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Abstract 

As an emerging stock market with enormous potential, Chinese stock market has apparent 

volatility clustering appearance along with typical feature of leptokurtic, negative skewness and 

fat tail in its index yield series. The model based on traditional normal distribution often 

underestimate the risk, which would lead to profound loss for the investors and financial 

institution when the extreme events happened. VaR(Value at Risk), which measures risk as a 

certain value, is widely used in financial industry for its intuitive and concise characteristics. 

Since parameter method of the VaR calculation is the mostly implementation in practice, the 

choice of appropriate probability distribution function and variance can quite improve its 

accuracy. Therefore, the conditional variance is estimated by GARCH-type models and the 

assumption of normal distribution is replaced by skewed-t distribution. Compared with the 

common RiskMetrics based on normal distribution, the ARMA-GJR-GARCH-skewed-t model 

has better adaptability and precision for the VaR estimation of indices of Chinese stock markets. 

Key words: Value at Risk, Volatility, GARCH  

JEL Classification: C15, G17 
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Resumo 

Como um mercado emergente de ações com enorme potencial, o mercado acionário chinês 

tem uma aparente aparência de agregação de volatilidade, juntamente com uma característica 

típica de leptocurtice, assimetria negativa e cauda gorda em sua série de índices de rendimento. 

O modelo baseado na distribuição normal tradicional freqüentemente subestima o risco, o que 

levaria a perdas profundas para os investidores e instituições financeiras quando os eventos 

extremos acontecessem. O VaR (Value at Risk), que mede o risco como um determinado valor, 

é amplamente utilizado no setor financeiro por suas características intuitivas e concisas. Como 

o método de parâmetro do cálculo do VaR é a maior parte da implementação na prática, a 

escolha da função de distribuição de probabilidade apropriada e da variância pode melhorar 

bastante sua precisão. Portanto, a variância condicional é estimada pelo modelo GARCH-types 

e a suposição de distribuição normal é substituída pela distribuição skewed-t. Comparado com 

o comum RiskMetrics baseado na distribuição normal e outros modelos do tipo GARCH-

skewed-t, o modelo ARMA-GJR-GARCH-skewed-t tem melhor adaptabilidade e precisão para 

a estimativa de VaR de índices dos mercados de ações chineses. 

Palavras-Chave: Valor em Risco, Volatilidade, GARCH 

JEL Classificação: C15, G17 



 

 
III 

 

 

 

 

 

 

 

 

 

 

Acknowledgements 

It’s a great honor for me to have Prof. José Dias Curto as my supervisors. 

To my parents for the support and comprehension that had with me along the way. 

To all the friends who support me and encourage me to complete the work  

especially for Rui Zhang and Liangchen Fei with their incentive words . 

 

 

 

 

 

 

 

 

 

 



 IV 

Table of Contents 

Abstract ..................................................................................................................................... I 

Resumo ..................................................................................................................................... II 

Acknowledgements ................................................................................................................ III 

Chapter 1: Introduction ........................................................................................................... 1 

1.1 Research background ................................................................................................... 1 

1.2 Relevant theoretical literature review .......................................................................... 4 

1.3 Research idea and structure .......................................................................................... 8 

Chapter 2: Technical method .................................................................................................. 9 

2.1 Introduction of model setting ....................................................................................... 9 

2.1.1 Introduction of GARCH-type model ................................................................. 9 

2.1.2 The data distribution of the model setting ....................................................... 12 

2.1.2.1 The normal distribution ........................................................................ 13 

2.1.2.2 The skewed-t Distribution .................................................................... 13 

2.2 Introduction of value at risk (VaR) ............................................................................. 16 

2.2.1 VaR of RiskMetrics model .............................................................................. 16 

2.2.1 VaR of GARCH-type model ............................................................................ 17 

2.3 Introduction of the tests implemented in the model analysis ..................................... 17 

2.3.1 Introduction of the tests implemented in the model estimation ...................... 17 

2.3.2. Value at Risk backtesting method .................................................................. 19 

Chapter 3: Data analysis and empirical research ............................................................... 21 

3.1 Data analysis .............................................................................................................. 21 

3.1.1 The data selection. ........................................................................................... 21 

3.1.2. The basic data characteristics ......................................................................... 23 

3.1.3 Data analysis of time series dataset ................................................................. 25 

3.1.3.1 Unit root test ......................................................................................... 25 

3.1.3.2 ACF and PACF test .............................................................................. 27 

3.1.3.3 Autoregressive conditional heteroscedasticity (ARCH) test for ARMA 

model ................................................................................................................ 28 



 

 
V 

3.2 Empirical research ...................................................................................................... 29 

3.2.1 GARCH-type model estimation process ......................................................... 29 

3.2.2 Parameter Estimation and Model Comparison ................................................ 32 

3.3 VaR forecasting and backtesting ................................................................................ 37 

Chapter 4: Conclusion and research perspectives .............................................................. 40 

Bibliography ........................................................................................................................... 42 

 

 



 

 
1 

Chapter 1: Introduction 
1.1 Research background  

The return of financial assets and their risks have always been a major concern for 

investors, financial institutions, and national authorities. In 1952, Markowitz who won the 1990 

Nobel Prize in Economics by proposing the mean-variance model for risk measurement, first 

introduced the mathematical statistics method into the applied to study of portfolio selection. 

However, the normal distribution of the traditional finance hypothesis is constantly under attack 

in specific financial practices since in reality the returns of financial assets have the properties 

of negative skewness, leptokurtic and fat tail, which could not be fully described by the two 

parameters, mean and variance. And the variance is not always constant as the it was assumed 

in the normal distribution. As one of the stylized facts of time series, the volatility clustering, 

first documented as Mandelbrot (1963), indicates that the volatility has the gathering tendency 

as the large changes would be followed by large changes and the small one tends to be followed 

by small changes. In the believe that volatility is dependent upon past realizations of the asset 

process and related volatility process, Engle(1982) proposed the ARCH model and a few years 

later Bollerslev(1986) extended it into the GARCH model by build the ARMA model for the 

error variance. As more exogenous regressors were added into the GARCH model, the standard 

GARCH model generated into lots of derivative models such as the Absolute Value GARCH 

(AV-GARCH) model of Taylor (1986) and Schwert (1990), the exponential GARCH (E-

GARCH) model by Nelson & Cao (1991), Glosten-Jagannathan-Runkle GARCH (GJR-

GARCH) model with the asymmetry factor γ by Glosten, Jagannathan and Runkle (1993), the 

Threshold GARCH (T-GARCH) model of Zakoian (1994) and so on. Meanwhile, the normal 

distribution assumption applied to the GARCH was found out not enough to explain the 

negative skewness, leptokurtic and fat tail. Various distributions have been implemented to 

describe the dataset such as student-t distribution, generalized error distribution, normal inverse 

gaussian distribution, Johnson’s SU distribution and so on.  

As the common characteristics of emerging markets, the government policy impacts 

heavily in the evolution of Chinese stock market. Unlike the efficient market of the developed 
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countries, the development of the policy-dependent stock market relies heavily on the 

intervention of national policies instead of the market regulation. The stock returns react 

differently to the "good news"(positive shock) and "bad news"(negative shock), which leads to 

the asymmetry of yield distribution. Furthermore, the property of return distribution such as 

negative skewness, leptokurtic and fat tail acts against the normal distribution assumption 

applied to traditional financial theory of market asset pricing, portfolio management and risk 

management.  

According to " China Household Finance Survey"(released on May 13, 2012 by the 

institution China Household Finance Survey, consist of Southwestern University Of Finance 

And Economics and The People's Bank Of China, nearly 6% of new investors in China's stock 

market are illiterate, 25% have only received primary education, and about one-third have only 

completed junior high school education. Overall, Chinese stock investors have a low level of 

education even without financial basics. The irrational investors, nonstandard market order and 

the incomplete competitive regulation buildup the irrationality of the Chinese stock market and 

makes the of the stock price more sensitive to the released information and end up with high 

volatility.  

 

 

 

 

 

 

 

Figure 1-1 Curve of the close price points of Index SSE from year 1990 to 2019 

Source: Sina Finance 

 

 

 

 

 



 

 
3 

 

 

 

 

 

 

 

Figure 1-2 Curve of the close price points of Index SHE from year 1991 to 2019 

Source: Sina Finance 

Figure 1-1 and 1-2 give the evolution curve of the close price for Index SSE and SZSE 

from its starting date until now, which illustrates the obvious volatility clustering. Take the 

recent 2015-2016 Chinese stock market crash for example, due to the collateral damage of the 

2009 global financial crisis, the Chinese company have been waddling down their debt. The 

economy growth used to benefit from the “real estate” has been in the slump since 2014. In 

order to get rid of the predicament, Chinese government attempted to prosper the Chinese stock 

markets evolution by affirmative action policy such as encouraging the company to raise 

finance by equity financing meanwhile decrease the high leverage rate. High leveraged 

investment (the leverage rate raised from 2.5~3 times to 5.5~6 times by the China Securities 

Regulatory Commission(CSRC)) approaches like securities margin trading and structured fund 

were available for individuals even without deep pockets. Good news and promising future 

have mobilized the investment passion of irrational investors, which leads to the fast-

forwarding of market bubbles due to the overheating of virtual market. Under the circumstance, 

the Chinese government began to strengthen the regulation by increasing  the stamp duty and 

adjusting the leveraged financing costs while the CSRC inspected off-site funding resource. 

Since the risk hedging of Chinese stock index futures or option is not available for individuals,  

large number of highly leveraged accounts were forced to close due to the free-fall. The 

insufficiency of risk control and management took its toll on investors especially individuals 

with enormous stock market value vaporized, which evoke the implementation of robust risk 

management method such Value at Risk. 
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1.2 Relevant theoretical literature review 

As an implied assumption in the GARCH model, the positive shocks and the negative 

shock share the same weight (the absolute values are equal) as for their impact to the conditional 

variance. The terminology “leverage effect” was proposed by Black (1976) to describe the 

significantly different effects on the stock price volatility by the positive shocks (actual rate of 

return is greater than expected rate of return) and the negative shocks (real rate of return is less 

than expected rate of return). As he observed, when the leverage effect exists, the volatility of 

the stock price increases due to the appearance of negative shocks and decreases with the 

appearance of positive shocks. From an economic point of view, Christie's (1982) explained 

that the impact of negative information(price decline) would reduce the ratio of shareholders' 

equity relative to debt as a result to increase the leverage rate, which expose the company stock 

into more risk and more volatile. The empirical researches also testify the exist of leverage 

effect in several countries’ market. The asymmetry impact was found in Dan Mai, Norway, 

Sweden and Finland by Booth(1997), in Greece by Koutmos(1993), in American by Cheung 

and Ng(1992), in Canada, France and Japan by Koutmos(1992), and in England by Yeh(2000), 

where the negative shocks impact more than the positive shocks. 

With the development of Chinese stock market, the GARCH-type models become very 

popular in the implementation for the estimation of various Chinses indices. In early research, 

the practical evidence in Chinese stock markets found by the Chinese scholars seems to be 

contrary to the results found in the developed countries. Lu and Xu(2004) found the positive 

shocks impact more on the volatility based on the estimation of model Index SSE(from year 

1990-2003) and SZSE(from year 1991-2003) modeled by E-GARCH and the reason is ascribed 

to  

(1) the policy-dependent stock market, where both the government and public favor the 

stock price to rise; 

(2) the irrational investment attitude of Chinese individual investor compared with the 

rational foreign investor most consist of institutional investors; 

(3) the unavailability information for the individual Chinese investors with deficiency of 

company disclosure. 
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(4) the lack of short-selling method makes the investors benefit only from the price rise. 

As more tests have been performed in these major indices with large volume among 

investors with the updating data, most research of Chinese stock market shows similar 

appearance as the findings in western country. 

 Lin(2018) performed the test of modelling and forecasting the stock market volatility of 

SSE Composite Index(daily closing prices over the period extending from July 26, 2013 to July 

28, 2017) using GARCH models. To better describe the significant properties of SSE 

Composite Index as time-varying, clustering, leptokurtosis and significant ARCH and GARCH 

effects, he compared the fitting and forecast result of GARCH (1, 1) (symmetric), TARCH (1, 

1) and EGARCH (1, 1) (asymmetric), and found the EGARCH (1, 1) outperforms the others. 

The advice he finally gave is to strengthen the country’s system construction, reduce excessive 

government intervention and advocate rational investment philosophy for Chinsese investors. 

    The SSE50 Index also been tested by Li and Zhang (2017) performed the unit root test, 

serial correlation test and (G) ARCH model method to analyze the effectiveness of the stock 

index and futures market. The dataset they chose is the high-frequency data of every five 

minutes since the early days of CSI 500 and SSE50 on April 16, 2015 to June 16, 2015 and they 

found the weak-form efficiency appeared in the Chinses stock index and future market. They 

also suggested the financial reform and structural reform by supply-side to be taken by Chinese 

government. 

The industrial Index is also taken into consideration by the Chinese scholars. As the 

industry which attracts most of investment but has lower down its growth recently, the Index 

of real estate was studied by Zhou(2018) to understand the volatility and risks of China's real 

estate stock market. By selecting the daily closing prices from January 5,2010 to June 30, 2017 

as sample data, he studied the ARCH effect on this industry index by modeling the volatility of 

the time serials date through GARCH and TARCH models, where he found the ARCH effect is 

aggregative and persistent. Moreover, the asymmetry and leverage effect also exist since the 

investors are more sensitive toward negative news. Their reactions to sell the stock while the 

price is decreasing would cause the stock price to fluctuate. 

As a newly emerged section in Chinese stock market with huge potential and government 

support, the Index CHINEXT, considered as the IPO platform for the high-tech enterprise, also 
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attracts attentions of researches’ interest and its VaR based on GARCH model was estimated 

by Ren, Dan and Liang(2015) and Song and Chen(2018) with T and GED distribution against 

the normal distribution.  

The Chinese scholars also tried to apply different GARCH-type models to get better 

analysis performance. Based on the GJR-GARCH, GJR-M-GARCH, E-GARCH and E-

GARCH-M model, He and Sun(2003) found negative shocks impact more to the volatility of 

Index SSE, SZSE and SHE in the period from year 1993 to 2002 and they concluded the GJR-

GARCH model has better performance.  

Different factors like hot money, government policy, behavior of investors and so on that 

may have an influence toward Chinese stock market have been put special attention by some 

Chinese scholars.  

Based on the nonlinear Granger causality test and a new GARCH-class model originated 

on the mixed data sampling regression (GARCH–MIDAS), Wei, Yu, Liu and Cao(2018) 

investigated the influence between hot money on the return and volatility of the Chinese stock 

market. In their empirical results, there is neither linear nor nonlinear causality exists between 

the growth rate of hot money and the return of Chinese stock market, which finally indicates 

that the hot money should not be a value driven factor. However, considering hot money shows 

a significant positive impact on the long-term volatility of the Chinese stock market, and 

relevance between the long-term volatility caused by hot money and the total volatility of the 

Chinese stock market is time-variant, they concluded that the huge volatilities in the Chinese 

stock market are not always elicited by international speculation capital flow. Their suggestion 

toward Chinese authorities is to pay further attention to more systemic reforms in the 

completion of transaction rules to effectively regulate the Chinese stock market. 

The government’s policy is another important influence factor in Chinese stock market. 

For instance, the bailout policies for the stock disaster in 1994 and in 2015 for Shanghai-Hong 

Kong Stock Connect have significant impact on the Chinese stock market over time. Wang, 

Tsai and Li(2017) implemented the family of GARCH models to evaluate the structural changes 

in risks with the execution of a series of policies. Their empirical result indicates that substantial 

volatility is in the wake of certain policies, which is a little bit off their primary target to improve 
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or stabilize the stock market. Among plenty of policies, macro-control policies and transaction 

cost adjustments, which are refer to the double-edged sword, should be used with caution.  

Investors’ attitude also has great impact on the stock market. From the perspective of 

industry life cycle, by establishing GARCH, TARCH and EGARCH model, Du and Xie (2018) 

evaluate the influence of variations in QFII(Qualified Foreign Institutional Investor) 

shareholding tendency on the stock returns volatility of 19 industries in Chinese. Among their 

empirical results, firstly, in terms of the significant asymmetry effect appears in the returns’ 

volatility of A-shares of listed companies in the construction, manufacturing and real estate 

industries, the E-GARCH model can better  

reveal the impact of the stock returns volatility caused by the differences of QFII’s shareholding. 

Secondly, instead of participating in the industries that already been developed and slow down 

to the recession period, QFII is more likely to hold those stocks of the growing industries with 

high potential such as finance or real estate for a good while.  

Value of Risk method based on the GARCH-type models was also implemented in the 

Chinese market. Chen and Yu(2002) estimated the VaR based on GARCH model with t 

distribution and GED distribution while the VaR based the extended GARCH model such 

EGARCH and PARCH was estimated by Gong, Chen and Yang(2005) 

But as a measure of risk, VaR is more frequently used in the estimation of China's stock 

index futures and spot markets in recent years.  

Zhou and Li(2016) make the empirically investigation by apply a VAR-GARCH model 

with SSAEPD margins to the daily data of China's stock index futures and spot markets to find 

out the correlation between price discovery and information transmission. By implementing the 

VAR-DCC-GARCH model, Yue, Liu and Shan(2015) discovered the co-movement between 

Chinese nonferrous metal prices and global nonferrous metal prices represented by the 

nonferrous metal prices from London Metal Exchange (LME). In Zhao(2010)’s research, the 

VAR and multivariate generalized autoregressive conditional heteroskedasticity (GARCH) 

models can be applied to the empirical analysis of the dynamic relationship between Renminbi 

(RMB) real effective exchange rate and stock price by using monthly data from January 1991 

to June 2009.  
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1.3 Research idea and structure 

With the self-improvement and the more completed regulation of Chinese stock market, 

the performance and characteristics also changed with the evolution. Therefore, we’d like to 

estimate the resent status of Chinese stock market through the GARCH-type(E-GARCH and 

GJR-GARCH) model with the skewed-t in order to better capture the volatility affected by 

leverage effect and the negative skewness, leptokurtic and fat tail feature of the dataset. 

Meanwhile, the VaR is also calculated and compare with the traditional RiskMetrics model for 

the practical application in reality. To give a general analysis of Chinese stock market, not only 

the most estimated Index SSE, SHE, SZSE and CHINEXT, the industrial representative Index 

SSEII, SSECI, SSEREI and SSEUI were also included in the estimation to see if our method 

can adapt to the whole market. 

The dissertation is divided into 5 chapters: 

Chapter 1 is the introduction part where we demonstrate the research background, relevant 

literature review and our research method and structure. 

Chapter 2 is the methodology part where we present the academic theory and mathematic 

method for our model settings and the following tests. 

Chapter 3 is the empirical evidence where we implemented the GARCH-type models in 

the dataset.  

Chapter 4 consists of the VaR forecasting results showed by graph along with the 

backtesting method. 

Chapter 5 is the conclusion to summarize the whole dissertation and research perspective. 
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Chapter 2: Technical method 

    The chapter 2 technical is organized in two parts. In the first part, we introduce the academic 

theory and mathematic method for our model settings. In the second part, we are going to 

elaborate several tests implemented in the model in details. 

2.1 Introduction of model setting  

    At first, we are going to give the specific introduction of GARCH-type models including 

standard GARCH model, E-GARCH model and GARCH model and their detailed 

mathematical method. Secondly, we interpret how to calculate the value of risk based on the 

RiskMetrics(matched group) and GARCH-type models. Finally, we also introduce the skew-t 

distribution implemented in the GARCH-type model to fit better with the data of the leptokurtic 

and heavy tail. 

2.1.1 Introduction of GARCH-type model 

    Denote xt (t = 1, …, T) as a set of time series of financial returns. We can divide it the 

'features' into three parts: 

(1) Conditional mean which contains all the information about the location of the distribution.  

(2) Conditional variance which contains a measure of the dispersion of the distribution.  

(3) Shape parameters (including skewness and kurtosis which determines the conditional 

distribution shape. 

In traditional economic models, the variance of the disturbance is assumed to be constant. 

However, many time-series data show both staged violent fluctuations and phased relative 

stability. In this case, it is not appropriate to assume that the variance is constant (the same 

variance). One way to predict variance is to introduce an independent variable to estimate 

volatility. 

ARMA model: 

    Peter Whittle (1951) firstly described the general ARMA model in his thesis, which is used 

to provide a parsimonious description of a (weakly) stationary stochastic process in terms of 

two polynomials as for the statistical analysis of time series. The autoregressive–moving-
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average (ARMA) model is a hybrid model of the autoregression (AR) model and the moving 

average (MA) model.  

The AR(p) model is written as followed with p order autoregressive terms: 

(1) 

The MA(q) model is written as followed with q order moving terms: 

(2) 

Then he ARMA (p, q) model consists of the AR(p) and MA(q) models with p 

autoregressive terms and q moving-average terms: 

 

(3) 

Peter Whittle (1951) describe the general ARMA model was described through the 

mathematical analysis (Laurent series and Fourier analysis) and statistical inference. But the 

ARMA models were actually popularized by George E. P. Box and Jenkins (1970) in a book, 

where they expounded an iterative method for choosing and estimating the model. To be clarify, 

estimated by Hannan & Deistler (1988), the (Box–Jenkins) method was useful for low-order 

polynomials (of degree three or less). 

 

ARCH(q) model: 

The ARCH model is combined with the mean equation and the conditional variance 

equation, where the conditional variance σ2 of the error term would be influenced by the 

variables from the previous time: 

(4) 

 

(5) 

with the constrains of α0 > 0 and αi ≥ 0, i>0. 

Engle (1982) pointed out that even though the least squares method can produce unbiased 

estimates, it is more efficient to use the maximum likelihood estimation method to estimate the 

variables. 

 

GARCH(p,q) 

Xt = c +
i=1

p

∑ϕ i Xt−i + ε t .

Xt = µ + ε t + θ i
i=1

q

∑ ε t−i

Xt = c + ε t +
i=1

p

∑ϕ i Xt−i +
i=1

q

∑θ iε t−i .

σ t
2 =α0 +α0ε t−1

2 +!+α qε t−q
2 =α0 +

i=1

q

∑α iε t−i
2

yt = ′xtb+εt
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Bollerslev(1986) extended the original ARCH model into the generalized ARCH model 

by assuming that the error variance can be model by the ARMA model, so that the lagged values 

can be more elastic in the structure. 

(6) 

(7) 

(8) 

A crucial feature of the observed behavior of financial data is that whether the GARCH model 

can capture the volatility clustering, which may be quantified in the persistence parameter . 

It can be calculated as  

                                         (9) 

E-GARCH model 

    Nelson & Cao (1991) extended the GARCH model into the exponential generalized 

autoregressive conditional heteroskedastic (EGARCH) model through the assumption that asset 

volatility is negative correlated with the return on assets. In other words, the volatility tends to 

decline when the return is positive as the asset prices rise. On the contrary, the volatility tends 

to increase when the return is negative as the asset prices fall. 

 

(10) 

where the coefficient αj capturing the sign effect, γj the size of effect (impact of a 

magnitude of a shock (size) /arch effect / spillover effect) and β the persistence of past volatility 

(past volatility explains for the current volatility). The parameter Zt allows the sign and the 

magnitude to have separate effects on the volatility while it can be a standard normal variable 

or come from a generalized error distribution. If αj is statistically significant from zero, it 

indicates there exists asymmetric effect (bad news and good news of the same size have 

different impacts). For example, if αj is negative, leverage effect: bad news has more impact 

than the good news of the same size. 

The persistence  is given by, 

P̂

P̂ =
j=1

q

∑α j +
j=1

p

∑β j.

loge σ t
2( ) = ω +

j=1

m

∑ζ jυ jt

⎛

⎝
⎜

⎞

⎠
⎟ +

j=1

q

∑ α j zt− j + γ j zt− j − E zt− j( )( )+
j=1

p

∑β j loge σ t− j
2( )

P̂

yt = ′xtb+ ε t
εt |ψ t−1 ~ N (0,σ t

2 )

σ t
2 =ω +α1εt−1

2 +!+α qεt−q
2 + β1σ t−1

2 +!+ β pσ t− p
2 =ω + α i

i=1

q

∑ εt−i
2 + βi

i=1

p

∑ σ t−i
2
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                                       (11) 

GJR-GARCH model 

The asymmetric effects of positive and negative shocks in the ARCH process are taken 

into consideration by Glosten, Jagannathan and Runkle (1993) through the Glosten-

Jagannathan-Runkle GARCH (GJR-GARCH) via the use of the indicator function I, 

            (12) 

It-j = !1			𝑖𝑓	𝜀'() < 0
0				𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                               (13) 

where γj now represents the “leverage” term. The positive γj indicates the exist of lever 

effect and the magnitude is the absolute value of γj. And the persistence formula also changed 

due to the presence of the indicator function and it crucially depends on the asymmetry of the 

conditional distribution used, 

                         (14) 

where κ is the expected value of the standardized residuals zt below zero (effectively the 

probability of being below zero), 

                    (15) 

the f function stands for the standardized conditional density with any additional skew and 

shape parameters. For instance, under the scenario of symmetric distributions, we have the κ 

simply equal to 0.5. 

2.1.2 The data distribution of the model setting 

The traditional GARCH model that based on the assumption of normal distribution is not 

sufficient to characterize the and heavy tail feature of Chinese stock market considering all the 

indices with the kurtosis above 5 and obvious negative skewness. Therefore, the distribution 

that is more capable to capture the asymmetry and peakness of data should be found and 

implemented to the GARCH model. Here we introduce the skew-t distribution. 

 

P̂ =
j=1

p

∑β j.

σ t
2 = ω +

j=1

m

∑ζ jυ jt

⎛

⎝
⎜

⎞

⎠
⎟ +

j=1

q

∑ α jε t− j
2 + γ j It− jε t− j

2( )+
j=1

p

∑β jσ t− j
2

P̂ = α j + β j +
j=1

p

∑ γ jκ
j=1

q

∑
j=1

q

∑

κ = E It− j zt− j
2⎡⎣ ⎤⎦ = f z,0,1,…( )

−∞

0

∫ dz
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2.1.2.1 The normal distribution 

As a matched group, the RiskMatrics model we chose to give a comparison of Value at 

risk is the iGARCH model(1,1) based on the normal distribution. The Normal Distribution 

known as a spherical distribution is described completely by the first moments(mean) and the 

second moments(variance). 

                         (16) 

2.1.2.2 The skewed-t Distribution 

Bollerslev (1987) is the first person to apply the student-t distribution in the GARCH 

model for fitting the standardized innovations as an alternative to the normal distribution. Its 

probability density formula is described completely by a shape parameter υ, 

                        (17) 

where υ is the number of degrees of freedom and Γ is the gamma function. By adding the shape 

parameter υ, the Student distribution can fit the data with leptokurtic since the excess kurtosis 

will be equal to 6/(υ − 4) for ν > 4. But it cannot deal with the negative skewness since it has 

zero skewness when υ is bigger than 3. 

Originated from the original student t distribution, Hansen (1994) proposed the skewed-t 

distribution, then it was extended by Fernandez and Steel (1998). By adding the skewness 

parameter based on the student-t distribution, the skewed-t distribution can better describe the 

asymmetric and fat tail features of financial asset serials. Define: 

                               (18) 

       (19) 

   (20) 
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If the sequence zt fulfill the condition(1)、(2)、(3) and has the mean of 0 and variance 

of 1, it can be considered follow a standard skewed-t distribution, write zt~SKST(0,1,ξ,ν), so 

the probability density function of zt is  

 

(21) 

where ξ is the asymmetric parameter, so as the skewness parameter; υ (>2) is the degree 

of freedom, so as the tail parameter. At the meantime, when zt ≥ -m/s, dt = 1, when zt < -m/s, dt 

= -1, the standard variance and mean function of the skewed-t distribution is defined 

respectively as follows: 

                         (22) 

            (23) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-1 Positive skewed-t distribution density curve compared with normal 

distribution curve 
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Figure 2-2 Negative skewed-t distribution density curve compared with normal 

distribution curve 

 
Figure 2-3 skewed-t distribution density curve of eight indices compared with their 

normal distribution curve 

The figure 2-1 shows the comparison between the normal distribution density function 

curve and the probability density function graph with the skewness parameter ξ of +0.5 and the 

tail parameter ν of 4.2, 5.8, 6.2, 7.4, 9.6, 15.8, 25.0, respectively, and the comparison with the 
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normal distribution density function. The figure 2-2 shows the comparison between the normal 

distribution density function curve and the probability density function graph with the skewness 

parameter ξ of -0.5 and the tail parameter ν of 4.2, 5.8, 6.2, 7.4, 9.6, 15.8, 25.0, respectively, 

and the comparison with the normal distribution density function. 

As can be seen from figure 2-3, the histogram of the standardized residuals of the eight 

index returns of the observed period year 2010 to 2018 was presented, along with the fitted 

normal distribution density curve and skewed-t density curve. It’s quite distinct that the skewed-

t density curve (the orange one) can fit the dataset much better than the normal distribution 

density curve (the blue one) for both situations, the clear negative skewed situation of SZSE, 

CHINEXT, SSEII, SSECI and the leptokurtic situation of all indices. 

2.2 Introduction of value at risk (VaR) 

Value at risk (VaR) as a highly effective risk quantification technology developed 

internationally is a measurement of the risk. While in a stated duration, given the hypothetic 

market conditions, it can estimate how much a profile might lose (with a given probability).  

The VaR of X at the confidence level α ∈ (0,1) is the smallest number y so that the 

probability that Y : = - X does not exceed y is at least 1-α, so to speak, mathematically, VaRα(X) 

is the (1-α)-quantile of Y. As the most generalized VaR definition is presented as follow: 

                (24) 

2.2.1 VaR of RiskMetrics model  

In order to make a comparison between the VaR estimated by GARCH-type models and 

the traditional method, RiskMetrics model is chosen as a benchmark. RiskMetrics (released in 

October 1994. by J.P. Morgan) is a methodology that contains techniques and data sets used to 

calculate the value at risk (VaR) of a portfolio of investments. 

Unlike the skew-t distribution we used in GARCH type models, which fits well for the 

actual situation of Chinese stock market, the RiskMetrics methodology for calculating the VaR 

assumes that the asset returns follow a normal distribution. JP Morgan set a value for the decay 

factor, being 0.94 for daily and 0.99 for monthly holding periods. As we implement the decay 

VaRα X( ) = inf x ∈R : FX x( ) >α{ } = FY−1 1−α( )
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factor 0.94 in the IGARCH(1,1)model of the daily stock returns under normal distribution, the 

Riskmetrics model is showed as follow: 

                       (25) 

 where zt follows i.i.d.(standard Gaussian) normal distribution Ν (0,1) 

2.2.1 VaR of GARCH-type model  

The traditional parametric method to calculated VaR is defined with the mean μ and the 

standard deviation σ as follow: 

                          (26) 

where N−1(.) is the inverse of the cumulative normal distribution at a given confidence 

level X. 

As for the GARCH-type model with skewed-t distribution, the standard deviation σ 

(unconditional variance) would be replaced with conditional variance calculated by the model. 

And the N−1 is also replaced with the critical value on the skewed-t distribution of the selected 

probability.  

2.3 Introduction of the tests implemented in the model analysis 

2.3.1 Introduction of the tests implemented in the model estimation 

Autoregressive conditional heteroskedasticity test (ARCH test) 

Under a dynamic conditional variance process, even an uncorrelated time series can be 

serially dependent, this time series that exhibits conditional heteroscedasticity (also called 

autocorrelation in the squared series), is said to have autoregressive conditional heteroscedastic 

(ARCH) effects. Engle (1982) proposed a Lagrange multiplier test (called ARCH test for short) 

to assess the significance of ARCH effects.  

                    (27) 

                        (28) 

σ t
2=0.06εt−1

2 +0.94σ t−1
2 .

εt=ztσ t ,{

VaR X( ) 	 = 	µ 	+ 	σ 	N −1 X( )

Ha : et
2 =α0 +α1et−1

2 +…+αmet−m
2 + ut

H0 :α0 =α1 =…=αm = 0
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If we don’t reject the null hypothesis, the parameter αm is not significant, which left us 

with only the white noise ut, and the alternative hypothesis is the existence of autocorrelation 

in the squared residuals, the test statistic is the usually the F statistic for the regression on the 

squared residuals that follows a χ2 distribution with m degrees of freedom. A large critical 

value indicates rejection of the null hypothesis in favor of the alternative. 

In the R package “rugarch” we used, the ARCH-LM test have been replaced ARCH-LM 

statistics of Fisher and Gallagher (2012) since the advance version uses a weighted portmanteau 

test for testing the null hypothesis, which explains the distribution of the statistics of the values 

from the estimated models better. 

Ljung–Box test (LB test) 

The Ljung–Box test (also known as Ljung–Box Q test,) named after G.M. Ljung and G.E.P. 

Box(1978) is based on a series of lag orders to determine whether the relevance or randomness 

exists among the population sequence. 

The null hypothesis of the Ljung–Box test is that the original data is independent, so to 

speak, the overall correlation coefficient is 0, and the observed correlations are only caused by 

the random sampling errors while the alternative hypothesis is that the data are not 

independently distributed(for instance: they existence of serial correlation). 

The test statistic Q is calculated by the formula as follow: 

                                (29) 

At the chosen significance level α, when ( the critical region) we reject the 

hypothesis of randomness. The Ljung–Box test is commonly used in autoregressive integrated 

moving average (ARIMA) modeling and specifically applied to the residuals of a fitted ARIMA 

model to test if the autocorrelation exists in the residuals of the ARIMA model. In the R package 

“rugarch” we used, the the LB Q-statistics have been replaced with the Weighted Ljung-Box of 

Fisher and Gallagher (2012) 

Sign Bias test 

The Sign Bias Test, proposed by Engle and Ng (1993), can test the presence of leverage effects 

in the standardized residuals by regressing the squared standardized residuals on lagged 

Q = n n+ 2( )
k=1

h

∑
ρ̂k
2

n− k

Q > χ1−α ,h
2
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negative and positive shocks. If the leverage effect isn’t eliminated by the fitted model, there 

may exist possible misspecification of the GARCH model. The regression process is displayed 

as follows: 

                 (30) 

where I is the indicator function and is the estimated residuals from the GARCH process. 

The null hypotheses are H0: ci = 0 (for i = 1, 2, 3), and that jointly H0: c1 = c2 = c3 = 0. It can 

also be interpreted as the t test of coefficient significance and the significance test of regression 

equation in corresponding. If we don’t reject null hypothesis, it indicates that the asymmetric 

effects still exist in our model which means the leverage effects wasn’t eliminated by the fitted 

model. 

2.3.2. Value at Risk backtesting method 

   The BackTesting method is implemented in the VaR value we estimated in the model to see 

whether the predicted performance is good or not. 

Proportion of failures (POF) test 

Proportion of failures (POF) test proposed by Kupiec (1995) considers the actual loss over 

VaR as a failure and the actual loss below VaR as a success. Then the observation of failure or 

success can be regarded as a series of independent Bernoulli tests and a likelihood ratio can be 

used to test whether the probability of exceptions is synchronized with the probability p implied 

by the VaR confidence level. The statistical formula of POF test is  

                     (31) 
where x is the number of failures, N the number of observations and p=1 – VaR level. This 

formula is asymptotically distributed as a chi-square variable with 1 degree of freedom. The 

null hypothesis is that the accuracy of the test model is equivalent to the failure rate that is equal 

to a specific probability. The VaR model would be considered to fail the test if this likelihood 

ratio exceeds a critical value which depends on the test confidence level. 
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    The null hypothesis of the unconditional coverage (Kupiec) showed in the rugarch package 

is correct exceedances.  

Christoffersen’s Interval Forecast Tests 

Interval forecasts evaluation was proposed by Christoffersen (1998) to measure whether 

the probability of observing an exception on a particular day depends on whether an exception 

occurred. Unlike the method presented in the POF test of unconditional probability of observing 

an exception, Christoffersen's test only measures the dependency between consecutive days. 

Here is the statistical formula to test the independence in Christoffersen’s interval forecast 

test: 

                 (32) 

 

 

 

 

 

 

Figure 2-3 Table of Denotation Factors 

The explanation was given in the Figure2-1. This formula is asymptotically distributed as 

a chi-square variable with 1 degree of freedom.  

Conditional Coverage (Christoffersen) showed in the rugarch package is combined of the 

frequency POF test (LRPOF) and Interval Forecast Tests (LRCCI) : LRCC = LRPOF + LRCCI while 

its null hypothesis is correct exceedances and independence of failures.  
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Chapter 3: Data analysis and empirical 
research 

Chapter 3 will be combined with two parts: (1) data analysis including data selection of 

the Chinese stock market and the following analysis of time serials data; (2) empirical evidence 

for the GARCH-type models implemented in the indices of Chinese stock market 

3.1 Data analysis 

3.1.1 The data selection. 

The national representative indices for China are the Shanghai Composite Index (SSE, 

code: 000001.SS) and Shenzhen Composite Index (SZSE, code: 399106.SZ) which tells a 

whole story of the Chinese stock market. The Shenzhen Component Index (SHE, code: 

399001.SZ) and the Growth Enterprises Market Index, also named as CHINEXT PRICE 

INDEX in Google Finance, (CHINEXT, code 399006.SZ) stands for the selected company 

listed in China with high volatility and return. Three industry indices are presented as SSE 

Industrial Index (SSEII, code: 000004.SS) SSE Commercial Index (SSECI, code: 000005.SS), 

SSE Real Estate Index (SSEREI, code: 000006.SS) and SSE Utilities Index (SSEUI, 000007.SS) 

to give an overall perspective for the Chinese industry development. 

The different characteristics and details of these indices are described as follow:  

The Shanghai Composite Index is a statistical indicator of the overall trend of listed stocks 

on the Shanghai Stock Exchange. The sample shares are all listed stocks, including A shares 

and B shares, reflecting the changes in the prices of listed stocks on the Shanghai Stock 

Exchange and its base period is since September 19, 1990 and the base point is 100 points. 

The Shenzhen Composite Index is a statistical indicator of the overall trend of listed stocks 

on the Shenzhen Stock Exchange. The sample shares are all listed stocks, including A shares 

and B shares, reflecting the changes in the prices of listed stocks on the Shenzhen Stock 

Exchange and its base period is since April 3, 1991 and the base point is 100 points. 

Shenzhen Component Index (hereinafter referred to as Shenzhen Stock Exchange) is the 

main stock index of Shenzhen Stock Exchange. It is based on a certain standard selected 40 
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representative listed companies as constituent stocks, the constituent stocks of free float as the 

number of shares, the use of Paasche method of weighting the stock price index. And its base 

period is since July 4, 1994 and the base point is 1000 points.  

Growth Enterprises Market Board(English name: CHINEXT), is the Second-board Market 

as the complement to the Main-Board Market, making its debut on October 30, 2009. Being the 

same role in China as NASDAQ in America, it provides financing channels and growth space 

for companies as entrepreneurial enterprises, small and medium-sized enterprises and high-tech 

industrial enterprises that cannot be listed on the main board. Since most companies listed on 

the Growth Enterprises Market are engaged in high-tech business with high growth potential 

along with the government incentive policy, compared with other Chinese stock sectors, it 

expresses the characteristics of  low threshold, high yield return and huge volatility.  

Under the Shanghai Industry Classification Index, the listed companies on the Shanghai 

Stock Exchange are divided into five major categories according to their respective industries. 

The Industrial Index, Business Index, Real Estate Index and the Utilities Index reflects the 

economic situation of the industry sector and the overall changes in its share price respectively. 

And the listed company number is 985,139, 25 and 123 for each sector. 

In order to get a general perspective of Chinese stock market, the sample starting point has 

been chosen as the early as the date when data for all indices were available and until the latest 

date. Since the Index CHINEXT was available after October 30, 2009 and we prefer not to use 

the data from the preliminary phase with obvious booming tendency. So the chosen data would 

cover the period from July 2010 to December 2018 including 2083 trading days. The closing 

price observed in the t and t+1 period is labeled as Pt and Pt+1, respectively. The continuous 

compound interest stock yield sequence Rt is computed as: 

               (33) 

where the data source is NTES Finance 

 

Rt = 100× ln
Pt
Pt−1

= 100× ln Pt − Pt−1( )
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3.1.2. The basic data characteristics 

Figure 3-1 The logarithmic yield of the eight indices. 

From Figure 3-1, we can observe that there are some terms of correlation between the 

logarithmic returns of the eight indices, which indicates they have a similar trend of evolution. 

Another apparent appearance is that high-volatility events exhibit the tendency to gather in time, 

support the volatility clustering statement, one of the stylized facts revealed by Rama (2001). 

The ‘ARCH (Autoregressive conditional heteroskedasticity) effect’ show by the eight indices 

point out that ARCH model can be used to evaluate the evolution. Obviously, the two indices, 

Shenzhen Component Index (SHE) and the Growth Enterprises Market Index (CHINEXT), 

which comprise the selected emerging companies, did show greater volatility than the rest of 

indices. Overall, all the indices show tremendous volatility over 2015-2016, relevant with the 

stock market crash mentioned in the background. 
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Figure 3-2 The histogram of eight indices’ logarithm returns along with the normal 

distribution density curve 

Figure 3-2 is the histogram of eight indices’ logarithm return compared with the normal 

distribution density curve, which give us an intuitively point of view that the all the indices 

except SSE Real Estate Index have clearly characteristics of left skew and leptokurtosis. 

Some data description and empirical evidence of Chinese stock markets will be revealed 

through previous methods as long as the goodness-of-fit test for its normality. 

Table 3-1 Descriptive analysis of the eight indices’ logarithm returns 

Table 3.1 shows some statistical characteristics of the eight indices. In terms of third-order 

moments parameter skewness, it can be seen that the skewness of the eight indices is negative, 

which means the eight indices have obvious asymmetry and all the indices show different 

degrees of left-bias. In terms of the fourth-order moments parameter kurtosis, it can be seen 

that the all the eight indices have the significant magnitude of the kurtosis larger than 3, which 

shows a more serious problem of excess kurtosis, that is, there is a problem of peaks and thick 
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tails compared with the normal distribution. This is consistent with the results observed directly 

in the log yield graph in Figure 3-1. 

Several statistical tests such as Jarque-Bera test, Kolmogorov-Smirnov test, Lilliefors test 

and Shapiro-Wilk test have been implemented to see whether the dataset obeys the normality 

distribution. Since all the null hypothesis of normal distribution has been rejected, it can be 

deduced from the test result, that the assumption of the normal distribution of the logarithm 

return of the eight indices should be abandoned. 

3.1.3 Data analysis of time series dataset 

3.1.3.1 Unit root test 

The most important and primary assumption for time series is the stationarity, which 

indicates the probability laws that govern its behavior of the process doesn’t change over time. 

In mathematics and statistics, a stationary process or, to be more specific, a strict stationary 

process is described as a stochastic process whose unconditional joint probability distribution 

wouldn’t change with the time. Since the conditions of strong stationary are too difficult to 

satisfy both in theory and in reality, instead, the time series is only required to fulfill the week 

stationarity with two assumptions: (1) the mean function is a constant over time; (2) the 

covariance function is only related to time interval. The non-stationary data can be converted 

to static through the difference method. The ADF (Enhanced Dickey-Fuller) test is the common 

test implemented in the dataset with large samples with the null hypothesis of defined as the 

existence of a unit root. The estimated time series data is stationarity is we reject the null 

hypothesis. 
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Table 3-2 The result of ADF test (unit root test) 

Table 3-2 is the ADF test result of the logarithm return of the eight indices. The t values 

of ADF test of all the indices are smaller than the t value in the 1%, 5% and 10% level 

confidence level. The null hypothesis of unit root exist is rejected at all the 1%, 5% and 10% 

level, which implies that the time serials of the eight indices is stationary. 
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3.1.3.2 ACF and PACF test  

Figure 3-3 Graph of ACF test (Autocorrelation function test) 

Figure 3-4 Graph of PACF test (Partial autocorrelation function test) 
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Figure 3-3 and 3-4 provide us the ACF and PACF test results by graph. The traditional 

method to determine the order of ARMA model through the phenomenon as tails off gradually 

or cuts off after q lags cannot be implement in our data due to the huge oscillation in the lags. 

To make it simple, the most suitable ARMA model would be chosen within the 5 order 

according to the parameter significance and AIC/BIC criterion. 

3.1.3.3 Autoregressive conditional heteroscedasticity (ARCH) test for ARMA model 

Before we estimate the error terms with the GARCH model, we need to build the ARMA 

model for the log return of eight indices. The ARMA modeling steps are as follow: 

     (1) Estimating the input time serials data to determine whether it is a stationary random 

process. If it is stable, go directly to step 2; if it is not stable, data processing such as difference 

should be performed, and then go to step 2 after processing. 

     (2) Model identification and ordering determination would be done based on the 

autocorrelation and partial autocorrelation function test of the data, combined with the AIC or 

BIC criteria. 

     (3) Then we estimate the parameters of the model and see if the parameters are statistically 

significant. If not, we would adjust the model. 

    After the suitable ARMA model was chosen for the data, the following estimation of 

GARCH model can be proceeded. 

Table 3-3 The ARCH test for the residuals of ARMA(q,p) model of the logarithm return of the 

eight indices. 

Footnote: LM(p) is the chi-squire value of the Lagrange Multiplier (LM) test for autoregressive 

conditional heteroscedasticity (ARCH) with p lag. 
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Lagrange multiplier test for conditional heteroscedasticity of is proposed by Engle (1982) 

The null hypothesis is no ARCH effects. From the test result, it’s clear that the ARCH effects 

are obvious significant in high order lags of the model residuals until 600 lags, which indicates 

us to build the GARCH model for the estimation of disturbance terms. 

3.2 Empirical research  

The first step in building the GARCH-type model is to choose the suitable order for the 

model estimation. For most of situation, GARCH-type (1,1) can meet the requirements for 

dataset. If there are too many orders, the model will be unstable. Considering we use the 

ugarchspec function in package ‘rugarch’ of the statistical software R, the higher order choice 

would also cause the arima estimation model to have possible convergence problem as “optim 

gave code = 1”. Therefore, the order of our GARCH-type model will be chosen in 3 based on 

the significance of parameters and the minimum AIC or BIC criteria. Finally, we would have 

four GARCH-type for every index estimation. The RiskMetrics model with iGARCH(1,1) is 

for matched group and we are going to implement the fit diagnostics through several tests such 

as the LB test, the ARCH test for residuals and the Sign Bias test for leverage effects in the 

standard GARCH, E-GARCH and GJR-GARCH model of the logarithm returns of eight 

indices of Chinese stock market. 

3.2.1 GARCH-type model estimation process 

The second step is to fit the chosen GARCH-type model into the empirical data as the 

logarithm returns of the eight indices. The ugarchroll function in package ‘rugarch’ provides 

cushy job for the fitting process. What we should do is to choose the suitable parameter for the 

‘ugarchroll’ function:(1) “n.start” (2) “refit.window” (3) “solver”(3) “refit.window” (4) 

“refit.every”  

(1)  “n.start”: considering the total sample size is 2083, we set the start data point at the 

400th, which gives us the forecast length of 1683.  

(2) “refit.window”: we choose the “recursive” as the “refit.window” since the choice of 

“moving” for the “refit.window” would lead to the failure of VaR calculation.  
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(3) “solver”: we choose the “hybrid” for the “solver” parameter because it offers an 

ergodic process by trying all the solvers including “solnp”, “nlminb”, “gosolnp” and 

“nloptr” by order, which give us the best chance to fit the model into the dataset.  

(4) “refit.every”: one important parameter is the “refit.every”, which determines the 

model re-estimation frequency. If the large number is chosen like the number above 

25(nearly one month), the model will adjust itself to the dataset too slowly, which 

means it can’t catch the short-time volatility. If the small number is chosen like 1 or 

2, the enormous R program calculation would be demand. The comparison of 

different size of “refit.every” parameter was given as follow. We take the logarithm 

return of SSE index as the demonstration example to fit the GARCH-type model and 

show the VaR curve at 1% alpha level. It’s visually perceive that with “refit.every” 

parameter larger than 25, the “ugrachroll” function would have the problem to depict 

the rigorous shape of the VaR curve than the smaller parameter, especially for the E-

GARCH and GJR-GARCH model with external regressors. Considering both the 

requirement of accuracy and efficiency, we set the “refit.every” parameter to 10 for 

the “ugarchroll” function. 

Figure 3-5 VaR Curve of SSE (GARCH(1,1)-sstd) with different size of “refit.every” 

parameter 
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Figure 3-4 VaR Curve of SSE (E-GARCH(1,1)-sstd) with different size of “refit.every” 

parameter  

Figure 3-4 VaR Curve of SSE (GJR-GARCH(1,1)-sstd) with different size of 

“refit.every” parameter  

GARCH fitting is performed after the order is determined. The LB test and the ARCH 

test are performed to check whether the residual is in accordance with the hypothetical white 
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noise test. Generally, the residual term of the 10th order is guaranteed to be tested, that is, the 

p value is greater than 0.1, and then the GARCH model can be said. effective. 

3.2.2 Parameter Estimation and Model Comparison 

Table 3-4 Parameter estimation of GARCH-skewed-t model of the logarithm returns of eight 

indices 

Footnote: the value in the bracket gives the p-value of estimated parameter in the fitted model. 
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Table 3-5 Parameter estimation of E-GARCH-skewed-t model of the logarithm returns of 

eight indices 

Footnote: the value in the bracket gives the p-value of estimated parameter in the fitted model. 

Table 3-6 Parameter estimation of ARMA-GJR-GARCH-skewed-t model of the logarithm 

returns of eight indices 

Footnote: the value in the bracket gives the p-value of estimated parameter in the fitted model. 

Table 3-4, 3-5 and 3-6 gives the result of estimated parameters for the fitted model. Only 

SZSE and SSECI index was fitted with ARMA (2,2)-GJR-GARCH (1,1)-skewed-t model since 

it can perform better parameter significance and the rest of models were all fitted with model 

order (1,1) since we would like to simplify the calculation process in the R software while keep 

the model stable.  

The matched group RiskMatrics model was set to the fix parameter with alpha1 of 0.06 

and beta1 of 0.94, therefore further estimation of the coefficient is skipped for this model. 
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A universal problem exists in all the three models as the parameter mu (stands for the 

constant term) is always not statistically significant (p-value larger than 5%). Since removing 

the interception parameter mu would make any difference for the significance of other 

parameters and it doesn’t have the statistical interpretation, we choose to keep the constant term 

mu parameter even that it’s not statistically significant. 

Another parameter omega (as the intercept of the conditional variance model) is 

sometimes insignificant, but it should be kept in the model for reasons. If we force omega=0 

and get the sum of parameter alpha and beta smaller than 1 (according to the design of the 

estimation procedure, restricts the parameters to a stationary region by defiding alpha+beta<1 

in the GARCH model), it implies the conditional variance is decreasing over time in the model, 

which is generally undesirable.  

As for the GARCH(1,1)-skewed-t model showed in the table 3-4, except for the 

interception mu, the rest of the parameters are statistically significant in 5% level. As for the 

parameter interpretation, 𝛼 is often interpreted as the short run persistence where 𝛽 denotes the 

long run persistence. The GARCH(1,1)-skewed-t models of the eight indices are stationary and 

the past volatility can explain for the current volatility since the persistence parameter (sum 

of 𝛼 and 𝛽) is smaller than 1.  

As for the E-GARCH model showed in the table 3-5, except for the interception mu, the 

parameter omega and alpha1 are not always significant. The E-GARCH(1,1)-skewed-t models 

of the eight indices are stationary and the past volatility can explain for the current volatility 

since the persistence parameter (value of 𝛽) is smaller than 1. The interception omega is 

insignificant with index SSE, SSEII and SSEUI while the parameter alpha1 is insignificant with 

index SSE, SSEII, SSECI, SSEREI and SSEUI. The parameter gamma1 is basically significant 

for all the indices except the index SSEREI. The negative alpha1 and positive gamma1 

parameter of index SZSE, SHE, CHINEXT tells that the leverage effect does exist, which 

means the bad news has more impact than the good news of the same size.  

As for the GJR-GARCH model showed in the table 3-6, besides the interception mu, the 

parameter gamma1 is basically insignificant with most indices including SSE, SHE, CHINEXT, 

SSEII, SSEREI and SSEUI. And the model of index CHINEXT also has the omega parameter 

P̂

P̂
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insignificance. The GARCH(1,1)-skewed-t models of the eight indices are stationary and the 

past volatility can explain for the current volatility since the persistence parameter  is smaller 

than 1. But the parameter insignificant situation can be improved by adding the ARMA model 

to the mean. The index SZSE and SSECI with ARMA (2,2)-GJR-GARCH (1,1)-skewed-t 

model has all the parameters significant except the mu. The positive gamma indicates the 

leverage effect exists in the index SZSE and SSECI with the magnitude of 0.0572 and 0.0376 

respectively. 

Table 3-7 Model fitness analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Footnote: the P-value smaller than 0.05 is marked with the superscript of a full-stop sign and highlighted. 

P̂
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Table 3-7 summarizes several model fitness analysis results including the Ljung–Box test 

with order of 5, ARCH test of lag 3 and 7, sign bias test and the AIC value. If we don’t reject 

LB test with the null hypothesis of no serial correlation, it indicates the residuals of the data is 

white noise, which means the model is well-fitted and already withdrawn all the information of 

the data.  If we don’t reject LB test with null hypothesis of no ARCH effect, it also indicates 

the fitted model can explain the data well. If we don’t reject the sign bias test with the null 

hypothesis of existence of leverage effect, it indicates our model can well explain the skew 

leverage in the data.  

But the out-performance seems terrible as all the three fitted models reject the null 

hypothesis more or less. During our 32 analysis results, only 10 models don’t reject all the test, 

as 4 with the RiskMetrics model (matched group)(Index SSE, SHE, SSECI, and SSEREI), 1 

with the GARCH-skewed-t model(Index SSEREI), 2 with the E-GARCH-skewed-t 

model(Index SSEREI and SSRUI) and 4 with the GJR-GARCH-skewed-t model(Index SZSE, 

SHE, SSEREI and SSEUI). The reason of the bad fitted result of the GARCH-type model for 

the two Index SSEII and SSECI may be the original data character since itself they stand for 

the Chinese industrial and commercial industry, less liquidity and inefficiency market.  

Except the result of the models based on the dataset Index SSEII and SSECI, overall, we 

can conclude that the GJR-GARCH-skewed-t model perform better than other model in 

Chinese stock market. By adding the parameter for explaining the leverage effect, the E-

GARCH and GJR-GARCH model trend to have the less AIC value between the estimated 

models.  
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3.3 VaR forecasting and backtesting 

Chapter 4 is composed of the VaR forecast at 99% confidential interval according to the 

market risk requirement in Basel II and the corresponding VaR backtesting. The VaR prediction 

result would be demonstrate in pictorial format and the tests result would be collected in the 

table 4-1. 

 

 

 

 

 

 

Figure 4-1 and 4-2 Value at Risk curve of index SSE/SZSE with comparison of the 

index’s logarithm return 

 

 

 

 

 

 

Figure 4-3 and 4-4 Value at Risk curve of index SHE/CHINEXT with comparison of the 

index’s logarithm return 

 

 

 

 

 

 

Figure 4-5 and 4-6 Value at Risk curve of index SSEII/SSECI with comparison of the 

index’s logarithm return 
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Figure 4-7 and 4-8 Value at Risk curve of index SSEREI/SSEUI with comparison of the 

index’s logarithm return 

      In the visual perspective, the GARCH-type models with skewed-t distribution do show a 

better capacity for capturing the strong volatility than the traditional RiskMetrics method with 

normal distribution. By adding the leverage factor, the E-GARCH and GJR-GARCH model 

appear more adaptability and flexibility since it’s VaR curve fitting gives more precision to the 

original data, which meet our requirement for not underestimation or overestimation for the 

VaR value. Due to the convergence problem happened from time to time, the E-GARCH model 

came up with the accuracy issue in the early stage of the forecast, which makes the GJR-

GARCH model to be the model with best adaptability and presision. 
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Table 4-1 VaR backtesting results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Footnote: the P-value smaller than 0.05 is marked with the superscript of a full-stop sign and highlighted. 

Table 4-1 synthesizes the results of VaR backtesting including the unconditional coverage 

test (Kupiec LR.uc) and the conditional coverage test results (ChristoffersenLR.cc) at 1% alphal 

level. The number and percentage of actual VaR exceedance is also presented. The null 

hypothesis of the unconditional test is correct exceedances while the conditional coverage test 

estimates the independence of failure additionally. Critical value of the two tests is 6.635 for 

LR.uc test and 9.21 for LR.cc test. If the statistic value is smaller than the critical value, we 

don’t reject the null hyphothesis. 

The RiskMetrics method came up with the worst VaR forecast performance since it has 

the most actual exceedance among all the models and rejects both the unconditional test and 

conditional coverage test. Compared with the RiskMetrics, the GARCH-type models all 

perform well since they all accept the null hypothesis except for the specific dataset SSECI as 

we talked in the parameter estimation part. 

In general, the GJR-GARCH-skewed-t performs averagely and sometimes better than 

other GARCH-type models. 
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Chapter 4: Conclusion and research 
perspectives 

As an emerging stock market with enormous potential, Chinese stock market has apparent 

volatility clustering appearance along with typical feature of leptokurtic, negative skewness and 

fat tail in its index yield series.  

As the result of model fitting and VaR estimation showed in the RiskMetrics, the model 

based on traditional normal distribution often underestimate the risk, which would lead to 

profound loss for the investors and financial institution when the extreme events happened.  

Considering the model significant perspective, the leverage effect was testified in the 

Index SZSE and SSECI by the ARMA-GJR-GARCH-skewed-t model and in the Index SZSE, 

SHE and CHINEXT by the E-GARCH-skewed-t model. The negative shocks would impact 

more in the volatility of the Index with more liquidity in Chinese stock market. While in the 

industrial sector where most leading enterprises were stated owned, the leverage effect 

parameter is not significant. The stock market under Socialist society with the control of 

Chinese government shows more marketization features similar as the free market of western 

Capitalist society. Without directly government intervention, the market regulation starts takes 

part in the stock price evolution, which could be estimated by typical economic theory. With 

the popularization of education, the culture level and mantel strength also improved. According 

to the report released by the Panorama data service platform called Mobdata recently, until 2018, 

over half of the Chinese stock market is averaged or beyond bachelor’s degree, which indicates 

their investment behavior trend to more rational and traceable. 

As for the VaR forecasting with 99% confidential interval, among the RiskMetris model 

and other GARCH-type model, the ARMA-GJR-GARCH-skewed-t model has better 

adaptability and precision for the estimation of indices of Chinese stock markets. 

    In the research perspective, due to the model limitation, the ARCH effect still exists in the 

residuals of GARCH-type models, even with all the parameters significant, which indicates the 

long-memory model such as fractionally integrated generalized autoregressive conditional 

heteroskedasticity(FIGARCH) model may work our better.  
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As for the dataset distribution, even the skewed-t distribution performs better than the 

normal distribution, sometimes it still fails to capture the excessive kurtosis and skewness. The 

high-order moment specific for the kurtosis, skewness should be included in the model building 

and contribute to the VaR estimation. 
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