ISCTE Business School
 Instituto Universitário de Lisboa

A MULTI-SCENARIO ANALYSIS TO IMPROVE LAYOUT EFFICIENCY

Simão Duarte Lobato

Project submitted as partial requirement for the conferral of Master's in Management of Services and Technology

Supervisor:
Prof. Doctor Ana Lúcia Martins, Assistant Professor, ISCTE Business School, Department of Marketing, Operations and General Management

Co-supervisor:
Prof. Doctor Teresa Sofia Grilo, Assistant Professor, ISCTE Business School, Department of Marketing, Operations and General Management

ISCTE Business School Instituto Universitário de Lisboa	A MULTI-SCENARIO ANALYSIS TO IMPROVE LAYOUT EFFICIENCY

Acknowledgments

Throughout the whole project, I was lucky enough to have crucial support, which led me to the conclusions of this challenge.

For this reason, I would like to thank my supervisors, not only for their support in the literature review and in the entire structural organization of my work, but also the permanent readiness to clarify any technical doubts, offering me the right solutions to improve.

Secondly, I want to thank my friend Alexandre Alves for his help in proofreading, for all his advice and critical discussions, leading me to a greater reflection on the subjects under investigation.

The support of my co-worker Sandra Timóteo was extremely important for all clarification of questions and for the help in my adaptation phase to the industrial unit. For that, a very special thank you.

I must thank my family for their unconditional support at all stages of the project.

Abstract

The ability to compete is paramount and efficiency, regardless of the organisations' overall approach, is an issue companies continuously strive for. In every supply chain, the logistics costs represent a large portion of overall costs, and hence the warehousing costs. Although the storage of products by itself does not add value to the customer, it has an immediate impact on these operation costs.

Lauak Portugal is a partner factory of Groupe Lauak, a French group that owns a set of industrial companies supplying the aeronautical market. Aiming the layout costs reduction, it is inside its final products warehouse that this research is carried out.

Excluding inventory costs, the picking activity alone represents about 55% of the warehousing costs (Drury, 1998). Additionally, travelling during the picking activity is estimated to require about 50% of the time of the resources (Tompkins et al., 2010). Supported by this assumptions, 44 scenarios are analysed and compared, mixing storage assignment policies and alternative picking routes strategies.

Both qualitative and quantitative approaches are used in this research, based on data collected from interviews, observation, documentation and archival records. A case study approach is conducted following literature recommendations (Voss et al., 2002; Yin, 2018).

Findings showed that travelling distance can be reduced by about 64% when the class-based storage is used, following their picking frequency, along with a pre-selected picking route.

Key Words: Logistics, ABC Analysis, Picking, Warehousing, Storage Assignment
JEL Classification System: M11; D24; L62; Y40

Abstract

Resumo

A capacidade de competir é primordial e a eficiência, independentemente da abordagem geral das organizações, é uma questão que as empresas continuamente se esforçam para atingir. Em todas as cadeias de abastecimento, os custos logísticos representam uma grande parte dos custos totais e, consequentemente, dos custos de armazenagem. Embora o armazenamento de produtos por si só não acrescente valor ao cliente, ele tem um impacto imediato sobre os custos de operação.

Lauak Portugal é uma fábrica parceira do Groupe Lauak, um grupo francês que possui um conjunto de empresas industriais que abastecem o mercado aeronáutico. Visando a redução dos custos de layout, é dentro do seu armazém de produtos finais que esta pesquisa é realizada.

Excluindo os custos de stock, a atividade de picking por si só representa cerca de 55% dos custos de armazenagem (Drury, 1998). Além disso, estima-se que as deslocações durante a atividade de picking represente cerca de 50% do tempo dos recursos (Tompkins et al., 2010). Com base nestas premissas, 44 cenários são analisados e comparados, misturando políticas de armazenamento e diversas rotas de picking.

Ambas as abordagens qualitativa e quantitativa são utilizadas nesta pesquisa, com base em dados recolhidos a partir de entrevistas, observação, documentação e registros de arquivos. Estas abordagens são conduzidas com base nas recomendações da literatura (Voss et al., 2002; Yin, 2018).

Os resultados mostraram que a distância percorrida pode ser reduzida em cerca de 64\% quando a políticas de armazenamento "Class-Based" é utilizada, seguindo a frequência de picking, juntamente com uma rota de picking pré-definida.

Key Words: Logistics, ABC Analysis, Picking, Warehousing, Storage Assignment
JEL Classification System: M11; D24; L62; Y40

Executive Summary

Competitiveness is paramount and efficiency, regardless of the company's overall approach, is an issue companies continuously strive for. Although the storage of a product itself does not add value to the customer (Tompkins and Smith, 1998; Carvalho, 2018), it has an immediate impact on the warehouse operation costs (Tompkins and Smith, 1998; Rushton et al., 2017).

Warehousing costs are an essential key in the overall costs a company has to support and, not considering inventory costs, the picking itself represents about 55% of the warehousing costs (Drury, 1998). Additionally, travelling during the picking activity is a major cost in warehousing, and it requires about 50% of the time of the resources (Tompkins et al., 2010). Even small savings in this travelling time can have a generous impact in the costs of the operation.

Lauak Portugal is based in Setúbal, Portugal, and it is specialized in transforming metal sheets in single aircrafts components and outside structures. This aerospace environment was the selected one to be the study field of this research. Service quality and fulfilment of due dates to the customers are relevant in this industry. Although most products are developed jointly with the customers, the cost issue is a key aspect in maintaining the competitiveness of the plant itself within the group.

The purpose of this research is to improve the internal costs in its finished product warehouse, which is considered as critical for the plant, affecting directly the delivery process to the final customer and, hence, the competitiveness.

Based on three conditions developed by Yin (2018), the methodology adopted in this project complies with the guidance of a case study, and it is structured following the recommendations purposed by Voss et al. (2002) and Yin (2018). The project went through several steps:

1. Identification of the initial situation, which undertook both qualitative and quantitative approaches. Qualitative using interviews to the managers of the area and the plant to perceive the warehouse purpose and the overall organisation of the facility; and quantitative as to collect data concerning distances and volumes of activity inside the warehouse.
2. Generation of theoretical scenarios, based on the literature, resulting from (a) picking routes and (b) storage assignment (Hausman et al., 1976; Ratliff and

Rosenthal, 1983; Goetschalckx and Ratliff, 1988; Hall, 1993; Petersen and Aase, 2004; De Koster et al., 2007; Roodbergen et al., 2008; Chan and Chan, 2011; Çelk and Süral, 2014; Carvalho et al., 2018). 66 scenarios were initially considered ([(a)=22] * [(b)=3]), but only the ones suited for the company were analysed in depth (22 picking routes and 2 storage assignment);
3. Simulation to evaluate the efficiency of different scenarios, allowing the travelled distances comparison between each of them. Data collection was mostly conducted using direct observation and measurements, as the plant's information system did not have that information systematised. Although time-consuming, this approach allowed for a better quality of data.

Findings showed that the picking routes did not have much impact on the distance travelled during the picking activity, when analysed in absolute values, which is contrary to findings from other researchers (see, for instance, Rushton et al., 2017). When the analysis is made considering relative values, the conclusions showed to be more surprising. The unexpected findings might result from the space constraints in some areas of the warehouse, as it does not follow a typical shape. The layout and the products' organisation based on the families, on the other hand, showed to be a significant aspect in reducing travelling distance as they can reach savings between $38,45 \%$ and $46,25 \%$, when the storage strategy is random, and above 64% when it is class-based.

Although this research was developed in a specific factory, the proposed methodology can be adapted so other companies, which desire to evaluate their internal policies, can find more efficient storage solutions.

Index

Acknowledgments i
Abstract iii
Resumo iv
Executive Summary v
Index vii
Figure Index xi
Table Index xiii
1 Introduction 1
1.1 Problem Statement 1
1.2 Research Question 2
1.3 Objectives 2
1.4 Methodology 3
1.5 Scope 3
1.6 Structure of the Project 3
2 Literature Review 5
2.1 Logistics Management 5
2.2 Warehousing Management 8
2.2.1 Warehouse Typologies 9
2.2.2 Warehouse Operations 10
2.3 Picking and Storage Processes 14
2.3.1 Routing Policies 15
2.3.2 Storage Assignment. 16
2.4 Conclusion 18
3 The Company: LAUAK Portugal 19
3.1 Warehouses 19
3.2 Warehouse Processes Description 21
4 Methodology 23
4.1 Methodology Approach 23
4.2 Case Study's Stages 23
4.2.1 Step I - Characterizing the Current Operation in the Warehouse. 24
4.2.2 Step II - Defining a Set of Alternative Theoretical Scenarios 26
4.2.3 Step III - Assessing and Comparing Alternative Theoretical Scenarios 28
4.2.4 Step IV - Presenting Recommendations for the Company. 28
5 Case Study 29
5.1 Defining a Set of Alternative Theoretical Scenarios 29
5.1.1 Data Details 29
5.1.2 Selected Theoretical Scenarios 31
5.2 Assessing and Comparing Alternative Theoretical Scenarios 31
5.2.1 Assessing Alternative Theoretical Scenarios 31
5.2.1.1 Picking Routes Application 32
5.2.1.2 ABC Analysis 34
5.2.2 Travelled Distances per Scenario - Random Storage Strategy (SA - 1) 39
5.2.3 Travelled Distances per Scenario - Class-Based Storage Strategy (SA - 2) 40
5.2.4 Global Comparison 41
5.3 Recommendations for the Company 44
6 Conclusion 45
7 References 47
8 Appendix 51
Appendix A - Unstructured Interviews Script 51
Appendix B-PR-1 Representation 52
Appendix C - PR - 2 Representation 53
Appendix D - PR - 3 Representation 54
Appendix E-PR-4 Representation 55
Appendix F - PR - 5 Representation 56
Appendix G-PR - 6 Representation 57
Appendix H-PR-7 Representation 58
Appendix I - PR - 8 Representation 59
Appendix J - PR - 9 Representation 60
Appendix K - PR - 10 Representation 61
Appendix L-PR - 11 Representation 62
Appendix M - PR - 12 Representation 63
Appendix N-PR-13 Representation 64
Appendix O-PR - 14 Representation 65
Appendix P - PR - 15 Representation 66
Appendix Q - PR - 16 Representation 67
Appendix R - PR - 17 Representation. 68
Appendix S - PR - 18 Representation 69
Appendix T - PR - 19 Representation. 70
Appendix U-PR - 20 Representation 71
Appendix V - PR - 21 Representation 72
Appendix W - Distance Matrix 73
Appendix X - Available Volume per Shelf, in cm3 74
Appendix Y - ABC Analysis: PFBE Family 76
Appendix Z - ABC Analysis: ESKU Family 87
Appendix AA - ABC Analysis: FAI Family 90
Appendix BB - Class-Based Reallocation: PFBE Family 93
Appendix CC - Class-Based Reallocation: ESKU Family 104
Appendix DD - Class-Based Reallocation: FAI Family 108

Figure Index

Fig. 1 - Logistics Attributes (Adapted from Carvalho et al., 2018) 6
Fig. 2 - Flow-through (in the left) and U-Flow (in the right) Typologies (Adapted from Carvalho et al., 2018) 9
Fig. 3 - Typical Distribution of Warehouse Operating Expenses, Source: Adapted from Drury (1988) 14
Fig. 4 - Typical Distribution of an Order Picker's Time, Source: Adapted from Tompkins et al. (2010) 14
Fig. 5 - Final Product Warehouse's Layout 20
Fig. 6 - Research Steps 23
Fig. 7 - New Warehouse's Layout 38

Table Index

Table 1 - Logistics Activities (Adapted from Stock and Lambert, 2001) 7
Table 2 - Selected Picking Routes 27
Table 3 - Distances Matrix (Shelves: PFBE - A, PFBE - H, PFBE - I1, PFBE - I2, and PFBE - J). 29
Table 4 - Exemplification of Products Volume 30
Table 5 - Types of Storage 30
Table 6 - Theoretical scenarios under study 31
Table 7 - A Picking list from the Scenario 0 32
Table 8 - Application of the PR - 1 33
Table 9-ABC Classification 35
Table 10 - Family, Class, and Sub-Family Segregation 35
Table 11 - Products' Reallocation 36
Table 12 - Travelled Distances per Scenario (SA - 1) 39
Table 13 - Travelled Distances per Scenario (SA - 2) 40
Table 14 - Picking Routes' Total Travelled Distance per Storage Assignment Strategy 42
Table 15 - Travelled Distances Calculations Before and After Reallocation. 43

1 Introduction

This first chapter will introduce a succinct view behind the project's framework, that justifies the investigation relevance. The respective research question is then established, acting as a guideline to the project development. Afterwards, the main goal is highlighted, as well as the specific milestones required to reach that major objective. Right after that, the overall methodology adopted in this project is disclosed. The last two sub-chapters are intended for the scope of the project and its structure.

1.1 Problem Statement

Keeping a product stored for a certain period does not add any value to the final customer, which is something that has been gaining companies' attention over time (Tompkins and Smith, 1998; Carvalho et al., 2018). For this reason, and because warehouses might be a competitive factor in many supply chains, companies began to care about that activity which has an immediate impact on their costs (Tompkins and Smith, 1998; Rushton et al., 2010). Since then, managers all over the globe decided to put some effort in making warehouse's internal processes more efficient, once they are expensive and should be aligned with the whole supply chain's strategy (Rushton et al., 2010).

This research focuses on a company - Lauak Portugal - a partner plant of an aerospace metallurgic French group: Groupe Lauak. Having plants in many different countries, the group plants compete among themselves for company contracts. Service quality and fulfilment of due dates to customers are relevant in this industry. Although most products are developed jointly with the customers, the cost issue is a pertinent aspect for maintaining the competitiveness of the plant within the group. It is thus essential to continuously monitor costs while looking for strategies that allow reducing them. Warehousing costs, and particularly picking-related costs, play a vital role in this search.

In accordance with Tompkins and Smith (1998), Bowersox et al. (2002), Rushton et al. (2010), Bartholdi and Hackman (2017) and Carvalho et al. (2018), a traditional warehouse has 4 main activities: receiving, storage, picking, and shipping. The company considers that the activity that has the highest impact on the internal warehousing processes is the picking activity. In fact, Drury (1988) showed that, excluding inventory costs, the picking activity alone represents about 55% of the warehousing costs. In
addition, among all the company's warehouses, the picking in the final product warehouse emerged as one of the critical processes inside this plant. The fact that the company does not have any pre-selected picking policy or storage assignment strategy, these warehousing processes are delaying all sales and shipping procedures upstream.

Other research, this time conducted by Tompkins et al. (2010), stated that travelling between and across aisles, searching for product's location during the picking, represents 50% of the total time spent inside a warehouse. Based on this statistic, and after discussing it with the company, it was decided to propose a solution that would reduce the travelled distances inside the warehouse, being this variable considered as the criterion of analysis.

Considering these assumptions, the purpose of this research is to improve the warehousing costs, contributing to its competitiveness inside the group, by analysing, simulating, and improving the picking process.

1.2 Research Question

The research question by which the project is being guided for is: "How to improve the picking processes efficiency in the final product warehouse of Lauak?"

1.3 Objectives

This project aims the assessment of picking policies to reduce warehousing costs. For that, there are some specific milestones that need to be accomplished. The first one is to map the warehouse's internal processes, in order to understand the internal dynamic. After that, and to study the routes pickers take inside the warehouse, its measurements are critical to the analysis. Thus, it is needed to collect the distances across and between aisle and shelves. Then, after the picking routes' selection, several alternative theoretical scenarios are developed and simulated.

Being this said, the milestones of this project are:

- To map the warehouse internal processes;
- To measure the warehouse distances;
- To select and create alternative theoretical scenarios;
- To compare the current situation with the developed scenarios;
- To present final recommendations for the company.

1.4 Methodology

This research is based on a case study approach (Voss et al., 2002; Yin, 2018), and involves several consecutive research steps:

1. Step I - Characterizing the Current Operation in the Warehouse;
2. Step II - Defining a Set of Alternative Theoretical Scenarios;
3. Step III - Assessing and Comparing Alternative Theoretical Scenarios;
4. Step IV - Presenting Recommendations for the Company;

1.5 Scope

Lauak Portugal owns four warehouses: two for raw material (thin and thick), one for work-in-process and one for the final product. The company considered that the picking process in the final product's warehouse is consuming an excessive amount of time and, for this reason, this project is focused in this specific warehouse.

1.6 Structure of the Project

This project is structured as follows:

Chapter 1 - Introduction: The project's introduction, where the major objective, respective milestones, research question, methodology, scope and structure are briefly presented.

Chapter 2 - Literature Review: Acting as the theoretical support to the project, this chapter will develop the concepts, techniques, and strategies which previous investigations and international literature have published related to logistics, warehousing management, picking routes, and storage strategies.

Chapter 3 - The Company: LAUAK Portugal: This chapter will be used to present the company, contextualizing its activity and describing the warehouse's current situation, where its internal processes, strategies adopted, and ways of work are identified.

Chapter 4 - Methodology: With the theoretical background analysed in chapter 2, the choices made on this project are going to be justified in the methodology phase, as well as the steps that need to be taken in order to achieve the major goal.

Chapter 5 - Case Study: In the Case Study's chapter, the analysis is then detailed. The methods behind the travelled distances' calculations are going to be explained, as well as how the products reallocation was performed. This chapter finishes with the results' assessment, followed by the improvements suggestions.

Chapter 6 - Conclusion: The conclusions are finally presented, attempting the reflection about the developments, results, limitations, and further work.

2 Literature Review

The purpose of this chapter is to present the theoretical background that will support the project. This will lead to a literature review over the approaches and tools adopted by the researchers in their previous studies, to address similar challenges.

Recognizing warehouse management as the scope of this project, the logistics' concept will be first developed. Then, warehouse internal operations are clarified, describing the different features related to this project, detailing the adopted layout design.

2.1 Logistics Management

It is not easy to define Logistics because it depends on the environment where it lies in. However, a definition adopted by some authors (Stock and Lambert, 2001; Rushton et al., 2010; Carvalho et al., 2018), belongs to the Council of Supply Chain Management Professionals (CSCMP, 2013: 117), which defined Logistics as:
> "The process of planning, implementing, and controlling procedures for the efficient and effective transportation and storage of goods including services, and related information from the point of origin to the point of consumption for the purpose of conforming to customer requirements."

Rushton et al. (2010: 4) defined this concept as "a diverse and dynamic function that has to be flexible and has to change according to the various constraints and demands imposed upon it and with respect to the environment in which it works."

Another perspective, this time suggested by Bowersox et al. (2002) is that Logistics is a supply chain process that combines internal and external activities creating and moving value downstream to satisfy customer requests.

Lastly, Christopher (2016: 2) defines Logistics as "the process of strategically managing the procurement, movement, and storage of materials, parts and finished inventory through the organization and marketing channels."

All these previous perspectives may seem complex, but it is possible to make them simpler to understand when logistics' main purpose is clarified. According to Carvalho
et al. (2018), logistics aims to offer the highest possible level of customer service, while attempts to decrease lead time response and service costs. Christopher (2016), based on Ohmae (1982), presented his view over this problem, saying that, in order to achieve competitive advantage, it is crucial that companies focus themselves on "The strategic three C's": Company, Customer and Competitors. This advantage will rise if companies are able to adapt themselves to the market, differentiating from the competitors, always trying to offer what customer is willing to pay for (Christopher, 2016). After establishing that, companies must ask themselves three questions, to make sure the strategy is going into the right direction: (1) are the market segment and customer requirements well defined; (2) are the internal processes correctly structured to answer to those customer needs; and (3) do competitors have better operational conditions, making possible to reach the desired competitive advantage (Ohmae, 1983).

Carvalho et al. (2018) supported Christopher (2016) meaning that the logistics concept's complexity may decrease when companies fully understand the three "Logistics Attributes" (Fig. 1). In order to decide which strategy should companies follow, the balance between the Time, Cost, and Service Quality must be as much accurate as possible, being designated as "Trade-offs".

Fig. 1 - Logistics Attributes (Adapted from Carvalho et al., 2018)
The upper attribute represents the amount of time logistics service is performed, depending on how long the customers are willing to wait for a service/good. The cost is related with the system efficiency, meaning that the cheaper a company can make its process, the more efficient the logistic process is. The same is for the service quality: the better the service provided, the more valuable the process becomes.

Depending on the service/good it is being provided/sold, each vertex has its own relevance. It is impossible to offer the three attributes at the same time, but all of them need to be (somehow) incorporated in the strategy. For this reason, companies need to
assess the system and decide which attribute the client values most, in order to choose where the focus should be.

Depending on the researcher, literature can identify several logistics activities that help companies serving the final customer in the shortest possible time, aiming the lowest possible cost, at the best service quality.

Coyle et al. (1992) mentioned the transportation, packaging, materials handling, order processing, and forecasting as the main logistics activities companies should consider. Inventory and warehouse management, facilities network and information/communication control are later added to the list by Bowersox et al. (2002) and Rushton et al. (2010). Stock and Lambert (2001) and Carvalho et al. (2018) also stated other two logistics activities: procurement and reverse logistics; and production planning and client service, respectively.

It is possible to group these activities into distinct categories. Carvalho (1996) suggested five categories: Facilities Management, Inventory Management, Communication, Material Handling, and Transportation. Stock and Lambert (2001) clustered them as it is shown in Table 1.

Table 1-Logistics Activities (Adapted from Stock and Lambert, 2001)

Activities	Description
Transportation	Physical movement or flow of goods across the supply chain and between players.
Packaging	Protect the product from damages during storage and transportation stages.
Materials Handling	Control the movements of raw materials, in-process inventory, and finished goods between storage areas, and from production last stage to the logistics first stage.
Order Processing	Necessary actions considered to ensure production flow continuity, performed after customer request.
Warehousing	Activities assigned to manage the warehouse space required to store the inventory.
Communication	Being considered as the "vital link between the entire logistics process", communication guarantees the equal information sharing across the supply chain, without being at the same place.

Among these 6 logistics activities, warehousing management is going to be developed in the next section, detailing the typologies and the main operations performed inside the warehouses.

2.2 Warehousing Management

Warehousing activity is responsible for the storage of all types of goods (raw materials, parts, goods-in-process, finished goods), simplifying their movement from the very first supplier to the player the product is being produced for (Vonderembse and White, 1996; Stock and Lambert, 2001; Rushton et al., 2010).

This logistics activity, in most of the cases, does not add any value to the final customer by itself, despite being essential to the whole chain (Tompkins and Smith, 1998; Christopher, 2016; Carvalho et al., 2018). As Ballou mentions (2004: 470), "storage become an economic convenience rather than a necessity". Warehousing activities help companies managing their gap between supply and demand, decreasing supply chain vulnerability and decoupling demand from production capabilities (Ballou, 2004; Rushton et al., 2010; Bartholdi and Hackman, 2017; Carvalho et al., 2018). Once production and consumption occur in different places, the closer the product is to the final customer, the better (Carvalho et al., 2018). In some cases (e.g. wines, cheeses), products need a holding stage to be completed, a place where they can be kept during the transformation phase. The warehouse appears in this scenario as that place that holds the products, adding in this case valued attributes to the products (Ballou, 2004). Based on this, inventory is seen, not only as a company asset, but also as a dangerous variable expense that requires an effective control system in order to lead to success (Coyle et al., 2012).

Among the literature, there are several reasons that justify the fact that companies have stock held in their warehouses. Some authors defended that stock should be held so it will be possible to achieve economies of scale, by producing-to-stock, always keeping the production line supplied, and getting quantity discounts through high volumes of bought products (Coyle et al. 1992; Vonderembse and White, 1996; Stock and Lambert, 2001; Ballou, 2004; Rushton et al., 2010; Coyle et al., 2012). Safety stock is also mentioned as a reason that justifies holding stock, since it helps minimizing supply or demand uncertainties and avoiding stock-outs (Coyle et al., 1992; Vonderembse and White, 1996; Rushton et al., 2010; Coyle et al., 2012). Stock can be also used to place the products
closer to the final customer, absorbing demand oscillations and, consequently, better quality service (Vonderembse and White, 1996; Stock and Lambert, 2001; Ballou, 2004). Holding stock is considered an advantage when it is used to support the production line, when the production lead time is longer than the client order lead time, and to prevent the seasonal effect that some companies may have (Coyle et al., 1992; Rushton et al, 2010; Coyle et al., 2012).

It does not matter how the products are stored, or the reason why companies do it, but once the products are stored, they need to be handled carefully, always attempting to minimize the internal costs.

2.2.1 Warehouse Typologies

When it is time to choose which layout a company should implement, it is important to remember that it must be planned to minimize the travel distance and facilitating internal flows (Bowersox et al., 2002; Carvalho et al., 2018).

The layout typology can be classified based on the products flow inside a warehouse, in which the two most used are Directional or Flow-through and Broken or U-flow (Carvalho, 1996) (see Fig. 2). If the receiving and shipping areas are located on opposite sides, products follow a directional or flow-through configuration. The other classification is when receiving and shipping areas are adjacent to each other, making the products go in and out on the same side of the warehouse (Rushton et al., 2010; Bartholdi and Hackman, 2017; Carvalho et al., 2018). Companies also have other options, such as the L-flow in which the receiving and shipping area are not located side by side, neither in opposite sides, or a mixture between these three typologies (Rushton et al., 2010).

| Shipping Area |
| :---: |$|$

Fig. 2 - Flow-through (in the left) and U-Flow (in the right) Typologies (Adapted from Carvalho et al., 2018)

Concerning flow-through, managers can take some advantage by using this typology because it reduces the travelling time inside the warehouse, as well decreases the traffic and internal congestion because the receiving and shipping area are on opposite sides (Carvalho, 1996; Carvalho et al., 2018). When a company decides to adopt the Uflow, average travelled distance is reduced, the space allocated to the reception and shipping areas decreases (since it is at the same place), and it is indicated for a better storage allocation (Carvalho, 1996; Carvalho et al., 2018).

No matter which layout typology a company implements, all warehouses have the same overall main internal functions. The following subchapter presents and describes each of them.

2.2.2 Warehouse Operations

Each warehouse has its own internal activities. However, all of them have the same four main functions (Tompkins and Smith, 1998; Bowersox et al., 2002; Rushton et al., 2010; Bartholdi and Hackman, 2017; Carvalho et al., 2018): Receiving the product from a certain source; Storage them until the moment they are needed; at that time, Picking them to satisfy an order and Shipping the products to the user that requested them.

- Receiving

Associated to this function, it is the confirmation process. Every time a warehouse receives a product to store, picker needs to confirm that everything is in accordance with the agreed. Carvalho et al. (2018) referred that reception and checking may consist in seven steps: planning the receptions orders, the arrival of the vehicle, unloading process, checking its cargo, palletizing it (depending on the product characteristics), stablishing a storage location and update the stock in the system.

- Storage

After assigning a location to the new product, it is time to store it. According to Hausman et al. (1976), there are three ways to do it: first, attributing a fixed/dedicated location to each product, and it can only be stored in that place; second, every product is
randomly stored in empty places during the reception period, leading to a higher average travel time (Glock and Grosse, 2012); and lastly, class-based location, characterized by different storage zones, where each product has a single associated area, yet randomly stored inside it. These three storage techniques will be further developed in sub-chapter 2.3.2.

Regardless of the technique implemented, companies still have to choose between several storage system options. According to Carvalho et al. (2018), these systems can be divided into manual and automatic. In terms of manual options, it is possible to find the conventional rack, in which the palletized products are stored on regular shelves, allowing the unitary and direct access to each reference. This system is indicated for warehouses that have a big amount of references. Another option is Drive-in/through rack, which also stores palletized products, yet with far fewer references to store, attempting to equalize the number of shelves with the references. Cantilever rack is a structure that holds bulky cargos which are difficult to store on regular shelves due to the products' shape. The last manual system is the gravitational rack. This time, the references are stored at one end and, through gravitational force and a rolling platform, they slide to the opposite end.

In the automatic storage systems, it is possible to identify the vertical and horizontal carousels and the self-supporting warehouses. The first one (sometimes called as Kardex), is a vertical or horizontal structure that makes the references come to a single point by the shelves' movement. It is indicated for references with small dimensions. Selfsupporting warehouse works as a Kardex but for bigger references. Contrary to the previous, the whole infrastructure where the warehouse is in, is only used for this purpose. The entire storage mechanism is automatic where the cargo is moved aided by elevators computer controlled and not by the shelves' movement as the Kardex. This type of system is usually used for references with big dimensions.

- Picking

After the product being stored, it is ready to be picked. An order request is issued by the customer and all the service process begins. Hall (1993: 76) defined picking as the one "which items are retrieved from stocking locations in a warehouse." Besides that, Carvalho et al. (2018: 308) says that picking activity has a direct impact in the logistics triangle in which "the faster the picking, the quicker the customer delivery (Time); the
more efficient the picking, the lower the cost to the customer (Cost); and the more effective the picking (without errors), the higher the service quality".

Tompkins and Smith (1998) argued that order picking is considered, by warehouse professionals, as the most critical function in their distribution operations. For this reason, the strategy adopted needs to be carefully designed. Depending on that choice, picking can be performed in four different ways (Van den Berg and Zijm, 1999; Tompkins and Smith, 1998; Ballou, 2004; Rushton et al., 2010; Carvalho et al., 2018).

1. Picking by Order - Guided by an order list, picker has the responsibility to collect every item from it. Orders are not mixed in the same list.
2. Picking by Line - In this method, picker collects the quantity to satisfy several orders at the same time, from each location.
3. Zone Picking - Warehouses are divided into areas and the picker collects all the items stored per zone, changing after collecting all the products from that zone.
4. Batch Picking - A few numbers of orders are assigned to one single picker, who is responsible for collecting all the products from these order lists. The procedure is repeated after finishing the current lists.

Picking by order is more appropriate when each order has many lines to pick (Carvalho et al., 2018). Although it is the simplest picking strategy when the picking is paper-based, this method offers to the companies the solution with the lower probability of error. However, the productivity is the lowest one, due to the time picker needs to complete an order (Tompkins and Smith, 1998; Carvalho et al., 2018). When the performance is analysed per client, this method provides the quicker response, even though it is considered the one that spends the most time travelling (Tompkins and Smith, 1998; Rushton et al., 2010).

When companies decide to use picking by line, the number of picking errors will increase, maintaining productivity levels high (Carvalho et al., 2018). According to the same authors, this method requires some special attention when is being performed because products need to be separated for all the orders, after the collection. For that reason, it is the advisable method when companies have few lines to pick (Carvalho et al., 2018).

Resembling picking by order, is zone picking. It is most likely to be used when companies operate different systems and equipment inside the same warehouse
(Tompkins and Smith, 1998; Carvalho et al., 2018), when the orders are usually too big for a single picker (Rushton et al., 2010), or if there is any justification for the physical storage segregation (Rushton et al., 2010). Thus, if companies implement zone picking, pickers are allocated to a specific system, increasing the number of picking errors, towards picking by line, yet showing higher productivity, but with a lower number of errors when compared to picking by order (Carvalho et al., 2018).

The same way zone picking is for picking by order, batch picking is for picking by line (Carvalho et al., 2018). The difference between these last two types is the number of orders picked at once. Whereas picking by line collects every product from the list, in the batch picking mode picker should only select one to four lines to pick at once (Carvalho et al., 2018; Tompkins and Smith, 1998). If companies decide to select this method, the error margin will decrease, since each picker is dealing with a small number of lines (Carvalho et al., 2018). Thus, "the higher the number of orders in each group, the greater the productivity, but also the greater the possibility of error" (Carvalho et al, 2018: pp. 310). Rushton et al. (2010) argued that companies can benefit in terms of travelling time with this method.

In order to select the best picking strategy, companies must consider some factors that have influence on the picking performance. According to Rushton et al. (2010), the product range, the order size, and the equipment used by the picker to collect them are examples of these factors.

- Shipping

In order to finish the warehouse activities, after picking all orders, they need to be properly prepared and marshalled, to be ready for expedition. Knowing that each product has its own packaging requirements, they are packed and put in line in the waiting area, waiting for the arrival of the mean of transportation.

According to De Koster and Van der Poort (1998), Van den Berg and Zijm (1999), De Koster et al. (2007) and Tompkins et al. (2010), Drury (1988) concluded that about 55% of the total costs inside a warehouse is associated to the picking process. The same research allocated 10% and 15% of the warehousing costs to the Receiving and Storage processes, respectively, and 20% to the Shipping processes. This information is
useful to understand the impact that Picking has on the warehouse costs, meaning that a small improvement can lead to changes of great value.

A few years later, Tompkins et al. (2010) uncovered the time proportion associated to each picking activity. They concluded that 10% is assigned to setup the order list, 20% searching the products, and 15% to pick them, whereas 50% of the time is used to travel between shelves and across aisles. Bartholdi and Hackman (2017) reinforce this discrepancy saying that travel is pure waste, increasing labour costs and adding no value to the process. Charts in the Figs. 3 and 4 show these studies' conclusions.

Fig. 3-Typical Distribution of Warehouse Operating Fig. 4-Typical Distribution of an Order Picker's Expenses, Source: Adapted from Drury (1988)

Time, Source: Adapted from Tompkins et al. (2010)

Based on these conclusions, even if a small improvement is implemented, the impact will be felt due to the high representativity of the picking process in the total costs (55\%). Moreover, the investigation conducted by Tompkins et al. (2010) allowed to identify the key picking related task that should be improved so as to reduce the time spent in the global picking process.

This project moves on describing the picking process, detailing picking route policies and storage assignment strategies most used by companies.

2.3 Picking and Storage Processes

In order to control this sensitive activity, companies usually use picking routes policies and storage product strategies (De Koster et al., 2007; Roodbergen et al., 2008; Çelk and Süral, 2014).

2.3.1 Routing Policies

According to Hall (1993), Traversal, Mid-Point and Largest Gap Return Strategy are described as the three basic routes used inside a warehouse:

- Traversal Strategy - In this method, the picker enters at one side of the aisle, crossing it, and exits on the opposite side.
- Mid-Point Strategy - Here, the picker enters on an aisle and picks all the products from one side until the exact middle point. When the picker reaches that point, s / he returns, picking the other side of the aisle, exiting from the same side s / he entered.
- Largest Gap Return Strategy - This happens when picker enters and exits on the same entry point, but the return point is not the exact middle point.

When these basic routes are individually compared, Hall (1993) describes the traversal strategy as the simplest strategy, due to its ease with which the route is drawn. In addition, Goetschalckx and Ratliff (1988) argued that it is significantly better to use traversal policy in every aisle, rather than the return (or mid-point, in Hall's language) strategy. Manzini et al. (2007) studied the impact of several variables on the picking cycle time and concluded that the return (or mid-point, in Hall's language) is the best strategy when it comes to a quadratic warehouse, and traversal when a company operates in a rectangular one.

Companies might have some issues in trying to find the best route for their order pickings. However, De Koster and Van Der Poort (1998) and Roodbergen and De Koster (2001a) argued that this problem may be simply solved by using a heuristic, known as Sshape. It consists in moving across aisles in S-shape curves, while products are being picked (De Koster and Van Der Poort, 1998; Roodbergen \& De Koster, 2001a). It is basically a traversal strategy, where the picker does not need to cross an aisle if there is no picking to do (De Koster et al., 2007; Çelk and Süral, 2014).

This procedure can be used by some companies due to its simplicity, but the real savings arise when companies select an optimal algorithm as a picking method (De Koster and Van der Poort, 1998). For that, according to Goetschalckx and Ratliff (1988), Jarvis and McDowell (1991), Cormier and Gunn (1992), Roodbergen and De Koster (2001b)
and Bartholdi and Hackman (2017), Ratliff and Rosenthal (1983) have suggested a solution that minimizes distance and/or time travelled inside a warehouse.

In accordance with Ratliff and Rosenthal (1983), the procedure to construct the algorithm is as follows: guided by the order list, the first step is to select the closest shelf to the entry point, with this representing the beginning of the route. After picking that product, a second shelf must be chosen. This shelf should be the one closest to the shelf that was initially selected. The order picker should follow this procedure until the order list is completed.

2.3.2 Storage Assignment

After receiving the products from the suppliers (or from the plant itself), there is "a set of rules which can be used to assign products to storage locations" (De Koster et al., 2007: 488). This process is mentioned as "Storage Assignment" in the literature in the area.

Yet there are several different ways to associate a location to a reference, literature identifies three basic types (Hausman et al., 1976; Petersen and Aase, 2004; De Koster et al, 2007; Chan and Chan, 2011; Carvalho et al., 2018):

- Randomly Storage - References are stored in any available space where the product can fit at the storage moment.
- Fixed or Dedicated - An exact location is associated to the references, and they have their own location and cannot be stored in any other.
- Class-based Location - Being a mixture of random and fixed storage, the warehouse is divided into zones/areas and each product is associated with one single zone/area and cannot be stored in any other location. Inside each area, products are randomly stored, depending on the available space.

Even though it is considered as the most used due to its simplicity, Random Storage approach depends on a computer to control the operation, once a product's location changes every time it is stored (De Koster et al, 2007; Carvalho et al., 2018). Besides that, in order not to lose the track of the products, the computer system needs to be constantly updated (Carvalho et al., 2018). With this storage assignment, picker needs to travel a greater distance to do the same picking list (Stock and Lambert, 2001; Carvalho
et al., 2018) if products have different rotation levels. On the other hand, the space utilization is more efficient due to the possibility to use any available space in the warehouse (Stock and Lambert, 2001; Carvalho et al., 2018).

When products have a fixed location, the major disadvantage, contrary to the random, is the low utilization of space, once companies must keep the space available for the products' maximum stock, even when the product is out of stock (De Koster et al, 2007; Carvalho et al., 2018). However, companies do not need to worry about increasing the warehouse dimensions because they were designed to store every reference, at its maximum stock level (Carvalho et al., 2018). Another advantage is the fact that order pickers, after repeating the process repeatedly, they begin to know where the references are stored, making the search procedures easier (De Koster et al, 2007).

Finally, class-based location appeared to try to combine the advantages of the two previous methods (Chan and Chan, 2011; Carvalho et al., 2018). Rao and Adil (2013) argued that this method may increase the warehouse's performance up to 40%, when compared to the random storage. Nevertheless, the distances travelled can also be reduced in this method, since the products with greater turnover are stored closer to the entry point, making the most frequent trips shorter (Chan and Chan, 2011).

Based on Pareto's research, about wealth issues around the world (Carvalho, 1996; Tompkins and Smith, 1998), ABC analysis purposes a storage solution, by dividing the products into three distinct classes - A, B, and C . The first one, considered as the most sensitive, owns 20% of the total products, representing 80% of the total sales, operational cost, volume, picking frequency or other characteristic, depending on the criterion selected as the most relevant for such classification. Since these products are very valuable when compared to the others, their location inside the warehouse must be at the nearest aisle to the entry point. Thus, the picker collects value products as close as possible from the entry point, decreasing the travelled distance, caused by the high picking frequency. Group B is responsible for 30% of the total products, representing 15% of the chosen criterion. Due to their medium relevance, products within this group should be stored in the middle of the warehouse, right after the group A. Behind them, the area is reserved for group C (not that relevant products), which holds the remaining 50% of the total products, assuming 5\% of the criterion (Jarvis and McDowell, 1991; Carvalho, 1996; Vonderembse and White, 1996; Tompkins and Smith, 1998; Stock and

Lambert, 2001; Rushton et al., 2010; Bartholdi and Hackman, 2017; Carvalho et al., 2018).

The criteria to segregate the products into these three categories varies according to the main goal of the analysis. Whereas Onwubolu and Dube (2006) have chosen operational costs, Balaji and Kumar (2014) refer weight and product shape, Vonderembse and White (1996) use annual dollar usage value, Carvalho (1996) and Dutta et al. (2017) considered annual revenue, whereas Carvalho et al. (2018) and Bartholdi and Hackman (2017) did the analysis using the sales volume as the main criterion to segregate the products.

2.4 Conclusion

This previous chapter allowed (1) to define and develop the theoretical concepts in a general way, clarifying the basis warehousing management; and (2) the selection of the best practices that the literature recognizes as the most indicated when it comes to improving routes during the picking process.

Managers have been striving for finding the best route inside the warehouse during the picking process a couple of decades. For this reason, it is possible to conclude that all the studies done so far have created the needed theoretical basis to guide this project in the right direction.

Literature review allowed the perception that the picking processes may have a huge impact on warehousing costs. However, there is also several ways to improve them, making them more efficient.

By simulating several scenarios, combining picking routes along with storage allocations, this project attempts to study the impact of these alternative scenarios in the total travelling distance in the picking process.

3 The Company: LAUAK Portugal

Groupe LAUAK is a French group that owns a set of industrial companies which supplies the aeronautical market. Having begun its activity in 1975 by producing small sheet metal parts in France, it has been expanding their business through assembly of heat exchanges, fuel tanks and aircraft structures over 25 years. Nowadays, the group owns 7 plants over France, Portugal, Mexico and Canada, employing about 1500 people.

In 2003, the group opened a plant in Portugal responsible for transforming metal sheet in a wide range of aircraft components. Apart from these individual parts, LAUAK Portugal is also specialized in assembling structures for a specific range of aircrafts. Among them are Fuel Tanks (for Dassault F7X, T3 and T4 Falcon 900), Cockpit Layout (for Airbus A320 and A350), and Cargo Door Frame (for Airbus A320), either for domestic or foreign customers. On this list are Airbus, Embraer, Ogma, Dassault, Daher, and Liebherr. Counting with more than 650 employees working in this plant, LAUAK Portugal is accredited by ISO 9001, 9100 and 14001, and by Nadcap in the fields of surface treatment, non-destructive quality controls, heat treatment, and welding processes.

The next two subchapters describe the final product warehouse's layout under investigation and the respective internal processes.

3.1 Warehouses

LAUAK Portugal owns four warehouses: two for raw material (thin and thick), one for work-in-process and another for the final products. The final product warehouse was selected for analysis in this project because the company considered that the picking process was taking longer than desired, delaying all sales and transportation procedures downstream. It only stores small aircraft components, ready to be sent to the final customers.

This warehouse, with almost 100 square meters ($12,78 \times 7,62$ meters $)$, has three horizontal aisles (hereafter referred to as A1 [Bottom Aisle], A2 [Middle Aisle], and A3 [Top Aisle]), and it is disposed in 44 shelves. It follows a U-flow configuration, being divided into three product families:

- FAI: prototypes waiting for quality approval to be shipped to the customer;
- ESKU: products belonging to a partner factory of the group;
- PFBE: finished products, owned by LAUAK Portugal, being considered the most relevant family inside this warehouse.

The warehouse layout, designed in centimetres, is represented in figure 5.

Fig. 5-Final Product Warehouse's Layout

3.2 Warehouse Processes Description

Finishing the manufacturing processes, all the products pass through a final quality control phase. After being declared as suitable for selling, they are moved to the following section - Sales. There, if a sales order had been already issued, the products are sold and continue to the packaging section, going straight to the shipping waiting area, right after that. Otherwise, after the selling and packaging activities, they need to be stored until a selling order is issued.

When the products need to wait for a new selling order, it is assigned a family section (FAI, ESKU, or PFBE) so they can be stored in the right place. Regardless on the product family, products are randomly stored on the shelves that are dedicated to its particular family. There are different boxes on the shelves to accommodate small and medium size products. Large items are freely placed on the shelves itself.

Picker generates everyday an order list containing the products that have an issued order request. This list is structured according to the delivery date, which means that the first product that appears on the list is the product that needs to be delivered first. Random is the storage assignment adopted by the company and there is no picking route prestablished.

4 Methodology

It is intended with this chapter the presentation and description of the project's methodology. Beginning with the methodology approach selected, the steps taken to reach the main goal are then clarified and justified.

4.1 Methodology Approach

According to Yin (2018), three conditions must be verified to characterize a research method as a case study. According to this author, researchers should use a case study's methodology when:

1. A "how" or "why" question is answered;
2. The event under investigation cannot be manipulated by the researcher;
3. The research must attempt to solve a contemporary and real-life problem;

Based on these three conditions, the methodology adopted in this project complies with the guidance of a case study, and it is structured following the recommendations purposed by Voss et al. (2002) and Yin (2018).

Yin (2018) argues that a case study can be used for three purposes: exploratory, descriptive, or explanatory studies. Once this project describes a real-world context phenomenon and can be used in other investigations to study similar problems, the purpose of this project is exploratory and descriptive. Besides that, this study can be classified as a single case due to the fact that the environment under investigation only represents one business situation, not taking into account other companies' influences.

4.2 Case Study's Stages

This project was developed following several consecutive research steps, as mentioned in Figure 6.

Fig. 6 - Research Steps

4.2.1 Step I - Characterizing the Current Operation in the Warehouse.

Characterizing the current operation in the LAUAK's final products warehouse requires the use of several sources of information. Particularly, four sources were used to ensure the detailed and accurate data collection of both qualitative and quantitative information (Yin, 2018): documentation, archival records, informal interviews, and direct and participant observation.

Qualitative Data

To collect qualitative data, one crucial source in a case study environment are unstructured interviews (Yin, 2018). Different company's employees, in different hierarchical roles, were selected to ensure the information veracity, enabling the full understanding of the internal processes (Voss et al., 2002). The Head of Logistics, the Warehouse Picker, and the Warehouse Manager were the main stakeholder in this data collecting process. Direct observation and official documents were other sources used in the qualitative data collection.

To start this data collection process, it was created a script (Appendix A), acting as a supportive tool to the unstructured interviews.

The project's specifications were initially explained by the Head of Logistics, as well as all the requirements and desired milestones. Afterwards, a visit to the factory was also carried out, where it was possible to superficially understand the processes of the whole plant and visualize the respective connection and flows between them.

Following this first contact with the company, the warehouse process description was presented by the picker. Aiming at achieving a detailed mapping of the process, informal questions related to the daily tasks have been asked, such as the way other sections interact with the final product warehouse and the tasks' sequence performed on a daily basis. Other subject addressed in the interview, and very important to the analysis, was the layout adopted by the company for both the warehouse itself and the shelfs' sequential order.

The warehouse manager was also interviewed, this time attempting to clarify more specific points. For a better understanding of the company strategy, questions concerning the warehouse improvements, implemented over the past years, were also asked. The
warehouse manager explained the storage assignment strategy used by the company, mentioning restrictions that might exist.

At a higher decision level, the Head of Logistics was interviewed once again, this time to understand tactical choices the company had made. The objective was to clarify the reason why the company was using the random storage strategy and a non-defined picking route.

Content reliability and validation can be increased when multiple sources are used to investigate the same environment, being this designated as Triangulation (Eisenhardt, 1989; Voss et al., 2002; Yin, 2018). Thus, after concluding this methodological stage, it was decided to see in the field, by direct observation, what had been addressed in the interviews (Yin, 2018). At the same time the picker was being interviewed, movements of products inside the warehouse were followed daily for one and a half weeks. The storage and picking processes were meticulously monitoring to guarantee that all the required information to characterize the internal processes had been collected.

Thought participant-observation (Yin, 2018), storage and picking activities were performed, in their totality, during three days for a better understanding and to ensure the information validation.

Quantitative Data

To gather the quantitative data, it was used other three different sources (Yin, 2018): archival records, direct and participant observation.

Once it is attempted to decrease the travelled distance inside the warehouse during the picking process, the distances between and across aisles and shelves needed to be measured. As no information existed concerning these distances, the warehouse was measured using participant-observation. This action also allowed the creation of the warehouse's layout representation (Fig. 5).

After knowing these measures, picking routes calculations could be initiated. Picker's performance was tracked through direct-observation for one month, being considered the reference scenario in this analysis (hereafter referred to as Scenario 0). It is considered in this scenario the current daily operations in the warehouse, either for picking route or storage assignment.

This period, September to be exact, was considered by the company a standard month, representing the overall operations over the year. During this period, every picked
item, as well the respective movements to reach them, were closely followed and registered.

Another data needed in this analysis are the products and shelves' volumes and the daily stock. As the company did not have any information concerning the products and shelves' volumes, the data was collected in the field by participant-observation, in the field. To calculate the product average stock, a monthly basis analysis was carried out where the everyday stock was extracted directly from the company's ERP. Yin (2018) designates this way of data collection as "Archival Records".

4.2.2 Step II - Defining a Set of Alternative Theoretical Scenarios

After collecting all the needed information to proceed with the analysis, several alternative theoretical scenarios were selected and defined, considering different picking routes policies and storage assignment strategies.

Picking Routes

According to Hall (1993), Traversal, Mid-Point, and Largest Gap Return strategies are the three basic picking routes (PR) performed inside a warehouse. When these three basic routes are combined, 21 different picking routes are created. For a better understanding, a graphical representation can be found on the appendix's chapter (Appendix B to Appendix V).

In this analysis, apart from these 21 PR, Ratliff and Rosenthal (1983) created a heuristic, which is often mentioned as one that offers an optimal picking route, minimizing the travelled distances inside the warehouse (Goetschalckx and Ratliff, 1988; Jarvis and McDowell, 1991; Cormier and Gunn, 1992; Roodbergen and De Koster, 2001b; Bartholdi and Hackman, 2017). The algorithm published by these authors was also used, creating the $22^{\text {nd }}$ picking route in this research. S-Shape Curves strategy is not specified in this analysis because it is equivalent to the Transversal strategy in this specific warehouse.

Combining all the basic picking routes route and the heuristic, 22 PR were considered in this case study, as summarized in Table 2.

Table 2 -Selected Picking Routes

Picking routes	Number of routes	Strategy
PR-1 to PR-18	18	Largest Gap Return Strategy in one aisle and Transversal in the other two, changing the aisle in which the route is started (6 scenarios starting in aisle $\mathrm{A}_{1}, 6$ scenarios starting in aisle A_{2} and 6 scenarios starting in aisle A3).
PR-19	1	Largest Gap Return Strategy in every aisle.
 PR-21	2	Middle-Point strategy in one aisle (A2 or A_{3}) and transversal in the other two.
PR-22	1	The algorithm proposed by Ratliff and Rosenthal (1983).

The reason behind the selection of these picking routes was the attempt to analyse the difference between a basic picking route performance and an optimal heuristic, as also studied by Roodbergen and De Koster (2001b). In this case, the 3 basic picking routes are suggested by Hall (1993) and the optimal heuristics by Ratliff and Rosenthal (1983).

Storage Assignment Strategies

Hausman et al. (1976), De Koster et al., (2007), Chan and Chan (2011), Glock and Grosse (2012), and Carvalho et al., (2018) identified Random, Class-Based, and Fixed/Dedicated as the three most used storage assignment strategies in companies nowadays (hereafter to as SA $-1, \mathrm{SA}-2$, and SA -3 , respectively).

Class-Based (SA-2) and Fixed/Dedicated (SA-3) Storage Assignments will be considered using ABC analysis as a basis to classify each product, considering as criterion the picking frequency during Scenario 0 (real picking/storage movements performed by the picker). It was decided to select ABC analysis because it is one of the most used methods when it comes to storage allocation, as concluded from Chapter 2.3.2 (Le-Duc and De Koster, 2005; Chan and Chan, 2011).

The 22 picking routes (PR) and the 3 storage allocations (SA) considered should be compared with the Scenario 0 , which is characterized by a specific warehouse layout, storage assignment and picking route, according to current daily operation in the warehouse.

4.2.3 Step III - Assessing and Comparing Alternative Theoretical Scenarios.

In this methodological step, all the studied scenarios are going to be assessed and compared in terms of the total travelled distance inside the warehouse during the picking activity and compared with Scenario 0.

Based on Roodbergen et al. (2008) and Carvalho et al. (2018), to calculate these distances, the following Equation (1) should be used:

$$
\begin{equation*}
\sum_{i=1}^{n} \sum_{j=1}^{n} D_{i j} * T_{i j} \tag{1}
\end{equation*}
$$

in which n represents the number of visited shelves plus one (to include the entrance), i and j represents a location point inside the warehouse (it can be the entrance or a shelf), $D_{i j}$ represents the distance between a location point i and j (with $i \neq j$), and $T_{i j}$ represents the frequency in which the distance between location point i and j is travelled.

4.2.4 Step IV - Presenting Recommendations for the Company.

According to Voss et al. (2002), a case study is only completed when the results obtained are shared with the companies' superior boards, looking for company's validation. In this case, the feedback was gotten after their presentation in an informal meeting to the Head of Logistics.

5 Case Study

Chapter five will be used to develop the case study. It will be initially detailed the data used in the investigation, specifically (1) distances between and across shelves and aisles, enabling the picking routes (PR) calculations, and (2) shelves and products' volume, in order to implement the ABC analysis. The picking routes (PR) are then presented, as well as the way as all distances were calculated.

The final results are also disclosed in this chapter, discussing separately the performance of each PR in random storage assignment and class-based, giving a global comparison after that.

5.1 Defining a Set of Alternative Theoretical Scenarios

5.1.1 Data Details

The way the data was collected was already addressed in the methodological chapter. It is also important, before moving forward, to highlight the details behind that data.

In order to assess the alternative scenarios, an EXCEL Tool was developed to automatically calculate the travelled distances. Working as a simulator, a symmetric table was designed, containing the distances between each shelf to all the other shelves in the warehouse, originating a matrix with 2025 cells. The Table 3 represents an example of that matrix, being possible to find the full matrix in the Appendix W.

Table 3 -Distances Matrix (Shelves: PFBE - A, PFBE - H, PFBE - I1, PFBE - I2, and PFBE - J)

Rack	Entry	PFBE-A	PFBE-H	PFBE-I1	PFBE-I2	PFBE-J
Entry	-	624	715	1367	1267	1167
PFBE-A	624	-	193	1249	1149	1049
PFBE-H	715	193	-	1340	1240	1140
PFBE-I1	1367	1252	1340	-	196	296
PFBE-I2	1267	1152	1240	196	-	196
PFBE-J	1167	1052	1140	296	196	-

By introducing two points/shelves (representing the beginning and the ending of a certain movement), the tool automatically generates the travelled distances between these two points.

Also crucial for this investigation is the average stock for each SKU. For one month (the same as in Scenario 0), the available stock was monitored every day, allowing the average stock calculation. These values were used to determine the respective volume of each SKU. Meaning that the products' volumes were measured using that average quantity.

Volumes were other data important in this investigation, either for shelves or for products. In order to calculate the volumes, every shelf was visited to register the volume of each SKU stored in there. A table was created where every SKU, the respective location, width, length, height, average stock, and its volume was listed. Table 4 describes an example.

Table 4 - Exemplification of Products Volume

SKU	Location	Width $(\mathbf{C m})$	Length $(\mathbf{C m})$	Height $(\mathbf{C m})$	Average Stock (un)	Volume $\left(\mathbf{C m}^{\mathbf{3}}\right)$
Product 1028	PFBE-40X	2,7	4,3	2,2	4	25,54
Product 2361	ESKU-A	6,3	7,9	2,8	5	139,36

After calculating the total needed space to store all the SKUs, the shelves' volume was also measured, in order to determine the possible available storage space. Six types of storage option were considered, as it is shown on the Table 5. The detailed description is presented in Appendix X.

Table 5-Types of Storage

Storage Types	Height $(\mathbf{C m})$	Width $\mathbf{(C m})$	Length $\mathbf{(C m})$	Volume (Cm $\mathbf{C B}^{\mathbf{C}}$
Big Shelf	28	120	43	144480
Small Shelf	28	100	43	120400
Big Shelf (Top Level)	17	120	43	87720
Small shelf (Top Level)	17	100	43	73100
Medium Box	18	20	37	13320
Small Box	14	12,5	28	4900

5.1.2 Selected Theoretical Scenarios

Currently, the company uses the Random storage allocation strategy in its final products warehouse. For this reason, the 22 PR were initially simulated considering this strategy.

Due to the fact that the company did not see Fixed/Dedicated (SA - 3) as a doable policy, Random (SA - 1) and Class-Based (SA - 2) were the only two Storage Assignment Strategy considered in this analysis. Thus, after simulating the 22 picking routes on $\mathrm{SA}-1$, the picking routes were simulated once again on $\mathrm{SA}-2$. This time, assuming a different product reorganization, aiming even better findings.

Table 6 presents a summary on the scenarios under analysis.

Table 6 - Theoretical scenarios under study

		Storage Assignment Strategies	
		SA-1	SA-2
	PR-1 to PR-18	PR-1/SA-1 to PR-18/SA-1	PR-1/SA-2 to PR-18/SA-2
	PR-19	PR-19/SA-1	PR-19/SA-2
	PR-20 \& PR-21	PR-20/SA-1 \& PR-21/SA-1	PR-20/SA-2 \& PR-21/SA-2
	PR-22	PR-22/SA-1	PR-22/SA-2
Total number of theoretical scenarios		22	22
		44	

5.2 Assessing and Comparing Alternative Theoretical Scenarios

5.2.1 Assessing Alternative Theoretical Scenarios

Subchapter 5.2.1 addresses the way picking routes were applied in this analysis, describing how they interacted with the simulator (see chapter 5.1.1). Here, it is also detailed, step by step, the development of the ABC analysis, used in the SA -2 .

5.2.1.1 Picking Routes Application

Each basic PR (from PR - 1 to PR - 21) has its own shelves order. It means that, a shelf flow is listed, depending on the order the aisles are crossed. Each PR will be designed based on the reorganization of the picking list, collected during the Scenario 0 assuming that new flow.

Table 7 represents a picking list from the Scenario 0.

Table 7-A Picking list from the Scenario 0

Beginning	Ending	Travelled Distance (cm)	
Entry	PFBE-Z5	345	
PFBE-Z5	PFBE-V1	856	
PFBE-V1	PFBE-Z3	1056	
PFBE-Z3	PFBE-T	1256	
PFBE-T	PFBE-H	800	
PFBE-H	PFBE-Z4	1044	
PFBE-Z4	PFBE-P2	1596	
PFBE-P2	PFBE-50X	1078	
PFBE-50X	PFBE-S	1320	
PFBE-S	PFBE-Z1	1576	
PFBE-Z1	PFBE-O1	1266	
PFBE-O1	PFBE-A	512	
PFBE-A	PFBE-Z3	1053	
PFBE-Z3	PFBE-Z3	-	
PFBE-Z3	PFBE-P2	1610	

After selecting one PR (from $\mathrm{PR}-1$ to $\mathrm{PR}-21$), the respective shelves order is generated, reorganizing the shelves so the new route can be designed.

To exemplify, it will be used PR - 1, which has the following shelves order:

PFBE-Z5 \rightarrow PFBE-Z4 \rightarrow PFBE-Z3 \rightarrow PFBE-Z2 \rightarrow PFBE-Z1 \rightarrow PFBE-Y \rightarrow PFBE$\mathrm{X} \rightarrow$ PFBE-O2 \rightarrow PFBE-V2 \rightarrow PFBE-O1 \rightarrow PFBE-V1 \rightarrow PFBE-N \rightarrow PFBE-U \rightarrow PFBE-M \rightarrow PFBE-T \rightarrow PFBE-L \rightarrow PFBE-S \rightarrow PFBE-K \rightarrow PFBE-R \rightarrow PFBE-J \rightarrow PFBE-Q \rightarrow PFBE-I2 \rightarrow PFBE-P2 \rightarrow PFBE-I1 \rightarrow PFBE-P1 \rightarrow FAI-10X \rightarrow FAI-B \rightarrow FAI-20X \rightarrow FAI-C \rightarrow FAI-D \rightarrow FAI-30X \rightarrow FAI-E \rightarrow PFBE-40X \rightarrow ESKU-A \rightarrow PFBE-50X \rightarrow PFBE-60X \rightarrow ESKU-B \rightarrow PFBE-70X \rightarrow ESKU-C \rightarrow PFBE-80X \rightarrow ESKU-D \rightarrow PFBE-90X \rightarrow PFBE-H \rightarrow PFBE-A.

By crossing this shelves order $(\mathrm{PR}-1)$ with a picking list (Table 7), the visited shelves are organized according to this new order and the new picking route is created. Table 8 shows this new reorganization:

Table 8 -Application of the $P R-1$

New Beginning	New Ending	Order in PR - 1	New Travelled Distance (cm)
Entry	PFBE-Z5	1	345
PFBE-Z5	PFBE-Z4	2	458
PFBE-Z4	PFBE-Z3	3	458
PFBE-Z3	PFBE-Z3	3	-
PFBE-Z3	PFBE-Z3	3	-
PFBE-Z3	PFBE-Z1	5	568
PFBE-Z1	PFBE-O1	10	1266
PFBE-O1	PFBE-V1	11	96
PFBE-V1	PFBE-T	15	296
PFBE-T	PFBE-S	17	206
PFBE-S	PFBE-P2	23	426
PFBE-P2	PFBE-P2	23	-
PFBE-P2	PFBE-50X	35	1078
PFBE-50X	PFBE-H	43	512
PFBE-H	PFBE-A	44	193
PFBE-A	Entry	-	624
Total			

In this example, organizing the visited shelves in a different way, the distance travelled decrease immediately 8842 cm , from 15368 cm to 6526 cm .

The procedure is different when it comes to the heuristic ($\mathrm{PR}-22$). The route is only designed after manually introducing the closest shelf to the entry point that needs to be visited. After selecting that starting point, the system generates a list which ordinates all the other warehouse shelves by the proximity, assuming always the previous visited shelf.

5.2.1.2 ABC Analysis

In this investigation, in order to be able to segregate the products, aiming their reallocation, ABC analysis was considered due to its great use by companies worldwide (Le-Duc and De Koster, 2005; Chan and Chan, 2011).

First, the products were classified according to the families already in use within the warehouse: PFBE, ESKU, or FAI. There are specific areas for each family and, according to company's indications, it is not possible to mix them. Within each family, ABC analysis was used to classify products in A, B, or C , depending on the relevance to the company, using as criterion the picking frequency during the Scenario 0.

Products classified with A, B, or C were the ones presented on the picking list collected during the Scenario 0. Class D included all the other products that did not have any movement during that collection period.

After dividing them into classes, items were further divided into Big, Medium, or Small. The criterion for this assignment was the location where the products were stored during the Scenario 0. In other words, if the product was stored inside a box, the subfamily was "Medium" or "Small", depending on the box's size. If the product was stored on top of a shelf, outside of any box, it was considered as "Big". This classification was also required because the products' size also affected the selection of the shelf where each SKU should be stored.

Considering this segregation, each SKU was classified into families (PFBE, ESKU, or FAI), Classes (A, B, C, or D), and sub-families (Big, Medium, or Small), and ABC Analysis ${ }^{1}$ was developed as shown in Tables 9 and 10.

[^0]Table 9-ABC Classification

Family	Class	\% Products	\% Picking Frequency
PFBE	A	$18,26 \%$	$38,97 \%$
	B	$26,33 \%$	$29,74 \%$
	C	$55,41 \%$	$31,29 \%$
ESKU	A	$28,00 \%$	$31,43 \%$
	B	$30,00 \%$	$28,57 \%$
	C	$42,00 \%$	$40,00 \%$
FAI	A	$24,82 \%$	$60,09 \%$
	B	$32,12 \%$	$25,23 \%$
	C	$43,06 \%$	$14,68 \%$

Table 10 - Family, Class, and Sub-Family Segregation

Family	Class	Sub-Families	\% Products
PFBE	A	Big	15,71\%
		Medium	2,34\%
		Small	0,21\%
	B	Big	19,53\%
		Medium	5,95\%
		Small	0,85\%
	C	Big	40,13\%
		Medium	14,44\%
		Small	0,84\%
ESKU	A	Medium	24,82\%
	B	Medium	32,12\%
	C	Medium	43,06\%
FAI	A	Big	24\%
		Medium	4\%
	B	Medium	30\%
	C	Medium	42\%

This warehouse is divided into three areas, according to the products' families. Due to their relevance, PFBE products (higher turnover) were first allocated to the shelves closer to the warehouse entrance, followed by ESKU products, and FAI products, respectively. Within each family, due to the higher turnover, class A was first reallocated, followed by B, C, and D, respectively, being the closest shelf to the warehouse's door the first shelf to be fulfilled.

Assuming that, PFBE was the only family where the classes were not mixed. Products were allocated to each shelf until $70 \%^{2}$ of the available space was totally fulfilled. In this case, the next shelf started to be fulfilled with more products from the same class (A, B, C, or D). If a shelf has not been fully filled, but there were no more products from the same class, that space remained empty, being reserved for other products that may be transferred from another family over time.

Inside the space assigned to each class, the products were stored randomly, only respecting the sub-family (Big, Medium, or Small). Meaning that, inside the space reserved for each sub-family, if a product was considered medium or small, it was stored in the respective box. Otherwise, the product was placed on the shelf.

In the ESKU and FAI's cases, due to the lower products quantity, classes (A, B, C, or D) and sub-families (Big, Medium, or Small) were mixed on the same shelf. However, class A was reallocated on the level that has the easier access to the picker.

When a class is completed, the next one is reallocated until every product, subfamily, class, and family is also completed.

Assuming this, the reallocation ${ }^{3}$ was designed as shown in Table 11:

Table 11 - Products' Reallocation

Family	Class	Assigned Location
PFBE	Class A	PFBE-Z5
	Class B	PFBE-Z4; PFBE-V2;
	Class C	PFBE-O2; PFBE-Z3; PFBE-V1;
	Class D	PFBE-A; PFBE-O1; PFBE-Z2; PFBE-H; PFBE-90x; PFBE-N; PFBE-U; PFBE-Z1; PFBE-80x; PFBE-M; PFBE-T; PFBE-Y; PFBE-70x; PFBE-L; PFBE-S; PFBE-X;
FAI	Class A / B / C	FAI-E;
	Class D	FAI-30X; FAI-D;
ESKU	Class A/B/C	ESKU-D;
	Class D	ESKU-D; ESKU-C; ESKU-B; ESKU-A;

[^1]Figure 7 shows the warehouse layout, organized according to the new structure. "Red" shelves represent the products classified as A; class B is represented in "Yellow", and C in "Green". "Blue" shelves store every class D product, from any family.

Finally, "Purple" indicates the shelves that have more than one class inside it (only applied to ESKU and FAI families).

Under a red cross, are represented in "Grey" the 15 shelves that were not used in the new product's allocation.

Fig. 7 - New Warehouse's Layout

5.2.2 Travelled Distances per Scenario - Random Storage Strategy (SA - 1)

All the PR were simulated on the already implemented storage strategy (SA -1 : Random), generating the first 22 scenarios (PR $-1 / \mathrm{SA}-1$ to $\mathrm{PR}-22 / \mathrm{SA}-1$). The travelled distances in each route, as well as the reduction, compared with the Scenario 0 , are listed in the Table 12.

Table 12-Travelled Distances per Scenario (SA-1)

Scenarios	Travelled Distances (cm)	Reductions	
		Cm	\%
Original (Scenario 0)	604443	-	-
PR - 1/SA - 1	340584	-263859	-43,65
PR - $2 / \mathrm{SA}-1$	324916	-279527	-46,25
PR-3/SA - 1	325936	- 278507	-46,08
PR - 4/SA - 1	338622	- 265821	-43,98
PR - 5/SA - 1	348352	-256091	-42,37
PR - 6/SA - 1	341710	- 262733	-43,47
PR - 7/SA - 1	338494	- 265949	-44,00
PR - 8/SA-1	345782	- 258661	-42,79
PR - 9/SA - 1	336020	- 268423	-44,41
PR - 10/SA - 1	348905	-255 538	-42,28
PR - 11/SA - 1	366277	-238 166	-39,40
PR - 12/SA - 1	349659	- 254784	-42,15
PR - 13/SA - 1	341630	- 262813	-43,48
PR - 14/SA - 1	340550	-263 893	-43,66
PR - 15/SA - 1	324884	- 279559	-46,25
PR - 16/SA - 1	366492	- 237951	-39,37
PR - 17/SA - 1	372054	-232389	-38,45
PR - 18/SA - 1	348692	- 255751	-42,31
PR - 19/SA - 1	347546	-256897	-42,50
PR - 20/SA - 1	355193	- 249250	-41,24
PR - 21/SA - 1	367260	-237183	-39,24
PR - 22/SA - 1	326894	-277549	-45,92

After calculating all the 22 scenarios, assuming SA -1 , the 22 PR were simulated once again on a new storage strategy: SA - 2 .

The simulation was only carried out after the products' reallocation, using ABC analysis, as described in the chapter 5.2.1.2.

5.2.3 Travelled Distances per Scenario - Class-Based Storage Strategy (SA - 2)

In order to calculate whether it is possible to reach a better result or not, picking routes, from $\mathrm{PR}-1$ to $\mathrm{PR}-22$, were simulated once again, this time on the new reallocation structure. The method to calculate the distances was the same as the previous one. By using the EXCEL Tool (see chapter 5.1.1), each shelves' order was crossed with the new product location, originating new picking routes.

Table 13 represents the savings reached per PR, when a class-based storage strategy was implemented.

Table 13-Travelled Distances per Scenario (SA - 2)

Scenarios	Travelled Distances (cm)	Reductions	
		Cm	\%
Original (Scenario 0)	604443	-	-
PR - 1/SA - 2	218950	-385493	-63,78
PR - 2/SA - 2	218592	- 385851	-63,84
PR - 3/SA - 2	218204	-386239	-63,90
PR - 4/SA - 2	218189	- 386254	-63,90
PR - 5/SA - 2	218947	-385496	-63,78
PR - 6/SA - 2	218189	- 386254	-63,90
PR - 7/SA - 2	218192	-386251	-63,90
PR - 8/SA - 2	218204	- 386239	-63,90
PR - 9/SA - 2	218192	- 386251	-63,90
PR - 10/SA - 2	242603	- 361840	- 59,86
PR - 11/SA - 2	242603	- 361840	- 59,86
PR - 12/SA - 2	242603	- 361840	- 59,86
PR-13/SA - 2	218189	- 386254	-63,90
PR - 14/SA - 2	218189	- 386254	-63,90
PR - 15/SA - 2	218189	-386254	-63,90
PR - 16/SA - 2	242603	- 361840	- 59,86
PR - 17/SA - 2	242603	- 361840	- 59,86
PR - 18/SA - 2	242603	- 361840	- 59,86
PR - 19/SA - 2	218238	- 386205	-63,89
PR - 20/SA - 2	218204	-386239	-63,90
PR-21/SA - 2	218223	- 386220	-63,90
PR - 22/SA - 2	216151	-388292	-64,24

5.2.4 Global Comparison

The simple act of implementing a picking route during the picking process originated an immediate decreasing of the travelled distances within the warehouse. In this analysis, all the 22 PR simulated in the Random Storage Strategy (SA - 1), came to prove it.

Even though all of them have decreased the travelled distance, PR - 17 registered the lowest reduction, with $38,45 \%$, compared to Scenario 0 . On the other hand, $\mathrm{PR}-2$ and PR - 15 represented the highest reduction with $46,25 \%$, compared to the same Scenario 0.

Greater results were achieved when a more organized storage strategy was implemented. In fact, each scenario in SA -2 reached reductions of almost 64%, when compared to the Scenario 0.

Table 14 summarizes the performance of all PR, in both storage assignment strategies, compared to Scenario 0.

Table 14 - Picking Routes' Total Travelled Distance per Storage Assignment Strategy

		Storage Assignment Strategies			
		SA-1: Random Storage		SA-2: Class-based Storage	
		Total travelled distance $(\mathbf{c m})$	Reduction compared to Scenario 0 (\%)	Total travelled distance (cm)	Reduction compared to Scenario 0 (\%)
	PR-1	340584	43,65	218950	63,78
	PR-2	324916	46,25	218592	63,84
	PR-3	325936	46,08	218204	63,90
	PR-4	338622	43,98	218189	63,90
	PR-5	348352	42,37	218947	63,78
	PR-6	341710	43,47	218189	63,90
	PR-7	338494	44,00	218192	63,90
	PR-8	345782	42,79	218204	63,90
	PR-9	336020	44,41	218192	63,90
	PR-10	348905	42,28	242603	59,86
	PR-11	366277	39,40	242603	59,86
	PR-12	349659	42,15	242603	59,86
	PR-13	341630	43,48	218189	63,90
	PR-14	340550	43,66	218189	63,90
	PR-15	324884	46,25	218189	63,90
	PR-16	366492	39,37	242603	59,86
	PR-17	372054	38,45	242603	59,86
	PR-18	348692	42,31	242603	59,86
	PR-19	347546	42,50	218238	63,89
	PR-20	355193	41,24	218204	63,90
	PR-21	367260	39,24	218223	63,90
	PR-22	326894	44,92	216151	64,24
Scenario 0			604443 (cm)		

Besides that, it is also possible to verify that there were no significant differences between the PR's, when the storage assignment is Class-Based. Results showed that some PR had the exact same behaviour (e.g. PR $-3, P R-4, P R-14$, and $P R-15$), in a situation where the difference between the lowest and the greatest reduction was only 4,38 percentual points.

When the comparison is made, not with Scenario 0, but between SA - 1 and SA -2 , it is also possible to verify that there were even more significant reductions.

Table 15 shows that difference between scenarios, before (SA -1) and after (SA $-2)$ reallocation.

Table 15-Travelled Distances Calculations Before and After Reallocation

Scenarios	Before Reallocation: SA - 1 (Cm)	$\begin{gathered} \text { After } \\ \text { Reallocation: } \\ \text { SA - } 2(\mathrm{Cm}) \end{gathered}$	$\begin{gathered} \text { Reductions } \\ (S A-1 \text { vs } S A-2) \end{gathered}$	
			Cm	\%
PR-1	340584	218950	-121 634	-35,71\%
PR-2	324916	218592	-106 324	-32,72\%
PR-3	325936	218204	-107 732	-33,05\%
PR-4	338622	218189	-120 433	-35,57\%
PR-5	348352	218947	-129 405	-37,15\%
PR-6	341710	218189	-123 521	-36,15\%
PR-7	338494	218192	-120 302	-35,54\%
PR-8	345782	218204	-127 578	-36,90\%
PR-9	336020	218192	-117828	-35,07\%
PR - 10	348905	242603	-106 302	-30,47\%
PR-11	366277	242603	-123 674	-33,77\%
PR-12	349659	242603	-107 056	-30,62\%
PR-13	341630	218189	-123 441	-36,13\%
PR-14	340550	218189	-122 361	-35,93\%
PR - 15	324884	218189	-106 695	-32,84\%
PR-16	366492	242603	-123 889	-33,80\%
PR-17	372054	242603	-129 451	-34,79\%
PR-18	348692	242603	-106 089	-30,42\%
PR-19	347546	218238	-129 308	-37,21\%
PR-20	355193	218204	-136989	-38,57\%
PR-21	367260	218223	-149 037	-40,58\%
PR-22	326894	216151	-110743	-33,88\%

Other objective of this study was to compare the performance of a basic picking route combination ($\mathrm{PR}-1$ to $\mathrm{PR}-21$) with a heuristic $(\mathrm{PR}-22)$, which is seen as an optimal solution to reduce the travelled distance at its optimal level (Goetschalckx and Ratliff, 1988; Jarvis and McDowell, 1991; Cormier and Gunn, 1992; Roodbergen and De Koster, 2001b; Bartholdi and Hackman, 2017). This analysis concluded that the difference between a basic picking route and the optimal heuristic is not significant, in this specific warehouse. The optimal heuristic showed savings up to $64,24 \%, 0,34$ percentual points above the second-best picking route performance: 63,90\%.

It can be added that in the SA -1 analysis, the PR that had the best performance is not even the heuristic $(\mathrm{PR}-22)$, but a basic picking route combination $(\mathrm{PR}-15)$. The same does not happened on SA - 2. In this case, the best PR was the heuristic, exactly as
the literature predicted (Goetschalckx and Ratliff, 1988; Jarvis and McDowell, 1991; Cormier and Gunn, 1992; Roodbergen and De Koster, 2001b; Bartholdi and Hackman, 2017).

5.3 Recommendations for the Company

It is possible to state that the company is currently using a suboptimal solution and, without any investment, travelled distances inside the warehouse during the picking process can be reduced, and, consequentely, the related costs.

A case study is only concluded when the results are present to the company's superior board, so they can be validated (Voss et al., 2002). Based on this, these findings and the main recommendations were presented in an meeting to the LAUAK's head of logistics.

This meeting finished with a very good feedback, saying that this solution fits the company's needs. Attempting to prove the simulation veracity, the company decided to implement one of the best picking routes tested in SA - $1(\mathrm{PR}-2)$ one week after the results presentation. The reason behind this choice is because SA - 1 represented the storage assignment currently in use, and thus, it was only needed to implement the picking route to get immediate results.

It was also said that the warehouse location was about to change inside the factory, so the company wanted to repeat this process in the new place, prioritizing the class-based analysis, as simulated in this project. This way, the picking performance in the new warehouse can be improved since the beginning.

6 Conclusion

Lauak Portugal is a partner company of Groupe Lauak, a French group that operates in the aeronautic market. It was within one of its 4 warehouses that this case study was developed. Since the first contact with the Company, there was a specific internal process that was catching the superior's board attention. In the final products' warehouse, the picking process was proving to be critical due to the time it was consuming, considered as excessive by the company, influencing the sales and shipping processes downstream. To achieve the main objective of decreasing this critical process, several scenarios were stablished to assess the picking performance inside the warehouse, mixing picking policies and storage strategies.

Based on the literature, were considered the Traversal, Mid-Point, and Largest Gap Return Strategy (Hall, 1993) as the three basic picking policies and one heuristic (Ratliff and Rosenthal, 1983), as one that offers an optimal solution. Initially, 3 storage assignment strategies were also considered, but following Company's indications, it only remained random (SA -1) and class-based (SA -2) storage assignments. In the end, it was created 44 different scenarios of simulation, mixing 22 Picking Routes and 2 Storage Strategies.

The first focus of this case study was getting to know how the warehouse worked, understanding the internal processes, and mapping all the material and information flows. Then, the alternative theoretical scenarios were selected and afterwards simulated, either for picking policies and storage strategy. Considering the travelled distance as variable of analysis, the performance of each scenario was assessed and compared between each of them. This case study ended with the presentation of the conclusions and recommendations towards the superior board.

Considering the warehouse current situation, results showed that only by implementing a picking route, great reductions were achieved. Initially tested in the implemented storage assignment at the time (Random), all 22 picking routes achieved savings between $38,45 \%$ and $46,25 \%$, even though no significant differences arose among each picking route. When the products' reallocation was made, Class-based storage strategy was implemented, showing to be more organised than the random alternative. In this case, the reduction was higher than 59% in all the 22 PR.

As the results emerged, it became clearer that the strategy company had selected was far from the optimal, being possible to state that, without any investment, the warehouse efficiency can increase significantly.

Despite the fact this research was developed in a specific business environment, 6 general steps can be adopted by other companies to assess their internal policies and to find more efficient warehousing solutions:

- Step 1 - Creating the Reference Scenario (Scenario 0);
- Step 2 - Selecting the picking routes;
- Step 3 - Simulating the picking routes on the implemented storage assignment;
- Step 4 - Selecting alternative storage assignments;
- Step 5 - Simulating the picking route on the alternative storage assignments;
- Step 6 - Comparing the performance of each theoretical scenario;

A period less than a year was considered in this case study. The period of analysis may lead the research to some limitations, once the full activity was not analysed. A full year investigation would enable more accurate conclusions, taking into account the seasonality or other attributes that might influence the picking frequency. However, in order to soften such impact, the period of analysis was selected to represent, as much as possible, a standard month of the company's overall operations.

To develop even more this research, there are other suggestions that can be considered in future work. Adding more variables to the analysis (products' weight, for instance), increasing the theoretical scenarios, may lead to other visibility over the problem and, hence, the conclusions. A better reallocation could be also purposed if other criteria were included, segregating the product into different families and sub-families.

7 References

Balajia, K., \& Kumarb, V. (2014). Multicriteria Inventory ABC Classification in an Automobile Rubber Components Manufacturing Industry. CIRP, 17, pp. 463-468.

Ballou, R. (2004). Business logistics - supply chain management : planning, organizing, and controlling the supply chain (5th ed.). New Jersey: Pearson Education International.

Bartholdi, J., \& Hackman, S. (2017). Warehouse \& Distribution Science. Atlanta: The Supply Chain \& Logistics Institute.

Bowersox, D., Closs, D., \& Cooper, M. (2002). Supply Chain Logistics Management (1st ed.). New York: McGraw-Hill.

Carvalho, J. (1996). Logística. Lisbon: Sílabo.
Carvalho, J., Guedes, A., Arantes, A., Martins, A., Póvoa, A., Luís, C., Dias, E., Dias, J., Menezes, J., Ferreira, L., Carvalho, M., Oliveire, R., Azevedo, S., Ramos, T. (2018). Logística e Gestão da Cadeia de Abastecimento (2nd ed.). Lisbon: Sílabo.

Çelk, M., \& Süral, H. (2014). Order picking under random and turnover-based storage policies in fishbone aisle warehouses. IIE Transactions, 46(3), pp. 283-300.

Chan, F., \& Chan, H. (2011). Improving the productivity of order picking of a manualpick and multi-level rack distribution warehouse through the implementation of classbased storage. Expert Systems with Applications, 38, pp. 2686-2700.

Christopher, M. (2016). Logistics \& Supply Chain Management (5th ed.). FT Press.
Cormier, G., \& Gunn, E. (1992). A review of warehouse models. European Journal of Operational Research, 58, pp. 3-13.

Coyle, J., Bardi, E., \& Langley, C. (1992). Management of business logistics (5th ed.). St. Paul: West Publishing.

Coyle, J., Langley, C., Novack, R., \& Gibson, B. (2012). Supply Chain Management: A Logistics Perspective (9th ed.). South-Western College Pub.

CSCMP. (2013). Supply Chain Management Terms and Glossary.
de Koster , R., Le-Duc, T., \& Roodbergen, K. (2007). Design and control of warehouse order picking: A literature review. European Journal of Operational Research, 182, pp. 481-501.
de Koster, R., \& Van der Port, E. (1998). Routing orderpickers in a warehouse: a comparison between optimal and heuristic solutions. IIE Transactions, 30(5), pp. 469480.

Drury, J. (1988). Towards more eficient order picking. Cranfield, U.K.: The Institute of Materials Management.

Dutta, S., Shah, H., Dasari, A., Singal, K., Harikeerthi, N., \& Talakola, Y. (2017). Optimizing Inventory though ABC Classification and Demand Forecast. American Society for Engineering Management, pp. 1-8.

Eisenhardt, K. (1989). Building Theories from Case Study Research. The Academy of Management Review, 14(4), pp. 532-550.

Glock, C., \& Grosse, E. (2012). Storage Policies and Order Picking Strategies in Ushaped Order-Picking Systems with a Movable Base. International Journal of Production Research, 50(16), pp. 4344-4357.

Goetschalckx, M., \& Ratliff, H. (1988). Order Picking In An Aisle. IIE Transactions, 20(1), pp. 53-62.

Hall, R. (1993). Distances Approximations for Routing Manual Pickers in a Warehouse. IIE Transactions, 25(4), pp. 76-87.

Hausman, W., Schwarz, L., \& Graves, S. (1976). Optimal Storage Assignment Automatic Warehousing Systems. The Institute of Management Science, 22(6), pp. 629-638.

Jarvis, J., \& McDowell, E. (1991). Optimal Product Layout in an Order Picking Warehouse. IIE Transactions, 23(1), pp. 93-102.

Manzini, R., Gamberi, M., Persona, A., \& Regattieri, A. (2007). Design of a class based storage picker to product order picking system. International Journal of Advanced Manufacturing Technology, 32, pp. 811-821.

Ohmae, K. (1982). The mind of the strategist : the art of japanese business. New York: McGraw-Hill.

Onwubolu, G., \& Dube, B. (2006). Implementing an improved inventory control system in a small company: a case study. Production Planning \& Control, 17, pp. 67-76.

Petersen, C., \& Aase, G. (2004). A comparison of picking, storage, and routing policies in manualorder picking. International Journal of Production Economics, 92, pp. 11-19.

Rao, S., \& Adil, G. (2013). Class-based storage with exact S-shaped traversal routeing in low-level picker-to-part systems. International Journal of Production Research, 51(16), pp. 4979-4996.

Ratliff, H., \& Rosenthal, A. (1983). Order-Picking in a Rectangular Warehouse: A Solvable Case of the Traveling Salesman Problem. Operations Research, 31(3), pp. 507521.

Roodbergen, K., \& de Koster, R. (2001a). Routing order pickers in a warehouse with a middle aisle. European Journal of Operational Research, 133, pp. 32-43.

Roodbergen, K., \& de Koster, R. (2001b). Routing methods for warehouses with multiple cross aisles. International Journal of Production Research, 39(9), pp. 1865-1883.

Roodbergen, K., Sharp, G., \& Vis, I. (2008). Designing the layout structure of manual order picking areas in warehouses. IIE Transactions, 40(11), pp. 1032-1045.

Rushton, A., Croucher, P., \& Baker, P. (2010). The Handbook of Logistics \& Distribution Management (4th ed.). New Delhi: Kogan Page.

Stock, J., \& Lambert, D. (2001). Strategic logistics management (4th ed.). New York: McGraw-Hill.

Tompkins, J. A., White, J., Bozer, Y., \& Tanchoco, J. (2010). Facilities Planning (4th ed.). John Wiley \& Sons.

Tompkins, J., \& Smith, J. (1998). The Warehouse Management Handbook (2nd ed.). Tompkins Press.

Van den Berg, J., \& Zijm, W. (1999). Models for warehouse management: ClassiPcation and examples. International Journal of Production Economics, 59, pp. 519-528.

Vonderembse, M., \& White, G. (1996). Operations management : concepts, methods, and strategies (3rd ed.). St. Paul: West Publishing.

Voss, C., Tsikriktsis, N., \& Frohlich, M. (2002). Case research in operations management. International Journal of Operations \& Production Management, 22(2), pp.195-219.

Yin, R. (2018). Case Study Research and Applications: design and methods (6th ed.). Los Angeles: SAGE.

8 Appendix

Appendix A - Unstructured Interviews Script

Stakeholder	Topic
Head of Logistics	Establishment of the project's specifications; Milestones' definition;
Picker	Warehouse process description - storage and picking activities;
Warehouse Manager	Warehouse processes' clarification; Improvements implemented over the past years;
Head of Logistics	Understanding Tactical decisions - storage and picking activities;

Appendix B - PR - 1 Representation

Appendix C-PR-2 Representation

Appendix D - PR - 3 Representation

Appendix E-PR-4 Representation

Appendix G - PR - 6 Representation

Appendix N-PR-13 Representation

Appendix O-PR - 14 Representation

Appendix Q - PR - 16 Representation

Appendix R-PR - 17 Representation

Appendix V-PR - 21 Representation

Appendix W - Distance Matrix

Appendix X - Available Volume per Shelf, in cm3

Shelf	Levels							Available Space
	1	2	3	4	5	6	7	
PFBE-A	120400	120400	106560	88200	106560	120400	73100	735620
PFBE-H	105840	105840	120400	120400	106560	120400	120400	799840
PFBE-I1	120400	120400	120400	120400	106560	73100	73100	734360
PFBE-I2	120400	120400	120400	120400	106560	73100	73100	734360
PFBE-J	120400	120400	120400	120400	106560	73100	73100	734360
PFBE-K	120400	120400	120400	120400	106560	73100	73100	734360
PFBE-L	120400	120400	120400	120400	106560	73100	73100	734360
PFBE-M	120400	120400	120400	120400	106560	73100	73100	734360
PFBE-N	120400	120400	120400	120400	106560	73100	73100	734360
PFBE-O1	120400	120400	120400	120400	106560	73100	73100	734360
PFBE-O2	120400	120400	120400	120400	106560	73100	73100	734360
PFBE-P1	120400	120400	120400	120400	106560	73100	73100	734360
PFBE-P2	120400	120400	120400	120400	106560	73100	73100	734360
PFBE-Q	120400	120400	120400	120400	106560	73100	73100	734360
PFBE-R	144480	144480	144480	144480	106560	87720	87720	859920
PFBE-S	144480	144480	144480	144480	106560	87720	87720	859920
PFBE-T	120400	120400	120400	120400	106560	73100	73100	734360
PFBE-U	120400	120400	120400	120400	106560	73100	73100	734360
PFBE-V1	120400	120400	120400	120400	106560	73100	73100	734360
PFBE-V2	120400	120400	120400	120400	106560	73100	73100	734360
PFBE-X	144480	144480	144480	144480	144480	87720	87720	897840
PFBE-Y	120400	120400	120400	120400	120400	73100	73100	748200
PFBE-Z1	144480	144480	144480	144480	133200	87720	87720	886560
PFBE-Z2	120400	120400	120400	120400	106560	73100	73100	734360
PFBE-Z3	120400	120400	120400	120400	106560	73100	73100	734360
PFBE-Z4	120400	120400	120400	106560	106560	73100	73100	720520
PFBE-Z5	120400	120400	88200	106560	106560	73100	73100	688320
ESKU-A	132480	132480	133200	133200	133200	120400	120400	905360
ESKU-B	105840	105840	106560	106560	106560	120400	120400	772160
ESKU-C	105840	105840	106560	106560	106560	120400	120400	772160
ESKU-D	105840	105840	106560	106560	106560	120400	120400	772160
FAI-B	120400	120400	105840	106560	106560	120400	120400	800560
FAI-C	120400	120400	105840	106560	106560	120400	120400	800560
FAI-D	120400	120400	120400	120400	120400	120400	120400	842800
FAI-E	144480	144480	144480	144480	144480	144480	144480	1011360
FAI-20x	144480	144480	144480	144480	144480	144480	87720	954600
FAI-30x	144480	144480	144480	144480	144480	144480	87720	954600
FAI-10X	144480	132480	133200	133200	133200	144480	87720	908760
PFBE-40x	105840	105840	105840	106560	106560	120400	73100	724140
PFBE-50x	105840	105840	106560	106560	106560	120400	73100	724860

PFBE-60x	105840	105840	120400	88200	106560	120400	73100	720340
PFBE-70x	105840	105840	120400	88200	106560	120400	73100	720340
PFBE-80x	120400	120400	120400	88200	106560	120400	73100	749460
PFBE-90x	120400	120400	106560	88200	106560	120400	73100	735620

Appendix Y - ABC Analysis: PFBE Family

SKU	\%	Picking Frequency			Class	Sub-Family
		Picks	\%	Cumulative		
Product 672	0,21\%	9	1,08\%	1,08\%	A	Big
Product 270	0,42\%	8	0,96\%	2,04\%	A	Big
Product 1515	0,64\%	7	0,84\%	2,88\%	A	Big
Product 192	0,85\%	7	0,84\%	3,72\%	A	Big
Product 1768	1,06\%	6	0,72\%	4,44\%	A	Big
Product 1710	1,27\%	6	0,72\%	5,16\%	A	Big
Product 818	1,49\%	6	0,72\%	5,88\%	A	Big
Product 813	1,70\%	6	0,72\%	6,59\%	A	Big
Product 207	1,91\%	6	0,72\%	7,31\%	A	Big
Product 202	2,12\%	6	0,72\%	8,03\%	A	Big
Product 697	2,34\%	5	0,60\%	8,63\%	A	Big
Product 708	2,55\%	5	0,60\%	9,23\%	A	Big
Product 591	2,76\%	5	0,60\%	9,83\%	A	Big
Product 741	2,97\%	5	0,60\%	10,43\%	A	Big
Product 417	3,18\%	5	0,60\%	11,03\%	A	Big
Product 134	3,40\%	5	0,60\%	11,63\%	A	Big
Product 1474	3,61\%	5	0,60\%	12,23\%	A	Medium
Product 673	3,82\%	4	0,48\%	12,71\%	A	Big
Product 676	4,03\%	4	0,48\%	13,19\%	A	Big
Product 699	4,25\%	4	0,48\%	13,67\%	A	Big
Product 707	4,46\%	4	0,48\%	14,15\%	A	Big
Product 731	4,67\%	4	0,48\%	14,63\%	A	Big
Product 732	4,88\%	4	0,48\%	15,11\%	A	Big
Product 567	5,10\%	4	0,48\%	15,59\%	A	Big
Product 775	5,31\%	4	0,48\%	16,07\%	A	Big
Product 777	5,52\%	4	0,48\%	16,55\%	A	Big
Product 1763	5,73\%	4	0,48\%	17,03\%	A	Big
Product 799	5,94\%	4	0,48\%	17,51\%	A	Big
Product 806	6,16\%	4	0,48\%	17,99\%	A	Big
Product 419	6,37\%	4	0,48\%	18,47\%	A	Big
Product 388	6,58\%	4	0,48\%	18,94\%	A	Big
Product 858	6,79\%	4	0,48\%	19,42\%	A	Big
Product 2376	7,01\%	4	0,48\%	19,90\%	A	Small
Product 788	7,22\%	3	0,36\%	20,26\%	A	Big
Product 698	7,43\%	3	0,36\%	20,62\%	A	Big
Product 669	7,64\%	3	0,36\%	20,98\%	A	Big
Product 679	7,86\%	3	0,36\%	21,34\%	A	Big
Product 655	8,07\%	3	0,36\%	21,70\%	A	Big
Product 653	8,28\%	3	0,36\%	22,06\%	A	Big

Product 648	8,49\%	3	0,36\%	22,42\%	A	Big
Product 640	8,70\%	3	0,36\%	22,78\%	A	Big
Product 2025	8,92\%	3	0,36\%	23,14\%	A	Big
Product 721	9,13\%	3	0,36\%	23,50\%	A	Big
Product 723	9,34\%	3	0,36\%	23,86\%	A	Big
Product 727	9,55\%	3	0,36\%	24,22\%	A	Big
Product 736	9,77\%	3	0,36\%	24,58\%	A	Big
Product 557	9,98\%	3	0,36\%	24,94\%	A	Big
Product 737	10,19\%	3	0,36\%	25,30\%	A	Big
Product 1891	10,40\%	3	0,36\%	25,66\%	A	Big
Product 746	10,62\%	3	0,36\%	26,02\%	A	Big
Product 753	10,83\%	3	0,36\%	26,38\%	A	Big
Product 758	11,04\%	3	0,36\%	26,74\%	A	Big
Product 510	11,25\%	3	0,36\%	27,10\%	A	Big
Product 771	11,46\%	3	0,36\%	27,46\%	A	Big
Product 781	11,68\%	3	0,36\%	27,82\%	A	Big
Product 1773	11,89\%	3	0,36\%	28,18\%	A	Big
Product 493	12,10\%	3	0,36\%	28,54\%	A	Big
Product 482	12,31\%	3	0,36\%	28,90\%	A	Big
Product 473	12,53\%	3	0,36\%	29,26\%	A	Big
Product 791	12,74\%	3	0,36\%	29,62\%	A	Big
Product 792	12,95\%	3	0,36\%	29,98\%	A	Big
Product 458	13,16\%	3	0,36\%	30,34\%	A	Big
Product 797	13,38\%	3	0,36\%	30,70\%	A	Big
Product 384	13,59\%	3	0,36\%	31,06\%	A	Big
Product 825	13,80\%	3	0,36\%	31,41\%	A	Big
Product 822	14,01\%	3	0,36\%	31,77\%	A	Big
Product 815	14,23\%	3	0,36\%	32,13\%	A	Big
Product 1389	14,44\%	3	0,36\%	32,49\%	A	Big
Product 245	14,65\%	3	0,36\%	32,85\%	A	Big
Product 214	14,86\%	3	0,36\%	33,21\%	A	Big
Product 212	15,07\%	3	0,36\%	33,57\%	A	Big
Product 867	15,29\%	3	0,36\%	33,93\%	A	Big
Product 112	15,50\%	3	0,36\%	34,29\%	A	Big
Product 81	15,71\%	3	0,36\%	34,65\%	A	Big
Product 65	15,92\%	3	0,36\%	35,01\%	A	Big
Product 35	16,14\%	3	0,36\%	35,37\%	A	Big
Product 1964	16,35\%	3	0,36\%	35,73\%	A	Medium
Product 1948	16,56\%	3	0,36\%	36,09\%	A	Medium
Product 1947	16,77\%	3	0,36\%	36,45\%	A	Medium
Product 2018	16,99\%	3	0,36\%	36,81\%	A	Medium
Product 1824	17,20\%	3	0,36\%	37,17\%	A	Medium
Product 1692	17,41\%	3	0,36\%	37,53\%	A	Medium
Product 892	17,62\%	3	0,36\%	37,89\%	A	Medium
Product 1576	17,83\%	3	0,36\%	38,25\%	A	Medium

Product 1543	18,05\%	3	0,36\%	38,61\%	A	Medium
Product 1489	18,26\%	3	0,36\%	38,97\%	A	Medium
Product 739	18,47\%	2	0,24\%	39,21\%	B	Big
Product 665	18,68\%	2	0,24\%	39,45\%	B	Big
Product 700	18,90\%	2	0,24\%	39,69\%	B	Big
Product 705	19,11\%	2	0,24\%	39,93\%	B	Big
Product 2031	19,32\%	2	0,24\%	40,17\%	B	Big
Product 710	19,53\%	2	0,24\%	40,41\%	B	Big
Product 627	19,75\%	2	0,24\%	40,65\%	B	Big
Product 711	19,96\%	2	0,24\%	40,89\%	B	Big
Product 712	20,17\%	2	0,24\%	41,13\%	B	Big
Product 713	20,38\%	2	0,24\%	41,37\%	B	Big
Product 624	20,59\%	2	0,24\%	41,61\%	B	Big
Product 623	20,81\%	2	0,24\%	41,85\%	B	Big
Product 717	21,02\%	2	0,24\%	42,09\%	B	Big
Product 720	21,23\%	2	0,24\%	42,33\%	B	Big
Product 2001	21,44\%	2	0,24\%	42,57\%	B	Big
Product 722	21,66\%	2	0,24\%	42,81\%	B	Big
Product 724	21,87\%	2	0,24\%	43,05\%	B	Big
Product 600	22,08\%	2	0,24\%	43,29\%	B	Big
Product 559	22,29\%	2	0,24\%	43,53\%	B	Big
Product 743	22,51\%	2	0,24\%	43,76\%	B	Big
Product 744	22,72\%	2	0,24\%	44,00\%	B	Big
Product 1857	22,93\%	2	0,24\%	44,24\%	B	Big
Product 1853	23,14\%	2	0,24\%	44,48\%	B	Big
Product 749	23,35\%	2	0,24\%	44,72\%	B	Big
Product 748	23,57\%	2	0,24\%	44,96\%	B	Big
Product 750	23,78\%	2	0,24\%	45,20\%	B	Big
Product 751	23,99\%	2	0,24\%	45,44\%	B	Big
Product 1860	24,20\%	2	0,24\%	45,68\%	B	Big
Product 1855	24,42\%	2	0,24\%	45,92\%	B	Big
Product 763	24,63\%	2	0,24\%	46,16\%	B	Big
Product 765	24,84\%	2	0,24\%	46,40\%	B	Big
Product 520	25,05\%	2	0,24\%	46,64\%	B	Big
Product 501	25,27\%	2	0,24\%	46,88\%	B	Big
Product 778	25,48\%	2	0,24\%	47,12\%	B	Big
Product 770	25,69\%	2	0,24\%	47,36\%	B	Big
Product 772	25,90\%	2	0,24\%	47,60\%	B	Big
Product 774	26,11\%	2	0,24\%	47,84\%	B	Big
Product 769	26,33\%	2	0,24\%	48,08\%	B	Big
Product 1767	26,54\%	2	0,24\%	48,32\%	B	Big
Product 490	26,75\%	2	0,24\%	48,56\%	B	Big
Product 790	26,96\%	2	0,24\%	48,80\%	B	Big
Product 1709	27,18\%	2	0,24\%	49,04\%	B	Big
Product 1719	27,39\%	2	0,24\%	49,28\%	B	Big

Product 456	27,60\%	2	0,24\%	49,52\%	B	Big
Product 439	27,81\%	2	0,24\%	49,76\%	B	Big
Product 435	28,03\%	2	0,24\%	50,00\%	B	Big
Product 1646	28,24\%	2	0,24\%	50,24\%	B	Big
Product 802	28,45\%	2	0,24\%	50,48\%	B	Big
Product 805	28,66\%	2	0,24\%	50,72\%	B	Big
Product 1622	28,87\%	2	0,24\%	50,96\%	B	Big
Product 426	29,09\%	2	0,24\%	51,20\%	B	Big
Product 416	29,30\%	2	0,24\%	51,44\%	B	Big
Product 403	29,51\%	2	0,24\%	51,68\%	B	Big
Product 381	29,72\%	2	0,24\%	51,92\%	B	Big
Product 821	29,94\%	2	0,24\%	52,16\%	B	Big
Product 820	30,15\%	2	0,24\%	52,40\%	B	Big
Product 823	30,36\%	2	0,24\%	52,64\%	B	Big
Product 824	30,57\%	2	0,24\%	52,88\%	B	Big
Product 345	30,79\%	2	0,24\%	53,12\%	B	Big
Product 340	31,00\%	2	0,24\%	53,36\%	B	Big
Product 335	31,21\%	2	0,24\%	53,60\%	B	Big
Product 332	31,42\%	2	0,24\%	53,84\%	B	Big
Product 847	31,63\%	2	0,24\%	54,08\%	B	Big
Product 838	31,85\%	2	0,24\%	54,32\%	B	Big
Product 831	32,06\%	2	0,24\%	54,56\%	B	Big
Product 840	32,27\%	2	0,24\%	54,80\%	B	Big
Product 839	32,48\%	2	0,24\%	55,04\%	B	Big
Product 1382	32,70\%	2	0,24\%	55,28\%	B	Big
Product 322	32,91\%	2	0,24\%	55,52\%	B	Big
Product 318	33,12\%	2	0,24\%	55,76\%	B	Big
Product 313	33,33\%	2	0,24\%	56,00\%	B	Big
Product 284	33,55\%	2	0,24\%	56,24\%	B	Big
Product 275	33,76\%	2	0,24\%	56,47\%	B	Big
Product 265	33,97\%	2	0,24\%	56,71\%	B	Big
Product 255	34,18\%	2	0,24\%	56,95\%	B	Big
Product 252	34,39\%	2	0,24\%	57,19\%	B	Big
Product 210	34,61\%	2	0,24\%	57,43\%	B	Big
Product 859	34,82\%	2	0,24\%	57,67\%	B	Big
Product 857	35,03\%	2	0,24\%	57,91\%	B	Big
Product 853	35,24\%	2	0,24\%	58,15\%	B	Big
Product 860	35,46\%	2	0,24\%	58,39\%	B	Big
Product 863	35,67\%	2	0,24\%	58,63\%	B	Big
Product 862	35,88\%	2	0,24\%	58,87\%	B	Big
Product 196	36,09\%	2	0,24\%	59,11\%	B	Big
Product 189	36,31\%	2	0,24\%	59,35\%	B	Big
Product 169	36,52\%	2	0,24\%	59,59\%	B	Big
Product 162	36,73\%	2	0,24\%	59,83\%	B	Big
Product 156	36,94\%	2	0,24\%	60,07\%	B	Big

Product 155	37,15\%	2	0,24\%	60,31\%	B	Big
Product 110	37,37\%	2	0,24\%	60,55\%	B	Big
Product 89	37,58\%	2	0,24\%	60,79\%	B	Big
Product 73	37,79\%	2	0,24\%	61,03\%	B	Big
Product 2045	38,00\%	2	0,24\%	61,27\%	B	Medium
Product 2107	38,22\%	2	0,24\%	61,51\%	B	Medium
Product 1992	38,43\%	2	0,24\%	61,75\%	B	Medium
Product 2010	38,64\%	2	0,24\%	61,99\%	B	Medium
Product 1977	38,85\%	2	0,24\%	62,23\%	B	Medium
Product 1972	39,07\%	2	0,24\%	62,47\%	B	Medium
Product 1966	39,28\%	2	0,24\%	62,71\%	B	Medium
Product 1944	39,49\%	2	0,24\%	62,95\%	B	Medium
Product 2019	39,70\%	2	0,24\%	63,19\%	B	Medium
Product 1872	39,92\%	2	0,24\%	63,43\%	B	Medium
Product 2028	40,13\%	2	0,24\%	63,67\%	B	Medium
Product 2029	40,34\%	2	0,24\%	63,91\%	B	Medium
Product 1866	40,55\%	2	0,24\%	64,15\%	B	Medium
Product 1836	40,76\%	2	0,24\%	64,39\%	B	Medium
Product 2054	40,98\%	2	0,24\%	64,63\%	B	Medium
Product 1250	41,19\%	2	0,24\%	64,87\%	B	Medium
Product 1739	41,40\%	2	0,24\%	65,11\%	B	Medium
Product 1734	41,61\%	2	0,24\%	65,35\%	B	Medium
Product 1694	41,83\%	2	0,24\%	65,59\%	B	Medium
Product 2108	42,04\%	2	0,24\%	65,83\%	B	Medium
Product 1664	42,25\%	2	0,24\%	66,07\%	B	Medium
Product 2121	42,46\%	2	0,24\%	66,31\%	B	Medium
Product 1581	42,68\%	2	0,24\%	66,55\%	B	Medium
Product 1560	42,89\%	2	0,24\%	66,79\%	B	Medium
Product 1544	43,10\%	2	0,24\%	67,03\%	B	Medium
Product 1494	43,31\%	2	0,24\%	67,27\%	B	Medium
Product 686	43,52\%	2	0,24\%	67,51\%	B	Medium
Product 695	43,74\%	2	0,24\%	67,75\%	B	Medium
Product 2316	43,95\%	2	0,24\%	67,99\%	B	Small
Product 2258	44,16\%	2	0,24\%	68,23\%	B	Small
Product 2133	44,37\%	2	0,24\%	68,47\%	B	Small
Product 2132	44,59\%	2	0,24\%	68,71\%	B	Small
Product 742	44,80\%	1	0,12\%	68,82\%	C	Big
Product 783	45,01\%	1	0,12\%	68,94\%	C	Big
Product 668	45,22\%	1	0,12\%	69,06\%	C	Big
Product 674	45,44\%	1	0,12\%	69,18\%	C	Big
Product 675	45,65\%	1	0,12\%	69,30\%	C	Big
Product 677	45,86\%	1	0,12\%	69,42\%	C	Big
Product 678	46,07\%	1	0,12\%	69,54\%	C	Big
Product 680	46,28\%	1	0,12\%	69,66\%	C	Big
Product 681	46,50\%	1	0,12\%	69,78\%	C	Big

Product 682	46,71\%	1	0,12\%	69,90\%	C	Big
Product 2068	46,92\%	1	0,12\%	70,02\%	C	Big
Product 646	47,13\%	1	0,12\%	70,14\%	C	Big
Product 701	47,35\%	1	0,12\%	70,26\%	C	Big
Product 702	47,56\%	1	0,12\%	70,38\%	C	Big
Product 704	47,77\%	1	0,12\%	70,50\%	C	Big
Product 703	47,98\%	1	0,12\%	70,62\%	C	Big
Product 706	48,20\%	1	0,12\%	70,74\%	C	Big
Product 2038	48,41\%	1	0,12\%	70,86\%	C	Big
Product 2040	48,62\%	1	0,12\%	70,98\%	C	Big
Product 629	48,83\%	1	0,12\%	71,10\%	C	Big
Product 2030	49,04\%	1	0,12\%	71,22\%	C	Big
Product 709	49,26\%	1	0,12\%	71,34\%	C	Big
Product 626	49,47\%	1	0,12\%	71,46\%	C	Big
Product 715	49,68\%	1	0,12\%	71,58\%	C	Big
Product 714	49,89\%	1	0,12\%	71,70\%	C	Big
Product 716	50,11\%	1	0,12\%	71,82\%	C	Big
Product 2017	50,32\%	1	0,12\%	71,94\%	C	Big
Product 719	50,53\%	1	0,12\%	72,06\%	C	Big
Product 718	50,74\%	1	0,12\%	72,18\%	C	Big
Product 609	50,96\%	1	0,12\%	72,30\%	C	Big
Product 607	51,17\%	1	0,12\%	72,42\%	C	Big
Product 1985	51,38\%	1	0,12\%	72,54\%	C	Big
Product 725	51,59\%	1	0,12\%	72,66\%	C	Big
Product 726	51,80\%	1	0,12\%	72,78\%	C	Big
Product 733	52,02\%	1	0,12\%	72,90\%	C	Big
Product 587	52,23\%	1	0,12\%	73,02\%	C	Big
Product 586	52,44\%	1	0,12\%	73,14\%	C	Big
Product 581	52,65\%	1	0,12\%	73,26\%	C	Big
Product 580	52,87\%	1	0,12\%	73,38\%	C	Big
Product 577	53,08\%	1	0,12\%	73,50\%	C	Big
Product 734	53,29\%	1	0,12\%	73,62\%	C	Big
Product 735	53,50\%	1	0,12\%	73,74\%	C	Big
Product 573	53,72\%	1	0,12\%	73,86\%	C	Big
Product 566	53,93\%	1	0,12\%	73,98\%	C	Big
Product 555	54,14\%	1	0,12\%	74,10\%	C	Big
Product 1884	54,35\%	1	0,12\%	74,22\%	C	Big
Product 740	54,56\%	1	0,12\%	74,34\%	C	Big
Product 738	54,78\%	1	0,12\%	74,46\%	C	Big
Product 745	54,99\%	1	0,12\%	74,58\%	C	Big
Product 551	55,20\%	1	0,12\%	74,70\%	C	Big
Product 755	55,41\%	1	0,12\%	74,82\%	C	Big
Product 754	55,63\%	1	0,12\%	74,94\%	C	Big
Product 747	55,84\%	1	0,12\%	75,06\%	C	Big
Product 752	56,05\%	1	0,12\%	75,18\%	C	Big

Product 757	56,26\%	1	0,12\%	75,30\%	C	Big
Product 756	56,48\%	1	0,12\%	75,42\%	C	Big
Product 542	56,69\%	1	0,12\%	75,54\%	C	Big
Product 532	56,90\%	1	0,12\%	75,66\%	C	Big
Product 764	57,11\%	1	0,12\%	75,78\%	C	Big
Product 761	57,32\%	1	0,12\%	75,90\%	C	Big
Product 760	57,54\%	1	0,12\%	76,02\%	C	Big
Product 759	57,75\%	1	0,12\%	76,14\%	C	Big
Product 762	57,96\%	1	0,12\%	76,26\%	C	Big
Product 766	58,17\%	1	0,12\%	76,38\%	C	Big
Product 517	58,39\%	1	0,12\%	76,50\%	C	Big
Product 515	58,60\%	1	0,12\%	76,62\%	C	Big
Product 509	58,81\%	1	0,12\%	76,74\%	C	Big
Product 500	59,02\%	1	0,12\%	76,86\%	C	Big
Product 498	59,24\%	1	0,12\%	76,98\%	C	Big
Product 776	59,45\%	1	0,12\%	77,10\%	C	Big
Product 773	59,66\%	1	0,12\%	77,22\%	C	Big
Product 1769	59,87\%	1	0,12\%	77,34\%	C	Big
Product 1775	60,08\%	1	0,12\%	77,46\%	C	Big
Product 779	60,30\%	1	0,12\%	77,58\%	C	Big
Product 768	60,51\%	1	0,12\%	77,70\%	C	Big
Product 767	60,72\%	1	0,12\%	77,82\%	C	Big
Product 780	60,93\%	1	0,12\%	77,94\%	C	Big
Product 782	61,15\%	1	0,12\%	78,06\%	C	Big
Product 784	61,36\%	1	0,12\%	78,18\%	C	Big
Product 496	61,57\%	1	0,12\%	78,30\%	C	Big
Product 495	61,78\%	1	0,12\%	78,42\%	C	Big
Product 489	62,00\%	1	0,12\%	78,54\%	C	Big
Product 477	62,21\%	1	0,12\%	78,66\%	C	Big
Product 474	62,42\%	1	0,12\%	78,78\%	C	Big
Product 1731	62,63\%	1	0,12\%	78,90\%	C	Big
Product 785	62,85\%	1	0,12\%	79,02\%	C	Big
Product 1705	63,06\%	1	0,12\%	79,14\%	C	Big
Product 787	63,27\%	1	0,12\%	79,26\%	C	Big
Product 789	63,48\%	1	0,12\%	79,38\%	C	Big
Product 786	63,69\%	1	0,12\%	79,50\%	C	Big
Product 793	63,91\%	1	0,12\%	79,62\%	C	Big
Product 794	64,12\%	1	0,12\%	79,74\%	C	Big
Product 467	64,33\%	1	0,12\%	79,86\%	C	Big
Product 465	64,54\%	1	0,12\%	79,98\%	C	Big
Product 457	64,76\%	1	0,12\%	80,10\%	C	Big
Product 434	64,97\%	1	0,12\%	80,22\%	C	Big
Product 432	65,18\%	1	0,12\%	80,34\%	C	Big
Product 431	65,39\%	1	0,12\%	80,46\%	C	Big
Product 800	65,61\%	1	0,12\%	80,58\%	C	Big

Product 1645	$65,82 \%$	1	$0,12 \%$	$80,70 \%$	C	Big
Product 1627	$66,03 \%$	1	$0,12 \%$	$80,82 \%$	C	Big
Product 801	$66,24 \%$	1	$0,12 \%$	$80,94 \%$	C	Big
Product 798	$66,45 \%$	1	$0,12 \%$	$81,06 \%$	C	Big
Product 804	$66,67 \%$	1	$0,12 \%$	$81,18 \%$	C	Big
Product 803	$66,88 \%$	1	$0,12 \%$	$81,29 \%$	C	Big
Product 1617	$67,09 \%$	1	$0,12 \%$	$81,41 \%$	C	Big
Product 807	$67,30 \%$	1	$0,12 \%$	$81,53 \%$	C	Big
Product 808	$67,52 \%$	1	$0,12 \%$	$81,65 \%$	C	Big
Product 809	$67,73 \%$	1	$0,12 \%$	$81,77 \%$	C	Big
Product 1624	$67,94 \%$	1	$0,12 \%$	$81,89 \%$	C	Big
Product 412	$68,15 \%$	1	$0,12 \%$	$82,01 \%$	C	Big
Product 390	$68,37 \%$	1	$0,12 \%$	$82,13 \%$	C	Big
Product 387	$68,58 \%$	1	$0,12 \%$	$82,25 \%$	C	Big
Product 382	$68,79 \%$	1	$0,12 \%$	$82,37 \%$	C	Big
Product 817	$69,00 \%$	1	$0,12 \%$	$82,49 \%$	C	Big
Product 1502	$69,21 \%$	1	$0,12 \%$	$82,61 \%$	C	Big
Product 816	$69,43 \%$	1	$0,12 \%$	$82,73 \%$	C	Big
Product 819	$69,64 \%$	1	$0,12 \%$	$82,85 \%$	C	Big
Product 814	$69,85 \%$	1	$0,12 \%$	$82,97 \%$	C	Big
Product 812	$70,06 \%$	1	$0,12 \%$	$83,09 \%$	C	Big
Product 828	$70,28 \%$	1	$0,12 \%$	$83,21 \%$	C	Big
Product 1516	$70,49 \%$	1	$0,12 \%$	$83,33 \%$	C	Big
Product 1498	$70,70 \%$	1	$0,12 \%$	$83,45 \%$	C	Big
Product 826	$70,91 \%$	1	$0,12 \%$	$83,57 \%$	C	Big
Product 827	$71,13 \%$	1	$0,12 \%$	$83,69 \%$	C	Big
Product 829	$71,34 \%$	1	$0,12 \%$	$83,81 \%$	C	Big
Product 373	$71,55 \%$	1	$0,12 \%$	$83,93 \%$	C	Big
Product 356	$71,76 \%$	1	$0,12 \%$	$84,05 \%$	C	Big
Product 338	$71,97 \%$	1	$0,12 \%$	$84,17 \%$	C	Big
Product 336	$72,19 \%$	1	$0,12 \%$	$84,29 \%$	C	Big
Product 324	$72,40 \%$	1	$0,12 \%$	$84,41 \%$	C	Big
Product 841	$72,61 \%$	1	$0,12 \%$	$84,53 \%$	C	Big
Product 849	$72,82 \%$	1	$0,12 \%$	$84,65 \%$	C	Big
Product 1377	$73,04 \%$	1	$0,12 \%$	$84,77 \%$	C	Big
Product 835	$73,25 \%$	1	$0,12 \%$	$84,89 \%$	C	Big
Product 832	$73,46 \%$	1	$0,12 \%$	$85,01 \%$	C	Big
Product 833	$73,67 \%$	1	$0,12 \%$	$85,13 \%$	C	Big
Product 836	$73,89 \%$	1	$0,12 \%$	$85,25 \%$	C	Big
Product 837	$74,10 \%$	1	$0,12 \%$	$85,37 \%$	C	Big
Product 1376	$74,31 \%$	1	$0,12 \%$	$85,49 \%$	C	Big
Product 842	$74,52 \%$	1	$0,12 \%$	$85,61 \%$	C	Big
Product 1391	$74,73 \%$	1	$0,12 \%$	$85,73 \%$	C	Big
Product 843	$74,95 \%$	1	$0,12 \%$	$85,85 \%$	C	Big
Product 848	$75,16 \%$	1	$0,12 \%$	$85,97 \%$	C	Big

Product 834	$75,37 \%$	1	$0,12 \%$	$86,09 \%$	C	Big
Product 845	$75,58 \%$	1	$0,12 \%$	$86,21 \%$	C	Big
Product 844	$75,80 \%$	1	$0,12 \%$	$86,33 \%$	C	Big
Product 1371	$76,01 \%$	1	$0,12 \%$	$86,45 \%$	C	Big
Product 846	$76,22 \%$	1	$0,12 \%$	$86,57 \%$	C	Big
Product 312	$76,43 \%$	1	$0,12 \%$	$86,69 \%$	C	Big
Product 310	$76,65 \%$	1	$0,12 \%$	$86,81 \%$	C	Big
Product 308	$76,86 \%$	1	$0,12 \%$	$86,93 \%$	C	Big
Product 266	$77,07 \%$	1	$0,12 \%$	$87,05 \%$	C	Big
Product 260	$77,28 \%$	1	$0,12 \%$	$87,17 \%$	C	Big
Product 257	$77,49 \%$	1	$0,12 \%$	$87,29 \%$	C	Big
Product 256	$77,71 \%$	1	$0,12 \%$	$87,41 \%$	C	Big
Product 253	$77,92 \%$	1	$0,12 \%$	$87,53 \%$	C	Big
Product 251	$78,13 \%$	1	$0,12 \%$	$87,65 \%$	C	Big
Product 248	$78,34 \%$	1	$0,12 \%$	$87,77 \%$	C	Big
Product 244	$78,56 \%$	1	$0,12 \%$	$87,89 \%$	C	Big
Product 230	$78,77 \%$	1	$0,12 \%$	$88,01 \%$	C	Big
Product 229	$78,98 \%$	1	$0,12 \%$	$88,13 \%$	C	Big
Product 209	$79,19 \%$	1	$0,12 \%$	$88,25 \%$	C	Big
Product 208	$79,41 \%$	1	$0,12 \%$	$88,37 \%$	C	Big
Product 871	$79,62 \%$	1	$0,12 \%$	$88,49 \%$	C	Big
Product 1108	$79,83 \%$	1	$0,12 \%$	$88,61 \%$	C	Big
Product 861	$80,04 \%$	1	$0,12 \%$	$88,73 \%$	C	Big
Product 856	$80,25 \%$	1	$0,12 \%$	$88,85 \%$	C	Big
Product 854	$80,47 \%$	1	$0,12 \%$	$88,97 \%$	C	Big
Product 865	$80,68 \%$	1	$0,12 \%$	$89,09 \%$	C	Big
Product 864	$80,89 \%$	1	$0,12 \%$	$89,21 \%$	C	Big
Product 851	$81,10 \%$	1	$0,12 \%$	$89,33 \%$	C	Big
Product 866	$81,32 \%$	1	$0,12 \%$	$89,45 \%$	C	Big
Product 1120	$81,53 \%$	1	$0,12 \%$	$89,57 \%$	C	Big
Product 852	$81,74 \%$	1	$0,12 \%$	$89,69 \%$	C	Big
Product 855	$81,95 \%$	1	$0,12 \%$	$89,81 \%$	C	Big
Product 868	$82,17 \%$	1	$0,12 \%$	$89,93 \%$	C	Big
Product 869	$82,38 \%$	1	$0,12 \%$	$90,05 \%$	C	Big
Product 870	$82,59 \%$	1	$0,12 \%$	$90,17 \%$	C	Big
Product 200	$82,80 \%$	1	$0,12 \%$	$90,29 \%$	C	Big
Product 197	$83,01 \%$	1	$0,12 \%$	$90,41 \%$	C	Big
Product 190	$83,23 \%$	1	$0,12 \%$	$90,53 \%$	C	Big
Product 165	$83,44 \%$	1	$0,12 \%$	$90,65 \%$	C	Big
Product 129	$83,65 \%$	1	$0,12 \%$	$90,77 \%$	C	Big
Product 128	$83,86 \%$	1	$0,12 \%$	$90,89 \%$	C	Big
Product 95	$84,08 \%$	1	$0,12 \%$	$91,01 \%$	C	Big
Product 94	$84,29 \%$	1	$0,12 \%$	$91,13 \%$	C	Big
Product 83	$84,50 \%$	1	$0,12 \%$	$91,25 \%$	C	Big
Product 374	$84,71 \%$	1	$0,12 \%$	$91,37 \%$	C	Big

Product 2011	84,93\%	1	0,12\%	91,49\%	C	Medium
Product 2022	85,14\%	1	0,12\%	91,61\%	C	Medium
Product 2036	85,35\%	1	0,12\%	91,73\%	C	Medium
Product 2044	85,56\%	1	0,12\%	91,85\%	C	Medium
Product 2067	85,77\%	1	0,12\%	91,97\%	C	Medium
Product 2069	85,99\%	1	0,12\%	92,09\%	C	Medium
Product 2118	86,20\%	1	0,12\%	92,21\%	C	Medium
Product 2127	86,41\%	1	0,12\%	92,33\%	C	Medium
Product 2128	86,62\%	1	0,12\%	92,45\%	C	Medium
Product 2126	86,84\%	1	0,12\%	92,57\%	C	Medium
Product 2005	87,05\%	1	0,12\%	92,69\%	C	Medium
Product 1998	87,26\%	1	0,12\%	92,81\%	C	Medium
Product 1995	87,47\%	1	0,12\%	92,93\%	C	Medium
Product 1980	87,69\%	1	0,12\%	93,05\%	C	Medium
Product 1978	87,90\%	1	0,12\%	93,17\%	C	Medium
Product 2012	88,11\%	1	0,12\%	93,29\%	C	Medium
Product 1976	88,32\%	1	0,12\%	93,41\%	C	Medium
Product 1970	88,54\%	1	0,12\%	93,53\%	C	Medium
Product 2014	88,75\%	1	0,12\%	93,65\%	C	Medium
Product 1943	88,96\%	1	0,12\%	93,76\%	C	Medium
Product 1926	89,17\%	1	0,12\%	93,88\%	C	Medium
Product 1925	89,38\%	1	0,12\%	94,00\%	C	Medium
Product 1924	89,60\%	1	0,12\%	94,12\%	C	Medium
Product 1920	89,81\%	1	0,12\%	94,24\%	C	Medium
Product 1918	90,02\%	1	0,12\%	94,36\%	C	Medium
Product 2023	90,23\%	1	0,12\%	94,48\%	C	Medium
Product 2026	90,45\%	1	0,12\%	94,60\%	C	Medium
Product 1873	90,66\%	1	0,12\%	94,72\%	C	Medium
Product 1867	90,87\%	1	0,12\%	94,84\%	C	Medium
Product 2037	91,08\%	1	0,12\%	94,96\%	C	Medium
Product 2046	91,30\%	1	0,12\%	95,08\%	C	Medium
Product 2047	91,51\%	1	0,12\%	95,20\%	C	Medium
Product 1825	91,72\%	1	0,12\%	95,32\%	C	Medium
Product 1299	91,93\%	1	0,12\%	95,44\%	C	Medium
Product 1249	92,14\%	1	0,12\%	95,56\%	C	Medium
Product 1789	92,36\%	1	0,12\%	95,68\%	C	Medium
Product 2072	92,57\%	1	0,12\%	95,80\%	C	Medium
Product 1174	92,78\%	1	0,12\%	95,92\%	C	Medium
Product 2074	92,99\%	1	0,12\%	96,04\%	C	Medium
Product 1753	93,21\%	1	0,12\%	96,16\%	C	Medium
Product 1745	93,42\%	1	0,12\%	96,28\%	C	Medium
Product 1740	93,63\%	1	0,12\%	96,40\%	C	Medium
Product 1733	93,84\%	1	0,12\%	96,52\%	C	Medium
Product 1702	94,06\%	1	0,12\%	96,64\%	C	Medium
Product 1001	94,27\%	1	0,12\%	96,76\%	C	Medium

Product 2109	$94,48 \%$	1	$0,12 \%$	$96,88 \%$	C	Medium
Product 1004	$94,69 \%$	1	$0,12 \%$	$97,00 \%$	C	Medium
Product 1671	$94,90 \%$	1	$0,12 \%$	$97,12 \%$	C	Medium
Product 1615	$95,12 \%$	1	$0,12 \%$	$97,24 \%$	C	Medium
Product 1611	$95,33 \%$	1	$0,12 \%$	$97,36 \%$	C	Medium
Product 2119	$95,54 \%$	1	$0,12 \%$	$97,48 \%$	C	Medium
Product 2120	$95,75 \%$	1	$0,12 \%$	$97,60 \%$	C	Medium
Product 1602	$95,97 \%$	1	$0,12 \%$	$97,72 \%$	C	Medium
Product 1574	$96,18 \%$	1	$0,12 \%$	$97,84 \%$	C	Medium
Product 1562	$96,39 \%$	1	$0,12 \%$	$97,96 \%$	C	Medium
Product 1550	$96,60 \%$	1	$0,12 \%$	$98,08 \%$	C	Medium
Product 1487	$96,82 \%$	1	$0,12 \%$	$98,20 \%$	C	Medium
Product 1486	$97,03 \%$	1	$0,12 \%$	$98,32 \%$	C	Medium
Product 1476	$97,24 \%$	1	$0,12 \%$	$98,44 \%$	C	Medium
Product 1461	$97,45 \%$	1	$0,12 \%$	$98,56 \%$	C	Medium
Product 693	$97,66 \%$	1	$0,12 \%$	$98,68 \%$	C	Medium
Product 694	$97,88 \%$	1	$0,12 \%$	$98,80 \%$	C	Medium
Product 683	$98,09 \%$	1	$0,12 \%$	$98,92 \%$	C	Medium
Product 1450	$98,30 \%$	1	$0,12 \%$	$99,04 \%$	C	Medium
Product 1309	$98,51 \%$	1	$0,12 \%$	$99,16 \%$	C	Medium
Product 1247	$98,73 \%$	1	$0,12 \%$	$99,28 \%$	C	Medium
Product 1045	$98,94 \%$	1	$0,12 \%$	$99,40 \%$	C	Medium
Product 1485	$99,15 \%$	1	$0,12 \%$	$99,52 \%$	C	Medium
Product 2377	$99,36 \%$	1	$0,12 \%$	$99,64 \%$	C	Small
Product 2379	$99,58 \%$	1	$0,12 \%$	$99,76 \%$	C	Small
Product 2354	$99,79 \%$	1	$0,12 \%$	$99,88 \%$	C	Small
Product 2278	$100,00 \%$	1	$0,12 \%$	$100,00 \%$	C	Small

Appendix Z - ABC Analysis: ESKU Family

SKU	\%	Picking Frequency			Class	Sub-Family
		Picks	\%	Cumulative		
Product 2380	0,73\%	27	6,19\%	6,19\%	A	Medium
Product 2381	1,46\%	22	5,05\%	11,24\%	A	Medium
Product 2382	2,19\%	18	4,13\%	15,37\%	A	Medium
Product 2383	2,92\%	13	2,98\%	18,35\%	A	Medium
Product 2384	3,65\%	12	2,75\%	21,10\%	A	Medium
Product 2385	4,38\%	12	2,75\%	23,85\%	A	Medium
Product 2386	5,11\%	10	2,29\%	26,15\%	A	Medium
Product 2387	5,84\%	10	2,29\%	28,44\%	A	Medium
Product 2388	6,57\%	8	1,83\%	30,28\%	A	Medium
Product 3189	7,30\%	7	1,61\%	31,88\%	A	Medium
Product 2389	8,03\%	7	1,61\%	33,49\%	A	Medium
Product 2390	8,76\%	6	1,38\%	34,86\%	A	Medium
Product 2391	9,49\%	6	1,38\%	36,24\%	A	Medium
Product 2393	10,22\%	6	1,38\%	37,61\%	A	Medium
Product 2392	10,95\%	6	1,38\%	38,99\%	A	Medium
Product 2394	11,68\%	6	1,38\%	40,37\%	A	Medium
Product 2395	12,41\%	6	1,38\%	41,74\%	A	Medium
Product 2396	13,14\%	6	1,38\%	43,12\%	A	Medium
Product 2397	13,87\%	6	1,38\%	44,50\%	A	Medium
Product 2403	14,60\%	5	1,15\%	45,64\%	A	Medium
Product 2400	15,33\%	5	1,15\%	46,79\%	A	Medium
Product 2402	16,06\%	5	1,15\%	47,94\%	A	Medium
Product 2399	16,79\%	5	1,15\%	49,08\%	A	Medium
Product 2398	17,52\%	5	1,15\%	50,23\%	A	Medium
Product 2401	18,25\%	5	1,15\%	51,38\%	A	Medium
Product 2404	18,98\%	5	1,15\%	52,52\%	A	Medium
Product 2405	19,71\%	5	1,15\%	53,67\%	A	Medium
Product 3148	20,44\%	4	0,92\%	54,59\%	A	Medium
Product 2414	21,17\%	4	0,92\%	55,50\%	A	Medium
Product 2408	21,90\%	4	0,92\%	56,42\%	A	Medium
Product 2406	22,63\%	4	0,92\%	57,34\%	A	Medium
Product 2407	23,36\%	4	0,92\%	58,26\%	A	Medium
Product 2415	24,09\%	4	0,92\%	59,17\%	A	Medium
Product 2410	24,82\%	4	0,92\%	60,09\%	A	Medium
Product 2409	25,55\%	4	0,92\%	61,01\%	B	Medium
Product 2411	26,28\%	4	0,92\%	61,93\%	B	Medium
Product 2412	27,01\%	4	0,92\%	62,84\%	B	Medium
Product 2413	27,74\%	4	0,92\%	63,76\%	B	Medium
Product 2416	28,47\%	4	0,92\%	64,68\%	B	Medium
Product 2636	29,20\%	4	0,92\%	65,60\%	B	Medium
Product 2417	29,93\%	4	0,92\%	66,51\%	B	Medium
Product 2418	30,66\%	4	0,92\%	67,43\%	B	Medium
Product 2419	31,39\%	3	0,69\%	68,12\%	B	Medium

Product 2420	32,12\%	3	0,69\%	68,81\%	B	Medium
Product 2421	32,85\%	3	0,69\%	69,50\%	B	Medium
Product 2422	33,58\%	3	0,69\%	70,18\%	B	Medium
Product 2423	34,31\%	3	0,69\%	70,87\%	B	Medium
Product 2974	35,04\%	3	0,69\%	71,56\%	B	Medium
Product 2434	35,77\%	2	0,46\%	72,02\%	B	Medium
Product 2428	36,50\%	2	0,46\%	72,48\%	B	Medium
Product 2426	37,23\%	2	0,46\%	72,94\%	B	Medium
Product 2492	37,96\%	2	0,46\%	73,39\%	B	Medium
Product 3143	38,69\%	2	0,46\%	73,85\%	B	Medium
Product 2429	39,42\%	2	0,46\%	74,31\%	B	Medium
Product 2430	40,15\%	2	0,46\%	74,77\%	B	Medium
Product 2424	40,88\%	2	0,46\%	75,23\%	B	Medium
Product 2433	41,61\%	2	0,46\%	75,69\%	B	Medium
Product 3163	42,34\%	2	0,46\%	76,15\%	B	Medium
Product 2437	43,07\%	2	0,46\%	76,61\%	B	Medium
Product 2436	43,80\%	2	0,46\%	77,06\%	B	Medium
Product 3135	44,53\%	2	0,46\%	77,52\%	B	Medium
Product 2425	45,26\%	2	0,46\%	77,98\%	B	Medium
Product 2427	45,99\%	2	0,46\%	78,44\%	B	Medium
Product 2431	46,72\%	2	0,46\%	78,90\%	B	Medium
Product 2432	47,45\%	2	0,46\%	79,36\%	B	Medium
Product 2435	48,18\%	2	0,46\%	79,82\%	B	Medium
Product 2884	48,91\%	2	0,46\%	80,28\%	B	Medium
Product 2530	49,64\%	2	0,46\%	80,73\%	B	Medium
Product 2438	50,36\%	2	0,46\%	81,19\%	B	Medium
Product 2548	51,09\%	2	0,46\%	81,65\%	B	Medium
Product 2439	51,82\%	2	0,46\%	82,11\%	B	Medium
Product 2440	52,55\%	2	0,46\%	82,57\%	B	Medium
Product 2441	53,28\%	2	0,46\%	83,03\%	B	Medium
Product 2442	54,01\%	2	0,46\%	83,49\%	B	Medium
Product 2443	54,74\%	2	0,46\%	83,94\%	B	Medium
Product 2444	55,47\%	2	0,46\%	84,40\%	B	Medium
Product 2445	56,20\%	2	0,46\%	84,86\%	B	Medium
Product 3044	56,93\%	2	0,46\%	85,32\%	B	Medium
Product 2857	57,66\%	2	0,46\%	85,78\%	C	Medium
Product 2446	58,39\%	2	0,46\%	86,24\%	C	Medium
Product 2573	59,12\%	2	0,46\%	86,70\%	C	Medium
Product 3203	59,85\%	2	0,46\%	87,16\%	C	Medium
Product 2447	60,58\%	2	0,46\%	87,61\%	C	Medium
Product 2460	61,31\%	1	0,23\%	87,84\%	C	Medium
Product 3204	62,04\%	1	0,23\%	88,07\%	C	Medium
Product 2448	62,77\%	1	0,23\%	88,30\%	C	Medium
Product 2464	63,50\%	1	0,23\%	88,53\%	C	Medium
Product 2465	64,23\%	1	0,23\%	88,76\%	C	Medium
Product 2452	64,96\%	1	0,23\%	88,99\%	C	Medium
Product 2450	65,69\%	1	0,23\%	89,22\%	C	Medium
Product 3178	66,42\%	1	0,23\%	89,45\%	C	Medium

Product 2451	67,15\%	1	0,23\%	89,68\%	C	Medium
Product 2459	67,88\%	1	0,23\%	89,91\%	C	Medium
Product 2456	68,61\%	1	0,23\%	90,14\%	C	Medium
Product 2458	69,34\%	1	0,23\%	90,37\%	C	Medium
Product 2463	70,07\%	1	0,23\%	90,60\%	C	Medium
Product 2471	70,80\%	1	0,23\%	90,83\%	C	Medium
Product 2449	71,53\%	1	0,23\%	91,06\%	C	Medium
Product 2454	72,26\%	1	0,23\%	91,28\%	C	Medium
Product 2455	72,99\%	1	0,23\%	91,51\%	C	Medium
Product 2466	73,72\%	1	0,23\%	91,74\%	C	Medium
Product 2467	74,45\%	1	0,23\%	91,97\%	C	Medium
Product 2468	75,18\%	1	0,23\%	92,20\%	C	Medium
Product 2469	75,91\%	1	0,23\%	92,43\%	C	Medium
Product 2470	76,64\%	1	0,23\%	92,66\%	C	Medium
Product 2472	77,37\%	1	0,23\%	92,89\%	C	Medium
Product 2473	78,10\%	1	0,23\%	93,12\%	C	Medium
Product 2474	78,83\%	1	0,23\%	93,35\%	C	Medium
Product 2475	79,56\%	1	0,23\%	93,58\%	C	Medium
Product 2453	80,29\%	1	0,23\%	93,81\%	C	Medium
Product 2457	81,02\%	1	0,23\%	94,04\%	C	Medium
Product 2461	81,75\%	1	0,23\%	94,27\%	C	Medium
Product 2462	82,48\%	1	0,23\%	94,50\%	C	Medium
Product 2574	83,21\%	1	0,23\%	94,72\%	C	Medium
Product 3181	83,94\%	1	0,23\%	94,95\%	C	Medium
Product 3193	84,67\%	1	0,23\%	95,18\%	C	Medium
Product 2483	85,40\%	1	0,23\%	95,41\%	C	Medium
Product 2482	86,13\%	1	0,23\%	95,64\%	C	Medium
Product 2975	86,86\%	1	0,23\%	95,87\%	C	Medium
Product 2484	87,59\%	1	0,23\%	96,10\%	C	Medium
Product 2476	88,32\%	1	0,23\%	96,33\%	C	Medium
Product 2477	89,05\%	1	0,23\%	96,56\%	C	Medium
Product 2478	89,78\%	1	0,23\%	96,79\%	C	Medium
Product 2479	90,51\%	1	0,23\%	97,02\%	C	Medium
Product 2480	91,24\%	1	0,23\%	97,25\%	C	Medium
Product 2481	91,97\%	1	0,23\%	97,48\%	C	Medium
Product 3136	92,70\%	1	0,23\%	97,71\%	C	Medium
Product 2620	93,43\%	1	0,23\%	97,94\%	C	Medium
Product 3137	94,16\%	1	0,23\%	98,17\%	C	Medium
Product 3164	94,89\%	1	0,23\%	98,39\%	C	Medium
Product 2776	95,62\%	1	0,23\%	98,62\%	C	Medium
Product 2485	96,35\%	1	0,23\%	98,85\%	C	Medium
Product 2486	97,08\%	1	0,23\%	99,08\%	C	Medium
Product 2934	97,81\%	1	0,23\%	99,31\%	C	Medium
Product 2487	98,54\%	1	0,23\%	99,54\%	C	Medium
Product 2488	99,27\%	1	0,23\%	99,77\%	C	Medium
Product 3199	100,00\%	1	0,23\%	100,00\%	C	Medium

Appendix AA - ABC Analysis: FAI Family

SKU	\%	Picking Frequency			Class	Sub-Family
		Picks	\%	Cumulative		
Product 106	1\%	2	1,90\%	1,90\%	A	Big
Product 2125	2\%	2	1,90\%	3,81\%	A	Medium
Product 2111	3\%	2	1,90\%	5,71\%	A	Medium
Product 2075	4\%	2	1,90\%	7,62\%	A	Medium
Product 2056	5\%	2	1,90\%	9,52\%	A	Medium
Product 850	6\%	1	0,95\%	10,48\%	A	Big
Product 589	7\%	1	0,95\%	11,43\%	A	Big
Product 795	8\%	1	0,95\%	12,38\%	A	Big
Product 796	9\%	1	0,95\%	13,33\%	A	Big
Product 572	10\%	1	0,95\%	14,29\%	A	Big
Product 810	11\%	1	0,95\%	15,24\%	A	Big
Product 447	12\%	1	0,95\%	16,19\%	A	Big
Product 830	13\%	1	0,95\%	17,14\%	A	Big
Product 605	14\%	1	0,95\%	18,10\%	A	Big
Product 575	15\%	1	0,95\%	19,05\%	A	Big
Product 549	16\%	1	0,95\%	20,00\%	A	Big
Product 523	17\%	1	0,95\%	20,95\%	A	Big
Product 396	18\%	1	0,95\%	21,90\%	A	Big
Product 483	19\%	1	0,95\%	22,86\%	A	Big
Product 438	20\%	1	0,95\%	23,81\%	A	Big
Product 194	21\%	1	0,95\%	24,76\%	A	Big
Product 525	22\%	1	0,95\%	25,71\%	A	Big
Product 811	23\%	1	0,95\%	26,67\%	A	Big
Product 411	24\%	1	0,95\%	27,62\%	A	Big
Product 144	25\%	1	0,95\%	28,57\%	A	Big
Product 139	26\%	1	0,95\%	29,52\%	A	Big
Product 149	27\%	1	0,95\%	30,48\%	A	Big
Product 872	28\%	1	0,95\%	31,43\%	A	Big
Product 2130	29\%	1	0,95\%	32,38\%	B	Medium
Product 1226	30\%	1	0,95\%	33,33\%	B	Medium
Product 1810	31\%	1	0,95\%	34,29\%	B	Medium
Product 1653	32\%	1	0,95\%	35,24\%	B	Medium
Product 2034	33\%	1	0,95\%	36,19\%	B	Medium
Product 2021	34\%	1	0,95\%	37,14\%	B	Medium
Product 2015	35\%	1	0,95\%	38,10\%	B	Medium
Product 2110	36\%	1	0,95\%	39,05\%	B	Medium
Product 2124	37\%	1	0,95\%	40,00\%	B	Medium
Product 2035	38\%	1	0,95\%	40,95\%	B	Medium
Product 2051	39\%	1	0,95\%	41,90\%	B	Medium
Product 2033	40\%	1	0,95\%	42,86\%	B	Medium
Product 2117	41\%	1	0,95\%	43,81\%	B	Medium
Product 2116	42\%	1	0,95\%	44,76\%	B	Medium
Product 1415	43\%	1	0,95\%	45,71\%	B	Medium

Product 2016	44\%	1	0,95\%	46,67\%	B	Medium
Product 2048	45\%	1	0,95\%	47,62\%	B	Medium
Product 2092	46\%	1	0,95\%	48,57\%	B	Medium
Product 1784	47\%	1	0,95\%	49,52\%	B	Medium
Product 2020	48\%	1	0,95\%	50,48\%	B	Medium
Product 2123	49\%	1	0,95\%	51,43\%	B	Medium
Product 2122	50\%	1	0,95\%	52,38\%	B	Medium
Product 2083	51\%	1	0,95\%	53,33\%	B	Medium
Product 2076	52\%	1	0,95\%	54,29\%	B	Medium
Product 2089	53\%	1	0,95\%	55,24\%	B	Medium
Product 2103	54\%	1	0,95\%	56,19\%	B	Medium
Product 2098	55\%	1	0,95\%	57,14\%	B	Medium
Product 2065	56\%	1	0,95\%	58,10\%	B	Medium
Product 2082	57\%	1	0,95\%	59,05\%	B	Medium
Product 2055	58\%	1	0,95\%	60,00\%	B	Medium
Product 2097	59\%	1	0,95\%	60,95\%	C	Medium
Product 2079	60\%	1	0,95\%	61,90\%	C	Medium
Product 1665	61\%	1	0,95\%	62,86\%	C	Medium
Product 2091	62\%	1	0,95\%	63,81\%	C	Medium
Product 2093	63\%	1	0,95\%	64,76\%	C	Medium
Product 2088	64\%	1	0,95\%	65,71\%	C	Medium
Product 2032	65\%	1	0,95\%	66,67\%	C	Medium
Product 2013	66\%	1	0,95\%	67,62\%	C	Medium
Product 2006	67\%	1	0,95\%	68,57\%	C	Medium
Product 2090	68\%	1	0,95\%	69,52\%	C	Medium
Product 2105	69\%	1	0,95\%	70,48\%	C	Medium
Product 2061	70\%	1	0,95\%	71,43\%	C	Medium
Product 2129	71\%	1	0,95\%	72,38\%	C	Medium
Product 2077	72\%	1	0,95\%	73,33\%	C	Medium
Product 2104	73\%	1	0,95\%	74,29\%	C	Medium
Product 1808	74\%	1	0,95\%	75,24\%	C	Medium
Product 1760	75\%	1	0,95\%	76,19\%	C	Medium
Product 2099	76\%	1	0,95\%	77,14\%	C	Medium
Product 2078	77\%	1	0,95\%	78,10\%	C	Medium
Product 2102	78\%	1	0,95\%	79,05\%	C	Medium
Product 2095	79\%	1	0,95\%	80,00\%	C	Medium
Product 1540	80\%	1	0,95\%	80,95\%	C	Medium
Product 1422	81\%	1	0,95\%	81,90\%	C	Medium
Product 1412	82\%	1	0,95\%	82,86\%	C	Medium
Product 2096	83\%	1	0,95\%	83,81\%	C	Medium
Product 1743	84\%	1	0,95\%	84,76\%	C	Medium
Product 2027	85\%	1	0,95\%	85,71\%	C	Medium
Product 2106	86\%	1	0,95\%	86,67\%	C	Medium
Product 1799	87\%	1	0,95\%	87,62\%	C	Medium
Product 2081	88\%	1	0,95\%	88,57\%	C	Medium
Product 2100	89\%	1	0,95\%	89,52\%	C	Medium
Product 2052	90\%	1	0,95\%	90,48\%	C	Medium
Product 2101	91\%	1	0,95\%	91,43\%	C	Medium

Product 2114	92%	1	$0,95 \%$	$92,38 \%$	C	Medium
Product 2049	93%	1	$0,95 \%$	$93,33 \%$	C	Medium
Product 1945	94%	1	$0,95 \%$	$94,29 \%$	C	Medium
Product 2112	95%	1	$0,95 \%$	$95,24 \%$	C	Medium
Product 2113	96%	1	$0,95 \%$	$96,19 \%$	C	Medium
Product 2115	97%	1	$0,95 \%$	$97,14 \%$	C	Medium
Product 2060	98%	1	$0,95 \%$	$98,10 \%$	C	Medium
Product 2050	99%	1	$0,95 \%$	$99,05 \%$	C	Medium
Product 2066	100%	1	$0,95 \%$	$100,00 \%$	C	Medium

Appendix BB - Class-Based Reallocation: PFBE Family

SKU	Volume		New Location
	Cm ${ }^{3}$	Cumulative	
Product 672	1552,63	1552,63	PFBE-Z5
Product 270	2323,94	3876,57	PFBE-Z5
Product 1515	4 211,36	8 087,93	PFBE-Z5
Product 192	1449,51	9537,44	PFBE-Z5
Product 1768	8422,72	17 960,16	PFBE-Z5
Product 1710	7 018,93	24 979,09	PFBE-Z5
Product 818	1055,81	26034,89	PFBE-Z5
Product 813	756,00	26 790,89	PFBE-Z5
Product 207	1577,09	28 367,98	PFBE-Z5
Product 202	1536,48	29 904,46	PFBE-Z5
Product 697	2163,20	32 067,66	PFBE-Z5
Product 708	1374,45	33 442,11	PFBE-Z5
Product 591	19 519,75	52961,86	PFBE-Z5
Product 741	2250,00	55 211,86	PFBE-Z5
Product 417	5929,20	61 141,06	PFBE-Z5
Product 134	990,00	62 131,06	PFBE-Z5
Product 1474	476,00	62 607,06	PFBE-Z5
Product 673	887,33	63 494,38	PFBE-Z5
Product 676	887,33	64 381,71	PFBE-Z5
Product 699	425,81	64 807,52	PFBE-Z5
Product 707	2 430,33	67 237,85	PFBE-Z5
Product 731	1336,32	68 574,17	PFBE-Z5
Product 732	2613,60	71 187,77	PFBE-Z5
Product 567	15 960,00	87 147,77	PFBE-Z5
Product 775	3830,40	90 978,17	PFBE-Z5
Product 777	593,19	91 571,36	PFBE-Z5
Product 1763	8422,72	99 994,08	PFBE-Z5
Product 799	412,37	100 406,45	PFBE-Z5
Product 806	4054,85	104 461,29	PFBE-Z5
Product 419	6001,28	110462,57	PFBE-Z5
Product 388	5049,00	115511,57	PFBE-Z5
Product 858	6137,00	121 648,57	PFBE-Z5
Product 2376	435,42	122 083,99	PFBE-Z5
Product 788	87,41	122 171,40	PFBE-Z5
Product 698	801,69	122 973,09	PFBE-Z5
Product 669	5458,32	128 431,41	PFBE-Z5
Product 679	12310,85	140742,26	PFBE-Z5
Product 655	51800,00	192542,26	PFBE-Z5
Product 653	49 896,00	242 438,26	PFBE-Z5

Product 648	42 034,61	284 472,87	PFBE-Z5
Product 640	36710,31	321 183,18	PFBE-Z5
Product 2025	25 268,15	346 451,32	PFBE-Z5
Product 721	202,27	346 653,60	PFBE-Z5
Product 723	4 469,41	351 123,00	PFBE-Z5
Product 727	2 601,06	353 724,07	PFBE-Z5
Product 736	384,25	354 108,32	PFBE-Z5
Product 557	15 051,43	369 159,75	PFBE-Z5
Product 737	872,13	370 031,88	PFBE-Z5
Product 1891	12 634,07	382 665,95	PFBE-Z5
Product 746	1089,00	383 754,96	PFBE-Z5
Product 753	193,28	383 948,24	PFBE-Z5
Product 758	632,40	384 580,64	PFBE-Z5
Product 510	10328,01	394 908,65	PFBE-Z5
Product 771	58,97	394 967,62	PFBE-Z5
Product 781	1502,24	396469,85	PFBE-Z5
Product 1773	8422,72	404 892,57	PFBE-Z5
Product 493	8963,36	413 855,93	PFBE-Z5
Product 482	8401,59	422 257,52	PFBE-Z5
Product 473	7989,05	430 246,57	PFBE-Z5
Product 791	195,10	430 441,67	PFBE-Z5
Product 792	3418,76	433 860,43	PFBE-Z5
Product 458	7481,04	441 341,47	PFBE-Z5
Product 797	912,00	442 253,47	PFBE-Z5
Product 384	4 987,90	447 241,37	PFBE-Z5
Product 825	626,12	447 867,48	PFBE-Z5
Product 822	221,83	448 089,31	PFBE-Z5
Product 815	7345,73	455 435,04	PFBE-Z5
Product 1389	2 807,57	458 242,61	PFBE-Z5
Product 245	2 012,30	460 254,92	PFBE-Z5
Product 214	1674,00	461 928,92	PFBE-Z5
Product 212	1667,95	463 596,87	PFBE-Z5
Product 867	4 546,08	468 142,95	PFBE-Z5
Product 112	792,70	468 935,65	PFBE-Z5
Product 81	541,69	469 477,34	PFBE-Z5
Product 65	437,50	469 914,84	PFBE-Z5
Product 35	102,83	470 017,67	PFBE-Z5
Product 1964	10 109,47	480 127,14	PFBE-Z5
Product 1948	7674,25	487 801,39	PFBE-Z5
Product 1947	7246,50	495047,89	PFBE-Z5
Product 2018	202,27	495 250,16	PFBE-Z5
Product 1824	2 556,00	497 806,16	PFBE-Z5
Product 1692	1261,26	499 067,42	PFBE-Z5
Product 892	740,43	499 807,84	PFBE-Z5
Product 1576	651,24	500 459,08	PFBE-Z5

Product 1543	551,15	501010,24	PFBE-Z5
Product 1489	520,00	501530,24	PFBE-Z5
Product 739	577,50	577,50	PFBE-Z4
Product 665	75 620,99	76198,49	PFBE-Z4
Product 700	2800,25	78 998,74	PFBE-Z4
Product 705	1131,90	80 130,64	PFBE-Z4
Product 2031	28 075,72	108 206,35	PFBE-Z4
Product 710	15 592,50	123 798,85	PFBE-Z4
Product 627	30786,17	154585,02	PFBE-Z4
Product 711	3 960,00	158 545,02	PFBE-Z4
Product 712	596,65	159 141,67	PFBE-Z4
Product 713	3164,11	162 305,77	PFBE-Z4
Product 624	27 750,91	190 056,69	PFBE-Z4
Product 623	27 455,00	217 511,69	PFBE-Z4
Product 717	14 745,60	232 257,29	PFBE-Z4
Product 720	142,20	232 399,49	PFBE-Z4
Product 2001	21056,79	253 456,27	PFBE-Z4
Product 722	283,90	253740,18	PFBE-Z4
Product 724	1968,12	255708,30	PFBE-Z4
Product 600	21126,62	276834,92	PFBE-Z4
Product 559	15 210,00	292 044,92	PFBE-Z4
Product 743	20,31	292 065,23	PFBE-Z4
Product 744	5042,27	297 107,50	PFBE-Z4
Product 1857	11 230,29	308337,78	PFBE-Z4
Product 1853	11 230,29	319 568,07	PFBE-Z4
Product 749	51,35	319 619,42	PFBE-Z4
Product 748	11,62	319 631,04	PFBE-Z4
Product 750	70,62	319 701,66	PFBE-Z4
Product 751	11 594,52	331 296,18	PFBE-Z4
Product 1860	11 230,29	342 526,47	PFBE-Z4
Product 1855	11 230,29	353 756,75	PFBE-Z4
Product 763	284,13	354 040,88	PFBE-Z4
Product 765	2705,70	356746,58	PFBE-Z4
Product 520	10899,21	367 645,79	PFBE-Z4
Product 501	9779,48	377 425,27	PFBE-Z4
Product 778	251,00	377 676,27	PFBE-Z4
Product 770	748,73	378 425,00	PFBE-Z4
Product 772	3239,11	381664,11	PFBE-Z4
Product 774	3239,11	384 903,22	PFBE-Z4
Product 769	11 337,30	396240,52	PFBE-Z4
Product 1767	8422,72	404 663,24	PFBE-Z4
Product 490	8802,30	413 465,54	PFBE-Z4
Product 790	469,20	413 934,74	PFBE-Z4
Product 1709	7 018,93	420 953,67	PFBE-Z4
Product 1719	7018,93	427 972,60	PFBE-Z4

Product 456	7343,73	435 316,33	PFBE-Z4
Product 439	6583,50	441899,83	PFBE-Z4
Product 435	6522,12	448 421,95	PFBE-Z4
Product 1646	5615,14	454 037,09	PFBE-Z4
Product 802	558,14	454 595,22	PFBE-Z4
Product 805	567,18	455 162,40	PFBE-Z4
Product 1622	5615,14	460 777,55	PFBE-Z4
Product 426	6269,40	467 046,95	PFBE-Z4
Product 416	5 921,16	472 968,11	PFBE-Z4
Product 403	5423,55	478 391,66	PFBE-Z4
Product 381	4 774,37	483 166,02	PFBE-Z4
Product 821	39,60	483 205,62	PFBE-Z4
Product 820	56,07	483 261,69	PFBE-Z4
Product 823	1484,80	484746,49	PFBE-Z4
Product 824	3056,13	487 802,62	PFBE-Z4
Product 345	3769,21	491571,83	PFBE-Z4
Product 340	3605,38	495 177,21	PFBE-Z4
Product 335	3 533,40	498 710,61	PFBE-Z4
Product 332	3 399,53	502 110,14	PFBE-Z4
Product 847	531,02	502641,16	PFBE-Z4
Product 838	147,71	502788,88	PFBE-Z4
Product 831	1248,30	504037,18	PFBE-Z4
Product 840	6997,26	6997,26	PFBE-O2
Product 839	11 594,52	18 591,78	PFBE-O2
Product 1382	2 807,57	21399,35	PFBE-O2
Product 322	3075,80	24 475,15	PFBE-O2
Product 318	2 997,96	27 473,11	PFBE-O2
Product 313	2931,45	30 404,56	PFBE-O2
Product 284	2533,39	32 937,95	PFBE-O2
Product 275	2 343,60	35 281,55	PFBE-O2
Product 265	2 276,44	37 557,99	PFBE-O2
Product 255	2 144,74	39 702,73	PFBE-O2
Product 252	2125,11	41827,85	PFBE-O2
Product 210	1602,44	43 430,29	PFBE-O2
Product 859	14 653,32	58 083,61	PFBE-O2
Product 857	639,45	58 723,06	PFBE-O2
Product 853	429,29	59152,34	PFBE-O2
Product 860	230,89	59 383,23	PFBE-O2
Product 863	453,96	59 837,19	PFBE-O2
Product 862	561,37	60398,56	PFBE-O2
Product 196	1489,71	61888,27	PFBE-O2
Product 189	1428,00	63 316,27	PFBE-O2
Product 169	1264,49	64 580,77	PFBE-O2
Product 162	1220,00	65 800,77	PFBE-O2
Product 156	1169,83	66 970,60	PFBE-O2

Product 155	1 168,08	68 138,68	PFBE-O2
Product 110	777,00	68 915,68	PFBE-O2
Product 89	597,96	69 513,64	PFBE-O2
Product 73	499,97	70 013,61	PFBE-O2
Product 2045	1275,96	71 289,57	PFBE-O2
Product 2107	1236,27	72525,84	PFBE-O2
Product 1992	19 296,11	91821,95	PFBE-O2
Product 2010	495,22	92317,17	PFBE-O2
Product 1977	13 271,33	105588,49	PFBE-O2
Product 1972	11467,50	117 055,99	PFBE-O2
Product 1966	10388,77	127 444,76	PFBE-O2
Product 1944	7 130,97	134 575,73	PFBE-O2
Product 2019	49,50	134 625,24	PFBE-O2
Product 1872	4 068,24	138 693,48	PFBE-O2
Product 2028	11,42	138 704,89	PFBE-O2
Product 2029	1290,30	139 995,19	PFBE-O2
Product 1866	3 961,75	143 956,94	PFBE-O2
Product 1836	2938,80	146 895,74	PFBE-O2
Product 2054	65,52	146 961,26	PFBE-O2
Product 1250	1851,06	148 812,33	PFBE-O2
Product 1739	1442,81	150255,13	PFBE-O2
Product 1734	1369,50	151 624,63	PFBE-O2
Product 1694	1272,96	152 897,59	PFBE-O2
Product 2108	932,88	153830,47	PFBE-O2
Product 1664	1 020,60	154851,07	PFBE-O2
Product 2121	688,90	155539,97	PFBE-O2
Product 1581	681,45	156 221,42	PFBE-O2
Product 1560	607,46	156828,88	PFBE-O2
Product 1544	559,65	157 388,53	PFBE-O2
Product 1494	533,61	157 922,14	PFBE-O2
Product 686	370,21	158 292,36	PFBE-O2
Product 695	370,21	158 662,57	PFBE-O2
Product 2316	355,68	159 018,25	PFBE-O2
Product 2258	165,00	159183,25	PFBE-O2
Product 2133	1,35	159 184,60	PFBE-O2
Product 2132	1,13	159 185,72	PFBE-O2
Product 742	110,21	2565 946,83	PFBE-V2
Product 783	219,91	2564 394,21	PFBE-V2
Product 668	87 132,67	2562070,26	PFBE-V2
Product 674	670,57	2557 858,90	PFBE-V2
Product 675	577,85	2556 409,39	PFBE-V2
Product 677	670,57	2547 986,68	PFBE-V2
Product 678	538,56	2540967,75	PFBE-V2
Product 680	5142,17	2539 911,94	PFBE-V2
Product 681	498,46	2539 155,94	PFBE-V2

Product 682	163,68	2537578,85	PFBE-V2
Product 2068	40709,79	2536042,37	PFBE-V2
Product 646	39 941,54	2533 879,17	PFBE-V2
Product 701	9491,04	2532 504,72	PFBE-V2
Product 702	781,44	2512 984,98	PFBE-V2
Product 704	120,12	2510 734,98	PFBE-V2
Product 703	14 258,62	2504 805,78	PFBE-V2
Product 706	2610,00	2503 815,78	PFBE-V2
Product 2038	30883,29	2503339,78	PFBE-V2
Product 2040	30883,29	2502452,45	PFBE-V2
Product 629	31732,01	2501565,12	PFBE-V2
Product 2030	28 075,72	2501 139,31	PFBE-V2
Product 709	152,37	2498 708,98	PFBE-V2
Product 626	29 690,50	2497 372,66	PFBE-V2
Product 715	167,96	2494759,06	PFBE-V2
Product 714	1925,18	2478 799,06	PFBE-V2
Product 716	383,67	2474 968,66	PFBE-V2
Product 2017	23 864,36	2474 375,47	PFBE-V2
Product 719	4 683,65	2465952,76	PFBE-V2
Product 718	2246,14	2465 540,39	PFBE-V2
Product 609	22332,46	2461 485,54	PFBE-V2
Product 607	22 242,22	2455 484,26	PFBE-V2
Product 1985	19 653,00	2450 435,26	PFBE-V2
Product 725	18 299,90	2444 298,26	PFBE-V2
Product 726	26 968,03	2443 862,84	PFBE-V2
Product 733	488,80	2443 775,43	PFBE-V2
Product 587	18900,30	2501506,37	PFBE-Z3
Product 586	18 519,73	2496048,05	PFBE-Z3
Product 581	18 057,60	2483737,21	PFBE-Z3
Product 580	18 057,60	2431 937,21	PFBE-Z3
Product 577	17 616,90	2382041,21	PFBE-Z3
Product 734	2 547,66	2340006,60	PFBE-Z3
Product 735	437,19	2303 296,29	PFBE-Z3
Product 573	16870,22	2278028,14	PFBE-Z3
Product 566	15853,66	2277 825,87	PFBE-Z3
Product 555	14331,17	2273 356,46	PFBE-Z3
Product 1884	12 634,07	2270755,40	PFBE-Z3
Product 740	6602,10	2270371,15	PFBE-Z3
Product 738	3714,61	2255319,72	PFBE-Z3
Product 745	2541,00	2254 447,59	PFBE-Z3
Product 551	13807,50	2241813,52	PFBE-Z3
Product 755	1846,21	2240724,51	PFBE-Z3
Product 754	293,63	2240 531,23	PFBE-Z3
Product 747	1268,80	2239 898,83	PFBE-Z3
Product 752	284,58	2229570,82	PFBE-Z3

Product 757	23 822,60	2229511,85	PFBE-Z3
Product 756	795,34	2228 009,61	PFBE-Z3
Product 542	12 573,82	2219 586,90	PFBE-Z3
Product 532	11 699,76	2210 623,54	PFBE-Z3
Product 764	2 964,08	2202221,95	PFBE-Z3
Product 761	2 215,20	2194 232,90	PFBE-Z3
Product 760	782,47	2194037,80	PFBE-Z3
Product 759	742,50	2190 619,04	PFBE-Z3
Product 762	7708,68	2183138,00	PFBE-Z3
Product 766	3788,40	2182 226,00	PFBE-Z3
Product 517	10768,14	2177 238,10	PFBE-Z3
Product 515	10 649,50	2176611,98	PFBE-Z3
Product 509	10 152,80	2176390,15	PFBE-Z3
Product 500	9732,45	2169 044,42	PFBE-Z3
Product 498	9466,07	2166 236,85	PFBE-Z3
Product 776	400,00	2164 224,55	PFBE-Z3
Product 773	2704,80	2162550,55	PFBE-Z3
Product 1769	8422,72	2160882,60	PFBE-Z3
Product 1775	8422,72	2156336,52	PFBE-Z3
Product 779	7 057,58	2155 543,82	PFBE-Z3
Product 768	118,73	2155002,13	PFBE-Z3
Product 767	4172,80	2154 564,63	PFBE-Z3
Product 780	1560,30	2154 461,80	PFBE-Z3
Product 782	19 671,08	2144352,33	PFBE-Z3
Product 784	5398,52	2136678,08	PFBE-Z3
Product 496	9 266,40	2129431,58	PFBE-Z3
Product 495	9018,27	2129 229,31	PFBE-Z3
Product 489	8758,26	2126 673,31	PFBE-Z3
Product 477	8303,34	2125412,05	PFBE-Z3
Product 474	8 069,99	2124671,62	PFBE-Z3
Product 1731	7 018,93	2124020,38	PFBE-Z3
Product 785	671,11	2123 469,23	PFBE-Z3
Product 1705	7 018,93	2122 949,23	PFBE-Z3
Product 787	1208,32	2122371,73	PFBE-Z3
Product 789	879,75	2046750,75	PFBE-Z3
Product 786	6247,20	2043 950,49	PFBE-Z3
Product 793	1151,40	2042 818,59	PFBE-Z3
Product 794	651,17	2014 742,88	PFBE-Z3
Product 467	7707,02	1999 150,38	PFBE-Z3
Product 465	7630,00	1968364,21	PFBE-Z3
Product 457	7380,99	1964 404,21	PFBE-Z3
Product 434	6493,94	1963 807,56	PFBE-Z3
Product 432	6434,73	1960643,46	PFBE-Z3
Product 431	6 382,99	1932 892,55	PFBE-Z3
Product 800	43,94	1905437,55	PFBE-Z3

Product 1645	5615,14	1890691,95	PFBE-Z3
Product 1627	5615,14	1890 549,75	PFBE-Z3
Product 801	540,85	1869 492,96	PFBE-Z3
Product 798	4 403,20	1869 209,05	PFBE-Z3
Product 804	907,50	1867240,93	PFBE-Z3
Product 803	83,66	1846114,32	PFBE-Z3
Product 1617	5615,14	1830 904,32	PFBE-Z3
Product 807	857,72	1830884,00	PFBE-Z3
Product 808	1168,16	1825841,74	PFBE-Z3
Product 809	647,36	1814611,45	PFBE-Z3
Product 1624	5615,14	1803381,16	PFBE-Z3
Product 412	5875,20	1809577,39	PFBE-O1
Product 390	5087,76	1809 565,78	PFBE-O1
Product 387	5043,00	1809 495,15	PFBE-O1
Product 382	4 892,94	1797 900,63	PFBE-O1
Product 817	401,94	1786670,35	PFBE-O1
Product 1502	4211,36	1775 440,06	PFBE-O1
Product 816	36 699,26	1775155,93	PFBE-O1
Product 819	3171,03	1772450,24	PFBE-O1
Product 814	4 384,54	1761551,03	PFBE-O1
Product 812	2850,41	1751771,54	PFBE-O1
Product 828	219,30	1751520,54	PFBE-O1
Product 1516	4 211,36	1750771,82	PFBE-O1
Product 1498	4211,36	1747532,70	PFBE-O1
Product 826	1799,03	1744 293,59	PFBE-O1
Product 827	29 369,57	1732956,29	PFBE-O1
Product 829	1353,24	1724533,58	PFBE-O1
Product 373	4 649,84	1715731,28	PFBE-O1
Product 356	4032,95	1715 262,08	PFBE-O1
Product 338	3575,61	1708243,15	PFBE-O1
Product 336	3535,49	1701224,22	PFBE-O1
Product 324	3152,70	1693 880,49	PFBE-O1
Product 841	4 858,32	1687296,99	PFBE-O1
Product 849	4 527,04	1680774,87	PFBE-O1
Product 1377	2807,57	1675159,73	PFBE-O1
Product 835	2580,00	1674 601,59	PFBE-O1
Product 832	1250,83	1674034,41	PFBE-O1
Product 833	1023,22	1668 419,27	PFBE-O1
Product 836	640,58	1662149,87	PFBE-O1
Product 837	447,30	1656228,71	PFBE-O1
Product 1376	2807,57	1650805,16	PFBE-O1
Product 842	2 522,63	1646030,79	PFBE-O1
Product 1391	2807,57	1645991,19	PFBE-O1
Product 843	3457,44	1645935,12	PFBE-O1
Product 848	1516,16	1644 450,32	PFBE-O1

Product 834	655,14	1641394,19	PFBE-O1
Product 845	2386,80	1637624,98	PFBE-O1
Product 844	1250,20	1634019,60	PFBE-O1
Product 1371	2807,57	1630486,20	PFBE-O1
Product 846	1386,00	1627 086,68	PFBE-O1
Product 312	2928,42	1626555,65	PFBE-O1
Product 310	2 923,83	1626 407,94	PFBE-O1
Product 308	2 894,84	1625159,64	PFBE-O1
Product 266	2299,00	1618 162,38	PFBE-O1
Product 260	2232,45	1606567,86	PFBE-O1
Product 257	2 193,71	1603 760,29	PFBE-O1
Product 256	2 156,22	1600684,49	PFBE-O1
Product 253	2128,39	1597 686,53	PFBE-O1
Product 251	2 118,96	1594755,08	PFBE-O1
Product 248	2 106,99	1592221,69	PFBE-O1
Product 244	1978,74	1589878,09	PFBE-O1
Product 230	1805,80	1587601,65	PFBE-O1
Product 229	1793,75	1585456,91	PFBE-O1
Product 209	1601,60	1583331,79	PFBE-O1
Product 208	1593,24	1581729,35	PFBE-O1
Product 871	1297,30	1567076,03	PFBE-O1
Product 1108	1403,79	1566436,58	PFBE-O1
Product 861	1911,78	1566007,30	PFBE-O1
Product 856	1102,08	1565776,41	PFBE-O1
Product 854	447,64	1565322,45	PFBE-O1
Product 865	2 579,36	1564761,08	PFBE-O1
Product 864	6861,58	1563271,37	PFBE-O1
Product 851	3539,91	1561843,37	PFBE-O1
Product 866	1387,87	1560578,87	PFBE-O1
Product 1120	1403,79	1559 358,87	PFBE-O1
Product 852	945,35	1558 189,04	PFBE-O1
Product 855	9 542,78	1557 020,96	PFBE-O1
Product 868	964,78	1556243,96	PFBE-O1
Product 869	43,36	1555646,00	PFBE-O1
Product 870	17 211,64	1555 146,03	PFBE-O1
Product 200	1533,00	1553870,07	PFBE-O1
Product 197	1512,00	1552633,80	PFBE-O1
Product 190	1431,27	1533337,69	PFBE-O1
Product 165	1240,27	1532842,47	PFBE-O1
Product 129	949,76	1519571,15	PFBE-O1
Product 128	934,96	1508 103,65	PFBE-O1
Product 95	655,65	1497714,88	PFBE-O1
Product 94	650,00	1490 583,91	PFBE-O1
Product 83	547,34	1490 534,40	PFBE-O1
Product 374	4 693,00	1486466,16	PFBE-O1

Product 2011	22,26	1486 454,75	PFBE-O1
Product 2022	2715,75	1485164,45	PFBE-O1
Product 2036	218,68	1481202,70	PFBE-O1
Product 2044	973,73	1478 263,90	PFBE-O1
Product 2067	5156,20	1478 198,38	PFBE-O1
Product 2069	2091,12	1476347,31	PFBE-O1
Product 2118	913,50	1474 904,51	PFBE-O1
Product 2127	369,38	1473 535,01	PFBE-O1
Product 2128	369,38	1472262,05	PFBE-O1
Product 2126	98,02	1471329,17	PFBE-O1
Product 2005	18350,00	1470308,57	PFBE-O1
Product 1998	1210,88	1469 619,67	PFBE-O1
Product 1995	23 504,32	1468 938,22	PFBE-O1
Product 1980	14 691,60	1468330,76	PFBE-O1
Product 1978	13 606,80	1467 771,11	PFBE-O1
Product 2012	2 032,80	1467 237,50	PFBE-O1
Product 1976	12 803,62	1466867,28	PFBE-O1
Product 1970	11 242,14	1466 497,07	PFBE-O1
Product 2014	1318,90	1466 141,39	PFBE-O1
Product 1943	7 096,08	1465976,39	PFBE-O1
Product 1926	6 407,33	1465975,04	PFBE-O1
Product 1925	6304,24	1465 973,92	PFBE-O1
Product 1924	6259,20	1465863,71	PFBE-O1
Product 1920	5961,47	1465 643,80	PFBE-O1
Product 1918	5809,92	1378511,12	PFBE-O1
Product 2023	67,74	1377 840,56	PFBE-O1
Product 2026	388,08	1377 262,71	PFBE-O1
Product 1873	4 101,30	1376592,14	PFBE-O1
Product 1867	3 980,42	1376053,58	PFBE-O1
Product 2037	4 691,74	1370911,41	PFBE-O1
Product 2046	26,72	1370 412,95	PFBE-O1
Product 2047	198,75	1370249,27	PFBE-O1
Product 1825	2559,88	1329539,48	PFBE-O1
Product 1299	2221,28	1289597,94	PFBE-O1
Product 1249	1851,06	1280 106,90	PFBE-O1
Product 1789	1821,60	1279325,46	PFBE-O1
Product 2072	410,11	1279 205,34	PFBE-O1
Product 1174	1480,85	1264 946,72	PFBE-O1
Product 2074	281,24	1262336,72	PFBE-O1
Product 1753	1589,76	1231453,43	PFBE-O1
Product 1745	1483,56	1200570,15	PFBE-O1
Product 1740	1449,00	1168838,14	PFBE-O1
Product 1733	1361,70	1140762,42	PFBE-O1
Product 1702	1346,40	1140610,06	PFBE-O1
Product 1001	1110,64	1110919,56	PFBE-O1

Product 2109	688,94	1110751,60	PFBE-O1
Product 1004	1110,64	1108826,42	PFBE-O1
Product 1671	1077,96	1108442,75	PFBE-O1
Product 1615	869,40	1084578,39	PFBE-O1
Product 1611	852,60	1079 894,75	PFBE-O1
Product 2119	113,40	1077 648,61	PFBE-O1
Product 2120	222,46	1055316,15	PFBE-O1
Product 1602	794,38	1033 073,93	PFBE-O1
Product 1574	641,25	1013 420,92	PFBE-O1
Product 1562	613,20	995121,02	PFBE-O1
Product 1550	577,58	968 152,99	PFBE-O1
Product 1487	518,40	967 664,19	PFBE-O1
Product 1486	515,59	948 763,89	PFBE-O1
Product 1476	480,24	930244,16	PFBE-O1
Product 1461	439,43	912 186,56	PFBE-O1
Product 693	370,21	894128,96	PFBE-O1
Product 694	370,21	876512,07	PFBE-O1
Product 683	370,21	873 964,41	PFBE-O1
Product 1450	400,87	873527,22	PFBE-O1
Product 1309	234,60	856 657,00	PFBE-O1
Product 1247	173,38	840 803,34	PFBE-O1
Product 1045	73,30	826472,17	PFBE-O1
Product 1485	512,99	813 838,10	PFBE-O1
Product 2377	837,00	807 236,00	PFBE-O1
Product 2379	524,80	803521,39	PFBE-O1
Product 2354	734,14	800 980,39	PFBE-O1
Product 2278	210,60	787172,89	PFBE-O1

Appendix CC - Class-Based Reallocation: ESKU Family

SKU	Volume		New Location
	Cm ${ }^{3}$	Cumulative	
Product 2380	1477,85	1477,85	ESKU-D
Product 2381	886,71	2364,56	ESKU-D
Product 2382	886,71	3 251,27	ESKU-D
Product 2383	1182,28	4 433,55	ESKU-D
Product 2384	886,71	5320,26	ESKU-D
Product 2385	591,14	5 911,40	ESKU-D
Product 2386	10 936,09	16 847,49	ESKU-D
Product 2387	591,14	17 438,63	ESKU-D
Product 2388	1 182,28	18 620,91	ESKU-D
Product 3189	4729,12	23 350,03	ESKU-D
Product 2389	886,71	24 236,74	ESKU-D
Product 2390	13 300,65	37 537,39	ESKU-D
Product 2391	12 413,94	49 951,33	ESKU-D
Product 2393	1182,28	51133,61	ESKU-D
Product 2392	1182,28	52315,89	ESKU-D
Product 2394	886,71	53 202,60	ESKU-D
Product 2395	886,71	54 089,31	ESKU-D
Product 2396	591,14	54 680,45	ESKU-D
Product 2397	1182,28	55862,73	ESKU-D
Product 2403	8867,10	64 729,83	ESKU-D
Product 2400	1477,85	66 207,68	ESKU-D
Product 2402	1477,85	67 685,53	ESKU-D
Product 2399	886,71	68 572,24	ESKU-D
Product 2398	591,14	69 163,38	ESKU-D
Product 2401	1182,28	70 345,66	ESKU-D
Product 2404	886,71	71 232,37	ESKU-D
Product 2405	591,14	71 823,51	ESKU-D
Product 3148	13 596,22	85 419,73	ESKU-D
Product 2414	16551,92	101971,65	ESKU-D
Product 2408	8867,10	110838,75	ESKU-D
Product 2406	8 571,53	119 410,28	ESKU-D
Product 2407	2955,70	122365,98	ESKU-D
Product 2415	2955,70	125321,68	ESKU-D
Product 2410	886,71	126 208,39	ESKU-D
Product 2409	591,14	126 799,53	ESKU-D
Product 2411	591,14	127 390,67	ESKU-D
Product 2412	1182,28	128 572,95	ESKU-D
Product 2413	591,14	129 164,09	ESKU-D
Product 2416	1182,28	130 346,37	ESKU-D

Product 2636	1182,28	131528,65	ESKU-D
Product 2417	591,14	132 119,79	ESKU-D
Product 2418	591,14	132 710,93	ESKU-D
Product 2419	1182,28	133893,21	ESKU-D
Product 2420	1182,28	135075,49	ESKU-D
Product 2421	1182,28	136257,77	ESKU-D
Product 2422	591,14	136848,91	ESKU-D
Product 2423	886,71	137 735,62	ESKU-D
Product 2974	886,71	138 622,33	ESKU-D
Product 2434	14 187,36	152 809,69	ESKU-D
Product 2428	8867,10	161676,79	ESKU-D
Product 2426	4 433,55	166110,34	ESKU-D
Product 2492	2068,99	168 179,33	ESKU-D
Product 3143	1773,42	169 952,75	ESKU-D
Product 2429	1477,85	171 430,60	ESKU-D
Product 2430	1477,85	172 908,45	ESKU-D
Product 2424	1182,28	174 090,73	ESKU-D
Product 2433	1182,28	175 273,01	ESKU-D
Product 3163	886,71	176159,72	ESKU-D
Product 2437	886,71	177 046,43	ESKU-D
Product 2436	1182,28	178 228,71	ESKU-D
Product 3135	591,14	178 819,85	ESKU-D
Product 2425	591,14	179 410,99	ESKU-D
Product 2427	591,14	180002,13	ESKU-D
Product 2431	591,14	180593,27	ESKU-D
Product 2432	886,71	181 479,98	ESKU-D
Product 2435	591,14	182071,12	ESKU-D
Product 2884	886,71	182 957,83	ESKU-D
Product 2530	1182,28	184 140,11	ESKU-D
Product 2438	1182,28	185322,39	ESKU-D
Product 2548	591,14	185913,53	ESKU-D
Product 2439	1182,28	187 095,81	ESKU-D
Product 2440	591,14	187 686,95	ESKU-D
Product 2441	1182,28	188 869,23	ESKU-D
Product 2442	886,71	189755,94	ESKU-D
Product 2443	886,71	190 642,65	ESKU-D
Product 2444	591,14	191 233,79	ESKU-D
Product 2445	1182,28	192 416,07	ESKU-D
Product 3044	886,71	193 302,78	ESKU-D
Product 2857	1182,28	194 485,06	ESKU-D
Product 2446	886,71	195371,77	ESKU-D
Product 2573	1182,28	196554,05	ESKU-D
Product 3203	1182,28	197 736,33	ESKU-D
Product 2447	591,14	198327,47	ESKU-D
Product 2460	19 212,05	217 539,52	ESKU-D

Product 3204	6798,11	224 337,63	ESKU-D
Product 2448	5615,83	229 953,46	ESKU-D
Product 2464	4 433,55	234 387,01	ESKU-D
Product 2465	4 433,55	238 820,56	ESKU-D
Product 2452	2 955,70	241776,26	ESKU-D
Product 2450	2 660,13	244 436,39	ESKU-D
Product 3178	1773,42	246 209,81	ESKU-D
Product 2451	1477,85	247 687,66	ESKU-D
Product 2459	1182,28	248 869,94	ESKU-D
Product 2456	886,71	249 756,65	ESKU-D
Product 2458	886,71	250 643,36	ESKU-D
Product 2463	886,71	251530,07	ESKU-D
Product 2471	591,14	252 121,21	ESKU-D
Product 2449	1182,28	253 303,49	ESKU-D
Product 2454	886,71	254 190,20	ESKU-D
Product 2455	591,14	254781,34	ESKU-D
Product 2466	591,14	255372,48	ESKU-D
Product 2467	886,71	256259,19	ESKU-D
Product 2468	591,14	256 850,33	ESKU-D
Product 2469	1182,28	258 032,61	ESKU-D
Product 2470	591,14	258 623,75	ESKU-D
Product 2472	886,71	259 510,46	ESKU-D
Product 2473	591,14	260 101,60	ESKU-D
Product 2474	886,71	260 988,31	ESKU-D
Product 2475	886,71	261875,02	ESKU-D
Product 2453	591,14	262 466,16	ESKU-D
Product 2457	1182,28	263 648,44	ESKU-D
Product 2461	886,71	264535,15	ESKU-D
Product 2462	1182,28	265717,43	ESKU-D
Product 2574	591,14	266 308,57	ESKU-D
Product 3181	886,71	267 195,28	ESKU-D
Product 3193	1182,28	268 377,56	ESKU-D
Product 2483	3 546,84	271924,40	ESKU-D
Product 2482	2 068,99	273 993,39	ESKU-D
Product 2975	886,71	274 880,10	ESKU-D
Product 2484	886,71	275766,81	ESKU-D
Product 2476	591,14	276357,95	ESKU-D
Product 2477	1182,28	277 540,23	ESKU-D
Product 2478	886,71	278 426,94	ESKU-D
Product 2479	591,14	279 018,08	ESKU-D
Product 2480	591,14	279 609,22	ESKU-D
Product 2481	1182,28	280 791,50	ESKU-D
Product 3136	1182,28	281973,78	ESKU-D
Product 2620	886,71	282 860,49	ESKU-D
Product 3137	591,14	283 451,63	ESKU-D

Product 3164	886,71	284338,34	ESKU-D
Product 2776	591,14	284929,48	ESKU-D
Product 2485	886,71	285816,19	ESKU-D
Product 2486	591,14	286407,33	ESKU-D
Product 2934	886,71	287294,04	ESKU-D
Product 2487	886,71	288180,75	ESKU-D
Product 2488	591,14	288771,89	ESKU-D
Product 3199	886,71	289658,60	ESKU-D

Appendix DD - Class-Based Reallocation: FAI Family

SKU	Volume		New Location
	Cm ${ }^{3}$	Cumulative	
Product 106	735,13	735,13	FAI-E
Product 2125	249,28	984,41	FAI-E
Product 2111	107,91	1092,32	FAI-E
Product 2075	802,815	1895,14	FAI-E
Product 2056	51,2256	1946,36	FAI-E
Product 850	2762,208	4 708,57	FAI-E
Product 589	19277	23 985,57	FAI-E
Product 795	8570,835	32556,40	FAI-E
Product 796	8570,835	41 127,24	FAI-E
Product 572	16619,616	57 746,85	FAI-E
Product 810	686,205	58433,06	FAI-E
Product 447	6949,488	65 382,55	FAI-E
Product 830	1317,888	66 700,44	FAI-E
Product 605	21619,71	88320,15	FAI-E
Product 575	17213,5	105 533,65	FAI-E
Product 549	13252,59	118 786,24	FAI-E
Product 523	11033,75	129 819,99	FAI-E
Product 396	5290,74	135110,73	FAI-E
Product 483	8414,948	143 525,67	FAI-E
Product 438	6567,236	150 092,91	FAI-E
Product 194	1470	151562,91	FAI-E
Product 525	11114,63	162 677,54	FAI-E
Product 811	31500	194 177,54	FAI-E
Product 411	5860,665	200 038,20	FAI-E
Product 144	1078,735	201 116,94	FAI-E
Product 139	1040,06	202 157,00	FAI-E
Product 149	1142,4	203 299,40	FAI-E
Product 872	6151,572	209 450,97	FAI-E
Product 2130	333,935	209 784,91	FAI-E
Product 1226	148,68	209 933,59	FAI-E
Product 1810	2246,4	212 179,99	FAI-E
Product 1653	966,368	213 146,35	FAI-E
Product 2034	480,636	213 626,99	FAI-E
Product 2021	39244,8	252871,79	FAI-E
Product 2015	6468,75	259 340,54	FAI-E
Product 2110	1822,491	261 163,03	FAI-E
Product 2124	176,64	261 339,67	FAI-E
Product 2035	184,14	261523,81	FAI-E
Product 2051	116,064	261 639,88	FAI-E

Product 2033	226,98	261 866,86	FAI-E
Product 2117	934,65	262 801,51	FAI-E
Product 2116	4705,611	267 507,12	FAI-E
Product 1415	2887,014346	270 394,13	FAI-E
Product 2016	5628,40038	276022,53	FAI-E
Product 2048	406,824	276429,36	FAI-E
Product 2092	160,3008	276 589,66	FAI-E
Product 1784	1766,4	278 356,06	FAI-E
Product 2020	196,196	278552,25	FAI-E
Product 2123	224	278776,25	FAI-E
Product 2122	63	278 839,25	FAI-E
Product 2083	121,203	278 960,46	FAI-E
Product 2076	92,16	279 052,62	FAI-E
Product 2089	901,016	279 953,63	FAI-E
Product 2103	483,7248	280 437,36	FAI-E
Product 2098	250,56	280 687,92	FAI-E
Product 2065	727,329	281415,24	FAI-E
Product 2082	252,192	281 667,44	FAI-E
Product 2055	24436,776	306104,21	FAI-E
Product 2097	602,272	306706,48	FAI-E
Product 2079	231,99	306938,47	FAI-E
Product 1665	1024,098	307 962,57	FAI-E
Product 2091	1370,726	309 333,30	FAI-E
Product 2093	28,42173	309 361,72	FAI-E
Product 2088	69,2874	309 431,01	FAI-E
Product 2032	142,848	309573,86	FAI-E
Product 2013	1470,144	311044,00	FAI-E
Product 2006	1030,3488	312074,35	FAI-E
Product 2090	1279,2	313 353,55	FAI-E
Product 2105	59,4	313 412,95	FAI-E
Product 2061	40	313 452,95	FAI-E
Product 2129	1275,96	314 728,91	FAI-E
Product 2077	97,92	314 826,83	FAI-E
Product 2104	163,35	314 990,18	FAI-E
Product 1808	2161,25	317 151,43	FAI-E
Product 1760	1662,5	318 813,93	FAI-E
Product 2099	494,592	319 308,52	FAI-E
Product 2078	72,42	319 380,94	FAI-E
Product 2102	880,7292	320 261,67	FAI-E
Product 2095	1305,566	321567,24	FAI-E
Product 1540	537,225	322 104,46	FAI-E
Product 1422	340,676	322 445,14	FAI-E
Product 1412	323,4	322 768,54	FAI-E
Product 2096	151,776	322 920,31	FAI-E
Product 1743	1471,756	324 392,07	FAI-E

Product 2027	17,856	324409,93	FAI-E
Product 2106	1254,016	325663,94	FAI-E
Product 1799	1890,783	327554,72	FAI-E
Product 2081	68,4112	327623,14	FAI-E
Product 2100	321,64	327944,78	FAI-E
Product 2052	208,12	328152,90	FAI-E
Product 2101	911,028	329063,92	FAI-E
Product 2114	314,364	329378,29	FAI-E
Product 2049	521,64	329899,93	FAI-E
Product 1945	7183,692	337083,62	FAI-E
Product 2112	48468,224	385551,84	FAI-E
Product 2113	6924,032	392475,88	FAI-E
Product 2115	35,2	392511,08	FAI-E
Product 2060	44,1	392555,18	FAI-E
Product 2050	98,552	392653,73	FAI-E
Product 2066	37,8	392691,53	FAI-E

[^0]: ${ }^{1}$ To analyse the full ABC segregation process, see Appendix Y, Z and AA, for PFBE, ESKU, and FAI families, respectively.

[^1]: ${ }^{2}$ It was considered that percentage because it is the average portion of space that company is using currently.
 ${ }^{3}$ To analyse the full product's reallocation process, see Appendix BB, CC and DD, for PFBE, ESKU, and FAI family, respectively.

