

Escola de Ciências Sociais e Humanas

Departamento de Economia Política

Quais são os Indicadores Económicos que influenciam o crédito automóvel

Adrian Ciprian Adam

Dissertação submetida como requisito parcial para obtenção do grau de Mestre em Economia Monetária e Financeira

Orientador: Doutor Sérgio Miguel Chilra Lagoa, Professor Auxiliar ISCTE- Escola de Ciência Sociais e Humanas, Departamento de Economia Política

Agradecimentos

Nestas palavras seguem os agradecimentos sentidos e sinceros a meus Pais, pelo exemplo, pelo afeto e pela coragem de vida.

Ao Dr. Sérgio Lagoa, meu Mestre, dirijo a minha gratidão, por todo o apoio concedido e determinante para a minha vida atual e futura, e imensa admiração académica.

Aos meu Amigos e Colegas agradeço a disponibilidade, a atenção e amparo, que nunca esquecerei.

Para Ionela, tudo e sempre...

Resumo

Em Portugal, após períodos de instabilidade, nomeadamente a crise económica mundial e a crise de dívida

soberana, tem-se verificado um aumento exponencial e constante na corrida ao crédito automóvel, por

parte dos agentes económicos.

A presente dissertação tem como objetivo analisar o comportamento do crédito automóvel durante o

período compreendido entre 1998-2018.

Pretende-se analisar os indicadores económicos mais relevantes da economia portuguesa e determinar,

através de estudo econométrico, quais destes influenciam o crédito automóvel e que tipos de impacto têm.

Para responder à pergunta central desta investigação é utilizado o modelo econométrico de Vetores

Autorregressivos. A investigação abrange dois modelos de crédito automóvel: para particulares e para

empresas.

Estudos anteriormente realizados mostram que indicadores económicos como taxa de desemprego, PIB,

rendimento das famílias e taxa de juros, são alguns dos que podem influenciar o setor automóvel.

Os resultados alcançados demonstram que os indicadores como a taxa de variação do PIB, a taxa de

desemprego, o rendimento líquido e a carga fiscal são fatores que afetam o crédito automóvel e que,

consequentemente, necessitam de um acompanhamento próximo e continuado, no sentido de se tomar

uma boa decisão estratégica ao nível de gestão, no caso de uma instituição financeira. Ao nível do estado,

os resultados são interessantes, uma vez que o mesmo tem a possibilidade de manobrar os indicadores

económicos através de decisões governamentais (designadamente o rendimento líquido e a carga fiscal)

e, desse modo, controlar indiretamente o crédito automóvel.

Palavras chaves: Crédito automóvel particular, Crédito automóvel empresa, Indicadores económicos, VAR

Classificação JEL: C33, C51, D12, D22, E70, H00

Ш

Abstract

In Portugal, following instability times, such as the world economic crisis and the sovereign debt crisis, there

has been a steady and exponential increase in the demand for car purchasing credit from economy agents.

This dissertation aims at analyzing the behaviour of car purchase credit during the time period 1998-2018.

It is intended to analyze the most relevant economic indicators of the Portuguese economy and through

econometric study to ascertain which of them influence car purchasing credit and what types of impact they

have. In order to answer the core issue of this research, the econometric model Vector autoregression shall

be used. The research covers two models for car purchase credit: for companies and private individuals.

Earlier studies indicate that economic indicators such as unemployment, GDP, household income and

interest rates are some of the indicators that may influence the car sector.

The resulting outcomes show that indicators such as the GDP variable rate, unemployment, household

income and taxation weight are factors that need close and continuous monitoring in order to make a good

strategic decision at management level, in the case of a financial institution. At state level, the results are

interesting as it has got the potential to maneuver economic indicators through government decisions

(namely net incomes taxation weight) and therefore, to indirectly control car purchasing credit.

Key words: Private individual car purchasing credit, Company car purchase credit, Economic Indicators,

VAR

Classificação JEL: C33, C51, D12, D22, E70, H00

IV

Índice

Capitulo	I - Introdução	1
1.1	Motivação	1
1.2	Contexto Geral Portugal	3
1.3	Enquadramento do mercado automóvel	8
Capítulo	II - Revisão de Literatura	11
Capítulo	III – Metodologia Econométrica	15
1.1	Testes de Raízes Unitárias.	19
1.1.	.1 Teste Augmented Dickey-Fuller ("ADF")	19
1.1.	.2 Teste Philips Perron ("PP")	20
1.1.	.3 Teste Kwiatkowiski Philips Schmidt Shin ("KPSS")	21
1.2	Conclusão teste de raiz unitária	22
1.3	Modelo VAR	23
1.4	Causalidade Granger	29
1.5	Função Impulse Response	30
1.6	Descomposição da Variância	32
1.7	Conclusão resultado modelo VAR / Causalidade à Granger / Função Impulse Response /	
Desco	omposição da Variância	34
Capítulo	IV - Conclusão e Investigação Futura	36
Bibliogra	afia	40
Anexos.		42

Índice Gráficos

Gráfico 1.1 - Evolução do consumo de crédito automóvel vs taxa de desemprego 1998 -2018	
Gráfico 1.2 - Evolução do consumo de crédito automóvel vs taxa de variação homóloga PIB 1998 -2	
Gráfico 1.3 - Evolução do consumo de crédito automóvel vs défice administração pública 1998 - 20	
Gráfico 1.4 - Evolução do consumo de crédito automóvel vs Taxa de variação do rendimento médio	
mensal líquido 1998 -2018	
Gráfico 1.5 - Evolução do consumo de crédito automóvel vs Carga Fiscal 1998 -2018	
Gráfico 1.6 -Evolução do consumo de crédito automóvel vs Euribor 3M 1999 -2018	7
Gráfico 1.7 - Evolução do consumo de crédito automóvel das empresas e dos particulares desde 19	998 -
2018	10
Índice Tabelas	
Tabela 1.1 - Tipos de serviços financeiros automóvel praticados no mercado Português	8
Tabela 3.1 Variáveis estudo econométrico	16
Tabela 3.2 Estatística descritiva variáveis	
Tabela 3.3 Resultados teste ADF	
Tabela 3.4 - Resultados teste PP	
Tabela 3.5 - Resultados teste FF	
Tabela 3.6 - Resultados teste Rr 33Tabela 3.6 - Resultados teste de raiz unitárias agregados Eviews	
Tabela 3.7 - Resultados Granger Causality Tests VAR modelo crédito automóvel particular	
Tabela 3.8 - Resultados Granger Causality Testes VAR modelo crédito automóvel empresa	
Tabela 3.9 - Resultados Grangei Causality Testes VAR modelo crédito automóvel empresa Tabela 3.9 - Resultados descomposição variância VAR modelo crédito automóvel particular Eviews	
Tabela 3.9 - Resultados descomposição variância VAR modelo crédito automóvel empresa Eviews Tabela 3.10 - Resultados descomposição variância VAR modelo crédito automóvel empresa Eviews	
Tabela 3.10 - Resultados descomposição variancia VAR modelo credito automovel empresa Eviews Tabela 3.11 - Resultados agregados do Modelo VAR crédito automóvel particular /Casalidade	s 34
Granger/FIR/Descomposição variância	34
Tabela 3 12 - Resultados agregados do Modelo VAR crédito automóvel empresa /Casalidade à	
Granger/FIR/Descomposição variância	35
Índice Anexos	
Anexo A	
Anexo B	
Anexo C	
Anexo D	
Anexo E	
Anexo F	
Anexo G	120
Anexo H	122

Glossário de Siglas

ADF - Augmented Dickey-Fuller

AIC - Akaike Information Criteria

ALD - Aluguer de Longa Duração

BCE - Banco Central Europeu

BdP - Banco de Portugal

C.G - Causalidade à Granger

D.V - Descomposição da Variância

DSP - Difference Stationary Process

ECB - European Central Bank

Estac - Estacionaria

FMI – Fundo Monetário Internacional

FIR - Função Impulso Resposta

IFM - Instituições Financeiras Monetárias

IPC - Índice de preços ao consumidor

ISV - Imposto sobre veículos

IUC - Imposto único automóvel

IVA - Imposto sobre valor acrescentado

KPSS - Kwiatkowski-Phillips-Schmidt-Shin

LAG - Lag Lenght Criteria

LM - Lagranger Multipliers

Não Estac - Não Estacionaria

OIFM - Outras Instituições Financeiras Monetárias

OLS - Ordinary Least Squares

PIB - Produto Intern Bruto

PP - Phillips e Perron

PSI20 - Portuguese Stock Index

TAN - Taxa anual efetiva global

TEAG - Taxa anual de encargos efetiva global

t-sta. - t-statistic

V.C - Valor critico

VAR - Vetores Autorregressivos

VECM - Vector Error Correction Model

Capítulo I - Introdução

1.1 Motivação

O interesse em analisar o comportamento do crédito automóvel, surge devido ao facto de trabalhar numa Instituição Financeira¹, que tem como principal atividade o financiamento automóvel para clientes corporate (concessionários e clientes com exposição acima de 500k) via linhas de crédito, como também para retalho particulares e empresas via vários produtos financeiros, entre os quais o crédito automóvel, que será o nosso foco da análise desta investigação.

É crucial para uma instituição financeira, nomeadamente para uma cativa financeira² automóvel, conhecer o seu cliente, tanto no seu comportamento passado, como no atual e no futuro. Sendo o cliente o foco da instituição financeira, a estratégia corporativa deve ser desenhada de acordo com os sinais e as tendências que o próprio cliente apresenta no mercado. Desta forma a instituição financeira ajusta as suas decisões estratégicas atuais e futuras, de acordo com os inputs dos clientes; por esta razão, conhecer o comportamento do cliente é um fator chave para o sucesso das instituições financeiras.

Ao analisar o crédito automóvel particular e empresa, indiretamente analisamos a decisão do consumo por parte do consumidor. Como é evidente, há vários fatores que podem influenciar a decisão de compra, sejam culturais, sociais, psicológicos e pessoais. De acordo com Medeiros e Cruz (2006), fatores como renda disponível, poupança, condições de crédito e atitudes em relação as despesas são fatores relacionados com condições económicas e fazem parte do bloco dos fatores pessoais. As condições económicas são quantificáveis através de indicadores económicos³, que detêm um peso significativo na decisão do consumo por parte do consumidor, neste caso no crédito automóvel. Segundo Ribeiro et al (2015) a crise económica internacional de 2007, agravou a situação já débil de crescimento económico em Portugal. Indicadores económicos como desemprego, rendimento e carga fiscal, entre outros, sofreram

¹ As instituições financeiras exercem atividades específicas distintas que, para além de as caracterizar, permitem classificá-las com base no papel que desempenham. O Regime Geral das Instituições de Crédito e Sociedades Financeiras (RGICSF) divide as entidades financeiras em dois grupos principais: Instituições de Crédito. Disponível em:

http://www.apb.pt/sistema_financeiro/instituicoes_financeiras/

² Instituição que está detida 100% pelo um grupo automóvel.

³ Os seja os indicadores económicos são grandezas de carácter económico, expressas em valor numérico, cuja principal utilidade consiste na aferição dos níveis de desenvolvimento de países. Disponível em: https://www.infopedia.pt/\$indicadores-economicos

alterações significativas que afetaram o consumidor português e consequentemente o consumo do crédito automóvel.

Portanto, através desta investigação, serão analisados alguns indicadores-chave da economia Portuguesa, com o objetivo de perceber o impacto que têm sobre o consumo do crédito automóvel. Os resultados obtidos podem vir a ser benéficos para o setor empresarial, nomeadamente para as instituições financeiras que têm como *core business* o financiamento automóvel, por forma a considerar na sua atividade do dia a dia, a análise dos indicadores que possam vir a ter impacto no crédito automóvel. Mas também, por outro lado, os resultados podem igualmente vir a ser interessantes para os consumidores, no sentido de analisar quando é oportuno a compra de viatura, via crédito automóvel, analisados os indicadores económicos influenciadores do mesmo.

De acordo com a revisão de literatura analisada até ao momento, existem alguns trabalhos desenvolvidos no âmbito automóvel, nomeadamente ao nível de vendas das viaturas, mas nada de mais específico na análise do crédito automóvel. O propósito desta dissertação é o de contribuir para o conhecimento cada vez mais aprofundado desta área do mercado automóvel, designadamente na parte dos produtos financeiros. Nesta última parte as instituições de crédito atuam como um canivete suíço para o bom funcionamento do mercado automóvel. Sem a ajuda das instituições financeiras, toda a dinâmica da venda do automóvel no mercado seria muito mais lenta e mais difícil, com implicações diretas na parte logística e operacional do construtor de automóveis.

Com o propósito de responder à questão do nosso trabalho, o modelo VAR foi o modelo escolhido para explicar todas os movimentos e impactos das variáveis selecionadas. A seleção das variáveis para o modelo desenvolvido tem como referência a revisão de literatura, por exemplo: produto interno bruto (PIB), Euribor 3M, taxa de desemprego e carga fiscal, mas também novas variáveis que foram incluídas por exemplo: rendimento medio líquido e o défice da administração pública. Todas as variáveis selecionadas para o modelo têm uma periodicidade trimestral com início no 1º trimestre de 1998 até 4º trimestre de 2018, com exceção de Euribor 3 M e o défice da administração pública que têm início apenas no 1º trimestre de 1999.

O desenvolvimento do trabalho passa inicialmente por uma abordagem geral, nomeadamente uma visão sobre Portugal, com a evolução dos principais indicadores económicos, em conjunto com a variação do crédito automóvel de particulares e empresas. (secção 1.2).

Após este passo, centramo-nos no mercado automóvel, em que são apresentados os vários tipos de produtos financeiros que as Instituições Financeiras estão a comercializar em Portugal (secção 1.3).

Depois fazemos a revisão da literatura (capítulo 2), seguida da análise empírica e a discussão dos resultados (capítulo 3). Terminamos com considerações finais de resumo do trabalho efetuado e conclusões (capítulo 4).

1.2 Contexto Geral Portugal

A crise mundial económico-financeira de 2008, que teve origem no Estados Unidos (falência da *Lehmann Brothers*), e mais tarde, em 2011, com a crise soberana da zona euro, todos os setores sofreram um efeito negativo, entre os quais o setor automóvel (particularmente afetado por depender do crédito e ser um bem duradouro, cujo consumo pode ser adiado em períodos de crise).

Durante a crise financeira de 2008, Portugal tentou adotar medidas de correção dos seus desequilíbrios na balança corrente, mas esta abordagem deixou de fazer sentido com a chegada da crise da dívida soberana na Europa. A quebra no consumo do crédito automóvel empresa e particular, é uma consequência deste aspeto, que pode ser verificada no gráfico 1.7, bastante visível entre o espaço temporal Q3/2007 – Q2/2013.

Com o objetivo de preservar a estabilidade financeira da zona Euro⁴, foram 8 os países que receberam assistência financeira. A Grécia, Irlanda e Portugal, apresentaram o pedido de assistência financeira à UE e ao FMI, devido a um défice público alarmante. No caso da Grécia e Irlanda, o primeiro resgate ocorreu em 2010 (divida pública 146,2% do PIB Grécia e divida pública 110.9% do PIB Irlanda).

Em abril de 2011, Portugal apresenta o pedido de assistência financeira à Comissão Europeia e ao FMI, que implicou um empréstimo de 78€ biliões de 2011 até 2014. Apesar dos outros estados apresentarem situações análogas, Portugal teve uma desvantagem relacionada com o ritmo mais baixo ao nível do crescimento da economia no decorrer das duas crises que deixaram o país mais vulnerável. Com a chegada da Troika⁵, em 2011, o Governo Português tomou medidas de austeridade severas, no sentido de alcançar o défice orçamental acordado no programa de ajustamento. As principais medidas propostas pelo FMI no quadro do programa de ajustamento foram desde a redução na despesa pública, redução até 20% dos funcionários públicos, com cortes dos seus salários e aumento dos horários de trabalho, até cortes de 10% a 15% nas pensões e aumento das taxas moderadoras e propinas escolares (Publico, 2013).

Como é evidente os efeitos das medidas demoraram algum tempo até tornarem visíveis; no gráfico 1.1, no caso do desemprego, verifica-se uma evolução desfavorável, no início do programa de ajustamento em 2011 até meio do programa 2013. Após este período observa-se uma reviravolta da situação com uma queda continua e acentuada da taxa de desemprego, que atingiu valores anteriores a crise.

De acordo com as primeiras impressões da análise conjunta do crédito automóvel e desemprego, verificamos a existência de uma relação inversa entre as mesmas, em particular quando a taxa de

⁴ ECB. Disponível em: https://ec.europa.eu/info/business-economy-euro/economic-and-fiscal-policy-coordination/eu-financial-assistance/which-eu-countries-have-received-assistance_pt

⁵ Troika, palavra de origem russa que designava um carro conduzido por três cavalos alinhados lado a lado. No contexto económico traduz-se como união de três poderes para ultrapassar uma situação mais difícil.

desemprego diminui e o crédito aumenta, situação mais visível a partir de Q1-2013. De acordo com o gráfico 1.1 a taxa de desemprego atinge o valor mais alto (17.5%) no decorre da análise, nomeadamente no fim do 1º trimestre de 2013.

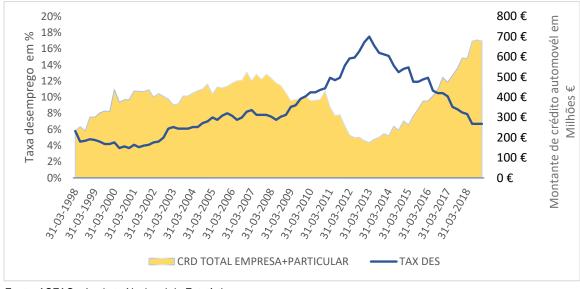


Gráfico 1.1 - Evolução do consumo de crédito automóvel vs taxa de desemprego 1998 -2018

Fonte: ASFAC e Instituto Nacional de Estatística

Com a saída de Portugal do programa de ajustamento, em junho de 2014, o país passou a apresentar uma situação orçamental mais consistente. Os três anos de reformas estruturais assumidas pelo Governo no âmbito do programa de ajustamento, consolidaram o PIB Português, visível no gráfico 1.2, onde verificam-se variações constantes e positivas da taxa de variação homologa do PIB.

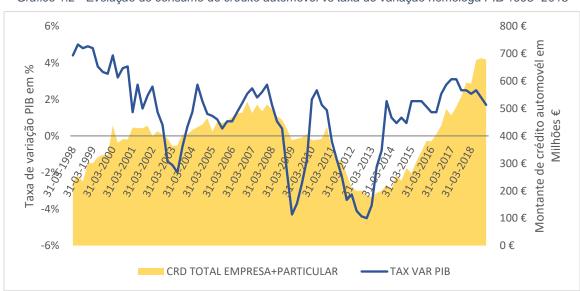


Gráfico 1.2 - Evolução do consumo de crédito automóvel vs taxa de variação homóloga PIB 1998 -2018

Fonte: ASFAC e Instituto Nacional de Estatística

Em relação ao crédito automóvel, verifica-se que tem um comportamento muito idêntico ao da taxa de variação homologa do PIB, mas como é evidente verifica-se um ligeiro atraso do crédito automóvel, o que nos leva a pensar que a mesma não reage de forma imediata perante a alteração da trajetória do PIB.

Um outro indicador, fruto das medidas corretivas tomadas pelo Governo em 2011, foi o défice da administração pública⁶ em função do PIB que se encontrava em queda com pequenas oscilações desde Q4 2014 (Gráfico 1.3).

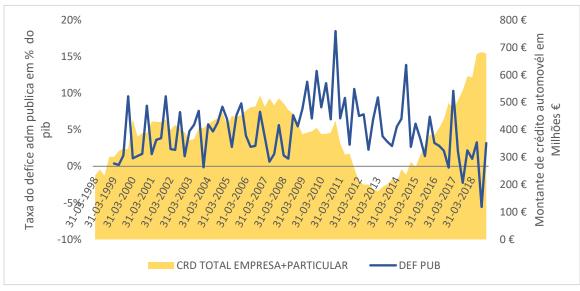


Gráfico 1.3 - Evolução do consumo de crédito automóvel vs défice administração pública 1998 - 2018

Fonte: ASFAC e Instituto Nacional de Estatística / Banco de Portugal

Este resultado foi possível uma vez que o estado arrecadou mais receitas através do aumento dos impostos, mas também através de estabilização da despesa.

O desempenho mais forte da economia Portuguesa no período pós-Troika veio contribuir para a aceleração de vários fatores, entre os quais o rendimento médio líquido auferido pela população empregada por conta de outrem. Ao analisar o gráfico 1.4 a taxa de variação homologa do rendimento líquido situa-se em terreno positivo, com um crescimento constante em comparação com o período homólogo. Devido a aceleração da economia, evidencia-se um aumento da pressão por parte dos agentes económicos e do mercado de trabalho perante as empresas, no sentido de aumentar o rendimento líquido dos trabalhadores. Por outro lado, as alterações das decisões políticas governamentais nas alterações dos escalões do IRS, descongelamento da progressão na carreia para a função pública e também eliminação dos cortes da administração pública, impulsionaram o aumento do rendimento líquido disponível. Em primeiro lugar

5

⁶ Corresponde a uma situação em que as receitas são inferiores às suas despesas do Estado.

podemos apontar como principal contributo para o aumento do rendimento líquido o fator emprego, uma vez que a partir de 2013 a taxa de desemprego encontra-se em contínuo declínio (gráfico 1.1).

De facto, verificamos através dos dados fornecidos pelo gráfico 1.4 que em momentos de instabilidade por exemplo entre 2007 e 2014 a variação da taxa homóloga do rendimento líquido, apresenta uma volatilidade permanente, que pode estar relacionada ao facto do estado aumentar a carga fiscal ou outras decisões alheias as decisões políticas.

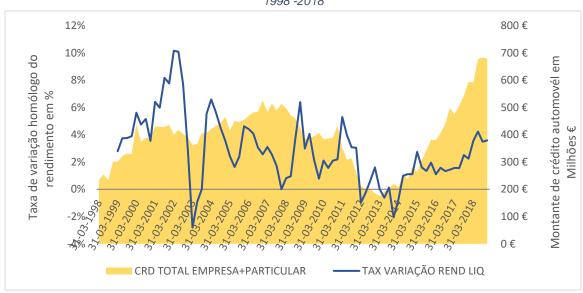


Gráfico 1.4 - Evolução do consumo de crédito automóvel vs Taxa de variação do rendimento médio mensal líquido 1998 -2018

Fonte: ASFAC e Instituto Nacional de Estatística

Ao analisar as duas variáveis em simultâneo do gráfico 1.4, verificamos que a evolução do consumo do crédito automóvel apresenta valores de crescimento quando a taxa de variação homóloga do rendimento médio tem oscilações mais controladas e encontra-se em tereno positivo entre 2016-2018.

Segundo um comunicado do Banco de Portugal (BdP), a carga fiscal sobe e supera os níveis da Troika, facto que pode ser verificado no gráfico 1.5. Também o BdP afirma que "A carga fiscal e contributiva aumentou de forma significativa entre 2016 e 2018, estando agora ligeiramente acima dos níveis do programa de ajustamento, na altura, empolados pelo "enorme aumento de impostos" do governo." (Diário de Notícias, 2019). Uma análise à primeira a vista entre as duas variáveis aponta para o facto de que não existe nenhuma relação direta entre crédito automóvel e carga fiscal, uma vez que não se deteta nenhuma correlação entre as variáveis.

45% em 40% 700€ Montante de crédito automovél % 35% 600€ Fiscal em 30% 500 € 25% 400€ 20% Carga 300€ 15% 200€ 10% 100€ 5% 0% 0€ 37.03.5016 37.03.2005 37.03.5006 37.03.5008 31.03.2003 32.03.200> 32-03-2009 31.03.2010 31.03.2011 32.03.2012 32.03.2013 37.03.2014 31.03.2001 32.03.2002 32.03.2004 31-03-2015 CRD TOTAL EMPRESA+PARTICULAR

Gráfico 1.5 - Evolução do consumo de crédito automóvel vs Carga Fiscal 1998 -2018

Fonte: ASFAC e Instituto Nacional de Estatística / Banco de Portugal

Por último, em termos de taxa de juro praticada nos empréstimos interbancários pelos principais bancos europeus, a taxa de Euribor 3M entrou em tereno negativo desde 2015, refletindo praticamente a descida da taxa de depósito por parte do BCE. Efetivamente verifica-se um aumento exponencial da procura do crédito automóvel, desde que a taxa Euribor 3M apresenta valores negativos, conforme podemos verificar no gráfico 1.6. Dado que o Portugal faz parte do contexto Europeu, tem de se sujeitar às decisões do regulador Europeu, neste caso o BCE.

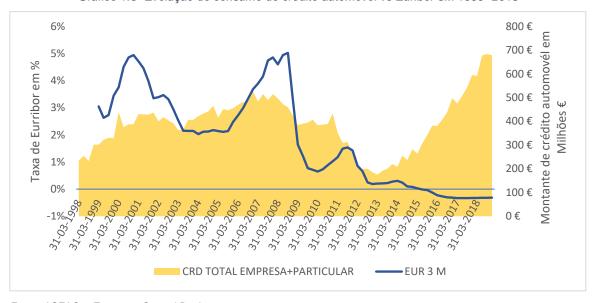


Gráfico 1.6 - Evolução do consumo de crédito automóvel vs Euribor 3M 1999 - 2018

Fonte: ASFAC e European Central Bank

1.3 Enquadramento do mercado automóvel

As atividades de intermediação financeira exercida pelas Instituições Financeiras Monetárias (IFM) apresentam um papel muito importante no panorama do desenvolvimento da economia local. O financiamento da economia é uma das principais funções do sistema financeiro, que é composto pelas instituições, instrumentos e mercados. Como em todos os mercados, a lei é definida pela relação entre oferta e procura, neste caso entre Outras Instituições Financeiras e Monetárias (OIFM) e os agentes económicos (Leão et al, 2011).

Com o objetivo de aumentar os seus lucros cada IFM é forçada a aumentar e diversificar os empréstimos oferecidos no mercado. Assim as IFM apresentam vários tipos de financiamentos ao consumo, entre quais o crédito automóvel. Do ponto de vista da IFM o crédito automóvel representa um produto com risco controlado, uma vez que o colateral do empréstimo é representado pela viatura. Como é evidente que existem riscos associados por exemplo em caso de incumprimento por parte do cliente, a instituição financeira pode vir a ser obrigada a recuperar a viatura e perder dinheiro com o negócio; um pelo facto de o bem não estar a gerar receita mensal porque o cliente está em *default*⁷ e dois na recuperação do bem deteta-se danos significativos que representam um custo para a instituição e dificuldades de vender a viatura no mercado.

A mobilidade desempenha um papel essencial para o desenvolvimento da economia. O consumidor particular ou empresa representa o target principal das instituições financeiras em matéria de mobilidade. O Mercado automóvel Português em 2017 representava aproximadamente um volume de negócio de 11 Mio €, o seja aproximadamente 5.6% do PIB Português (Jornal de Notícias, 2018). Em Portugal, dada a atratividade do mercado automóvel, existem várias IFM, como bancos tradicionais ou cativas financeiras⁸, com uma gama variada de serviços financeiros no âmbito do financiamento automóvel.

Tabela 1.1 - Tipos de serviços financeiros automóvel praticados no mercado Português

Produto	Descrição
CRÉDITO	O crédito é um produto sólido onde o consumidor tem total segurança e flexibilidade na
	escolha. Pode optar por um prazo curto ou longo, uma taxa fixa ou variável, com ou sem
	entrada inicial, bem como escolher o seguro automóvel mais adequado às suas
	necessidades.
LEASING	O Leasing apresenta condições financeiras que permitem ao consumidor ter uma
	mensalidade confortável, adaptada às suas necessidades através da gestão do valor

⁷ Cliente em incumprimento

⁸ Instituição que está detida 100% pelo um grupo automóvel.

	residual no final do contrato. É uma forma prática de comprar carro ajustável ao orçamento
	do consumidor.
ALD	O Aluguer de Longa Duração (ALD) é um produto financeiro imediato, ideal e exclusivo
	para viaturas novas e semi-novas. Com o ALD o consumidor pode optar entre uma taxa
	fixa ou variável, com possibilidade de antecipação do contrato em qualquer momento. No
	final do contrato o consumidor terá de pagar o valor residual e comprar o carro de acordo
	com o valor estabelecido aquando da celebração do contrato.
RENTING	Renting é uma solução de mobilidade onde, através de uma renda mensal, o consumidor
	tem acesso a todos os serviços associados à utilização do carro: manutenção, assistência
	em viagem, IUC, IPO, linha de apoio ao condutor, seguro, pneus, etc, por um período e
	quilometragem pré-determinados.
AUTO	O Auto Crédito é uma solução de financiamento desenhada especificamente para
CRÉDITO	responder às necessidades do consumidor, começando com a seleção do novo carro, a
	escolha do prazo pretendido e os quilómetros desejados. Estas variáveis vão definir o Valor
	Final Garantido ⁹ que se manterá até ao final do contrato, assegurando a total transparência
	relativamente ao valor final garantido do seu carro. No final do contrato o consumidor tem
	total liberdade de escolha, com 4 opções: trocar de carro, devolver o carro, refinanciar o
	valor final garantido ou pagar o valor final garantido.

Fonte: Volkswagen Financial Service

Conforme referido anteriormente, dada a atratividade do mercado automóvel, existem várias IFM que operam em Portugal. Além dos bancos tradicionais, as principais cativas financeiras que têm como *business core* o financiamento automóvel que desempenham a sua atividade em Portugal são:

- VOLKSWAGEN BANK GMBH SUCURSAL EM PORTUGAL Grupo Volkswagen Financial Services representa as marcas (Volkswagen, Audi, Skoda, Seat, Porsche, Bentley, Lamborghini, Bugatti, MAN, Ducati, Scania)
- RCI BANQUE SUCURSAL PORTUGAL Grupo Renault representa as marcas (Renault, Nissan, Dácia)
- FCA CAPITAL PORTUGAL INSTITUIÇÃO FINANCEIRA DE CRÉDITO, SA Grupo Fiat representa as marcas (FIAT, Alfa Romeo, Lancia, Land Rover, Jeep)
- MERCEDES-BENZ FINANCIAL SERVICES PORTUGAL Grupo Mercedes representa as marcas (Mercedes, Smart)
- BANQUE PSA FINANCE SUCURSAL EM PORTUGAL Grupo Peugeot, Citroen representa as marcas (Peugeot, Citroen, Opel)
- BMW BANK GMBH SUCURSAL PORTUGUESA Grupo BMW representa as marcas (BMW, Mini)

Fonte: Banco de Portugal

-

⁹ Valor Final Garantido é o valor que um bem, tal como um automóvel, terá no final da sua vida útil.

Na presente dissertação vamos analisar apenas o produto financeiro de crédito automóvel, dado ser um produto com maior relevância nas carteiras de todos os Bancos e Instituições Financeiras cativas.

A amostra selecionada tem como origem os dados da ASFAC e está separada entre:

- a) **crédito automóvel para particulares -** empréstimo automóvel destinado à aquisição de veículos automóveis por pessoas singulares
- b) **crédito automóvel para empresas -** empréstimo automóvel destinado a pessoas coletivas no âmbito de atividades comerciais ou profissionais.

Os dados analisados são trimestrais, em painel ou dados longitudinais, com 84 observações para cada variável, neste caso crédito automóvel particular e crédito automóvel empresa.

Gráfico 1.7 apresenta a evolução do financiamento do crédito automóvel concebido no mercado Português segundo ASFAC¹⁰ desde 1998 até 2018, separado entre particulares e empresa.

À primeira vista as duas carteiras detêm um comportamento muito semelhante, com um crescimento constante entre período 1998 a 2007, seguido de um período de desaceleração devido a crise suprime, onde verificamos que o mercado automóvel também foi alvo dos efeitos primários e secundários da mesma. Após 2014 verifica-se novamente um constante crescimento tanto do crédito automóvel particular como de empresa. No caso do crédito automóvel particular, assistimos a um aumento exponencial na evolução do crédito, com uma ultrapassagem muito acima do pico realizado em 2007.

Gráfico 1.7 - Evolução do consumo de crédito automóvel das empresas e dos particulares desde 1998 -2018

Fonte: ASFAC

-

¹⁰ ASFAC Disponível em: <u>https://www.asfac.pt/estatisticas</u>

Capítulo II - Revisão de Literatura

Há trabalhos desenvolvidos sobre o ramo automóvel, nomeadamente sobre os fatores que influenciam a vendas dos automóveis, mas nenhum focando-se na análise do crédito automóvel. Apesar de os trabalhos realizados se centrarem nas vendas de automóveis, constituem matéria relevante para a nossa investigação, uma vez que existe uma relação direta entre financiamento e venda dos automóveis. Acreditamos que sendo o montante de crédito automóvel uma informação mais sensível, esta acaba por ser objeto de análises internas das próprias Instituições Financeiras e não alvo de estudos académicos.

Por outro lado, ao nível de comportamento dos consumidores, existe uma vasta e diversificada matéria alvo de pesquisa e análise por parte dos investigadores, razão pela qual, na nossa investigação, pretendemos focar-nos nos mais relevantes.

Segundo Castro e Santos (2010), do ponto de vista teórico a evolução dos empréstimos bancários resulta da interação entre as variáveis da procura e as variáveis da oferta. No lado da procura existem as famílias com as variáveis como por exemplo o rendimento disponível e no caso das empresas, o investimento. De acordo com os autores, a literatura empírica que procura identificar determinantes dos empréstimos bancários situa-se mais na parte de procura.

O estudo econométrico realizado por Castro e Santos (2010) na estimativa dos empréstimos bancários em Portugal foi efetuado através do método Mínimos Quadrados Ordinários. O teste de estacionariedade das variáveis para os empréstimos de bens duradouros realizados pelo *Augmented Dickey-Fuller* (ADF) apontam para a aceitação das variáveis em primeiras diferenças. Um dos resultados alcançados demonstram que um aumento da taxa de juro tem uma redução no crédito bancário ao consumo e outros fins.

Castro e Santos (2010) afirmam que as taxas de juro e os empréstimos bancários mantiveram uma relação muito estreita com um conjunto de variáveis, das quais a taxa de juro do mercado monetário e alguns indicadores de risco são apontadas pelos autores como determinantes da taxa de juro ativa.

Monteiro e Moutinho (2010) afirmam que, durante a crise económico-financeira de 2008, o sector automóvel foi uma das vítimas. As várias circunstâncias da crise, nomeadamente a diminuição de poder de compra das famílias devido à dificuldade de obtenção de crédito junto das instituições bancárias (restrição do financiamento e aumento do *spread*), traduziram-se num resultado negativo no sector automóvel com uma queda das vendas no mercado português.

Um outro efeito da crise de 2008 foi o aumento do desemprego, que provocou a inevitável diminuição da venda de automóveis, devido à perda do poder de compra. O aumento da carga fiscal anunciada pelo Governo José Sócrates em 2008, com início em 2009 sobre o sector – (Imposto sobre veículos) ISV, (Imposto único automóvel) IUC - segundo Monteiro e Moutinho (2010), implicou uma forte antecipação de

compras em dezembro 2008. Em contrapartida, através desta medida o Estado diminuiu a taxa de tributação para as viaturas menos poluentes, através de uma política de defesa do meio ambiente.

Através do modelo *Ordinary Least Squares* (OLS), Monteiro e Moutinho (2010) pretendem encontrar fatores que possam responder às vendas das viaturas em Portugal, razão pela qual na estimativa do modelo vários foram os fatores explicativos utilizados para determinar o impacto esperado nas vendas de automóveis, sendo os mais relevantes o PIB (impacto positivo nas vendas), a taxa de desemprego (impacto negativo nas vendas), o índice de confiança do consumidor (impacto positivo nas vendas), a taxa de juro (impacto positivo nas vendas), empréstimos concedidos a sociedades não financeiras em Portugal (impacto positivo nas vendas) e outros.

Os fatores explicativos do resultado da investigação do Monteiro e Moutinho (2010) recaem sobre a taxa de desemprego e o preço do petróleo. Ao analisar em mais detalhe os fatores explicativos por tipo de veículo, verificamos que, no caso das viaturas ligeiras, são o rendimento disponível das famílias, os empréstimos concedidos, as taxas de desemprego e a taxa de inflação. Monteiro e Moutinho (2010) evidenciam claramente a correlação positiva entre a situação económico-financeira do país e as vendas das viaturas.

Martins (2012) na sua investigação pretende determinar os fatores que influenciam as vendas de automóveis através de uma estimativa e previsão futuras dos mesmos, por ser crucial para as instituições de crédito conhecer o comportamento futuro do mercado automóvel. Na sua investigação, os dados das vendas foram recolhidos via ACAP e correspondem ao espaço temporal 2000 - 2012. Os fatores, como a taxa de desemprego, indicador de clima económico, taxa de juro Euribor, índice de preços consumidor, indicador de confiança do consumidor, PIB, IVA, ISV, fim dos incentivos ao abate e índice PSI20 entre outros - foram introduzidos no modelo de previsão, por forma a determinar o impacto nas vendas dos automóveis no futuro. O modelo econométrico utilizado na estimativa do modelo foi ARIMA que, segundo Martins (2012), seguiu as seguintes etapas - "Identificação", "Estimação" e "Teste de Diagnóstico".

O resultado alcançado na investigação de Martins (2012) contradiz em alguns aspetos o de Monteiro e Moutinho (2010).

Martins (2012) afirma que a taxa de desemprego, taxa juro Euribor, índice de preços, indicador de confiança do consumidor e PIB não têm relevância assinalável para o modelo em análise. Afirma que as variáveis significativas para as vendas dos automóveis no modelo em análise são o índice *Portuguese Stock Index* (PSI20), IVA, ISV, o fim dos incentivos ao abate e o indicador de clima económico.

Moreira (2014) procura identificar quais os fatores determinantes na venda de automóveis ligeiros de passageiros, neste caso da marca Toyota. A metodologia econométrica aplicada pelo autor assenta sobre o método *Ordinary Least Squares* (*Pooled OLS*.¹¹)

-

¹¹ Panel (data) analysis método estatístico

Segundo Moreira (2014), o fator taxa de juro apenas tem significado para os automóveis movidos a diesel, ao contrário dos automóveis a gasolina. A situação macroeconómica do país representada pelo índice mensal de volume de negócio total, de acordo com os resultados alcançados pelo autor, não deve ser rejeitada, uma vez que a variável é significativa. Outro fator potencial que após análise se revela significativo é a evolução dos preços dos combustíveis. A carga fiscal (ISV) após o resultado do autor apresenta realidades distintas; no caso das viaturas a gasolina a variável analisada apresenta nível de significância de 10%, o sinal inicial estimado é de acordo com o esperado; logo o ISV é um fator determinante nas vendas automóveis Toyota. No caso das viaturas a gasóleo, a variável não tem significância estatística.

Relativamente ao resultado alcançado por Moreira (2014), verifica-se uma aproximação em termos de conclusões relativamente ao fator evolução dos preços dos combustíveis, taxa de juro aplicada aos empréstimos bancários e situação macroeconómica (PIB) com a investigação de Monteiro e Moutinho (2010). Face a investigação de Martins (2012), verifica-se concordância nos resultados relativamente à carga fiscal (IVA, ISV) como fatores que influenciam as vendas de automóveis em Portugal.

Apesar de os resultados dos estudos de Monteiro (2008), Martins (2012) e Moreira (2014) serem diversos, as conclusões apontam como fatores influenciadores na performance das vendas de automóveis, o PIB, o consumo privado, a taxa de desemprego, índice de preços ao consumidor (IPC), empréstimos bancários e elevada carga fiscal do setor nomeadamente ISV e IVA.

O aumento do desemprego, a diminuição do rendimento e impostos mais elevados, segundo Sacoor (2014), podem influenciar significativamente o comportamento de compra do consumidor português. O comportamento do consumidor depende de fatores psicólogos, culturais, sociais, ambientais, etc.

Na sua investigação, Sacoor (2014) analisa o impacto da crise económica no comportamento do consumidor, designadamente do sector automóvel, pelo que enuncia alguns indicadores económicos justificadores do comportamento do consumidor, utilizando a Netnografia¹² como método de pesquisa. Primeiro o PIB, dado que a autora apresenta os anos 2007 – 2009, em que se verificou uma quebra acentuada do mesmo na zona euro, incluindo Portugal. O segundo indicador é a taxa de desemprego, uma vez que no período da crise a população portuguesa sofreu uma redução de salário e aumento de horário de trabalho. No período de análise da mesma, verifica-se que a taxa de desemprego subiu continuamente entre 2002 e 2013. Por fim, o último indicador relevante foi o consumo privado, tanto em bens duradouros (com ciclos de vida mais longos p.ex. automóveis, entre outros) e bens não duradouros por exemplo: alimentos, roupa. Segundo a investigadora, ao analisar os bens duradouros entre 2010 e 2012, verificou-

_

¹² A Netnografia é a etnografia analisa o comportamento humano em grupos sociais no internet. Netnografia é uma técnica de pesquisa de marketing que possibilita uma análise do consumidor

se uma diminuição do consumo do mesmo, significando que os consumidores deram prioridade as necessidades primárias e, posteriormente, as necessidades secundárias.

De acordo com alguns resultados da análise de Sacoor (2014), o comportamento do consumidor muda quando este enfrenta restrições económicas, isto é: o consumidor português adapta o seu comportamento de consumo consoante o contexto económico.

Partindo deste resultado para o objetivo da nossa investigação, podemos inferir que o contexto macroeconómico do país, nomeadamente a situação económico-financeira, tem um impacto direto no comportamento do consumidor. Quando a situação é favorável verificar-se-á um aumento do consumo neste caso, aumento do crédito automóvel – se a situação é desfavorável verificar-se-á uma diminuição do consumo, neste caso diminuição do crédito automóvel.

Ao relacionar aqui os argumentos dos vários autores, neste caso Sacoor (2014) e Moreira (2014), verificamos que a situação macroeconómica de um país influencia o comportamento do consumidor, se esta for desfavorável existe uma priorização das necessidades primárias vs necessidade secundárias.

Moreira (2011) afirma que o conceito de consumo do séc. XX, através do crédito, veio permitir que os indivíduos ajustassem o seu rendimento às suas despesas, financiando-lhes a aquisição de uma vasta gama de bens e serviços. O crédito propiciou o conforto e a qualidade de vida, ao permitir satisfazer as necessidades pessoais e sociais dos indivíduos. Nas últimas décadas, a nível mundial, as taxas de consumo através do crédito aumentaram substancialmente, uma vez que se expandiu e chegou a todas as classes sociais.

Segundo Moreira (2011), em Portugal, foi a partir da década de noventa que o crédito ao consumo registou um acentuado crescimento, apoiado no processo de desregulamentação e na liberalização do sistema bancário nacional, na descida das taxas de juro e da taxa de inflação, em consequência do processo de adesão à União Económica e Monetária e à entrada na Zona Euro, na cessação de políticas de limites de crédito, o que se refletiu positivamente sobre a oferta de crédito, criando as condições para o aparecimento de novos produtos e conduzindo a uma maior facilidade no acesso ao crédito. A abordagem macroeconómica do consumo agregado divide-se entre o consumo das famílias, que representa cerca de 60% do PIB (Ramos, 2009) e o consumo público, sendo ambos influenciadores do PIB de um país.

Moreira (2011) afirma que a obtenção de crédito e as taxas de juros que os bancos praticam são fatores que explicam as variações do consumo, uma vez que as famílias aplicam o seu rendimento de acordo com a estrutura de consumo.

Para Moreira (2011), o consumo das famílias tem um papel fundamental na vida económica porque garante a continuidade do processo produtivo, ao escoar os produtos necessários à satisfação das necessidades dos consumidores, porque afeta a atividade produtiva das empresas, já que lhes permite saber quais os bens mais adquiridos pelas famílias dando, assim, informações importantes à produção, e também porque

altera os valores da sociedade através, por exemplo, do consumo ético e responsável. Segundo Moreira (2011), as circunstâncias das crises financeiras são em grande parte explicadas pelo facto de as sociedades estarem em situações mais delicadas devido ao aumento do endividamento nas últimas décadas.

Santos et al. (2013) definem o crédito como o instrumento necessário e desejável para a manutenção do consumo estável da vida dos agentes económicos, permitindo acertar o consumo em períodos de oscilações do rendimento. O autor afirma que o preço das habitações (bens duradouros) adquiridas a crédito, perderam o seu valor durante a crise financeira que levou a uma maior fragilidade financeira. Encontramos aqui alguma semelhança com Martins (2012) e Moreira (2014) relativamente ao índice de preço, que gera maior fragilidade financeira e propaga-se como influenciador no comportamento dos agentes económicos.

As conclusões de Santos et al. (2013) sobre a racionalidade das decisões de crédito e consumo, por parte dos agentes económicos, apontam como fatores explicativos dos aspetos como a evolução de normas sociais ou a perda de poder económico e político dos trabalhadores. Daqui podemos concluir que o rendimento disponível tem um papel crucial na tomada de decisão no ato de comportamento do consumidor.

Capítulo III – Metodologia Econométrica

O principal objetivo desta análise, consiste em apresentar um estudo econométrico que caracteriza qual dos indicadores económicos influencia o crédito de automóvel.

As variáveis selecionadas para o estudo econométrico serão passadas por vários testes realizado através do software *EViews*¹³. De acordo com a revisão de literatura, mas também fora do âmbito da mesma, foram recolhidos um conjunto de variáveis, que são series temporais¹⁴ trimestrais com dados organizados em time series. As variáveis que foram selecionadas para o modelo de estimação VAR no *EViews*, estão apresentadas na tabela 3.1.

.

¹³ EViews é um programa de estatística para Windows, usado verbalmente para análise econométrica.

¹⁴ Considera- se uma serie temporal um conjunto de observações ordenado de forma regular ao longo de um determinado momento, neste caso as serie selecionadas apresentam dados trimestrais desde 1998 até 2018 e as mesmas pode ser linear, não linear, estacionaria ou não estacionaria.

Tabela 3.1 Variáveis estudo econométrico

Descrição	Descrição	Unidade	Período	Fonte
EViews				
CRD PAR	Montante de crédito automóvel particulares. Deflacionado pelo IPC [base 2018]	Mio€	Q1 -1998 / Q4- 2018	ASFAC
CRD EMPR	Montante de crédito automóvel empresas. Deflacionado pelo IPC [base 2018]	Mio€	Q1 -1998 / Q4- 2018	ASFAC
TAX VAR PIB	Produto interno bruto, dados encadeados em volume (Taxa de variação homóloga)	%	Q1 -1998 / Q4- 2018	INE
EURIBOR 3 M	Taxa Euribor 3 meses	%	Q1 -1999 / Q4- 2018	ECB
TAX DESE	Taxa de desemprego	%	Q1 -1999 / Q4- 2018	INE
DÉF. ADM.PÚB	Défice da administração pública em percentagem do PIB	% do PIB	Q1 -1999 / Q4- 2018	INE/BdP
REND LIQ	Rendimento médio mensal líquido da população empregada por conta de outrem	€	Q1 -1998 / Q4- 2018	INE
CARGA FIS	Carga fiscal em percentagem do PIB sem sazonalidade	% do PIB	Q1 -1998 / Q4- 2018	INE/BdP

Fonte: ASFAC, Instituto Nacional de Estatística, Banco de Portugal, European Central Bank

Várias são as áreas que analisam o comportamento do consumidor desde a psicologia, à sociologia, à economia e à antropologia social. Todas estas áreas tentam encontrar fatores explicativos com o objetivo de responder às questões, como por exemplo: o porque, como, quando os agentes económicos decidem comprar ou consumir um determinado produto.

Com o propósito de explorar e compreender os padrões de consumo¹⁵ da população portugues no sector automóvel, vamos analisar, através de um modelo econométrico desenvolvido no *EViews*, os indicadores económicos mais relevantes da economia Portuguesa. Através desta análise pretende-se concluir se efetivamente os indicadores selecionados têm ou não impacto no crédito automóvel.

- Produto Interno Bruto Sendo o PIB o indicador quantificador da atividade económica, poderá vir a ser uma variável explicativa das variações do consumo do crédito automóvel na sociedade Portuguesa, uma vez que o histórico apresenta correlação positiva entre as duas variáveis.
- 2. Euribor 3 M A taxa Interbank Offered Rate representa a média da taxa de juro praticadas nos empréstimos interbancários pelos principais bancos europeus, que é componente obrigatória na composição de qualquer taxa de financiamento, taxa anual de encargos efetiva global (TAEG) e taxa anual nominal (TAN). De acordo com a Instrução 14/2013: DL n.º 133/2009, de 02-06 BdP, todas as Instituições Financeiras de Crédito têm que respeitar as taxas máximas TAEG praticadas no mercado

¹⁵ O consumo na perspetiva económica é entendido como o ato económico na medida em que permite adquiri bens ou serviços que satisfazem as necessidades humanas.

na concessão do crédito ao consumo como ao crédito automóvel. Com o objetivo de aumentar os seus lucros, as Instituições Financeiras Portuguesas financiam-se no mercado interbancário, para fazer face às várias formas de necessidades de financiamento ao consumo. Do financiamento contraído pelas Financeiras¹6 e Bancos apenas 23,4% é canalizado para o crédito automóvel (BdP – Boletim Estatistico Dez-2018). Apesar de representar uma percentagem mais reduzida em comparação com outras necessidades do financiamento ao consumo, é também indiretamente influenciada pela taxa Euribor. A variável será analisada à luz do *EViews*, como variável explicativa do crédito automóvel.

- 3. Taxa de desemprego A taxa de desemprego permite definir a relação entre a população desempregada e a população ativa. Através da análise econométrica desta variável pretendemos verificar se existe alguma relação entre a mesma e a volatilidade dos empréstimos ao consumo via crédito automóvel.
- 4. Défice da Administração Pública O défice público é um indicador de estabilidade económica do país que mede a relação entre a despesa e a receita da administração pública de um determinado país. A variável será analisada ao nível econométrico, uma vez que pode existir alguma relação entre o investimento canalizado na economia por via de decisões políticas ao nível de gestão governamental vs o aumento dos empréstimos ao consumo via crédito automóvel. Ao existir alguma decisão de investimento ou aumento de outra despesa pública por parte do Governo, resulta mais postos de trabalho, mais rendimento disponível para as famílias que pode resultar aumento do crédito ao consumo.
- 5. Rendimento médio líquido Representa o indicador que mede o rendimento disponível das famílias para utilizar no consumo de bens e serviços. Este rendimento será dividido entre consumo e poupança. Ao escolher este indicador pretendemos percecionar a existência de alguma relação entre empréstimo automóvel e rendimento líquido. Por outro lado, caso o rendimento líquido aumente e não se verifique aumento na parte do crédito em geral e no crédito automóvel em particular, estamos perante uma sociedade que altera o seu hábito de consumo e está mais inclinada para o lado da poupança ou detém liquidez suficiente para não recorrer ao crédito.
- 6. Carga Fiscal É o indicador que mede todas as contribuições ao nível de impostos arrecadados pelo governo. Martins (2012) afirma que as taxas com ISV e IVA são variáveis significativas nas vendas das viaturas em Portugal. Será testado no nosso caso a carga fiscal que representa a soma agregada de

http://www.apb.pt/sistema_financeiro/instituicoes_financeiras/

17

¹⁶ As instituições financeiras exercem atividades específicas distintas que, para além de as caracterizar, permitem classificá-las com base no papel que desempenham. O Regime Geral das Instituições de Crédito e Sociedades Financeiras (RGICSF) divide as entidades financeiras em dois grupos principais: Instituições de Crédito; Fonte:

todos os impostos incluídos ISV e IVA e será testado contra a evolução do crédito automóvel, no sentido de determinar efetivamente se os impostos em geral têm algum efeito sobre o empréstimo automóvel.

O modelo econométrico inclui os indicadores económicos acima descritos como potenciais fatores explicativos do empréstimo bancário via crédito automóvel. A informação financeira do crédito automóvel foi recolhida através da ASFAC¹⁷ (Associação de Instituições de Crédito Especializado) que é a entidade que representa o setor do financiamento especializado do consumo em Portugal. Atualmente é composta por 32 membros, dos quais 29 são associadas – instituições de crédito especializadas no financiamento do consumo – e 3 aderentes – empresas cuja atividade é fundamental para o desenvolvimento do negócio das associadas. A ASFAC desenvolve a sua atividade em duas grandes áreas: por um lado, apoia a atividade dos seus associados e representa-os perante as instituições de tutela e supervisão e das instâncias internacionais. Por outro, promove o aumento da literacia financeira dos portugueses, apostando fortemente na educação financeira de crianças, jovens e adultos, em particular das populações mais vulneráveis.

Todas as séries temporais selecionadas para o modelo econométrico em análise são trimestrais, compreendidas entre 1998 e 2018 com exceção da Euribor 3M, défice da administração pública e carga fiscal que começam em 1999. O modelo econométrico estimado tem como principal objetivo compreender, quais os fatores económicos que afetam e influenciam o comportamento do crédito automóvel particular e empresa.

A tabela 3.2 apresenta a estatística descritiva como máximos, mínimos, desvio padrão e o número de observações de todas as variáveis em estudo.

Tabela 3.2 Estatística descritiva variáveis

Variáveis	Maximum	Minimum	Std. Dev.	Observations
CRD_PAR	619.8751	159.1086	114.5919	84
CRD_EMPR	95.63317	19.78909	18.39451	84
TAX_VAR_PIB	5	-4.5	2.34195	84
EURIBOR_3M	5.0192	-0.33	1.734194	80
TAX_DESE	17.5	3.7	3.70985	84
DEF_ADM_PUB	18.48782	-5.56567	3.865123	80
REND_LIQ	896	503	111.6551	84
CARGA_FIS	40.7644	25.64552	3.012368	80

Fonte: Eviews

18

¹⁷ ASFAC https://www.asfac.pt/pagina/1/quem_somos

1.1 Testes de Raízes Unitárias.

O teste de raízes unitárias tem como objetivo determinar a estacionariedade de uma dada série temporal Com vista de determinar a presença de raízes unitárias nas séries temporais selecionadas, serão realizados os seguintes testes: ADF desenvolvido pelo *Dickey e Fuller* (1979), o teste KPSS desenvolvido por *Kwiatkowski et al.* (1992) e o teste PP de *Phillips e Perron* (1988).

1.1.1 Teste Augmented Dickey-Fuller ("ADF")

O Dickey e Fuller (1979), apresenta três equações para testar a existência de uma raiz unitária:

1. Sem constante, sem tendência $\Delta Y_t = Y_{t-1} + \varepsilon_t$

2.Constante sem tendência $\Delta Y_t = \alpha + Y_{t-1} + \varepsilon_t$

3. Constante e tendência $\Delta Y_t = \propto +Y_{t-1} + \lambda_t + \varepsilon_t$

Numa primeira fase serão analisadas as séries com constante sem tendência em níveis sob as hipóteses: H0: I(1) Não Estacionária ou H1: I(0) Estacionaria, caso p-value $^{18} > 5\%$ aceita-se H0 caso, p-value < 5% rejeita-se H0. Na segunda fase serão analisadas as séries com constante sem tendência em 10 diferenças sob as hipóteses: H0: I(1) Não Estacionária ou H1: I(0) Estacionaria, caso p-value > 5% aceita-se H0 caso, p-value < 5% rejeita-se H0.

Tabela 3.3 Resultados teste ADF

		Nív	/eis			1ºDife	renças	
ADF	Constante sem		Constante com		Constante sem		Constante com	
	te	ndência	tendência		tendência		tendência	
Variável	P-	Não	P-	Não	P-	Não	P-	Não
	value	Estacionária/	value	Estacionária/	value	Estacionária/	value	Estacionária/
		Estacionária		Estacionária		Estacionária		Estacionária
Log (CRD PAR)	0.1662	Não Estac.	0.5315	Não Estac.	0.1322	Não Estac.	0.3057	Não Estac.
Log (CRD EMPR)	0.4391	Não Estac.	0.6382	Não Estac.	0.0000	Estac	0.0000	Estac
TAX VAR PIB	0.1351	Não Estac.	0.4928	Não Estac.	0.0000	Estac	0.0004	Estac
EURIBOR 3 M	0.4726	Não Estac.	0.0297	Estac.	0.0003	Estac	0.0021	Estac
TAX DESE	0.4085	Não Estac.	0.8115	Não Estac.	0.2249	Não Estac.	0.3809	Não Estac.
DEF ADM PUB	0.4821	Não Estac.	0.8021	Não Estac.	0.0001	Estac	0.0000	Estac
Log (REND LIQ)	0.2152	Não Estac.	0.6531	Não Estac.	0.0000	Estac	0.0000	Estac
TAX CARGA FIS	0.8689	Não Estac.	0.0000	Estac	0.0000	Estac	0.0000	Estac

Fonte: Eviews

18 probability value

Através do teste ADF realizado para todas as variáveis em níveis sem tendência, concluímos que todas as séries são não estacionarias (aceitamos H0) já que o *p-value* e superiore ao nível de significância de 5% (tabela 3.3).

Por outro lado, ao testar as mesmas variáveis em 1º diferenças sem tendência, concluímos que ao contrário do crédito particular e taxa de desemprego, todas as séries são estacionarias logo, já que o *p-value* é inferior ao nível de significativa de 5%. (Anexo B)

Adicionalmente concluímos que as variáveis como crédito para empresas, a taxa variação homóloga do PIB, o défice da administração pública e o rendimento líquido são séries integradas de ordem 1 por se tratar de series não estacionaria em níveis e estacionaria em 1º diferenças.

1.1.2 Teste Philips Perron ("PP")

Uma grande vantagem do teste *Philips-Perron (PP)* em comparação com ADF, é que o teste PP é não-paramétrico. Aplicando a mesma abordagem do ADF mas neste caso para o teste PP, numa primeira fase analisamos as séries com constante sob as hipóteses: H0: I(1) Não Estacionaria ou H1: I(0) Estacionaria. Na segunda fase será analisado as mesmas hipóteses, mas em 1º diferenças.

Tabela 3.4 - Resultados teste PP

		Nív	eis eis		1ºDiferenças			
PP	Constante sem Tendência		Constante com Tendência		Constante sem Tendência		Constante com Tendência	
Variável	P-value	Não Estacionária/ Estacionária	P-value	Não Estacionária/ Estacionária	P-value	Não Estacionária/ Estacionária	P-value	Não Estacionária/ Estacionária
Log CRD PAR Log CRD EMPR	0.5775 0.4992	Não Estac. Não Estac.	0.8708 0.7021	Não Estac.	0.0000	Estac.	0.0000	Estac.
TAX VAR PIB EURIBOR 3 M	0.0898	Não Estac.	0.3008	Não Estac.	0.0000	Estac.	0.0000	Estac.
TAX DESE	0.7186	Não Estac.	0.9930	Não Estac.	0.0000	Estac.	0.0000	Estac.
DEF ADM PUB Log REND LIQ	0.0000	Estac.	0.0000	Estac. Não Estac.	0.0001	Estac.	0.0001	Estac.
CARGA FIS	0.0000	Estac.	0.0000	Estac.	0.0001	Estac.	0.0001	Estac.

Fonte: Eviews

Através do teste PP realizado para todas as variáveis em níveis, concluímos que com exceção do défice da administração pública, rendimento líquido e carga fiscal, todas as séries são não estacionarias (aceitamos H0) já que o *p-value* são superiores ao nível de significativa de 5%. (tabela 3.4)

Ao realizar os testes PP em 1º diferenças concluímos que os dois testes apontam para uma estacionáridade de todas as variáveis sem exceção, aceitamos H1 já que o *p-value* e inferior ao nível de significativa de 5%. (Anexos C).

1.1.3 Teste Kwiatkowiski Philips Schmidt Shin ("KPSS")

Ao contrário dos testes anteriores, através do teste *Kwiatkowski–Phillips–Schmidt–Shin* (KPSS) numa primeira fase analisa-se H0: I(0)Estacionaria ou H1: I(1) Não Estacionaria. No caso em que *t-statistic*¹⁹ < ao valor critico de 5%, aceita-se o H0, caso contrário caso *t-statistic* > ao valor critico de 5%, rejeita-se H0 e aceita-se o H1.

Tabela 3 5 - Resultados teste KPSS

		Nív	⁄eis			1ºDife	renças	
KPSS	Constante sem tendência (v.c ²⁰ 0.463)		Constante com tendência (v.c 0.146)		Constante sem tendência (v.c 0.463)		Constante com tendência (v.c 0.146)	
		Não		Não		Não		Não
Variável	t-sta.	Estacionária/ Estacionária	t-sta.	Estacionária/ Estacionária	t-sta.	Estacionária/ Estacionária	t-sta.	Estacionária/ Estacionária
Log CRD PAR	0.2630	Estac	0.1311	Estac.	0.1821	Estac.	0.1693	Não Estac
Log CRD EMPR	0.5187	Não Estac.	0.1418	Estac	0.1887	Estac.	0.1887	Não Estac
TAX VAR PIB	0.3312	Estac	0.1825	Não Estac.	0.0691	Estac.	0.0263	Estac.
EURIBOR 3 M	0.9437	Não Estac.	0.0867	Estac	0.0574	Estac.	0.0464	Estac.
TAX DESE	0.7427	Não Estac.	0.1670	Não Estac	0.3366	Estac	0.2174	Não Estac
DEF ADM PUB	0.2160	Estac.	0.2170	Não Estac	0.1714	Estac.	0.1033	Estac.
Log REND LIQ	0.2160	Estac.	0.2170	Não Estac	0.1714	Estac.	0.1033	Estac.
CARGA FIS	0.9332	Não Estac	0.2288	Não Estac	0.2232	Estac.	0.1623	Não Estac .

Fonte: Eviews

Através do teste KPSS realizado para todas as variáveis em níveis com constante e sem tendência, concluímos que apenas crédito particular, taxa variação homologa do PIB, défice da administração pública e rendimento líquido apontam resultados estacionários (aceitamos H0) já que o *t-statistic* e inferior ao valor critico de 5%. (tabela 3.5) (Anexo D).

Por outro lado, ao realizar os testes em 1ºdiferenças verifica-se a estacionariedade de todas as variáveis analisadas com exceção de crédito particular e crédito empresa, taxa de desemprego e carga fiscal. Uma vez que os resultados em 1º diferenças para constante com tendências apresentam resultados bastantes

¹⁹ A estatística do teste t e usada para decidir se deve apoiar ou rejeitar a hipótese nula.

²⁰ Valor Crítico

diferentes, valorizou-se os testes sem tendência (uma vez que as séries não têm tendência) que apontam para estacionariedade de todas as variáveis.

1.2 Conclusão teste de raiz unitária

A tabela 3.6 apresenta os resultados agregados dos testes de raízes unitárias, nomeadamente o Teste Augmented Dickey-Fuller, Teste Philips Perron e Teste Kwiatkowiski Philips Schmidt Shin de todas as variáveis analisadas.

Ao analisar os resultados em níveis do teste ADF, verifica-se a predominância das variáveis como sendo não estacionarias. Por outro lado, ao analisar os testes de PP e KPSS verifica-se a existência de algumas variáveis estacionarias nomeadamente o défice da administração pública e rendimento líquido.

Seguindo o mesmo raciocínio, mas neste caso para os resultados em 1º diferenças, deparamos com uma mudança de paradigma para maioria das variáveis analisadas para os testes ADF, PP e KPSS, como sendo estacionárias. As únicas exceções são visíveis no caso do ADF para crédito a particulares e taxa desemprego, que se apresentam como variáveis não estacionarias.

Com o objetivo de utilizar o Vetores Autorregressivos (VAR) como modelo econométrico, a estacionariedade das variáveis representa-se como um ponto essencial, ou seja, as médias e as variâncias das variáveis têm que permanecer constantes ao longo do período em análise, por forma a evitar resultados espúrios. Neste sentido, com base nos resultados alcançados e com intuito de dar o próximo passo, na construção do modelo VAR, serão utilizadas as variáveis em 1º diferenças. A decisão de avançar com as variáveis em 1º diferenças para o modelo VAR foi tomada apesar do resultado das 2 variáveis apresentar não estacionariedade no teste ADF; esta decisão assenta sobre o facto de que os resultados dos outros testes neste caso PP e KPSS apresentam estacionariedade em ambos os testes, ou seja existe uma percentagem de 66.6% da variável ser estacionária.

Tabela 3.6 - Resultados teste de raiz unitárias agregados Eviews

Variáveis	ADF	PP	KPSS	
Log (CRD PAR)	Não Estacionária	Não Estacionaria	Estacionaria	
Log (CRD EMP)	Não Estacionaria	Não Estacionaria	Não Estacionaria	
TAX VAR PIB	Não Estacionaria	Não Estacionaria	Estacionaria	
EURIBOR 3 M	Não Estacionaria	Não Estacionaria	Não Estacionaria	<u>.s</u>
TAX DESE	Não Estacionaria	Não Estacionaria	Não Estacionaria	Níveis
DÉF. ADM.PÚB	Não Estacionaria	Estacionaria	Estacionaria	
Log REND LIQ	Não Estacionaria	Estacionaria	Estacionaria	
CARGA FIS	Não Estacionaria	Estacionaria	Não Estacionaria	
Log (CRD PAR)	Não Estacionaria	Estacionaria	Estacionaria	ئ ب
Log (CRD EMP)	Estacionaria	Estacionaria	Estacionaria	1º Diferenç
TAX VAR PIB	Estacionaria	Estacionaria	Estacionaria	

EURIBOR 3 M	Estacionaria	Estacionaria	Estacionaria	
TAX DESE	Não Estacionaria	Estacionaria	Estacionaria	
DÉF. ADM.PÚB	Estacionaria	Estacionaria	Estacionaria	
Log REND LIQ	Estacionaria	Estacionaria	Estacionaria	
CARGA FIS	Estacionaria	Estacionaria	Estacionaria	

Fonte: Eviews

1.3 Modelo VAR

O modelo Vetores Autorregressivos (VAR) é um modelo linear de equação simples, no qual o valor corrente de uma variável é explicado por seus próprios valores desfasados e das outras variáveis²¹. O modelo VAR, ao contrário dos modelos univariados, é mais flexível e permitindo testar a causalidade, conduzindo a previsões com melhor precisão, captando a evolução das interdependências das várias series temporais.

Como o objetivo é o de analisar a relação entre os indicadores económicos e crédito empresas e particulares será necessária a estimação de dois modelos VAR, um modelo para crédito automóvel particular e um modelo crédito empresa.

Modelo crédito automóvel particular com todas as variáveis

Para estimação do modelo VAR crédito automóvel particular foram utilizadas as seguintes variáveis em 1º diferenças: Log (CRD PAR), TAX VAR PIB, EURIBOR 3 M, TAX DESE, DÉF. ADM.PÚB, Log (REND LIQ), CARGA FIS.

O primeiro passo, antes da estimação do modelo VAR, será realizado para determinação do Lag ótimo através do *Lag Lenght Criteria* que segundo o Anexo E1, os resultados apontam para um desfasamento de 4 períodos. A escolha do Lag ótimo está baseada no critério de *Akaike Information Criteria* (AIC), uma vez a nossa amostra é reduzida Liew (2004) e apresenta valores trimestrais.

O segundo passo é testar através do teste *Lagranger Multipliers* (LM) a autocorrelação dos resíduos sob as hipóteses: H0: resíduos não são autocorrelacionados ou H1: resíduos são autocorrelacionados. No caso do crédito automóvel particular, verifica-se através do Anexo E2 que o valor do *p-value* para as 4 lags situa-se acima de 0.05 para particamente todas as variáveis com exceção do último lag, onde se verifica a existência de autocorrelação entre as variáveis.

O terceiro ponto passar por realizar o teste de normalidade do *Cholesky* aos resíduos sobre as seguintes hipóteses H0: resíduos possuem distribuição normal ou H1: resíduos não possuem distribuição normal. De acordo com o Anexo E3, os resultados apresentam rejeição da hipótese H0, para duas das três componentes que constituem o teste de normalidade do *Cholesky*, neste caso *Kurtosis* e *Jarque-Bera* com um *p-value* < 0.05. Este tipo de situações ocorre quando estamos perante *outliers* nas variáveis analisadas. Assim podemos verificar através do Anexo E4 efetivamente a existência de pelo menos um *outlier*,

²¹ Disponível em: https://pubs.aeaweb.org/doi/pdf/10.1257/jep.15.4.101

23

nomeadamente Euribor 3M em 2008Q4 onde se verifica a ultrapassagem em intervalos de confiança de mais do que dois desvios-padrão.

Com objetivo de eliminar os outliers, criou-se uma variável dummy assumindo o valor 1 na data do outlier.

Após introdução da variável dummy, o *Lag Lenght Criteria* aponta para o mesmo número de desfasamentos Anexo E5. No caso do teste *LM* Anexo E6 o p-value encontra-se acima da barreira dos 0.05 para todas as variáveis, afastados assim alguma existência de autocorreelação. Após repetir o *teste de normalidade do Cholesky* aos resíduos, aceita-se H0, ou seja, os resíduos têm uma distribuição normal para as três componentes *Skewness, Kurtosis e Jarque-Bera* com um *p-value* > 0.05, conforme podemos verificar no Anexo E7. E finalmente o Anexo E8 tem informação dos resíduos após eliminação dos *outlier*.

Com base no *output* da estimação do modelo VAR através da Anexo E9 a existência de algumas variáveis que tem pelo menos 5% de significância estatística para o modelo em análise, com exclusão do défice da administração pública, Euribor 3M e rendimento líquido que apresenta uma significância de 10%.

Todas as variáveis significativas são chaves para o nosso modelo, mas existem variáveis que apresentam significância estatística de 5% e têm maior impacto na análise do nosso modelo, neste caso no crédito automóvel particular:

- De acordo com o esperado, a taxa de variação do PIB no lag 2 com um valor de *t-statistic* [2.42] tem impacto positivo no crédito automóvel particular. Se formos analisar o PIB na ótica do rendimento, por exemplo, um aumento dos valores das renumerações do trabalho proporciona o aumento do consumo do crédito automóvel. Os agentes económicos estão perante um excedente de rendimento que é canalizado no financiamento automóvel e tem um efeito positivo.
- A carga fiscal apresenta significância estatísticas superior a 5% nos 2 dos 4 lags em análise com o valor mais elevado de *t-statistic* [-2.21] no terceiro lag. A carga fiscal demonstra exercer uma influência negativa sobre o crédito automóvel particular. Um aumento da carga fiscal por parte do governo tem implicações diretas para os agentes económicos, nomeadamente diminuição do consumo do crédito automóvel particular.
- A taxa de desemprego vai ao encontro das nossas expectativas com uma significância de 5% para um valor de *t-statistic* [-2.23], e apresenta um impacto negativo no nosso modelo. Um aumento da taxa de desemprego tem efeitos secundários negativos para o crédito automóvel particulares, uma vez que os agentes económicos canalizam a atenção dos gastos para as necessidades primárias, de acordo com a pirâmide de *Maslow*.²²

24

²² Define cinco categorias de necessidades humanas: fisiológicas, segurança, afeto, estima e as de autorrealização. Esta teoria é representada por uma pirâmide onde na base se encontram as necessidades mais básicas pois estas estão diretamente relacionadas com a sobrevivência. Segundo *Maslow*, um indivíduo só sente o desejo de satisfazer a necessidade de um próximo estágio se a do nível anterior estiver sanada, portanto, a motivação para realizar estes desejos vem de forma gradual. Fonte wikipedia: https://pt.wikipedia.org/wiki/Hierarquia_de_necessidades_de_Maslow

Modelo crédito automóvel particular apenas com as variáveis significativas

Com base no resultado acima alcançado e por forma a obter melhores resultados, iremos proceder a estimação de um novo modelo para crédito automóvel particular, apenas com as variáveis que apresentam significância estatística de 5%, incluído também o rendimento líquido por se tratar de uma variável com resultado muito próximo de significância estatística de 5%.

Para estimação do modelo VAR crédito automóvel particular foram utilizadas as seguintes variáveis em 1º diferenças: Log (CRD PAR), TAX VAR PIB, TAX DESE, Log (REND LIQ), CARGA FIS.

De acordo com os passos acima descritos, o primeiro passo antes da estimação do modelo VAR, será realizado para determinação do Lag ótimo através do *Lag Lenght Criteria* que segundo o Anexo E10, os resultados apontam para um desfasamento de 4 períodos. A escolha do Lag ótimo está baseada no critério de AIC, uma vez que a nossa amostra é reduzida Liew (2004) e apresenta valores trimestrais.

O segundo passo é testar através do teste LM a autocorrelação dos resíduos sob as hipóteses: H0: resíduos não são autocorrelacionados ou H1: resíduos são autocorrelacionados. No caso do crédito automóvel particular, verifica-se através do Anexo E11 que o valor do p-value para as 4 lags situa-se acima de 0.05 para todas as variáveis.

O terceiro ponto passa por realizar o teste de normalidade do *Cholesky* aos resíduos sobre as seguintes hipóteses H0: resíduos possuem distribuição normal ou H1: resíduos não possuem distribuição normal. De acordo com o Anexo E12, os resultados apresentam rejeição da hipótese H0, para uma das três componentes que constituem o teste de normalidade do *Cholesky*, neste caso *Kurtosis* com um *p-value* < 0.05. Este tipo de situações ocorre quando estamos perante *outliers* nas variáveis analisadas. Assim podemos verificar através do Anexo E13 efetivamente a existência de pelo menos um *outlier*, nomeadamente Rendimento Líquido em 2002Q1- 2002Q4.

Com o objetivo de eliminar os outliers, criou-se uma variável dummy, assumindo o valor 1 na data do outlier.

Após introdução da variável *dummy*, o *Lag Lenght Criteria* aponta para o mesmo número de desfasamentos Anexo E14. No caso do teste LM Anexo E15 o *p-value* encontra-se acima da barreira dos 0.05 para todas as variáveis, afastados assim alguma existência de autocorreelação. Após repetir o teste de normalidade do *Cholesky* aos resíduos, aceita-se H0, ou seja, os resíduos têm uma distribuição normal para as três componentes *Skewness, Kurtosis* e *Jarque-Bera* com um *p-value* > 0.05, conforme podemos verificar no Anexo E16. E finalmente o Anexo E17 tem informação dos resíduos após eliminação dos outlier.

Com base no *output* da estimação do modelo VAR através da Anexo E18 todas as variáveis que têm pelo menos 5% de significância estatística para o modelo em análise.

- A taxa de variação do PIB no lag 2 com um valor de t-statistic [2.07] tem impacto positivo no crédito automóvel particular. Ao analisar os resultados do *EViews* nomeadamente os coeficientes dos resultados

para o lag 2, os mesmos apontam para um incremento de 0.019667 (1.9%) para o crédito automóvel particular caso existe uma variação de 1% na taxa de variação do PIB.

- A carga fiscal apresenta significância estatística superior a 5% nos 3 dos 4 lags em análise com o valor mais elevado de *t-statistic* [-2.25] no 1º lag. A carga fiscal demonstra exercer uma influência negativa sobre o crédito automóvel particular. Em termos práticos, de acordo com os resultados obtidos no *EViews*, uma variação de 1% da carga fiscal tem um impacto imediato no crédito automóvel particular de -0.014097, ou seja, redução da procura do crédito automóvel particulares seria de -1.4%.
- A taxa de desemprego vai de encontro às nossas expectativas com uma significância de 5% para um valor de *t-statistic* [-2.4] apresenta um impacto negativo no nosso modelo. No lag 1 os resultados para o modelo em análise apontam para um efeito imediato de aproximadamente -0.041826 (-0.41%), no caso de uma variação de 1% da taxa de desemprego.
- O rendimento líquido apresenta uma significância de 5% para um valor de *t-statistic* [-2.26] e tem um impacto negativo no nosso modelo. Um aumento do rendimento líquido tem efeitos secundários negativos para o crédito automóvel particulares, conforme podemos testemunhar nos resultados do *EViews*, onde uma variação de 1% do rendimento líquido tem um efeito imediato de aproximadamente de -1.409683 na procura do crédito automóvel particular. Uma explicação plausível para este tipo de comportamento por parte dos agentes económicos, em caso do aumento do rendimento líquido e diminuição da procura do crédito automóvel, pode estar relacionado com o facto de os mesmos não terem tanta necessidade de recorrer ao crédito, uma vez que o rendimento liquido permite maior percentagem de poupança que pode ser canalizado diretamente na compra das viatura, evitando assim financiamento bancário.

Modelo crédito automóvel empresa com todas as variáveis

Para estimação do modelo VAR crédito automóvel empresa, foram utilizadas as seguintes variáveis em 1º diferenças: Log (CRD EMP), TAX VAR PIB, EURIBOR 3 M, TAX DESE, DÉF. ADM.PÚB, REND LIQ, CARGA FIS.

Com base nos mesmos passos realizados no modelo crédito automóvel particular, mas agora para o caso do modelo crédito automóvel empresa, o ponto de partida antes da estimação do modelo VAR, será realizada para determinação do lag ótimo através do *Lag Lenght Criteria* que segundo o Anexo F1, os resultados apontam para um desfasamento de 6 períodos. A escolha do lag ótimo está baseada no critério de AIC.

A segunda paragem é testar através do teste LM a autocorrelação dos resíduos sob as hipóteses: H0: resíduos não são autocorrelacionados ou H1: resíduos são autocorrelacionados. No caso do crédito automóvel empresa verifica-se através do Anexo F2 que o valor do p-value para as 6 lags situa-se acima do valor de *p-value* 0.05, excluído assim a possibilidade de autocorrelação das variáveis.

A terceira paragem passa por realizar o teste de normalidade do *Cholesky* aos resíduos, sobre as seguintes hipóteses H0: resíduos possuem distribuição normal ou H1: resíduos não possuem distribuição normal. De acordo com o Anexo F3, os resultados apresentam rejeição da hipótese H0, para duas das três componentes que constituem o teste da normalidade, neste caso *Kurtosis* e *Jarque-Bera* com um *p-value* < 0.05. Normalmente esta situação está relacionado com a presença de algum outlier, que podemos identificar através do Anexo F4, nomeadamente Euribor 3M em 2008Q4 onde verifica-se a ultrapassagem em intervalos de confiança de mais de que dois desvios-padrão. Foi então introduzido uma *dummy* para este período.

Para garantir que os resíduos não apresentem autocorrelação foi realizado, de novo, o teste *LM* conforme podemos verificar no Anexo F6, onde os resultados confirmam a exclusão de autocorrelação entre os resíduos. O *Lag Lenght Criteria* também foi novamente testado, mas conforme podemos verificar no Anexo F5, o número de desfasamentos mantém-se inalterado. Após repetir o *teste de normalidade do Cholesky* aos resíduos, aceita-se H0, ou seja, os resíduos têm uma distribuição normal para as três componentes *Skewness, Kurtosis e Jarque-Bera* com um *p-value* > 0.05, conforme podemos verificar no Anexo F7. Por fim, os resíduos após eliminação do *outlier* estão presentes no Anexo F8.

À semelhança do modelo anterior, ao analisar o *output* da estimação do modelo VAR através da Anexo F9, verificamos a predominância de uma variável significativa, designadamente o desemprego e também a do rendimento líquido.

Com uma significância de 5% para o modelo crédito automóvel empresa, a taxa de desemprego no lag 6, apresenta um valor negativo de *t-statistic* [-2.26] representando um impacto negativo no modelo, caso a variável desemprego aumente significativamente.

Também com uma significância de 5% e um valor negativo de *t-statistic* [-2.52], o rendimento líquido tornase a segunda variável significativa para o modelo crédito automóvel empresas. Uma interpretação à primeira vista passaria pelo facto da existência de um aumento do rendimento líquido que a empresa é forçada a tomar para os empregados. Esta decisão tem impacto no budget da empresa que, de acordo com a interpretação do modelo, tem um impacto negativo na frota automóvel e consequentemente no crédito automóvel que a mesma detém com as instituições financeiras.

• Modelo crédito automóvel empresa apenas com as variáveis significativas

Da mesma forma que no modelo de crédito automóvel particular, no caso do modelo crédito empresa apenas vamos dar atenção às variáveis que apresentam significância estatísticas de 5%, neste caso taxa de desemprego, rendimento líquido e carga fiscal pelo facto de apresentar valores muito próximos da significância estatística de 5%.

Para estimação do modelo VAR crédito automóvel empresa foram utilizadas as seguintes variáveis em 1º diferenças: Log (CRD EMP), TAX DESE, Log (REND LIQ) e CARGA FIS.

Com base nos mesmos passos realizados no modelo crédito automóvel particular, mas agora para o caso do modelo crédito automóvel empresa, o ponto de partida antes da estimação do modelo VAR, será realizada para determinação do lag ótimo através do *Lag Lenght Criteria* que segundo o Anexo F10, os resultados apontam para um desfasamento de 6 períodos.

A segunda paragem é testar através do teste LM a autocorrelação dos resíduos sob as hipóteses: H0: resíduos não são autocorrelacionados ou H1: resíduos são autocorrelacionados. No caso do crédito automóvel empresa verifica-se através do Anexo F11 que o valor do *p-value* para as 6 lags situa-se acima do valor de *p-value* 0.05, excluída assim a possibilidade de autocorrelação das variáveis.

A terceira paragem passa por realizar o teste de normalidade do *Cholesky* aos resíduos, sobre as seguintes hipóteses H0: resíduos possuem distribuição normal ou H1: resíduos não possuem distribuição normal. De acordo com o Anexo F12, os resultados apresentam rejeição da hipótese *H0*, para duas das três componentes que constituem o teste da normalidade, neste caso *Kurtosis* e *Jarque-Bera* com um *p-value* < 0.05. Normalmente esta situação está relacionado com a presença de alguma *outlier*, que podemos identificar através do Anexo F13, nomeadamente Rendimento Líquido em 2002Q1- 2002Q4 onde verificase uma maior ultrapassagem em intervalos de confiança.

Após introdução das variáveis *dummy*, para garantir que os resíduos não apresentam autocorrelação, foi realizado, de novo, um teste LM conforme podemos verificar no Anexo F15, onde os resultados confirmam a exclusão de autocorrelação entre os resíduos. O *Lag Lenght Criteria* também foi novamente testado, mas conforme podemos verificar no Anexo F14 o número de desfasamentos mantém-se inalterado. Após repetir o *teste de normalidade do Cholesky* aos resíduos, aceita-se *H0*, ou seja, os resíduos têm uma distribuição normal para as três componentes *Skewness, Kurtosis e Jarque-Bera* com um *p-value* > 0.05 conforme podemos verificar no Anexo F16. Por fim, os resíduos após eliminação do *outlier* está presente no Anexo F17.

À semelhança do modelo anterior, ao analisar o *output* da estimação do modelo VAR através da Anexo F18 verificamos a predominância de uma variável significativa, nomeadamente o desemprego o rendimento líquido e também a carga fiscal.

Com base no *output* da estimação do modelo VAR crédito automóvel empresa, através da Anexo F18 todas as variáveis que tem pelo menos 5% de significância estatística.

- A taxa de desemprego no Lag 6, apresenta um valor negativo de *t-statistic* [-2.6]. O facto de ter o Lag classificado com 6 representa um efeito mais afastado. O valor do *t-statistic* apresenta um impacto negativo no modelo, caso a variável desemprego aumente significativamente. O coeficiente ao Lag 6 demonstra claramente que uma variação do 1% do desemprego tem um impacto mais afastado de aproximadamente -0.112927 (-11.29%) no nosso modelo de crédito automóvel empresa, mas por outro lado tem um valor muito mais elevado comparado com o modelo dos particulares

-Também com uma significância de 5% e um valor negativo de *t-statistic* [-2.8] o rendimento líquido,

tornando-se a segunda variável significativa para o modelo crédito automóvel empresas. Uma interpretação

à primeira vista passaria pelo facto da existência de um aumento do rendimento líquido que a empresa é

forçada a tomar para os empregados. Esta decisão tem impacto no budget da empresa, que de acordo

com a interpretação do modelo, tem um impacto negativo na frota automóvel e consequentemente no

crédito automóvel que a mesma detém com as instituições financeiras. A nível dos resultados *EViews* o

coeficiente associado ao Lag 5 apresenta uma valor -3.851436 para o modelo em análise, em caso de uma

variação de 1% no rendimento líquido. Comparando com o modelo crédito automóvel particulares,

verificamos exatamente o mesmo efeito, os agentes bancários recorrem com menor frequência ao

financiamento bancário para a compra da viatura, caso o rendimento líquido aumente.

- E por último a carga fiscal no lag 5 e 6 apresenta um valor negativo de t-statistic [-2.58] com um impacto

negativo para o modelo em análise. Não é um efeito imediato, mas caso a carga fiscal aumente as

empresas indiretamente são obrigadas, a longo prazo, a reduzir o consumo de crédito automóvel que

detêm nas instituições financeiras. Embora com um Lag mais afastado, o modelo em análise,

nomeadamente o crédito automóvel empresa, sofre um impacto negativo de -0.035341(-3.5%) em caso

de uma variação de 1% da carga fiscal.

1.4 Causalidade à Granger

O principal objetivo do teste Causalidade à Granger (CG) passa por questionar relações de causalidade

estatística entre as variáveis selecionadas. Através do teste Causalidade Granger será determinado se

uma variável vai ajudar a prever a outra sob as hipóteses:

H0: não causam à granger

H1: causam à granger

Caso p-value > 5% aceita-se H0 caso, p-value < 5% rejeita-se H0.

a) Modelo crédito automóvel particular

Após realização do teste de Causalidade à Granger para o modelo crédito automóvel particular (Anexo

G1), verificamos que todas as variáveis apresentam *p-value* >5%, com exceção da taxa de desemprego.

Concluímos, de acordo com os resultados alcançados (tabela 3.7) do teste de CG para o modelo em

análise, que apenas a taxa de desemprego pode ajudar a prever a evolução do crédito automóvel particular

para o futuro.

29

Tabela 3.7 - Resultados Granger Causality Tests VAR modelo crédito automóvel particular

Variável dependente	Regressor	Chi-sq	P-value	Resultado
D1LCRD_PAR	D1TAX_VAR_PIB	7.795647	0.0994	não c. à granger
D1LCRD_PAR	D1TAX_DESE	11.72778	0.0195	c. à granger
D1LCRD_PAR	D1LREND_LIQ	7.677655	0.1041	não c. à granger
D1LCRD_PAR	D1CARGA_FIS	6.747447	0.1499	não c. à granger

Fonte: Eviews

b) Modelo crédito automóvel empresa

No caso do crédito automóvel empresa, após realização do teste CG (Anexo G2), verifica-se a existência de duas das três variáveis que apresentam *p-value* < 5% logo aceita-se H1 para estas variáveis. Com um nível de significância de 5% podemos confirmar que, para o modelo em causa, a taxa de desemprego e a taxa da carga fiscal podem ajudar a prever a evolução do crédito automóvel empresa. (tabela 3.8)

Tabela 3.8 - Resultados Granger Causality Testes VAR modelo crédito automóvel empresa

Variável dependente	Regressor	Chi-sq	Prob.	Resultado
D1LCRD_EMP	D1TAX_DESE	15.77363	0.0150	c. à granger
D1LCRD_EMP	D1REND_LIQ	10.78721	0.0952	não c. à granger
D1LCRD_EMP	D1CARGA_FIS	26.66808	0.0002	c. à granger

Fonte: Eviews

1.5 Função Impulse Response

A Função de Impulso-Resposta é uma análise que vai permitir determinar e medir o choque que uma variável apresenta em relação a si mesma e em relação às outras variáveis. O choque aplicado sobre uma das variáveis em momento t afeta a própria naquele momento, e afeta as restantes variáveis em momento t+1, ou seja, um choque em momento t chamado impulso vai gerar uma reação em momento t+1 chamado resposta.

Através da FIR vamos abordar duas metodologias de análise, nomeadamente método *Cholesky*²³ e *Generalizes Impulses*²⁴. Para os dois modelos VAR, neste caso, crédito automóvel particular e crédito automóvel empresa, onde será analisada a existência de impactos positivos ou negativos nas variáveis endógenas durante o tempo de análise.

²³ Para o modelo do *Cholesky* a ordem das variáveis e muito importante, que implica ordenação da variável exógena que reage mais lentamente até a variável endógena que reage mais rapidamente.

²⁴ Para o modelo do Generalizada a ordem das variáveis não é importante os resultados não dependem da ordenação.

a) Modelo crédito automóvel particular

O resultado da FIR para o modelo crédito automóvel particular encontra-se disponível no Anexo H1 *Cholesky* e Anexo H2 *Generalize Impulses*. Com o objetivo de ter o melhor resultado possível, ordenamos as variáveis de forma decrescente da mais exógena para menos exógena, portanto a carga fiscal vai estar no primeiro lugar, porque é definida pelo estado de forma arbitrária, de seguida o desemprego, porque em comparação com o PIB leva mais tempo para reagir. No terceiro e quarto lugares será o PIB e o rendimento líquido, porque são variáveis que afetam o rendimento das pessoas e, por último, o crédito automóvel particular porque é afetado por todas as variáveis.

Ao analisar os outputs FIR para o método *Cholesky* (Anexo H1), verifica-se a existência de pelo menos duas variáveis significativas, nomeadamente a taxa de variação do PIB e o rendimento líquido, onde as bandas que representam os intervalos de confiança estão acima o abaixo ou muito próximo da linha que detém o valor de zero. Neste caso, verifica-se que o crédito automóvel particular responde positivamente ao choque criado pela variação da taxa do PIB, e negativamente ao um choque criado pelo rendimento líquido.

Em relação às outras variáveis, embora não significativas, verifica-se que todas têm um impacto negativo.

Os resultados do método *Generalize Impulses* (que não exige uma ordenação das variáveis (AnexoH2)) acabam por ser mais conclusivos em relação à significância estatística das variáveis, como é o caso da taxa de desemprego, onde a mesma apresenta um efeito negativo sobre o crédito automóvel particular com significância estatística praticamente durante todo o tempo em análise. O resultado no caso do desemprego coincide com os resultados do output do modelo VAR, onde se verifica que a variável desemprego representa uma variável significativa com um intervalo de confiança de 5%. Por outro lado, no caso da taxa de variação do PIB verifica-se um efeito contrário, nomeadamente positivo perante a variável em análise, ou seja, o crédito automóvel particular. Ao contrário do método *Cholesky*, o resultado do método *Generalize Impulses* para a variável da taxa de variação do PIB acaba por ser conclusivo, verificando-se que as duas flutuações não incluem o zero em nenhum período de análise, classificando a variável com estatisticamente significativa. Em relação à variável rendimento líquido, a mesma apresenta comportamento idêntico nos dois métodos em estudo.

Em relação aos resultados das restantes variáveis do método *Generalize Impulses* sem significância estatística, nomeadamente a carga fiscal, a mesma detém um comportamento parecido nos dois métodos, mas neste caso com um efeito muito mais próximo de zero; neste caso um choque provocado por esta variável tem um impacto negativo no modelo em análise.

b) Modelo crédito automóvel empresa

O resultado da FIR para o modelo crédito automóvel empresa encontra-se disponível no Anexo H3 *Cholesky*,e Anexo H4 *Generalize Impulses*.

Ao analisar os resultados FIR do método *Cholesky* (Anexo H3) para o crédito automóvel empresa, detetamos que o modelo apresenta apenas em alguns momentos quase significância estatística para desemprego e rendimento liquido para o período 2, mas não podem como e evidente não podem ser classificadas como variáveis significativas , uma vez que as bandas que representam os intervalos de confiança encontram-se à volta da linha do valor zero. Com tudo isto, podemos constatar que a resposta do crédito automóvel empresa responde negativamente a um choque provocado pelo desemprego e situação semelhante também para o rendimento líquido (se bem que em relação a esta variável há inicialmente nos primeiros dois trimestres uma resposta do crédito positiva).

Os resultados do método *Generalize Impulses* apontam pelo menos para uma variável significativa como é o caso da taxa de desemprego. Os resultados são idênticos ao mesmo método *Generalize Impulses* do crédito automóvel particular, onde se verifica o mesmo efeito, mas com mais expressão no caso do crédito automóvel empresa. No caso do um choque da variável do desemprego, a variável do crédito automóvel empresa vai responder negativamente.

Em relação aos resultados das restantes variáveis do método *Generalize Impulses* (Anexo H4) sem significância estatística, verifica-se que tem comportamento semelhante aos resultados do método *Cholesky*. Embora a variável rendimento líquido apresente não significância particamente todo o período em análise, verifica-se um momento onde esta situação é contrariada e a variável apresenta significância estatística, nomeadamente no período inicial 1 e 2. No caso da carga fiscal, verifica-se que os choques causados por esta variável no modelo do crédito automóvel empresa são inconclusivos tanto ao nível de significância com impactos causados, uma vez que apresenta variações positivas e negativas ao mesmo tempo.

1.6 Descomposição da Variância

A descomposição da variância vai permitir determinar qual é a percentagem da variância do erro de previsão para cada variável endógena ao longo do horizonte temporal, ou seja, indica a percentagem da turbulência que cada variável causa no modelo em análise.

a) Modelo crédito automóvel particular

Analisando a descomposição da variância para o modelo VAR crédito automóvel particular, observa-se que os desvios causados pela variância do crédito automóvel particular são explicados no primeiro trimestre 100% por si mesmo, ou seja, a variável crédito particular é a personagem principal da explicação da descomposição da sua própria variância. Uma grande parte da variância é devida ao choque na própria variável relacionada com fatores não capturados no modelo, como fatores não capturados no modelo, como as condições de oferta de crédito, incluindo a taxa de juro – variável que acaba por não ser muito bem medida neste modelo porque só temos a Euribor e não a taxa cobrada no crédito automóvel

As variáveis mais relevantes que ajudam a explicar a descomposição da variância do crédito automóvel particular ao longo do tempo são: a taxa de desemprego com 19.06% para o 10º trimestre, a taxa de variação do PIB com uma taxa de 14.16 para o 10ºtrimestre, depois o rendimento liquido com 10.17% para o 10ºtrimestre e por fim a carga fiscal com o valor de 6.02 para o 10ºtrimestre.

Tabela 3.9 - Resultados descomposição variância VAR modelo crédito automóvel particular Eviews

Period	S.E.	D1LCRD PA	D1TAX VAR	D1TAX DES	D1LREND I	LID1CARGA F
1	0.069986	73.71332	13.15742	10.23064	1.781110	1.117506
2	0.078294	65.78353	11.21886	12.20172	6.298984	4.496903
3	0.080874	63.09916	13.82440	12.70835	6.070352	4.297739
4	0.084767	58.88058	13.18891	11.77231	10.27141	5.886789
5	0.090819	54.58397	14.80388	16.22205	9.023487	5.366613
6	0.092305	53.28005	14.59417	16.13718	9.918394	6.070201
7	0.093028	53.25777	14.62981	16.35295	9.770293	5.989185
8	0.094118	52.16205	14.50930	16.91526	10.31440	6.098998
9	0.095442	50.76494	14.15679	18.85534	10.17786	6.045071
10	0.095625	50.57072	14.16118	19.06955	10.17489	6.023662

Cholesky Ordering: D1CARGA FIS D11 D1TAX DESE D1TAX VAR PIB D1LREND L

Fonte: Eviews

b) Modelo crédito automóvel empresa

Analisando a descomposição da variância neste caso para o modelo VAR crédito automóvel empresa, verifica-se um cenário idêntico como a descomposição da variância do modelo VAR crédito automóvel particular, onde a principal variável é, neste caso do crédito automóvel empresa, explicado no 1º trimestre 100% por si mesmo.

Ao contrário do modelo anterior crédito automóvel particular, para o modelo em análise crédito automóvel empresa, verifica-se que as variáveis que ajudam a explicar a descomposição da variável principal tem uma percentagem mais elevada. Um papel principal é detido pela carga fiscal que ao longo do tempo vai ter uma maior significância na explicação da descomposição do variável crédito automóvel empresa com um valor para o 10º trimestre de 29.69%.

Apesar da carga fiscal não ter um efeito muito claro na FIR, através da descomposição da variável descobrimos que causa muita variabilidade na variável. A segunda variável, que também tem valores mais elevados, é o rendimento líquido para 10º trimestre com 11.41%, seguido muito próxima taxa de desemprego com uma percentagem de 10.38%.

Tabela 3.10 - Resultados descomposição variância VAR modelo crédito automóvel empresa Eviews

Period	S.E.	D1LCRD E	D1TAX DES	D1LREND	LID1CARGA F
1	0.124079	86.14901	7.722123	5.086093	1.042773
2	0.128997	81.84765	9.908192	7.227456	1.016705
3	0.143754	66.35074	7.982248	6.987212	18.67980
4	0.148271	62.59318	7.881606	7.330698	22.19452
5	0.149694	61.44942	9.280927	7.199619	22.07003
6	0.159220	54.72254	8.217214	11.02028	26.03997
7	0.164600	51.40574	8.585988	10.35397	29.65429
8	0.166552	50.23489	8.528301	10.83860	30.39820
9	0.170209	48.18862	10.51922	11.52778	29.76438
10	0.171725	48.50197	10.38504	11.41628	29.69671

Cholesky Ordering: D1CARGA FIS D11 D1TAX DESE D1LREND LIQ D

Fonte: Eviews

1.7 Conclusão resultado modelo VAR / Causalidade à Granger / Função Impulse Response / Descomposição da Variância

Com o intuito de responder à pergunta de investigação, realizamos uma síntese dos todos os resultados dos testes alcançados nomeadamente do Modelo VAR/Causalidade Granger/*Função Impulse Response* e Descomposição da variância.

Para o modelo VAR do modelo crédito automóvel particular verifica-se a existência de 4 variáveis com significância estatística de 5%, nomeadamente a taxa variação do PIB, carga fiscal, taxa de desemprego e rendimento líquido.

Tabela 3.11 - Resultados agregados do Modelo VAR crédito automóvel particular /Casalidade Granger/FIR/Descomposição variância

	Variável	Resultado
	1.2 Modelo var	
<u>~</u>	Taxa variação do PIB	Efeito positivo – Modelo VAR
ਤੁ	Carga fiscal	Efeito negativo – Modelo VAR
ţ	Taxa de desemprego	Efeito negativo – Modelo VAR
particular	Rendimento líquido	Efeito negativo – Modelo VAR
	1.3 Causalidade à Granger	
automóvel	Taxa de desemprego	Variável explicativa – C.G
E	1.4 Função Impluse Response	
¥	Taxa variação do PIB	Efeito positivo – FIR
	Rendimento líquido	Efeito negativo – FIR
∣₩	1.5 Descomposição variância	
crédito	Crédito automóvel particular	Variável explicativa 50.57% para o 10°Trim – D.V
	Taxa variação do PIB	Variável explicativa 14.16% para o 10°Trim – D.V
Modelo	Taxa de desemprego	Variável explicativa 19.06% para o 10°Trim – D.V
<u> </u>	Rendimento líquido	Variável explicativa 10.17% para o 10°Trim – D.V
2	Carga fiscal	Variável explicativa 6.023% para o 10ºTrim – D.V

Fonte: Eviews

Através da Causalidade à Granger, verifica-se a existência de pelo menos uma variável útil para prever o futuro próximo da variação do crédito automóvel particular, nomeadamente taxa de desemprego.

No caso do FIR para o mesmo modelo verifica-se a presença das variáveis a taxa de variação do PIB como também o rendimento líquido. Um choque causado pelas variáveis acima descritas tem efeitos diretos na análise do nosso modelo, no caso da variação do PIB o modelo responde de forma positiva ao choque e no caso do rendimento líquido a resposta do modelo e exatamente ao contrário.

Por último, através da descomposição da variância, conseguimos observar qual é a percentagem da variância do erro de previsão para cada variável, ou seja, através deste método será possível determinar quais as variáveis que causam mais turbulência no modelo em análise. Além da própria variável do modelo, ou seja, o crédito automóvel particular, verifica-se a relevância de pelo das 4 variáveis usadas no modelo, nomeadamente a taxa de variação do PIB, taxa de desemprego, rendimento líquido e carga fiscal.

O modelo VAR para crédito automóvel empresa apresenta a existência de três variáveis com significância estatística de 5%: a taxa de desemprego, a carga fiscal e o rendimento líquido. Todas as variáveis apresentam efeito negativo para o modelo em análise.

A Causalidade à Granger aponta para duas variáveis, nomeadamente a da taxa da carga fiscal e taxa de desemprego, como sendo variáveis-chave para o modelo crédito automóvel empresa, uma vez que consegue prever o comportamento da variável dependente neste caso do crédito automóvel empresa.

No caso FIR, verifica-se a existência da taxa de desemprego. Um choque causado pelas variáveis exógenas da taxa de desemprego tem efeito negativo na variável endógena, ou seja, crédito automóvel empresa.

Tabela 3 12 - Resultados agregados do Modelo VAR crédito automóvel empresa /Casalidade à Granger/FIR/Descomposição variância

_	Variável	Resultado
empresa	1.2 Modelo var	
ď	Taxa de desemprego	Efeito negativo – Modelo VAR
e B	Rendimento líquido	Efeito negativo – Modelo VAR
_	Carga fiscal	Efeito negativo – Modelo VAR
automóvel	1.3 Causalidade à Granger	
Ĕ	Taxa de desemprego	Variável explicativa – C.G
Ħ	Taxa da carga fiscal	Variável explicativa – C.G
1	1.4 Função Impluse Response	
∣≓	Taxa de desemprego	Efeito negativo – FIR
crédito	1.5 Descomposição variância	
	Crédito automóvel empresa	Variável explicativa 48.50% para o 10ºTrim − D.V
Modelo	Taxa da carga fiscal	Variável explicativa 29.69% para o 10°Trim – D.V
<u>8</u>	Taxa de desemprego	Variável explicativa 10.38% para o 10ºTrim – D.V
2	Rendimento líquido	Variável explicativa 11.41% para o 10ºTrim – D.V

Fonte: Eviews

Por fim, através da descomposição da variância, conseguimos observar qual é a percentagem da variância do erro de previsão para cada variável, ou seja, através deste método será possível determinar quais as variáveis que causam mais turbulência no modelo em análise. Além da variável do crédito automóvel empresa, verifica-se a existência de mais variáveis explicativas de turbulência no modelo, taxa da carga fiscal (esta destaca-se como a mais importante), taxa de desemprego e rendimento líquido.

Capítulo IV - Conclusão e Investigação Futura

Esta dissertação tem como objetivo contribuir para uma melhor compreensão do funcionamento do mercado automóvel em Portugal, nomeadamente o crédito automóvel. Além de dar resposta à questão primordial desta investigação, pretende, também, dar um contributo no sentido de clarificar, com a maior exatidão possível, os aspetos negativos e positivos inerentes. O seu resultado visa, portanto, tornar transparente e compreensível quais dos indicadores económicos são influenciadores do crédito automóvel.

Em Portugal, a evolução do crédito ao consumo privado tem vindo a apresentar uma recuperação após 2º semestre de 2012, de acordo com BdP (BdP- Boletim Outubro 2018). Os valores de crédito concedidos pelas IFM à economia têm vindo a apresentar níveis semelhantes, em alguns casos até superiores, aos anos anteriores à crise financeira. O aumento mais significativo é registado pelo crédito automóvel novo e usado em comparação com o crédito pessoal. No caso das empresas, o aumento é mais tímido, apresentando valores inferiores, quando comparado com o consumo privado.

É crucial para qualquer instituição financeira entender a relação entre os comportamentos dos agentes e os indicadores económicos. Por forma a aumentar a rentabilidade dos seus portfólios, uma IFM por exemplo uma cativa automóvel, não pode descurar a evolução e o acompanhamento permanente e atento dos indicadores económicos.

A investigação em causa tem um horizonte temporal de 1998-Q1 até 2018-Q4, para todas as variáveis em análise. As variáveis selecionadas para este trabalho emanam do estudo e análise da bibliografia, ativa e passiva, referente ao mercado automóvel. Os resultados alcançados permitem-nos confirmar alguns resultados anteriormente obtidos por outros autores e, também, contrariar alguns outros.

Numa primeira fase, foram realizados os testes de raiz unitária, tendo sido analisada a estacionariedade das variáveis selecionadas para o modelo. Os resultados alcançados para todas as variáveis apontam para a aceitação das variáveis em primeiras diferenças; esta situação permanece idêntica em acordo com a revisão de literatura para os resultados das variáveis em análise do estudo econométrico desenvolvido por Castro e Santos (2011).

Numa segunda fase, o processo passou pela análise em separado da viabilidade do modelo VAR crédito automóvel particulares e o modelo VAR crédito automóvel empresa. Foi analisada a seleção do lag ótimo, depois testada a autocorrelação entre os resíduos e finalmente, se estes tinham ou não uma distribuição

normal para todas as variáveis selecionadas. Com o intuito de dar maior diretividade à nossa análise, foram re-testados os dois modelos apenas com as variáveis significativas para cada um dos modelos.

Para o modelo de crédito automóvel particular, os resultados das análises apontam para os seguintes indicadores económicos com significância estatística: a taxa de variação do PIB, a taxa de desemprego, o rendimento líquido e a carga fiscal. Todos os indicadores classificados como significativos apresentam um impacto negativo no modelo em análise, com exceção da taxa de variação do PIB, em que o impacto é o oposto das outras variáveis. Os resultados alcançados por nós no modelo do crédito automóvel particular estão praticamente em linha com os resultados obtidos pelo Monteiro e Moutinho (2010) no seu estudo sobre fatores com implicações nas vendas das viaturas em Portugal. Os resultados mostram, efetivamente, que o PIB tem um impacto positivo nas vendas dos automóveis; no nosso caso tem exatamente o mesmo impacto, como é evidente no crédito automóvel. No caso da taxa de desemprego, esta apresenta o mesmo impacto negativo, tanto para vendas de automóveis como para a procura do crédito automóvel pelos clientes particulares. Em Monteiro e Moutinho (2010) afirma-se que um aumento da carga fiscal por parte do Governo, levou a uma antecipação das compras das viaturas no ano 2008, o que nos permite concluir que a carga fiscal tem um impacto negativo na compra de novas viaturas; situação idêntica verificada no crédito automóvel particular.

Através da análise do nosso resultado, ressalta que, com o aumento do rendimento, os agentes económicos particulares efetivamente recorrem menos ao crédito para compra da viatura, o que nos leva a pensar que têm mais liquidez disponível para canalização do ato de compra, sem necessidade de recorrer ao crédito.

Para o modelo de crédito automóvel do cliente empresa, os resultados das análises apontam para uma importância estatística significativa das variáveis: a taxa de desemprego, o rendimento líquido e a carga fiscal. Alguns indicadores são semelhantes ao modelo anterior, permanecendo com o mesmo impacto negativo de todas as variáveis para o modelo do crédito automóvel empresa. No seu estudo, Martins (2012) e Moreira (2014), afirmam que a carga fiscal, nomeadamente o IVA e ISV, apresentam significância estatística para o modelo em análise. Os resultados alcançados por nós vão de encontro aos resultados de Martins (2012) e Moreira (2014) que apontam na mesma direção, ou seja, um aumento da carga fiscal implica uma diminuição das vendas dos automóveis e, por conseguinte, uma diminuição do consumo do crédito automóvel. No caso do desemprego e rendimento líquido, apresentam um impacto negativo no modelo em análise, segundo Sacoor (2014), o aumento do desemprego e a diminuição do rendimento líquido têm implicações diretas na compra dos bens duradouros entre 2010 e 2012, tendo-se verificado uma diminuição no consumo deste, uma vez que os consumidores, em tempo de crise, dão prioridade às necessidades primárias em detrimento das secundárias.

Em termos de Causalidade à Granger, as variáveis que têm mais importância estatística, são a taxa de desemprego e a carga fiscal. Quanto ao modelo do crédito particular, verificamos a existência de pelo menos uma variável propiciadora da previsão do crédito automóvel particulares, ou seja, a taxa de

desemprego. No caso do modelo crédito empresa automóvel, verificamos a existência de duas variáveis que ajudam na previsão da evolução do crédito automóvel empresa, ou seja, a taxa de desemprego e também a carga fiscal. Teoricamente, abordando a situação, com uma observação mais próxima da taxa de desemprego, podemos conseguir determinar qual é a evolução do crédito automóvel particular e empresa. No caso da carga fiscal, conseguimos determinar a evolução apenas do crédito empresa, o que faz todo o sentido.

Através da *Função Impulse Response*, realizada para os dois modelos, entendemos que o modelo crédito automóvel particular reage negativamente a um impulso do rendimento líquido, e que no caso da taxa de variação do PIB, reage de forma positiva. Por outro lado, o modelo de crédito automóvel empresa apresenta uma reação negativa perante um choque provocado pela variável taxa de desemprego.

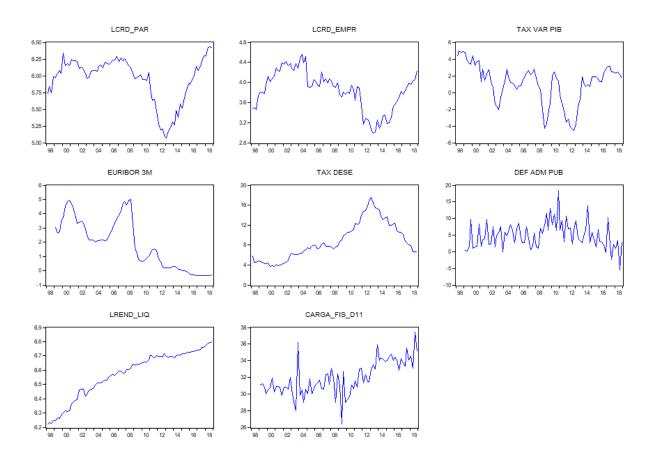
As variáveis como a taxa de variação do PIB, a taxa de desemprego, o rendimento líquido e a carga fiscal, apresentam significância estatística para o modelo crédito particular. Através de CG, apercebemo-nos que apenas a taxa de desemprego tem a possibilidade de prever o crédito automóvel. No caso do FIR, detetamos que o rendimento líquido e a taxa de variação do PIB desempenham um papel importante, uma vez que o crédito automóvel apresenta reações estatisticamente significativas, mas opostas em cada uma delas.

As variáveis como a taxa de desemprego, o rendimento líquido e carga fiscal apresentam significância estatística para o modelo crédito empresa. Através de CG, detetamos a existência de duas variáveis: a taxa de desemprego e a carga fiscal que preveem o crédito automóvel empresa. No caso do FIR, detetamos que é a taxa de desemprego uma variável com impacto estatisticamente significativo no modelo crédito automóvel empresa. Por outro lado, ao contrário do esperado, neste caso a carga fiscal não tem um efeito bem definido em termos do FIR. Por fim, há que frisar que a variável Euribor 3M não apresenta qualquer impacto em nenhum dos modelos analisados.

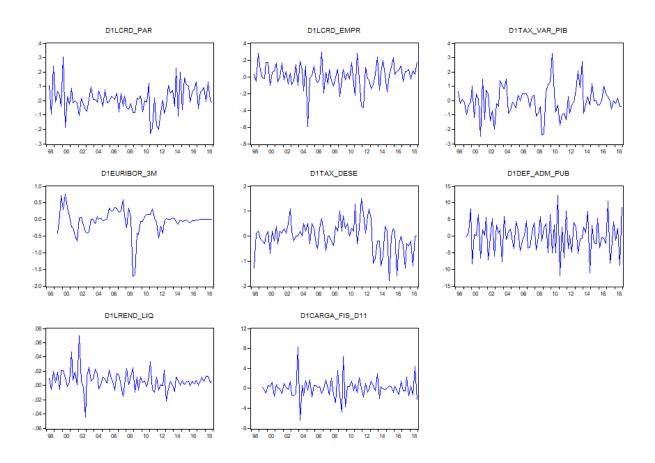
Conforme anteriormente referido, a ausência de matéria escrita e públicada sobre o crédito automóvel foi, de certo modo, colmatada pela existência profícua de literatura sobre as vendas de automóveis. A consulta, análise e estudo de trabalhos sobre vendas estimulou a vontade de iniciar uma abordagem que nos permitimos encarar como pioneira: a do crédito automóvel.

O trabalho agora desenvolvido constitui-se como uma ferramenta que se pretende da maior utilidade, tanto para o decisor Governamental como para o decisor empresarial, no sentido se encontrar, em boa articulação, as circunstâncias favoráveis e mais seguras para tomada de decisões estratégicas.

Tendo em conta o que aqui e agora se apresenta, será pertinente e desafiante dar continuidade a esta matéria, investigando, em fase seguinte, o carater determinante, positivo ou negativo, dos vários impostos - diretos e indiretos - que constituem a atual carga fiscal sobre o crédito automóvel.


Neste caso será da maior relevância, uma futura atenção mais dirigida, tanto ao IVA como ao ISV, aqui abordados de forma conjunta, mas a carecerem de investigação ou estudo individualizado.
"A estratégia é uma economia de forças "- Carl von Clausewitz

Bibliografia


- Banco de Portugal (2018), Disponível em: https://www.bportugal.pt/comunicado/comunicado-do-banco-de-portugal-sobre-o-boletim-economico-de-outubro-de-2018
- BdP- Boletim Estatístico Dezembro (2018), (Online). Disponível em: https://www.bportugal.pt/públicacao/boletim-estatistico?mlid=1900
- BdP- Boletim Estatístico Outubro (2018), (Online).Disponível em: https://www.bportugal.pt/sites/default/files/anexos/pdf-boletim/be-out2018-p.pdf
- BdP Disponível em: https://www.bportugal.pt/entidades-autorizadas
- Castro, Gabriela e Santos, Carlos (2010), *Determinantes das taxas de juro e do crédito bancário*, Boletim Económico, Banco de Portugal, <u>Revista Primavera 2010</u> (Online). Disponível em: https://www.bportugal.pt/sites/default/files/anexos/papers/ab201002 p.pdf
- Diário de Notícias (2019), (Online). Disponível em: https://www.dn.pt/edicao-do-dia/08-mai-2019/interior/carga-fiscal-permanente-sobe-e-supera-os-niveis-da-troika-10872499.html
- Jornal de Notícias (2018), (Online). Disponível em: https://www.jn.pt/economia/interior/setor-automovel-vale-59-do-pib-9048347.html
- Leão, Emanuel; Pedro R.Leão e Sérgio C.Lagoa (2011), Política Monetária e Mercados Financeiros, 2ª edição Lisboa, Editor Manuel Robalo.
- Liew, Venus Khim-Sen, (2004) "Which Lag Length Selection Criteria Should We Employ?" EconomicsBulletin, Vol. 3, pp. 1–9. Disponível em: http://www.accessecon.com/pubs/EB/2004/Volume3/EB-04C20021A.pdf
- Martins, Ana (2012), *Procura Automóvel, Estimação e Previsão*, Dissertação de Mestrado em Finanças, Lisboa, ISEG
- Mendeiros, Janine e Cruz, Cassiana (2006), Comportamento do consumidor: Fatores que influenciam no processo de decisão de compra dos consumidores, Teoria e evidência econômica (Online). Disponível em: https://www.researchgate.net/profile/Janine_Fleith_De_Medeiros/públication/266492361_COMPO
 RTAMENTO_DO_CONSUMIDOR_FATORES_QUE_INFLUENCIAM_NO_PROCESSO_DE_DECISA
 O_DE_COMPRA_DOS_CONSUMIDORES/links/5447fabd0cf2d62c30529d55/COMPORTAMENTO-DO-CONSUMIDOR-FATORES-QUE-INFLUENCIAM-NO-PROCESSO-DE-DECISAO-DE-COMPRA-DOS-CONSUMIDORES.pdf
- Monteiro, Caroline e Moutinho, Nuno (2010), A análise do sector automóvel em Portugal. O que influencia a venda de automóveis? Bragança, ESTiG
- Moreira, Filipa R. (2011), *O consumo e o crédito na sociedade contemporânea,* Revista Gestão e Desenvolvimento (Online). Disponível em: https://repositorio.ucp.pt/handle/10400.14/9174
- Moreira, Pedro (2014), Fatores Determinantes da Venda de Automóveis Ligeiros de Passageiros em Portugal: O estudo de caso da TOYOTA, Dissertação de Mestrado em Economia e Administração de Empresa, Porto, FEP.

- Nobre, Ana (2010), Que fatores determinam o incumprimento contratual no financiamento de automóvel e que medidas adotar para o evitar? Dissertação de Mestrado em Economia e Monetária e Financeira, Lisboa, ISCTE
- Publico (2013), (Online). Disponível em: https://www.publico.pt/2013/01/09/economia/noticia/as-principais-medidas-propostas-pelo-fmi-1580122
- RAMOS, P. (2009), *Comportamento do consumo das famílias*. Disponivel em: http://www4.fe.uc.pt/jasa/macroeconomia_6t.pdf
- Ribeiro, Raquel; Frade, Catarina; Coelho, Lina e Valente, Alexandra (2015), *Crise Económica em Portugal: Alterações nas Praticas Quotidianas e nas Relações Familiares*, Livro de Atas do 1º Congresso da Associação Internacional de Ciências Sociais e Humanas em Língua Portuguesa 5191 (Online). Disponível em:
 - http://repositorio.uportu.pt/jspui/bitstream/11328/1613/1/Crise%20Econ%C3%B3mica%20em%20Portugal.pdf
- Sacoor, Noor-Ayn (2014), *The impact of the Economic crisis on Portuguese consumer behavior The automobile sector*, Dissertação de Mestrado em Marketing, Lisboa, ISCTE
- Santos, Ana; Vânia, Costa e Nuno, Teles (2013), *A economia política do consumo e do crédito às famílias: Um contributo interdisciplinar,* Revista Crítica de Ciências Sociais (Online). Disponível em: https://journals.openedition.org/rccs/5338

Anexos

Anexo A 1- Variáveis estatísticas em Níveis

Anexo A 2-Variáveis estatísticas em 1ºDiferenças

Null Hypothesis: LCRD PAR has a unit root

Exogenous: Constant

Lag Length: 4 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Fu Test critical values:	uller test statistic 1% level 5% level 10% level	-2.326931 -3.515536 -2.898623 -2.586605	0.1662

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(LCRD PAR) Method: Least Squares Date: 06/15/19 Time: 12:20 Sample (adjusted): 1999Q2 2018Q4 Included observations: 79 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LCRD PAR(-1) D(LCRD PAR(-1)) D(LCRD PAR(-2)) D(LCRD PAR(-3)) D(LCRD PAR(-4)) C	-0.067195 -0.146177 0.239663 0.276197 0.341992 0.400148	0.028877 0.108592 0.104223 0.106529 0.107117 0.171654	-2.326931 -1.346115 2.299519 2.592705 3.192691 2.331128	0.0227 0.1824 0.0243 0.0115 0.0021 0.0225
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.261215 0.210614 0.081569 0.485706 89.02201 5.162183 0.000413	Mean depen S.D. depend Akaike info o Schwarz cri Hannan-Qui Durbin-Wats	dent var lent var riterion terion nn criter.	0.005528 0.091808 -2.101823 -1.921865 -2.029726 2.167517

Null Hypothesis: LCRD PAR has a unit root

Exogenous: Constant, Linear Trend Lag Length: 4 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Fit Test critical values:	uller test statistic 1% level 5% level 10% level	-2.111165 -4.078420 -3.467703 -3.160627	0.5315

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(LCRD PAR) Method: Least Squares Date: 06/15/19 Time: 12:20 Sample (adjusted): 1999Q2 2018Q4 Included observations: 79 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LCRD PAR(-1) D(LCRD PAR(-1)) D(LCRD PAR(-2)) D(LCRD PAR(-3)) D(LCRD PAR(-4))	-0.069385	0.032866	-2.111165	0.0382
	-0.143433	0.111000	-1.292187	0.2004
	0.241777	0.105967	2.281622	0.0255
	0.278518	0.108472	2.567637	0.0123
	0.343863	0.108634	3.165322	0.0023
C	0.416041	0.205496	2.024570	0.0466
@TREND("1998Q1")	-6.62E-05	0.000463	-0.142932	0.8867
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.261425 0.199877 0.082122 0.485569 89.03322 4.247499 0.001023	Mean depen S.D. depend Akaike info c Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	0.005528 0.091808 -2.076790 -1.866839 -1.992678 2.170148

Anexo B 1- Teste ADF CRD PAR com constante

Anexo B 2 - Teste ADF CRD PAR com constante e tendência

Null Hypothesis: D(LCRD PAR) has a unit root

Exogenous: Constant

Lag Length: 3 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Fu Test critical values:	uller test statistic 1% level 5% level 10% level	-2.447943 -3.515536 -2.898623 -2.586605	0.1322

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(LCRD PAR,2) Method: Least Squares Date: 06/15/19 Time: 12:21 Sample (adjusted): 1999Q2 2018Q4 Included observations: 79 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(LCRD PAR(-1))	-0.448525	0.183225	-2.447943	0.0167
D(LCRD PAR(-1),2)	-0.721010	0.175644	-4.104939	0.0001
D(LCRD PAR(-2),2)	-0.508338	0.162552	-3.127239	0.0025
D(LCRD PAR(-3),2)	-0.287248	0.107574	-2.670247	0.0093
C	0.001302	0.009532	0.136596	0.8917
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.633486 0.613675 0.083967 0.521733 86.19575 31.97558 0.000000	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	-0.000102 0.135093 -2.055589 -1.905624 -1.995508 2.081178

Null Hypothesis: D(LCRD PAR) has a unit root Exogenous: Constant, Linear Trend

Lag Length: 3 (Automatic - based on SIC, maxlag=11)

-3.467703	0.3057
	-4.078420 -3.467703 -3.160627

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(LCRD PAR,2)

Method: Least Squares
Date: 07/13/19 Time: 15:49
Sample (adjusted): 1999Q2 2018Q4
Included observations: 79 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(LCRD PAR(-1)) D(LCRD PAR(-1),2) D(LCRD PAR(-2),2) D(LCRD PAR(-3),2) C	-0.471056 -0.710152 -0.504750 -0.286744 -0.015703	0.184987 0.176193 0.162746 0.107674 0.020629	-2.546420 -4.030531 -3.101452 -2.663086 -0.761214	0.0130 0.0001 0.0027 0.0095 0.4490
@TREND("1998Q1")	0.000390	0.000419	0.929746	0.3556
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.637775 0.612966 0.084044 0.515627 86.66075 25.70649 0.000000	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var criterion terion nn criter.	-0.000102 0.135093 -2.042044 -1.862086 -1.969947 2.082587

Anexo B 3 -Teste ADF 1º diferenças CRD PAR com constante

Anexo B 4-Teste ADF 1º diferenças CRD PAR com constante e tendência

Null Hypothesis: LCRD EMPR has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=11)

Anexo B 5 -Teste ADF CRD EMP com constante

		t-Statistic	Prob.*
Augmented Dickey-Fu Test critical values:	ıller test statistic 1% level 5% level 10% level	-1.677099 -3.511262 -2.896779 -2.585626	0.4391

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(LCRD EMPR)

Method: Least Squares
Date: 06/15/19 Time: 12:18
Sample (adjusted): 1998Q2 2018Q4
Included observations: 83 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LCRD EMPR(-1) C	-0.068106 0.270537	0.040610 0.156655	-1.677099 1.726963	0.0974 0.0880
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.033559 0.021628 0.144638 1.694543 43.72235 2.812661 0.097378	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	0.009164 0.146228 -1.005358 -0.947073 -0.981942 2.126315

Null Hypothesis: LCRD EMPR has a unit root

Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Fr Test critical values:	1% level 5% level	-1.914257 -4.072415 -3.464865	0.6382
	10% level	-3.158974	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(LCRD EMPR) Method: Least Squares Date: 06/15/19 Time: 12:19

Date: 06/15/19 Time: 12:19 Sample (adjusted): 1998Q2 2018Q4 Included observations: 83 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LCRD EMPR(-1) C @TREND("1998Q1")	-0.090075 0.384728 -0.000711	0.047055 0.199428 0.000768	-1.914257 1.929159 -0.926585	0.0592 0.0573 0.3569
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.043821 0.019916 0.144765 1.676550 44.16536 1.833155 0.166562	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	dent var criterion iterion inn criter.	0.009164 0.146228 -0.991936 -0.904508 -0.956813 2.102793

Anexo B 6-Teste ADF CRD EMP com constante e tendência

Null Hypothesis: D(LCRD EMPR) has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-F Test critical values:	uller test statistic 1% level 5% level 10% level	-9.901852 -3.512290 -2.897223 -2.585861	0.0000

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(LCRD EMPR,2)

Method: Least Squares Date: 06/15/19 Time: 12:19 Sample (adjusted): 1998Q3 2018Q4 Included observations: 82 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(LCRD EMPR(-1)) C	-1.109502 0.009695	0.112050 0.016270	-9.901852 0.595883	0.0000 0.5529
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.550680 0.545063 0.147152 1.732286 41.79540 98.04668 0.000000	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	0.001806 0.218167 -0.970619 -0.911919 -0.947052 2.002577

Null Hypothesis: D(LCRD EMPR) has a unit root

Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Fu Test critical values:	uller test statistic 1% level 5% level 10% level	-9.836970 -4.073859 -3.465548 -3.159372	0.0000

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(LCRD EMPR,2) Method: Least Squares Date: 07/13/19 Time: 15:52 Sample (adjusted): 1998Q3 2018Q4 Included observations: 82 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(LCRD_EMPR(-1)) C @TREND("1998Q1")	-1.109387 0.008196 3.52E-05	0.112777 0.033637 0.000691	-9.836970 0.243673 0.050997	0.0000 0.8081 0.9595
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.550694 0.539320 0.148078 1.732229 41.79675 48.41344 0.000000	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	0.001806 0.218167 -0.946262 -0.858211 -0.910911 2.002835

Anexo B 7- Teste ADF 1º diferenças CRD EMP com constante

Anexo B 8-Teste ADF 1º diferenças CRD EMP com constante e tendência

Null Hypothesis: TAX VAR PIB has a unit root Exogenous: Constant

Lag Length: 4 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Fu Test critical values:	uller test statistic 1% level 5% level 10% level	-2.437056 -3.515536 -2.898623 -2.586605	0.1351

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TAX VAR PIB) Method: Least Squares Date: 06/15/19 Time: 12:29

Sample (adjusted): 1999Q2 2018Q4 Included observations: 79 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TAX VAR PIB(-1) D(TAX VAR PIB(-1)) D(TAX VAR PIB(-2)) D(TAX VAR PIB(-3)) D(TAX VAR PIB(-4)) C	-0.126144 0.193279 0.295249 0.104858 -0.396515 0.081388	0.051761 0.099248 0.101852 0.104580 0.104653 0.109079	-2.437056 1.947435 2.898803 1.002660 -3.788853 0.746133	0.0172 0.0553 0.0049 0.3193 0.0003 0.4580
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.344991 0.300127 0.868001 55.00004 -97.79264 7.689765 0.000007	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var criterion terion nn criter.	-0.039241 1.037554 2.627662 2.807620 2.699759 1.959573

Null Hypothesis: TAX VAR PIB has a unit root

Exogenous: Constant, Linear Trend
Lag Length: 4 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Fu Test critical values:	ıller test statistic	-2.181686 -4.078420	0.4928
root onlinear raileds.	5% level 10% level	-3.467703 -3.160627	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TAX VAR PIB) Method: Least Squares Date: 06/15/19 Time: 12:29 Sample (adjusted): 1999Q2 2018Q4 Included observations: 79 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TAX VAR PIB(-1)	-0.121716	0.055790	-2.181686	0.0324
D(TAX VAR PIB(-1))	0.190452	0.100709	1.891104	0.0626
D(TAX VAR PIB(-2))	0.292190	0.103443	2.824637	0.0061
D(TAX VAR PIB(-3))	0.100807	0.106839	0.943541	0.3486
D(TAX VAR PIB(-4))	-0.401270	0.107497	-3.732833	0.0004
С	0.031216	0.251293	0.124220	0.9015
@TREND("1998Q1")	0.001042	0.004693	0.221963	0.8250
R-squared	0.345439	Mean depen	dent var	-0.039241
Adjusted R-squared	0.290892	S.D. depend	lent var	1.037554
S.E. of regression	0.873709	Akaike info c	riterion	2.652294
Sum squared resid	54.96243	Schwarz crit	terion	2.862245
Log likelihood	-97.76562	Hannan-Qui	nn criter.	2.736407
F-statistic	6.332891	Durbin-Wats	son stat	1.963716
Prob(F-statistic)	0.000022			

Anexo B 10-Teste ADF TAX VAR PIB com constante e tendencia

Null Hypothesis: D(TAX VAR PIB) has a unit root Exogenous: Constant Lag Length: 3 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Fu Test critical values:	1% level	-6.493391 -3.515536	0.0000
	5% level 10% level	-2.898623 -2.586605	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TAX VAR PIB,2) Method: Least Squares Date: 06/15/19 Time: 12:29 Sample (adjusted): 1999Q2 2018Q4 Included observations: 79 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(TAX VAR PIB(-1)) D(TAX VAR PIB(-1),2) D(TAX VAR PIB(-2),2) D(TAX VAR PIB(-3),2) C	-1.030425 0.196514 0.449503 0.482808 -0.036462	0.158688 0.145338 0.130686 0.101714 0.100985	-6.493391 1.352116 3.439576 4.746700 -0.361062	0.0000 0.1805 0.0010 0.0000 0.7191
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.545191 0.520607 0.896501 59.47481 -100.8823 22.17644 0.000000	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var criterion terion nn criter.	-0.003797 1.294806 2.680564 2.830529 2.740645 1.999661

Null Hypothesis: D(TAX_VAR_PIB) has a unit root Exogenous: Constant, Linear Trend

Lag Length: 7 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Fu Test critical values:	ıller test statistic 1% level 5% level 10% level	-5.118014 -4.085092 -3.470851 -3.162458	0.0004

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TAX VAR PIB,2) Method: Least Squares
Date: 06/22/19 Time: 09:45
Sample (adjusted): 2000Q2 2018Q4
Included observations: 75 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(TAX VAR PIB(-1))	-1.421400	0.277725	-5.118014	0.0000
D(TAX VAR PIB(-1),2)	0.629746	0.256420	2.455914	0.0167
D(TAX VAR PIB(-2),2)	0.834008	0.224675	3.712069	0.0004
D(TAX VAR PIB(-3),2)	0.922083	0.195705	4.711607	0.0000
D(TAX VAR PIB(-4),2)	0.221659	0.168901	1.312355	0.1940
D(TAX VAR PIB(-5),2)	0.210026	0.159081	1.320249	0.1914
D(TAX VAR PIB(-6),2)	0.245570	0.143556	1.710625	0.0919
D(TAX VAR PIB(-7),2)	0.448658	0.109564	4.094932	0.0001
С	-0.422479	0.235962	-1.790450	0.0780
@TREND("1998Q1")	0.008024	0.004651	1.725176	0.0892
R-squared	0.658269	Mean depen	dent var	-0.018667
Adjusted R-squared	0.610953	S.D. depend	lent var	1.316188
S.E. of regression	0.820954	Akaike info o	riterion	2.566867
Sum squared resid	43.80779	Schwarz cri	terion	2.875866
Log likelihood	-86.25752	Hannan-Qui	nn criter.	2.690247
F-statistic	13.91203	Durbin-Wats	son stat	1.977965
Prob(F-statistic)	0.000000			

Anexo B 11 -Teste ADF 1º diferenças TAX VAR PIB com constante

Anexo B 12-Teste ADF 1º diferenças TAX VAR PIB com constante e tendência

Null Hypothesis: EURIBOR 3M has a unit root Exogenous: Constant
Lag Length: 1 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Fu		-1.610249	0.4726
Test critical values:	1% level 5% level	-3.516676 -2.899115	
	10% level	-2.586866	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(EURIBOR 3M) Method: Least Squares Date: 06/15/19 Time: 12:16 Sample (adjusted): 1999Q3 2018Q4 Included observations: 78 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
EURIBOR 3M(-1) D(EURIBOR 3M(-1))	-0.032138 0.593504	0.019958 0.093105	-1.610249 6.374533	0.1115 0.0000
C	0.047346	0.050774	0.932497	0.3541
R-squared	0.354263	Mean depen	dent var	-0.037674
Adjusted R-squared	0.337043	S.D. depend	lent var	0.369197
S.E. of regression	0.300608	Akaike info c	riterion	0.471682
Sum squared resid	6.777380	Schwarz cri	terion	0.562325
Log likelihood	-15.39559	Hannan-Qui	nn criter.	0.507968
F-statistic	20.57319	Durbin-Wats	son stat	1.748454
Prob(F-statistic)	0.000000			

Null Hypothesis: EURIBOR 3M has a unit root

Exogenous: Constant, Linear Trend

Lag Length: 3 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Fu Test critical values:	uller test statistic 1% level 5% level 10% level	-3.680679 -4.083355 -3.470032 -3.161982	0.0297

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(EURIBOR 3M) Method: Least Squares
Date: 06/15/19 Time: 12:17 Sample (adjusted): 2000Q1 2018Q4 Included observations: 76 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
EURIBOR 3M(-1) D(EURIBOR 3M(-1))	-0.137175 0.696026	0.037269 0.105323	-3.680679 6.608467	0.0005 0.0000
D(EURIBOR 3M(-2)) D(EURIBOR 3M(-3))	-0.206087 0.272309	0.127091 0.109537	-1.621571 2.486000	0.1094 0.0153
C	0.627674	0.193674	3.240876	0.0018
@TREND("1998Q1")	-0.008671	0.002800	-3.096390	0.0028
R-squared Adjusted R-squared	0.484208 0.447366	Mean depen S.D. depend		-0.049446 0.363191
S.E. of regression Sum squared resid	0.269994 5.102771	Akaike info o		0.294822 0.478827
Log likelihood	-5.203244	Hannan-Qui	nn criter.	0.368360
F-statistic Prob(F-statistic)	13.14272 0.000000	Durbin-Wats	son stat	1.940005

Anexo B 14- Teste ADF EURIBOR 3 M com constante e tendência

Null Hypothesis: D(EURIBOR 3M) has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Fu	ıller test statistic	-4.592682	0.0003
Test critical values:	1% level	-3.516676	
	5% level	-2.899115	
	10% level	-2 586866	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(EURIBOR 3M,2)

Method: Least Squares Date: 06/15/19 Time: 12:17 Sample (adjusted): 1999Q3 2018Q4 Included observations: 78 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(EURIBOR 3M(-1)) C	-0.427713 -0.012982	0.093129 0.034626	-4.592682 -0.374911	0.0000 0.7088
R-squared Adjusted R-squared S.E. of regression Sun squared resid Log likelihood F-statistic Prob(F-statistic)	0.217243 0.206944 0.303742 7.011687 -16.72112 21.09272 0.000017	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	0.005473 0.341077 0.480029 0.540457 0.504219 1.718379

Null Hypothesis: TAX DESE has a unit root

Exogenous: Constant

Lag Length: 5 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-1.737677	0.4085
Test critical values:	1% level	-3.516676	
	5% level	-2.899115	
	10% level	-2.586866	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TAX DESE) Method: Least Squares Date: 06/15/19 Time: 12:27 Sample (adjusted): 1999Q3 2018Q4 Included observations: 78 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TAX DESE(-1) D(TAX DESE(-1)) D(TAX DESE(-2)) D(TAX DESE(-2)) D(TAX DESE(-3)) D(TAX DESE(-4)) D(TAX DESE(-5)) C	-0.025980 0.271245 -0.004697 0.054020 0.629551 -0.219503 0.231943	0.014951 0.112116 0.094078 0.096600 0.096451 0.114362 0.143865	-1.737677 2.419320 -0.049928 0.559213 6.527140 -1.919362 1.612225	0.0866 0.0181 0.9603 0.5778 0.0000 0.0590 0.1113
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.462723 0.417320 0.466172 15.42948 -47.48049 10.19132 0.000000	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	0.028205 0.610705 1.396936 1.608435 1.481603 1.986694

Anexo B 15-Teste ADF 1º diferenças EURIBOR 3M com constante

Anexo B 16 -Teste ADF 1º diferenças EURIBOR 3M com
 constante e tendência

Null Hypothesis: D(EURIBOR 3M) has a unit root Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Fu Test critical values:	Iller test statistic 1% level 5% level 10% level	-4.591264 -4.080021 -3.468459 -3.161067	0.0021

Anexo B 17 - Teste ADF TAXA DESEMMPREGO com constante

Augmented Dickey-Fuller Test Equation Dependent Variable: D(EURIBOR 3M,2)

Method: Least Squares Date: 06/22/19 Time: 09:40 Sample (adjusted): 1999Q3 2018Q4 Included observations: 78 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(EURIBOR 3M(-1)) C @TREND("1998Q1")	-0.430526 0.020617 -0.000758	0.093771 0.076563 0.001538	-4.591264 0.269283 -0.492672	0.0000 0.7885 0.6237
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.219768 0.198962 0.305266 6.989068 -16.59510 10.56264 0.000091	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var criterion terion nn criter.	0.005473 0.341077 0.502439 0.593081 0.538725 1.719458

Null Hypothesis: TAX DESE has a unit root Exogenous: Constant, Linear Trend Lag Length: 5 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Fu Test critical values:	ıller test statistic 1% level 5% level 10% level	-1.528062 -4.080021 -3.468459 -3.161067	0.8115

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TAX DESE) Method: Least Squares Date: 06/15/19 Time: 12:27 Sample (adjusted): 1999Q3 2018Q4 Included observations: 78 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TAX DESE(-1)	-0.043252	0.028305	-1.528062	0.1310
D(TAX DESE(-1))	0.279925	0.113144	2.474070	0.0158
D(TAX DESE(-2))	0.020982	0.100919	0.207906	0.8359
D(TAX DESE(-3))	0.075104	0.101261	0.741679	0.4608
D(TAX DESE(-4))	0.652059	0.101710	6.410983	0.0000
D(TAX DESE(-5))	-0.195695	0.119427	-1.638610	0.1058
С	0.231859	0.144356	1.606157	0.1127
@TREND("1998Q1")	0.003421	0.004755	0.719578	0.4742
R-squared	0.466668	Mean depen	dent var	0.028205
Adjusted R-squared	0.413335	S.D. depend	lent var	0.610705
S.E. of regression	0.467764	Akaike info c	riterion	1.415207
Sum squared resid	15.31619	Schwarz crit	terion	1.656921
Log likelihood	-47.19306	Hannan-Qui	nn criter.	1.511969
F-statistic	8.750062	Durbin-Wats	son stat	1.976728
Prob(F-statistic)	0.000000			

Anexo B 18-Teste ADF TAXA DESEMMPREGO com constante e tendência

^{*}MacKinnon (1996) one-sided p-values.

Null Hypothesis: D(TAX DESE) has a unit root

Exogenous: Constant
Lag Length: 4 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Fu Test critical values:	1% level 5% level	-2.153337 -3.516676 -2.899115	0.2249
	10% level	-2.586866	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TAX DESE,2)

Method: Least Squares Date: 06/15/19 Time: 12:28 Sample (adjusted): 1999Q3 2018Q4 Included observations: 78 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(TAX DESE(-1)) D(TAX DESE(-1),2) D(TAX DESE(-2),2) D(TAX DESE(-3),2) D(TAX DESE(-4),2) C	-0.316871 -0.385044 -0.398152 -0.352894 0.268475 -0.000419	0.147153 0.167481 0.155747 0.135455 0.112379 0.053807	-2.153337 -2.299025 -2.556394 -2.605252 2.389018 -0.007783	0.0346 0.0244 0.0127 0.0111 0.0195 0.9938
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.621509 0.595225 0.472665 16.08568 -49.10480 23.64581 0.000000	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	0.002564 0.742928 1.412944 1.594229 1.485515 2.022183

Null Hypothesis: D(TAX DESE) has a unit root

Exogenous: Constant, Linear Trend

Lag Length: 4 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Fu Test critical values:	uller test statistic 1% level 5% level 10% level	-2.391838 -4.080021 -3.468459 -3.161067	0.3809

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TAX DESE,2) Method: Least Squares Date: 06/22/19 Time: 09:43 Sample (adjusted): 1999Q3 2018Q4 Included observations: 78 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(TAX DESE(-1)) D(TAX DESE(-1),2) D(TAX DESE(-2),2) D(TAX DESE(-3),2)	-0.373075	0.155978	-2.391838	0.0194
	-0.350079	0.170416	-2.054258	0.0436
	-0.379272	0.156559	-2.422547	0.0180
	-0.346232	0.135446	-2.556237	0.0127
D(TAX DESE(-4),2)	0.261470	0.112443	2.325365	0.0229
C	0.123341	0.126855	0.972292	0.3342
@TREND("1998Q1")	-0.002740	0.002544	-1.077043	0.2851
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.627593 0.596122 0.472141 15.82709 -48.47275 19.94198 0.000000	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var criterion terion nn criter.	0.002564 0.742928 1.422378 1.633878 1.507045 2.012271

Anexo B 19-Teste ADF 1º diferenças TAXA DESEMPREGO com constante

Anexo B 20-Teste ADF 1º diferenças TAXA DESEMPREGO com constante e tendência

Null Hypothesis: DEF ADM PUB has a unit root Exogenous: Constant

Lag Length: 3 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Fit Test critical values:	uller test statistic 1% level 5% level 10% level	-1.591290 -3.519050 -2.900137 -2.587409	0.4821

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(DEF_ADM_PUB) Method: Least Squares Date: 06/15/19 Time: 12:14

Sample (adjusted): 2000Q1 2018Q4 Included observations: 76 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
DEF ADM PUB(-1) D(DEF ADM PUB(-1)) D(DEF ADM PUB(-2)) D(DEF ADM PUB(-3)) C	-0.268787 -0.692780 -0.508856 -0.393772 1.239781	0.168911 0.164877 0.149388 0.110331 0.950058	-1.591290 -4.201810 -3.406269 -3.569012 1.304953	0.1160 0.0001 0.0011 0.0006 0.1961
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.560395 0.535629 3.407560 824.4140 -198.4290 22.62718 0.000000	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	-0.084434 5.000470 5.353395 5.506733 5.414677 2.053625

Null Hypothesis: DEF ADM PUB has a unit root

Exogenous: Constant, Linear Trend

Lag Length: 3 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Fu Test critical values:	uller test statistic 1% level 5% level 10% level	-1.553055 -4.083355 -3.470032 -3.161982	0.8021

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(DEF ADM PUB) Method: Least Squares Date: 06/15/19 Time: 12:14 Sample (adjusted): 2000Q1 2018Q4 Included observations: 76 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
DEF ADM PUB(-1)	-0.262328	0.168911	-1.553055	0.1249
D(DEF ADM PUB(-1))	-0.711391	0.165723	-4.292649	0.0001
D(DEF ADM PUB(-2))	-0.529210	0.150550	-3.515190	0.0008
D(DEF ADM PUB(-3))	-0.406930	0.110971	-3.666978	0.0005
С	2.064463	1.233848	1.673191	0.0988
@TREND("1998Q1")	-0.018863	0.018024	-1.046521	0.2989
R-squared	0.567167	Mean depen	dent var	-0.084434
Adjusted R-squared	0.536251	S.D. depend	lent var	5.000470
S.E. of regression	3.405278	Akaike info o	riterion	5.364187
Sum squared resid	811.7140	Schwarz cri	terion	5.548192
Log likelihood	-197.8391	Hannan-Qui	nn criter.	5.437724
F-statistic	18.34506	Durbin-Wats	son stat	2.064690
Prob(F-statistic)	0.000000			

Anexo B 21- Teste ADF TAXA **DEFICE** ADMINISTRAÇÃO PÚBLICA com constante

Anexo B 22- TAXA DEFICE ADMINISTRAÇÃO PÚBLICA com constante e tendência

Null Hypothesis: D(DEF ADM PUB) has a unit root Exogenous: Constant

Lag Length: 2 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Ful Test critical values:	ler test statistic 1% level 5% level 10% level	-11.11311 -3.519050 -2.900137 -2.587409	0.0001

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(DEF_ADM_PUB,2) Method: Least Squares

Date: 06/15/19 Time: 12:15 Sample (adjusted): 2000Q1 2018Q4 Included observations: 76 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(DEF ADM PUB(-1)) D(DEF ADM PUB(-1),2) D(DEF ADM PUB(-2),2) C	-3.005315 1.103815 0.459562 -0.138107	0.270430 0.204119 0.103374 0.395083	-11.11311 5.407701 4.445627 -0.349563	0.0000 0.0000 0.0000 0.7277
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.857134 0.851181 3.443626 853.8166 -199.7607 143.9894 0.000000	Mean depen S.D. depend Akaike info c Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	0.008244 8.926618 5.362123 5.484793 5.411148 2.115217

Null Hypothesis: D(DEF ADM PUB) has a unit root Exogenous: Constant, Linear Trend

Lag Length: 2 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Ful Test critical values:	ler test statistic 1% level 5% level 10% level	-11.16666 -4.083355 -3.470032 -3.161982	0.0000

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(DEF ADM PUB,2) Method: Least Squares Date: 06/22/19 Time: 10:49 Sample (adjusted): 2000Q1 2018Q4

Included observations: 76 after adjustments

Variable Coefficient Std. Error t-Statistic Prob. D(DEF ADM PUB(-1)) -3.049881 0.273124 -11.16666 0.0000 0.205711 D(DEF ADM PUB(-1),2) 1.134048 5.512831 0.0000 D(DEF ADM PUB(-2),2) 0.103836 0.471767 4.543378 0.0000 0.766199 0.916493 0.836012 0.4060 @TREND("1998Q1") -0.019886 0.018191 -1.093188 0.2780 0.859499 0.008244 R-squared Mean dependent var 0.851583 8.926618 Adjusted R-squared S.D. dependent var S.E. of regression 3.438971 Akaike info criterion 5.371747 839.6832 5.525085 Sum squared resid Schwarz criterion Log likelihood -199.1264 Hannan-Quinn criter. 5.433028 F-statistic 108.5834 Durbin-Watson stat 2.126381 Prob(F-statistic) 0.000000

Anexo B 23 - Teste ADF 1º diferenças TAXA DEFICE ADMINISTRAÇÃO com constante

Anexo B 24- Teste ADF 1º diferenças TAXA DEFICE ADMINISTRAÇÃO com constante e tendencia

Null Hypothesis: LREND LIQ has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Fr Test critical values:	uller test statistic 1% level 5% level 10% level	-2.179646 -3.511262 -2.896779 -2.585626	0.2152

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(LREND LIQ) Method: Least Squares

Date: 09/07/19 Time: 17:55
Sample (adjusted): 1998Q2 2018Q4
Included observations: 83 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LREND LIQ(-1)	-0.020398 0.140937	0.009358 0.061488	-2.179646 2.292114	0.0322 0.0245
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.055403 0.043741 0.013793 0.015409 238.7808 4.750857 0.032188	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	0.006956 0.014105 -5.705562 -5.647277 -5.682146 2.216856

Null Hypothesis: LREND LIQ has a unit root Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Fu Test critical values:	uller test statistic 1% level 5% level 10% level	-1.885541 -4.072415 -3.464865 -3.158974	0.6531

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(LREND_LIQ)

Method: Least Squares
Date: 09/07/19 Time: 17:55
Sample (adjusted): 1998Q2 2018Q4
Included observations: 83 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LREND LIQ(-1) C @TREND("1998Q1")	-0.063232 0.409646 0.000301	0.033535 0.211160 0.000226	-1.885541 1.939985 1.329608	0.0630 0.0559 0.1874
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.075826 0.052721 0.013728 0.015076 239.6879 3.281876 0.042673	Mean depen S.D. depend Akaike info c Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	0.006956 0.014105 -5.703323 -5.615895 -5.668199 2.170642

Anexo B 25- Teste ADF RENDIMENTO LÍQUIDO com constante

Anexo B 26-Teste ADF RENDIMENTO LÍQUIDO com constante e tendência

Null Hypothesis: D(LREND LIQ) has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=11)

Anexo B 27 - Teste ADF 1º diferenças RENDIMENTO LÍQUIDO com constante

		t-Statistic	Prob.*
Augmented Dickey-Fu Test critical values:	uller test statistic 1% level 5% level 10% level	-9.585550 -3.512290 -2.897223 -2.585861	0.0000

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(LREND_LIQ,2)

Method: Least Squares Date: 09/07/19 Time: 17:55 Sample (adjusted): 1998Q3 2018Q4 Included observations: 82 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(LREND LIQ(-1)) C	-1.068923 0.007401	0.111514 0.001754	-9.585550 4.218254	0.0000 0.0001
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.534566 0.528749 0.014242 0.016227 233.2873 91.88277 0.000000	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	-5.24E-05 0.020746 -5.641154 -5.582454 -5.617587 2.000190

Null Hypothesis: D(LREND LIQ) has a unit root

Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Fu	ıller test statistic	-9.898948	0.0000
Test critical values:	1% level	-4.073859	
	5% level	-3.465548	
	10% level	-3.159372	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(LREND LIQ,2) Method: Least Squares Date: 09/07/19 Time: 17:56 Sample (adjusted): 1998Q3 2018Q4 Included observations: 82 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(LREND LIQ(-1)) C @TREND("1998Q1")	-1.107534 0.012877 -0.000123	0.111884 0.003445 6.67E-05	-9.898948 3.737656 -1.837637	0.0000 0.0003 0.0699
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.553646 0.542346 0.014035 0.015562 235.0035 48.99482 0.000000	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	dent var criterion terion nn criter.	-5.24E-05 0.020746 -5.658621 -5.570571 -5.623270 2.017580

Anexo B 28 - Teste ADF 1º diferenças RENDIMENTO LÍQUIDO com constante e tendência

Null Hypothesis: CARGA FIS D11 has a unit root

Exogenous: Constant

Lag Length: 3 (Automatic - based on SIC, maxlag=11)

Anexo B 29 - Teste ADF CARGA FISCAL com constante

		t-Statistic	Prob.*
Augmented Dickey-Fu Test critical values:	ıller test statistic 1% level 5% level 10% level	-0.576182 -3.519050 -2.900137 -2.587409	0.8689

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(CARGA FIS D11) Method: Least Squares Date: 07/13/19 Time: 16:08 Sample (adjusted): 2000Q1 2018Q4 Included observations: 76 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
CARGA FIS D11(-1) D(CARGA FIS D11(-1)) D(CARGA FIS D11(-2))		0.110190 0.147296 0.154537	-0.576182 -6.059211 -4.158509	0.5663 0.0000 0.0001
D(CARGA FIS D11(-3))		0.120857 3.509388	-2.255941 0.626886	0.0272 0.5327
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.503885 0.475935 1.481927 155.9237 -135.1474 18.02802 0.000000	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	0.067899 2.047078 3.688089 3.841427 3.749370 2.018024

Null Hypothesis: CARGA FIS D11 has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Fu Test critical values:	uller test statistic 1% level 5% level 10% level	-7.715794 -4.078420 -3.467703 -3.160627	0.0000

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(CARGA FIS D11) Method: Least Squares Date: 07/13/19 Time: 16:08 Sample (adjusted): 1999Q2 2018Q4 Included observations: 79 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
CARGA FIS D11(-1) C @TREND("1998Q1")	-0.874860 25.65708 0.051894	0.113386 3.352543 0.009896	-7.715794 7.653018 5.243854	0.0000 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.439637 0.424890 1.524938 176.7331 -143.9013 29.81314 0.000000	Mean depen S.D. depend Akaike info c Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	0.050868 2.010837 3.719019 3.808998 3.755068 2.066259

Anexo B 30- Teste ADF CARGA FISCAL com constante e tendência

Null Hypothesis: D(CARGA_FIS_D11) has a unit root

Exogenous: Constant

Lag Length: 2 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Ful Test critical values:	ler test statistic 1% level 5% level 10% level	-9.208424 -3.519050 -2.900137 -2.587409	0.0000

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(CARGA FIS D11,2) Method: Least Squares Date: 07/13/19 Time: 16:08

Sample (adjusted): 2000Q1 2018Q4 Included observations: 76 after adjustments

Variable Coefficient Std. Error t-Statistic Prob. D(CARGA FIS D11(-1)) -2.915725 0.316637 -9.208424 0.0000 D(CARGA FIS D11(-1),2) 0.968892 0.234758 4.127193 0.0001 D(CARGA FIS D11(-2),2) 0.289985 0.116506 2.489015 0.0151 0.180336 0.169934 1.061214 0.2921 0.840695 -0.019590 Mean dependent var R-squared Adjusted R-squared 0.834058 S.D. dependent var 3.620962 S.E. of regression 1.475036 Akaike info criterion 3.666438 Sum squared resid 156.6527 3.789109 Schwarz criterion 3.715463 Log likelihood -135.3247 Hannan-Quinn criter. Durbin-Watson stat F-statistic 126.6546 2.027711

0.000000

Null Hypothesis: D(CARGA FIS D11) has a unit root

Exogenous: Constant, Linear Trend

Prob(F-statistic)

Lag Length: 2 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Fulle	er test statistic	-9.236910	0.0000
Test critical values:	1% level	-4.083355	
	5% level	-3.470032	
	10% level	-3.161982	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(CARGA FIS D11,2) Method: Least Squares Date: 07/13/19 Time: 16:09 Sample (adjusted): 2000Q1 2018Q4 Included observations: 76 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(CARGA FIS D11(-1)) D(CARGA FIS D11(-1),2) D(CARGA FIS D11(-2),2) C @TREND("1998Q1")	-2.942175 0.986146 0.297242 -0.130638 0.006865	0.318524 0.235922 0.116971 0.390633 0.007762	-9.236910 4.179968 2.541165 -0.334426 0.884431	0.0000 0.0001 0.0132 0.7390 0.3794
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.842431 0.833554 1.477272 154.9457 -134.9083 94.89920 0.000000	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var criterion terion nn criter.	-0.019590 3.620962 3.681797 3.835135 3.743079 2.031869

Anexo B 31- Teste ADF 1º diferenças CARGA FISCAL com constante

Anexo B 32- Teste ADF 1º diferenças CARGA FISCAL com constante e tendência

Null Hypothesis: LCRD PAR has a unit root

Exogenous: Constant
Bandwidth: 5 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test st	atistic	-1.402233	0.5775
Test critical values:	1% level	-3.511262	
	5% level	-2.896779	
	10% level	-2.585626	
*MacKinnon (1996) or	ne-sided p-values.		
Residual variance (no HAC corrected variance	,		0.008724 0.014368

Phillips-Perron Test Equation
Dependent Variable: D(LCRD PAR)
Method: Least Squares
Date: 06/15/19 Time: 13:35
Sample (adjusted): 1998Q2 2018Q4
Included observations: 83 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LCRD PAR(-1) C	-0.030283 0.188253	0.030904 0.184037	-0.979901 1.022905	0.3301 0.3094
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.011716 -0.000486 0.094549 0.724108 79.00680 0.960205 0.330053	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	0.008201 0.094527 -1.855586 -1.797300 -1.832170 2.195317

Null Hypothesis: LCRD PAR has a unit root Exogenous: Constant, Linear Trend Bandwidth: 5 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test sta	atistic	-1.340261	0.8708
Test critical values:	1% level	-4.072415	
	5% level	-3.464865	
	10% level	-3.158974	

*MacKinnon (1996) one-sided p-values.

Residual variance (no correction) HAC corrected variance (Bartlett kernel)	0.008721 0.014263

Phillips-Perron Test Equation Dependent Variable: D(LCRD PAR) Method: Least Squares Date: 06/15/19 Time: 14:04 Sample (adjusted): 1998Q2 2018Q4 Included observations: 83 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LCRD PAR(-1) C @TREND("1998Q1")	-0.028364 0.173377 8.25E-05	0.032889 0.202956 0.000461	-0.862411 0.854257 0.178930	0.3910 0.3955 0.8584
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.012111 -0.012586 0.095120 0.723818 79.02340 0.490373 0.614226	Mean depen S.D. depend Akaike info c Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	0.008201 0.094527 -1.831889 -1.744461 -1.796766 2.200480

Anexo C 2- Teste PP CRD PAR com constante e tendência

Null Hypothesis: D(LCRD PAR) has a unit root

Exogenous: Constant

Bandwidth: 5 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*	
Phillips-Perron test statistic		-10.35375	0.0000	
Test critical values:	1% level 5% level	-3.512290 -2.897223		
	10% level	-2.585861		
*MacKinnon (1996) or				
Residual variance (no HAC corrected variance			0.008675 0.016974	

Phillips-Perron Test Equation Dependent Variable: D(LCRD PAR,2) Method: Least Squares Date: 06/15/19 Time: 13:36 Sample (adjusted): 1998Q3 2018Q4 Included observations: 82 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(LCRD_PAR(-1)) C	-1.125593 0.008069	0.110212 0.010455	-10.21303 0.771788	0.0000 0.4425
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.565939 0.560513 0.094295 0.711317 78.28866 104.3059 0.000000	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	-0.001518 0.142237 -1.860699 -1.801999 -1.837132 1.883630

Null Hypothesis: D(CRD_PAR) has a unit root

Exogenous: Constant, Linear Trend

Bandwidth: 5 (Newey-West automatic) using Bartlett kernel

Banamati. 5 (News) Treet date made, deling Banaet Nemel				
		Adj. t-Stat	Prob.*	
Phillips-Perron test statistic Test critical values: 1% level 5% level 10% level		-10.90967 -4.073859 -3.465548 -3.159372	0.0000	
*MacKinnon (1996) one-sided p-values.				
Residual variance (no correction) HAC corrected variance (Bartlett kernel)			1195.810 2160.198	

Phillips-Perron Test Equation Dependent Variable: D(CRD PAR,2) Method: Least Squares Date: 06/22/19 Time: 09:38 Sample (adjusted): 1998Q3 2018Q4 Included observations: 82 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(CRD PAR(-1)) C @TREND("1998Q1")	-1.215340 -2.420609 0.152523	0.109350 7.996892 0.164837	-11.11420 -0.302694 0.925296	0.0000 0.7629 0.3576
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.609942 0.600067 35.23096 98056.42 -406.9027 61.76691 0.000000	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	-0.556126 55.70969 9.997627 10.08568 10.03298 1.879937

Anexo C 3 - Teste PP 1º diferenças CRD PAR com constante

Anexo C 4- Teste PP 1º diferenças CRD PAR com constante e tendencia

Null Hypothesis: LCRD EMPR has a unit root

Exogenous: Constant

Bandwidth: 2 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test sta	atistic	-1.558378	0.4992
Test critical values:	1% level	-3.511262	
	5% level	-2 896779	
	10% level	-2.585626	
*MacKinnon (1996) or	e-sided p-values.		
Residual variance (no			0.020416 0.017587

Phillips-Perron Test Equation Dependent Variable: D(LCRD EMPR) Method: Least Squares
Date: 06/15/19 Time: 13:34
Sample (adjusted): 1998Q2 2018Q4
Included observations: 83 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LCRD EMPR(-1) C	-0.068106 0.270537	0.040610 0.156655	-1.677099 1.726963	0.0974 0.0880
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.033559 0.021628 0.144638 1.694543 43.72235 2.812661 0.097378	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	0.009164 0.146228 -1.005358 -0.947073 -0.981942 2.126315

Null Hypothesis: LCRD EMPR has a unit root

Exogenous: Constant, Linear Trend Bandwidth: 2 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*	
Phillips-Perron test statistic		-1.787280	0.7021	
Test critical values:	1% level	-4.072415		
	5% level	-3.464865		
	10% level	-3.158974		
*MacKinnon (1996) one-sided p-values.				
Residual variance (no HAC corrected variance		-	0.020199 0.017616	

Phillips-Perron Test Equation Dependent Variable: D(LCRD EMPR) Method: Least Squares Date: 06/15/19 Time: 14:03 Sample (adjusted): 1998Q2 2018Q4 Included observations: 83 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LCRD EMPR(-1) C @TREND("1998Q1")	-0.090075 0.384728 -0.000711	0.047055 0.199428 0.000768	-1.914257 1.929159 -0.926585	0.0592 0.0573 0.3569
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.043821 0.019916 0.144765 1.676550 44.16536 1.833155 0.166562	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	0.009164 0.146228 -0.991936 -0.904508 -0.956813 2.102793

Anexo C 6- Teste PP CRD EMP com constante e tendência

Null Hypothesis: D(LCRD EMPR) has a unit root

Exogenous: Constant
Bandwidth: 3 (Newey-West automatic) using Bartlett kernel

	, .,		
		Adj. t-Stat	Prob.*
Phillips-Perron test st	atistic	-9.979932	0.0000
Test critical values:	1% level	-3.512290	
	5% level	-2.897223	
	10% level	-2.585861	
*MacKinnon (1996) or	ne-sided p-values.		
Residual variance (no	correction)		0.021125
HAC corrected varian	ce (Bartlett kernel)		0.018465

Phillips-Perron Test Equation Dependent Variable: D(LCRD EMPR,2) Method: Least Squares Date: 06/15/19 Time: 13:34 Sample (adjusted): 1998Q3 2018Q4 Included observations: 82 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(LCRD EMPR(-1)) C	-1.109502 0.009695	0.112050 0.016270	-9.901852 0.595883	0.0000 0.5529
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.550680 0.545063 0.147152 1.732286 41.79540 98.04668 0.000000	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	0.001806 0.218167 -0.970619 -0.911919 -0.947052 2.002577

Null Hypothesis: D(LCRD EMPR) has a unit root

Exogenous: Constant, Linear Trend Bandwidth: 3 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test statistic		-9.910395	0.0000
Test critical values:	1% level	-4.073859	
	5% level	-3.465548	
	10% level	-3.159372	

*MacKinnon (1996) one-sided p-values.

Residual variance (no correction)	0.021125
HAC corrected variance (Bartlett kernel)	0.018466

Phillips-Perron Test Equation Dependent Variable: D(LCRD EMPR,2) Method: Least Squares Date: 07/13/19 Time: 16:19 Sample (adjusted): 1998Q3 2018Q4 Included observations: 82 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(LCRD EMPR(-1)) C @TREND("1998Q1")	-1.109387 0.008196 3.52E-05	0.112777 0.033637 0.000691	-9.836970 0.243673 0.050997	0.0000 0.8081 0.9595
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.550694 0.539320 0.148078 1.732229 41.79675 48.41344 0.000000	Mean depen S.D. depend Akaike info c Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	0.001806 0.218167 -0.946262 -0.858211 -0.910911 2.002835

Anexo C 7- Teste PP 1º diferenças CRD EMP com constante

Anexo C 8- Teste PP 1º diferenças CRD EMP com constante e tendência

Null Hypothesis: TAX VAR PIB has a unit root Exogenous: Constant Bandwidth: 4 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test sta	atistic	-2.636645	0.0898
Test critical values:	1% level	-3.511262	
	5% level	-2.896779	
	10% level	-2.585626	
*MacKinnon (1996) or	ne-sided p-values.		
Residual variance (no correction) HAC corrected variance (Bartlett kernel)			0.957105 1.462588

Phillips-Perron Test Equation Dependent Variable: D(TAX VAR PIB) Method: Least Squares Date: 06/15/19 Time: 13:39 Sample (adjusted): 1998Q2 2018Q4 Included observations: 83 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TAX VAR PIB(-1)	-0.104663 0.079320	0.046435 0.119493	-2.253947 0.663803	0.0269 0.5087
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.059018 0.047401 0.990322 79.43975 -115.9525 5.080276 0.026901	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var criterion terion nn criter.	-0.032530 1.014662 2.842228 2.900513 2.865644 1.493909

Null Hypothesis: TAX VAR PIB has a unit root Exogenous: Constant, Linear Trend Bandwidth: 4 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*	
Phillips-Perron test statistic		-2.557012	0.3008	
Test critical values:	1% level	-4.072415		
	5% level	-3.464865		
	10% level	-3.158974		
*MacKinnon (1996) one-sided p-values.				
Residual variance (no correction)			0.957042	
HAC corrected variance (Bartlett kernel)			1.458551	

Phillips-Perron Test Equation Dependent Variable: D(TAX VAR PIB) Method: Least Squares Date: 06/15/19 Time: 14:07 Sample (adjusted): 1998Q2 2018Q4 Included observations: 83 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TAX VAR PIB(-1) C @TREND("1998Q1")	-0.103558 0.063493 0.000349	0.049135 0.248861 0.004801	-2.107618 0.255134 0.072638	0.0382 0.7993 0.9423
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.059080 0.035557 0.996459 79.43451 -115.9497 2.511582 0.087520	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	-0.032530 1.014662 2.866259 2.953687 2.901382 1.495606

Anexo C 10- Teste PP TAX VAR PIB com constante e tendência

Null Hypothesis: D(TAX VAR PIB) has a unit root

Exogenous: Constant
Bandwidth: 3 (Newey-West automatic) using Bartlett kernel

Anexo C 11- Teste PP 1º diferenças TAX VAR PIB com constante

		Adj. t-Stat	Prob.*
Phillips-Perron test statistic		-7.311117	0.0000
Test critical values:	1% level	-3.512290	
	5% level	-2.897223	
	10% level	-2.585861	
*MacKinnon (1996) or	ne-sided p-values.		
Residual variance (no correction) HAC corrected variance (Bartlett kernel)			0.975681 1.123002

Phillips-Perron Test Equation Dependent Variable: D(TAX VAR PIB,2) Method: Least Squares Date: 06/15/19 Time: 13:39 Sample (adjusted): 1998Q3 2018Q4 Included observations: 82 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(TAX VAR PIB(-1)) C	-0.781843 -0.034125	0.108928 0.110478	-7.177617 -0.308884	0.0000 0.7582
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.391719 0.384116 1.000037 80.00585 -115.3436 51.51818 0.000000	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var criterion terion nn criter.	-0.012195 1.274284 2.862038 2.920739 2.885605 2.063185

Null Hypothesis: D(TAX VAR PIB) has a unit root Exogenous: Constant, Linear Trend Bandwidth: 3 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test statistic		-7.316543	0.0000
Test critical values:	1% level	-4.073859	
	5% level	-3.465548	
	10% level	-3.159372	
*MacKinnon (1996) or	ne-sided p-values.		
Residual variance (no	•		0.969451
HAC corrected varian	ce (Bartlett kernel)		1.108107

Phillips-Perron Test Equation Dependent Variable: D(TAX VAR PIB,2) Method: Least Squares Date: 06/22/19 Time: 09:45 Sample (adjusted): 1998Q3 2018Q4 Included observations: 82 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(TAX VAR PIB(-1)) C @TREND("1998Q1")	-0.789037 -0.176660 0.003349	0.109730 0.228682 0.004700	-7.190707 -0.772512 0.712544	0.0000 0.4421 0.4782
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.395603 0.380302 1.003128 79.49495 -115.0809 25.85444 0.000000	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	dent var criterion terion nn criter.	-0.012195 1.274284 2.880022 2.968073 2.915373 2.059771

Anexo C 12- Teste PP 1º diferenças TAX VAR PIB com constante e tendência

Null Hypothesis: EURIBOR 3M has a unit root Exogenous: Constant Bandwidth: 4 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test statistic		-1.239207	0.6537
Test critical values:	1% level	-3.515536	
	5% level	-2.898623	
	10% level	-2.586605	
*MacKinnon (1996) or	ne-sided p-values.		
Residual variance (no			0.133929
HAC corrected variand	ce (Bartlett kernel)		0.305478

Phillips-Perron Test Equation Dependent Variable: D(EURIBOR 3M) Method: Least Squares Date: 06/15/19 Time: 13:33 Sample (adjusted): 1999Q2 2018Q4 Included observations: 79 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
EURIBOR 3M(-1) C	-0.015989 -0.012713	0.024289 0.061553	-0.658272 -0.206543	0.5123 0.8369
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.005596 -0.007318 0.370685 10.58036 -32.68341 0.433322 0.512327	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	-0.042514 0.369336 0.878061 0.938047 0.902093 0.833308

Null Hypothesis: EURIBOR 3M has a unit root Exogenous: Constant, Linear Trend Bandwidth: 4 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test sta	atistic	-2.644741	0.2623
Test critical values:	1% level	-4.078420	
	5% level	-3.467703	
	10% level	-3.160627	
*MacKinnon (1996) on			
Residual variance (no HAC corrected variance			0.128117 0.292750

Phillips-Perron Test Equation Dependent Variable: D(EURIBOR 3M) Method: Least Squares
Date: 06/15/19 Time: 14:02
Sample (adjusted): 1999Q2 2018Q4
Included observations: 79 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
EURIBOR 3M(-1) C @TREND("1998Q1")	-0.080090 0.365102 -0.005871	0.041996 0.212313 0.003162	-1.907102 1.719640 -1.856755	0.0603 0.0896 0.0672
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.048747 0.023714 0.364930 10.12123 -30.93105 1.947317 0.149709	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	-0.042514 0.369336 0.859014 0.948993 0.895062 0.820255

Anexo C 13- Teste PP EURIBOR 3M com constante

Anexo C 14- Teste PP EURIBOR 3M com constante e tendência

Null Hypothesis: D(EURIBOR 3M) has a unit root Exogenous: Constant Bandwidth: 0 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test st	atistic	-4.592682	0.0003
Test critical values:	1% level	-3.516676	
	5% level	-2.899115	
	10% level	-2.586866	
*MacKinnon (1996) or	ne-sided p-values.		
Residual variance (no	correction)		0.089893
HAC corrected varian	ce (Bartlett kernel)		0.089893

Anexo C 15 - Teste PP 1º diferenças EURIBOR 3M com constante

Phillips-Perron Test Equation Dependent Variable: D(EURIBOR 3M,2) Method: Least Squares
Date: 06/15/19 Time: 13:33
Sample (adjusted): 1999Q3 2018Q4
Included observations: 78 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(EURIBOR 3M(-1)) C	-0.427713 -0.012982	0.093129 0.034626	-4.592682 -0.374911	0.0000 0.7088
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.217243 0.206944 0.303742 7.011687 -16.72112 21.09272 0.000017	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	0.005473 0.341077 0.480029 0.540457 0.504219 1.718379

Null Hypothesis: D(EURIBOR 3M) has a unit root Exogenous: Constant, Linear Trend Bandwidth: 1 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*	
Phillips-Perron test statistic		-4.760998	0.0012	
Test critical values:	1% level	-4.080021		
	5% level	-3.468459		
	10% level	-3.161067		
*MacKinnon (1996) one-sided p-values.				
Residual variance (no HAC corrected variance			0.089603 0.101489	

Anexo C 16- Teste PP 1º diferenças EURIBOR 3M com constante e tendência

Phillips-Perron Test Equation Dependent Variable: D(EURIBOR 3M,2) Method: Least Squares
Date: 06/22/19 Time: 09:40
Sample (adjusted): 1999Q3 2018Q4
Included observations: 78 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(EURIBOR 3M(-1)) C @TREND("1998Q1")	-0.430526 0.020617 -0.000758	0.093771 0.076563 0.001538	-4.591264 0.269283 -0.492672	0.0000 0.7885 0.6237
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.219768 0.198962 0.305266 6.989068 -16.59510 10.56264 0.000091	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	0.005473 0.341077 0.502439 0.593081 0.538725 1.719458

Null Hypothesis: TAX DESE has a unit root

Exogenous: Constant

Bandwidth: 4 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test statistic		-1.084763	0.7186
Test critical values:	1% level	-3.511262	
	5% level	-2.896779	
	10% level	-2.585626	
*MacKinnon (1996) on	ne-sided p-values.		
Residual variance (no	correction)		0.364934
HAC corrected variand	ce (Bartlett kernel)		0.667600

= Anexo C 17 - Teste PP TAX DESE com constante

Phillips-Perron Test Equation Dependent Variable: D(TAX DESE) Method: Least Squares Date: 06/15/19 Time: 13:37 Sample (adjusted): 1998Q2 2018Q4 Included observations: 83 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TAX DESE(-1) C	-0.015423 0.146102	0.018127 0.172557	-0.850855 0.846685	0.3974 0.3997
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.008859 -0.003378 0.611510 30.28952 -75.93829 0.723955 0.397358	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	0.010843 0.610480 1.878031 1.936316 1.901447 1.448151

Null Hypothesis: TAX DESE has a unit root Exogenous: Constant, Linear Trend

Bandwidth: 4 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test sta		-0.160539	0.9930
Test critical values:	1% level	-4.072415	
	5% level	-3.464865	
	10% level	-3.158974	

*MacKinnon (1996) one-sided p-values.

3	
Residual variance (no correction)	0.356008
HAC corrected variance (Bartlett kernel)	0.580239

Phillips-Perron Test Equation Dependent Variable: D(TAX_DESE) Method: Least Squares Date: 06/15/19 Time: 14:06 Sample (adjusted): 1998Q2 2018Q4 Included observations: 83 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TAX DESE(-1) C	0.013365 0.143342	0.027161 0.171507	0.492049 0.835782	0.6240
@TREND("1998Q1")	-0.005945	0.004198	-1.416242	0.1606
R-squared	0.033100	Mean dependent var		0.010843
Adjusted R-squared	0.008928	S.D. depend	lent var	0.610480
S.E. of regression	0.607749	Akaike info	riterion	1.877365
Sum squared resid	29.54868	Schwarz cri	terion	1.964793
Log likelihood	-74.91064	Hannan-Qui	nn criter.	1.912488
F-statistic	1.369343	Durbin-Wats	son stat	1.530082
Prob(F-statistic)	0.260168			

Anexo C 18- Teste PP TAX DESE com constante e tendência

Null Hypothesis: D(TAX DESE) has a unit root

Exogenous: Constant
Bandwidth: 1 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test st		-7.220451	0.0000
Test critical values:	1% level	-3.512290	
	5% level	-2.897223	
	10% level	-2.585861	
*MacKinnon (1996) or	ne-sided p-values.		
Residual variance (no HAC corrected variance			0.329529 0.337763

Phillips-Perron Test Equation Dependent Variable: D(TAX DESE,2) Method: Least Squares Date: 06/15/19 Time: 13:38 Sample (adjusted): 1998Q3 2018Q4 Included observations: 82 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(TAX DESE(-1)) C	-0.757336 0.024166	0.105131 0.064191	-7.203721 0.376470	0.0000 0.7076
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.393450 0.385869 0.581178 27.02141 -70.83928 51.89360 0.000000	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	0.015854 0.741615 1.776568 1.835268 1.800135 1.944338

Null Hypothesis: D(TAX DESE) has a unit root

Exogenous: Constant, Linear Trend

Bandwidth: 0 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test st	atistic	-7.494267	0.0000
Test critical values:	1% level	-4.073859	
	5% level	-3.465548	
	10% level	-3.159372	
*MacKinnon (1996) or	ne-sided p-values.		
Residual variance (no	correction)		0.317070
HAC corrected varian			0.317070

Phillips-Perron Test Equation Dependent Variable: D(TAX DESE,2) Method: Least Squares Date: 06/22/19 Time: 09:43 Sample (adjusted): 1998Q3 2018Q4 Included observations: 82 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(TAX DESE(-1)) C @TREND("1998Q1")	-0.790125 0.228147 -0.004791	0.105431 0.131977 0.002719	-7.494267 1.728686 -1.761924	0.0000 0.0878 0.0820
(Ø1KEND(1990Q1)	-0.004791	0.002719	-1.701924	0.0620
R-squared	0.416384	Mean depen	dent var	0.015854
Adjusted R-squared	0.401609	S.D. depend	lent var	0.741615
S.E. of regression	0.573682	Akaike info o	riterion	1.762415
Sum squared resid	25.99973	Schwarz cri	terion	1.850465
Log likelihood	-69.25900	Hannan-Qui	nn criter.	1.797766
F-statistic	28.18151	Durbin-Wats	son stat	1.957279
Prob(F-statistic)	0.000000			

Anexo C 19- Teste PP 1º diferenças TAX DESE com constante

Anexo C 20- Teste PP 1º diferenças TAX DES com constante e tendência

Null Hypothesis: DEF ADM PUB has a unit root Exogenous: Constant Bandwidth: 4 (Newey-West automatic) using Bartlett kernel

		.,	
		Adj. t-Stat	Prob.*
Phillips-Perron test st		-7.759852	0.0000
Test critical values:	1% level	-3.515536	
	5% level	-2.898623	
	10% level	-2.586605	
*MacKinnon (1996) or	ne-sided p-values.		
Residual variance (no HAC corrected variance			14.26231 19.59551
THIS SST. SOLEG VARIABLE	oo (Bartiott Rollier)		

Phillips-Perron Test Equation Dependent Variable: D(DEF ADM PUB) Method: Least Squares
Date: 06/15/19 Time: 13:31
Sample (adjusted): 1999Q2 2018Q4
Included observations: 79 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
DEF ADM PUB(-1)	-0.832824 4.124482	0.111490 0.696342	-7.469926 5.923070	0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.420180 0.412650 3.825279 1126.723 -217.0722 55.79979 0.000000	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	0.035304 4.991310 5.546131 5.606117 5.570163 2.099661

Null Hypothesis: D(DEF ADM PUB) has a unit root Exogenous: Constant Bandwidth: 23 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test sta	atistic	-32.68036	0.0001
Test critical values:	1% level	-3.516676	
	5% level	-2.899115	
	10% level	-2.586866	
*MacKinnon (1996) or	ne-sided p-values.		
Residual variance (no			16.49275
HAC corrected variand	ce (Bartiett Kernei)		2.902268

Phillips-Perron Test Equation
Dependent Variable: D(DEF ADM PUB,2)
Method: Least Squares
Date: 06/15/19 Time: 13:32
Sample (adjusted): 1999Q3 2018Q4
Included observations: 78 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(DEF ADM PUB(-1)) C	-1.593168 -0.007117	0.095228 0.465900	-16.72998 -0.015276	0.0000 0.9879
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.786452 0.783642 4.114216 1286.435 -219.9911 279.8921 0.000000	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	0.114347 8.845061 5.692080 5.752508 5.716271 2.332748

Anexo C 21- Teste PP DEF ADM PUB com constante

Anexo C 22 - Teste PP DEF ADM PUB com constante e tendência

Null Hypothesis: DEF ADM PUB has a unit root Exogenous: Constant, Linear Trend

Bandwidth: 4 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test sta	atistic	-7.718473	0.0000
Test critical values:	1% level	-4.078420	
	5% level	-3.467703	
	10% level	-3.160627	
*MacKinnon (1996) or	ne-sided p-values.		
Residual variance (no HAC corrected variance			14.24384 19.52445

Phillips-Perron Test Equation Dependent Variable: D(DEF ADM PUB) Method: Least Squares Date: 06/15/19 Time: 14:00 Sample (adjusted): 1999Q2 2018Q4 Included observations: 79 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
DEF ADM PUB(-1) C @TREND("1998Q1")	-0.832799 4.386623 -0.005961	0.112149 1.089840 0.018985	-7.425845 4.025014 -0.313965	0.0000 0.0001 0.7544
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.420931 0.405692 3.847869 1125.263 -217.0210 27.62256 0.000000	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	0.035304 4.991310 5.570151 5.660130 5.606199 2.102492

Null Hypothesis: D(DEF_ADM_PUB) has a unit root Exogenous: Constant, Linear Trend Bandwidth: 21 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test sta	atistic	-40.81516	0.0001
Test critical values:	1% level	-4.080021	
	5% level	-3.468459	
	10% level	-3.161067	
*MacKinnon (1996) or	ne-sided p-values.		

Phillips-Perron Test Equation Dependent Variable: D(DEF ADM PUB,2) Method: Least Squares
Date: 06/22/19 Time: 10:49
Sample (adjusted): 1999Q3 2018Q4
Included observations: 78 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(DEF ADM PUB(-1)) C @TREND("1998Q1")	-1.598083 0.681421 -0.015481	0.095737 1.036454 0.020801	-16.69240 0.657454 -0.744249	0.0000 0.5129 0.4591
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.788018 0.782365 4.126344 1277.003 -219.7041 139.4016 0.000000	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	0.114347 8.845061 5.710363 5.801005 5.746649 2.343595

Anexo C 23- Teste PP 1º diferenças DEF ADM PUB com constante

Anexo C 24- Teste PP 1º diferenças DEF ADM PUB com constante e tendencia

Null Hypothesis: LREND LIQ has a unit root

Exogenous: Constant

Bandwidth: 82 (Newey-West automatic) using Bartlett kernel

	•	••	
		Adj. t-Stat	Prob.*
Phillips-Perron test statistic Test critical values: 1% level 5% level 10% level		-7.033238 -3.511262 -2.896779 -2.585626	0.0000
*MacKinnon (1996) one-sided p-values.			
Residual variance (no HAC corrected varian			0.000186 1.25E-05

Phillips-Perron Test Equation Dependent Variable: D(LREND LIQ) Method: Least Squares Date: 09/07/19 Time: 17:56 Sample (adjusted): 1998Q2 2018Q4 Included observations: 83 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LREND LIQ(-1) C	-0.020398 0.140937	0.009358 0.061488	-2.179646 2.292114	0.0322 0.0245
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.055403 0.043741 0.013793 0.015409 238.7808 4.750857 0.032188	Mean depen S.D. depend Akaike info c Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	0.006956 0.014105 -5.705562 -5.647277 -5.682146 2.216856

Null Hypothesis: LREND LIQ has a unit root Exogenous: Constant, Linear Trend Bandwidth: 27 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test statistic Test critical values: 1% level		-1.686035 -4.072415	0.7488
rest chilcal values.	5% level 10% level	-3.464865 -3.158974	
*MacKinnon (1996) one-sided p-values.			
Residual variance (no HAC corrected variance	,		0.000182 7.51E-05

Phillips-Perron Test Equation Dependent Variable: D(LREND_LIQ) Method: Least Squares
Date: 09/07/19 Time: 17:57
Sample (adjusted): 1998Q2 2018Q4
Included observations: 83 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LREND LIQ(-1) C @TREND("1998Q1")	-0.063232 0.409646 0.000301	0.033535 0.211160 0.000226	-1.885541 1.939985 1.329608	0.0630 0.0559 0.1874
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.075826 0.052721 0.013728 0.015076 239.6879 3.281876 0.042673	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	0.006956 0.014105 -5.703323 -5.615895 -5.668199 2.170642

Anexo C 25- Teste PP RENDIMENTO LIQ com constante

Anexo C 26 - Teste PP RENDIMENTO LIQ com constante e tendência

Null Hypothesis: D(LREND_LIQ) has a unit root

Exogenous: Constant
Bandwidth: 11 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test statistic		-9.584572	0.0000
Test critical values:	1% level 5% level	-3.512290 -2.897223	
	10% level	-2.585861	
*MacKinnon (1996) one-sided p-values.			
Residual variance (no HAC corrected variance			0.000198 0.000199

Phillips-Perron Test Equation Dependent Variable: D(LREND LIQ,2) Method: Least Squares Date: 09/07/19 Time: 17:57

Sample (adjusted): 1998Q3 2018Q4 Included observations: 82 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(LREND LIQ(-1)) C	-1.068923 0.007401	0.111514 0.001754	-9.585550 4.218254	0.0000 0.0001
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.534566 0.528749 0.014242 0.016227 233.2873 91.88277 0.000000	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	-5.24E-05 0.020746 -5.641154 -5.582454 -5.617587 2.000190

Null Hypothesis: D(LREND LIQ) has a unit root

Exogenous: Constant, Linear Trend

Bandwidth: 26 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test st	atistic	-11.86607	0.0000
Test critical values:	1% level	-4.073859	
	5% level	-3.465548	
	10% level	-3.159372	

*MacKinnon (1996) one-sided p-values.

Residual variance (no correction)	0.000190
HAC corrected variance (Bartlett kernel)	6.48E-05

Anexo C 28- Teste PP 1º diferenças RENDIMENTO LIQ com constante e tendência

Anexo C 27-Teste PP 1º diferenças RENDIMENTO LIQ

com constante

Phillips-Perron Test Equation Dependent Variable: D(LREND LIQ,2) Method: Least Squares
Date: 09/07/19 Time: 17:57
Sample (adjusted): 1998Q3 2018Q4
Included observations: 82 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(LREND LIQ(-1)) C @TREND("1998Q1")	-1.107534 0.012877 -0.000123	0.111884 0.003445 6.67E-05	-9.898948 3.737656 -1.837637	0.0000 0.0003 0.0699
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.553646 0.542346 0.014035 0.015562 235.0035 48.99482 0.000000	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wat	dent var criterion terion inn criter.	-5.24E-05 0.020746 -5.658621 -5.570571 -5.623270 2.017580

Null Hypothesis: CARGA FIS D11 has a unit root

Exogenous: Constant

Bandwidth: 5 (Newey-West automatic) using Bartlett kernel

		•	
		Adj. t-Stat	Prob.*
Phillips-Perron test sta	atistic	-5.298056	0.0000
Test critical values:	1% level	-3.515536	
	5% level	-2.898623	
	10% level	-2.586605	
*MacKinnon (1996) on	e-sided p-values.		
Residual variance (no HAC corrected variance			3.046557 3.926471

Phillips-Perron Test Equation Dependent Variable: D(CARGA FIS D11) Method: Least Squares
Date: 07/13/19 Time: 16:35
Sample (adjusted): 1999Q2 2018Q4
Included observations: 79 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
CARGA FIS D11(-1)	-0.488616 15.62741	0.099941 3.192220	-4.889034 4.895469	0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.236888 0.226978 1.767962 240.6780 -156.0996 23.90265 0.000005	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	0.050868 2.010837 4.002522 4.062508 4.026554 2.409517

Null Hypothesis: CARGA FIS D11 has a unit root Exogenous: Constant, Linear Trend Bandwidth: 5 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test statistic		-8.149050	0.0000
Test critical values:	1% level	-4.078420	
	5% level	-3.467703	
	10% level	-3.160627	

*MacKinnon (1996) one-sided p-values.

Residual variance (no correction)	2.237128
HAC corrected variance (Bartlett kernel)	3.494586

Phillips-Perron Test Equation Dependent Variable: D(CARGA FIS D11)

Method: Least Squares Date: 07/13/19 Time: 16:35 Sample (adjusted): 1999Q2 2018Q4 Included observations: 79 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
CARGA FIS D11(-1)	-0.874860 25.65708	0.113386 3.352543	-7.715794 7.653018	0.0000
@TREND("1998Q1")	0.051894	0.009896	5.243854	0.0000
R-squared Adjusted R-squared S.E. of regression	0.439637 0.424890 1.524938	Mean dependent var S.D. dependent var Akaike info criterion		0.050868 2.010837 3.719019
Sum squared resid Log likelihood F-statistic	176.7331 -143.9013 29.81314	Schwarz cri Hannan-Qui Durbin-Wats	nn criter.	3.808998 3.755068 2.066259
Prob(F-statistic)	0.000000			

Anexo C 30- Teste PP CARGA FIS com constante e tendência

Null Hypothesis: D(CARGA FIS D11) has a unit root

Exogenous: Constant
Bandwidth: 10 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test sta Test critical values:	ntistic 1% level 5% level 10% level	-28.51095 -3.516676 -2.899115 -2.586866	0.0001

*MacKinnon (1996) one-sided p-values.

Residual variance (no correction) HAC corrected variance (Bartlett kernel)	2.707585 0.642841

Phillips-Perron Test Equation Dependent Variable: D(CARGA FIS D11,2) Method: Least Squares Date: 07/13/19 Time: 16:36 Sample (adjusted): 1999Q3 2018Q4 Included observations: 78 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(CARGA FIS D11(-1)) C	-1.580346 0.097662	0.094776 0.188909	-16.67456 0.516976	0.0000 0.6067
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.785336 0.782511 1.666985 211.1916 -149.5234 278.0410 0.000000	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var criterion terion nn criter.	-0.032156 3.574481 3.885216 3.945645 3.909407 2.483852

Null Hypothesis: D(CARGA FIS D11) has a unit root

Exogenous: Constant, Linear Trend
Bandwidth: 11 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*	
Phillips-Perron test statistic		-30.42916	0.0001	
Test critical values: 1% level 5% level 10% level		-4.080021 -3.468459 -3.161067		
*MacKinnon (1996) one-sided p-values.				
Residual variance (no correction) HAC corrected variance (Bartlett kernel)			2.693593 0.546987	

Phillips-Perron Test Equation Dependent Variable: D(CARGA FIS D11,2) Method: Least Squares
Date: 07/13/19 Time: 16:36
Sample (adjusted): 1999Q3 2018Q4
Included observations: 78 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(CARGA FIS D11(-1)) C @TREND("1998Q1")	-1.583587 -0.136215 0.005262	0.095300 0.419967 0.008430	-16.61681 -0.324347 0.624178	0.0000 0.7466 0.5344
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.786445 0.780750 1.673719 210.1002 -149.3214 138.0987 0.000000	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var criterion terion nn criter.	-0.032156 3.574481 3.905676 3.996319 3.941962 2.492979

Anexo C 31 - Teste PP 1º diferenças CARGA FIS com constante

Anexo C 32- Teste PP 1º diferenças CARGA FIS com constante e tendência

Null Hypothesis: LCRD PAR is stationary Exogenous: Constant Bandwidth: 7 (Newey-West automatic) using Bartlett kernel

		LM-Stat.		
Kwiatkowski-Phillips-Schmidt-Si Asymptotic critical values*:	hin test statistic 1% level 5% level 10% level	0.263030 0.739000 0.463000 0.347000		
*Kwiatkowski-Phillips-Schmidt-Shin (1992, Table 1)				
Residual variance (no correction HAC corrected variance (Bartlet		0.113987 0.771977		

KPSS Test Equation Dependent Variable: LCRD PAR Method: Least Squares
Date: 06/15/19 Time: 13:45
Sample: 1998Q1 2018Q4
Included observations: 84

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	5.951145	0.037059	160.5878	0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.000000 0.000000 0.339647 9.574879 -27.98053 0.077105	Mean depend S.D. depend Akaike info c Schwarz crit Hannan-Quir	ent var riterion erion	5.951145 0.339647 0.690013 0.718951 0.701646

Null Hypothesis: LCRD PAR is stationary Exogenous: Constant, Linear Trend

Bandwidth: 6 (Newey-West automatic) using Bartlett kernel

		LM-Stat.		
Kwiatkowski-Phillips-Schmidt-Sl Asymptotic critical values*:	hin test statistic 1% level 5% level 10% level	0.131161 0.216000 0.146000 0.119000		
*Kwiatkowski-Phillips-Schmidt-Shin (1992, Table 1)				
Residual variance (no correction HAC corrected variance (Bartlet	,	0.104494 0.603522		

KPSS Test Equation Dependent Variable: LCRD PAR Method: Least Squares Date: 06/15/19 Time: 14:03 Sample: 1998Q1 2018Q4 Included observations: 84

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND("1998Q1")	6.117906 -0.004018	0.070762 0.001472	86.45720 -2.729392	0.0000 0.0078
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.083282 0.072103 0.327173 8.777460 -24.32839 7.449581 0.007763	Mean depen S.D. depend Akaike info c Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	5.951145 0.339647 0.626866 0.684743 0.650132 0.084886

Anexo D 2Teste KPSS CRD PAR com constante e tendência

Null Hypothesis: D(LCRD PAR) is stationary Exogenous: Constant

Bandwidth: 5 (Newey-West automatic) using Bartlett kernel

		LM-Stat.
Kwiatkowski-Phillips-Schmidt-Sl Asymptotic critical values*:	hin test statistic 1% level 5% level 10% level	0.182197 0.739000 0.463000 0.347000
*Kwiatkowski-Phillips-Schmidt-S	Shin (1992, Table 1)	
Residual variance (no correction HAC corrected variance (Bartlet	•	0.008828 0.013837

Anexo D 3 - Teste KPSS 1º diferenças CRD PAR com constante

KPSS Test Equation Dependent Variable: D(LCRD PAR) Method: Least Squares Date: 06/15/19 Time: 13:46 Sample (adjusted): 1998Q2 2018Q4 Included observations: 83 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.008201	0.010376	0.790438	0.4316
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.000000 0.000000 0.094527 0.732692 78.51774 2.236871	Mean depen S.D. depend Akaike info c Schwarz crit Hannan-Quii	ent var riterion terion	0.008201 0.094527 -1.867897 -1.838755 -1.856189

Null Hypothesis: D(LNCRD PAR) is stationary Exogenous: Constant, Linear Trend

Bandwidth: 5 (Newey-West automatic) using Bartlett kernel

		LM-Stat.
Kwiatkowski-Phillips-Schmidt-Sl Asymptotic critical values*:	nin test statistic 1% level 5% level 10% level	0.169372 0.216000 0.146000 0.119000
*Kwiatkowski-Phillips-Schmidt-S	Shin (1992, Table 1)	
Residual variance (no correction HAC corrected variance (Bartleti	*	0.008802 0.013616

Anexo D 4- Teste KPSS 1º diferenças CRD PAR com constante e tendência

KPSS Test Equation Dependent Variable: D(LNCRD PAR) Method: Least Squares Date: 07/13/19 Time: 17:00 Sample (adjusted): 1998Q2 2018Q4 Included observations: 83 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND("1998Q1")	-0.000709 0.000212	0.021038 0.000435	-0.033701 0.487593	0.9732 0.6272
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.002927 -0.009383 0.094969 0.730548 78.63937 0.237746 0.627156	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	0.008201 0.094527 -1.846732 -1.788446 -1.823316 2.243514

Null Hypothesis: LCRD EMPR is stationary

Exogenous: Constant

Bandwidth: 6 (Newey-West automatic) using Bartlett kernel

Anexo D 5- Teste KPSS CRD EMPR com constante

		LM-Stat.
Kwiatkowski-Phillips-Schmidt-Sh	nin test statistic	0.518764
Asymptotic critical values*:	1% level	0.739000
	5% level	0.463000
	10% level	0.347000
*Kwiatkowski-Phillips-Schmidt-S	Shin (1992, Table 1)	
Residual variance (no correction	n)	0.152917
HAC corrected variance (Bartlett	kernel)	0.916038

KPSS Test Equation Dependent Variable: LCRD EMPR Method: Least Squares Date: 06/15/19 Time: 13:44 Sample: 1998Q1 2018Q4

Included observations: 84

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	3.842503	0.042923	89.52116	0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.000000 0.000000 0.393394 12.84501 -40.32065 0.137046	Mean depen S.D. depend Akaike info c Schwarz crit Hannan-Qui	ent var riterion terion	3.842503 0.393394 0.983825 1.012763 0.995458

Null Hypothesis: LCRD EMPR is stationary

Exogenous: Constant, Linear Trend

Bandwidth: 6 (Newey-West automatic) using Bartlett kernel

		LM-Stat.
Kwiatkowski-Phillips-Schmidt-Sl Asymptotic critical values*:	hin test statistic 1% level 5% level 10% level	0.141820 0.216000 0.146000 0.119000
*Kwiatkowski-Phillips-Schmidt-S	Shin (1992, Table 1)	
Residual variance (no correction HAC corrected variance (Bartlet	,	0.119009 0.622951

KPSS Test Equation Dependent Variable: LCRD EMPR Method: Least Squares Date: 06/15/19 Time: 14:03 Sample: 1998Q1 2018Q4 Included observations: 84

Variable Coefficient t-Statistic Prob. Std. Error 0.0000 4.157668 0.075517 55.05578 @TREND("1998Q1") -0.007594 0.001571 -4.833543 0.0000 R-squared 0.221739 Mean dependent var 3.842503 0.212248 Adjusted R-squared S.D. dependent var 0.393394 S.E. of regression 0.349159 Akaike info criterion 0.756941 9.996765 0.814817 Sum squared resid Schwarz criterion Log likelihood -29.79152 Hannan-Quinn criter. 0.780207 F-statistic 23.36314 Durbin-Watson stat 0.177727 Prob(F-statistic) 0.000006

Anexo D 6- Teste KPSS CRD EMPR com constante e tendência

Null Hypothesis: D(LCRD EMPR) is stationary Exogenous: Constant

Bandwidth: 5 (Newey-West automatic) using Bartlett kernel

Anexo D 7- Teste KPSS 1º diferenças CRD EMP com constante

		LM-Stat.
Kwiatkowski-Phillips-Schmidt-Sl	hin test statistic	0.188744
Asymptotic critical values*:	1% level	0.739000
	5% level	0.463000
	10% level	0.347000
*Kwiatkowski-Phillips-Schmidt-S	Shin (1992, Table 1)	
Residual variance (no correction	1)	0.021125
HAC corrected variance (Bartlet	t kernel)	0.018373

KPSS Test Equation Dependent Variable: D(LCRD EMPR) Method: Least Squares

Date: 06/15/19 Time: 13:45 Sample (adjusted): 1998Q2 2018Q4 Included observations: 83 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.009164	0.016051	0.570947	0.5696
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.000000 0.000000 0.146228 1.753384 42.30575 2.198956	Mean depen S.D. depend Akaike info c Schwarz crit Hannan-Quir	ent var riterion terion	0.009164 0.146228 -0.995319 -0.966177 -0.983611

Null Hypothesis: D(LNCRD EMPR) is stationary

Exogenous: Constant, Linear Trend
Bandwidth: 5 (Newey-West automatic) using Bartlett kernel

		LM-Stat.
Kwiatkowski-Phillips-Schmidt-S Asymptotic critical values*:	hin test statistic 1% level 5% level 10% level	0.188744 0.216000 0.146000 0.119000

^{*}Kwiatkowski-Phillips-Schmidt-Shin (1992, Table 1)

Residual variance (no correction)	0.021125
HAC corrected variance (Bartlett kernel)	0.018378

Anexo D 8- Teste KPSS 1º diferenças CRD EMP com constante e tendência

KPSS Test Equation Dependent Variable: D(LNCRD EMPR) Method: Least Squares Date: 07/13/19 Time: 17:03 Sample (adjusted): 1998Q2 2018Q4 Included observations: 83 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND("1998Q1")	0.007940 2.91E-05	0.032593 0.000674	0.243619 0.043231	0.8081 0.9656
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000023 -0.012322 0.147127 1.753344 42.30671 0.001869 0.965623	Mean depen S.D. depend Akaike info c Schwarz crit Hannan-Qui Durbin-Wats	ent var riterion terion nn criter.	0.009164 0.146228 -0.971246 -0.912961 -0.947830 2.199002

Null Hypothesis: TAX VAR PIB is stationary Exogenous: Constant Bandwidth: 6 (Newey-West automatic) using Bartlett kernel

		LM-Stat.
Kwiatkowski-Phillips-Schmidt-Sl Asymptotic critical values*:	hin test statistic 1% level	0.331291 0.739000
	5% level 10% level	0.463000 0.347000
*Kwiatkowski-Phillips-Schmidt-S	Shin (1992, Table 1)	
Residual variance (no correction HAC corrected variance (Bartleti	•	5.419433 25.69990

KPSS Test Equation
Dependent Variable: TAX VAR PIB Method: Least Squares Date: 06/15/19 Time: 13:50 Sample: 1998Q1 2018Q4 Included observations: 84

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	1.076190	0.255528	4.211640	0.0001
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.000000 0.000000 2.341950 455.2324 -190.1705 0.185641	Mean depen S.D. depend Akaike info c Schwarz crit Hannan-Quii	ent var riterion erion	1.076190 2.341950 4.551678 4.580616 4.563311

Null Hypothesis: TAX VAR PIB is stationary Exogenous: Constant, Linear Trend Bandwidth: 6 (Newey-West automatic) using Bartlett kernel

		LM-Stat.
Kwiatkowski-Phillips-Schmidt-Sl Asymptotic critical values*:	hin test statistic 1% level 5% level 10% level	0.182570 0.216000 0.146000 0.119000
*Kwiatkowski-Phillips-Schmidt-S	Shin (1992, Table 1)	
Residual variance (no correction HAC corrected variance (Bartlet		4.937185 22.67589

KPSS Test Equation Dependent Variable: TAX VAR PIB Method: Least Squares Date: 06/15/19 Time: 14:07 Sample: 1998Q1 2018Q4

Included observations: 84

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND("1998Q1")	2.264762 -0.028640	0.486403 0.010120	4.656140 -2.830103	0.0000 0.0058
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.088985 0.077875 2.248912 414.7236 -186.2562 8.009485 0.005850	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	1.076190 2.341950 4.482292 4.540168 4.505557 0.203566

Anexo D 10- Teste KPSS TAX VAR PIB com constante e tendência

Null Hypothesis: D(TAX VAR PIB) is stationary Exogenous: Constant

Bandwidth: 3 (Newey-West automatic) using Bartlett kernel

Anexo D 11- Teste KPSS 1º diferenças TAX VAR PIB com constante

		LM-Stat.
Kwiatkowski-Phillips-Schmidt-Sl Asymptotic critical values*:	1% level 5% level	0.069112 0.739000 0.463000
*Kwiatkowski-Phillips-Schmidt-S	10% level Shin (1992, Table 1)	0.347000
Residual variance (no correction	n)	1.017135
HAC corrected variance (Bartlet	t kernel)	1.559979

KPSS Test Equation Dependent Variable: D(TAX VAR PIB)

Method: Least Squares Date: 06/15/19 Time: 13:50 Sample (adjusted): 1998Q2 2018Q4 Included observations: 83 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-0.032530	0.111374	-0.292081	0.7710
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.000000 0.000000 1.014662 84.42217 -118.4770 1.558122	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui	lent var criterion terion	-0.032530 1.014662 2.878963 2.908106 2.890671

Null Hypothesis: D(TAX VAR PIB) is stationary

Exogenous: Constant, Linear Trend

Bandwidth: 3 (Newey-West automatic) using Bartlett kernel

		LM-Stat.
Kwiatkowski-Phillips-Schmidt-Sl Asymptotic critical values*:	hin test statistic 1% level 5% level 10% level	0.026360 0.216000 0.146000 0.119000
*Kwiatkowski-Phillips-Schmidt-S	Shin (1992, Table 1)	
Residual variance (no correction HAC corrected variance (Bartlet		1.010183 1.525104

KPSS Test Equation Dependent Variable: D(TAX VAR PIB) Method: Least Squares Date: 06/22/19 Time: 09:44 Sample (adjusted): 1998Q2 2018Q4 Included observations: 83 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND("1998Q1")	-0.178695 0.003480	0.225384 0.004661	-0.792847 0.746609	0.4302 0.4575
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.006835 -0.005427 1.017411 83.84516 -118.1923 0.557425 0.457461	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	-0.032530 1.014662 2.896201 2.954486 2.919617 1.568939

= Anexo D 12- Teste KPSS 1º diferenças TAX VAR PIB = com constante e tendência

Null Hypothesis: EURIBOR 3M is stationary Exogenous: Constant Bandwidth: 6 (Newey-West automatic) using Bartlett kernel

		LM-Stat.
Kwiatkowski-Phillips-Schmidt-Sl Asymptotic critical values*:	hin test statistic 1% level 5% level 10% level	0.943772 0.739000 0.463000 0.347000
*Kwiatkowski-Phillips-Schmidt-S	Shin (1992, Table 1)	
Residual variance (no correction HAC corrected variance (Bartleti		2.969835 18.12886

KPSS Test Equation
Dependent Variable: EURIBOR 3M Method: Least Squares Date: 06/15/19 Time: 13:43 Sample (adjusted): 1999Q1 2018Q4 Included observations: 80 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	1.836651	0.193889	9.472706	0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.000000 0.000000 1.734194 237.5868 -157.0553 0.045384	Mean depend S.D. depend Akaike info c Schwarz crit Hannan-Quir	ent var riterion erion	1.836651 1.734194 3.951384 3.981159 3.963321

Null Hypothesis: EURIBOR 3M is stationary

Exogenous: Constant, Linear Trend

Bandwidth: 6 (Newey-West automatic) using Bartlett kernel

		LM-Stat.			
Kwiatkowski-Phillips-Schmidt-S Asymptotic critical values*:	hin test statistic 1% level 5% level 10% level	0.086752 0.216000 0.146000 0.119000			
*Kwiatkowski-Phillips-Schmidt-Shin (1992, Table 1)					
Residual variance (no correction HAC corrected variance (Bartlet	•	0.944962 4.439330			

KPSS Test Equation Dependent Variable: EURIBOR 3M Method: Least Squares
Date: 06/15/19 Time: 14:02
Sample (adjusted): 1999Q1 2018Q4
Included observations: 80 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND("1998Q1")	4.517194 -0.061622	0.234744 0.004766	19.24304 -12.92823	0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.681813 0.677734 0.984475 75.59697 -111.2507 167.1391 0.000000	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	1.836651 1.734194 2.831267 2.890817 2.855142 0.141127

Anexo D 14- Teste KPSS EURIBOR 3M com constante e tendência

Null Hypothesis: D(EURIBOR 3M) is stationary

Exogenous: Constant

Bandwidth: 4 (Newey-West automatic) using Bartlett kernel

		LM-Stat.
Kwiatkowski-Phillips-Schmidt-Sl	hin test statistic	0.057447
Asymptotic critical values*:	1% level	0.739000
	5% level	0.463000
	10% level	0.347000
*Kwiatkowski-Phillips-Schmidt-S	Shin (1992, Table 1)	
Residual variance (no correction	۱)	0.134682
HAC corrected variance (Bartlet	t kernel)	0.303432

KPSS Test Equation

Dependent Variable: D(EURIBOR 3M)

Method: Least Squares Date: 06/15/19 Time: 13:43 Sample (adjusted): 1999Q2 2018Q4 Included observations: 79 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-0.042514	0.041554	-1.023112	0.3094
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.000000 0.000000 0.369336 10.63990 -32.90508 0.842115	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui	lent var riterion terion	-0.042514 0.369336 0.858356 0.888349 0.870373

Null Hypothesis: D(EURIBOR 3M) is stationary

Exogenous: Constant, Linear Trend
Bandwidth: 4 (Newey-West automatic) using Bartlett kernel

		LM-Stat.
Kwiatkowski-Phillips-Schmidt- Asymptotic critical values*:	Shin test statistic 1% level 5% level	0.046403 0.216000 0.146000
	10% level	0.119000

*Kwiatkowski-Phillips-Schmidt-Shin (1992, Table 1)

Residual variance (no correction)	0.134248
HAC corrected variance (Bartlett kernel)	0.300883

Anexo D 16- Teste KPSS 1º diferença EURIBOR 3M com constante e tendência

Anexo D 15- Teste KPSS 1º diferenças EURIBOR 3M

com constante

KPSS Test Equation Dependent Variable: D(EURIBOR 3M) Method: Least Squares Sample (adjusted): 1999Q2 2018Q4 Included observations: 79 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND("1998Q1")	-0.002305 -0.000914	0.090745 0.001831	-0.025406 -0.499066	0.9798 0.6192
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.003224 -0.009721 0.371127 10.60559 -32.77752 0.249067 0.619156	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	-0.042514 0.369336 0.880443 0.940430 0.904476 0.844919

Null Hypothesis: TAX DESE is stationary Exogenous: Constant

Bandwidth: 7 (Newey-West automatic) using Bartlett kernel

		LM-Stat.
Kwiatkowski-Phillips-Schmidt-Sl Asymptotic critical values*:	nin test statistic 1% level 5% level 10% level	0.742729 0.739000 0.463000 0.347000
*Kwiatkowski-Phillips-Schmidt-S	Shin (1992, Table 1)	
Residual variance (no correction HAC corrected variance (Bartlett	*	13.59914 100.6918

KPSS Test Equation Dependent Variable: TAX DESE Method: Least Squares Date: 06/15/19 Time: 13:48 Sample: 1998Q1 2018Q4 Included observations: 84

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	8.745238	0.404778	21.60503	0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.000000 0.000000 3.709850 1142.328 -228.8111 0.026761	Mean depen S.D. depend Akaike info c Schwarz crit Hannan-Quii	ent var riterion erion	8.745238 3.709850 5.471693 5.500632 5.483326

Null Hypothesis: TAX DESE is stationary Exogenous: Constant, Linear Trend

Bandwidth: 6 (Newey-West automatic) using Bartlett kernel

		LM-Stat.
Kwiatkowski-Phillips-Schmidt-Sl Asymptotic critical values*:	nin test statistic 1% level 5% level 10% level	0.167065 0.216000 0.146000 0.119000
*Kwiatkowski-Phillips-Schmidt-S	Shin (1992, Table 1)	
Residual variance (no correction HAC corrected variance (Bartlett	•	6.505112 37.32641

KPSS Test Equation Dependent Variable: TAX DESE Method: Least Squares Date: 06/15/19 Time: 14:06 Sample: 1998Q1 2018Q4 Included observations: 84

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND("1998Q1")	4.186583 0.109847	0.558321 0.011616	7.498518 9.456405	0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sun squared resid Log likelihood F-statistic Prob(F-statistic)	0.521653 0.515819 2.581429 546.4294 -197.8395 89.42360 0.000000	Mean depen S.D. depend Akaike info c Schwarz crit Hannan-Qui Durbin-Wats	ent var riterion terion nn criter.	8.745238 3.709850 4.758085 4.815961 4.781350 0.057416

Anexo D 18- Teste KPSS TAX DESE com constante e tendência

Null Hypothesis: D(TAX DESE) is stationary Exogenous: Constant

Bandwidth: 4 (Newey-West automatic) using Bartlett kernel

Anexo D 19 - Teste KPSS 1º diferença TAX DESE com constante

		LM-Stat.
Kwiatkowski-Phillips-Schmidt-S Asymptotic critical values*:	hin test statistic 1% level 5% level 10% level	0.336680 0.739000 0.463000 0.347000
*Kwiatkowski-Phillips-Schmidt-S	Shin (1992, Table 1)	
Residual variance (no correction HAC corrected variance (Bartlet	•	0.368196 0.669785

KPSS Test Equation
Dependent Variable: D(TAX DESE) Method: Least Squares Date: 06/15/19 Time: 13:49 Sample (adjusted): 1998Q2 2018Q4 Included observations: 83 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.010843	0.067009	0.161820	0.8718
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.000000 0.000000 0.610480 30.56024 -76.30756 1.458431	Mean depend S.D. depend Akaike info c Schwarz crit Hannan-Quii	ent var riterion erion	0.010843 0.610480 1.862833 1.891975 1.874541

Null Hypothesis: D(TAX DESE) is stationary

Exogenous: Constant, Linear Trend

Bandwidth: 4 (Newey-West automatic) using Bartlett kernel

		LM-Stat.
Kwiatkowski-Phillips-Schmidt-S Asymptotic critical values*:	hin test statistic 1% level 5% level 10% level	0.217481 0.216000 0.146000 0.119000
*Kwiatkowski-Phillips-Schmidt-S	Shin (1992, Table 1)	
Residual variance (no correction HAC corrected variance (Bartlet	,	0.357086 0.603574

KPSS Test Equation Dependent Variable: D(TAX DESE) Method: Least Squares Date: 06/22/19 Time: 09:44 Sample (adjusted): 1998Q2 2018Q4 Included observations: 83 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND("1998Q1")	0.195622 -0.004399	0.134002 0.002771	1.459845 -1.587499	0.1482 0.1163
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.030174 0.018201 0.604899 29.63811 -75.03605 2.520154 0.116296	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	dent var criterion terion nn criter.	0.010843 0.610480 1.856290 1.914576 1.879706 1.504247

Anexo D 20- Teste KPSS 1º diferença TAX DESE com constante e tendência

Bandwidth: 5 (Newey-West automatic) using Bartlett kernel

Anexo D 21- Teste KPSS DEF ADM PUB com constante

		LM-Stat.				
Kwiatkowski-Phillips-Schmidt-Sl Asymptotic critical values*:	nin test statistic 1% level 5% level 10% level	0.216051 0.739000 0.463000 0.347000				
*Kwiatkowski-Phillips-Schmidt-Shin (1992, Table 1)						
Residual variance (no correction) HAC corrected variance (Bartlett kernel)		14.75243 31.29829				

KPSS Test Equation Dependent Variable: DEF ADM PUB Method: Least Squares Date: 06/15/19 Time: 13:41 Sample (adjusted): 1999Q1 2018Q4 Included observations: 80 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	4.888265	0.432134	11.31192	0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.000000 0.000000 3.865123 1180.195 -221.1714 1.646615	Mean depen S.D. depend Akaike info c Schwarz crit Hannan-Quii	ent var riterion erion	4.888265 3.865123 5.554285 5.584061 5.566223

Null Hypothesis: DEF ADM PUB is stationary

Exogenous: Constant, Linear Trend

Bandwidth: 5 (Newey-West automatic) using Bartlett kernel

		LM-Stat.
Kwiatkowski-Phillips-Schmidt-Sh	nin test statistic	0.217098
Asymptotic critical values*:	1% level	0.216000
	5% level	0.146000
	10% level	0.119000
*Kwiatkowski-Phillips-Schmidt-S	Shin (1992, Table 1)	
Residual variance (no correction	1)	14.75124
HAC corrected variance (Bartlett	t kernel)	31.29813

KPSS Test Equation Dependent Variable: DEF ADM PUB Method: Least Squares Date: 06/15/19 Time: 14:01 Sample (adjusted): 1999Q1 2018Q4 Included observations: 80 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND("1998Q1")	4.953259 -0.001494	0.927475 0.018832	5.340585 -0.079338	0.0000 0.9370
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000081 -0.012739 3.889663 1180.100 -221.1682 0.006295 0.936967	Mean depen S.D. depend Akaike info c Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	4.888265 3.865123 5.579205 5.638755 5.603080 1.646755

Anexo D 22- Teste KPSS DEF ADM PUB com constante e tendência

Null Hypothesis: D(DEF ADM PUB) is stationary

Exogenous: Constant

Bandwidth: 17 (Newey-West automatic) using Bartlett kernel

		LM-Stat.		
Kwiatkowski-Phillips-Schmidt-Sl Asymptotic critical values*:	nin test statistic 1% level 5% level 10% level	0.171426 0.739000 0.463000 0.347000		
*Kwiatkowski-Phillips-Schmidt-Shin (1992, Table 1)				
Residual variance (no correction HAC corrected variance (Bartleti	•	24.59782 1.881493		

KPSS Test Equation

Dependent Variable: D(DEF ADM PUB)

Method: Least Squares Date: 06/15/19 Time: 13:42 Sample (adjusted): 1999Q2 2018Q4 Included observations: 79 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.035304	0.561566	0.062868	0.9500
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.000000 0.000000 4.991310 1943.228 -238.6011 3.100575	Mean depen S.D. depend Akaike info c Schwarz crit Hannan-Quii	ent var riterion erion	0.035304 4.991310 6.065851 6.095844 6.077868

Null Hypothesis: D(DEF ADM PUB) is stationary

Exogenous: Constant, Linear Trend

Bandwidth: 17 (Newey-West automatic) using Bartlett kernel

		LM-Stat.
Kwiatkowski-Phillips-Schmidt-Sl Asymptotic critical values*:	1% level	0.103347 0.216000
	5% level 10% level	0.146000 0.119000
*Kwiatkowski-Phillips-Schmidt-S	Shin (1992, Table 1)	
Residual variance (no correction HAC corrected variance (Bartlett	•	24.57871 1.556283

KPSS Test Equation
Dependent Variable: D(DEF ADM PUB)
Method: Least Squares
Date: 06/22/19 Time: 10:50
Sample (adjusted): 1999Q2 2018Q4
Included observations: 79 after adjustments

Variable Coefficient Std. Error t-Statistic Prob. 0.302017 1.227854 0.245971 0.8064 @TREND("1998Q1") -0.006062 0.024776 0.8074 -0.244657 R-squared 0.035304 0.000777 Mean dependent var Adjusted R-squared -0.012200 4.991310 S.D. dependent var S.E. of regression 5.021665 Akaike info criterion 6.090391 Sum squared resid 1941.718 Schwarz criterion 6.150377 Log likelihood -238.5704 Hannan-Quinn criter. 6.114423 F-statistic 0.059857 Durbin-Watson stat 3.103042 Prob(F-statistic) 0.807373

Anexo D 23 - Teste KPSS 1º diferença DEF ADM PUB com constante

Anexo D 24 - Teste KPSS 1º diferença DEF ADM PUB com constante e tendência

Null Hypothesis: LREND LIQ is stationary Exogenous: Constant Bandwidth: 7 (Newey-West automatic) using Bartlett kernel

		LM-Stat.			
Kwiatkowski-Phillips-Schmidt-Sl Asymptotic critical values*:	hin test statistic 1% level 5% level 10% level	1.097343 0.739000 0.463000 0.347000			
*Kwiatkowski-Phillips-Schmidt-Shin (1992, Table 1)					
Residual variance (no correction HAC corrected variance (Bartlet	,	0.026479 0.187898			

Anexo D 25 - Teste KPSS RENDIMENTO LIQ com constante

KPSS Test Equation Dependent Variable: LREND LIQ Method: Least Squares Date: 09/07/19 Time: 17:59 Sample: 1998Q1 2018Q4 Included observations: 84

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	6.571136	0.017861	367.8964	0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.000000 0.000000 0.163702 2.224269 33.32748 0.009140	Mean depend S.D. depend Akaike info c Schwarz crit Hannan-Quii	ent var riterion erion	6.571136 0.163702 -0.769702 -0.740764 -0.758069

Null Hypothesis: LREND LIQ is stationary Exogenous: Constant, Linear Trend

Bandwidth: 6 (Newey-West automatic) using Bartlett kernel

		LM-Stat.			
Kwiatkowski-Phillips-Schmidt-Sl Asymptotic critical values*:	hin test statistic 1% level 5% level 10% level	0.304190 0.216000 0.146000 0.119000			
*Kwiatkowski-Phillips-Schmidt-Shin (1992, Table 1)					
Residual variance (no correction HAC corrected variance (Bartlet	,	0.002016 0.012011			

KPSS Test Equation Dependent Variable: LREND LIQ Method: Least Squares Date: 09/07/19 Time: 17:59 Sample: 1998Q1 2018Q4

Included observations: 84

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND("1998Q1")	6.303435 0.006451	0.009828 0.000204	641.3615 31.54641	0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.923875 0.922947 0.045441 0.169322 141.4934 995.1762 0.000000	Mean depen S.D. depend Akaike info c Schwarz crit Hannan-Quii Durbin-Wats	ent var riterion terion nn criter.	6.571136 0.163702 -3.321271 -3.263395 -3.298005 0.096468

Anexo D 26 - Teste KPSS RENDIMENTO LIQ com constante e tendência

Null Hypothesis: D(LREND LIQ) is stationary

Exogenous: Constant

Bandwidth: 14 (Newey-West automatic) using Bartlett kernel

		LM-Stat.			
Kwiatkowski-Phillips-Schmidt-Sl Asymptotic critical values*:	hin test statistic 1% level 5% level 10% level	0.387229 0.739000 0.463000 0.347000			
*Kwiatkowski-Phillips-Schmidt-Shin (1992, Table 1)					
Residual variance (no correction HAC corrected variance (Bartlett		0.000197 0.000189			

Anexo D 27- Teste KPSS 1º diferença RENDIMENTO LIQ com constante

KPSS Test Equation
Dependent Variable: D(LREND_LIQ)
Method: Least Squares
Date: 09/07/19 Time: 17:59
Sample (adjusted): 1998Q2 2018Q4
Included observations: 83 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.006956	0.001548	4.493043	0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.000000 0.000000 0.014105 0.016313 236.4154 2.137195	Mean depen S.D. depend Akaike info c Schwarz crit Hannan-Quii	ent var riterion terion	0.006956 0.014105 -5.672661 -5.643519 -5.660954

Null Hypothesis: D(LREND LIQ) is stationary

Exogenous: Constant, Linear Trend
Bandwidth: 59 (Newey-West automatic) using Bartlett kernel

		LM-Stat.
Kwiatkowski-Phillips-Schmidt-S Asymptotic critical values*:	hin test statistic 1% level 5% level 10% level	0.340285 0.216000 0.146000 0.119000
*Kwiatkowski-Phillips-Schmidt-S	Shin (1992, Table 1)	
Residual variance (no correction HAC corrected variance (Bartlet	•	0.000190 2.34E-05

= Anexo D 28- Teste KPSS 1º diferença RENDIMENTO LIQ com constante e tendência

KPSS Test Equation Dependent Variable: D(LREND_LIQ) Method: Least Squares Date: 09/07/19 Time: 18:00 Sample (adjusted): 1998Q2 2018Q4 Included observations: 83 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND("1998Q1")	0.011538 -0.000109	0.003089 6.39E-05	3.735512 -1.707771	0.0003 0.0915
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.034755 0.022838 0.013943 0.015746 237.8834 2.916483 0.091509	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	0.006956 0.014105 -5.683938 -5.625653 -5.660522 2.214149

Null Hypothesis: CARGA FIS D11 is stationary Exogenous: Constant
Bandwidth: 6 (Newey-West automatic) using Bartlett kernel

		LM-Stat.			
Kwiatkowski-Phillips-Schmidt-Si Asymptotic critical values*:	hin test statistic 1% level 5% level 10% level	0.933259 0.739000 0.463000 0.347000			
*Kwiatkowski-Phillips-Schmidt-Shin (1992, Table 1)					
Residual variance (no correction HAC corrected variance (Bartlet		4.040208 16.40117			

KPSS Test Equation Dependent Variable: CARGA FIS D11 Method: Least Squares Date: 07/13/19 Time: 17:11 Sample (adjusted): 1999Q1 2018Q4 Included observations: 80 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	31.91923	0.226146	141.1445	0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.000000 0.000000 2.022709 323.2167 -169.3669 0.976418	Mean depend S.D. depend Akaike info c Schwarz crit Hannan-Quii	ent var riterion erion	31.91923 2.022709 4.259173 4.288949 4.271111

Null Hypothesis: CARGA FIS D11 is stationary

Exogenous: Constant, Linear Trend

Bandwidth: 5 (Newey-West automatic) using Bartlett kernel

		LM-Stat.
Kwiatkowski-Phillips-Schmidt-S	hin test statistic	0.228880
Asymptotic critical values*:	1% level	0.216000
	5% level	0.146000
	10% level	0.119000
*Kwiatkowski-Phillips-Schmidt-S	Shin (1992, Table 1)	
Residual variance (no correction HAC corrected variance (Bartlet	•	2.271914 4.555357

KPSS Test Equation Dependent Variable: CARGA FIS D11 Method: Least Squares Date: 07/13/19 Time: 17:11 Sample (adjusted): 1999Q1 2018Q4 Included observations: 80 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND("1998Q1")	29.41427 0.057585	0.363985 0.007391	80.81170 7.791636	0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.437674 0.430465 1.526489 181.7531 -146.3400 60.70960 0.000000	Mean depen S.D. depend Akaike info c Schwarz crit Hannan-Qui Durbin-Wats	ent var riterion erion nn criter.	31.91923 2.022709 3.708500 3.768050 3.732375 1.735287

Anexo D 30- Teste KPSS CARGA FIS com constante e tendência

Null Hypothesis: D(CARGA FIS D11) is stationary

Exogenous: Constant
Bandwidth: 24 (Newey-West automatic) using Bartlett kernel

Anexo D 31 - Teste KPSS 1º diferença CARGA FIS com constante

		LM-Stat.
Kwiatkowski-Phillips-Schmidt-Sh	nin test statistic	0.223276
Asymptotic critical values*:	1% level	0.739000
	5% level	0.463000
	10% level	0.347000
*Kwiatkowski-Phillips-Schmidt-S	Shin (1992, Table 1)	
Residual variance (no correction	,	3.992281
HAC corrected variance (Bartlett	kernel)	0.211333

KPSS Test Equation Dependent Variable: D(CARGA FIS D11)

Method: Least Squares Date: 07/13/19 Time: 17:11 Sample (adjusted): 1999Q2 2018Q4 Included observations: 79 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.050868	0.226237	0.224844	0.8227
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.000000 0.000000 2.010837 315.3902 -166.7785 3.119637	Mean depen S.D. depend Akaike info c Schwarz crit Hannan-Quii	ent var riterion erion	0.050868 2.010837 4.247556 4.277549 4.259572

Null Hypothesis: D(CARGA FIS D11) is stationary

Exogenous: Constant, Linear Trend

Bandwidth: 25 (Newey-West automatic) using Bartlett kernel

		LM-Stat.
Kwiatkowski-Phillips-Schmidt-S	Shin test statistic	0.162381
Asymptotic critical values*:	1% level	0.216000
	5% level	0.146000
	10% level	0.119000
*Kwiatkowski-Phillips-Schmidt-	Shin (1992, Table 1)	
Residual variance (no correction HAC corrected variance (Bartlet		3.989550 0.149676

KPSS Test Equation Dependent Variable: D(CARGA FIS D11) Method: Least Squares Date: 07/13/19 Time: 17:11 Sample (adjusted): 1999Q2 2018Q4 Included observations: 79 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND("1998Q1")	-0.049977 0.002292	0.494685 0.009982	-0.101027 0.229607	0.9198 0.8190
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	0.000684 -0.012294 2.023159 315.1744 -166.7514	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui	lent var riterion terion nn criter.	0.050868 2.010837 4.272188 4.332174 4.296221
F-statistic Prob(F-statistic)	0.052719 0.819006	Durbin-Wats	son stat	3.121810

VAR Lag Order Selection Criteria

Anexo D 32- Teste KPSS 1º diferença CARGA FIS com constante e tendência

Endogenous variables: D1LCRD_PAR D1TAX_VAR_PIB D1EURIBOR_3M D1TAX_DESE

D1DEF_ADM_PUB D1LREND_LIQ D1CARGA_FIS_D11

Exogenous variables: C Date: 09/08/19 Time: 09:17 Sample: 1998Q1 2018Q4 Included observations: 73

Lag	Log	LR	FPE	AIC	SC	HQ
0	-264.7589	NA	4.04e-06	7.445450	7.665083*	7.532978
	-183.0821	145.4519	1.66e-06	6.550194	8.307259	7.250415*
2	-131.1282	82.55691	1.59e-06	6.469265	9.763762	7.782179
3	-67.41188	89.02825	1.16e-06	6.066079	10.89801	7.991686
4	30.99097	118.6226*	3.63e-07*	4.712576*	11.08194	7.250876
5	79.21788	48.88756	5.18e-07	4.733757	12.64055	7.884750
6	115.1928	29.56839	1.30e-06	5.090609	14.53483	8.854295

^{*} indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)

FPE: Final prediction error
AIC: Akaike information criterion
SC: Schwarz information criterion
HQ: Hannan-Quinn information criterion

Anexo E1- Teste Lag Length Criteria - VAR Modelo crédito automóvel particular.

VAR Residual Serial Correlation LM Te Null Hypothesis: no serial correlation at Date: 09/07/19 Time: 19:24 Sample: 1998Q1 2018Q4 Included observations: 75

 Lags
 LM-Stat
 Prob

 1
 59.96485
 0.1355

 2
 41.46121
 0.7692

 3
 45.51921
 0.6150

 4
 75.14965
 0.0095

Probs from chi-square with 49 df.

Anexo E2 - Teste LM autocorelação - VAR Modelo crédito automóvel particular

VAR Residual Normality Tests Orthogonalization: Cholesky (Lutkepohl) Null Hypothesis: residuals are multivariate normal Date: 09/07/19 Time: 19:26 Sample: 1998Q1 2018Q4 Included observations: 75

Anexo E3 - Teste Normalidade dos resíduos - VAR Modelo crédito automóvel particular

Component	Skewness	Chi-sq	df	Prob.
1	0.103101	0.132872	1	0.7155
2	0.030292	0.011470	1	0.9147
3	-1.207967	18.23981	1	0.0000
4	0.127724	0.203918	1	0.6516
5	0.472979	2.796364	1	0.0945
6	0.216799	0.587524	1	0.4434
7	0.191055	0.456277	1	0.4994
Joint		22.42823	7	0.0021
Component	Kurtosis	Chi-sq	df	Prob.
1	2.714269	0.255133	1	0.6135
2	2.580967	0.548714	1	0.4588
3	6.548643	39.35270	1	0.0000
4	2.246755	1.773055	1	0.1830
5	2.428711	1.019909	1	0.3125
6	4.070364	3.580246	1	0.0585
7	3.536932	0.900923	1	0.3425

Component	Jarque-Bera	df	Prob.
1	0.388005	2	0.8237
2	0.560184	2	0.7557
3	57.59251	2	0.0000
4	1.976973	2	0.3721
5	3.816272	2	0.1484
6	4.167770	2	0.1244
7	1.357200	2	0.5073
Joint	69.85892	14	0.0000

Anexo E4 - Gráfico Resíduos - VAR Modelo crédito automóvel particular

VAR Lag Order Selection Criteria

Endogenous variables: D1LCRD_PAR D1TAX_VAR_PIB D1EURIBOR_3M D1TAX_DESE

D1DEF_ADM_PUB D1LREND_LIQ D1CARGA_FIS_D11

Exogenous variables: C DUMMY2008Q4

Date: 09/08/19 Time: 09:47 Sample: 1998Q1 2018Q4 Included observations: 73

Lag	LogL	LR	FPE	AIC	SC	HQ
0	-246.0380	NA	2.93e-06	7.124328	7.563594*	7.299383
1	-154.4345	160.6197	9.20e-07	5.957111	7.933809	6.744859*
2	-104.9677	77.24953	9.47e-07	5.944322	9.458451	7.344763
3	-41.55747	86.86338	7.08e-07	5.549520	10.60108	7.562654
4	58.80461	118.2348*	2.13e-07*	4.142340*	10.73133	6.768167
5	107.3887	47.91852	3.09e-07	4.153735	12.28016	7.392256
6	144.9572	29.84895	7.73e-07	4.466927	14.13078	8.318141

^{*} indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)

FPE: Final prediction error
AIC: Akaike information criterion
SC: Schwarz information criterion
HQ: Hannan-Quinn information criterion

Anexo E5 - Teste Lag Length Criteria - VAR Modelo crédito automóvel particular com dummy

VAR Residual Serial Correlation LM Te Null Hypothesis: no serial correlation at Date: 09/08/19 Time: 09:57 Sample: 1998Q1 2018Q4 Included observations: 75

 Lags
 LM-Stat
 Prob

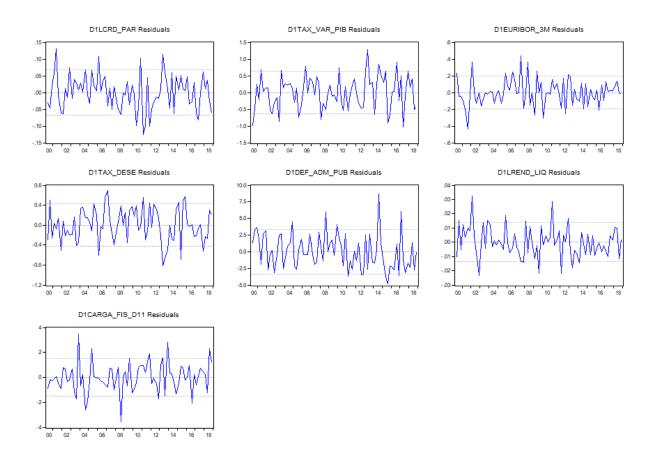
 1
 62.17589
 0.0979

 2
 36.44539
 0.9078

 3
 54.72924
 0.2662

 4
 67.38169
 0.0418

Probs from chi-square with 49 df.


Anexo E 6 - Teste LM autocorelação - VAR Modelo crédito automóvel particular com dummy

VAR Residual Normality Tests Orthogonalization: Cholesky (Lutkepohl) Null Hypothesis: residuals are multivariate normal Date: 09/08/19 Time: 09:59 Sample: 1998Q1 2018Q4 Included observations: 75

Anexo E 7 - Teste Normalidade dos resíduos - VAR Modelo crédito automóvel particular com dummy

Component	Skewness	Chi-sq	df	Prob.
1	0.073553	0.067626	1	0.7948
2	0.052365	0.034277	1	0.8531
3	0.142384	0.253416	1	0.6147
4	0.163236	0.333075	1	0.5639
5	0.507286	3.216742	1	0.0729
6	0.139449	0.243076	1	0.6220
7	0.148149	0.274351	1	0.6004
Joint		4.422564	7	0.7300
Component	Kurtosis	Chi-sq	df	Prob.
1	2.900150	0.031156	1	0.8599
2	2.673701	0.332721	1	0.5641
3	0.040407	4.407444		
9	3.616427	1.187444	1	0.2758
4	2.464653	1.187444 0.895615	1 1	0.2758 0.3440
_			1 1 1	
4	2.464653	0.895615	1 1 1	0.3440
4 5	2.464653 2.494162	0.895615 0.799599	1 1 1 1	0.3440 0.3712

Component	Jarque-Bera	df	Prob.
1	0.098782	2	0.9518
2	0.366998	2	0.8324
3	1.440860	2	0.4865
4	1.228691	2	0.5410
5	4.016341	2	0.1342
6	0.438580	2	0.8031
7	0.931899	2	0.6275
Joint	8.522151	14	0.8604

Anexo E 8 - Gráfico Resíduos - VAR Modelo crédito automóvel particular com dummy

Anexo E 9 - Estimação VAR Modelo crédito automóvel particular com dummy

				D1TAX DESE			
D1LCRD PAR(-1)	-0.301164	2.144948	0.786473	-0.330345	7.114718	0.026682	-0.903809
	(0.12983)	(1.21829)	(0.38385)	(0.83073)	(6.55534)	(0.02632)	(2.91096)
	[-2.31976]	[1.76062]	[2.04891]	[-0.39765]	[1.08533]	[1.01387]	[-0.31048]
D1LCRD PAR(-2)	0.108608	3.584282	0.318857	-1.980263	3.391498	-0.013082	1.853565
	(0.14530)	(1.36351)	(0.42960)	(0.92976)	(7.33672)	(0.02945)	(3.25795)
	[0.74748]	[2.62872]	[0.74221]	[-2.12987]	[0.46226]	[-0.44414]	[0.56894]
D1LCRD PAR(-3)	0.097963	2.985108	0.373728	-1.223048	3.019338	-0.015572	-2.945745
	(0.13622)	(1.27830)	(0.40276)	(0.87166)	(6.87825)	(0.02761)	(3.05436)
	[0.71915]	[2.33522]	[0.92792]	[-1.40313]	[0.43897]	[-0.56394]	[-0.96444]
D1LCRD PAR(-4)	0.195933	-2.864348	0.363719	-0.506959	6.555520	0.055308	-4.255285
	(0.13119)	(1.23106)	(0.38787)	(0.83944)	(6.62407)	(0.02659)	(2.94148)
	[1.49354]	[-2.32673]	[0.93773]	[-0.60392]	[0.98965]	[2.07982]	[-1.44665]
D1TAX VAR PIB(-1)	0.011558	0.030347	0.035981	-0.131781	-0.965567	0.002641	0.065089
	(0.01110)	(0.10415)	(0.03281)	(0.07102)	(0.56039)	(0.00225)	(0.24885)
	[1.04138]	[0.29139]	[1.09652]	[-1.85565]	[-1.72303]	[1.17387]	[0.26156]
D1TAX VAR PIB(-2)	0.024715	0.331363	-0.013467	-0.037089	0.438636	0.000673	-0.043558
	(0.01019)	(0.09563)	(0.03013)	(0.06521)	(0.51458)	(0.00207)	(0.22850)
	[2.42520]	[3.46497]	[-0.44695]	[-0.56876]	[0.85242]	[0.32599]	[-0.19062]
D1TAX VAR PIB(-3)	-0.006765	-0.049336	0.028555	-0.045924	0.878180	0.000401	0.026057
	(0.00925)	(0.08680)	(0.02735)	(0.05919)	(0.46705)	(0.00188)	(0.20740)
	[-0.73142]	[-0.56839]	[1.04412]	[-0.77591]	[1.88027]	[0.21384]	[0.12564]
D1TAX VAR PIB(-4)	0.011688	-0.507979	-0.014825	0.108606	0.056260	-0.002487	-0.004897
	(0.00980)	(0.09196)	(0.02898)	(0.06271)	(0.49484)	(0.00199)	(0.21974)
	[1.19262]	[-5.52363]	[-0.51162]	[1.73189]	[0.11369]	[-1.25167]	[-0.02228]
D1EURIBOR 3M(-1)	-0.020000	0.867537	0.768918	-0.070014	-2.706041	0.002496	0.312915
	(0.03719)	(0.34904)	(0.10997)	(0.23800)	(1.87810)	(0.00754)	(0.83399)
	[-0.53770]	[2.48551]	[6.99193]	[-0.29417]	[-1.44084]	[0.33098]	[0.37520]
D1EURIBOR 3M(-2)	-0.014587	-1.077764	-0.360903	-0.195129	-0.353998	-0.006248	2.067525
	(0.04513)	(0.42352)	(0.13344)	(0.28879)	(2.27885)	(0.00915)	(1.01195)
	[-0.32322]	[-2.54479]	[-2.70464]	[-0.67568]	[-0.15534]	[-0.68299]	[2.04312]
D1EURIBOR 3M(-3)	-0.070986	-0.104274	0.310895	0.378541	-3.049461	-0.003551	-1.297136
	(0.04496)	(0.42189)	(0.13293)	(0.28768)	(2.27012)	(0.00911)	(1.00807)
	[-1.57893]	[-0.24716]	[2.33884]	[1.31583]	[-1.34331]	[-0.38968]	[-1.28675]
D1EURIBOR 3M(-4)	0.050785	0.317293	-0.119813	-0.403004	2.148022	0.014121	0.199329
	(0.03658)	(0.34323)	(0.10814)	(0.23404)	(1.84685)	(0.00741)	(0.82011)
	[1.38847]	[0.92443]	[-1.10791]	[-1.72191]	[1.16307]	[1.90449]	[0.24305]
D1TAX DESE(-1)	-0.040465	0.134095	0.121347	-0.012908	1.893702	-1.31E-05	-0.740110
	(0.01810)	(0.16987)	(0.05352)	(0.11583)	(0.91406)	(0.00367)	(0.40590)
	[-2.23536]	[0.78938]	[2.26720]	[-0.11144]	[2.07176]	[-0.00358]	[-1.82340]
D1TAX DESE(-2)	-0.021738	-0.243729	0.016319	-0.190977	0.162581	0.001165	0.088579
	(0.02039)	(0.19139)	(0.06030)	(0.13050)	(1.02981)	(0.00413)	(0.45730)
	[-1.06585]	[-1.27349]	[0.27063]	[-1.46339]	[0.15788]	[0.28183]	[0.19370]
D1TAX DESE(-3)	0.023337	0.640738	0.118802	-0.076263	0.342683	-0.002021	-0.258445
	(0.01886)	(0.17703)	(0.05578)	(0.12071)	(0.95255)	(0.00382)	(0.42299)
	[1.23709]	[3.61942]	[2.12996]	[-0.63178]	[0.35976]	[-0.52846]	[-0.61100]
D1TAX DESE(-4)	-0.028295	-0.088888	-0.037645	0.567475	0.192044	0.002049	0.425720
	(0.02109)	(0.19788)	(0.06235)	(0.13493)	(1.06474)	(0.00427)	(0.47281)
	[-1.34187]	[-0.44921]	[-0.60381]	[4.20569]	[0.18037]	[0.47927]	[0.900411
DIDEF ADM PUB(-1)	-0.002021	0.057651	-0.001823	0.021252	-0.915875	0.001034	-0.009732
	(0.00339)	(0.03179)	(0.01002)	(0.02168)	(0.17105)	(0.00069)	(0.07595)
	[-0.59649]	[1.81358]	[-0.18203]	[0.98044]	[-5.35455]	[1.50649]	[-0.12813]
D1DEF ADM PUB(-2)	-0.006187	0.037674	0.011499	-0.002972	-0.868860	0.001278	0.070151
	(0.00402)	(0.03776)	(0.01190)	(0.02574)	(0.20315)	(0.00082)	(0.09021)
	[-1.53773]	[0.99784]	[0.96665]	[-0.11545]	[-4.27686]	[1.56673]	[0.77762]
DIDEF ADM PUB(-3)	-0.005209	0.061637	0.007208	-0.000995	-0.659393	0.000152	0.060131
	(0.00399)	(0.03743)	(0.01179)	(0.02552)	(0.20139)	(0.00081)	(0.08943)
	[-1.30597]	[1.64686]	[0.61128]	[-0.03899]	[-3.27425]	[0.18788]	[0.67239]
DIDEF ADM PUB(-4)	-0.004727	0.031283	0.013198	0.021648	-0.208760	-0.000123	-0.011071
	(0.00306)	(0.02868)	(0.00904)	(0.01956)	(0.15431)	(0.00062)	(0.06852)
	[-1.54666]	[1.09080]	[1.46067]	[1.10698]	[-1.35283]	[-0.19926]	[-0.16156]
D1LREND LIQ(-1)	-1.063929	-11.96344	-0.152472	4.243443	1.228084	0.062649	-6.537596
	(0.62648)	(5.87891)	(1.85228)	(4.00875)	(31.6331)	(0.12699)	(14.0470)
	[-1.69827]	[-2.03497]	[-0.08232]	[1.05854]	[0.03882]	[0.49332]	[-0.46541]
D1LREND LIQ(-2)	-0.012413	-8.324839	1.891640	6.461635	0.125758	-0.009786	0.639430
	(0.61251)	(5.74785)	(1.81099)	(3.91938)	(30.9279)	(0.12416)	(13.7338)
	[-0.02027]	[-1.44834]	[1.04453]	[1.64864]	[0.00407]	[-0.07881]	[0.04656]
D1LREND LIQ(-3)	-1.022910	-9.451743	-4.878666	8.203929	-23.86706	-0.208600	27.85171
	(0.62056)	(5.82339)	(1.83479)	(3.97089)	(31.3344)	(0.12579)	(13.9144)
D1LREND LIQ(-4)	[-1.64836] -0.378432 (0.65809)	[-1.62306] 3.908058 (6.17555)	[-2.65898] 0.692976 (1.94575) [0.35615]	[2.06602] 5.039357 (4.21102)	[-0.76169] -13.28950 (33.2293)	[-1.65826] 0.337348 (0.13340)	-14.07839 (14.7558)
1CARGA FIS D11(-1)	[-0.57505] -0.012086 (0.00764) [-1.58289]	0.001977 (0.07165)	0.006241 (0.02257)	-0.013549 (0.04886)	[-0.39993] 0.425922 (0.38553)	0.002083 (0.00155)	[-0.95409] -1.084374 (0.17120)
1CARGA FIS D11(-2)	-0.018750 (0.01018)	0.02760] 0.064367 (0.09555)	[0.27646] 0.020170 (0.03010)	[-0.27732] -0.056034 (0.06515)	-0.028588 (0.51412)	0.002885 (0.00206)	[-6.33403] -0.702238 (0.22830)
1CARGA FIS D11(-3)	-0.022501 (0.01014)	0.032567 (0.09520)	0.008792 (0.02999)	[-0.86005] 0.000911 (0.06492)	[-0.05561] -0.156756 (0.51225)	-0.000913 (0.00206)	-0.301005 (0.22747)
1CARGA FIS D11(-4)	[-2.21799] -0.016370 (0.00761)	-0.090430 (0.07137)	0.031879 (0.02249)	-0.001542 (0.04866)	[-0.30602] -0.404363 (0.38401)	[-0.44399] -0.000645 (0.00154)	-0.056884 (0.17052)
С	[-2.15244] 0.023176 (0.01311)	[-1.26711] 0.118490 (0.12300)	-0.009688 (0.03876)	[-0.03169] -0.133828 (0.08388)	[-1.05300] -0.294669 (0.66186)	[-0.41826] 0.004940 (0.00266)	[-0.33358] 0.263698 (0.29391)
DUMMY2008Q4	-0.092313 (0.08159)	-1.257679 (0.76563)	[-0.24998] -1.324515 (0.24123)	[-1.59555] -0.466159 (0.52207)	[-0.44521] 3.374081 (4.11970)	0.030145 (0.01654)	-1.167249 (1.82940)
R-squared	0.638292	0.782354	0.818873	0.710021	0.713897	0.455688	0.675995
dj. R-squared	0.405191	0.642093	0.702147	0.523146	0.529520	0.104909	0.467192
ium sq. resids	0.202402	17.82365	1.769363	8.287440	516.0439	0.008317	101.7584
E.E. equation	0.067066	0.629350	0.198291	0.429145	3.386391	0.013595	1.503761
-statistic	2.738266	5.577851	7.015323	3.799440	3.871934	1.299073	3.237477
og likelihood	115.3916	-52.53431	34.08718	-23.81738	-178.7468	235.0897	-117.8621
kaike AIC	-2.277110	2.200915	-0.108991	1.435130	5.566581	-5.469058	3.942990
ichwarz SC	-1.350115	3.127910	0.818004	2.362125	6.493576	-4.542062	4.869986
lean dependent	0.000943	-0.036000	-0.054119	0.030667	0.027685	0.006604	0.061615
S.D. dependent	0.086959	1.051979	0.363330	0.621457	4.937037	0.014370	2.060125
eterminant resid covaria		2.45E-08 6.85E-10					
Determinant resid covaria og likelihood	nce	46.38962					

VAR Lag Order Selection Criteria

Endogenous variables: D1LCRD_PAR D1TAX_VAR_PIB D1TAX_DESE D1LREND_LIQ

D1CARGA_FIS_D11 Exogenous variables: C Date: 09/08/19 Time: 18:33 Sample: 1998Q1 2018Q4 Included observations: 73

Lag	LogL	LR	FPE	AIC	SC	HQ
0	-36.00806	NA	2.12e-06	1.123508	1.280389*	1.186028
1	3.770930	73.01897	1.41e-06	0.718605	1.659889	1.093723
2	28.58415	42.14848	1.44e-06	0.723722	2.449411	1.411439
3	61.54938	51.47995	1.18e-06	0.505497	3.015589	1.505812
4	124.6991	89.96668*	4.36e-07*	-0.539700*	2.754796	0.773213*
5	148.0269	30.03855	4.94e-07	-0.493887	3.585013	1.131625
6	160.7198	14.60551	7.84e-07	-0.156706	4.706599	1.781405

^{*} indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)

FPE: Final prediction error
AIC: Akaike information criterion
SC: Schwarz information criterion
HQ: Hannan-Quinn information criterion

Anexo E 10 - Teste Lag Length Criteria - VAR Modelo crédito automóvel particular com variáveis significativas

VAR Residual Serial Correlation LM Te Null Hypothesis: no serial correlation at Date: 09/08/19 Time: 18:35

Sample: 1998Q1 2018Q4 Included observations: 75

 Lags
 LM-Stat
 Prob

 1
 33.77873
 0.1127

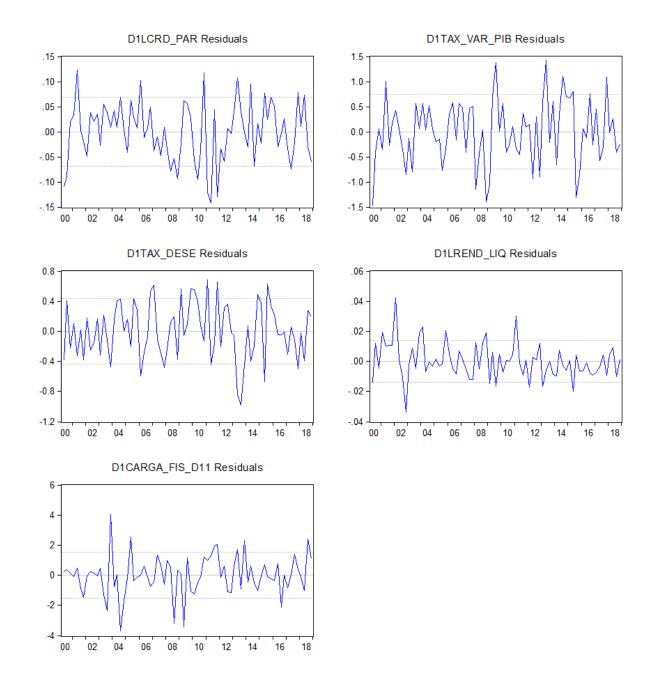
 2
 14.15169
 0.9590

 3
 19.80012
 0.7572

 4
 28.23923
 0.2970

Probs from chi-square with 25 df.

Anexo E 11 - Teste LM autocorelação - VAR Modelo crédito automóvel particular com variáveis significativas


VAR Residual Normality Tests

Orthogonalization: Cholesky (Lutkepohl)

Null Hypothesis: residuals are multivariate normal

Date: 09/08/19 Time: 18:39 Sample: 1998Q1 2018Q4 Included observations: 75 Anexo E 12 - Teste Normalidade dos resíduos - VAR Modelo crédito automóvel particular com variaveis significativas

included observations: 75						
Component	Skewness	Chi-sa	df	Prob.		
Component	OKEWHESS	Oni-5q	ui	1100.		
1	-0.193954	0.470225	1	0.4929		
2	-0.207246	0.536888	1	0.4637		
3	-0.160351	0.321407	1	0.5708		
4	0.562372	3.953274	1	0.0468		
5	-0.015550	0.003023	1	0.9562		
Joint		5.284818	5	0.3821		
Component	Kurtosis	Chi-sq	df	Prob.		
1	2.680303	0.319394	1	0.5720		
2	2.744874	0.203403	1	0.6520		
3	2.601931	0.495185	1	0.4816		
4	4.674198	8.759188	1	0.0031		
5	4.011911	3.199884	1	0.0736		
Joint		12.97705	5	0.0236		
Component	Jarque-Bera	df	Prob.			
1	0.789620	2	0.6738			
2	0.740292	2	0.6906			
2 3	0.816592	2	0.6648			
4	12.71246	2 2	0.0017			
5	3.202907	2	0.2016			
Joint	18.26187	10	0.0507			

Anexo E 13 - Gráfico Resíduos - VAR Modelo crédito automóvel particular com variaveis significativas

Endogenous variables: D1LCRD_PAR D1TAX_VAR_PIB D1TAX_DESE D1LREND_LIQ

D1CARGA_FIS_D11

Exogenous variables: C DUMMY2002Q1 DUMMY2002Q4

Date: 09/08/19 Time: 18:47 Sample: 1998Q1 2018Q4 Included observations: 73

Lag	LogL	LR	FPE	AIC	SC	HQ
0	-9.032830	NA	1.33e-06	0.658434	1.129076*	0.845993
1	35.40095	79.12866	7.84e-07	0.126001	1.381048	0.626159
2	64.78857	48.30841	7.05e-07	0.005793	2.045243	0.818549
3	97.69068	49.57852	5.87e-07	-0.210704	2.613151	0.914651
4	154.1125	77.29023*	2.63e-07*	-1.071577*	2.536681	0.366377*
5	176.1954	27.22547	3.14e-07	-0.991656	3.401006	0.758896
6	189.0503	14.08755	5.06e-07	-0.658913	4.518153	1.404237

^{*} indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)

FPE: Final prediction error
AIC: Akaike information criterion
SC: Schwarz information criterion
HQ: Hannan-Quinn information criterion

Anexo E 14 - Teste Lag Length Criteria - VAR Modelo crédito automóvel particular com dummy variáveis significativas

VAR Residual Serial Correlation LM Te Null Hypothesis: no serial correlation at

Date: 09/08/19 Time: 18:49 Sample: 1998Q1 2018Q4 Included observations: 75

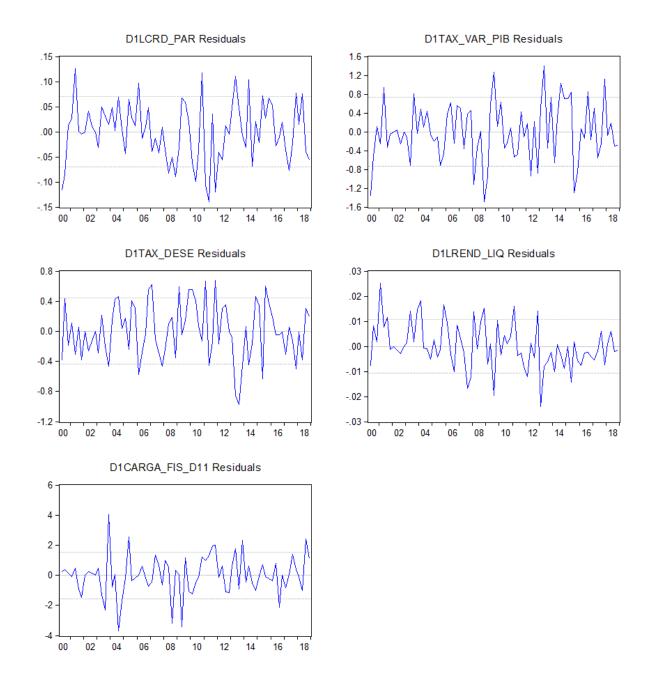
Lags	LM-Stat	Prob
1	29.02042	0.2631
2	17.04041	0.8803
3	21.12796	0.6855
4	31.33978	0.1780

Probs from chi-square with 25 df.

Anexo E 15 - Teste LM autocorelação - VAR Modelo crédito automóvel particular com dummy variáveis significativas

VAR Residual Normality Tests

Orthogonalization: Cholesky (Lutkepohl)


Null Hypothesis: residuals are multivariate normal

Date: 09/08/19 Time: 18:51 Sample: 1998Q1 2018Q4 Included observations: 75

Anexo E 16 - Teste Normalidade dos resíduos - VAR Modelo crédito automóvel

particular com dummy variaveis significativas

Component	Skewness	Chi-sq	df	Prob.
1 2 3 4 5	-0.113586 -0.136689 -0.118811 0.120366 0.006638	0.161272 0.233548 0.176450 0.181100 0.000551	1 1 1 1	0.6880 0.6289 0.6744 0.6704 0.9813
Joint		0.752920	5	0.9799
Component	Kurtosis	Chi-sq	df	Prob.
1 2 3 4 5	2.661634 2.938235 2.593862 3.173080 4.083070	0.357785 0.011922 0.515462 0.093614 3.665750	1 1 1 1	0.5497 0.9131 0.4728 0.7596 0.0555
Joint		4.644534	5	0.4608
Component	Jarque-Bera	df	Prob.	
1 2 3 4 5	0.519057 0.245470 0.691912 0.274714 3.666301	2 2 2 2 2	0.7714 0.8845 0.7075 0.8717 0.1599	
Joint	5.397454	10	0.8631	

Anexo E 17 - Gráfico Resíduos - VAR Modelo crédito automóvel particular com dummy variaveis significativas

Anexo E 18 - Estimação VAR Modelo crédito automóvel particular com dummy variaveis significativas

Standard errors in () & t-		DATAY MAD	DATAY DEGE	DALDEND III	DACADOA
DALCED DAD(A)	D1LCRD PA		-0.263998		
D1LCRD PAR(-1)	-0.341891 (0.12804) [-2.67012]	2.211581 (1.34780) [1.64088]	(0.80555) [-0.32772]	0.034535 (0.01956) [1.76583]	1.106481 (2.84170) [0.38937]
D1LCRD PAR(-2)	0.064584	5.328781	-1.481619	-0.018593	2.020462
	(0.13696)	(1.44161)	(0.86161)	(0.02092)	(3.03948)
	[0.47157]	[3.69642]	[-1.71959]	[-0.88880]	[0.66474]
D1LCRD PAR(-3)	0.063735	3.143257	-1.526044	-0.033502	-1.110619
	(0.13690)	(1.44107)	(0.86129)	(0.02091)	(3.03835)
	[0.46555]	[2.18119]	[-1.77180]	[-1.60211]	[-0.36553]
D1LCRD PAR(-4)	0.175132	-3.266365	-0.932845	0.016832	-2.502880
	(0.12809)	(1.34834)	(0.80587)	(0.01957)	(2.84283)
	[1.36722]	[-2.42252]	[-1.15757]	[0.86028]	[-0.88042]
D1TAX VAR PIB(-1)	0.015205	0.054932	-0.118105	0.001698	0.145080
	(0.01008)	(0.10611)	(0.06342)	(0.00154)	(0.22372)
	[1.50843]	[0.51770]	[-1.86235]	[1.10283]	[0.64850]
D1TAX VAR PIB(-2)	0.019667	0.204832	-0.023419	-0.001160	0.079248
	(0.00946)	(0.09954)	(0.05949)	(0.00144)	(0.20986)
	[2.07981]	[2.05788]	[-0.39366]	[-0.80289]	[0.37762]
D1TAX VAR PIB(-3)	-0.008050	-0.052362	-0.046062	-0.001349	0.039360
	(0.00961)	(0.10114)	(0.06045)	(0.00147)	(0.21323)
	[-0.83787]	[-0.51775]	[-0.76203]	[-0.91908]	[0.18459]
D1TAX VAR PIB(-4)	0.004598	-0.420432	0.110910	0.002337	0.026761
	(0.00968)	(0.10188)	(0.06089)	(0.00148)	(0.21481)
	[0.47507]	[-4.12671]	[1.82143]	[1.58105]	[0.12458]
D1TAX DESE(-1)	-0.041826	0.045128	-0.051372	0.002629	-0.557393
	(0.01740)	(0.18320)	(0.10949)	(0.00266)	(0.38626)
	[-2.40323]	[0.24634]	[-0.46918]	[0.98901]	[-1.44307]
D1TAX DESE(-2)	-0.027686	-0.035494	-0.117533	-0.001097	0.195551
	(0.01773)	(0.18666)	(0.11156)	(0.00271)	(0.39354)
	[-1.56129]	[-0.19016]	[-1.05354]	[-0.40487]	[0.49690]
D1TAX DESE(-3)	0.015771	0.770985	-0.083873	-0.001002	-0.072284
	(0.01810)	(0.19052)	(0.11387)	(0.00276)	(0.40168)
	[0.87137]	[4.04683]	[-0.73659]	[-0.36263]	[-0.17995]
D1TAX DESE(-4)	-0.028021	0.018881	0.574012	-0.003953	0.502655
	(0.01982)	(0.20861)	(0.12468)	(0.00303)	(0.43982)
	[-1.41392]	[0.09051]	[4.60394]	[-1.30581]	[1.14286]
D1LREND LIQ(-1)	-1.409683	-11.43397	4.054066	-0.012695	-3.125487
	(0.62138)	(6.54071)	(3.90922)	(0.09491)	(13.7904)
	[-2.26863]	[-1.74812]	[1.03705]	[-0.13376]	[-0.22664]
D1LREND LIQ(-2)	-0.021265	-7.042345	6.446375	-0.086371	4.483136
	(0.61802)	(6.50532)	(3.88807)	(0.09440)	(13.7158)
	[-0.03441]	[-1.08255]	[1.65799]	[-0.91498]	[0.32686]
D1LREND LIQ(-3)	-1.258237	-2.961198	8.377879	-0.046248	24.25641
	(0.73787)	(7.76693)	(4.64210)	(0.11270)	(16.3758)
	[-1.70522]	[-0.38126]	[1.80476]	[-0.41035]	[1.48124]
D1LREND LIQ(-4)	-0.059770	-4.298195	3.742061	0.104410	-4.871887
	(0.68282)	(7.18743)	(4.29575)	(0.10429)	(15.1540)
	[-0.08753]	[-0.59802]	[0.87111]	[1.00111]	[-0.32149]
D1CARGA FIS D11(-1)	-0.014097	-0.080927	-0.016170	0.000240	-0.982262
	(0.00626)	(0.06587)	(0.03937)	(0.00096)	(0.13887)
	[-2.25292]	[-1.22867]	[-0.41077]	[0.25087]	[-7.07325]
D1CARGA FIS D11(-2)	-0.018087	0.047713	-0.029766	0.001664	-0.718065
	(0.00888)	(0.09352)	(0.05589)	(0.00136)	(0.19718)
	[-2.03584]	[0.51019]	[-0.53254]	[1.22616]	[-3.64176]
D1CARGA FIS D11(-3)	-0.019775	-0.012404	-0.016823	-0.000326	-0.267150
	(0.00921)	(0.09691)	(0.05792)	(0.00141)	(0.20433)
	[-2.14780]	[-0.12799]	[-0.29044]	[-0.23192]	[-1.30742]
D1CARGA FIS D11(-4)	-0.011681	-0.098837	-0.027401	-0.000589	0.014935
	(0.00672)	(0.07073)	(0.04227)	(0.00103)	(0.14913)
	[-1.73839]	[-1.39739]	[-0.64818]	[-0.57374]	[0.10015]
С	0.027081	0.082262	-0.126877	0.006857	0.051598
	(0.01310)	(0.13786)	(0.08240)	(0.00200)	(0.29067)
	[2.06771]	[0.59670]	[-1.53984]	[3.42749]	[0.17752]
DUMMY2002Q1	-0.076368	0.627258	0.291724	0.065386	-0.105937
	(0.08829)	(0.92935)	(0.55545)	(0.01349)	(1.95944)
	[-0.86496]	[0.67494]	[0.52520]	[4.84865]	[-0.05406]
DUMMY2002Q4	0.054875	-1.342292	0.280973	-0.051941	-0.094471
	(0.08865)	(0.93318)	(0.55774)	(0.01354)	(1.96752)
	[0.61898]	[-1.43840]	[0.50377]	[-3.83583]	[-0.04802]
R-squared Adj. R-squared Sum sq. resids S. E. equation -statistic Log likelihood Akaike AlC Schwarz SC Wean dependent S.D. dependent	0.544837	0.655401	0.647274	0.611122	0.600565
	0.352268	0.509609	0.498044	0.446596	0.431573
	0.254697	28.22020	10.08071	0.005942	125.4485
	0.069986	0.736679	0.440295	0.010690	1.553213
	2.829307	4.495449	4.337427	3.714453	3.553808
	106.7734	-69.76602	-31.16297	247.6993	-125.7107
	-2.233958	2.473760	1.444346	-5.991981	3.965617
	-1.523262	3.184457	2.155042	-5.281285	4.676314
	0.000943	-0.036000	0.030667	0.006604	0.061615
	0.086959	1.051979	0.621457	0.014370	2.060125
Determinant resid covaria Determinant resid covaria Log likelihood Akaike information criteria Schwarz criterion	ance	8.02E-08 1.28E-08 149.2775 -0.914066 2.639416			

Endogenous variables: D1LCRD_EMPR D1TAX_VAR_PIB D1EURIBOR_3M D1TAX_DESE

D1DEF_ADM_PUB D1LREND_LIQ D1CARGA_FIS_D11

Exogenous variables: C Date: 09/08/19 Time: 09:04 Sample: 1998Q1 2018Q4 Included observations: 73

Lag	LogL	LR	FPE	AIC	SC	HQ
0	-313.0518	NA	1.52e-05	8.768541	8.988174*	8.856069
1	-240.3055	129.5480	7.96e-06	8.117960	9.875025	8.818181*
2	-195.5020	71.19465	9.25e-06	8.232932	11.52743	9.545846
3	-130.2346	91.19561	6.51e-06	7.787248	12.61918	9.712855
4	-47.45149	99.79329*	3.11e-06*	6.861685	13.23104	9.399985
5	-0.948616	47.13990	4.66e-06	6.930099	14.83689	10.08109
6	58.51848	48.87706	6.13e-06	6.643329*	16.08755	10.40702

^{*} indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)

FPE: Final prediction error
AIC: Akaike information criterion
SC: Schwarz information criterion
HQ: Hannan-Quinn information criterion

Anexo F 1- Teste Lag Length Criteria - VAR Modelo crédito automóvel empresa

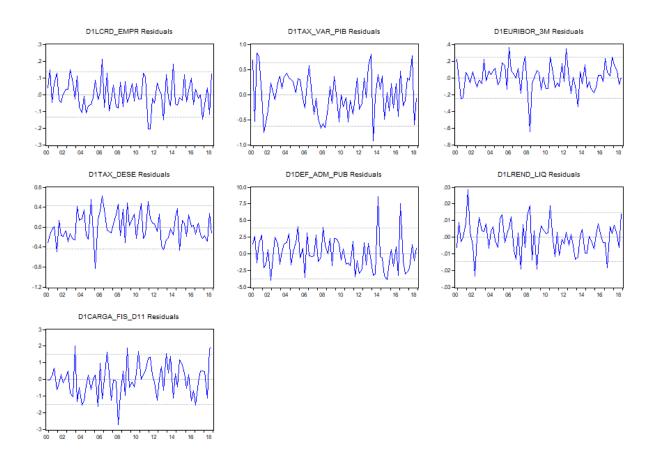
VAR Residual Serial Correlation LM Te Null Hypothesis: no serial correlation at

Date: 09/08/19 Time: 10:48 Sample: 1998Q1 2018Q4 Included observations: 73

Anexo F 2 - Teste LM autocorelação -VAR Modelo crédito automóvel empresa

Lags	LM-Stat	Prob
1	38.47636	0.8603
2	38.80175	0.8516
3	40.16045	0.8118
4	60.34105	0.1285
5	41.53058	0.7668
6	36.59166	0.9048

Probs from chi-square with 49 df.


VAR Residual Normality Tests Orthogonalization: Cholesky (Lutkepohl)
Null Hypothesis: residuals are multivariate normal
Date: 09/08/19 Time: 10:48
Sample: 1998Q1 2018Q4
Included observations: 73

Component	Skewness	Chi-sq	df	Prob.
1	0.113219	0.155959	1	0.6929
2	-0.011426	0.001588	1	0.9682
3	-0.446408	2.424573	1	0.1194
4	0.161663	0.317973	1	0.5728
5	0.728007	6.448258	1	0.0111
6	-0.123642	0.185995	1	0.6663
7	0.473174	2.724035	1	0.0988
Joint		12.25838	7	0.0924

Component	Kurtosis	Chi-sq	df	Prob.
1	2.750447	0.189424	1	0.6634
2	2.374502	1.190045	1	0.2753
3	4.995908	12.11693	1	0.0005
4	3.570293	0.989252	1	0.3199
5	3.800889	1.950995	1	0.1625
6	3.654565	1.303217	1	0.2536
7	3.492887	0.738936	1	0.3900
Joint		18 47880	7	0.0100

Component	Jarque-Bera	df	Prob.
1	0.345384	2	0.8414
2	1.191634	2	0.5511
3	14.54150	2	0.0007
4	1.307226	2	0.5202
5	8.399254	2	0.0150
6	1.489212	2	0.4749
7	3.462970	2	0.1770
Joint	30.73718	14	0.0060

Anexo F 3 - Teste Normalidade dos resíduos - VAR Modelo crédito automóvel empresa

Anexo F 4 - Gráfico Resíduos - VAR Modelo crédito automóvel empresa

Endogenous variables: D1LCRD_EMPR D1TAX_VAR_PIB D1EURIBOR_3M D1TAX_DESE

D1DEF_ADM_PUB D1LREND_LIQ D1CARGA_FIS_D11

Exogenous variables: C DUMMY2008Q4

Date: 09/08/19 Time: 11:14 Sample: 1998Q1 2018Q4 Included observations: 73

Lag	LogL	LR	FPE	AIC	SC	HQ
0	-294.0769	NA	1.09e-05	8.440462	8.879728*	8.615517
1	-211.3798	145.0030	4.38e-06	7.517256	9.493953	8.305004*
2	-169.5782	65.27924	5.56e-06	7.714471	11.22860	9.114913
3	-105.4804	87.80520	4.08e-06	7.300833	12.35239	9.313967
4	-19.99816	100.7051*	1.85e-06*	6.301319	12.89031	8.927147
5	33.05193	52.32338	2.37e-06	6.190358	14.31678	9.428879
6	89.40693	44.77520	3.54e-06	5.988851*	15.65271	9.840065

^{*} indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)

FPE: Final prediction error
AIC: Akaike information criterion
SC: Schwarz information criterion
HQ: Hannan-Quinn information criterion

Anexo F 5 - Teste Lag Length Criteria - VAR Modelo crédito automóvel empresa com dummy

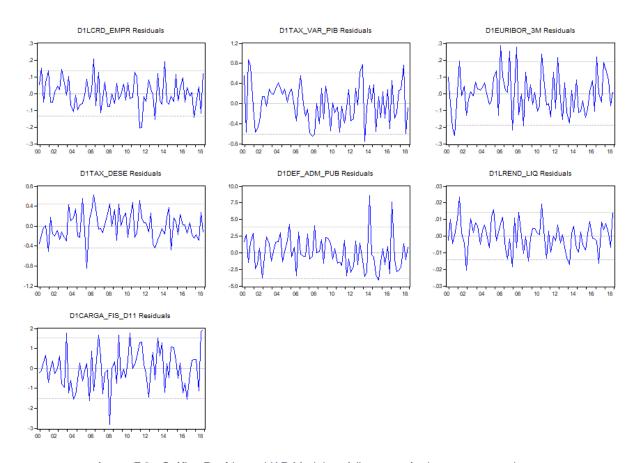
VAR Residual Serial Correlation LM Te Null Hypothesis: no serial correlation at Date: 09/08/19 Time: 10:57 Sample: 1998Q1 2018Q4

Included observations: 73

Lags	LM-Stat	Prob
1	49.28762	0.4616
2	34.71300	0.9387
3	58.36039	0.1691
4	59.31300	0.1485
5	40.15653	0.8119
6	34.19622	0.9464

Probs from chi-square with 49 df.

Anexo F 6 - Teste LM autocorelação -VAR Modelo crédito automóvel empresa com dummy


VAR Residual Normality Tests
Orthogonalization: Cholesky (Lutkepohl)
Null Hypothesis: residuals are multivariate normal
Date: 09/08/19 Time: 10:56
Sample: 1998Q1 2018Q4

Included observations: 73

Component	Skewness	Chi-sq	df	Prob.
1	0.123311	0.185001	1	0.6671
2	0.096877	0.114186	1	0.7354
3	0.384138	1.795336	1	0.1803
4	0.186359	0.422545	1	0.5157
5	0.810584	7.994055	1	0.0047
6	-0.288715	1.014170	1	0.3139
7	0.320440	1.249293	1	0.2637
Joint		12.77459	7	0.0778
Component	Kurtosis	Chi-sq	df	Prob.
1	2.811892	0.107628	1	0.7429
2	2.324207	1.389119	1	0.2386
3	2.836674	0.081138	1	0.7758
4	3.658582	1.319261	1	0.2507
5	3.940672	2.691462	1	0.1009
6	2.582258	0.530795	1	0.4663
7	3.593577	1.071680	1	0.3006
Joint		7.191083	7	0.4093

Component Jarque-Bera df Prob. 0.292629 1.503304 1.876474 1.741806 0.8639 0.4716 0.3913 0.4186 2 2 2 2 2 2 2 2 4 5 10.68552 0.0048 6 1.544965 0.4619 2.320973 0.3133 19.96567 14 0.1312 Joint

Anexo F 7 - Teste Normalidade dos resíduos - VAR Modelo crédito automóvel empresa com dummy

Anexo F 8 - Gráfico Resíduos - VAR Modelo crédito automóvel empresa com dummy

	D1LCRD EM				ED1DEF ADM		
D1LCRD EMPR(-1)	-0.138153	1.700855	0.526116	0.354094	-0.394820	0.016011	-0.63199*
	(0.19029)	(0.85457)	(0.26499)	(0.61198)	(5.37277)	(0.01961)	(2.11653
	[-0.72602]	[1.99031]	[1.98545]	[0.57860]	[-0.07349]	[0.81636]	[-0.29860
D1LCRD EMPR(-2)	-0.151919	0.505573	-0.195196	-0.617034	0.406352	0.017816	-1,31713
	(0.17297)	(0.77679)	(0.24087)	(0.55628)	(4.88377)	(0.01783)	(1.92390
	[-0.87830]	[0.65085]	[-0.81038]	[-1.10921]	[0.08320]	[0.99932]	[-0.68462
D1LCRD EMPR(-3)	0.020230 (0.17499)	1.602032 (0.78588)	0.121215 (0.24369) [0.49742]	-0.717978 (0.56279)	3.052027 (4.94089)	-0.019043 (0.01804)	-0.07282 (1.94640
D1LCRD EMPR(-4)	0.097208 (0.17792)	-0.315891 (0.79902)	-0.467648 (0.24776)	[-1.27575] 0.055773 (0.57220)	[0.61771] 0.567363 (5.02353)	[-1.05583] 0.008110 (0.01834)	[-0.03741 0.515570 (1.97895
D1LCRD EMPR(-5)	0.057308	[-0.39535] -1.633944 (0.74428)	(-1.88750) -0.457814 (0.23079)	0.643636	[0.11294] -1.364210 (4.67935)	0.031404 (0.01708)	0.48717
D1LCRD EMPR(-6)	0.34579	[-2.19534] -1.261762	[-1.98371] -0.031358	0.285773	[-0.29154] -5.038128	0.012412	(1.84337 (0.26428 2.444552
D1TAX VAR PIB(-1)	(0.15398)	(0.69150)	(0.21442)	(0.49520)	(4.34752)	(0.01587)	(1.71265
	[-0.78320]	[-1.82468]	(-0.14624)	[0.57709]	[-1.15885]	[0.78209]	[1.42735
	0.008741	0.192485	0.032188	-0.202364	-0.714058	0.004983	-0.11683
D1TAX VAR PIB(-2)	(0.03660) [0.23881]	(0.16438) [1.17099] 0.400908	(0.05097) [0.63149]	(0.11772) [-1.71909] -0.004654	(1.03347) [-0.69094] -0.109748	(0.00377) [1.32094] -0.002079	(0.40712 [-0.28696 -0.368112
	(0.03610)	(0.16213)	(0.05027)	(0.11611)	(1.01936)	(0.00372)	(0.40156
	[-0.27348]	[2.47269]	[1.60156]	[-0.04008]	[-0.10766]	[-0.55860]	[-0.91670
D1TAX VAR PIB(-3)	0.037311	-0.012723	0.075235	-0.029610	1.283691	0.001682	-0.13491
	(0.02860)	(0.12843)	(0.03982)	(0.09197)	(0.80744)	(0.00295)	(0.31808
	[1.30470]	[-0.09906]	[1.88923]	[-0.32195]	[1.58983]	[0.57061]	[-0.42417
D1TAX VAR PIB(-4)	-0.001724	-0.546270	-0.055569	0.087233	0.575222	-0.001960	-0.00701
	(0.02786)	(0.12511)	(0.03880)	(0.08960)	(0.78661)	(0.00287)	(0.30987
	[-0.06190]	[-4.36616]	[-1.43234]	[0.97361]	[0.73127]	[-0.68274]	[-0.02265
D1TAX VAR PIB(-5)	-0.017270	0.168256	-0.003441	-0.088483	-0.383534	0.001669	0.18346
	(0.03126)	(0.14038)	(0.04353)	(0.10053)	(0.88257)	(0.00322)	(0.34768
	[-0.55250]	[1.19860]	[-0.07905]	[-0.88018]	[-0.43457]	[0.51817]	[0.52768
D1TAX VAR PIB(-6)	-0.007657	0.132825	0.116013	-0.084589	-0.225661	-0.001942	-0.10050
	(0.03053)	(0.13710)	(0.04251)	(0.09818)	(0.86199)	(0.00315)	(0.33957
	[-0.25080]	[0.96879]	[2.72896]	[-0.96153]	[-0.26179]	[-0.61727]	[-0.29599
D1EURIBOR 3M(-1)	0.063425	1.002270	0.894030	-0.126941	-4.444702	0.004761	1.33796
	(0.08755)	(0.39318)	(0.12192)	(0.28157)	(2.47196)	(0.00902)	(0.97380
	[0.72444]	[2.54914]	[7.33308]	[-0.45084]	[-1.79805]	[0.52756]	[1.37396
D1EURIBOR 3M(-2)	-0.138038 (0.12621) [-1.09376]	-1.434980 (0.56678)	-0.653084 (0.17575) [-3.71605]	-0.044763 (0.40588)	1.762961 (3.56339)	-0.015393 (0.01301)	0.75832
D1EURIBOR 3M(-3)	0.042592	[-2.53182] -0.006158 (0.59386)	0.444022	[-0.11029] 0.236504 (0.42528)	-4.851094 (3.73368)	[-1.18336] 0.007510 (0.01363)	-0.04618 (1.47084
D1EURIBOR 3M(-4)	-0.090299	0.768612	-0.260447 (0.16921)	(0.55611) -0.472584 (0.39080)	(3.73368) [-1.29928] 1.806772 (3.43094)	(0.55100) -0.002062 (0.01252)	-0.68305
D1EURIBOR 3M(-5)	(0.12151) [-0.74311] 0.054402	(0.54571) [1.40846] -1.154141	0.334200	0.398534	0.910515	0.020392	(1.35157 [-0.50538 -0.41731
D1EURIBOR 3M(-6)	(0.10834)	(0.48654)	(0.15087)	(0.34843)	(3.05896)	(0.01117)	(1.20504
	[0.50214]	[-2.37212]	[2.21518]	[1.14381]	[0.29766]	[1.82618]	[-0.34631
	-0.013903	1.030620	-0.170814	-0.334883	0.577753	-0.008167	0.31730
D1TAX DESE(-1)	(0.08482) [-0.16391] -0.066088	(0.38093) [2.70556]	(0.11812) [-1.44613] 0.080702	(0.27279) [-1.22761] 0.213727	(2.39493) [0.24124] 1.383768	(0.00874) [-0.93420] -0.005437	(0.94345 [0.33633 -1.30250
	(0.05654) [-1.16895]	0.153980 (0.25390) [0.60646]	(0.07873) [1.02506]	(0.18182) [1.17546]	(1.59629) [0.86686]	(0.00583) [-0.93313]	(0.62884 [-2.07128
D1TAX DESE(-2)	0.032174	-0.169525	-0.053673	0.056028	-1.246661	0.004596	-0.38774
	(0.06476)	(0.29084)	(0.09018)	(0.20828)	(1.82856)	(0.00667)	(0.72034
	[0.49680]	[-0.58288]	[-0.59514]	[0.26900]	[-0.68177]	[0.68856]	[-0.53828
D1TAX DESE(-3)	0.019677	0.281037	0.146069	-0.000412	-0.130693	0.003246	-0.22519
	(0.04350)	(0.19536)	(0.06058)	(0.13990)	(1.22825)	(0.00448)	(0.48385
	[0.45234]	[1.43856]	[2.41127]	[-0.00294]	[-0.10641]	[0.72397]	[-0.46542
D1TAX DESE(-4)	-0.059517	0.067502	-0.056035	0.639390	-0.560837	-0.002731	0.686990
	(0.04089)	(0.18362)	(0.05694)	(0.13149)	(1.15442)	(0.00421)	(0.45477
	[-1.45566]	[0.36762]	[-0.98417]	[4.86254]	[-0.48582]	[-0.64818]	[1.51064
D1TAX DESE(-5)	0.068049	-0.019161	-0.003490	-0.290384	0.504636	0.004381	1.23202
	(0.05513)	(0.24760)	(0.07678)	(0.17731)	(1.55668)	(0.00568)	(0.61323
	[1.19800]	I-0.077391	[-0.04546]	[-1.63770]	[0.32417]	[0.77101]	[2.00907
D1TAX DESE(-6)	-0.153805	-0.143844	-0.061411	-0.061417	0.077858	-0.002362	0.62344
	(0.06790)	(0.30495)	(0.09456)	(0.21838)	(1.91723)	(0.00700)	(0.75527
	[-2.26507]	[-0.47105]	[-0.64945]	[-0.28124]	[0.04061]	[-0.33752]	[0.82546
OIDEF ADM PUB(-1)	-0.005622 (0.00816)	0.046705	-0.007358 (0.01137)	0.021648 (0.02626)	-0.916553 (0.23051)	0.000397 (0.00084)	-0.06758 (0.09081
OIDEF ADM PUB(-2)	[-0.68961] 0.002471 (0.01172)	0.044848 (0.05263)	[-0.64726] 0.013324 (0.01632)	0.022525	-0.794315 (0.33090)	0.001517 (0.00121)	0.005755 (0.13035
OIDEF ADM PUB(-3)	(0.01172) [0.21083] -0.005226 (0.01312)	0.029767 (0.05890)	(0.01632) [0.81640] -0.012512 (0.01826)	0.015858	(0.33090) [-2.40047] -0.422786	(0.00121) [1.25618] 0.000930 (0.00135)	-0.03359
OIDEF ADM PUB(-4)	-0.006743	0.037332	-0.000823	(0.04218) [0.37595] 0.051823	(0.37032) [-1.14168] -0.064769	0.000689	(0.14588 [-0.23029 -0.07440
OIDEF ADM PUB(-5)	(0.01223)	(0.05491)	(0.01703)	(0.03932)	(0.34522)	(0.00126)	(0.13599
	[-0.55150]	[0.67989]	[-0.04833]	[1.31792]	[-0.18762]	[0.54650]	[-0.54708
	-0.006915	-0.016968	-0.009306	0.026104	0.230949	0.001493	-0.09046
	(0.01018) [-0.67941]	(0.04571) [-0.37124] -0.008475	(0.01417) [-0.65659] 0.009994	(0.03273) [0.79750] 0.028100	(0.28737) [0.80368] 0.059449	(0.00105) [1.42314] 0.001347	(0.11320 [-0.79911
OIDEF ADM PUB(-6)	-0.004376 (0.00738) [-0.59320]	(0.03313) [-0.25582]	(0.01027) [0.97286]	(0.02373) [1.18436]	(0.20830) [0.28540]	(0.00076) [1.77208]	(0.08206 [-0.08547
D1LREND LIQ(-1)	2.707133	-6.235954	-2.713007	2.059679	2.088516	0.060556	-3.73682
	(1.77544)	(7.97336)	(2.47239)	(5.70994)	(50.1294)	(0.18299)	(19.7478
	[1.52477]	[-0.78210]	[-1.09732]	[0.36072]	[0.04166]	[0.33092]	[-0.18923
D1LREND LIQ(-2)	-0.554969	-19.86809	2.709039	10.26405	-33 14725	0.066687	8.47774
	(1.67752)	(7.53361)	(2.33603)	(5.39502)	(47.3646)	(0.17290)	(18.6587
	[-0.33083]	[-2.63726]	[1.15968]	[1.90251]	[-0.69983]	[0.38570]	[0.45436
D1LREND LIQ(-3)	0.206321	-12.98732	-3.153649	5.726827	-29.54129	-0.228246	31.4258
	(1.56062)	(7.00860)	(2.17324)	(5.01905)	(44.0638)	(0.16085)	(17.3584
	[0.13220]	[-1.85305]	[-1.45113]	[1.14102]	[-0.67042]	[-1.41899]	[1.81041
D1LREND LIQ(-4)	0.479509	3.849809	1.742342	-0.784291	-2.408306	0.331448	-6.07102
	(1.64625)	(7.39317)	(2.29248)	(5.29445)	(46.4817)	(0.16968)	(18.3109
	[0.29127]	[0.52072]	[0.76002]	[-0.14813]	[-0.05181]	[1.95341]	[-0.33155
D1LREND LIQ(-5)	-4.369413	-9.110742	1.381622	5.736887	10.27120	-0.137323	-8.43369
	(1.73109)	(7.77419)	(2.41063)	(5.56730)	(48.8772)	(0.17842)	(19.2545
	I-2.524081	[-1.17192]	[0.57314]	[1.03046]	[0.21014]	[-0.76966]	[-0.43801
D1LREND LIQ(-6)	1.867269	5.584390 (8.47568)	1.443967	-3.146502 (6.06966)	41.17940	0.037402	-23.9388 (20.9919
ICARGA FIS D11(-1)	0.005239	0.034618	0.008971	[-0.51840] 0.060230 (0.06944)	0.327095 (0.60966)	0.001857 (0.00223)	-1.33068 -0.24017
ICARGA FIS D11(-2)	(0.02159) [0.24263] 0.061974 (0.03198)	0.079477	(0.03007) [0.29834] 0.019188 (0.04453)	0.073957	[0.53652] 0.148476 (0.90283)	(0.00223) [0.83460] 0.004860 (0.00330)	(0.24017 [-5.54063 -1.19836 (0.35566
1CARGA FIS D11(-3)	(1.93817)	-0.086822	-0.043029	(0.10284) [0.71918] 0.126775	0.16446	0.001385	-0.78745
1CARGA FIS D11(-4)	(0.03135)	(0.14077)	(0.04365)	(0.10081)	(0.88504)	(0.00323)	(0.34985
	[1.19898]	[-0.61535]	[-0.98577]	[1.25758]	[0.14516]	[0.42858]	[-2.25860
	0.034139	-0.101909	-0.025867	0.125812	-0.093881	0.001250	-0.35509
1CARGA FIS D11(-5)	(0.03120) [1.09409]	(0.14013) [-0.72724] -0.114000	(0.04345) [-0.59530] -0.059400	(0.10035) [1.25371] 0.143207	(0.88102) [-0.10656] 0.351056	(0.00322) [0.38875] 0.002837	(0.34707 [-1.02312 -0.30373
	-0.032649 (0.02532) [-1.28950]	(0.11370) [-1.00260]	(0.03526) [-1.68475]	(0.08143) [1.75872]	(0.71487) [0.49108]	(0.00261) [1.08720]	(0.28161 [-1.07855
1CARGA FIS D11(-6)	-0.022375	0.053409	0.029682	0.133870	-0.288328	0.002819	0.072729
	(0.02178)	(0.09782)	(0.03033)	(0.07005)	(0.61502)	(0.00225)	(0.24228
	[-1.02720]	[0.54597]	[0.97854]	[1.91097]	[-0.46881]	[1.25565]	[0.30019
C	-0.001822	0.285092	-0.018110	-0.171711	-0.411830	0.004765	0.33785
	(0.03867)	(0.17366)	(0.05385)	(0.12437)	(1.09185)	(0.00399)	(0.43012
	[-0.04711]	[1.64163]	[-0.33630]	[-1.38070]	[-0.37719]	[1.19545]	[0.78549
DUMMY2008Q4	0.130905	-1.196225	-1.162815	-0.312991	2.214357	0.034385	-1.77739
	(0.18418)	(0.82715)	(0.25648)	(0.59235)	(5.20040)	(0.01898)	(2.04863
	[0.71073]	[-1.44620]	[-4.53367]	[-0.52839]	[0.42581]	[1.81132]	[-0.86760
l-squared di. R-squared	0.660314 0.156642	0.863433 0.660938	0.882006 0.707049	0.799373 0.501891	0.759819 0.403688	0.620000 0.056552 0.005772	0.78509 0.46644 67.2233
ium sq. resids i.E. equation -statistic og likelihood	0.543367 0.136882 1.311001 75.28318	10.95882 0.614728 4.263964 -34.36703	1.053694 0.190615 5.041276 51.11025	5.620091 0.440223 2.687132 -9.992443	433 1773 3.864861 2.133538 -168.5776	0.014108 1.100369 241.1655	1.522513 2.463796 -100.5738
kaike AIC	-0.857073	2.147042	-0.194801	1.479245	5.824044	-5.401796	3.960918
ichwarz SC	0.523478	3.527593	1.185750	2.859796	7.204595	-4.021245	5.341469

Endogenous variables: D1LCRD_EMPR D1TAX_DESE D1LREND_LIQ

D1CARGA_FIS_D11 Exogenous variables: C Date: 09/08/19 Time: 20:47 Sample: 1998Q1 2018Q4 Included observations: 73

Lag	LogL	LR	FPE	AIC	SC	HQ
0	19.81851	NA	7.62e-06	-0.433384	-0.307879*	-0.383368
1	46.32663	49.38499	5.72e-06	-0.721277	-0.093754	-0.471199*
2	62.95019	29.14816	5.64e-06	-0.738361	0.391180	-0.288219
3	81.83923	31.05049	5.27e-06	-0.817513	0.814047	-0.167308
4	114.2839	49.77806*	3.42e-06*	-1.268051	0.865528	-0.417783
5	129.7860	22.08517	3.58e-06	-1.254410	1.381188	-0.204079
6	149.1808	25.50560	3.43e-06	-1.347420*	1.790195	-0.097026

^{*} indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)

FPE: Final prediction error
AIC: Akaike information criterion
SC: Schwarz information criterion
HQ: Hannan-Quinn information criterion

Anexo F 10 - Teste Lag Length Criteria - VAR Modelo crédito automóvel empresa com variaveis significativas

VAR Residual Serial Correlation LM Te Null Hypothesis: no serial correlation at

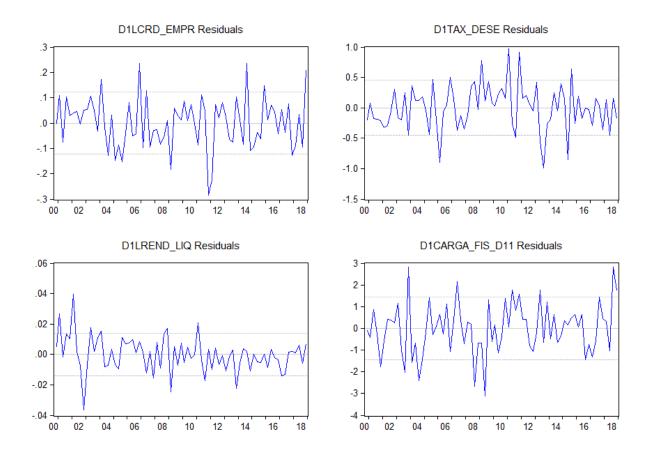
Date: 09/08/19 Time: 20:48 Sample: 1998Q1 2018Q4 Included observations: 73

Lags	LM-Stat	Prob
1	15.85325	0.4632
2	10.37648	0.8462
3	16.94681	0.3890
4	19.64904	0.2364
5	16.70274	0.4051
6	9.683745	0.8826

Probs from chi-square with 16 df.

Anexo F 11 - Teste LM autocorelação -VAR Modelo crédito automóvel empresa com variáveis significativas

VAR Residual Normality Tests Orthogonalization: Cholesky (Lutkepohl)


Null Hypothesis: residuals are multivariate normal

Date: 09/08/19 Time: 20:49 Sample: 1998Q1 2018Q4 Included observations: 73

Anexo F 12 - Teste Normalidade dos resíduos - VAR Modelo crédito

automóvel empresa com variaveis significativas

Component	Skewness	Chi-sq	df	Prob.
1	-0.079410	0.076722	1	0.7818
2 3	-0.289577	1.020231	1	0.3125
3	0.063606	0.049224	1	0.8244
4	-0.002993	0.000109	1	0.9917
Joint		1.146286	4	0.8869
Component	Kurtosis	Chi-sq	df	Prob.
1	3.346264	0.364691	1	0.5459
2	3.730124	1.621454	1	0.2029
3	5.143213	13.97147	1	0.0002
4	3.231058	0.162388	1	0.6870
Joint		16.12001	4	0.0029
Component	Jarque-Bera	df	Prob.	
1	0.441413	2	0.8020	
2	2.641685	2	0.2669	
3	14.02070	2	0.0009	
4	0.162497	2	0.9220	
Joint	17.26629	8	0.0275	

Anexo F 13 - Gráfico Resíduos - VAR Modelo crédito automóvel empresa com variaveis significativas

Endogenous variables: D1LCRD_EMPR D1TAX_DESE D1LREND_LIQ

D1CARGA_FIS_D11

Exogenous variables: C DUMMY2002Q1 DUMMY2002Q4

Date: 09/08/19 Time: 20:54 Sample: 1998Q1 2018Q4 Included observations: 73

Lag	LogL	LR	FPE	AIC	SC	HQ
0 1 2 3 4 5	43.57390 69.77664 90.53124 106.5135 137.0122 152.0860 173.0542	NA 47.38030 35.25438 25.39645 45.12141 20.64905 26.42561*	4.95e-06 3.75e-06 3.31e-06 3.36e-06 2.32e-06 2.48e-06 2.29e-06*	-0.865038 -1.144566 -1.274828 -1.274342 -1.671568 -1.646192 -1.782306*	-0.488524* -0.266033 0.105723 0.608227 0.713020 1.240414 1.606319	-0.714991 -0.794455* -0.724655 -0.524106 -0.721268 -0.495830 -0.431880

^{*} indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)

FPE: Final prediction error
AIC: Akaike information criterion
SC: Schwarz information criterion
HQ: Hannan-Quinn information criterion

Anexo F 14 - Teste Lag Length Criteria - VAR Modelo crédito automóvel empresa com dummy variaveis significativas

VAR Residual Serial Correlation LM Te Null Hypothesis: no serial correlation at

Date: 09/08/19 Time: 20:55 Sample: 1998Q1 2018Q4 Included observations: 73

Lags	LM-Stat	Prob
1	21.60709	0.1563
2	7.770459	0.9554
3	18.04017	0.3216
4	21.69672	0.1533
5	13.90742	0.6056
6	10.51401	0.8384

Anexo F 15 - Teste LM autocorelação -VAR Modelo crédito automóvel empresa com dummy variáveis significativas

Probs from chi-square with 16 df.

VAR Residual Normality Tests

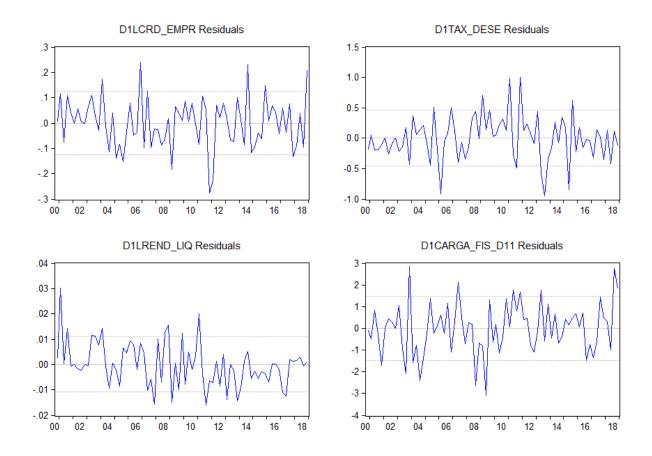
Orthogonalization: Cholesky (Lutkepohl)

Null Hypothesis: residuals are multivariate normal

Date: 09/08/19 Time: 20:56

Anexo F 16 - Teste Normalidade dos resíduos - VAR Modelo crédito automóvel Sample: 1998Q1 2018Q4 empresa com dummy variaveis significativas

Included observations: 73


Joint

6.300185

Component	Skewness	Chi-sq	df	Prob.
1	-0.035766	0.015564	1	0.9007
2	-0.241826	0.711504	1	0.3989
3	0.387689	1.828685	1	0.1763
4	-0.014260	0.002474	1	0.9603
Joint		2.558227	4	0.6342
Component	Kurtosis	Chi-sq	df	Prob.
1	3.309647	0.291639	1	0.5892
2	3.893588	2.428770	1	0.1191
3	3.524488	0.836724	1	0.3603
4	3.246504	0.184825	1	0.6673
Joint		3.741958	4	0.4421
Component	Jarque-Bera	df	Prob.	
1	0.307203	2	0.8576	
2	3.140274	2	0.2080	
3	2.665409	2	0.2638	
4	0.187299	2	0.9106	

8

0.6136

Anexo F 17 - Gráfico Resíduos - VAR Modelo crédito automóvel empresa com dummy variaveis significativas

Vector Autoregression Estimates Date: 09/08/19 Time: 20:54 Sample (adjusted): 2000Q4 2018Q4 Included observations: 73 after adjustments Standard errors in () & t-statistics in []

Anexo F 18 - Estimação VAR Modelo crédito automóvel empresa com dummy variaveis significativas

D1LCRD EM D1TAX DESE D1LREND LI D1CARGA FI					
D1LCRD EMPR(-1)	-0.163943	0.218958	-0.006318	-0.467536	
	(0.14098)	(0.51897)	(0.01237)	(1.66355)	
	[-1.16284]	[0.42191]	[-0.51054]	[-0.28105]	
D1LCRD EMPR(-2)	-0.083079	-0.490144	0.011799	-0.624212	
	(0.13531)	(0.49806)	(0.01188)	(1.59654)	
	[-0.61401]	[-0.98410]	[0.99348]	[-0.39098]	
D1LCRD EMPR(-3)	-0.017134	-0.989891	-0.021328	0.939701	
	(0.13465)	(0.49565)	(0.01182)	(1.58881)	
	[-0.12725]	[-1.99716]	[-1.80456]	[0.59145]	
D1LCRD EMPR(-4)	0.037544	-0.045456	0.011216	0.763224	
	(0.14125)	(0.51993)	(0.01240)	(1.66665)	
	[0.26580]	[-0.08743]	[0.90468]	[0.45794]	
D1LCRD EMPR(-5)	0.008821	0.576296	0.022222	0.874596	
	(0.13875)	(0.51075)	(0.01218)	(1.63722)	
	[0.06358]	[1.12833]	[1.82467]	[0.53420]	
D1LCRD EMPR(-6)	-0.151581	0.025649	0.020743	1.944426	
	(0.12843)	(0.47276)	(0.01127)	(1.51544)	
	[-1.18024]	[0.05425]	[1.84007]	[1.28308]	
D1TAX DESE(-1)	-0.064081	0.212067	-0.001872	-1.181098	
	(0.03993)	(0.14698)	(0.00350)	(0.47115)	
	[-1.60483]	[1.44281]	[-0.53404]	[-2.50683]	
D1TAX DESE(-2)	0.000309	0.107388	-0.000762	-0.086515	
	(0.04339)	(0.15971)	(0.00381)	(0.51197)	
	[0.00713]	[0.67238]	[-0.20002]	[-0.16899]	
D1TAX DESE(-3)	0.033643	0.011776	7.71E-05	0.043496	
	(0.03334)	(0.12271)	(0.00293)	(0.39334)	
	[1.00921]	[0.09597]	[0.02634]	[0.11058]	
D1TAX DESE(-4)	-0.054440	0.590565	-0.001014	0.681501	
	(0.03087)	(0.11363)	(0.00271)	(0.36424)	
	[-1.76358]	[5.19734]	[-0.37423]	[1.87104]	
D1TAX DESE(-5)	0.050061	-0.211797	0.001076	1.106503	
	(0.03902)	(0.14365)	(0.00343)	(0.46047)	
	[1.28282]	[-1.47441]	[0.31409]	[2.40300]	
D1TAX DESE(-6)	-0.112927	-0.091084	0.003838	0.274562	
	(0.04338)	(0.15968)	(0.00381)	(0.51187)	
	[-2.60318]	[-0.57041]	[1.00801]	[0.53639]	
D1LREND LIQ(-1)	2.349409	5.208678	-0.061908	-1.505671	
	(1.24847)	(4.59564)	(0.10958)	(14.7314)	
	[1.88183]	[1.13339]	[-0.56494]	[-0.10221]	
D1LREND LIQ(-2)	-0.378804	10.15831	-0.043746	9.197622	
	(1.29788)	(4.77752)	(0.11392)	(15.3144)	
	[-0.29186]	[2.12627]	[-0.38401]	[0.60059]	
D1LREND LIQ(-3)	-0.454313	8.509894	0.051172	22.84272	
	(1.43333)	(5.27609)	(0.12581)	(16.9125)	
	[-0.31696]	[1.61292]	[0.40675]	[1.35064]	
D1LREND LIQ(-4)	-0.361586	5.894945	0.128125	-4.376302	
	(1.40433)	(5.16936)	(0.12326)	(16.5704)	
	[-0.25748]	[1.14036]	[1.03945]	[-0.26410]	
D1LREND LIQ(-5)	-3.851436	5.341947	-0.028314	-10.59251	
	(1.37469)	(5.06025)	(0.12066)	(16.2207)	
	[-2.80168]	[1.05567]	[-0.23466]	[-0.65303]	
D1LREND LIQ(-6)	1.217613	-2.944348	-0.110870	-22.26463	
	(1.34032)	(4.93372)	(0.11764)	(15.8151)	
	[0.90845]	[-0.59678]	[-0.94243]	[-1.40781]	
D1CARGA FIS D11(-1)	-0.003959	0.018610	-0.001194	-1.110725	
	(0.01316)	(0.04844)	(0.00115)	(0.15526)	
	[-0.30086]	[0.38421]	[-1.03361]	[-7.15380]	
D1CARGA FIS D11(-2)	0.037837	0.024383	-0.000359	-0.975939	
	(0.01977)	(0.07276)	(0.00173)	(0.23324)	
	[1.91421]	[0.33512]	[-0.20681]	[-4.18435]	
D1CARGA FIS D11(-3)	0.022157	0.061862	-0.000581	-0.511518	
	(0.01997)	(0.07352)	(0.00175)	(0.23568)	
	[1.10929]	[0.84139]	[-0.33130]	[-2.17038]	
D1CARGA FIS D11(-4)	0.011877	0.068952	-0.001133	-0.125217	
	(0.01861)	(0.06851)	(0.00163)	(0.21962)	
	[0.63809]	[1.00639]	[-0.69327]	[-0.57015]	
D1CARGA FIS D11(-5)	-0.035341	0.105377	0.000104	-0.094871	
	(0.01580)	(0.05817)	(0.00139)	(0.18648)	
	[-2.23621]	[1.81139]	[0.07470]	[-0.50875]	
D1CARGA FIS D11(-6)	-0.031336	0.081587	-4.48E-06	0.096816	
	(0.01210)	(0.04455)	(0.00106)	(0.14282)	
	[-2.58892]	[1.83116]	[-0.00421]	[0.67788]	
С	0.018339	-0.224690	0.007158	0.206144	
	(0.02924)	(0.10763)	(0.00257)	(0.34501)	
	[0.62719]	[-2.08758]	[2.78895]	[0.59749]	
DUMMY2002Q1	0.054502	-0.426281	0.052026	-0.785982	
	(0.14291)	(0.52606)	(0.01254)	(1.68630)	
	[0.38136]	[-0.81032]	[4.14754]	[-0.46610]	
DUMMY2002Q4	0.079761	0.471959	-0.055472	0.404957	
	(0.15342)	(0.56475)	(0.01347)	(1.81032)	
	[0.51987]	[0.83569]	[-4.11927]	[0.22369]	
R-squared	0.557268	0.657440	0.640817	0.684782	
Adj. R-squared	0.307029	0.463818	0.437801	0.506615	
Sum sq. resids	0.708201	9.596011	0.005456	98.60161	
S.E. equation	0.124079	0.456737	0.010891	1.464074	
F-statistic	2.226938	3.395494	3.156480	3.843491	
Log likelihood	65.61275	-29.51993	243.2219		
Akaike AIC	-1.057883	1.548491	-5.923888	3.878231	
Schwarz SC	-0.210727	2.395647	-5.076732	4.725387	
Mean dependent	0.002395	0.038356	0.006660	0.043933	
S.D. dependent	0.149053	0.623750	0.014525	2.084348	
Determinant resid covari Determinant resid covari Log likelihood Akaike information criteri	iance (dof adj.) iance	6.51E-07 1.03E-07 173.0542 -1 782306			

Date: 09/08/19 Time: 21:19 Sample: 1998Q1 2018Q4 Included observations: 75 Anexo G 1- Granger Causality/Block Exogeneity Wald Tests VAR modelo crédito automóvel particular

Dependent variable: D1LCRD PAR

Excluded	Chi-sq	df	Prob.
D1TAX VAR	7.795647 11.72778	4	0.0994 0.0195
D1LREND LI	7.677655	4	0.1041
D1CARGA FI	6.747447	4	0.1499
All	31.16078	16	0.0128

Dependent variable: D1TAX VAR PIB

Excluded	Chi-sq	df	Prob.
D1LCRD PA	25.77376	4	0.0000
D1TAX DESE	17.27594	4	0.0017
D1LREND LI	4.150926	4	0.3860
D1CARGA FI	10.60965	4	0.0313
All	50.93769	16	0.0000

Dependent variable: D1TAX DESE

Excluded	Chi-sq	df	Prob.
D1LCRD PA	5.007016	4	0.2866
D1TAX VAR	7.969104	4	0.0927
D1LREND LI	6.454846	4	0.1677
D1CARGA FI	0.794345	4	0.9392
All	31.69804	16	0.0109

Dependent variable: D1LREND LIQ

Excluded	Chi-sq	df	Prob.
D1LCRD PA	9.044144	4	0.0600
D1TAX VAR	4.327377	4	0.3635
D1TAX DESE	3.104463	4	0.5405
D1CARGA FI	6.416339	4	0.1701
All	17.70537	16	0.3414

Dependent variable: D1CARGA FIS D11

Excluded	Chi-sq	df	Prob.
D1LCRD PA	1.266454	4	0.8670
D1TAX VAR	0.744054	4	0.9458
D1TAX DESE	3.509793	4	0.4764
D1LREND LI	2.604801	4	0.6260
All	11.94072	16	0.7481

VAR Granger Causality/Block Exogeneity Wald Tests

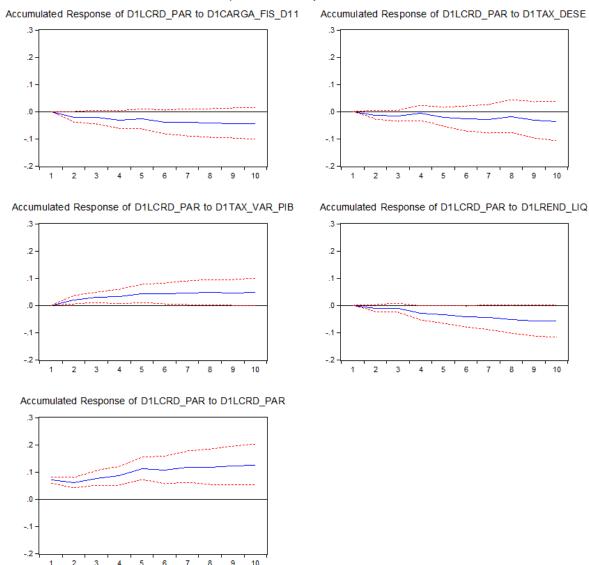
Date: 09/08/19 Time: 21:25 Sample: 1998Q1 2018Q4 Included observations: 73 Anexo G 2 - Granger Causality/Block Exogeneity Wald Tests VAR modelo crédito automóvel empresa

Dependent variable: D1LCRD EMPR

Excluded	Chi-sq	df	Prob.
D1TAX DESE D1LREND LI D1CARGA FI	15.77363 10.78721 26.66808	6 6 6	0.0150 0.0952 0.0002
All	48.44782	18	0.0001

Dependent variable: D1TAX DESE

Excluded	Chi-sq	df	Prob.
D1LCRD EM D1LREND LI D1CARGA FI	9.230187 8.910666 4.743117	6 6 6	0.1610 0.1787 0.5772
All	18.94929	18	0.3950


Dependent variable: D1LREND LIQ

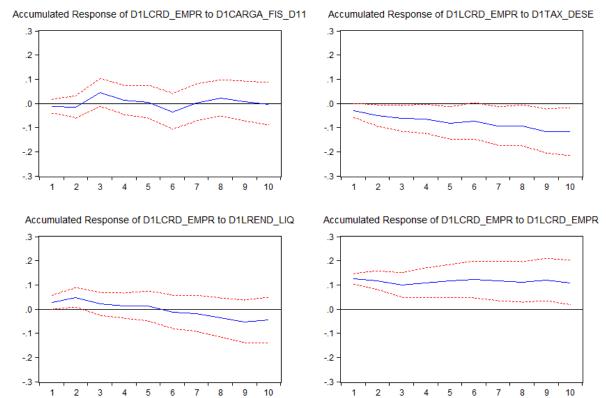
Excluded	Chi-sq	df	Prob.
D1LCRD EM D1TAX DESE D1CARGA FI	15.26748 2.351699 4.249973	6 6 6	0.0183 0.8847 0.6429
All	20.03786	18	0.3307

Dependent variable: D1CARGA FIS D11

Excluded	Chi-sq	df	Prob.
D1LCRD EM D1TAX DESE D1LREND LI	2.192599 12.59284 5.967467	6 6 6	0.9012 0.0500 0.4268
All	22.24927	18	0.2211

Accumulated Response to Cholesky One S.D. Innovations ± 2 S.E.

Anexo H 1- Função Impulse Response Cholesky (resposta do crédito automóvel particular aos choques provocados pelas outras variáveis) – VAR Modelo crédito automóvel particulares



Anexo H 2 - Função Impulse Response Generalized Impluses (resposta do crédito automóvel particular aos choques provocados pelas outras variáveis) – VAR Modelo crédito automóvel particulares

Anexo H 3 - Função Impulse Response Cholesky (resposta do crédito automóvel empresa aos choques provocados pelas outras variáveis) – VAR Modelo crédito automóvel empresa

Accumulated Response to Generalized One S.D. Innovations ± 2 S.E.

Anexo H 4 - Função Impulse Response Generalized Impluses (resposta do crédito automóvel empresa aos choques provocados pelas outras variáveis) – VAR Modelo crédito automóvel empresa