conservative the estimated policy is, regarding its optimal counterpart. In order to do so, the 

policy has been injected into the simulation environment and the final episodic state recorded, 

that is, the multiplier’s variation on each complete backtesting period. This trial ran 1,000,000 

times. 

 Reinforcement Learning Dynamic Programming 

Initial K Final K Final K 

 Increased Decreased Increased Decreased 

3 81.92% 18.68%10 93.63% 6. 37%10 

3.4 67.93% 32.07% 87.54% 12.46% 

3.5 42.99% 57.01% 74.74% 25.26% 

3.65 19.25% 80.75% 57.14% 42.86% 

3.75 3.99% 96.01% 32.76% 67.27% 

3.85 0.13% 99.87% 4.06% 95.94% 

4 N/A 100.00% N/A 100.00% 

Average 30.83% 69.17% 57.22% 42.78% 

Table 5 - Multiplier evolution considering the reinforcement learning policy under an environment simulated 1.000.000 

times. 

 

The simulation results point towards the reinforcement learning policy being more conservative 

and less risk prone than its dynamic programming counterpart. Not only did the estimated 

                                                           
10 For the specific case of the default multiplier, 3, the value refers to percentage of times the multiplier 
remained equal, not decreased. 
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policy record far higher decrease rates – nearly doubling in at least three multipliers -, but the 

policy avoided increasing the multiplier at the end of the period, decreasing or maintaining it  

in 69.17% of the cases on average, against Seixas (2016)’s optimal policy, which recorded a 

42.78% multiplier rise rate. Both policies recorded a 0.00% bankruptcy rate. This conservative 

behavior comes at the cost of higher disclosure values, hence smaller savings. This behavior is 

contradictory to that which is expected regarding table 4, considering the RL policy’s lower 

disclosure mean. However, recall that table 4 represents the statistical indicators for the entire 

policy hence, not valid for justifying the individual behavior each for each trajectory. 

The brief analysis performed throughout the current paragraph is consistent with that of an 

agent which has learnt the contours of the environment and the optimization objective at hands. 

With this said, the following paragraph compares the performance of the RL policy under a 

Monte Carlo simulation, against its counterpart, the optimal policy, and the alternative, the 

normal distribution policy. 

4.2.4 Policy Benchmarking 

 

The previous section discussed to what extent the reinforcement policy converged to its 

dynamic programming counterpart relying on the use of key statistical indicators. However, the 

object of interest is to measure the estimated policy’s performance, which, in Finance, 

corresponds to portfolio returns. 

The current section presents an in-depth comparison between the results obtained by Seixas 

(2016), the normal or non-manipulative disclosure rule, and the introduced RL methodology, 

via Monte Carlo simulation. Under such framework, the daily returns were set to follow a 

normal distribution with mean zero and standard deviation equal to 1.7%, in accordance with 

Seixas (2016)’s. Accordingly, the simulation’s return for a given time-step 𝑡, is given by the 

inverse of a random number sampled from a univariate Gaussian distribution with mean 0 and 

variance 1 

𝑟𝑡 = 𝜙−1(𝑟𝑛𝑑𝑡)  (42) 

𝑟𝑛𝑑𝑡~𝑁(𝜇, 𝜎2) , (43) 

where 𝑟𝑡 represents the period’s random return, constrained to the interval [-1, 1], and 𝜇 and 𝜎, 

represent the random variable’s distribution mean and variance, corresponding to 0 and 1, 

respectively. 
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An introductory note is required, as a key difference between the two author’s simulation arises. 

Whereas Seixas (2016)’s average of the last sixty disclosed VaRs considered a standard, 

unmanipulated value for non-existing days – that is, when the simulation process initiates there 

are no records of its past, in such cases, the preceding author considered such values to equal 1 

–, the present work considered the running mean of the existing disclosures. This seemingly 

simple difference renders direct per author result comparison futile, at least, on the first 

simulations where the different line of thought’s effects still endure. Hence, and because there 

is no telling when such effect will cease, the author opted for simulating all three scenarios at 

once, not relying in Seixas (2016)’s results.  

As mentioned in the beginning of the current chapter, the Monte Carlo simulation will employ 

three distinct policies: the introduced reinforcement learning policy; the optimal policy as 

obtained by Seixas (2016); and lastly, the normal policy, which corresponds to disclosing the 

computed value-at-risk, without manipulating its value. The constraints enforced in the RL 

environment during the training process, chapter 4.1, are applicable for the present simulation. 

Specifically, a maximum of 11 exceedances has been imposed, under the assumption that the 

agent would avoid such state at all cost, after all, the FI’s purpose is to maintain its internal 

model. Violating the internal construct more often than foreseen in the defined multipliers, 

would result in the ECB enforcing a standard model instead. Accordingly, the simulation 

environment prevents the agent from reaching the bankruptcy state, by forcefully reporting the 

highest possible value – 300% of the value-at-risk – when the current exceedance number 

equals to 10. 

Lastly, similarly to the RL environment, the simulation includes the possibility of bankruptcy, 

defined by a daily MRC smaller than the day’s loss 

𝑟𝑡 < 𝑀𝑅𝐶𝑡 , (44) 

where 𝑟𝑡 corresponds to the simulation return for day t, as defined in (42), and 𝑀𝑅𝐶𝑡 

corresponds to the market risk charge, as defined in equations (2) and (3). 

Another important aspect is to deflect the impact of handling unobserved samples in the 

computation of the average of the last sixty disclosed values on the simulation. With this in 

mind, the first 10 simulations have been disregarded in an attempt to decrease the impact the 

rolling sample decision has on the analysis.  
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Lastly, it is important to note that each simulation starts at the default multiplier, 3 after which, 

the multiplier applicable for the following year is solely dictated by the simulation’s 

performance. 

The methodology considered a total of 1,010,000 simulations, where each simulation simulates 

30 years. 

Figure 11 depicts both simulation’s exceedance’s relative and cumulative frequencies, as a 

function of the employed policy. The policies exhibit a similar behavior regarding reporting 

violations throughout the simulation, despite the reinforcement learning approach, having 

recorded lower frequencies of exceedances up to and including the 4 exceedance threshold – 

rendered in opaque orange –, resulting in the optimal policy yielding a higher frequency of 

minimum multiplier selection. Beyond the mentioned limit, the reinforcement learning 

simulation recorded significantly higher exceedance frequencies in the 5 to 8 range. This trend 

is reversed at the 9th level, where the optimal policy records slightly higher frequencies than 

its counterpart. 

The cumulative frequency curves, depicted on the right axis of each figure, assist in clarifying 

the overall behavior of each policy. Despite its similar behavior, the optimal policy recorded a 

cumulative frequency around 67% in the 4th exceedance threshold, whereas its counterpart only 

does so at around 60% of its simulations. 

 

Figure 11 - Exceedance relative frequencies, for both RL and Optimal Policies, under the simulated Monte Carlo 

environment. The continuous lines represent the cumulative frequency of each property, measured on the secondary axis. 
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Shifting the focus onto the normal policy, its exceedance histogram seems to be concentrated 

around 2 violations, with a positive skew around its median, 2. Such behavior points towards 

the normal policy focusing on the lower tail of multipliers – until the 4th exceedance level – in 

around 89% of the simulations, according to its cumulative relative frequency curve, an 

expected behavior considering its non-manipulative behavior. The divergence of results in 

terms of outcomes is very clear, for the reinforcement learning strategy results in minimum 

multiplier selection, at around 60% of the times, which will be visible in figure 13. 

 

Figure 12 - Exceedance relative frequencies, for both RL and Normal Policies, under the simulated Monte Carlo 

environment. The continuous lines represent the cumulative frequency of each property, measured on the secondary axis. 

 

Strategy Mean Median Mode Max Min 𝜎 𝐼𝑄𝑅 𝑄1 𝑄3 

RL 4.87 4 4 10 0 1.48 2 4 6 

DP 4.74 4.74 4 10 0 1.50 1 4 5 

Normal 2.5 2 2 10 0 1.57 2 1 3 

Table 6 - Exceedance descriptive statistics under the Monte Carlo simulation. 

 

The multiplier histogram is a direct reflection of the exceedances’ frequency distribution, as the 

latter dictates the former, according to table 1. Consequently, and according to the analysis of 

figure 11, the reinforcement learning strategy yields a default multiplier around 7% less 
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frequently than its optimal counterpart. As for the 1 to 2 multiplier index range, the 

reinforcement learning policy records significantly higher relative frequencies, for a maximum 

difference of around 3% in the second multiplier – represented by the index number 1. 

Considering the remainder of the histogram, the RL strategy achieves higher relative 

frequencies for multiplier indexes up to and including 4. However, the tendency is reverted 

after the fourth multiplier, as the optimal policy yields a higher frequency of fifth multiplier 

index selection, and even reaching the last multiplier, which its counterpart does not do so. 

  

Figure 13 - Multiplier index’s relative frequencies, for both RL and Optimal Policies, under the simulated Monte Carlo 

environment. The continuous lines represent the cumulative frequency of each property, measured on the secondary axis. 

 

Figure 14 compares the reinforcement learning and normal policies’ multiplier selection 

histogram. As expected, the normal simulation recorded the default multiplier in most 

simulations, specifically, 89% of these, decreasing the per-multiplier frequency in a seemingly 

log-normal form from that point forward, up until the third multiplier index. The figure 

highlights the disparity between the two policies, with the artificial intelligence rule achieving 

the same cumulative frequency as its non-manipulative counterpart’s default multiplier 

frequency, at the third multiplier index. 
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Figure 14 - Multiplier index’s relative frequencies, for both RL and Normal Policies, under the simulated Monte Carlo 

environment. The continuous lines represent the cumulative frequency of each property, measured on the secondary axis. 

 

Strategy mean median mode max min 𝜎 𝐼𝑄𝑅 𝑄1 𝑄3 

RL 0.94 0 0 6 0 1.41 2 0 2 

DP 0.83 0 0 6 0 1.42 1 0 1 

Normal 0.17 0 0 6 0 0.22 0 0 0 

Table 7 - Multiplier descriptive statistics under the Monte Carlo simulation. 

 

Figure 15 represents a side-by-side plot of the RL and DP policies’ market risk charge 

histogram, respectively, on the left and right side of the figure. The AI policy’s histogram 

revolves around 0.37, close to the DP solution’s mean, 0.36. The histograms appear to exhibit 

a degree of positive skewness, however, this statement is only true for the optimal policy, whose 

descriptive statistics respect the condition 𝑚𝑜𝑑𝑒 < 𝑚𝑒𝑑𝑖𝑎𝑛 < 𝑚𝑒𝑎𝑛. Nonetheless, whereas 

the left histogram depicts a relatively continuous plot, the right-side figure seems to be 

composed of two different bell-shaped distributions. The data is clustered under the same range, 

0.30 to 0.45 for both policies.  
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Figure 15 - Disclosure relative frequencies under the optimal and reinforcement learning policies, for the simulated Monte 

Carlo environment. 

 

The normal policy’s MRC distribution, the right-hand side of figure 16, is characterized by a 

large disclosure bin, corresponding to a fixed value of 0.38. This is an expected behavior, after 

all, the policy reports the computed value-at-risk amount without adjusting its value, which 

results in its multiplier being constant throughout the majority of the simulations. With this 

said, its disclosure histogram is expected to be concentrated in the value corresponding to a 

default multiplier unmanipulated disclosure, 0.38.  

 
Figure 16 - Disclosure relative frequencies under the Normal Policy, for the simulated Monte Carlo environment. 

 

Strategy Mean Median Mode Max Min 𝜎 𝐼𝑄𝑅 𝑄1 𝑄3 

RL 0.37 0.36 0.37 1.01 0.28 0.03 0.05 0.34 0.39 

DP 0.36 0.35 0.32 0.69 0.26 0.03 0.05 0.34 0.39 

Normal 0.38 0.38 0.38 0.85 0.38 0.01 0 0 0 

Table 8 - MRC descriptive statistics under the Monte Carlo simulation. 
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The last point of interest is to evaluate the additional returns the institution may obtain from 

using the introduced policy, as a result of invested the capital made available from the smaller 

disclosed value.  Regarding financial savings, these have been computed by assuming the 

institution desires to maintain their exposure, that is, to maintain its risk assessment constant, 

hence the daily investment is constrained to ensure a fixed daily MRC, allowing the invested 

amount to vary according to the resulting risk charge. In other words 

𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡𝑡 ∗ 𝑃𝑟𝑖𝑐𝑒𝑡 ∗ 𝑀𝑅𝐶𝑡 = 𝑀𝑅𝐶𝑓𝑖𝑥𝑒𝑑 , (45) 

where 𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡𝑡 represents the capital invested at time step 𝑡, 𝑃𝑟𝑖𝑐𝑒𝑡 corresponds to the 

asset’s price for the given time period, and 𝑀𝑅𝐶𝑡 and 𝑀𝑅𝐶𝑓𝑖𝑥𝑒𝑑 correspond to the market risk 

charge computed at time step 𝑡 and the target or fixed value for the MRC, respectively. 

 

Strategy Mean Median Max Min 𝜎 

RL - DP -0.53% -1.35% 2.63% -5.74% 0.90% 

RL - Normal 4.32% 4.36% 9.85% -1.29% 1.16% 

Table 9 – The average relative annual gain descriptive statistics under the Monte Carlo simulation. 

 

Table 9 measures the reinforcement learning approach’s increased average annual return, in 

comparison with their optimal and non-manipulative counterparts. As expected, the artificial 

intelligence strategy underperforms regarding the dynamic programming approach but results 

in considerately larger returns in comparison with the normal policy. In fact, the RL policy 

generated, on average, an average annual return only 0.53% below its optimal counterpart in 

some cases, managing to overperform in 2.63%, which can be explained by the policy’s large 

variation. 
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4.2.5 Model Limitations 

 

As described by Campbell (2005), one of the conditions to classify a VaR model as adequate, 

is the Unconditional Coverage Property. This hypothesis states that the likelihood of a loss 

higher than the disclosed VaR occurring, is exactly equal to 𝛼 ∗  100%, where 𝛼 is the value-

at-risk significance level 

𝑃[𝐼𝑡+1(𝛼) = 1] = 𝐸[𝐼𝑡+1(𝛼)] = 𝛼 , (46) 

where 𝐼𝑡(𝛼) represents the hit function, an indicator function which takes the value one if an 

exceedance is recorded, and zero otherwise 

𝐼𝑡+1(𝛼) = { 
1

0

𝑖𝑓

𝑖𝑓

𝑥𝑡,𝑡+1 ≤ −𝑉𝑎𝑅𝑡(𝛼)

𝑥𝑡,𝑡+1 > −𝑉𝑎𝑅𝑡(𝛼)
  , (47) 

 

As referred by Campbell (2016), a problem arises when the value-at-risk estimation model 

consistently under or over estimates the actual risk amount, which is a critical assumption of 

the present work. Unconditional coverage tests tend to be inadequate when it comes to detecting 

such situations, as for the sample size dictated by the regulatory framework, the tests seem to 

showcase low power (Campbell, 2005). For this reason, disclosing manipulated values of the 

FI’s risk may invalidate the model when it comes to unconditional coverage backtesting tests, 

such as Kupiec’s proportion-of-failure (POF). Despite not being present in the current 

regulatory framework, this section should be looked upon as a disclaimer, should future 

versions of the Basel Accords include unconditional coverage tests, research based on 

disclosure manipulation might no longer be valid. Additionally, for FI’s seeking to integrate 

this research onto their risk estimation framework, even if not required by the Basel regulation, 

special attention should be taken upon assessing the quality of the models as again, 

unconditional coverage-based tests, such as the POF assessment of the value-at-risk model’s 

unconditional coverage property, may not be applicable. 

 

4.2.6 Policy Gradient Advantages 

 

Throughout the course of chapters 1 and 4, numerous references to the fact that reinforcement 

learning models do not require an explicit transition model have been made. However, no 

further exploration on the consequences and benefits of such capability have been explored. 
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The current section  aims at identifying some of the key advantages deep reinforcement learning 

has over dynamic programming.  

Starting with the ability to operate and learn under an environment whose transitions are 

unknown. Environments created under a controlled setting, as is often the case of research 

papers, might not pose a major obstacle in terms of modeling the transition probabilities, thus 

being ideal candidates for dynamic programming, often at the expense of simplification, which 

results in inaccurate results. Furthermore, under such simplifications, the environments are 

often disconnected from reality, rendering the applicability of such findings unfeasible. 

However, man-made environment models which attempt to operate in real world situations, 

cannot fathom to capture the minutia and complexity of the underlying dynamics, often not 

describable through known mathematical formulas – such as the case of financial markets, 

whose complexity lies beyond the current theoretical knowledge. This means that deep 

reinforcement learning models, policy gradient based in particular, serve as prime candidates 

for such cases, as they are able to estimate an optimal policy despite not knowing nor having 

direct access to the environment’s transition probability model. Combined with the ability to 

estimate both discrete and stochastic policies, and to learn discrete and continuous action and 

state spaces, DRL arrives with the promise of unbounded and unprecedented learning in 

financial markets. In fact, several applications and research have proven successful, in using AI 

for algorithmic trading (Liang, et al., 2018) and (Huang, 2019), portfolio management (Park, et 

al., 2019) and (Wang, et al., 2019), among others. 

Deep Reinforcement Learning models don’t require modifications when the underlying 

environment, including its transition probabilities, are changed. Although more hyperparameter 

tuning will likely be needed, including modifying the neural network’s width (number of 

neurons per layer) and or depth (number of layers), the model will still operate, and learn. Note 

however, that for the sake of transparency, should the actions space be of a discrete nature, 

modifying the number of states will require architectural modifications. This translates not only 

in the ability to vary the environment’s architecture and complexity whilst retaining the model, 

but also in the possibility of using different environments - for instance, one for low volatility 

periods, and another for high volatility periods - during the same training process. 

Another key advantage is the ability to not only learn under continuous action and state spaces, 

but also to learn both discrete and continuous policies. The use of dynamic programming 

translates in discretized action and state spaces, often due to hardware (RAM) limitations. 
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Doing so, reflects in a compromise between results and non-captured model nuances, as under 

such scenario, computation resources and model accuracy are used interchangeably. Policy 

Gradient on the other hand, can handle both discrete and continuous spaces, whilst relying on 

the use of CPUs and GPUs – as neural network operations, the model’s core, are comprised of 

matrix operations – to solve the optimization problem. 

Finally, deep reinforcement learning models can be frozen and re-started by saving the function 

approximators’ parameters 𝜃. Such results in models which can be updated posteriorly, if new 

data is available, allowing resources to be saved, and the learning process and data ingestion to 

take place simultaneously. Often samples are not readily available, as is the case of financial 

market data, which is nonexistent overnight for domestic markets. In addition, static parameters 

open the possibility of interchangeable models, often used in transfer learning, drastically 

decreasing the cost and execution time of training variations of the base model. 

The presented aspects are critical regarding optimization in Finance, where the environments 

are known to be hard to model, continuously changing, consisting of infinite action and state 

spaces. 

4.2.7 Deep Reinforcement Learning Limitations 

 

Reinforcement learning, the model-free path in particular, in its current state of affairs, is not 

the holy grail of MDP solving, in fact, it suffers from a variety of problems which severely 

hinder the learning process, in both accuracy and speed. The algorithms, especially the on-

policy cases, are extremely sample inefficient, as they lack an environment model, thus using 

the samples to indirectly approximate said construct through bootstrapping, whilst at the same 

time, relying on neural networks, a framework which is, by itself, sample inefficient due to the 

slow pace of gradient descent. Like dynamic programming, this class of algorithms suffers 

greatly with the so-called curse of dimensionality on large state and or action spaces, however, 

not in terms of memory resources – RAM – like DP, but in sheer computational power and 

approximation complexity. Deep Reinforcement Learning algorithms suffer from a typical 

problem derived from the use of neural networks, and that is the fact that they are opaque, in 

the sense that they lack both predictability and explainability, constituting what is typically 

referred to as black box models. DRL models are narrow, as they lack generalization 

capabilities, which in essence, signifies that transferring knowledge from one environment to 

the next, similar as they may be, is brittle and often unachievable, caused by overspecialization 
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in the first environment. Unlike value-based methods, policy gradients, tend to be stuck in local 

minima, whilst taking long to converge. Lastly, the environment’s rewards are not a 

straightforward implementation, as any bad design will be thoroughly exploited by the 

algorithm, known as reward hacking.  

Whilst the first problem can be improved through the use of model-based RL algorithms when 

some of the environment’s dynamics are reproduceable, which are more sample efficient, they 

still lack the capability of properly tackling the other mentioned problems. In addition, the use 

of model-based RL generates its own set of problems, namely, model estimation risk. 

The presented arguments against the use of deep reinforcement learning don’t signify that said 

frameworks are not to be used. The purpose of the present chapter is to reinforce the idea that 

the right tools should be selected for the problem at hands. Deep Reinforcement Learning opens 

the door towards solving problems which were simply intractable in the past. However, when 

the environment’s transitions are known, or approximately known – as is the case in Partially 

Observable Markov Decision Processes –, traditional solutions are often a faster, more robust, 

cheaper and better result producing options. 

4.2.8 Sub-optimal Optimality 

 

As referred in section  4.2.3, the RL policy exhibits a higher variance than Seixas (2016)’s, and 

is likely to do so under the deep reinforcement learning framework, given its generalizing 

nature. However, this behavior might be desirable. Unlike the optimal policy generated by 

dynamic programming, its sub-optimal counterpart does not follow a strictly increasing trend, 

which is an expected behavior of financial market risk measures. Thus, following the proposed 

policy might help cover the FI’s tracks by obfuscating its disclosure manipulation, a behavior 

which the ECB might frown upon. In a similar line of though, increasing the value-at-risk 

disclosure by nearly threefold in a question of fifty trading days – for instance, considering the 

optimal policy for the default multiplier – would likely raise some concerns at the supervisory 

authorities, as it could flag the model as being too variance-sensitive, in spite the inclusion of 

the average of the last sixty disclosed value-at-risk values on the MRC. 
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5 Conclusion 

 

The aim of this work was to demonstrate the adequacy and capabilities of deep reinforcement 

learning in solving financial optimization problems characterized by a complex Markov 

decision process. For this purpose, a policy generated by DRL on the VaR disclosure 

optimization problem has been benchmarked against an optimal policy created by Seixas (2016) 

via dynamic programming. 

The proximal policy optimization agent’s policy showcased strong signs of convergence with 

its optimal counterpart, despite not being given any formal knowledge of the environment’s 

dynamics, and the fact that the selected algorithm is not the optimal choice regarding discrete 

spaces, as described in section 4.2.1. As explored in section 4.2.3, the yielded policy converged, 

on average, to the optimal policy. However, an in-depth analysis revealed the presence of high 

variance in the estimated policy, partly due to the small number of iterations, and a tendency to 

under-report regarding its optimal version, that is, the former tends to disclose smaller VaRs 

than the latter. This behavior can be attributed to neural network’s predisposition to generalize, 

being prone to report more stable values, and again, to the low number of learning iterations, 

which translates in the estimated state value function 𝑞𝜋 not being able to perceive the true cost 

associated with a given state-action pair, hence, not matching the optimal state-value function 

𝑞∗. Nonetheless, the policy generated by the artificial intelligence approach managed to obtain 

an additional average return only 0.53% lower than its optimal counterpart, which corresponds 

to the freed-up capital being invested at a fixed rate of 6%, contingent on the financial 

institution’s MRC remaining constant. 

Having demonstrated the algorithm’s capabilities in the discrete space, the path is paved for its 

application in the more complex environment, thus removing the simplifications and limitations 

introduced to make the problem tractable via dynamic programming. Specifically, the 

introduction of continuous action and state spaces, allowing for the direct optimization of the 

Capital Risk Charge equation, as well as the optimization of multiple variables, including the 

stressed value at risk. Additionally, and perhaps more important, the need to assume a transition 

distribution is eliminated, as well as the rules which define it. 

In addition to the advantages mentioned above, the use of PPO is able to generate solutions to 

the problem in question which, despite being sub-optimal, might be desirable. As discussed in 

section 4.2.8, the optimal policy is prone to raising concerns on the regulatory authority, the 
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European Central Bank, given the that the DP policy, although mathematically optimal, does 

not meet the expected behavior in financial markets (mean-reversal exhibiting a certain degree 

of variance, although one might argue that the variance should originate in the portfolio itself, 

hence, on its VaR, not on its disclosure policy), being characterized by a linear growth, often 

triplicating its disclosed value in merely twenty days, whose trend and fixed nature is easily 

perceived. DRL on the other hand, is capable of generating stable policies around a given value 

– due to neural network’s ability and propensity to generalize – thus promoting, by default, 

solutions that are stable in the long-run, which can simultaneously maximize the short-run 

variance, resorting to techniques such as the ones suggested in chapter 5. 

On a final note, it is important to be aware that the application of DRL is both frail and 

expensive, in both time and financial capital, being the subject of extensive experimentation 

and optimization, relying extensively on the researcher’s experience and domain-knowledge. 

For these reasons, and according to the results presented in this thesis, the use of deep 

reinforcement learning is advisable solely in cases in which dynamic programming proves 

inappropriate, even if at the expense of a few simplifications.  
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6 Future Work 

 

One of the key-aspects regarding possible improvements to the exhibited work, lies on the 

employed algorithms. Firstly, as pointed in section 4.2.6, PPO and similar algorithms suffer 

from a variety of problems. One way to overcome them, might be through the use of hierarchical 

reinforcement learning, or meta reinforcement learning, new approaches which seem to be 

gaining ground on the control aspect reinforcement learning. 

Another possible line for improvement lies on extending the model defined in 4.1 to allow for 

an approximation to the complete problem which FI’s face on a daily basis, whilst at the same 

time, providing a framework which has the ability for continuous adaptation to the institution’s 

portfolio, given DRL’s ability to estimate continuous action and state spaces, whilst also being 

capable of being continuously improved with new market samples. The present section aims at 

introducing a suggested environment which closely mimics equation (3).  

The improved model’s variables would be the same as those present in the base model. The 

natural next-step would be to add a record of the last sixty VaRs selected within the current 

episode, onto the environment. Such variable could be named 𝑉𝑎𝑅60, and it would be expressed 

by an array, being later on, merged into the reward function, hence, not adding further 

complexity to the model. 

𝑉𝑎𝑅60 = {𝑣𝑎𝑟𝑡−60, 𝑣𝑎𝑟𝑡−59, … , 𝑣𝑎𝑟𝑡−1} , (48) 

The previous addition does have one pitfall. One of the key-assumptions of MDP’s is 

memorylessness, meaning, each Markov state contains all required information from the state’s 

history. For this reason, keeping track of previously selected actions via an external variable, 

could prevent convergence as one of the assumptions would be violated. Evidently, doing so 

would force the algorithm to optimize without ever attaining full knowledge of the model’s 

constraints, as parts of it would be invisible. For this reason, the inclusion of such history would 

have to be performed via injection into the observation, as required by MDPs. In practice, this 

would lead to the creation of a new observation subspace, specifically 

𝒱 = {𝑥 | 𝑥 ∈ ℝ, 0 ≤ 𝑥 ≤ 3} , (49) 

thus modifying the observation space (33) to 
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𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑡 = (𝒯, ℰ, 𝒦, 𝒱) , (50) 

Under such modification, the observation space would no longer fully discrete, as it contains a 

continuous component, induced by the inclusion of a variable from subspace 𝒱. 

At the same time, the discretization of the action space could be removed, modifying (34) to a 

continuous interval 

𝒜 = {𝑛 | 𝑛 ∈ 𝑅+, 𝑛 ≤ 3000} , (51) 

 

Another obvious problem arises with this solution: if each episode is independent and thus, the 

selected actions (or VaRs) only reflect decisions made on the current episode, then except for 

when the elapsed time or visits is equal or larger than sixty, there would not be a true 

recollection of the past sixty actions, given no such information existed. 

As pointed in section 4.2.8, a policy suitable for financial markets is bound to showcase a 

certain degree of volatility, so as to mimic the underlying market conditions. With this in mind, 

the reward function could be expanded, penalizing a lack of variation between subsequent 

actions, in other words, maximizing long-term action variance. However, excessive short-term 

variability is also undesirable, as it would generate an unstable policy. Hence, the reward 

function should promote long-term variance, whilst maximizing short-term action similarity. 

The former is already present in PPO via the entropy bonus, the latter on the other hand, could 

be achieved through the use of regularization, for instance, temporal regularization (Thodoroff, 

et al., 2018), in the algorithm’s objective function. The main idea of said work, is to enforce 

regularization in the actions along the trajectory, penalizing significant changes between 

subsequent actions, instructing to algorithm to promote short-term decision similarity. 

Considering proximal policy optimization relies on the use of the advantage estimator �̂�𝑡 

introduced in equation () of Appendix A.III – Policy Gradient, and rewriting said function as 

�̂�𝑡 = 𝛿𝑡 + 𝛾𝜆𝛿𝑡+1 + ⋯ + (𝛾𝜆)𝑇−𝑡+1𝛿𝑇 , (52) 

where 

𝛿𝑡 = 𝑟𝑡 + 𝛾𝑉(𝑠𝑡+1) − 𝑉(𝑠𝑡) , (53) 

as defined by Thodoroff et al. (2018), the regularization’s objective being given by the term  
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𝛿𝑡
𝛽

= 𝑟𝑡 + 𝛾((1 − 𝛽)𝜐(𝑠𝑡+1) + 𝛽�̃�(𝑠𝑡−1)) − 𝜐(𝑠𝑡) , (54) 

with �̃�(𝑠𝑡) corresponding to exponential smoothing given by  

�̃�(𝑠𝑡) = (1 − 𝜆)𝜐(𝑠𝑡) + 𝜆�̃�(𝑠𝑡−1) , (55) 

introduced in the Critic’s objective function, with 𝛽 and 𝜆 representing the regularization terms. 

Due to both financial and time restrictions, such experimentation is left for future work. 

Besides the algorithmic aspect, it is important to insist that this study does lie behind the current 

legislation. Specifically, our study is a direct applicability of the Basel II accords, whereas at 

this point, Basel 2.5 is imposed, with ECB having already begun the process of implementing 

the third Basel accord, set to be enforced from January 1st of 2022 onwards. The inadequacy 

arises from the fact that the present work does not contemplate the concept of stressed value-

at-risk (sVaR), a major player in the Basel 2.5, let alone in its successor. This drawback renders 

a direct applicability of the achieved optimal policy useless, or at least, ineffective. Thus, future 

developments on the described research should focus on at least, the integration of the stressed 

value-at-risk and its disclosure in the refined environment.  
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8 Appendixes 

Appendix A – Theoretical Foundations on Deep Reinforcement Learning 

 

Appendix A.I – From Dynamic Programming to Reinforcement Learning 

 

The present section delves into the core concepts behind reinforcement learning, to provide 

insights to those unfamiliar with the literature. It is an overview of the notions found in Sutton 

& Barto (2012), the original algorithm’s publications, among others. The following chapters 

borrow heavily from the previous publications. Those familiar with the topic are encouraged to 

skip directly to chapter 4. 

The term dynamic programming (DP) refers to a collection of algorithms whose purpose is to 

achieve an optimal policy under a Markov Decision Process (MDP).  

The dynamic programming framework – known as Generalized Policy Iteration (GPI) – is 

comprised of two layers, policy evaluation, and policy improvement, which work together to 

help the algorithm converge onto an optimal policy. 

Policy evaluation, also referred to as the prediction problem, allows computing the state-value 

function 𝑣𝜋 for an arbitrary policy 𝜋: 

𝑣𝜋(𝑠) = 𝔼𝜋[𝐺𝑡|𝑆𝑡) = 𝑠] 
            = 𝔼𝜋[𝑅𝑡+1 + 𝛾𝑣𝜋(𝑆𝑡+1)|𝑆𝑡 = 𝑠] , 

(A.1) 

 

Policy improvement on the other hand, assists in deciding whether a new policy 𝜋′ yields better 

results than the current policy 𝜋, 𝜋′ ≥ 𝜋: 

π′(s) = argmin
𝑎∈𝒜

𝑞𝜋(𝑠, 𝑎) , (A.2) 

where 𝑞𝜋(𝑠, 𝑎) represents the action value function given by 

𝑞𝜋(𝑠, 𝑎) = 𝔼[𝑅𝑡+1 + 𝛾𝑣𝜋(𝑆𝑡+1)|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎)] , (A.3) 

The alternating cyclic combination of the two previous equations is what defines the GPI and 

guarantees strict improvement of one policy over its predecessor. Whilst the value function 

improves upon itself at each iteration so as to be consistent with the policy, the policy iteration 

function seeks converging itself to optimality, being greedy with respect to the value function. 

𝜋0 →𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑣𝜋0
→𝑖𝑚𝑝𝑟𝑜𝑣𝑒 𝜋1 →𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑣𝜋1

→𝑖𝑚𝑝𝑟𝑜𝑣𝑒 𝜋2 →𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 ⋯ →𝑖𝑚𝑝𝑟𝑜𝑣𝑒 𝜋∗ →𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑣∗ 
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However, for many real-world scenarios, a perfect information MDP, that is, 𝒫𝑠𝑠′
𝑎  and ℛ𝑠𝑠′

𝑎  ,is 

not available, which renders direct DP application unpractical, often resulting in excessive 

simplifications. Some classes of reinforcement learning algorithms overcome this limitation, 

thus being to obtain an optimal policy under an environment characterized by incomplete 

information. 

Whilst not a part of the RL family, Monte Carlo (MC) methods allow learning solely from 

experience, hence not requiring an explicit transitions distribution, instead, they update their 

estimates using the sampled states, actions and rewards. These methods – not to be confused 

with the generic term, which refers to any estimation method based on random operations –, 

update their value function estimates and policy upon episode completion. This means that MC 

methods require 𝐺𝑡, averaging returns on an iterative manner.  

When a model of the environment is not known, the focus shifts onto estimating state-action 

value functions. The reasoning behind this statement is straightforward, as when the transition’s 

model is known, the optimization task consists of selecting for each state, which action leads to 

the optimal reward and desired states, analogous to the dynamic programming algorithm. 

However, when the aforementioned model is absent, it becomes necessary to attribute a 

quantifiable value for each action. For this reason, all algorithms presented hereinafter, present 

a computation of the q-function, 𝑞𝜋, as a part of its control problem11 algorithm. 

Monte Carlo’s control method applies the GPI, just like DP, only whilst the latter’s 

implementation computed the value function directly from the MDP, the former’s learns the 

value function by experiencing the MDP’s returns.  

                                                           
11 The concept of a reinforcement learning algorithm’s control version, refers to optimal policy approximation. 
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Figure 17 – The General Policy Iteration cycle for the Monte Carlo estimation for control. 

The algorithm works iteratively focusing on three cyclic steps. The first step consists on 

generating samples for the episode according to the current policy 𝜋, relying on the use of 

greedy algorithms for simulated action selection, such as 𝜖-greedy to balance between 

exploration and exploitation. Next, and assuming first-visit MC is used, the Q-value – recall 

that for the case of control methods, Q-value refers to the state-action pair’s Q-value, capitalized 

given it is an estimate of the true q-value – is updated, as the average of the episode’s returns 

𝑄(𝑆, 𝐴) ←
1

𝑁
∑ 𝐺𝑡

𝑁

𝑡=0

 , (A.4) 

 

Finally, the third step improves the policy greedily with respect to the current value function: 

𝜋(𝑠) = 𝑄(𝑠, 𝑎) , (A.5) 

Monte Carlo improves over dynamic programming by learning 𝑉𝜋 and 𝑄𝜋 from direct 

environment interaction, not needing an explicit transitions model, and lastly, without the 

requirement of visiting all existing states. Nonetheless, the method does have faults of its own. 

MC RL requires episodic tasks – in opposition to continuous tasks –, it only updates its 

estimates from complete episodes, given the episode’s return is only known after it ends. 
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Appendix A.II – Reinforcement Learning 

 

Reinforcement learning refers to a set of algorithms aiming at learning how to behave in an 

environment whose dynamics are partially or fully unknown, by simple trial-and-error, where 

the reward may be perceived immediately, or posteriorly. These are the two core features of 

reinforcement learning (Sutton & Barto, 2018). 

Sutton & Barto (2012) consider Temporal Differences (TD) Learning to be one of the core 

concepts of reinforcement learning. Unlike dynamic programming, TD learns directly from 

experience, not requiring a transition model. However, unlike Monte Carlo methods, TD does 

not require the episode’s return 𝐺𝑡, instead, it updates its value function considering the next-

time step’s reward. This is referred to as bootstrapping.  

At every subsequent time step, 𝑡 + 1, TD creates a target, the value function’s value as 

estimated by the current step, and updates its previous step’s estimate using the newly collected 

information: 

𝑉(𝑆𝑡) ← 𝑉(𝑆𝑡) + 𝛼[𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1) − 𝑉(𝑆𝑡)] , (A.6) 

where 𝑅𝑡+1 and 𝑉(𝑆𝑡+1) represent the transitioned time step’s observed reward and value 

function estimate, respectively, and 0 < 𝛼 ≤ 1 corresponds to a learning hyperparameter.  

However, since TD(0) is a one-step algorithm, it would be unwise to update the function to 

match the new value estimate. For this reason, 𝛼 was introduced, so as to point the update 

direction, without fully replacing it. 

If one were to adapt the concept of estimation target to MC, the following equation would be 

returned 

𝑉(𝑆𝑡) ← 𝑉(𝑆𝑡) + 𝛼[𝐺𝑡 − 𝑉(𝑆𝑡)] , (A.7) 

where the equation’s right-hand side contains Monte Carlo’s update target, 𝐺𝑡 − 𝑉(𝑆𝑡). 

Given the behavior described by () and (), TD overcomes some of MCs limitations, as it learns 

from continuing environments, is capable of learning online – after every step – and lastly, has 

the capacity to learn from incomplete episodes. Note however, that the algorithm referred to as 

TD, is a simplification of its actual representation, TD(0), where the integer 0 refers to the 

number of eligibility traces used by the algorithm, a concept beyond the scope of this 

introduction. 
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Reinforcement learning algorithms can be characterized by two sets of categories, which, 

broadly speaking, describe how the algorithm handles the underlying environment’s model, and 

on the selection of samples for the policy target update. Regarding the former, these constructs 

can be either model-based, if they are provided a model of the environment or, if the algorithm 

learns it explicitly; or model-free, should they not depend on the existing model for the learning 

process to occur – as is the case for TD(0). As for sample selection, a RL algorithm can either 

be classified as being on-policy or off-policy. On-policy methods rely on states visited during 

the current trajectory to update its policy, whereas its off-policy counterpart uses a sample 

returned by any trajectory during the training process, or, in other words, the total discounted 

future reward is estimated under the assumption that a greedy policy has been followed, despite 

such not being true.  Another way to look at this difference, is to consider on-policy methods 

evaluate or improve the policy which has been used to make decisions, whereas off-policy 

methods evaluate or improve any policy different from that which was used to generate the 

samples. 

Applying TD(0) to the control problem yields two different algorithms according to the policy 

nature. Applied to an on-policy approach, yields the SARSA (State-Action-Reward-State-

Action) algorithm. If, on the other hand, an off-policy view is employed, the resulting algorithm 

is named Q-learning.  

SARSA earns its name due to the cyclic quintuple of events in a trajectory, on which the 

algorithm relies on to create its update rule. 

 

Figure 18 – SARSA trajectory illustration 

 

Recall that for control algorithms, the focus shifts from state to state transition, and 

corresponding value learnt, to state-action to state-action pair transition, and value function 

approximation. In other words, from 𝑣𝜋(𝑠, 𝑎) to 𝑞𝜋(𝑠, 𝑎). Because SARSA is an on-policy 

algorithm, its update target employs the Q-value of the state-action pair transitioned to under 

the current policy 𝜋, continuously estimating 𝑞𝜋 for the policy 𝜋, whilst modifying 𝜋 with 

respect to 𝑞𝜋 under greedy behavior. 
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𝑄(𝑆𝑡, 𝐴𝑡) ← 𝑄(𝑆𝑡, 𝐴𝑡) + 𝛼[𝑅𝑡+1 + 𝛾𝑄(𝑆𝑡+1, 𝐴𝑡+1) − 𝑄(𝑆𝑡, 𝐴𝑡)] , (A.8) 

 

The algorithm’s update target is then defined by 𝑅𝑡+1 + 𝛾𝑄(𝑆𝑡+1, 𝐴𝑡+1). 

Algorithm SARSA 

1. Input: step size 𝛼 ∈ ]0,1], small 𝜖 > 0 

2. Initialize 𝑄(𝑠, 𝑎), for all 𝑠 ∈ 𝑆+, 𝑎 ∈ 𝐴(𝑠) randomly, and set 𝑄(𝑠𝑇 ,∙) = 0 

3. for 𝑘 = 0,1,2, … do 

4.  Initialize 𝑆 

5.  Choose 𝐴′ from 𝑆′ using a policy derived from 𝑄 (e.g., 𝜖-greedy)   

6.  for each step of the episode 𝑡 = 0,1,2, … , 𝑇 − 1  do 

7.  Perform action 𝐴 observe 𝑅, 𝑆′ 
8.  Choose 𝐴′ from 𝑆′ using a policy derived from 𝑄 (e.g., 𝜖-greedy)   

9.  𝑄(𝑆, 𝐴) ← 𝑄(𝑆, 𝐴) + 𝛼[𝑅 + 𝛾𝑄(𝑆′, 𝐴′) − 𝑄(𝑆, 𝐴)] 
10.  𝑆 ← 𝑆′; 𝐴 ← 𝐴′ 
11.  end for – when 𝑆 is terminal 

12. end for 

Algorithm 4 - SARSA pseudo-code. 

 

Q-learning (Watkins & Dayan, 1992) is often classified as an early breakthrough for 

reinforcement learning, as the creation of an off-policy control algorithm under the TD 

framework. 

𝑄(𝑆𝑡, 𝐴𝑡) ← 𝑄(𝑆𝑡, 𝐴𝑡) + 𝛼[𝑅𝑡+1 + 𝛾𝑄(𝑆𝑡+1, 𝑎) − 𝑄(𝑆𝑡, 𝐴𝑡) ] , (A.9) 

 

The previous equation immediately illustrates the off-policy component of Q-learning. Unlike 

its on-policy counterpart, SARSA, the algorithm directly approximates the optimal action-value 

function 𝑞∗, regardless of the underlying policy. However, the latter element still plays an 

important role in action selection, and consequently, state-action pair update. Under such 

construction, Q-learning’s update target is given by 𝑅𝑡+1 + 𝛾𝑄(𝑆𝑡+1, 𝑎) . 
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Figure 19 - The backup or target diagrams for SARSA and Q-learning, respectively. 

 

Figure 19 illustrates the backup diagrams for SARSA and Q-learning. These figures 

conceptualize how the update target is defined. The root filled node represents an action node, 

as do the leaf nodes. The white circle represents a state-action node. SARSA performs a backup 

by updating the state-action node’s 𝑞𝜋 based on the action nodes transitioned from (root) and 

to (leaf). Conversely, Q-learning’s state node update seeks maximizing over all possible actions 

available in the following state, where the arc connecting the multiple branches represents the 

maximum operator. 

 

Algorithm Q-Learning 

1. Input: step size 𝛼 ∈ ]0,1], small 𝜖 > 0 

2. Initialize 𝑄(𝑠, 𝑎), for all 𝑠 ∈ 𝑆+, 𝑎 ∈ 𝐴(𝑠) randomly, and set 𝑄(𝑠𝑇 ,∙) = 0 

3. for 𝑘 = 0,1,2, … do 

4.  Initialize 𝑆 

5.  for each step of the episode 𝑡 = 0,1,2, … , 𝑇 − 1  do 

6.  Choose 𝐴 from 𝑆 using a policy derived from 𝑄 (e.g., 𝜖-greedy)   

7.  Perform action 𝐴 observe 𝑅, 𝑆′ 
8.  𝑄(𝑆, 𝐴) ← 𝑄(𝑆, 𝐴) + 𝛼[𝑅 + 𝛾𝑄(𝑆′, 𝑎)  − 𝑄(𝑆, 𝐴)] 
9.  𝑆 ← 𝑆′ 
10.  end for – when 𝑆 is terminal 

11. end for 

Algorithm 5 - Q-learning pseudo-code. 

 

Appendix A.II – Deep Reinforcement Learning 

 

The algorithms presented in the previous chapter are typically referred to as tabular methods, 

in the sense that they require a matrix to hold a dynamic representation of Q-values. However, 

the state space grows exponentially with the number of state variables, making tabular tracking 

infeasible. This is referred to, as the curse of dimensionality. This is where the term deep – 
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which refers to the existence of multiple processing layers in a neural network – steps in. Instead 

of storing the values, a Q-value function approximator, a neural network is used.   

The use of neural networks instead of simpler function approximations, for instance, linear 

approximators, is largely justified by that fact that when applied to Q-learning, the approximator 

greatly suffers from instability and divergence. Considering 𝜃 as the neural network’s 

parameters, the action function parametrized by 𝜃 becomes 𝑞𝜋𝜃
(𝑠, 𝑎). 

 

Figure 20 – Schematic depiction of deep reinforcement learning. 

Deep Q-learning (Mnih, et al., 2015) constituted a breakthrough in deep reinforcement learning 

(DRL). The algorithm tackled and managed to overcome some of its tabular predecessor’s 

limitations, by using two innovative mechanisms. The first, experience replay, consists of 

storing the episode’s trajectory on each time step 𝑡, 𝑒𝑡 = (𝑆𝑡, 𝐴𝑡 , 𝑅𝑡, 𝑆𝑡+1) into memory 𝐷𝑡 =

{𝑒0, ⋯ 𝑒𝑡}. During action function update, a minibatch of independent samples is selected from 

𝐷𝑡, and used to train the neural network via stochastic gradient descent (SGD). The 

mechanism’s goal is to reduce the sample’s strong temporal correlation, by drawing randomly 

selected experiences, which yields accurate gradient estimation. The second modification 

consists in the introduction of a target network, 𝑞∗𝜃
, parametrized by 𝜃−. The independent 

network is updated less often, specifically, at every 𝐶 time steps, the target network is updated 

setting 𝜃− = 𝜃, and held frozen for the remaining intermediate period. The use of a second, less 

oscillating target network, introduces stability in the training process, by attenuating the effect 

of short-term fluctuations. 

By combining the two previous introductions, at every time step 𝑡, DQN draws 𝑁 independent 

samples from the replay memory 𝐷𝑡, using them to update Q-network’s 𝜃, computing the target 

𝑌𝑡 = 𝑅𝑡 + 𝛾𝑄∗𝜃
(𝑆𝑡+1, 𝑎) , and updating 𝜃 via gradient of the loss function 𝐿(𝜃), 
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𝐿(𝜃) = 𝔼𝑒𝑡~𝑈(𝐷)[𝑅𝑡+1 + 𝛾𝑄(𝑆𝑡+1, 𝑎, 𝜃−) − 𝑄𝜃(𝑆𝑡,𝐴𝑡) ]
2

 , (A.10) 

 

where 𝑈(𝐷) represents a uniform distribution over the replay memory 𝐷. 

Algorithm Deep Q-Learning 

1. Input: Replay memory capacity 𝑁 

2. Initialize 𝐷 to capacity 𝑁; Initialize 𝐶, the target update frequency; Initialize both action value 

and target action value functions, 𝑞 and �̂� with random weights 𝜃, 𝜃− = 𝜃, respectively 

3. for 𝑘 = 0,1,2, … do 

4.  Initialize 𝑒1 = {𝑆, 𝐴} 

5.  for each step of the episode 𝑡 = 0,1,2, … , 𝑇 − 1  do 

6.  Choose 𝐴 from 𝑆 using a policy derived from 𝑄 (e.g., 𝜖-greedy)   

7.  Perform action 𝐴 observe 𝑅, 𝑆′ 
8.  Set 𝑒𝑡+1 = 𝑆, 𝐴, 𝑆′ 
9.  Store transition 𝑒𝑡+1in 𝐷 

10.  Sample random minibatch of transitions from 𝐷 

11.  
Set 𝑦𝑖 = {

𝑅𝑡

𝑅𝑡 + 𝛾 max
𝑎′

𝑄𝜃−̂(𝑆𝑡+1, 𝑎′)
𝑖𝑓 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑠 𝑎𝑡 𝑡+1

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

12.  Perform a gradient descent step on [𝑌𝑖 − 𝑄𝜃
(𝑆, 𝐴)]

2
 

13.  Every 𝐶 steps set 𝜃− = 𝜃 

14.  end for – when 𝑆 is terminal 

15. end for 

Algorithm 6 - Deep Q-Learning pseudo-code12. 

 

Appendix A.III – Policy Gradient 

 

Whereas members of the Q-Learning taxonomy indirectly optimize the policy via estimating 

the optimal value function, 𝑞∗(𝑠, 𝑎), Policy Gradient (PG) aims at learning a parametrized 

policy, without requiring a value function to determine action selection. Policy Gradient 

represents a policy explicitly, 𝜋𝜃(𝑎|𝑠), optimizing the policy’s parameters 𝜃 either directly, via 

gradient ascent on the reward function 𝐽(𝜃), or indirectly, by maximizing local approximations 

of the reward function. The expression 𝜋𝜃(𝑎|𝑠) can be interpreted as the probability that action 

𝑎 is selected at time step 𝑡, given that the environment is at state 𝑠, at time step 𝑡, parametrized 

by 𝜃. 

𝜋(𝑎|𝑠, 𝜃) =ℙ [𝐴𝑡 = 𝑎|𝑆𝑡 = 𝑠, 𝜃𝑡 = 𝜃] , (A.11) 

The previous expression can also be represented as 𝜋𝜃(𝑠, 𝑎). 

                                                           
12 The algorithm differs from the literature, as the original framework was designed for training under 

computer games, using Convolutional Neural Networks (CNN) to pre-process the images. However, these 
topics are beyond the scope of the paper, hence, the algorithm’s pseudo-code has been adapted. 
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PG offers significant benefits over DQN. In terms of convergence, value-based methods tend 

to have large oscillations due to small variations in the estimated action values, can dramatically 

modify action selection probabilities, PG on the other hand, simply uses gradient ascent to 

follow the optimal parameters, resulting in smooth policy updates. The newly introduced class 

of methods is also more effective in high-dimensional spaces regarding the value-based method, 

being able to cope with continuous action spaces. Whereas value-based methods, at each time 

step, require computing the value associated with each action, a computationally expensive 

framework, policy-based methods on the other hand, compute the optimal action directly on 𝜃. 

Lastly, Policy Gradient methods can learn stochastic policies. The latter leads to two positive 

side-effects, the obliteration of the perceptual aliasing problem13 and remove the need to 

implement a greedy policy method for action selection, such as 𝜖-greedy, to handle the 

exploration-exploitation tradeoff.   

Under the Policy Gradient framework, the reward function is given by 

𝐽(𝜃) = 𝑉𝜋𝜃
(𝑠1) = 𝔼𝜋𝜃

[𝑉1] , (A.12) 

considering episodic environments, and  

𝐽(𝜃) = ∑ 𝑑𝜋𝜃
(𝑠)𝑉𝜋𝜃

(𝑠)

𝑠∈𝑆

 , (A.13) 

for continuous environments, where 𝑑𝜋𝜃
 represents a stationary distribution for a Markov Chain 

for 𝜋𝜃, and 𝑉𝜋𝜃
(𝑠) corresponds to the estimated value function of 𝜋𝜃 for state 𝑠. 

The computation of 𝛻𝐽(𝜃), required to optimize the parameters 𝜃, is not trivial, as it depends 

on the effect of the policy on action selection, directly determined by 𝜋𝜃, and the stationary 

distribution of states, indirectly determined by 𝜋𝜃 thus, unknown. Policy Gradient Theorem 

yields the expression which allows computing the gradient of 𝐽(𝜃), 𝛻𝜃𝐽(𝜃) , which does not 

involve taking the derivative of the objective function’s state distribution 𝑑𝜋𝜃
 

𝛻𝜃𝐽(𝜃) = 𝔼𝜋𝜃
[𝛻𝜃 log 𝜋𝜃 (𝑠, 𝑎)𝑄𝜋𝜃

(𝑠, 𝑎) ] , (A.14) 

 

where 𝑙𝑛 represents the natural logarithm, and the instantaneous reward 𝑅𝑡+1 is replaced by the 

long-term action-value 𝑄𝜋𝜃
(𝑠, 𝑎). 

                                                           
13 Perceptual Aliasing refers to the case of similar or equal states, which require different responses 
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REINFORCE, or Monte Carlo Policy Gradient, borrows from Monte Carlo – hence its name – 

in determining how samples are obtained on each time step. The complete return 𝐺𝑡 is used as 

an unbiased sample of  𝑄𝜋𝜃
(𝑠, 𝑎) to determine the policy’s gradient to update 𝜃.  

𝛻𝜃𝐽(𝜃) = 𝔼𝜋𝜃
[𝐺𝑡

𝛻𝜃𝜋𝜃(𝐴|𝑆)

𝜋𝜃(𝐴|𝑆)
 ] 

                                    = 𝔼[ln 𝜋𝜃(𝐴|𝑆)] since 𝛻 ln 𝑥 =
𝛻𝑥

𝑥
 , 

(A.15) 

 

Algorithm REINFORCE: Monte-Carlo Policy Gradient 

1. Input: A differentiable policy parametrization 𝜃; step size 𝛼 > 0 

2. Initialize 𝜃 

3. for 𝑘 = 0,1,2, … do 

4.  Generate a trajectory following policy 𝜋(∙ | ∙, 𝜃), (𝑆0, 𝐴0, 𝑅1, … , 𝑆𝑇−1, 𝐴𝑇−1, 𝑅𝑡) 

5.  for each step of the episode 𝑡 = 0,1,2, … , 𝑇 − 1  do  

6.  

𝐺𝑡 ← ∑ 𝛾𝑘−𝑡−1𝑅𝑘

𝑇

𝑘=𝑡+1

 

7.  𝜃 ← 𝜃 + 𝛼𝛾𝑡𝐺𝑡𝛻 𝑙𝑛 𝜋𝜃(𝐴𝑡|𝑆𝑡)  
10.  end for – when 𝑆 is terminal 

11. end for 

Algorithm 7 - REINFORCE pseudo-code. 

 

The previous method, although promising, suffers from high-variance. A typical solution to 

such problem is to subtract a baseline 𝑏(𝑠) from 𝐺𝑡, decreasing the variance of the gradient’s 

estimation whilst keeping the update’s expected value unchanged. Such variation is called 

REINFORCE with Baseline, and would modify the gradient ascent, step 7, by subtracting a 

given value, such as the Advantage function, to be introduced ahead, from 𝐺𝑡. 

Vanilla policy gradients tend to suffer from noise and high variance, leading to unstable 

learning processes, which may result in policy distributions skewed towards non-optimal 

trajectories. The actor-critic framework tackles said hindrance, by introducing a concept of dual 

entities, where the critic’s responsibility is to estimate the value function’s parameters 𝑤, 

𝑄𝑤(𝑠, 𝑎) or 𝑉𝑤(𝑠) , and the actor’s role is to update the policy’s, 𝜋𝜃(𝑎|𝑠), parameters 𝜃, in the 

direction suggested by the critic.  

Before proceeding, a new operator, the advantage function, is introduced. The construct 

attempts to capture to what extent an action better or worse for a given state, in comparison 

with the alternative actions. The goodness of an action is given by its Q-value 𝑄(𝑠, 𝑎), whilst 

the average value of the actions for a given state, are given by the value function 𝑉(𝑠), hence 

the advantage function is given by 
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𝐴𝜋𝜃
(𝑠, 𝑎) = 𝑄𝜋𝜃

(𝑠, 𝑎) − 𝑉𝜋𝜃
(𝑠) , (A.16) 

Advantage functions reduce variability and solve the perceptual aliasing problem, where two 

similar or equal states require different actions.  

The last algorithm presented in this section, is named Trust Region Policy Optimization, or 

simply, TRPO. Introduced by Schulman, et al. (2017), it is based on the idea that training 

stability can be achieved by ensuring that the policy parameter updates are limited in size, by 

introducing a Kullback–Leibler (KL) divergence constraint on the size of the policy update.  

The objective function under TRPO is given by 

𝐽(𝜃) = 𝔼𝑠~𝜌𝜋𝑜𝑙𝑑 ,𝑎~𝜋𝑜𝑙𝑑
[

𝜋𝜃(𝑠)

𝜋𝜃𝑜𝑙𝑑
(𝑠)

�̂�𝜋𝜃𝑜𝑙𝑑
(𝑠, 𝑎)] , (A.17) 

 

where 𝜃𝑜𝑙𝑑 represents the policy’s parameters prior to the update, �̂�𝜋𝜃𝑜𝑙𝑑
(𝑠, 𝑎) represents the 

estimated advantage function, and lastly, 𝜌𝜋𝑜𝑙𝑑  represents the state’s visitation frequency.  

The algorithm then seeks maximizing the objective function (), subject to the trust region 

constraint, which establishes that the distance, as measured by KL-divergence, between the old 

and new policies, has to be bounded by a given parameter 𝛿 

𝔼𝑠~𝜌𝜋𝑜𝑙𝑑 [𝐷𝐾𝐿 (𝜋𝜃𝑜𝑙𝑑
(∙ | 𝑠)||𝜋𝜃(∙ | 𝑠))] ≤ 𝛿 , (A.18) 

 

where 𝐷𝐾𝐿(∙ || ∙) represents the Kullback–Leibler divergence, and 𝛿 corresponds to the 

bounding parameter or KL-divergence limit. 
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Algorithm Trust Region Policy Optimization 

1. Input: Initial policy parametrization 𝜃0; initial value function parameters 𝜙0 

2. Set the hyper parameters: KL-divergence limit 𝛿,backtracking coefficient 𝛼, maximum number of 

backtracking steps 𝐾 

3. for 𝑘 = 0,1,2, … do 

4.  Collect a set of trajectories 𝐷𝑘 = {𝜏𝑖} by running policy 𝜋𝑘 = 𝜋(𝜃𝑘) in the environment 

5.  Compute rewards-to-go �̂�𝑡 

6.  Compute the advantage estimates, �̂�𝑡 based on the current value function 𝑉𝜙𝑘
 

7.  Estimate the policy gradient as 

𝑔𝑘 =
1

|𝐷𝑘|
∑ ∑ 𝛻𝜃𝑙𝑜𝑔𝜋𝜃(𝑠𝑡)|𝜃𝑘

�̂�𝑡

𝑇

𝑡=0𝜏∈𝐷𝑘

 

8.  Use the conjugate gradient algorithm to compute 

𝑥𝑘 = �̂�𝑘
−1�̂�𝑘 

where �̂�𝑘 is the Hessian of the sample average KL-divergence 

9.  Update the policy by backtracking line search with 

𝜃𝑘+1 = 𝜃𝑘 + 𝛼𝑗√
2𝛿

𝑥𝑘
𝑇�̂�𝑘�̂�𝑘

𝑥𝑘 

where 𝑗 ∈ {0,1,2, … 𝐾} is the smallest value which improves the sample loss and satisfies the 

sample KL-divergence constraint 

10.  Fit value function by regression on mean-squared error 

𝜙𝑘+1 =
1

|𝐷𝑘|𝑇
∑ ∑(𝑉𝜙(𝑠𝑡) − �̂�𝑡)

2
 

𝑇

𝑡=0𝜏∈𝐷𝑘

 

typically via some gradient descent algorithm 

11. end for 

Algorithm 8 – Trust Region Policy Optimization pseudo-code. 
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Appendix B – The reinforcement learning policy’s plot as a function of the time remaining 

until the backtesting process resumes 

 

 

Figure 21 - The proximal policy optimization agent’s policy plot considering the multiplier 3,  

considering exceedances between 0 and 4. 

 

 

Figure 22 - The proximal policy optimization agent’s policy plot considering the multiplier 3,  

considering exceedances between 5 and 9. 
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Figure 23 - The proximal policy optimization agent’s policy plot considering the multiplier 3.4,  

considering exceedances between 0 and 4. 

 

 

Figure 24 - The proximal policy optimization agent’s policy plot considering the multiplier 3.4,  

considering exceedances between 5 and 9. 

 

Figure 25 - The proximal policy optimization agent’s policy plot considering the multiplier 3.5,  

considering exceedances between 0 and 4. 
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Figure 26 - The proximal policy optimization agent’s policy plot considering the multiplier 3.5,  

considering exceedances between 5 and 9. 

 

Figure 27 - The proximal policy optimization agent’s policy plot considering the multiplier 3.65, 

 considering exceedances between 0 and 4. 

 

Figure 28 - The proximal policy optimization agent’s policy plot considering the multiplier 3.65,  

considering exceedances between 5 and 9. 
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Figure 29 - The proximal policy optimization agent’s policy plot considering the multiplier 3.75,  

considering exceedances between 0 and 4. 

 

Figure 30 - The proximal policy optimization agent’s policy plot considering the multiplier 3.75,  

considering exceedances between 5 and 9. 

 

Figure 31 - The proximal policy optimization agent’s policy plot considering the multiplier 3.85,  

considering exceedances between 0 and 4. 
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Figure 32 - The proximal policy optimization agent’s policy plot considering the multiplier 3.85,  

considering exceedances between 5 and 9. 

 

 

Figure 33 - The proximal policy optimization agent’s policy plot considering the multiplier 4,  

considering exceedances between 0 and 4. 

 

Figure 34 - The proximal policy optimization agent’s policy plot considering the multiplier 4,  

considering exceedances between 5 and 9. 



76 
 

Appendix C - Source Code 

 

The author has chosen to publish the source code which led to the findings present on this 

work under his public GitHub repository at github.com/guilherme-b. The repository includes 

both the reinforcement learning’s environment and the Monte Carlo simulation framework. 
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