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Abstract

In 1995, the Basel Committee on Banking Supervision emitted an amendment to the first Basel
Accord, allowing financial institutions to develop internal risk models, based on the value-at-
risk (VaR), as opposed to using the regulator’s predefined model. From that point onwards, the
scientific community has focused its efforts on improving the accuracy of the VaR models to
reduce the capital requirements stipulated by the regulatory framework. In contrast, some
authors proposed that the key towards disclosure optimization would not lie in improving the
existing models, but in manipulating the estimated value. The most recent progress in this field
employed dynamic programming (DP), based on Markov decision processes (MDPs), to create
a daily report policy. However, the use of dynamic programming carries heavy costs for the
solution; not only does the algorithm require an explicit transition probability matrix, the high
computational storage requirements and inability to operate in continuous MDPs demand
simplifying the problem. The purpose of this work is to introduce deep reinforcement learning
as an alternative to solving problems characterized by a complex or continuous MDP. To this
end, the author benchmarks the DP generated policy with one generated via proximal policy
optimization. In conclusion, and despite the small number of employed learning iterations, the
algorithm showcased a strong convergence with the optimal policy, allowing for the
methodology to be used on the unrestricted problem, without incurring in simplifications such

as action and state discretization.

JEL Classification Numbers: G21, G28, C45

Keywords: Value at Risk, Basel Accords, Artificial Intelligence, Deep Learning, Deep
Reinforcement Learning, Proximal Policy Optimization



Resumo

Em 1995 foi emitida uma adenda ao Acordo de Basileia vigente, o Basileia I, que permitiu que
as institui¢Oes financeiras optassem por desenvolver modelos internos de medigéo de risco,
tendo por base o value-at-risk (VaR), ao invés de recorrer ao modelo estipulado pelo regulador.
Desde entdo, a comunidade cientifica focou os seus esforcos na melhoria da precisdo dos
modelos de VaR procurando assim reduzir os requisitos de capital definidos na regulamentacéo.
No entanto, alguns autores propuseram que a chave para a optimizacdo do reporte ndo estaria
na melhoria dos modelos existentes, mas na manipulacdo do valor estimado. O progresso mais
recente recorreu ao uso de programacao dinamica (DP), baseada em processos de decisdo de
Markov (MDP) para atingir este fim, criando uma regra de reporte diaria. No entanto, o uso de
DP acarreta custos para a solucdo, uma vez que por um lado, o algoritmo requer uma matriz de
probabilidades de transi¢do definida, e por outro, os elevados requisitos de armazenamento
computacional e incapacidade de lidar com processos de decisdo de Markov (MDP) continuos,
exigem a simplificacdo do problema em questdo. Este trabalho visa introduzir deep
reinforcement learning como uma alternativa a problemas caracterizados por um MDP
continuo ou complexo. Para o efeito, é realizado um benchmarking com a policy criada por
programacéo dinamica, recorrendo ao algoritmo proximal policy optimization. Em suma, e
apesar do reduzido montante de iteracbes empregue, o algoritmo demonstrou fortes capacidades
de convergéncia com a solucdo Optima, podendo ser empregue na estimativa do problema sem

incorrer em simplificagdes.
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1 Introduction

In 1995, the Basel Committee on Banking Supervision issued an amendment to the first Basel
Accord, Basel I. This amendment allowed financial institutions to develop internal risk models,
based on the value-at-risk (VaR), as opposed to using the regulator’s predefined model.
However, this liberty came at a cost, as the model’s ability to capture observed risk would be
assessed on a yearly backtesting process, penalizing the market risk charge (MRC) as a function
of the recorded violations. From this point onwards, the financial community focused its efforts
on improving the accuracy of the VaR models to reduce the regulatory capital requirements.
However, some authors proposed that the key towards disclosure optimization would not lie in
improving the existing models, but in manipulating the estimated value. The most recent
progress in this field employed dynamic programming (DP) based on Markov decision
processes (MDPs), to create a daily report policy, based on the applicable regulation and the
model’s ability to capture observed risk. An issue with the use of dynamic programming is the
heavy cost involved. Firstly, the algorithm requires an explicit transition probability matrix,
unfeasible in financial markets. This, paired with high computational storage requirements and

an inability to operate in continuous MDPs, meant an alternative solution was needed.

In recent years, neural networks (NNs) have seen a widespread growth, boosting the fields
which rely on its use, from computer vision to data science. However, the usage of these
techniques within the financial sector has been long overdue, partly, due to the concerns over
the lack of transparency of black-box methodologies. The purpose of this work is to introduce
deep reinforcement learning (DRL) as an alternative to solving problems characterized by
MDPs, whose dynamics have proven to be too complex or hard to map, usually the case in
financial markets. The introduced class of algorithms do not require an explicit transition
matrix, and therefore require little information about the underlying environment’s dynamics.
Furthermore, some versions have the ability to learn continuous action and state spaces. In
short, the goal of reinforcement learning is to provide an optimal policy which maps states to
actions through a repeated trial-and-error process.

In order for the algorithm to be deemed viable to tackle this category of financial problems, its
ability to converge towards a known optimal solution must be assessed, in other words,

benchmarked, under the premise that should the algorithm prove capable of approximating a



simple problem’s solution, then surely its capability will be maintained when solving a complex
environment, in which dynamic programming is not viable. For this purpose, proximal policy
optimization (PPO), one of the most recent developments in DRL with improved convergence
and stability in the continuous domain in comparison to its predecessors, has been selected to
approximate the optimal solution computed by DP. In practice, the usage of algorithms with
solid performance in discrete spaces, such as double dueling deep Q-network (DDQN), would
be more appropriate for the selected benchmark as they can estimate the optimal solution faster
and more efficiently — the algorithms in the policy gradient taxonomy, to which PPO belongs,

tend to be stuck in local optima.

The problem selected for benchmarking is that of optimizing the value at risk disclosure under
the second Basel Accord, characterized by discrete action and state spaces. The reasoning
behind this selection is due to the fact that the problem in question has a complex and
demanding environment, regarding its space dimensions, which could benefit from proximal
policy optimization’s ability of learning under continuous spaces. This would therefore avoid
many of the pitfalls and simplifications incurred to make the problem tractable for dynamic
programming. The solution consists in the creation of a policy, that is, a map from actions to
spaces, in which the state corresponds to a tuple of (a) the time remaining until the backtesting
process is resumed, in days, in which the multiplier is reviewed as a function of the incurred
exceedances, (b) in exceedances recorded to date, and lastly, (c) the applicable multiplier, for
the relevant period. The policy is constructed via a proximal policy optimization agent, which
learns the dichotomy between reporting low VaR values, minimizing the short-run cost, and the
occurrence of exceedances, in which the observed loss surpasses the reported expected loss,

leading to the next year’s multiplier to be modified.

The first part of this thesis introduces the applicable theoretical base, from the regulatory
context which originates the need to optimize an internal model’s VaR disclosure, to the deep
reinforcement learning theory, seeking to establish a link between dynamic programming and
reinforcement learning. The focus then shifts to approximating the optimal policy generated by
Seixas (2016), in addition to benchmarking the yielded solution with that of the mentioned
author’s. Despite the small number of training iterations used in approximating the solution, the
algorithm’s policy presented strong signs of convergence with the DP’s optimal policy, yielding
similar results in behavior and incremental return, generated through the investment of the freed

capital, whilst maintaining the institution’s exposure constant.



The thesis’ contribution to the field is therefore threefold: (a) it demonstrates the adequacy of
deep learning in providing a solution to the Basel disclosure problem; (b) it paves the way for
future improvements on the problem at hands via deep reinforcement learning; and lastly, (c) it
introduces the class of deep reinforcement learning as a solution for optimization problems, a

methodology long overlooked in the financial community.



2 Theoretical Framework

2.1 Basel Accords

In late 1974, in the wake of severe disturbances in the currency and banking markets, the G10
central bank governors established the Committee on Banking Regulations and Supervisory
Practices. This committee was posteriorly renamed to Banking Committee on Banking
Supervision (BCBS).

The BCBS was created as a regulatory body, providing a framework for global supervision and
risk regulation. Nevertheless, the BCBS does not have legal power, nor has it pursued such
goal. The institution’s purpose is, in short, to provide guidelines and standards on banking

regulation, and to create a channel for cooperation and discussion between financial institutions.

In July 1988, the Basel Committee on Banking Supervision presented a framework for
measuring the capital adequacy, specifically, to establish the minimum levels of capital required
for international banks. This documentation became known as Basel I, suggesting there would
be further improvements to the document. The first Basel Accord focused mainly in credit risk,
coupling the required capital level with the degree of credit risk in the institution’s portfolio.
The latter’s assets would then be categorized into three buckets according to its risk, as
perceived by the regulator. The regulation stipulated that financial institutions (FI) were
required to hold a minimum of eight percent of capital in relation to risk-weighted assets — the

capital adequacy ratio (CAR). Formally, this notion is expressed by the following formula:

Tier I Capital + Tier II Capital 100 1)

CAR =
Risk weighed assets for credit risk

where Tier I Capital, often referred to as core capital, comprises (a) paid up capital, (b)
reserves and surplus, and (c) capital reserves and Tier Il Capital, termed supplementary
capital, refers to (a) undisclosed reserves, (b) revaluation reserves, (c) general provision and
loss reserves, (d) hybrid (debt/equity) capital instruments, and € subordinated debt instruments.
Additionally, the accord provided means of separating an institution’s assets into five different
percentage categories, based on its risk nature, and accordingly, establishing each asset’s

weight-factor.



Following general criticism that the standard approach defined in Basel | was incapable of
accurately measuring risk, the BCBS incorporated market risk in capital requirements,
reflecting the increasing tendency for Fls to increase their exposure to derivatives. In addition,
the document introduced the ability for firms to self-regulate, as a means of encouraging risk
taking and adequate measurement. The 1995 amendment to the first Basel Accord provided a
framework for firms to assess the quality of their risk models through a backtesting process, as
this methodology started to diffuse among Fls. Following this document, institutions were
allowed to develop their own financial models to compute their market risk capital thresholds
— the daily VaR. This archetype would be known as the Internal Model Approach (henceforth
referred to as IMA). The backtesting process tied the market risk capital requirement, MRC, to
both the portfolio’s risk, and the internal model’s quality. The market risk charge in a given day
t, would then correspond to the combination of two components, the general risk charge and

the specific risk charge

MRC = GRC + SRC, )

where GRC and SRC correspond to the general and specific risk charges, respectively. Whereas
the GRC depended directly on the model, SRC represented the specific risk charge, a buffer
against idiosyncratic factors, including basis and event risks. The former corresponded to the
maximum between the present day’s value-at-risk, and the average of the last sixty daily risk
disclosures, multiplied by a factor, which became known as k or the multiplier factor. The

condition stated in the previous sentence reflects in the following mathematical expression

59
1
GRCt = max <VaRt'1%, k * %Z VaRt_i,1%> , (3)
i=0

where the multiplier’s value, k, depended on the amount of violations verified during the

backtesting process, and VaR; 14, represents the 10-day value-at-risk computed at the 1% level.



Number of Potential Multiplier Cumulative

Zone Exceptions Increase in K Value (K) Probability (%)!
Green Oto4 0.00 3.00 [8.11;89.22]
Yellow 5 0.40 3.40 95.88

6 0.50 3.50 98.63

7 0.65 3.65 99.60

8 0.75 3.75 99.89

9 0.85 3.85 99.97
Red >10 1.00 4.00 99.97

Table 1 — The Basel Penalty Zones

The backtesting process would take place every 250 trading days, analyzing the entire period’s
model estimates, with the VaR in question being computed at the 1% significance level. Table
1 summarizes the multiplier factor k’s states in relation to the recorded exceedances in the

backtesting process for a given period.

In 2004, the BCBS released Basel 11, the second Basel Accord. The document sought to further
improve the risk management and capital adequacy guidelines set by Basel I, sixteen years
earlier. The motivation behind this improvement lied in Basel I’s innability to differentiate risk,
especially among members of the Organization for Economic Cooperation and Development
(OECD), and the discrepancy between Basel I’s risk weights, and the actual economic risks.
Whilst the first accord focused on credit risk, the new proposal integrated market (included in
the 1996 ammendment) and operational risks on the minimum capital requirement computation.
Another important addition in Basel II was the fact that assets’ credit rating played a major role
in determining risk weights. Such reflected in riskier assets having larger weights, thus leading
to a larger MRC.

Basel Il created a three pillar structure, (a) minimum capital requirements, (b) supervisory
review process and lastly, (c) market discipline. Regarding the first pillar (a), its goal was to
provide a framework for calculating the required capital level for specific risk types, namely
credit, operational and market risks. The first branch provided Fls with several alternatives for

computing each of the risk types, thus enabling firms to choose that which suits their risk

! “The probability of obtaining a given number or fewer exceptions in a sample of 250 observations when the
true coverage level is 99%” (Basel Committee on Banking Supervision, 1996).



profile, enabing exceptional loss or economic crysis endurance. Pillar number two (b) provided
details regarding how supervision should be organized in order to ensure the implementation
quality of internal processes and controls, resulting in additional capital levels when applicable.
Said pillar relied on the use of banking stress tests to assess an institution’s strength in adverse
economic scenarios. Lastly, the third pillar (c) concerns transparency, referring to mandatory
disclosures within each FI to the general public, thus enabling symmetric market information,

whilst facilitating FI comparison.

At the time of the present work, the fourth Basel Accord was already showing signs of replacing
its predecessor. However, since the content reflected throughout the document focuses on the

second Basel Accord, the succeeding framework has not been further discussed.

2.2 Value at Risk

The value-at-risk is a statistical measure of potential loss, currently the market’s standard
measure in assessing market risk. This concept can be defined as the maximum potential change
in a financial portfolio’s value, with a certain probability, over an established period of time
(Alexander, 2008).

According to Artzner et al. (1999), a risk measure p(*) is to be considered coherent should it
abide by four principles: (a) the monotonicity condition, which states that if a portfolio has
lower returns than another portfolio for every state of the world, the latter’s risk measure should
be greater than the former’s; (b) the translation invariance property, which establishes that if an
amount of cash is added to a portfolio, its risk measure should go down by the same amount;
(c) the homogeneity requirement in turn, stated that changing the size of a portfolio by a factor
A, while keeping the relative amounts of different items in the portfolio the same, should result
in the risk measure being multiplied by A; and lastly, (d) the subadditivity axiom states that the
risk measure for two portfolios after they have been merged, should be no greater than the sum
of their risk measures before said transformation. These conditions are represented

mathematically in table 2.



Condition Name Condition Expression

Monotonicity p(Y)=2pX)if X<Y

Homogeneity p(aX) =ap(X),Va>0
Risk Free Condition pX+k)=pX)—k,VEk
Subadditivity pX+Y)<pX)+p)

Table 2 — The four coherent risk measure conditions

Value-at-risk satisfies the first three conditions, but is not guaranteed to satisfy the fourth

condition, the subadditivity axiom.

The value at risk can be described as the maximum loss which can be expected to occur if a
portfolio is held static for a given amount of time h, under a certain confidence level (1 — a)
(Alexander, 2008). In a more practical view, it can be thought of as the amount of capital that
must be added to a position to make its risk acceptable to regulators. This risk measure was
introduced as an alternative to standard portfolio risk metrics, namely volatility and correlation,
as these can only accurately measure risk when the asset’s or risk factor’s returns have a
multivariate normal distribution. Value-at-risk encompasses a wide set of attractive features,
namely the fact that it can easily be aggregated and disaggregated whilst taking into
consideration the dependencies between its constituents; and its ability to not only measure the

risk factor’s risk, but their sensitivities as well (Alexander, 2008).

Considering a significance level, a, such that, 0 < a < 1, its quantile for a given distribution
IS given by
PX<x,)=a, 4)
Thus, the quantile a of distribution X, x,, can be obtained according to
xXq = F(a), (5)
where F~1 represents the inverse of the distribution function.
Recall the VaR corresponds to the maximum loss which is expected to be exceeded with

probability a, when the portfolio is held static for h days. Accordingly, it corresponds to the

computation of the a quantile of the discounted h-day P&L distribution:



P(Xh < xht,a) =a, (6)

BhtPt+n—Pt

where a corresponds to the significance level and X, = represents the h-day

t

discounted return.

According to the previous statement, and since the value-at-risk is an estimated loss, its value

can be obtained by direct application of equation (5):

VaRy o = —F; H(a), @
where F; 1 (a) represents the inverse cumulative distribution function of losses.
By replacing the previous equation into (6) yields

VaRh,a = —Xnt,a - (8)

According to Simons (2000), the parametric linear framework is the most used of the three
existing estimation methods, hence, this thesis’ focus. Within parametric methods, most
research focuses on the use of normal distribution given its simplicity and the ability to use the
h-day square root, VA, as a scaling rule for linear portfolios. It is important to note however,
that this rule leads to a systematic underestimation of risk, where the degree of underestimation
is aggravated the longer the time horizon, jump intensity? and confidence level, failing to
address the objective of the Basel Accords (Danielsson & Zigrand, 2003). Nevertheless, this
thesis will focus on the normal parametric value-at-risk and its scaling rule, given its well-

known behavior and widespread use.
Assuming the portfolio’s discounted returns, X, ; are i.d.d. and normally distributed with mean
u and standard deviation o, i.e.

idd
Xt,hl" N (Une, O7e) 9)

applying the normal standard transformation to the previous variable yields

Xht,a — Hnt
P(Xht < xht’a) =P (Z < a—) =a, (10)

Ont

where Z is a standard normal variable.

2 |n The term jump refers to jump diffusion stochastic processes, models which aim at assessing the probability
of two i.d.d. variables modeled under the same distribution, seeing their price move significantly and
synchronously.



Applying equation (5) to the previous expression results in the portfolio’s standardized

discounted return’s inverse cumulative function

xht,a — Unt — q)_l(a) ’ (ll)
Oht

Because the normal distribution is symmetric around its mean, then the previous expression can

be rewritten as

¢~ Ha) =—¢7'(1-a), (12)

Plugging the previous expression into (7) yields the formula of the value-at-risk with drift

adjustment
VaRpiq = ¢~ (1 — @)0pe — fine (13)
where ;. represents the drift adjustment.

Under the assumption that the portfolio’s expected return is the risk-free rate, u,, = 0, and
dropping the implicit dependence of VaR on time t, the previous expression can be further

simplified as

VaRp, = ¢ (1 — a)oy, (14)
Under the assumption that the returns follow a normal distribution, the h-day VaR can be

obtained resorting to the square root scaling rule, that is

VaRpq = Vh*VaRy,, (15)

10



2.3 Markov Decision Process

Markov decision processes, or simply, MDP’s, are comprised of a set of spaces §, a vector of
possible actions A, a transition and reward models. Miranda & Fackler (2002) sum up a MDP
by a choice to be taken at each time step t, a;, from the available relevant action set for the

present state s;, A(s;), earning a reward R, , from a function parametrized by both current state

"J Agent ||

state reward action
S, R, A,
i . Rr-r 1 (

 <S=] Environment ]4——

and selected action.

Figure 1 — The figure shows the agent-environment interaction in a Markov decision process, where the agent interacts with
the environment by performing the selected action, and the environment returns the reward and new state associated with the
agent’s behavior.

The transition model defines which state the environment transitions to, contingent on the

present state and selected action,
ZPS%,=P(S'|S,(1)=[P[SH1=S'|St=S,At=a], (16)
where [P denotes a probability function.

The reward function on the other hand, defines the reward yielded at time step t, contingent on

the current state s and selected action a

Ry = R(s¢,ap), (17)

These two components, the transition and rewards models, form the basis of a Markov decision

process.

Markov introduced the concept of memorylessness of a stochastic process, a key propriety of
MDPs. This assumption states that each state pair is independent of past-occurrences, meaning,

each state contains all the meaningful information from the history. In other words, the future

11



and past are conditionally independent given the present, since the current state contains all the
required statistical information to decide upon the future.

The concept of policy, represented by the symbol &, which corresponds to a mapping from
states to actions, is meaningful throughout the course of this work. Policies can be deterministic
or stochastic. The former corresponds to a policy in which the optimal action is solely
determined by the current state. The probability of an action being selected in state s under a

deterministic policy r is given by
n(s) =a, (18)

whereas if the policy = is stochastic, the action selection is contingent on a probability

function

(als) = P[A; = a|S; = s], (19)

Value functions, v, (s) attribute a quantifiable goodness value to a given state under a policy
7, by attempting to capture its associated future reward. The latter corresponds to the sum of

discounted future rewards, or expected return, given by G,

T

Gy = z Y Ry, (20)
k=t+1
where y € [0,1] represents the discount term, a factor by which to penalize future rewards.

The state-value function of a given state s at time t, corresponds to the expected reward the

algorithm is to observe starting from state s

V() = Er[Ge|S; = 5]
= E[Rt41 + yv(Ses1)IS: = 5], (21)

where E,[-] represents the expected value of a given random variable considering the agent

follows policy 7.

Whilst the value function focuses on individual states, the action-value function q,, seeks

attributing a fitness value for the action as well,

qn(s,a) = Ex[G¢|S; = 5,4, = a] (22)
= E[Re41 + V@ (Ses1, Ar+1)|Se = 5, A = al,

12



Using the probability distribution over all possible actions and g-values, that is, state-action

values, the value function can be obtained by

V() = ) auls,m(als), 3

a€eA

The overall objective under the MDP framework is to compute the value function which

maximizes the rewards, v, (s) =2 v,(s) Vr,s,
v.(s) = max vy (s) (24)

q.(s, @) = maxq(s,a), (25)

The previous goals can be achieved via Bellman’s optimality equations
v.(s) = max E[Ri 41 + ¥0u(Se41)ISe = 5,4 = d] (26)

q.(s,a) = E[Ry41 + Vn}f,lx q.(St+1,a)|Se = 5, A, = a], (27)

The reinforcement learning models and concepts presented and used throughout this thesis,

assume problems described by infinite horizon, stochastic transition model MDPs.

2.4 Proximal Policy Optimization

The current section presents, in a concise manner, the main ideas behind the proximal policy
optimization algorithm, on which the agent applied in this thesis is based. For those unfamiliar
with the topic, Appendix A attempts to shed light on the deep reinforcement learning algorithm
taxonomy, starting with familiar concepts such as dynamic programming and Monte Carlo
returns, to the present section’s algorithm’s predecessor, trust region policy optimization
(TRPO). Note however, that the appendix merely scratches the surface in terms of
reinforcement learning’s literature. It is important to mention that there are several important
and widely used algorithms not present in the referred section, which form the cornerstone of
deep reinforcement learning. For instance, asynchronous advantage actor-critic (A3C) and its
synchronous and deterministic version (A2C), deterministic policy gradient (DPG), deep
deterministic policy gradient (DDPG), both of which, model the policy as a deterministic

13



decision, distributed distributional DDPG (D4PG), actor-critic with experience replay (ACER),
actor-critic using Kronecker-Factored trust region (ACKTR), soft actor-critic (SAC). However,
in order to keep the algorithmic literature review as concise as possible, these have been left
out of the present discussion. These algorithms form a clear timeline of deep reinforcement
learning’s evolution, thus, understanding them, may help clarifying and solidifying the
employed concepts.

The trust region policy optimization algorithm introduced in Appendix A.IlI — Policy Gradient
has a few shortcomings, namely, the computation of the Fisher matrix at every model parameter
update, which is computationally expensive, and its requirement of large batches of rollouts to

approximate the the Fisher matrix accurately.

Proximal policy optimization (Schulman, et al., 2017) is an on-policy algorithm, able to learn
control problems under discrete or continuous action spaces, which seeks providing the answer
for the same question as its predecessor, TRPO, does: to what extent can the policy be updated,
using the available information, without modifying it too largely, which would result in
performance collapse. Whereas TRPO provides the answer relying on the use of a complex
second-order method, PPO is comprised of a set of first-order equations, combined with a few

tricks, which ensure the similarity between the old and new policies.

Consider the probability ratio between the old and new policies

n(als, 0
r(6) = M ) (28)
m(als, 8o14)
Under the previous construct, TRPO’s objective function can be represented as
]TRPO (8) =E [T(G)Ang g (s, a)] , (29)

The previous equation represents another of TRPO’s shortcomings not mentioned in the
previous paragraph. Should the distance between policies not be bounded, then the algorithm
would suffer from instability, caused by large parameter updates and large policy ratios. PPO
imposes a constraint on this ratio, by ensuring r(8) stays within the range [1 — €, 1 + €], where

€ is the clipping hyperparameter.

14



The new objective function, a surrogate function, is referred to as the Clipped® objective

function, and is represented by /7 ()

JCLUP(Q) = E [(r(@)ﬁn%ld (s,a),clip(r(0),1—€1+ e)fineold (s, a)) ] ) (30)

where clip(-) represents the clipping function, which ensures the first argument, is bounded by

the remaining arguments.

The introduced objective function takes the minimum between the policy’s ratio, and the
clipped arguments, therefore preventing excessively large (6) updates, especially when

associated with very large rewards — which would result in extreme policy updates.

The version of proximal policy optimization employed throughout this thesis, corresponds to
the algorithm’s Clip or clipped version, under the actor-critic framework. In order to
accommodate the actor-critic framework, the authors augmented the objective function with an

error term on the value function, whilst adding an entropy term to encourage exploration.

, 2
JEUP'(6) = E|JEUP(6) — €1 (Vo (s) — Viargee) + c2H(s,mo(als))], (31)
where c; corresponds to the error term coefficient, and c, to the entropy coefficient, both of

which, are hyperparameters.

Algorithm Proximal Policy Optimization with Clipped Objective
1. Input: initial policy parameters 6, initial value function parameters ¢,
2. fork=0,1,2,..do

3. Collect a set of partial trajectories Dy = {r;} by running policy m; = 7y, in the
environment

4. Compute rewards-to-go R,

S. Compute advantages estimates, Z”%zdt’ using any advantage estimation algorithm based on

the current value function Vg,
6. Update the policy by maximizing the Clipped PPO objective:
Or4+1 = argmax Ly, (8)
0

by taking K steps of minibatch stochastic gradient ascent via Adam where

T
Lo, =Eor, [z [min (rt(e)ﬁﬂaoldt, clip(rs(0),1—¢,1+ e))] z7lngoldt]
t=0

end for

Algorithm 1 — Proximal policy optimization pseudo-code.

3 The function is not named PPO’s objective function, as the algorithm introduces two versions of the objective
function, PPO-Penalty and PPO-Clip. However, the author opted for only introducing the latter as it
corresponds to the version used in this thesis.
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3 Literature Review

Since the early 1990’s, Value-at-Risk has increasingly become the standard for risk measuring
and management throughout a wide range of industries. However, the concept attained special
relevance with the 1995 amendment to the first Basel Accord, which enabled FI’s to develop
and use their own internal models, as described in section 2.1. Ever since, the literature on
value-at-risk, ranging from its estimation to its optimization under the Basel Accord framework,
has grown uninterruptedly. The present chapter focuses on introducing past findings on the

subject at hands and summarizing the corresponding author’s findings.

In 2007, Pérignon et al. (2007) introduced the notion that commercial banks tend to over-report
their VaR estimate. The authors found three possible justifications for this fact. Firstly, incorrect
risk aggregation methods induce higher VaR estimates by improperly accounting for the
diversification effects. Secondly, banks tend to overstate their VaR metric to protect their
reputation, as any evidence that the institutions are incapable of accurately measure their risk,
would result in market-driven penalties. Lastly, a typical principal-agent problem takes place,
where the risk manager voluntarily increases the VaR estimate to avoid attracting unwanted
attention. Such behavior not only represents higher costs for the banks in terms of larger
allocated capital and corresponding opportunity costs, but to the economy as well. Specifically,
according to the author, the tendency to over-report risk leads to an exaggerate estimate of a
bank’s implicit risk from an investor’s point of view, influencing its asset-pricing through the
increase of required return on equity thus generating market distortions; furthermore, the
excessive capital allocation leads to the rejection of funding for relevant projects, creating a

loss of value for the economy.

With the introduction of the second Basel Accord, McAleer (2008) suggested a set of ten
practices which aimed at helping FIs monitor and measure market risk, in order to minimize
the daily capital charge, in particular when the FI focuses in holding and moving cash, rather
than on risky financial investments. The author provided insights on (a) choosing between
volatility models; (b) the underlying distribution’s kurtosis and leverage effects; (c) the
covariance and correlation relationship models; (d) the use of univariate or multivariate models
to forecast the value-at-risk; (e) the underlying distribution’s type selection according to the
volatility type (conditional, stochastic or realized; (f) optimal parameter selection; (g)

assumption derivation; (h) forecasting model’s accuracy determination; the penultimate point,

16



() optimizing the FI’s exceedances, which constitutes the object of this thesis; and lastly, (k)

exceedance management and its relationship with the public interest.

In the aftermath of McAleer (2008)’s findings and recommendations on risk measurement and
daily capital charge optimization, McAleer et al. (2009) introduced a model which attempted
to design a rule to minimize the daily capital charges for institutions working under the Basel
Il regulation. This methodology, entitled the dynamic learning strategy (DYLES), was
characterized by discrete and fast reactions whenever exceedances were recorded, being context
sensitive in the sense that it accommodated past information, or violation history, onto its
estimate, behaving more cautiously or conservatively when more exceedances had been

recorded, and aggressively otherwise.

The authors formalized DYLES as:

1 250 1 60
T ~PVaR(t - 1),[3+ k== >  ~PVaR(t-p) |,
@:[ii‘,b%efqzsozp=,-ma"[ VaR(=1),3+klgs ), ~FVaR(t=p) (32)

where P; is a variable which is tied to the number of recorded exceedances, representing how
aggressive or conservative the estimate is regarding the estimated risk measure, the value-at-
risk; 8F and 8 are, respectively, the penalty per violation and the 25-day accumulated reward,;
p represents the backtesting time step, from 1 to 250; and k represents the applicable multiplier
increment, applied to 3, from the value set [0.0; 0.4; 0.5; 0.65; 0.75; 0.85; 1], should there be
more than 4 recorded exceedances in the previous financial year. Lastly, t represents, as usual,
the date in which the system is being modeled in. The authors concluded that in all occasions,
using the DYLES strategy led to higher capital savings when compared to a passive behavior,
that is, disclosing the computed VaR, decreasing the capital requirements by 9.5%, on average,

up to 14%, and reducing, on average, the number of violations from 12 to 8.

Kuo et al. (2013) proposed a modification to the DYLES decision rule, attempting to
incorporate the challenges faced by banks created by the Basel 111 reforms as noted by Allen et
al. (2012). In order to do so, Kuo et al. (2013) added the current market cost of capital to the
DYLES rule, naming it, MOD-DYLES. The improved model not only allowed higher cost
savings when compared with the original DY LES methodology, but it also enabled its extension
to other VaR computation methods (Kuo, et al., 2013). The authors analyzed three strategies —
standard unmanipulated disclosure, DY LES-based approach and the proposed MOD-DYLES
model — for two VaR estimation methods, the constant variance-covariance, and the variance-

covariance GARCH methods. For the first estimation method, Kuo et al. (2013) observed that
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MOD-DYLES introduced an average saving of 1.36% when compared to the passive standard
disclosure approach, whilst drastically decreasing violations. Focusing on its predecessor, the
modified algorithm managed to save, on average, an extra 0.10% per year, although as expected
given their identical underlying exceedance constraints, the number of recorded violations
matched. Regarding the second estimation model, the VC-GARCH, the proposed framework
saved on average 1.09% and an extra 0.06% per year, respectfully, for the standard disclosure,
in comparison with DYLES.

Seixas (2016) sought to further exploit the concept first introduced by McAleer (2008) that the
path to optimization should not focus exclusively on the VaR estimation method, but also on
the percentage of the metric which should be disclosed, as a form of capital charge
minimization. The researcher’s work emphasized the need to construct an optimal policy for
the daily VaR disclosure, under the internal model approach, as proposed by the Basel Il
Accords. In order to do so, Seixas (2016) applied the dynamic programming methodology to
the problem at hands, using a discrete MDP with infinite periods. The author managed to create
a policy which minimized the daily capital charge, considering (a) the time remaining until the
back process takes place, (b) the number of recorded exceedances until the moment of decision,
and lastly, (c) the applicable multiplier as defined by the preceding financial year’s backtesting
process. The policy generated tended to underreport the one-day value-at-risk, that is, to adopt
an aggressive approach, which is consistent with McAleer et al. (2009)’s notes on risk
manager’s behavior. The use of the dynamic programming framework allowed surpassing some
of the limitations and obstacles faced by DYLES’s, namely, its employment being contingent
on the portfolio at hands, and the parameter estimation problem, which would represent a
different disclosure rule contingent on the underlying distribution. When compared to the
standard option of disclosure based on a normal distribution’s strategy, Seixas (2016)’s
proposal outperformed the normal strategy in 82% of the times, yielding an average saving of
7.22% per day, when applied to a S&P500 portfolio.
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4 Methodology

The purpose of the current chapter is twofold. Firstly, it models the Basel framework introduced
in section 2.1 into a Markov decision process suitable for deep reinforcement learning.
Secondly, the author covers the introduction and assessment of an agent, based on proximal
policy optimization under the actor-critic framework, which attempts to approximate Seixas

(2016)’s solution to the Basel problem.

4.1 Environment Model

The problem at hands has been thoroughly introduced in chapter 2.1. The current section turns
to formalizing the environment so it can be solved via DRL.

Recall that the model, under the model-free reinforcement learning framework, is comprised of
three components, the state and action spaces, and the reward function. The agent’s goal under
the proposed environment, is to minimize the daily regulatory capital charge (k * x * VaR;) by
optimizing the percentage of the value-at-risk to disclose, x. The problem represents a trade-
off between opting to minimize the short-term disclosure — thus obtaining larger daily rewards
— and the long-term cost, in the shape of the applicable multiplier, a direct function of the

incurred exceedances, which in turn, are partly* dictated by the value-at-risk manipulation.

The state-space is characterized by three key aspects: (a) the time remaining until the
backtesting process takes place (TtoB); (b) the number of recorded exceedances in the current
trading period (EC); and lastly, (c) the applicable multiplier (K) throughout the given period.
The first constituent, TtoB, corresponds to how much time, measured in days, remains until the
new regulatory backtesting process starts, that is, before the year’s disclosure is accounted for,
and its quality assessed, considering 250 trading days. The variable’s natural behavior is then
to decade from its maximum value, until 1, when the review procedure takes place.
The second flag, represented by the acronym EC, accounts for the number of exceedances
recorded in the current episode. The set of possible values for this variable starts at 0, where no
exceedance has been registered, and its maximum value is set at 11. The reasoning for the

limitation to 11 exceedances is due to the fact that any further violations would still place the

4 The idea of partial responsibility in the action selection in determining the next period’s applicable multiplier
is due to the stochastic nature of the environment’s transitions.
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FI on the highest multiplier, hence, rational behavior dictates that at this point, the institution
would report a null value-at-risk, so as to decrease the short-term costs. However, the
environment is modeled under the assumption that reaching the 10-exceedance threshold,
would translate in the FI not being able to deploy its internal model, being forced by the
regulator to use a standard risk model instead. For this reason, the agent is incentivized to avoid
the 10" exceedance at all costs, being forced to report the maximum disclosure value, under the
assumption that reaching said threshold would imply the Fl incurring in high reputational costs.
The third variable’s values correspond to those defined in table 1. Accordingly, the state space
corresponds to a 3-dimensional vector, comprised of the three discrete variables defined above,
that is, one where each observation is a tuple comprised of one element of each discrete group.
Specifically, T ={r|7€Z1<x<250}, E={e|le€Z0<x<11} and K =
{3,3.4,3.5,3.65,3.75,3.85,4,10000}, which correspond to the time, exceedance and
multiplier spaces, respectively. Accordingly, an observation under the current environment is

defined as
s;=(T€eT,e€e EkeEXK), (33)

Note, however, the inclusion of an additional multiplier in %, corresponding to 10000, which
corresponds to a bankruptcy state, thus being represented by an extreme value, one which the

institution would avoid at all cost.

In turn, the action space comprises the possible disclosure values, in percentage of the reported

value, corresponding to values in the interval ]0, 3] with increments of 1E73, that is,

A = {n/1000 | n € N*,n < 3000}, (34)

where reporting the space A’s ceiling corresponds to a situation where VaR disclosure is

threefold, and vice-versa.

Despite being a model-free algorithm, a simulator must be present to be able to generate new
samples from which the agent can learn. Such simulator describes the transitioned state s;., 4,
contingent on the current state s; and the selected action a;, P%,. For the purpose of solving the
described problem, a simple transition simulator based on Seixas (2016) has been used. Such
entity is governed by the table which follows
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Event Probability

No Exceedance P(Z <VaR * x)
Exceedance 1—-P(Z <VaR xx) —P(Z > Capital Charge)
Bankruptcy P(Z > Capital Charge)

Table 3 — Transition probabilities for the simulator

where Z is a standardized normal distribution of profit and loss, under which, the probabilities

are yielded by

P(Z <VaR xx) = ®(x * VaRyp, u,0) (35)

P(Z > Capital Charge) =1 — CIJ(kt * VaRy p * V10, 1, a) , (36)

One of the critical aspects of reinforcement learning is the reward function. Such construction
is target of a both feature engineering, and prior domain knowledge. A surrogate reward
function is introduced to help the algorithm converge to the optimal policy faster and more
accurately, given its episodic nature. Specifically, an additional reward is given when the

backtesting process occurs. Mathematically, f (ag, s;) is given by

fae, se) = fag, [ ttob, ec,k]p) = —k¢ * ag * VaRy 901 * V10 + I (sy) * R(se) (37)
where VaR; (o, represents the one day value-at-risk computed at the 1% significance level, and
I.(s¢) is an indicator function, which takes the value one if the episode’s time remaining to

backtesting (Ttob) equals one, and zero otherwise,

1if TtoB, = 1

= 38
fe(se) {0 if TtoB, = 0’ (38)
and R(s;) corresponds to the terminal reward space,
R(k=0)+(K;—Kiy1)/2, 1<k<6
R(s;) = —10E3 *{ 01, k=0 , (39)
0, k=7

Applying the previous equation, yields the eight additional reward factors

R(s;) =[0.1,0.3,0.35,0.425,0.475,0.525, 0.6, 0] * (—10E3), (40)

The introduced surrogate reward aims at accelerating learning by injecting domain knowledge

directly into the reward space, filling in the gap left by the use of episodic reinforcement
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learning (RL). By doing so, the long-term objective is hardcoded into the agent which would
otherwise be unperceived, as under episodic RL the agent never reaches the next period where
the multiplier revision is materialized. The additional reward space attempts to capture the
multiplier distribution’s underlying structure, by measuring the difference between multipliers,
and scaling the gradient to the reward distribution’s parameters, a behavior similar to that of
McAleer et al. (2009). Notice that the last multiplier, associated with bankruptcy, has a null
reward, which is counterintuitive, as rationale dictates such state should be associated with
additional penalties — the additional rewards are negative, according to the standard reward
distribution. The reasoning behind such formulation, is that the reward for defaults is extremely
negative, hence, penalizing the behavior further will only hinder policy gradients by
contributing to the occurrence of exploding gradients, whilst producing no additional
information. However, the additional space introduces a bias towards exceedances up to 4 (with
the lowest multiplier), as the agent may seek exploiting this lower penalty - or higher reward.
Yet, due to the small number of iterations, the author saw fit adding it to accelerate learning.
For researchers aiming to solve the problem with more iterations, it is not advisable to use the

proposed modification without extensive testing.

Note that during training, the reward function has been scaled to the [-1, O] range, to prevent

exploding gradients and to ease gradient descent’s functioning, as is typical in DRL literature.

The algorithm’s network is the same for both actor and critic, 2 hidden layers, each containing
64 neurons, the first layer using a Rectified Linear Unit (ReLu) (Agarap, 2019) activation
function for both entities. Activation functions are needed to create non-linear transformations,
as a neural network is only capable of performing linear transformations without non-linear
activation functions. To understand more deep learning concepts such as neural networks and

their architectures, the reader is advised to delve into Goodfellow et al. (2016).

Deep learning algorithms can prove troublesome to understand and implement, particularly for
those delving in the class of algorithms for the first time. For this reason, and to remove some
of the conceptual abstraction, the remainder of the present section attempts to represent in
simple terms the operations performed in a simple version of PPO, that is, to create an
implementation pseudo-code. In practice, typical implementations rely on the use of
Generalized Advantage Estimators (GAE), multithreading, among other useful modifications
to simplify and speed computations and help convergence. These have been omitted from the
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representation. Yet, to demonstrate the easiness of the algorithms in accommodating a variety

of situations, the scheme presents the process for both discrete and continuous actions.

Algorithm Actor Critic PPO Implementation

1.
11
1.2
1.3
14
15
1.6
1.7
1.8
1.9
1.10
111

2.
2.1

2.2

2.3

3.1
3.2
3.3

4.2

Define the learning constants

E_MAX : Maximum number of episodes

E_LEN : The episode’s length

y : The discount factor y

a, : Actor’s Learning Rate

ac: Critic’s Learning Rate

MIN_BATCH_SIZE : Minimum batch size for updates
A_UPDATE_STEPS: Actor’s update operation n-step loop length
C_UPDATE_STEPS: Critic’s update operation n-step loop length
€: Surrogate objective function clip term €

S_DIM : State space shape

A _DIM : Action space shape

Initialize the critic:

Input layer: Dense layer
input: S_DIM
shape: [64, 1]
activation: ReLu
trainable: True

Hidden Layer: Dense Layer
input: Input layer (2.1)
shape: [64, 1]
activation: ReLu
trainable: True

Value Estimation Layer - Output Layer: Dense layer
input: Hidden Layer (2.2)
shape: 1
activation: None
trainable: True

Define the critic’s Optimization Function:
Ag(s,a) =1 —=V(s)
Define the loss function: Ag (s, a)?
Optimization function c¢_trainop:
Adam Optimizer: learning rate: a.
minimization target: 3.2

Define the actor (r):

Input layer: Dense layer
input: S_DIM
shape = [64, 1]
activation = Relu
trainable = True

Hidden Layer: Dense layer
input: Input layer (4.1)
shape: [64, 1]
activation: ReLu
trainable: True
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4.3 Action () Layer - Output Layer : Dense Layer
input: Hidden Layer (4.2)
shape: A DIM
activation: Softmax
trainable: True

5. Define the old actor (r,;4):
5.1 To1q = T, only the former is not trainable
6. Define the Actor’s Optimization Function
6.1 e . — n(als,0)
Compute the probability ratio r(8) A—” @B
6.2 Compute the Surrogate Loss 7(8) x Ag(s,a)
6.3 Compute PPO’s Clipped Loss = — min (rt(B)A?", clip(r:(0),1—¢€,1+ e))
6.4 Optimization Function a_trainop:

Adam Optimizer: learning rate: a,,
minimization target: (6.3)

7. Define the Update Function
7.1 Receive input: state s, action a, reward R
7.2 Replace ;4 with
7.3 Compute V (s) using the Critic (2.)
7.4 Compute the advantage function (3.1)
75 Update the Actor using PPO’s clipping method: execute a_trainop for A_ UPDATE_STEPS
7.6 Update the Critic: execute ¢_trainop for C_UPDATE_STEPS
8. Run the Simulation
8.1 Build the environment env
8.2 for ep in E_MAX
8.2.1 Reset the environment and observe S
8.2.2 Define the state, action and reward buffers Dg, D,, D,
8.2.3 for t in E_LEN:
8.2.3.1 a=mn(s)
8.2.3.2 Perform a and observe S’ and R
8.2.3.3 Add state, action and reward to the corresponding buffers
Ds+=s
Dyt=a
D,+=R
8.2.3.4 SetS' =
8.255 If length(S) = MIN_BATCH _SIZE:
8.255.1 Compute V(S) using the Critic (2.)
8.2.5.5.2 Compute the V(s;) for each reward in the buffer, inserting it into a buffer
Ve =1+ vV
Drdisc+= Vt
8.255.3 Update PPO (7.) using Dg, D, D,.aisc
8.25.54 Set Dy = D, = D, = D, .aisc = Empty
8.24 end for
8.3 end for

Algorithm 2 — Actor Critic PPO implementation pseudo-code.
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Throughout this thesis numerous advantages of using DRL versus DP have been appointed,
with section 4.2.6 providing a more exhaustive list of the advantages of using the current class
of algorithms. One of which, is the ease to adapt and modify the model’s architecture. The
previous pseudo-code illustrates how both the actor and critic’s structure can be changed by
simply plugging additional hidden layers, which can be done programmatically. Another
mentioned key aspect is the ability to include continuous state and actions spaces. In fact, the
inclusion of a continuous action space estimation merely involves a small change to the critic’s
architecture, requiring the underlying distribution’s parameters — in the following case, a
univariate Gaussian’s mean and standard deviation - to be optimized, instead of the critic’s
network . Specifically, the point 4. In the previous pseudo-code would be modified to the

following

Algorithm Actor Critic PPO Implementation — Actor under a Gaussian probability distribution

4. Define the actor (m):
4.1 Input layer: Dense layer
input: S_DIM

shape [64, 1]
activation: ReLu
trainable: True

4.2 u Layer: Dense layer
input: Input layer (4.1)
shape: A DIM
activation: Tahn
trainable: True

4.3 o Layer: Dense layer
input: Input layer (4.1)
shape: A_DIM
activation: Softplus
trainable: True

4.4 return N~(u, o)

Algorithm 3 — A modification to Algorithm 2 to encompass continuous actions.

4.2 Results

The purpose of the current work is not to yield a policy better than that of Seixas (2016)’s,
given it represents an optimal policy, nor to fully reproduce the author’s result, but is instead,
to demonstrate the capabilities of deep reinforcement learning in approximating a solution to
the same problem, whilst bypassing some dynamic programming’s hindrances. Hence, the
section will be divided into three parts. The first section will focus on the computational

requirements used in training the model, whilst providing a few insights into the process of
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estimating an increasingly optimal policy under the DRL framework. The second section shifts
the attention towards analyzing the agent’s behavior and learning capabilities through the
evolution of training metrics as a function of the agent’s training iterations. The subsequent
chapter then assesses the convergence and yielded policy similarity to that of Seixas (2016)’s
through a shallow statistical analysis, given the latter represents an optimal policy for the
problem at hands. Finally, an evaluation of the estimated policy’s performance under a Monte
Carlo simulation is made, in comparison with both Seixas (2016)’s and the non-manipulative

strategies.

4.2.1 Computational Considerations

The results produced by an optimization algorithm which rely on the iterative method are
greatly dictated by the amount of used iterations® - the terms iteration and training iteration are
used interchangeably throughout this thesis. Reinforcement learning is no different. DRL
applications for complex environments, are usually solved using learning iterations in the order
of millions. Despite not classifying as a very complex problem, the Basel model being solved
in the present work, is far from a Mountain Car or Inverted Pendulum® problem. As the chapter
which follows demonstrates, only 70,000 iterations were used to train the model, far from the
millions referenced in the previous sentence. The reasoning behind this decision falls back on
financial constraints, as the training was fully funded by the author, from hyperparameter tuning

—a critical aspect in deep models — to the actual training.

The hardware used to deploy and train the model consisted of 32 2.7 GHz Intel Xeon E5 2686
v4 CPUs, 2 NVIDIA Tesla M60 GPUs, with each GPU delivering up to 2.048 parallel
processing cores and 8 GiB of GPU memory, hence, 16GB of GPU memory, and 244 GiB of

% The term learning iteration refers to a point in which the model’s parameters are updated through the use of the
environment samples, not the amount of complete sample trajectories — a full episode.

6 The Inverted Pendulum and Mountain Car are two simple and classic environments used to benchmark
reinforcement learning algorithms, typically solved in a few hundred learning iterations under agents with

appropriate hyperparameter tuning and algorithm.
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RAM’ with an approximate cost of 2.16€ per hour® °. Considering each training iteration took,
on average, 2.35 seconds, and 70,000 iterations were used, this represents an approximate cost
of 355.32€, or 106.59€ when considering a 70% discount mentioned in footnote 9 and a training
duration of approximately 45 hours. Under the specified conditions, training the model on
1,000,000 learning iterations would correspond to an investment of approximately 5,076,000€
or, 1,522,800€ under a 70% discount, and around 27 days.

The previous paragraph occluded hyperparameter tuning. In the case of proximal policy
optimization, typical implementations contain around 16 hyperparameters — including actor and
critic’s network architecture, in depth and width — eligible for optimization. Such process
greatly increases the cost associated with learning a policy via deep reinforcement learning,
should optimal performance be an objective. This procedure can be accelerated should there be
prior domain knowledge, as experienced researchers are able to tell which parameters are worth
tuning, and in which range. Nonetheless, this additional prior step, is bound to consume as much

or more resources than the actual training, in both time and expenses.

Before proceeding to analyzing the model’s training progress, it is worthwhile mentioning that
simpler models, such as DDQN — double dueling deep Q-network, a variant of the deep Q-
learning model exposed in Appendix A.lIl — Deep Reinforcement Learning— might be more
suitable for the problem at hands, since it corresponds to a discrete environment, where such
algorithm has demonstrated sufficient convergence capabilities, requiring far less resources
than PPO. However, the purpose of this thesis is to show that deep reinforcement learning,
typically ignored by the financial research community, and policy gradient algorithms in
particular, which unlock a variant of possibilities in the financial realm, display signs of strong
convergence even for those with minimal knowledge on the subject — as is the author’s case.

For these reasons, the author opted for employing PPO.

" These resources are unnecessary when training the model. In fact, that model consumes little RAM, around 2GB,
relying instead on the use of CPUs to asynchronously generate model samples, and GPUs to perform the
computationally expensive linear algebra computations. Nonetheless, they constitute the employed hardware.

8 In practice, when training the model one incurs in additional costs associated with storage, especially if the
computation instance does not reside in the same location as the store instance. Nonetheless, such cost is negligible
when considering the computational instance cost.

® Price reductions up to 70% are possible in several computation instance providers, by relying on the use of

available instances whose price is dictated by supply and demand, much like financial markets.
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4.2.2 Training Progress

As exposed in the previous chapter, the model’s performance will be dictated not only by the
specified hyperparameters, but largely by the number of performed learning iterations. Hence,
assessing the algorithm’s learning capability as a function of the iterations becomes a critical
aspect of the present analysis. In order to do so, a few progress metrics have been selected. Note
however, that observation metrics such as the average of the iteration’s exceedances or
multiplier do not qualify as robust metrics, as these are greatly influenced by both the episode’s
starting conditions, and the agent’s randomness, materialized via entropy in policy gradient
algorithms. The agent’s cumulative reward — a standard metric in the reinforcement learning
literature — and the average time remaining to backtesting have been selected as proxy
performance metrics, whose behavior is predictable for converging agents. In a nutshell, the
cumulative reward is expected to become increasingly positive —away from -1, the bankruptcy
state — whilst the second metric is expected to converge towards 0.

As expected for a performing agent, the average scaled reward displays an upwards trend
towards zero. This behavior corresponds to that of an agent which, on average, reports daily
values which do not lead to bankruptcy, a sign of an appropriate reward function and long-term
planning by the agent. The average reward exhibits an increasingly stable behavior with

decreasing variance, which suggests a certain degree of convergence.

-0.4

-0.8

-1.0 =
— R

0 10000 20000 30000 40000 50000 60000 70000
Training lteration

Figure 2 — The training process’ average scaled rewards to the interval [-1, 0] as a function of training iterations.
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The evolution of the average inverse of episode duration — time remaining to backtesting —
decreases over time, exhibiting very small average durations on the first few hundred iterations,
rapidly converging towards 0. These dynamics are consistent with that of an agent which
understands the consequences of over-optimizing the short-term reward through very small
disclosure, resulting in a bankruptcy state. The statement is compliant with figure 2, where the
agent obtained large negative rewards beyond -1. Given the bankruptcy state’s reward
corresponds to -1, the fact that for such cases, the agent obtained, on average, rewards smaller
than -1, is consistent with the episode duration analysis, as in the latter, the agent steers away
from the minimal episode duration, thus accumulating increasingly negative rewards, which are

added to the final state — bankruptcy — thus yielding a reward smaller than -1.
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Figure 3 - The training process’ average time remaining to backtesting, or inverse episode duration as a function of training
iterations.
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4.2.3 Policy Analysis

Given the produced policy is sub-optimal and has high variance, both of which, were expected,
direct policy interpretation via graphs is not relevant, as a smooth policy was not learnt — see
figure 6 and its discussion — and does not constitute this thesis’ goal. Yet, and despite the
simulated benchmark to be performed in the next chapter, the current chapter compares each

policies’ statistical indicators, to assess to what extent their outline differs.

Disclosure RL DP
Mean 0.955 1.016
Standard deviation 0.248 0.439
IQR 0.184 0.201
Q4 0.832 0.860
Q5 1.016 1.061

Table 4 - The main statistical indicators for the reinforcement learning and dynamic programming policy’s disclosure, where
IQR, Q, and Q, represent, the interquartile range, first and third quartiles, respectively.
The disclosure is measured in the interval ]0, 3] in accordance with equation (34).

An initial comparison between each policies’ key statistical indicators suggests that the
reinforcement learning policy reports, on average, lower percentages of the value-at-risk,
regarding its counterpart, considering the entire policy. The artificial intelligence (Al) policy’s
statistical indicators exhibit smaller standard deviation and interquartile-range. The optimal
policy’s first quartile is larger than its Al counterpart, suggesting a less conservative behavior
on the dynamic programming strategy, which is then compensated via higher disclosures,
leading to a larger policy mean. Except for the last statement, these findings correspond to the
opposite of the expected behavior. The previous table creates an illusion that the policy has
converged, especially when combined with figure 4. The remainder of the current chapter will
focus on explaining these results, and how they correlate with mean estimation convergence —

typically referred to as convergence in mean — so as to unveil the actual convergence extent.
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Figure 4 - Boxplot of the reinforcement learning and dynamic programming’s policies’ disclosure as a function of the
multiplier index. The last multiplier, associated with bankruptcy, has been omitted.

Figure 4 depicts a boxplot of the estimated policies generated for each of the possible multiplier
values — except for last multiplier, which corresponds to a state of bankruptcy in which the
concept of disclosure no longer makes sense. The graph highlights the fact that the RL policy
seems to converge towards the optimal policy, in mean. However, the former showcases a
higher disclosure dispersion, characterized by higher presence of outliers, in both amount and
value, on average, 20% higher than its DP counterpart, on the upper whiskers. The idea of mean
estimation convergence can be further explored by analyzing the disclosure boxplot as a

function of exceedances for a given multiplier.
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Figure 5 - Boxplot of the reinforcement learning and dynamic programming’s policies’ disclosure as a function of the number
of exceedances, considering a multiplier equal to 3. The cases of 10 and 11 exceedances have been omitted

Figure 5 depicts a different behavior in terms of policy convergence. Not only do the policies
exhibit differences in their disclosure mean per exceedance — considering the same multiplier
— but the reinforcement learning policy exhibits longer whiskers, and for most cases, a larger
interquartile range. Comparing with the overall policy’s boxplot depicted in figure 4, whereas
the RL’s individual exceedance boxes display significant differences regarding the optimal
policy’s, the global boxplots present in the previous figure, in this case, considering the default
multiplier, appear to converge. In other words, the policies appear to converge, in population

mean, but not in sample mean.
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Figure 6 - The reinforcement learning and dynamic programming (optimal)’s trajectory as a function of the time remaining to
backtesting, for exceedances between 0 and 4, considering the default multiplier.

Figure 6 represents each policies’ trajectory as a function of the time remaining to backtesting,
considering the multiplier equal to 3. Both policies exhibit the same overall behavior,
underreporting in the start of the period, converging towards a baseline as the backtesting
process approaches. Nonetheless, and despite the RL agent’s apparent erratic behavior, they
converge onto approximately the same value, and, overall, exhibit a similar increasing trend.
Such behavior, analyzed and justified in section 4.2.1, is expected, given the small number of

iterations.
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Figure 7 - The reinforcement learning and dynamic programming (optimal)’s trajectory as a function of the time remaining
for backtesting, for exceedances between 5 and 9, considering the default multiplier.

The same pattern is observed in higher exceedance levels, where the RL policy exhibits a
seemingly erratic behavior, though converging towards a point similar to that of its DP
counterpart. Even so, the overall similarities between policies remain. Both agents disclose
similar initial values, exhibiting akin smoothed trajectories through time. In fact, the pattern is
observed throughout the entire policy, an indicator that the reinforcement agent began to grasp
the environment’s dynamics. The long-term trend exhibited by both policies, in conjunction
with the RL policies’ high variance behavior, sheds lights on the seemingly identical policy

when analyzing the disclosure means in figure 4, and the relation with its long whiskers.
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Figure 8 - The reinforcement learning and dynamic programming’s trajectory, where the RL map was smoothed via a
Savitzky-Golay filter, as a function of the time remaining to backtesting, for exceedances between 0 and 4, considering the
default multiplier.

The presence of noise in the reinforcement learning policy hinders the perception of mean
convergence. Figure 8 represents the same case as figure 6, only applying a Savitzky-Golay
filter with 81 parameters and a polynomial of the 3" order to help filter noise. The filtered image
further supports the idea of mean convergence, as excluding noise, the RL policy appears to
mimic Seixas (2016)’s policy, exhibiting a similar trend and overall pattern as time progresses,
ultimately, converging towards values around 0.95 — which corresponds to reporting around
95% of the value-at-risk on the eve of the backtesting process, considering 3 as the applicable

multiplier.
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Figure 9 - The correlation between the disclosed value and the state’s variables for the reinforcement learning and dynamic
programming (optimal) policies.

Figure 9 represents the correlation coefficients for each policy. The relationship between the
number of exceedances and the disclosed amount, seems to be conserved — 0.32 in the optimal
policy, and 0.29 in the reinforcement learning policy. However, the positive correlation with
the time remaining to backtesting and the applicable multiplier, represented by TtoB and K,
respectively, though small in Seixas (2016)’s, seems to have declined. This variance is
particularly concerning in the case of the multiplier’s correlation, reducing from 0.11, a low
significance level in the optimal policy, to 0.012, a virtually nonexistent relation. This behavior
IS expected, as seen in the previous graphs, the RL policy depicts high variance in comparison
with the optimal policy, the latter being characterized by smooth and continuous movements.

This behavior leads to a smaller Pearson correlation index, hence, smaller correlation terms.

Recall the Pearson correlation index is given by

L — (41)

where X and Y represent two jointly distributed real-valued random variables, oy and oy
correspond to X and Y’s standard deviation, respectively, and Cov(X,Y) represents the

covariance between X and Y.

The larger the random variable’s variance — and consequently, the standard deviation — the

smaller the effect of their covariance on the Pearson correlation index.
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Figure 10 - The disclosure’s histogram as a function of the multiplier, for the reinforcement learning and dynamic
programming (optimal) policies.

Figure 10 depicts the disclosure histogram as a function of the applicable multiplier, considering
each manipulative strategy. Generically speaking, the policies’ histograms seems to be similar,
exhibiting heavier tails on the right side as a function of the increasing multiplier. Such attribute

is compliant with a risk-averse agent, which tends to report higher values to avoid further
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exceedances, especially in the penultimate multiplier — which corresponds to 4.0 — where an
additional exceedance, would lead to a very negative state. However, whereas the optimal
policy’s histogram seems to be concentrated around a given mean, for each of the individual
multipliers, the Al policy exhibits multiple and frequent peaks, leading to a distribution which,
unlike the optimal policy, does not resemble a bell-shaped curve in most multipliers. In fact,
the RL policy’s histogram seems to be characterized by a certain degree of skewness, right-
skewness for multipliers 3.5 to 3.85, and the left-skewness in the last multiplier, 4. These
features can be summarized by observing the last histogram, which depict the policies’
population. Notice that the optimal policy exhibits a fairly smoothed and well-defined bell
shape around 0.90% whilst the estimated policy is characterized by a plateau between 0.80%
and 1.05%.

Before proceeding to the Monte Carlo benchmarks, in which the actual return of the estimated
policy can be assessed, a small simulation is introduced, which aims at establishing how
conservative the estimated policy is, regarding its optimal counterpart. In order to do so, the
policy has been injected into the simulation environment and the final episodic state recorded,

that is, the multiplier’s variation on each complete backtesting period. This trial ran 1,000,000

times.
Reinforcement Learning Dynamic Programming
Initial K Final K Final K
Increased Decreased Increased Decreased
3 81.92% 18.68%?° 93.63% 6.37%?*°
34 67.93% 32.07% 87.54% 12.46%
35 42.99% 57.01% 74.74% 25.26%
3.65 19.25% 80.75% 57.14% 42.86%
3.75 3.99% 96.01% 32.76% 67.27%
3.85 0.13% 99.87% 4.06% 95.94%
4 N/A 100.00% N/A 100.00%
Average 30.83% 69.17% 57.22% 42.78%
Table 5 - Multiplier evolution considering the reinforcem(_ent learning policy under an environment simulated 1.000.000
times.

The simulation results point towards the reinforcement learning policy being more conservative

and less risk prone than its dynamic programming counterpart. Not only did the estimated

10 For the specific case of the default multiplier, 3, the value refers to percentage of times the multiplier
remained equal, not decreased.
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policy record far higher decrease rates — nearly doubling in at least three multipliers -, but the
policy avoided increasing the multiplier at the end of the period, decreasing or maintaining it
in 69.17% of the cases on average, against Seixas (2016)’s optimal policy, which recorded a
42.78% multiplier rise rate. Both policies recorded a 0.00% bankruptcy rate. This conservative
behavior comes at the cost of higher disclosure values, hence smaller savings. This behavior is
contradictory to that which is expected regarding table 4, considering the RL policy’s lower
disclosure mean. However, recall that table 4 represents the statistical indicators for the entire

policy hence, not valid for justifying the individual behavior each for each trajectory.

The brief analysis performed throughout the current paragraph is consistent with that of an
agent which has learnt the contours of the environment and the optimization objective at hands.
With this said, the following paragraph compares the performance of the RL policy under a
Monte Carlo simulation, against its counterpart, the optimal policy, and the alternative, the

normal distribution policy.

4.2.4 Policy Benchmarking

The previous section discussed to what extent the reinforcement policy converged to its
dynamic programming counterpart relying on the use of key statistical indicators. However, the
object of interest is to measure the estimated policy’s performance, which, in Finance,

corresponds to portfolio returns.

The current section presents an in-depth comparison between the results obtained by Seixas
(2016), the normal or non-manipulative disclosure rule, and the introduced RL methodology,
via Monte Carlo simulation. Under such framework, the daily returns were set to follow a
normal distribution with mean zero and standard deviation equal to 1.7%, in accordance with
Seixas (2016)’s. Accordingly, the simulation’s return for a given time-Step t, is given by the
inverse of a random number sampled from a univariate Gaussian distribution with mean 0 and

variance 1
1, = ¢~ '(rnd,) (42)
rnd,~N(u, 0?), (43)
where r; represents the period’s random return, constrained to the interval [-1, 1], and x and o,

represent the random variable’s distribution mean and variance, corresponding to 0 and 1,

respectively.
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An introductory note is required, as a key difference between the two author’s simulation arises.
Whereas Seixas (2016)’s average of the last sixty disclosed VaRs considered a standard,
unmanipulated value for non-existing days — that is, when the simulation process initiates there
are no records of its past, in such cases, the preceding author considered such values to equal 1
—, the present work considered the running mean of the existing disclosures. This seemingly
simple difference renders direct per author result comparison futile, at least, on the first
simulations where the different line of thought’s effects still endure. Hence, and because there
is no telling when such effect will cease, the author opted for simulating all three scenarios at

once, not relying in Seixas (2016)’s results.

As mentioned in the beginning of the current chapter, the Monte Carlo simulation will employ
three distinct policies: the introduced reinforcement learning policy; the optimal policy as
obtained by Seixas (2016); and lastly, the normal policy, which corresponds to disclosing the
computed value-at-risk, without manipulating its value. The constraints enforced in the RL
environment during the training process, chapter 4.1, are applicable for the present simulation.
Specifically, a maximum of 11 exceedances has been imposed, under the assumption that the
agent would avoid such state at all cost, after all, the FI’s purpose is to maintain its internal
model. Violating the internal construct more often than foreseen in the defined multipliers,
would result in the ECB enforcing a standard model instead. Accordingly, the simulation
environment prevents the agent from reaching the bankruptcy state, by forcefully reporting the
highest possible value — 300% of the value-at-risk — when the current exceedance number
equals to 10.

Lastly, similarly to the RL environment, the simulation includes the possibility of bankruptcy,

defined by a daily MRC smaller than the day’s loss
r, < MRC,, (44)
where r; corresponds to the simulation return for day t, as defined in (42), and MRC,

corresponds to the market risk charge, as defined in equations (2) and (3).

Another important aspect is to deflect the impact of handling unobserved samples in the
computation of the average of the last sixty disclosed values on the simulation. With this in
mind, the first 10 simulations have been disregarded in an attempt to decrease the impact the

rolling sample decision has on the analysis.
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Lastly, it is important to note that each simulation starts at the default multiplier, 3 after which,
the multiplier applicable for the following year is solely dictated by the simulation’s

performance.

The methodology considered a total of 1,010,000 simulations, where each simulation simulates
30 years.

Figure 11 depicts both simulation’s exceedance’s relative and cumulative frequencies, as a
function of the employed policy. The policies exhibit a similar behavior regarding reporting
violations throughout the simulation, despite the reinforcement learning approach, having
recorded lower frequencies of exceedances up to and including the 4 exceedance threshold —
rendered in opaque orange —, resulting in the optimal policy yielding a higher frequency of
minimum multiplier selection. Beyond the mentioned limit, the reinforcement learning
simulation recorded significantly higher exceedance frequencies in the 5 to 8 range. This trend
is reversed at the 9th level, where the optimal policy records slightly higher frequencies than

its counterpart.

The cumulative frequency curves, depicted on the right axis of each figure, assist in clarifying
the overall behavior of each policy. Despite its similar behavior, the optimal policy recorded a
cumulative frequency around 67% in the 4™ exceedance threshold, whereas its counterpart only
does so at around 60% of its simulations.
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Figure 11 - Exceedance relative frequencies, for both RL and Optimal Policies, under the simulated Monte Carlo
environment. The continuous lines represent the cumulative frequency of each property, measured on the secondary axis.
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Shifting the focus onto the normal policy, its exceedance histogram seems to be concentrated
around 2 violations, with a positive skew around its median, 2. Such behavior points towards
the normal policy focusing on the lower tail of multipliers — until the 4" exceedance level — in
around 89% of the simulations, according to its cumulative relative frequency curve, an
expected behavior considering its non-manipulative behavior. The divergence of results in
terms of outcomes is very clear, for the reinforcement learning strategy results in minimum

multiplier selection, at around 60% of the times, which will be visible in figure 13.
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Figure 12 - Exceedance relative frequencies, for both RL and Normal Policies, under the simulated Monte Carlo
environment. The continuous lines represent the cumulative frequency of each property, measured on the secondary axis.

Strategy Mean Median Mode Max Min o IQR  Q, Qs

RL 4.87 4 4 10 0 1.48 2 4 6
DP 4,74 4,74 4 10 0 1.50 1 4 5
Normal 2.5 2 2 10 0 1.57 2 1 3

Table 6 - Exceedance descriptive statistics under the Monte Carlo simulation.

The multiplier histogram is a direct reflection of the exceedances’ frequency distribution, as the
latter dictates the former, according to table 1. Consequently, and according to the analysis of

figure 11, the reinforcement learning strategy yields a default multiplier around 7% less
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frequently than its optimal counterpart. As for the 1 to 2 multiplier index range, the
reinforcement learning policy records significantly higher relative frequencies, for a maximum
difference of around 3% in the second multiplier — represented by the index number 1.
Considering the remainder of the histogram, the RL strategy achieves higher relative
frequencies for multiplier indexes up to and including 4. However, the tendency is reverted
after the fourth multiplier, as the optimal policy yields a higher frequency of fifth multiplier

index selection, and even reaching the last multiplier, which its counterpart does not do so.
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Figure 13 - Multiplier index’s relative frequencies, for both RL and Optimal Policies, under the simulated Monte Carlo
environment. The continuous lines represent the cumulative frequency of each property, measured on the secondary axis.

Figure 14 compares the reinforcement learning and normal policies’ multiplier selection
histogram. As expected, the normal simulation recorded the default multiplier in most
simulations, specifically, 89% of these, decreasing the per-multiplier frequency in a seemingly
log-normal form from that point forward, up until the third multiplier index. The figure
highlights the disparity between the two policies, with the artificial intelligence rule achieving
the same cumulative frequency as its non-manipulative counterpart’s default multiplier

frequency, at the third multiplier index.
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Figure 14 - Multiplier index’s relative frequencies, for both RL and Normal Policies, under the simulated Monte Carlo
environment. The continuous lines represent the cumulative frequency of each property, measured on the secondary axis.

Strategy mean median mode max min o IQR Q, Qs

RL 0.94 0 0 6 0 1.41 2 0 2
DP 0.83 0 0 6 0 1.42 1 0 1
Normal  0.17 0 0 6 0 0.22 0 0 O

Table 7 - Multiplier descriptive statistics under the Monte Carlo simulation.

Figure 15 represents a side-by-side plot of the RL and DP policies’ market risk charge
histogram, respectively, on the left and right side of the figure. The Al policy’s histogram
revolves around 0.37, close to the DP solution’s mean, 0.36. The histograms appear to exhibit
a degree of positive skewness, however, this statement is only true for the optimal policy, whose
descriptive statistics respect the condition mode < median < mean. Nonetheless, whereas
the left histogram depicts a relatively continuous plot, the right-side figure seems to be
composed of two different bell-shaped distributions. The data is clustered under the same range,
0.30 to 0.45 for both policies.
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Figure 15 - Disclosure relative frequencies under the optimal and reinforcement learning policies, for the simulated Monte
Carlo environment.

The normal policy’s MRC distribution, the right-hand side of figure 16, is characterized by a
large disclosure bin, corresponding to a fixed value of 0.38. This is an expected behavior, after
all, the policy reports the computed value-at-risk amount without adjusting its value, which
results in its multiplier being constant throughout the majority of the simulations. With this
said, its disclosure histogram is expected to be concentrated in the value corresponding to a
default multiplier unmanipulated disclosure, 0.38.
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Figure 16 - Disclosure relative frequencies under the Normal Policy, for the simulated Monte Carlo environment.

Strategy Mean Median Mode Max Min o IQR Q, Qs
RL 0.37 0.36 037 1.01 028 003 005 034 0.39
DP 0.36 0.35 032 069 026 003 005 034 0.39

Normal  0.38 0.38 0.38 0.85 0.38 0.01 0 0 0

Table 8 - MRC descriptive statistics under the Monte Carlo simulation.
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The last point of interest is to evaluate the additional returns the institution may obtain from
using the introduced policy, as a result of invested the capital made available from the smaller
disclosed value. Regarding financial savings, these have been computed by assuming the
institution desires to maintain their exposure, that is, to maintain its risk assessment constant,
hence the daily investment is constrained to ensure a fixed daily MRC, allowing the invested

amount to vary according to the resulting risk charge. In other words

Investment, * Price, * MRC; = MRCfixeq (45)

where Investment, represents the capital invested at time step t, Price, corresponds to the

asset’s price for the given time period, and MRC; and MR Cy;y.4 correspond to the market risk

charge computed at time step t and the target or fixed value for the MRC, respectively.

Strategy Mean  Median Max Min o
RL - DP -053% -1.35% 2.63% -574% 0.90%
RL - Normal 4.32% 4.36% 9.85% -1.29% 1.16%

Table 9 — The average relative annual gain descriptive statistics under the Monte Carlo simulation.

Table 9 measures the reinforcement learning approach’s increased average annual return, in
comparison with their optimal and non-manipulative counterparts. As expected, the artificial
intelligence strategy underperforms regarding the dynamic programming approach but results
in considerately larger returns in comparison with the normal policy. In fact, the RL policy
generated, on average, an average annual return only 0.53% below its optimal counterpart in
some cases, managing to overperform in 2.63%, which can be explained by the policy’s large

variation.
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4.25 Model Limitations

As described by Campbell (2005), one of the conditions to classify a VaR model as adequate,
is the Unconditional Coverage Property. This hypothesis states that the likelihood of a loss
higher than the disclosed VaR occurring, is exactly equal to & * 100%, where « is the value-

at-risk significance level

Pllgyq(a) = 1] = E[l1q1(a)] = a, (46)
where I, (a) represents the hit function, an indicator function which takes the value one if an

exceedance is recorded, and zero otherwise

Lif xp 41 < —VaRy (@)

0if xt 41 > —VaRy(a)’ (47)

Iepq(a) = {

As referred by Campbell (2016), a problem arises when the value-at-risk estimation model
consistently under or over estimates the actual risk amount, which is a critical assumption of
the present work. Unconditional coverage tests tend to be inadequate when it comes to detecting
such situations, as for the sample size dictated by the regulatory framework, the tests seem to
showcase low power (Campbell, 2005). For this reason, disclosing manipulated values of the
FI’s risk may invalidate the model when it comes to unconditional coverage backtesting tests,
such as Kupiec’s proportion-of-failure (POF). Despite not being present in the current
regulatory framework, this section should be looked upon as a disclaimer, should future
versions of the Basel Accords include unconditional coverage tests, research based on
disclosure manipulation might no longer be valid. Additionally, for FI’s seeking to integrate
this research onto their risk estimation framework, even if not required by the Basel regulation,
special attention should be taken upon assessing the quality of the models as again,
unconditional coverage-based tests, such as the POF assessment of the value-at-risk model’s
unconditional coverage property, may not be applicable.

4.2.6 Policy Gradient Advantages

Throughout the course of chapters 1 and 4, numerous references to the fact that reinforcement
learning models do not require an explicit transition model have been made. However, no

further exploration on the consequences and benefits of such capability have been explored.
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The current section aims at identifying some of the key advantages deep reinforcement learning

has over dynamic programming.

Starting with the ability to operate and learn under an environment whose transitions are
unknown. Environments created under a controlled setting, as is often the case of research
papers, might not pose a major obstacle in terms of modeling the transition probabilities, thus
being ideal candidates for dynamic programming, often at the expense of simplification, which
results in inaccurate results. Furthermore, under such simplifications, the environments are
often disconnected from reality, rendering the applicability of such findings unfeasible.
However, man-made environment models which attempt to operate in real world situations,
cannot fathom to capture the minutia and complexity of the underlying dynamics, often not
describable through known mathematical formulas — such as the case of financial markets,
whose complexity lies beyond the current theoretical knowledge. This means that deep
reinforcement learning models, policy gradient based in particular, serve as prime candidates
for such cases, as they are able to estimate an optimal policy despite not knowing nor having
direct access to the environment’s transition probability model. Combined with the ability to
estimate both discrete and stochastic policies, and to learn discrete and continuous action and
state spaces, DRL arrives with the promise of unbounded and unprecedented learning in
financial markets. In fact, several applications and research have proven successful, in using Al
for algorithmic trading (Liang, et al., 2018) and (Huang, 2019), portfolio management (Park, et
al., 2019) and (Wang, et al., 2019), among others.

Deep Reinforcement Learning models don’t require modifications when the underlying
environment, including its transition probabilities, are changed. Although more hyperparameter
tuning will likely be needed, including modifying the neural network’s width (number of
neurons per layer) and or depth (number of layers), the model will still operate, and learn. Note
however, that for the sake of transparency, should the actions space be of a discrete nature,
modifying the number of states will require architectural modifications. This translates not only
in the ability to vary the environment’s architecture and complexity whilst retaining the model,
but also in the possibility of using different environments - for instance, one for low volatility

periods, and another for high volatility periods - during the same training process.

Another key advantage is the ability to not only learn under continuous action and state spaces,
but also to learn both discrete and continuous policies. The use of dynamic programming

translates in discretized action and state spaces, often due to hardware (RAM) limitations.
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Doing so, reflects in a compromise between results and non-captured model nuances, as under
such scenario, computation resources and model accuracy are used interchangeably. Policy
Gradient on the other hand, can handle both discrete and continuous spaces, whilst relying on
the use of CPUs and GPUs — as neural network operations, the model’s core, are comprised of

matrix operations — to solve the optimization problem.

Finally, deep reinforcement learning models can be frozen and re-started by saving the function
approximators’ parameters 6. Such results in models which can be updated posteriorly, if new
data is available, allowing resources to be saved, and the learning process and data ingestion to
take place simultaneously. Often samples are not readily available, as is the case of financial
market data, which is nonexistent overnight for domestic markets. In addition, static parameters
open the possibility of interchangeable models, often used in transfer learning, drastically

decreasing the cost and execution time of training variations of the base model.

The presented aspects are critical regarding optimization in Finance, where the environments
are known to be hard to model, continuously changing, consisting of infinite action and state

spaces.

4.2.7 Deep Reinforcement Learning Limitations

Reinforcement learning, the model-free path in particular, in its current state of affairs, is not
the holy grail of MDP solving, in fact, it suffers from a variety of problems which severely
hinder the learning process, in both accuracy and speed. The algorithms, especially the on-
policy cases, are extremely sample inefficient, as they lack an environment model, thus using
the samples to indirectly approximate said construct through bootstrapping, whilst at the same
time, relying on neural networks, a framework which is, by itself, sample inefficient due to the
slow pace of gradient descent. Like dynamic programming, this class of algorithms suffers
greatly with the so-called curse of dimensionality on large state and or action spaces, however,
not in terms of memory resources — RAM — like DP, but in sheer computational power and
approximation complexity. Deep Reinforcement Learning algorithms suffer from a typical
problem derived from the use of neural networks, and that is the fact that they are opaque, in
the sense that they lack both predictability and explainability, constituting what is typically
referred to as black box models. DRL models are narrow, as they lack generalization
capabilities, which in essence, signifies that transferring knowledge from one environment to

the next, similar as they may be, is brittle and often unachievable, caused by overspecialization
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in the first environment. Unlike value-based methods, policy gradients, tend to be stuck in local
minima, whilst taking long to converge. Lastly, the environment’s rewards are not a
straightforward implementation, as any bad design will be thoroughly exploited by the

algorithm, known as reward hacking.

Whilst the first problem can be improved through the use of model-based RL algorithms when
some of the environment’s dynamics are reproduceable, which are more sample efficient, they
still lack the capability of properly tackling the other mentioned problems. In addition, the use

of model-based RL generates its own set of problems, namely, model estimation risk.

The presented arguments against the use of deep reinforcement learning don’t signify that said
frameworks are not to be used. The purpose of the present chapter is to reinforce the idea that
the right tools should be selected for the problem at hands. Deep Reinforcement Learning opens
the door towards solving problems which were simply intractable in the past. However, when
the environment’s transitions are known, or approximately known — as is the case in Partially
Observable Markov Decision Processes —, traditional solutions are often a faster, more robust,

cheaper and better result producing options.

4.2.8 Sub-optimal Optimality

As referred in section 4.2.3, the RL policy exhibits a higher variance than Seixas (2016)’s, and
is likely to do so under the deep reinforcement learning framework, given its generalizing
nature. However, this behavior might be desirable. Unlike the optimal policy generated by
dynamic programming, its sub-optimal counterpart does not follow a strictly increasing trend,
which is an expected behavior of financial market risk measures. Thus, following the proposed
policy might help cover the FI’s tracks by obfuscating its disclosure manipulation, a behavior
which the ECB might frown upon. In a similar line of though, increasing the value-at-risk
disclosure by nearly threefold in a question of fifty trading days — for instance, considering the
optimal policy for the default multiplier — would likely raise some concerns at the supervisory
authorities, as it could flag the model as being too variance-sensitive, in spite the inclusion of

the average of the last sixty disclosed value-at-risk values on the MRC.
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5 Conclusion

The aim of this work was to demonstrate the adequacy and capabilities of deep reinforcement
learning in solving financial optimization problems characterized by a complex Markov
decision process. For this purpose, a policy generated by DRL on the VaR disclosure
optimization problem has been benchmarked against an optimal policy created by Seixas (2016)

via dynamic programming.

The proximal policy optimization agent’s policy showcased strong signs of convergence with
its optimal counterpart, despite not being given any formal knowledge of the environment’s
dynamics, and the fact that the selected algorithm is not the optimal choice regarding discrete
spaces, as described in section 4.2.1. As explored in section 4.2.3, the yielded policy converged,
on average, to the optimal policy. However, an in-depth analysis revealed the presence of high
variance in the estimated policy, partly due to the small number of iterations, and a tendency to
under-report regarding its optimal version, that is, the former tends to disclose smaller VaRs
than the latter. This behavior can be attributed to neural network’s predisposition to generalize,
being prone to report more stable values, and again, to the low number of learning iterations,
which translates in the estimated state value function g, not being able to perceive the true cost
associated with a given state-action pair, hence, not matching the optimal state-value function
q.. Nonetheless, the policy generated by the artificial intelligence approach managed to obtain
an additional average return only 0.53% lower than its optimal counterpart, which corresponds
to the freed-up capital being invested at a fixed rate of 6%, contingent on the financial

institution’s MRC remaining constant.

Having demonstrated the algorithm’s capabilities in the discrete space, the path is paved for its
application in the more complex environment, thus removing the simplifications and limitations
introduced to make the problem tractable via dynamic programming. Specifically, the
introduction of continuous action and state spaces, allowing for the direct optimization of the
Capital Risk Charge equation, as well as the optimization of multiple variables, including the
stressed value at risk. Additionally, and perhaps more important, the need to assume a transition

distribution is eliminated, as well as the rules which define it.

In addition to the advantages mentioned above, the use of PPO is able to generate solutions to
the problem in question which, despite being sub-optimal, might be desirable. As discussed in

section 4.2.8, the optimal policy is prone to raising concerns on the regulatory authority, the
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European Central Bank, given the that the DP policy, although mathematically optimal, does
not meet the expected behavior in financial markets (mean-reversal exhibiting a certain degree
of variance, although one might argue that the variance should originate in the portfolio itself,
hence, on its VaR, not on its disclosure policy), being characterized by a linear growth, often
triplicating its disclosed value in merely twenty days, whose trend and fixed nature is easily
perceived. DRL on the other hand, is capable of generating stable policies around a given value
— due to neural network’s ability and propensity to generalize — thus promoting, by default,
solutions that are stable in the long-run, which can simultaneously maximize the short-run

variance, resorting to techniques such as the ones suggested in chapter 5.

On a final note, it is important to be aware that the application of DRL is both frail and
expensive, in both time and financial capital, being the subject of extensive experimentation
and optimization, relying extensively on the researcher’s experience and domain-knowledge.
For these reasons, and according to the results presented in this thesis, the use of deep
reinforcement learning is advisable solely in cases in which dynamic programming proves

inappropriate, even if at the expense of a few simplifications.
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6 Future Work

One of the key-aspects regarding possible improvements to the exhibited work, lies on the
employed algorithms. Firstly, as pointed in section 4.2.6, PPO and similar algorithms suffer
from a variety of problems. One way to overcome them, might be through the use of hierarchical
reinforcement learning, or meta reinforcement learning, new approaches which seem to be

gaining ground on the control aspect reinforcement learning.

Another possible line for improvement lies on extending the model defined in 4.1 to allow for
an approximation to the complete problem which FI’s face on a daily basis, whilst at the same
time, providing a framework which has the ability for continuous adaptation to the institution’s
portfolio, given DRL’s ability to estimate continuous action and state spaces, whilst also being
capable of being continuously improved with new market samples. The present section aims at

introducing a suggested environment which closely mimics equation (3).

The improved model’s variables would be the same as those present in the base model. The
natural next-step would be to add a record of the last sixty VaRs selected within the current
episode, onto the environment. Such variable could be named VaR,, and it would be expressed
by an array, being later on, merged into the reward function, hence, not adding further

complexity to the model.
VaR60 = {vart—_60, Vari_sog, .-, vart_l} B (48)

The previous addition does have one pitfall. One of the key-assumptions of MDP’s is
memorylessness, meaning, each Markov state contains all required information from the state’s
history. For this reason, keeping track of previously selected actions via an external variable,
could prevent convergence as one of the assumptions would be violated. Evidently, doing so
would force the algorithm to optimize without ever attaining full knowledge of the model’s
constraints, as parts of it would be invisible. For this reason, the inclusion of such history would
have to be performed via injection into the observation, as required by MDPs. In practice, this

would lead to the creation of a new observation subspace, specifically
V={x|x€eR0<x<3}, (49)

thus modifying the observation space (33) to
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observation, = (T,E,X,V), (50)

Under such modification, the observation space would no longer fully discrete, as it contains a

continuous component, induced by the inclusion of a variable from subspace V.

At the same time, the discretization of the action space could be removed, modifying (34) to a

continuous interval

A={n|ne€Rt,n<3000}, (51)

Another obvious problem arises with this solution: if each episode is independent and thus, the
selected actions (or VaRs) only reflect decisions made on the current episode, then except for
when the elapsed time or visits is equal or larger than sixty, there would not be a true

recollection of the past sixty actions, given no such information existed.

As pointed in section 4.2.8, a policy suitable for financial markets is bound to showcase a
certain degree of volatility, so as to mimic the underlying market conditions. With this in mind,
the reward function could be expanded, penalizing a lack of variation between subsequent
actions, in other words, maximizing long-term action variance. However, excessive short-term
variability is also undesirable, as it would generate an unstable policy. Hence, the reward
function should promote long-term variance, whilst maximizing short-term action similarity.
The former is already present in PPO via the entropy bonus, the latter on the other hand, could
be achieved through the use of regularization, for instance, temporal regularization (Thodoroff,
et al., 2018), in the algorithm’s objective function. The main idea of said work, is to enforce
regularization in the actions along the trajectory, penalizing significant changes between
subsequent actions, instructing to algorithm to promote short-term decision similarity.

Considering proximal policy optimization relies on the use of the advantage estimator A,

introduced in equation () of Appendix A.lll — Policy Gradient, and rewriting said function as
Ay =8, +YASpyq + -+ (A)TH1S,, (52)
where
8: =1 + YV (ser1) — V(sp), (53)

as defined by Thodoroff et al. (2018), the regularization’s objective being given by the term
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8¢ =7+ (A= Bulsern) + Blse-1)) —v(se), (54)
with ¥(s;) corresponding to exponential smoothing given by
U(se) = (1 = Dv(se) + A0(s¢-1) (55)
introduced in the Critic’s objective function, with 8 and A representing the regularization terms.
Due to both financial and time restrictions, such experimentation is left for future work.

Besides the algorithmic aspect, it is important to insist that this study does lie behind the current
legislation. Specifically, our study is a direct applicability of the Basel Il accords, whereas at
this point, Basel 2.5 is imposed, with ECB having already begun the process of implementing
the third Basel accord, set to be enforced from January 1% of 2022 onwards. The inadequacy
arises from the fact that the present work does not contemplate the concept of stressed value-
at-risk (sVaR), a major player in the Basel 2.5, let alone in its successor. This drawback renders
a direct applicability of the achieved optimal policy useless, or at least, ineffective. Thus, future
developments on the described research should focus on at least, the integration of the stressed

value-at-risk and its disclosure in the refined environment.
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8 Appendixes

Appendix A — Theoretical Foundations on Deep Reinforcement Learning

Appendix A.l — From Dynamic Programming to Reinforcement Learning

The present section delves into the core concepts behind reinforcement learning, to provide
insights to those unfamiliar with the literature. It is an overview of the notions found in Sutton
& Barto (2012), the original algorithm’s publications, among others. The following chapters
borrow heavily from the previous publications. Those familiar with the topic are encouraged to

skip directly to chapter 4.

The term dynamic programming (DP) refers to a collection of algorithms whose purpose is to

achieve an optimal policy under a Markov Decision Process (MDP).

The dynamic programming framework — known as Generalized Policy Iteration (GPI) — is
comprised of two layers, policy evaluation, and policy improvement, which work together to

help the algorithm converge onto an optimal policy.

Policy evaluation, also referred to as the prediction problem, allows computing the state-value
function v, for an arbitrary policy m:

UTL'(S) = ]Eﬂ[thst) = S] (Al)
= Ex[Res1 + yvr(Ses1)|S: = s],

Policy improvement on the other hand, assists in deciding whether a new policy 7’ yields better
results than the current policy w, ' > m:

m'(s) = argmin q,(s,a), (A.2)
a€EA

where q (s, a) represents the action value function given by

qr(s,a@) = E[Rey1 + y0r(Ser)ISe = 5,4; = a)], (A3)
The alternating cyclic combination of the two previous equations is what defines the GPI and
guarantees strict improvement of one policy over its predecessor. Whilst the value function
improves upon itself at each iteration so as to be consistent with the policy, the policy iteration

function seeks converging itself to optimality, being greedy with respect to the value function.

o —evaluation vn'o —improve 9 —yevaluation an —improve T, —evaluation ,, _jimprove T, —sevaluation v*
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However, for many real-world scenarios, a perfect information MDP, that is, P%, and R%, ,is
not available, which renders direct DP application unpractical, often resulting in excessive
simplifications. Some classes of reinforcement learning algorithms overcome this limitation,
thus being to obtain an optimal policy under an environment characterized by incomplete

information.

Whilst not a part of the RL family, Monte Carlo (MC) methods allow learning solely from
experience, hence not requiring an explicit transitions distribution, instead, they update their
estimates using the sampled states, actions and rewards. These methods — not to be confused
with the generic term, which refers to any estimation method based on random operations —,
update their value function estimates and policy upon episode completion. This means that MC

methods require G, averaging returns on an iterative manner.

When a model of the environment is not known, the focus shifts onto estimating state-action
value functions. The reasoning behind this statement is straightforward, as when the transition’s
model is known, the optimization task consists of selecting for each state, which action leads to
the optimal reward and desired states, analogous to the dynamic programming algorithm.
However, when the aforementioned model is absent, it becomes necessary to attribute a
quantifiable value for each action. For this reason, all algorithms presented hereinafter, present

a computation of the g-function, gq,;, as a part of its control problem?*! algorithm.

Monte Carlo’s control method applies the GPI, just like DP, only whilst the latter’s
implementation computed the value function directly from the MDP, the former’s learns the

value function by experiencing the MDP’s returns.

1 The concept of a reinforcement learning algorithm’s control version, refers to optimal policy approximation.
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evaluation
Q ~ G

m Q
7~ greedy(Q)

improvement

Figure 17 — The General Policy Iteration cycle for the Monte Carlo estimation for control.

The algorithm works iteratively focusing on three cyclic steps. The first step consists on
generating samples for the episode according to the current policy =, relying on the use of
greedy algorithms for simulated action selection, such as e-greedy to balance between
exploration and exploitation. Next, and assuming first-visit MC is used, the Q-value — recall
that for the case of control methods, Q-value refers to the state-action pair’s Q-value, capitalized

given it is an estimate of the true g-value — is updated, as the average of the episode’s returns

N
1
Q(S,A) « N; Ge, (A.4)

Finally, the third step improves the policy greedily with respect to the current value function:

n(s) =0Q(s,a), (A5)
Monte Carlo improves over dynamic programming by learning V, and Q, from direct
environment interaction, not needing an explicit transitions model, and lastly, without the
requirement of visiting all existing states. Nonetheless, the method does have faults of its own.
MC RL requires episodic tasks — in opposition to continuous tasks —, it only updates its

estimates from complete episodes, given the episode’s return is only known after it ends.
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Appendix A.ll — Reinforcement Learning

Reinforcement learning refers to a set of algorithms aiming at learning how to behave in an
environment whose dynamics are partially or fully unknown, by simple trial-and-error, where
the reward may be perceived immediately, or posteriorly. These are the two core features of

reinforcement learning (Sutton & Barto, 2018).

Sutton & Barto (2012) consider Temporal Differences (TD) Learning to be one of the core
concepts of reinforcement learning. Unlike dynamic programming, TD learns directly from
experience, not requiring a transition model. However, unlike Monte Carlo methods, TD does
not require the episode’s return G, instead, it updates its value function considering the next-

time step’s reward. This is referred to as bootstrapping.

At every subsequent time step, t + 1, TD creates a target, the value function’s value as
estimated by the current step, and updates its previous step’s estimate using the newly collected

information:

V(Se) « V(Se) + al[Reyq + ¥V (Ser1) =V (SHI, (A.6)
where Ry, and V(S;,,) represent the transitioned time step’s observed reward and value

function estimate, respectively, and 0 < a < 1 corresponds to a learning hyperparameter.

However, since TD(0) is a one-step algorithm, it would be unwise to update the function to
match the new value estimate. For this reason, @ was introduced, so as to point the update
direction, without fully replacing it.

If one were to adapt the concept of estimation target to MC, the following equation would be

returned

V(S) « V(S + alG: = V(Sp)], (A7)

where the equation’s right-hand side contains Monte Carlo’s update target, G, — V (S;).

Given the behavior described by () and (), TD overcomes some of MCs limitations, as it learns
from continuing environments, is capable of learning online — after every step — and lastly, has
the capacity to learn from incomplete episodes. Note however, that the algorithm referred to as
TD, is a simplification of its actual representation, TD(0), where the integer 0 refers to the
number of eligibility traces used by the algorithm, a concept beyond the scope of this

introduction.
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Reinforcement learning algorithms can be characterized by two sets of categories, which,
broadly speaking, describe how the algorithm handles the underlying environment’s model, and
on the selection of samples for the policy target update. Regarding the former, these constructs
can be either model-based, if they are provided a model of the environment or, if the algorithm
learns it explicitly; or model-free, should they not depend on the existing model for the learning
process to occur — as is the case for TD(0). As for sample selection, a RL algorithm can either
be classified as being on-policy or off-policy. On-policy methods rely on states visited during
the current trajectory to update its policy, whereas its off-policy counterpart uses a sample
returned by any trajectory during the training process, or, in other words, the total discounted
future reward is estimated under the assumption that a greedy policy has been followed, despite
such not being true. Another way to look at this difference, is to consider on-policy methods
evaluate or improve the policy which has been used to make decisions, whereas off-policy
methods evaluate or improve any policy different from that which was used to generate the

samples.

Applying TD(0) to the control problem yields two different algorithms according to the policy
nature. Applied to an on-policy approach, yields the SARSA (State-Action-Reward-State-
Action) algorithm. If, on the other hand, an off-policy view is employed, the resulting algorithm

is named Q-learning.

SARSA earns its name due to the cyclic quintuple of events in a trajectory, on which the

algorithm relies on to create its update rule.

. . . Rt+l S Rt+2m R[+%®+ . e .
A S A @Am " Ars

Figure 18 — SARSA trajectory illustration

Recall that for control algorithms, the focus shifts from state to state transition, and
corresponding value learnt, to state-action to state-action pair transition, and value function
approximation. In other words, from v,(s,a) to q,(s,a). Because SARSA is an on-policy
algorithm, its update target employs the Q-value of the state-action pair transitioned to under
the current policy m, continuously estimating g, for the policy m, whilst modifying  with

respect to g, under greedy behavior.
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Q(St, Ap) « Q(Sp, Ap) + a[Rey1 +¥Q(Sts1,Aev1) — Q(St A, (A.8)

The algorithm’s update target is then defined by Ry 11 + YQ(St41, Ars1)-

Algorithm SARSA

1 Input: step size « €10,1], small e > 0

2. Initialize Q(s, a), forall s € S*,a € A(s) randomly, and set Q(s7,) = 0

3. fork=0,1,2,..do

4 Initialize S

5. Choose A’ from S’ using a policy derived from Q (e.g., e-greedy)

6 for each step of the episode t = 0,1,2,...,T —1 do

7 Perform action A observe R, S’

8 Choose A’ from S’ using a policy derived from Q (e.g., e-greedy)

. Q(S,4) < Q(S,A) + a[R +yQ(5",4) — Q(S, 4]
10. S<SA<A
11. end for —when S is terminal
12. end for

Algorithm 4 - SARSA pseudo-code.

Q-learning (Watkins & Dayan, 1992) is often classified as an early breakthrough for
reinforcement learning, as the creation of an off-policy control algorithm under the TD

framework.

Q(St,Ap) <« Q(St, Ap) + afRey1 +¥Q(Sey1,a) — Q(St, A 1, (A.9)

The previous equation immediately illustrates the off-policy component of Q-learning. Unlike
its on-policy counterpart, SARSA, the algorithm directly approximates the optimal action-value
function q*, regardless of the underlying policy. However, the latter element still plays an
important role in action selection, and consequently, state-action pair update. Under such

construction, Q-learning’s update target is given by Ry + yQ(S¢41, @) .
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Figure 19 - The backup or target diagrams for SARSA and Q-learning, respectively.

Figure 19 illustrates the backup diagrams for SARSA and Q-learning. These figures
conceptualize how the update target is defined. The root filled node represents an action node,
as do the leaf nodes. The white circle represents a state-action node. SARSA performs a backup
by updating the state-action node’s g, based on the action nodes transitioned from (root) and
to (leaf). Conversely, Q-learning’s state node update seeks maximizing over all possible actions
available in the following state, where the arc connecting the multiple branches represents the

maximum operator.

Algorithm Q-Learning

1.  Input: step size « €]0,1], small e > 0

2. Initialize Q(s,a), forall s € S*,a € A(s) randomly, and set Q(sr,") = 0
3 fork =0,1,2,..do

4 Initialize S

5 for each step of the episode t = 0,1,2,...,T —1 do

6. Choose A from S using a policy derived from Q (e.g., e-greedy)
7 Perform action A observe R, S’

8 Q(S,4) « Q(S,A) + a[R+7vQ(S",a) —Q(S,4)]
9. Se S

10. end for —when S is terminal

11. end for

Algorithm 5 - Q-learning pseudo-code.

Appendix A.ll — Deep Reinforcement Learning

The algorithms presented in the previous chapter are typically referred to as tabular methods,
in the sense that they require a matrix to hold a dynamic representation of Q-values. However,
the state space grows exponentially with the number of state variables, making tabular tracking

infeasible. This is referred to, as the curse of dimensionality. This is where the term deep —
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which refers to the existence of multiple processing layers in a neural network — steps in. Instead

of storing the values, a Q-value function approximator, a neural network is used.

The use of neural networks instead of simpler function approximations, for instance, linear
approximators, is largely justified by that fact that when applied to Q-learning, the approximator
greatly suffers from instability and divergence. Considering 6 as the neural network’s

parameters, the action function parametrized by 6 becomes g, (s, a).

Reward

Agent

State Take Environment

action

parameter 6

Observe state

Figure 20 — Schematic depiction of deep reinforcement learning.

Deep Q-learning (Mnih, et al., 2015) constituted a breakthrough in deep reinforcement learning
(DRL). The algorithm tackled and managed to overcome some of its tabular predecessor’s
limitations, by using two innovative mechanisms. The first, experience replay, consists of
storing the episode’s trajectory on each time step t, e; = (S¢, A¢, Rt, S¢+1) INt0 memory D, =
{eo, -+ e+ }. During action function update, a minibatch of independent samples is selected from
D;, and used to train the neural network via stochastic gradient descent (SGD). The
mechanism’s goal is to reduce the sample’s strong temporal correlation, by drawing randomly
selected experiences, which yields accurate gradient estimation. The second modification
consists in the introduction of a target network, q.,, parametrized by 6~. The independent
network is updated less often, specifically, at every C time steps, the target network is updated
setting 6~ = 6, and held frozen for the remaining intermediate period. The use of a second, less
oscillating target network, introduces stability in the training process, by attenuating the effect

of short-term fluctuations.

By combining the two previous introductions, at every time step t, DQN draws N independent
samples from the replay memory D;, using them to update Q-network’s 8, computing the target

Y; = Ry + vyQ.,(St+1,a) , and updating 6 via gradient of the loss function L(8),
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L(0) = Ee,—yon|Resr + ¥Q(Ser1,a,07) — Qo(SeAe) |, (A.10)

where U (D) represents a uniform distribution over the replay memory D.

Algorithm Deep Q-Learning

1. Input: Replay memory capacity N

2. Initialize D to capacity N; Initialize C, the target update frequency; Initialize both action value
and target action value functions, g and § with random weights 8,6~ = 8, respectively

3. fork=0,1,2,..do

4 Initialize e; = {S, A}

5 for each step of the episode t = 0,1,2,...,T —1 do

6. Choose A from S using a policy derived from Q (e.g., e-greedy)

7. Perform action A observe R, S’

8 Sete; 1 =S,4,8

9 Store transition e;4in D

1 Sample random minibatch of transitions from D

1

= o

Set y; = Rf\ , if episode termir_lates at t+1
L R, +vy II}IEIIX Qo-(St41,a") otherwise
12. Perform a gradient descent step on [Y; — Q, (S, A)]2
13. Every C stepsset 6~ =6
14. end for —when S is terminal
15. end for

Algorithm 6 - Deep Q-Learning pseudo-code®?.

Appendix A.lll — Policy Gradient

Whereas members of the Q-Learning taxonomy indirectly optimize the policy via estimating
the optimal value function, q.(s, a), Policy Gradient (PG) aims at learning a parametrized
policy, without requiring a value function to determine action selection. Policy Gradient
represents a policy explicitly, g (a|s), optimizing the policy’s parameters 6 either directly, via
gradient ascent on the reward function J (), or indirectly, by maximizing local approximations
of the reward function. The expression g (a|s) can be interpreted as the probability that action
a is selected at time step t, given that the environment is at state s, at time step t, parametrized
by 6.

n(als,0) =P [A; = a|S; = 5,0, = 0], (A.11)

The previous expression can also be represented as 1y (s, a).

12 The algorithm differs from the literature, as the original framework was designed for training under
computer games, using Convolutional Neural Networks (CNN) to pre-process the images. However, these
topics are beyond the scope of the paper, hence, the algorithm’s pseudo-code has been adapted.

66



PG offers significant benefits over DQN. In terms of convergence, value-based methods tend
to have large oscillations due to small variations in the estimated action values, can dramatically
modify action selection probabilities, PG on the other hand, simply uses gradient ascent to
follow the optimal parameters, resulting in smooth policy updates. The newly introduced class
of methods is also more effective in high-dimensional spaces regarding the value-based method,
being able to cope with continuous action spaces. Whereas value-based methods, at each time
step, require computing the value associated with each action, a computationally expensive
framework, policy-based methods on the other hand, compute the optimal action directly on 6.
Lastly, Policy Gradient methods can learn stochastic policies. The latter leads to two positive
side-effects, the obliteration of the perceptual aliasing problem?®® and remove the need to
implement a greedy policy method for action selection, such as e-greedy, to handle the

exploration-exploitation tradeoff.

Under the Policy Gradient framework, the reward function is given by

J(0) = Vﬂ:g (s1) = ]ETL'Q V1], (A.12)

considering episodic environments, and

J8) = D duy(5)Vey (5), (A13)

SES
for continuous environments, where d ., represents a stationary distribution for a Markov Chain

for g, and V7, (s) corresponds to the estimated value function of 74 for state s.

The computation of 77/(8), required to optimize the parameters 8, is not trivial, as it depends
on the effect of the policy on action selection, directly determined by w4, and the stationary
distribution of states, indirectly determined by mg thus, unknown. Policy Gradient Theorem
yields the expression which allows computing the gradient of J(6), V,J(8) , which does not

involve taking the derivative of the objective function’s state distribution d,

Vo] (6) = Er,[Vologmg (s,a)Qry(s,a) |, (A.14)

where [n represents the natural logarithm, and the instantaneous reward R, ; is replaced by the

long-term action-value Q, (s, a).

13 perceptual Aliasing refers to the case of similar or equal states, which require different responses
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REINFORCE, or Monte Carlo Policy Gradient, borrows from Monte Carlo — hence its name —
in determining how samples are obtained on each time step. The complete return G, is used as

an unbiased sample of Q, (s, a) to determine the policy’s gradient to update 6.

Votg (AlS) l
A (A.15)

VQ](H) = ]En'g [Gt Ty (AIS)

= E[Inmy(A|S)] since VInx = %,

Algorithm REINFORCE: Monte-Carlo Policy Gradient
1 Input: A differentiable policy parametrization 6; step size @ > 0
2 Initialize 6
3. fork=0,1,2,..do
4. Generate a trajectory following policy (- | -, 8), (So,Ag, R1, -, ST—1, Ar—1, R¢)
5 for each step of the episode t = 0,1,2,...,T —1 do
6 T

Gt P Z yk—t—le

k=t+1

7. 0 « 0+ ay'G,V Inmy(4:|Sy)
10. end for —when S is terminal
11. end for

Algorithm 7 - REINFORCE pseudo-code.

The previous method, although promising, suffers from high-variance. A typical solution to
such problem is to subtract a baseline b(s) from G, decreasing the variance of the gradient’s
estimation whilst keeping the update’s expected value unchanged. Such variation is called
REINFORCE with Baseline, and would modify the gradient ascent, step 7, by subtracting a

given value, such as the Advantage function, to be introduced ahead, from G;.

Vanilla policy gradients tend to suffer from noise and high variance, leading to unstable
learning processes, which may result in policy distributions skewed towards non-optimal
trajectories. The actor-critic framework tackles said hindrance, by introducing a concept of dual
entities, where the critic’s responsibility is to estimate the value function’s parameters w,
Qu(s,a) or V,(s), and the actor’s role is to update the policy’s, mg(a|s), parameters 6, in the

direction suggested by the critic.

Before proceeding, a new operator, the advantage function, is introduced. The construct
attempts to capture to what extent an action better or worse for a given state, in comparison
with the alternative actions. The goodness of an action is given by its Q-value Q (s, a), whilst
the average value of the actions for a given state, are given by the value function V(s), hence

the advantage function is given by
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Ary(s,a) = Qpy(s,a) — Vi, (s), (A.16)
Advantage functions reduce variability and solve the perceptual aliasing problem, where two

similar or equal states require different actions.

The last algorithm presented in this section, is named Trust Region Policy Optimization, or
simply, TRPO. Introduced by Schulman, et al. (2017), it is based on the idea that training
stability can be achieved by ensuring that the policy parameter updates are limited in size, by

introducing a Kullback—Leibler (KL) divergence constraint on the size of the policy update.

The objective function under TRPO is given by

g (S) ~

J(0) = Espmota,ammyy o (5) 00
old

(s,a)], (A.17)

where 6,,, represents the policy’s parameters prior to the update, Ane ld (s, a) represents the
o

estimated advantage function, and lastly, p™ei represents the state’s visitation frequency.

The algorithm then seeks maximizing the objective function (), subject to the trust region
constraint, which establishes that the distance, as measured by KL-divergence, between the old

and new policies, has to be bounded by a given parameter §

Eg-prota [ Dkt (o000 1 lIma (- 19))] < 6, (A.18)

where Dy, (- || -) represents the Kullback—Leibler divergence, and & corresponds to the

bounding parameter or KL-divergence limit.

69



Algorithm Trust Region Policy Optimization

1. Input: Initial policy parametrization 6,; initial value function parameters ¢,

2.  Setthe hyper parameters: KL-divergence limit §,backtracking coefficient &, maximum number of
backtracking steps K

3. fork=01,2,..do
4, Collect a set of trajectories D, = {t;} by running policy ,, = m(8;) in the environment
S. Compute rewards-to-go R,
6. Compute the advantage estimates, A, based on the current value function Ve,
7. Estimate the policy gradient as
T
1 "
9k =157 Z Z Vologme(se)le, Ae
| Dy | —
TEDy t=0
8. Use the conjugate gradient algorithm to compute
R Xk = Hi ' G
where Hy, is the Hessian of the sample average KL-divergence
9. Update the policy by backtracking line search with
6 0 +a’ 2 .
= Al ==X
k+1 k fiszfk k
where j € {0,1,2, ... K} is the smallest value which improves the sample loss and satisfies the
sample KL-divergence constraint
10. Fit value function by regression on mean-squared error
T
1 ~ N2
Prs1 = DT Z Z(V¢(St) -Ry)
| Dy —
TEDE t=0
typically via some gradient descent algorithm
11. end for

Algorithm 8 — Trust Region Policy Optimization pseudo-code.
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Appendix B — The reinforcement learning policy’s plot as a function of the time remaining

until the backtesting process resumes

Kmur = 3.0

250 200 150 100 50 0

Figure 21 - The proximal policy optimization agent’s policy plot considering the multiplier 3,
considering exceedances between 0 and 4.

Kinur = 3.0
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Figure 22 - The proximal policy optimization agent’s policy plot considering the multiplier 3,
considering exceedances between 5 and 9.

71



Kmur = 3.4

0.8

0.6

0.4

0.2

250 200 150 100 50 0

Figure 23 - The proximal policy optimization agent’s policy plot considering the multiplier 3.4,
considering exceedances between 0 and 4.
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Figure 24 - The proximal policy optimization agent’s policy plot considering the multiplier 3.4,
considering exceedances between 5 and 9.
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Figure 25 - The proximal policy optimization agent’s policy plot considering the multiplier 3.5,
considering exceedances between 0 and 4.
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Figure 26 - The proximal policy optimization agent’s policy plot considering the multiplier 3.5,
considering exceedances between 5 and 9.

18 Kmur = 3.65

Figure 27 - The proximal policy optimization agent’s policy plot considering the multiplier 3.65,
considering exceedances between 0 and 4.
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Figure 28 - The proximal policy optimization agent’s policy plot considering the multiplier 3.65,
considering exceedances between 5 and 9.
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Figure 29 - The proximal policy optimization agent’s policy plot considering the multiplier 3.75,
considering exceedances between 0 and 4.
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Figure 30 - The proximal policy optimization agent’s policy plot considering the multiplier 3.75,
considering exceedances between 5 and 9.

Kmui = 3.85
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Figure 31 - The proximal policy optimization agent’s policy plot considering the multiplier 3.85,
considering exceedances between 0 and 4.
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Figure 32 - The proximal policy optimization agent’s policy plot considering the multiplier 3.85,
considering exceedances between 5 and 9.
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Figure 33 - The proximal policy optimization agent’s policy plot considering the multiplier 4,
considering exceedances between 0 and 4.
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Figure 34 - The proximal policy optimization agent’s policy plot considering the multiplier 4,
considering exceedances between 5 and 9.
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Appendix C - Source Code

The author has chosen to publish the source code which led to the findings present on this
work under his public GitHub repository at github.com/guilherme-b. The repository includes

both the reinforcement learning’s environment and the Monte Carlo simulation framework.
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