ISCTE £ IUL

Instituto Universitario de Lisboa

Department of Information Science and Technology

Universal Internet of Things System
Powered by FIWARE

Diogo Alexandre Rodrigues Lopes

Dissertation presented in partial fulfillment of the requirements for the degree of

Master in Telecommunications and Computer Engineering

Supervisor:
Pedro Joaquim Amaro Sebastido, Assistant Professor

ISCTE-IUL

December 2018

To those who continue to live forever within our memories

Resumo

A Internet das Coisas tem crescido exponencialmente nos ultimos anos e continuara a
crescer por algum tempo, com cada vez mais dispositivos 10T disponiveis no mercado de
consumo e especificos, havendo também cada vez mais sistemas e plataformas que
utilizam e suportam estes dispositivos, fornecendo assim a possibilidade de visualizar
informag&o por estes recolhida ou controlar os mesmos através de uma interface gréfica,

que pode ser um website ou uma aplicagéo.

Devido & expansdo do mercado da Internet das Coisas resultante de haver uma grande
variedade de dispositivos e sistemas de diferentes fabricantes é dificil encontrar sistemas
que sejam compativeis com todos ou varios dispositivos de diferentes fabricantes, pois
muitos utilizam protocolos de comunicacdo proprietarios. Esta dissertacdo tem como
objectivo o desenvolvimento de um sistema 0T universal, utilizando-se para tal a
plataforma FIWARE, que foi impulsionada pela Comissdo Europeia, e que permite
utilizando os componentes modulares que compdem esta plataforma, desenvolver o

sistema universal pretendido.

Para testar o sistema e comprovar o bom funcionamento do mesmo e de cada componente
FIWARE utilizado, serdo utilizados um conjunto de microcontroladores acoplados a
diversos sensores e actuadores, que comunicardo com o sistema transmitindo os dados

recolhidos ou recebendo comandos no caso dos actuadores.

Estas “coisas” foram utilizadas no ambito de um caso de estudo ficticio simulando uma
implementacdo real do sistema, tendo-se conseguido com que este funcionasse
correctamente, capaz de receber dados dos sensores, apresentar oS mesmos quando

necessario, e de controlar os actuadores.

Palavras-chave: Internet of Things; FIWARE; Microcontrolador; Sensor; Actuador

Abstract

Internet of Things has grown exponentially in recent years and will continue to grow for
some time, with more and more 10T devices available in the consumer market and
specific, there are also increasingly systems and platforms that use and support these
devices, thus providing the possibility to view information by these collected or control

them through a graphical interface, which can be a website or an application.

Due to the expansion of the Internet market of Things resulting from a wide variety of
devices and systems from different manufacturers it is difficult to find systems that are
compatible with all or several devices from different manufacturers, since many use
proprietary communication protocols. This dissertation aims at the development of an
universal loT system using the FIWARE Platform, promoted by the European
Commission, which allows the use of the modular components that make up this platform

to develop the intended universal system.

A set of microcontrollers coupled to various sensors and actuators will be used to test the
system and to verify the proper functioning of the same and each FIWARE component
used, which will communicate with the system transmitting the collected data or receiving
commands in the case of the actuators.

These "things" were used in the context of a fictional use case simulating a real
implementation of the system, having been able to function properly, able to receive data
from the sensors, present data when necessary, and control the actuators.

Keywords: Internet of Things; FIWARE; Microcontroller; Sensor; Actuator

vii

Contents

RESUIMO ...ttt e e b e sab e e eab e e e nnne e s b e e anes Y
ADSTFACT. ... bbbt bbbt vii
TS 0 T U =TSSR XV
LISt OF TADIES ...t XXI
ADDIEVIALIONS ...ttt bbbt XXl
Chapter 1 — INTrOQUCTIONeouiiieieee e 1
1.0 ODJECLIVES ...ttt bbb bbb bbb 1
2 @0 118101114] SO TRS 2
1.3 DOCUMENT STFUCTUIE ...ttt sttt st 2
Chapter 2 — LIterature REVIEW.........ccuviiiiiieiie ettt 3
2.1 INtErNEt OF THINGS....ccvieie et 3
P20 50 O 1 T 11 SRS 3
2.1.2 POPUIAIIEY «.cvvee ettt ettt et re e e 4
2.1.3 The Growth of Devices and TraffiCcccoevvriieniiiniinee e 4
2.1.4 CommuNICation MOUEISc.evieiieieie e e 5
2.1.5 SBCUIEY ...ttt bbbttt ettt b e eb e 8
2.1.6 PIIVACY ..ttt bbbt bbb 9
2.1.7 Interoperability and Standardscccceeeiininen s 10

22 FIWARE ...ttt 13
2.2.1 What IS FIWAREooiiiiiiee e 14

2.2. L1 FIWARE LaD.....cociiiiicice et 15
2.2.1.2 FIWARE ACCEIEIALe........cooiiiiiiieiieieiee et 15

2.2. 1.3 FIWARE MUNUUS......ccoviiiiiiiie ittt re e 15

2.2 LA FIWARE THUDS ..ottt 15

2.2.2 Powered DY FIWARE........ccoiiei e 16
2.2.3 FIWARE Platform COmMPONENTScccuiirieieierienie e 17
2.2.3.1 Core ConteXt Management.........cccveiuieiiiuieiiiiesieeesee e siee e siree e 18
2.2.3.2 Interface to 10T, Robots and Third-Party Systems............cccceevvviiierinennn, 19
2.2.3.3 Processing, Analysis and Visualization of Context Information............. 20
2.2.3.4 Context Data/AP1 Management, Publication and Monetization 20

2.3 USEd 10T PrOTOCOIScviiiieiiiieieieie et 21
2.3.1 Ultralight 2.0 ProtoCOI.........cccveiiiieiiee st 21
2.3.1.1 Measure Payload SYNaXccccveiveriereiieneeie e e e 21

2.3.1.2 COMMANAS SYNTAX....ccvveiieeieiieeiieeie e siee e s e seesie e e e saeeee e e e seesreesns 22

2 172 Y/ @ N SO SETSPTPURSPR 23
2.4 DOCKET ...ttt bbb bbbt bbb 25
2.4.1 DOCKEI ENQINE ..ottt 26
2.4.2 DOCKEN ATCRITECIUIE ..ottt 27
2.4.3 Docker Images and CONLAINETSccoiueieeiierieeie e 27
2.4.4 DOCKET COMPOSE ...ttt sttt e bbbttt eneas 28
2.5 MONQODB ... 29
2.6 HAIAWAIE.......iiiiiiieiiie bbbt sb et beene e 29
2.6.1 MICIOCONTIONIEISeviiieiiee e e 29
2.6.1.1 Microcontroller Basic ArChiteCtUurecocvviiieniiiiinieree e 29
2.6.2 SBNSOIS ...ttt ettt ettt ettt sttt b bttt e bttt e s bt et e he et e be et e naeeenes 31
2.6.2.1 Sensors ClassifiCatiON..........cccueieeieiiie i 31
2.6.2.2 PASSIVE SBNSOIS....uiiiieirieiiieriesteesieasteseesteesseaseesseasseaseesseesseaseesseessessesssessees 32
2.6.2.3 ACHIVE SEINSOISveivieivieiireniesieesieeteseesteeee e teeste e sreenaeeneesreesaeaneesneeeas 33
2.6.2.4 DIgItal SENSOIS......ecveivieiieeie ettt ettt e e nas 35
2.6.3 ACTUBLOIS ...ttt ettt e bt e et enan e 36
Chapter 3 — Universal 10T System Powered by FIWAREc.ccooiiiiiiiiiececeee 39
3.1 SYStEM ATCNITECIUIE......veeieee et 40
3.1.1 0rion CoNteXt BrOKETcciveieiieieeie e siee e sie e sie e see e nne e sneeneas 41
3.1.1.1 Data Model GUIAEINES........ccueiieieiierieee e 41
3.1.1.2 Service Health..........oovoiiee et 42
3.1.1.3 Context Data Creation, Update, Deleteccccooviviiiiiiiiinieiice 42
3.1.1.4 Context Data RelationShipsccoeiiiiiniiiiecee e 44
3.1.1.5 Context Data QUENYINGc.eoiiuieiiieiie ettt 45
3.1.1.6 SUBSCIIPLIONS ...oeeiieciie e 47
3.1.2 Ultralight 2.0 10T Agent and Mosquitto MQTT Brokerccccceveevvvevinennn. 49
3.1.2.1 Interaction Between the 10T Agent and Mosquitto MQTT Broker......... 49
3.1.2.2 10T Agent Service Healthcooeiiiiiii e 49
3.1.2.3 Mosquitto MQTT Broker Service Health............cccocooviiiininiiiiins 50
3.1.2.4 ConNection OF 10T DEVICES......cccueueiieriieiesieseesie e siee e sae e eee e neas 51
3.1.2.5 Enable Context Broker COmmandsccceevereeieeneeneeieeseeseeee e 54
.13 CYGNUS. ..ttt stttk b ettt e e nae ettt e e re e nar e 55
3.1.3.1 Cygnus Service Health ... 55
3.1.3.2 Subscribing to Context Changes..........ccuevirirreerienie e 55

3.1 4 STH-COMEL ...t s 56

3.1.4.1 STH-Comet Service Healthccccooeiiiiniiiiiicee e 57
3.1.4.2 Formal Mode Data Aggregation...........c.ccvieeieerieiieeseeseeeeseese e 58
3.1.4.3 Time Series Data QUETIIEScccveierieriieie et 58
3.1.5 System Configuration Using Docker COMPOSEccceevereerieeveneenieninsieeens 60
3.1.5.1 “docker-compose.yml” File........ccccooiriiiiiiiiiiiiiiieecee s 60
3.1.5.2 MongoDB ConfiQUIAtioN...........ccveieiiiiiieiesiesese e 63
3.1.5.3 Orion Context Broker Configuration...........c.cccevvevevvevesie e see e 63
3.1.5.4 Mosquitto MQTT Broker Configuration...........ccccoccevveveeviesiese e 64
3.1.5.5 10T Agent Configurationccccceiveeiieiiiiece e 64
3.1.5.6 Cygnus Configurationccccceevueiiieiieie e 66
3.1.5.7 STH-Comet Configurationccoevueieieneniiesieeeeeeee e 68

3.2 10T Device and SENSOIS USE........ccvieeieerieiieiierie e siee e eee et ee e neas 69
3.2.1 Microcontroller: NodeMcu Devkit v1.0 ESP8266 Wi-Fi Module ESP-12E. 70
32,2 SBINSONS ..ttt ettt ettt ettt et he e bbb et ae e b e bt e bt nae e e e be et e nane e 73
3.2.2.1 DHT22 Sensor (Air Temperature and Humidity Sensor).............cccc....... 73
3.2.2.2 XL-MaxSonar-EZ MB1260 Sensor (Ultrasonic Sensor)ccccveee.. 74
3.2.2.3 Earth-HUMIdity SENSOF........cccveiiiieiiecie e 75

3. 2.3 POWET SUPPIY .ot 75
Chapter 4 — 10T System Tests and RESUILSccooviiiieiiie e 77
4.1 Use Case: Control of Water (Irrigation and SUpply)ccooeveieniiincnciinenee 77
4.2 System TestS and RESUITS.........ccoiiiiiiiiiiece e 78
4.2.1 SYSEEM SEE-UP ... 79
4.2.2 FIWARE Components Health Check ..., 79
4.2.2.1 Orion Context Broker Health Check ..., 80
4.2.2.2 10T Agent Health ChecCK..........cccovviiiiiiiiiic e 80
4.2.2.3 Cygnus Health ChecCKcccceiiiiiiiie e 81
4.2.2.4 STH-Comet Health CheckK...........cccoiiiiiiiii e 81
4.2.2.5 Databases Created...........ccovvereiierieeriesiesiesieseese e e e se e nes 82
4.2.3 Context Data ManagemeNnt..........ccooueiieiirieiieie et 83
4.2.3. 1L ENItIES CreatiOncc.eeviieeieeie et 84
4.2.3.2 ENtitieS ASSOCIATION ...cvveivieireie et 86
4.2.3.3 EntitieS MOIfICAtIONccviiiiiiiiciee s 88
4.2.3.4 ENtitieS REMOVALooviiiiiiii s 90
4.2.4 Mosquitto MQTT Broker Health Checkcccooviiiiiiiniiieeee, 92

Xi

4.2.5 10T Devices ManagemeNntccviuereerieiieieerieseese e sae e ee e e sae e nnas 93

4.2.5.1 Service Group ProviSionNiNg.......cccccveveiieiiereieeseese e e 93
4.2.5.2 SeNSOrS PrOVISIONINGcoiveieiieiieeiesieesie et se e ssee e sreesae e 95
4.2.5.3 ACtUALOIS PrOVISIONINGooviviiiiiiiiieieieee et 98
4.2.5.4 Enabling Context Broker Commands............c.ccovrerieieneneneneseneniens 102
A.2.6 10T DBVICES ...ovveieeiiieiieetee st ie sttt ettt e sbeeneesneesteennesneesbeenee s 104
4.2.6.1 TeSt Of DHT22 SENSOKccviiiiaieiiesieeie sttt 104
4.2.6.2 Test Of UIrasoniC SENSOKccviiiieieieieiiesie st 106
4.2.6.3 Test of Earth-Humidity SENSOr.........cccvveiieiicie e 107
4.2.6.4 Sending Measurements from DHT22 Sensor to the 10T System 109
4.2.6.5 Sending Measurements from Ultrasonic Sensor to the 10T System...... 111
4.2.6.6 Sending Measurements from Earth-Humidity Sensor to the 10T System
... 113
4.2.6.7 Sending Commands from System to I0T Devices (Actuators) 114
4.2.7 SUDSCIIPTIONS ..ttt bbbt 118
4.2.8 Data PEISISIENCEccvveueeiieeiieeie et sie ettt nee e ae e sneenee s 121
4.2.9 Time-Series Data QUETIEScccueiieieiieieeiesieseeie e sie e see e nee e sreenee s 125
Chapter 5 — CONCIUSIONS.......c.ciiiiiee e s 127
5.1 Main CONCIUSIONScoviiiiiieiieiieie ettt bt nre s 127
5.2 FULUIE WOTK ..ottt sttt 128
AANINEXES ..ottt ekttt ekt ekt e e Rt E e R et e Rt e e R bt e Ee e nn e e nne e b e tneare e 130
Annex A — FIWARE Orion Context Broker Configuration File.............cc.ccccooeee. 131
Annex B — Mosquitto MQTT Broker Configuration File...........cccccooevininiiiinnnnne 133
Annex C — ESP8266-12E DataSheel..........c.covieerieieiieiiee e seee e 151
Annex D — NodeMcu Devkit v1.0 ESP8266 Wi-Fi Module ESP-12E User Manual 168
ANNEX E — DHT22 Datash@elc.couiiiiiieieciesieee e 175
Annex F — XL-MaxSonar-EZ MB1260 Sensor Datasheetcccocceveveiiiienienne 181
Annex G — Earth-Humidity Sensor Datasheet.............ccccoovveiiiiiiciie e 191
ANNEX H — SYSIEM SEE-UP .oiiiiiiiici e e 197
“create” CommANdeeeiiiiiieeiiiiiee s 199
“pause” COMMANA........cocviiiierieiiese e 201
“UNPAUSE” COMMANA.....cuviiiiiiiieie et 202
“StOP” COMMANA ... 203
“start” CoOmMMANAccuvieiiiiee i 204
“remoVEeC” COMMANAvvieiiiieiiie e srae e e nrees 205

xii

030010 217=) K G706 Vo 0 - 4 Lo F 206

Annex | — Entities Creation SCrPL.........ccovveieiieiecie e 207
Annex J — Entities ASSOCIAtION SCHPL........c.coviieieiieiie e 211
Annex K — Entities Modification SCHPLS........cooviiiiiiiieree e 212
Annex L — Entities ReEMOVAl SCIPLS.........coiiiiiiiiiieieerseee e 213
Annex M — Service Group Provisioning SCHPL.......ccooceviriiinineeece e 214
Annex N — Sensors Provisioning SCrPLcoviiiiiinineerieeeee e 215
Annex O — Actuators Provisioning SCIPLccovvevviieiiere e 216
Annex P — Enabling Context Broker Commands Script.........ccccccevviveiveieiiieieenns 217
Annex Q — Code for Testing the DHT22 SENSOTccccovevviieeieerieiie e e 218
Annex R — Code for Testing the Ultrasonic SENSOr...........cccovvevvereiiieieeve e 219
Annex S — Code for Testing the Earth-Humidity Sensorccccceveveneniienennne 220
Annex T — Code for Sensing Measurements from DHT22 Sensor to the lIoT Sensor
.. 221
Annex U — Code for Sensing Measurements from Ultrasonic Sensor to the 10T
SYSTBIM . e 222
Annex V — Code for Sensing Measurements from Earth-Humidity Sensor to the loT
SYSTBIM . e 224
Annex W — Code for Receiving Commands from the 10T Systemcccccoeeee. 225
Annex X — Available Commands to Control ACtUALOrScevvvrierereieneieseneen, 226
ANNEX Y — SUDSCIIPLIONS SCIIPL....cviiiiiiiiiiee e 227
ANnex Z — Data PersiStenCe SCHPLcoviiieieicceee e 228
ANNEX AA — PaPBE .ottt nes 230
RETEIBNCES ... bbbttt sbe e sae e 237

Xiii

List of Figures

Figure 2.1 Exemple of Device-to-Device Communication Pattern (Based on Sources: [1]

2) ISR SRRSO 5
Figure 2.2 Example of Device-to-Cloud Communication Pattern (Based on Sources: [1]
2) ISR SRRSO 6
Figure 2.3 Example of Device-to-Gateway Communication Pattern (Based on Sources:
2) OSSOSO 7
Figure 2.4 Example of Back-End Data Sharing Pattern (Based on Sources: [1] [4]) 8
Figure 2.5 10T 2018 Landscape - Applications (Based on Source: [9])......cccccevvvevreennnne 12
Figure 2.6 10T 2018 Landscape - Platforms (Based on Source: [9])....cccccvvveveviieiieannnns 12
Figure 2.7 10T 2018 Landscape - Building Blocks (Based on Source: [9])c.ccoovvvenne. 13
Figure 2.8 Context Broker Processes (SOUrce: [14])ccovrerirenenineeeiesie e 16
Figure 2.9 Example of a FIWARE Reference Architecture for Smart Industry (Source:
Y) ISP 16
Figure 2.10 FIWARE Generic Enablers (Based on Sources: [18] [19]) ...cccovvvvvrvininne. 18
Figure 2.11 MQTT Publish-Subscribe Model............cccooiiiiiiiii 24
Figure 2.12 Ultralight over HTTP (Based on Source: [22]).....ccccocevveveiieeineiesieseennens 24
Figure 2.13 Ultralight over MQTT (Based on Source: [22])ccoevveveeiieireieiiecieenns 25
Figure 2.14 Containers vs Virtual Machines (Source: [25]) ...coovovveveeiiiiieiieic e 25
Figure 2.15 Representation of the Docker Engine (Source: [24]) ...cccovvvvvevveieieecieennens 26
Figure 2.16 Representation of an Model Docker Architecture (Source: [24])............... 27
Figure 2.17 Basic Architecture of a Microcontroller (Based on Source: [30]) 30
Figure 2.18 LDR (SOUICE: [32]) ..eiveeeeieieieiienie sttt 32
Figure 2.19 Capacitive Sensors (SOUrCe: [31])....ccccuurrrrrrererieniesesieeeeeenie e 32
Figure 2.20 Inductive Sensors (SOUrce: [31]).....ccuvvereiieiieiiiiecieesie e 33
Figure 2.21 Pressure Sensor (SOUrCe: [31])..cveiiarieiieeiie et 33
Figure 2.22 Electromagnetic Sensor (Source: [31]) ..cocevveiiieiiieiie e 34
Figure 2.23 Thermocouple (SoUrce: [31]) . .ccveiiiiieiiieiie e 34
Figure 2.24 Piezoelectric Sensors (Source: [31]) ..cocvvvverieiieiiieiiecie e 35
Figure 2.25 Pyroelectric Sensor (SOUrce: [31]) . .ccoouuermrerineie s 35
Figure 2.26 MicroswitCh (SOUICe: [33]) ...ccververeriiiiiiiiie e 36
Figure 2.27 Internal Schema of Actuators (Based on Source: [34])cccoovvvvveniicninnne. 36
Figure 2.28 DC Motor with Gears (SOUrCe: [35]) ..vervverrrverreierieereerie e e eseesee e 37
Figure 2.29 AC MotOrs (SOUICE: [34]) .eoeeiieieiieieeie ettt 38
Figure 2.30 LEDs (Based 0N SOUICE: [36]) ...evererrreerieririierieeieseenieeie e eeesiee e 38

XV

Figure 3.1 System Architecture BIock Diagramcccocevvivieiiienieie e 40

Figure 3.2 NodeMcu DeVKit V1.0 (frONt)coviieiieiiic e 70
Figure 3.3 NodeMcu DeVKit V1.0 (DACK).......ccceciueiiericieiiecc e 70
Figure 3.4 NodeMcu Devkit v1.0 Pinout (Based on Sources: [60] [61])......ccccoevrvvrennne. 71
Figure 3.5 NodeMcu Devkit v1.0 PWM Pins (Source: [63])....cccccererrerrerrenieeniensnnnnens 72
Figure 3.6 ESP8266 Block Diagram (SOUICe: [62])......ceuvveremreerienieniesiesieeeeseesieeeens 72
Figure 3.7 DHT22 Sensor (SOUICE: [66]) . .vververerreerieniriierieeiesieesiesiesieesieeeesreesseeeens 73
Figure 3.8 DFROBOT DHT22 Module (SOUrce: [67]) ...ccccevveverieieeieiieieesie e sieeiens 74
Figure 3.9 DFROBOT DHT22 Module Pinout (Source: [67]) ..c.cceevveveriverrerieiiecieenns 74
Figure 3.10 XL-MaxSonar-EZ MB1260 Ultrasonic Sensor [Source: [68]).......c.cccccu.... 75
Figure 3.11 Earth-Humidity Sensor Module (Source: [4-33]) .vcovvevvevieiiieiieieiiecieeins 75
Figure 4.1 Fictional Use Case SChEME...........cooiiiiiiiiiiceee s 78
Figure 4.2 Orion Context Broker Health CheckK...........cccccooiiiiiniiiiiicccc 80
Figure 4.3 10T Agent Context Broker Health Check............cccooiiiiiiiiiine 80
Figure 4.4 Cygnus Health ChecK...........cooiiiiiiiiice s 81
Figure 4.5 STH-Comet Health ChecCKcccooieiieiiic e 81
Figure 4.6 Connection of Compass to the MongoDB Cluster (MongoDB Docker
(000)7 114 1-1) IS TUSORPSTON 82
Figure 4.7 MongoDB Databasesccceiuveiiiieiieiicie et 83
Figure 4.8 Output of the Commands That Created the Entities — Part 2........................ 85
Figure 4.9 MongoDB Database with the Created ENtitiesccccoveviiieivcvcciieseenens 85
Figure 4.10 Visualization of an Entity Detailscccooeiiniiiiiniicc e 86
Figure 4.11 Output of the Command That Associated the Entities..........cccocevenvrvriene. 87
Figure 4.12 Visualization of Entity DetailS............ccoouvieiiiiniiiiiiceeee e 87
Figure 4.13 Query for All Entities Associated with the Farm Entitycccccoovvviene. 88
Figure 4.14 Borehole Entity Key Values Before Changes...........cccoovveviiivieiieciee s, 89
Figure 4.15 Output of the Command That Modified an Entity (1)cccovvevieiieeinnnn 89
Figure 4.16 Borehole Entity Key Values After Changes (First Script)........c.cccoevevvnnne. 89
Figure 4.17 Output of the Command That Modified an Entity (2)cccccoveveiiierinnnn, 90
Figure 4.18 Borehole Entity Key Values After Changes (Second Script)ccccevuenee. 90
Figure 4.19 Output of the Command That Removed an Entity Attribute 91
Figure 4.20 Borehole Entity Key Values After Removal of an Attribute (First Script). 91
Figure 4.21 Output of the Command That Removed an Entity (1)cccooevvveninnninnne. 91
Figure 4.22 A Query for the Borehole Entity Returns a “Not Found” Error 92
Figure 4.23 Creation of the MQTT SUDSCIIDErccoiiiiiii e 92

XVi

Figure 4.24 Creation of the MQTT Publisher and Sending of a Message 92

Figure 4.25 Message Received by the MQTT PubliSher..........ccccoevveiiiieiiccc e 93
Figure 4.26 Output of the Commands That Created the Service Groups.........c.ccccveue.. 94
Figure 4.27 Service Groups Createdcoeoiiiriiieieieiiesie e 95
Figure 4.28 Output of the Commands That Provisioned the Sensorscc.ccocveeenee. 96
Figure 4.29 Provisioned Sensors in the 10T AGENt......ccooiiiiiiieniieieeie e 97
Figure 4.30 Provisioned Sensors Entities iN OrioNcccovveienieenenie s see e 98
Figure 4.31 Output of the Commands That Provisioned the Actuatorsccccueeue... 99
Figure 4.32 Provisioned Actuators in the 10T Agentccccoeveveviicve e 100
Figure 4.33 Provisioned Actuators Entities in Orionc.ccccveveviiive e ceece e 101
Figure 4.34 Directory with the Actuators Commands...........cccceevevieeveeiesieseese e 102
Figure 4.35 Output of the Commands That Enabled the Context Broker Commands for
TNE ACTUALOTS ...ttt sttt s e sae et e e st e s beenbeaneesteeteaneesseenneas 103
Figure 4.36 Commands Enabled in OrioN ..o 103
Figure 4.37 Arduino Library Used for the DHT22 Sensorccoceveieieneneicnnnnnns 104
Figure 4.38 Electrical Schematics for Connecting the DHT22 Sensor to the NodeMcu
ESP8266 DeVKit V1.0 BOAI........ccceiueiieiieie e 104
Figure 4.39 DHT22 Sensor + NodeMcu Circuit Montageccoovvvereiencienvnennnne 105
Figure 4.40 Obtained Data from the DHT22 SENSOr..........ccceevevieiiieieee e 105
Figure 4.41 Electrical Schematics for Connecting the Ultrasonic Sensor to the NodeMcu
ESP8266 DeVKit V1.0 BOAI.........cccciueieieiieiiesieiieeeee e 106
Figure 4.42 Ultrasonic Sensor + NodeMcu Circuit Montage..........ccccovevveveeieeriesnnenne. 106
Figure 4.43 Obtained Data from the Ultrasonic Sensorccccccevvevveveiecseesie s 107
Figure 4.44 Electrical Schematics for Connecting the Earth-Humidity Sensor to the
NodeMcu ESP8266 DevKit V1.0 BOAIU........cccccevrieieieiesie e 107
Figure 4.45 Earth-Humidity Sensor + NodeMcu Circuit Montage (1)cccocevvninnne 108
Figure 4.46 Earth-Humidity Sensor + NodeMcu Circuit Montage (2)cccocevvrvnnnne 108
Figure 4.47 Obtained Data from the Earth-Humidity Sensor...........cccooviniinnnnnne 109
Figure 4.48 Messages Received by the MQTT Subscriber and Sent by the Weather Sensor
.. 110
Figure 4.49 Received Data in the Weather Sensor Entityccoovvvieiiiiieniinnnne 110
Figure 4.50 Weather Sensor Key ValUEsccoovviiiiiiiiiic e 111
Figure 4.51 Messages Received by the MQTT Subscriber and Sent by the Water Level
1T 0T TSRO P RS PPT TSP 111
Figure 4.52 Received Data in the Water Level Sensor Entity..........c.ccccovveiininnnnne. 112
Figure 4.53 Water Level Sensor Key ValUesccccovveiiieniiie e 112

XVii

Figure 4.54 Messages Received by the MQTT Subscriber and Sent by the Earth-Humidity

LT 01T PP PR PR 113
Figure 4.55 Received Data in the Earth-Humidity Sensor Entityc.cccccecvevievinnen. 113
Figure 4.56 Earth-Humidity Sensor Key Values...........cccccoovvveeiiiiiciicce e 114
Figure 4.57 Output of the Command Sent to the ACtUALOr...........cccevieriieiiiiiiiine 115
Figure 4.58 Messages Containing the Commands Sent to the Actuator and the Response
L ToT=T 1Yo PP TR 115
Figure 4.59 Simulation of an Open Valve (ACLUALON)ccccereriiirieeieiese e 115
Figure 4.60 State of the VValve Actuator in the Valve Actuator Entity...........cccceeueeee. 116
Figure 4.61 Valve Actuator Key Values After a “open” Commandccccevvennene 117
Figure 4.62 Valve Actuator Key Values After a “open” and “close” Command......... 117
Figure 4.63 Output of the Commands That Enabled Notifications............c...ccccceueee.. 118
Figure 4.64 Directory Containing SUBSCHPLIONS.........ccccoviieieeiecic e 119
Figure 4.65 Startup of the Echo Server Used to Visualize Notification Sent by Orion 119
Figure 4.66 Notification Received by the ECho Server...........ccooviiiiiiiiiiiie 120
Figure 4.67 Weather Sensor Key ValUes ..o 120
Figure 4.68 Output of the Commands That Notified Cygnus of Data Alterations....... 121
Figure 4.69 Subscriptions that Notify Cygnus in the Orion Databasec.cc.cc..... 122
Figure 4.70 Cygnus Database where Collected Data is Saved............c.cccevveveeieinnnne. 123
Figure 4.71 Historical Data of the Weather SENSOr............ccoevveveiiieiecce e 124
Figure 4.72 Results of a Query for the First Three Collected Values of the Weather Sensor
.. 125
Figure 5.1 Future System Architecture Block Diagram...........ccccceevvevviieiieceese s 129
Figure H.1 Set-Up Shell Script QULPUL..........coveiieiiiie e 198
Figure H.2 Docker Images and Containers Before the Script Execution..................... 199
Figure H.3 "create” Command OUtput — Part 1.........cccccovireiininieninieeiese e 199
Figure H.3 "create” Command OUtPUL — Part 2..........ccccovvreieiinieninieiesese e 200
Figure H.4 Docker Images and Containers After the Script Execution 200
Figure H.5 "pause” Command OULPUL..........cceeiiiiiieiiie e 201
Figure H.6 Docker Containers After “pause” Command............coovevvviveiinencnnnennnnn. 201
Figure H.7 "unpause” Command OULPUL...........cceeiiieiieiie e 202
Figure H.8 Docker Container After "unpause” Command.............cccccevvveiieevieciieennne. 202
Figure H.9 "stop” Command OULPULcooeririiinieieie e 203
Figure H.10 Docker Containers After "stop™ Command...........cccceeeevvereiieseereseeees 203
Figure H.11 "start” Command OULPUL...........ccervriieiierr e 204
Figure H.12 Docker Containers After "start” Commandcccoccevveveiiieneereseene 204

Figure H.13 "removeC" Command OULPULccereerieiierieseee e e 205

Figure H.14 Docker Images and Containers After "removeC"” Command 205
Figure H.15 "removel” Command OQULPULcceiieiiiiiciceee e 206
Figure H.16 Docker Images and Containers After "removel” Command.................... 206

XiX

List of Tables

Table 2.1 HTTP VS MQTT [22] cvvovevveeeeereeeeeseeessesesseesseesseeseessesssessssnssssssessnsesssensasnees 23
Table 3.1 STH-Comet Minimal Mode vs Formal Mode (Source: [52])cocovvevevienee. 57
Table 3.2 IoT Agent Environment Variables — Part 1 (Source: [50] [56]).....cccccovervenee. 65
Table 3.2 IoT Agent Environment Variables — Part 2 (Source: [50] [56])...c.cccccvverveenen. 66
Table 3.3 Cygnus Environment Variables — Part 1 (Source: [51] [57]) ..coovvvvevveiierinennn. 67
Table 3.3 Cygnus Environment Variables — Part 2 (Source: [51] [57]) .cccvvvervrvnennnne 68
Table 3.4 STH-Comet Environment Variables (Source: [52] [58]) ...ccveoververvenerenieninnn 69

XXi

Abbreviations

AC — Alternating Current

ADC - Analog-to-Digital Converter

ALG — Application-Layer Gateway

API — Application Programming Interfaces

AWS — Amazon Web Services

CKAN — Comprehensive Knowledge Archive Network
CLI — Command Line Interface

CoAP — Constrained Application Protocol

CPU — Central Processing Unit

CRM — Customer Relationship Management

CS — Chip Select

cURL — Client URL

DB — Database

DC — Direct Current

DoS — Denial-of-Service

DTLS — Datagram Transport Layer Security

EEPROM - Electrically Erasable Programmable Read-Only Memory
EN — Enable

ETSI — European Telecommunications Standards Institute
FastRTPS — Fast Real Time Publish Subscribe

FI-PPP — Future Internet Public Private Partnership

GE — Generic Enablers

GHz — Gigahertz

xxiii

GND - Ground

GPIO — General Purpose Input/Output

GUI — Graphical User Interface

H2020 — Horizon 2020

HCS — Hardware Chip Select

HMISO — Hardware Master In / Slave Out
HMOSI — Hardware Master Out / Slave In
HSCLK — Hardware Serial Clock

HSPI — Hardware Serial Peripheral Interface
HTTP — Hypertext Transfer Protocol

HTTPS — Hyper Text Transfer Protocol Secure
1/0 — Input / Output

I12C — Inter-Integrated Circuit

IAB — Internet Architecture Board

ICT — Information and Communications Technology
IDE — Integrated Development Environment
IETF — Internet Engineering Task Force

0T — Internet of Things

IP — Internet Protocol

JSON - JavaScript Object Notation

LDR — Light-Dependent Resistor

LED — Light Emitting Diode

LoRaWAN — Long Range Wide Area Network

LWM2M - Lightweight Machine-to-Machine

XXiv

M2M — Machine-to-Machine

MISO — Master In / Slave Out

MOSI — Master Out / Slave In

MQTT — Message Queuing Telemetry Transport
NGSI — Next Generation Services Interface

NGSI-LD — Next Generation Services Interface - Linked Data

OAuth2 — Open Authorization 2.0

OneM2M — One Machine-to-Machine

OPC-UA — Open Platform Communications-Unified Architecture

OpenMTC — Open Machine Type Communication

OS — Operative System

PAP — Policy Authorization Point
PDP — Policy Decision Point

PEP — Policy Enforcement Point
PLL — Phase Locked Loop

PMU - Power Management Unit
PWM - Pulse-Width Modulation
QoS — Quality of Service

RAM — Random-Access Memory
REST — Representational State Transfer
RF — Radio frequency

RFC — Request for Comments
ROM — Read-Only Memory

RS232 — Recommended Standard 232

XXV

RST — Reset

RX — Receiver

SCLK — Serial Clock

SDCLK — Secure Digital Clock

SDCMD - Secure Digital Command Line
SDD - Secure Digital Data

SDIO — Secure Digital Input Output
SMESs — Small-to-Medium Enterprises
SPI — Serial Peripheral Interface

SQL — Structured Query Language
SRAM - Static Random-Access Memory
SSH — Secure Shell

SSO - Single Sign-On

STH-Comet — Short-Term History - Comet
TCP — Transmission Control Protocol
TLS — Transport Layer Security

TOUT - Timer Output

TV — Television

TX — Transmitter

UART — Universal Asynchronous Receiver-Transmitter
UDP — User Datagram Protocol

UL2.0 — Ultralight 2.0 Protocol

URL — Uniform Resource Locator

URN — Uniform Resource Name

XXVi

USB — Universal Serial Bus

VCC — Voltage Common Collector

VCO - Voltage-Controlled Oscillator

VM - Virtual Machine

WPA — Wi-Fi Protected Access

XACML — eXtensible Access Control Markup Language

YAML - YAML Ain't Markup Language

XXVii

Chapter 1 — Introduction

The Internet of Things is becoming more and more popular, transition from only being
know and used in the industry to the general people, which are becoming ever more
dependent on the new 10T devices and services that come out almost every day. For the
general people these devices can transform their way of live, making tasks easier or even
provide constant health monitoring, and all appears to just work like a miracle, it is
possible to connect these 10T devices to a computer or smartphone and control them from
there and visualize the data collected by them. However, in reality, things are more
complex than that, it is necessary to have a whole system behind these devices and, above
all, they all have to be able to communicate with each other, which can be done directly
or through the Internet.

To capitalize on the growth of the Internet of Things, the European Commission promoted
and created FIWARE, an opensource smart solution platform, with the aim of bringing
the benefits of the Internet of Things and the Internet to everyone. This is done by
allowing everyone to use the FIWARE technologies to develop new smart solutions,
easing the creation of new and innovative services and products before inexistent.
Nowadays FIWARE is an independent foundation with a community, made of general
people and enterprises, which is growing year after year making FIWARE increasingly

known and adopted by new people and business.

1.1 Objectives

The main objective of this project is to develop an Universal Internet of Things System
Powered by FIWARE, which as the name indicates it implies the implementation of the
available FIWARE technologies and some other complementary technologies as
necessary, to create an loT System which can be used with an array of different devices,

sensors and actuators.

To prove that the system is working correctly it is necessary to connect devices to it, a
practical use case will be used, making testing more interesting and serving as an example

of a type of application of the system.

1.2 Contributions

The main contribution of this dissertation is paving the way for whoever wants to use the
FIWARE Platform in future loT projects.

A scientific paper based on the work done was also submitted to the IEEE 5th World

Forum on Internet of Things. The paper is available in Annex AA.

1.3 Document Structure

This document has the following structure:

- Chapter 1 — Introduction;

- Chapter 2 — Literature Review, where all technical-scientific knowledge which
serves as the bases for this project and necessary to understand it is given;

- Chapter 3— Universal 10T System Powered by FIWARE, where all the pieces
that make the System are explained in detail;

- Chapter 4 — loT System Tests and Results, where all the results of the
experiments done to the System are presented,;

- Chapter 5 — Conclusion, where the main conclusions about the project and
future work that can be done are presented;

- Annexes, where extra and complementary information is presented.

Chapter 2 — Literature Review

This chapter contains all the technical-scientific knowledge collected from different
sources during the investigation phase, and then edited into an easy to read and understand
format with the purpose of allowing the reader to better understand the work done. All

credit for the collected knowledge goes to the respective authors.

2.1 Internet of Things

Over the last years, the Internet of Things (1oT) has become an increasingly growing topic
in technology, political and social spheres, becoming more and more popular year after
year as a wide variety of new products based on 10T that target the public and not only
the industry become available [1].

This technology is, in a simply way, the interconnection of an extensive of networked
products, systems and sensors, that take advantage of the newest advancements in
computing power, electronics miniaturization and network technologies, to offer new and

revolutionary capabilities that were once considered impossible [1].

2.1.1 Origins

The term “Internet of Things” was first coined by Kevin Ashton, a British technology
inventor, in 1999 to describe a system in which objects in the physical world could be
connected to the “Internet of Sensors”, currently, this term is used to designate situations
in which a series of objects, devices, sensors, and ordinary items are connected to the

Internet and have some computer capabilities [1].

Even though the term IoT was created in 1999, and has only recently became “famous”,
the truth is that the concept of interconnecting computers and networks to monitor and
control devices has been around for a long time [1]. By the end of 1970, systems that
relied on telephone lines to remotely monitor the power grid were already a reality [1]. In
the 90s, industrial solutions for equipment monitoring and operation become widespread
due to advancements in wireless technologies that allowed Machine-to-Machine (M2M)
scenarios [1]. However, many of these solutions were built on dedicated and closed

networks, and proprietary or industry specific standards, rather than on open Internet

standards and Internet Protocol (IP) based networks [1], which increased the complexity

and cost of implementation of such solutions.

In 1990, at an Internet conference, an IP-enabled toaster that could be turned on and off
over the Internet was introduced [2], paving the way for other “things” being connected
over the next years and originating a robust field of research and development into “smart

object networking”, creating the foundations of today’s Internet of Things [1].

2.1.2 Popularity

The “Internet of Things” popularity derives from a combination of factors, resulting from

the evolution and advancements made by the industry and technology [1]:
1) Lowe-cost, high-speed and widespread network connectivity;
2) Widespread IP-based networking;
3) Superior computing power at lower prices and better power efficiency;
4) Technology miniaturization;
5) Improvement of data analytics;

6) Growth of cloud computing.

2.1.3 The Growth of Devices and Traffic

As the number of “things” connected to the Internet rises, the amount of traffic generated
also rises significantly. Cisco estimates that Internet traffic generated by these devices
will rise to just about 70% in 2019, also forecasting that the number of M2M connections
will also rise to 43% [1]. These numbers will continue to grow as the number of smart,
connected devices continues to increase, being expected to exist 500 billion of “things”
connected to the Internet by 2030 [3] generating data that 10T applications use to
aggregate, analyze and deliver insight, helping drive more informed decisions and

actions.

2.1.4 Communication Models

In March 2015, a guiding architectural document for networking of smart objects (RFC
7452) [4] was released by the Internet Architecture Board (IAB) with the purpose of

outlining the four most common communication models used by 10T devices [1] [4]:
1) Device-to-Device:

The device-to-device communication model represents two or more devices that
directly communicate with each other, rather than through an intermediary
application server. The devices can communicate over many type of networks,
including IP networks, however the communication is more often established

using Bluetooth, Z-Wave or ZigBee, as shown in Figure 2.1.

> <—>{B

v
WIRELESS NETWORK
Light Bulb Bluetooth, Z-Wave. Light Switch
Manufacturer A Zigbee ' Manufacturer B

Figure 2.1 Exemple of Device-to-Device Communication Pattern (Based on Sources: [1] [4])

This model is commonly used in home automation systems or similar, which use
small data packets to communicate between devices with low data requirements,

e.g. light bulbs, light switches, thermostats, door locks and some appliances.

This approach illustrates many of the interoperability challenges to be presented
in Sub-Section 2.1.7. An Internet Engineering Task Force (IETF) Journal article
describes, “these devices often have a direct relationship, they usually have built-
in security and trust [mechanisms], but they also use device-specific data models
that require redundant development efforts [by device manufacturers]” [5],
meaning that manufacturers need to invest time and money to implement device-
specific data formats rather than use open approaches that empower standard data

formats.

On the other hand, this situation limits the user’s choice since most of the time

devices of different manufacturers use different protocols that are not compatible,

5

forcing the user to select a family of devices that employ a common protocol
and/or are all of the same manufacturer. Although, the user can also benefit from

knowing that products within a family tend to communicate well.
2) Device-to-Cloud:

In this communication model, the devices connect directly the Internet, more
precisely to a cloud service like an application provider to exchange data and
control traffic. This model takes advantage of already existing Ethernet or Wi-Fi
networks to establish a connection between the device and the cloud, as shown in
Figure 2.2.

APPLICATION
SERVICE PROVIDER
example.com

d HTTP

DTLS TLS
UDP TCP '
P P co
Device with Device with Carbon
Temperature Sensor Monoxide Sensor

Figure 2.2 Example of Device-to-Cloud Communication Pattern (Based on Sources: [1] [4])

This model allows the device to send relevant data to a cloud database where the
data can be analyzed and provide relevant information to the user. It also enables
the user to obtain remote access to their device via a smartphone app or Web
interface, allowing also the manufacturer to update the software/firmware of
device. These or similar cases, add value to the user by extending the

functionalities of the device(s) beyond its native features.

Once again, like the model before, interoperability challenges can arise when
attempting to integrate devices of different vendors. Usually the devices and the
cloud service are of the same manufacturers, limiting the user choice, even more
if the proprietary data protocols are used to communicate to/from the cloud
service. At the same time, users can generally have assurance that devices

designed for the specific platform can be integrated seamlessly.

However, there are also opensource solutions like FIWARE that allow the
integration of devices that use different communication protocols, by translating

these protocols to one used internally by FIWARE.
3) Device-to-Gateway:

In this communication model, the device connects to an Application-Layer
Gateway (ALG) as a channel to reach a cloud service. This gateway acts as an
intermediary between the device and the cloud server, providing enhanced
security and other functionalities such as data or protocol translation. The model
is shown in Figure 2.3.

APPLICATION
SERVICE PROVIDER
example.com

IPv4/v6
LOCAL GATEWAY
CoAP HTTP
DTLS Bluetooth Smart TLS
UDP IEEE 802.11 (Wi-Fi) TCP
IPv6 IEEE 802.15.4 (LR-WPAN) IPv6 co
Device with Device with Carbon
Temperature Sensor Monoxide Sensor

Figure 2.3 Example of Device-to-Gateway Communication Pattern (Based on Sources: [1] [4])

This model is often found in consumer devices, being the most common case, a
smartphone acting as a gateway to a device, e.g., fitness band communicates with

the smartphone running an app that relays the information to the cloud service.

This communication model is also usually used as a bridge when integrating new

devices into a legacy system not natively interoperable with.

The downside of this approach is that the development of the gateway increases

the complexity and cost of the system.
4) Back-End Sharing:

This communication model, denotes a communication architecture that enables
users to export and analyze devices data from a cloud service in combination with

data from other sources, also allowing sharing uploaded data with third parties.

This architecture allows the data collected from IoT devices to be aggregated and
analyzes in the cloud, also allowing the users to move their data when switching
between 10T services, breaking down the traditional data silos. This model also
tries to achieve interoperability between back-end systems. A representation of

this architecture is shown in Figure 2.4.

APPLICATION
SERVICE PROVIDER
b-example.com

ATTPS

APPLICATION

e SERVICE PROVIDER OAuth 2.0
CoAP example.com JSON
or
_ HTTP
Light Sensor APPLICATION

SERVICE PROVIDER
c-example.com

Figure 2.4 Example of Back-End Data Sharing Pattern (Based on Sources: [1] [4])

2.1.5 Security

Guaranteeing the security, reliability, resilience and stability of Internet applications and

services is critical to promoting trust and use of the Internet [1].

Internet users need to have the guarantee that the Internet, its applications and devices
linked to it are secure enough to use it, and the Internet of Things is no different in this
aspect, as security in IoT is deeply linked to the user’s capability to trust this environment

[1]. If people don’t believe in their connected devices and information are secure from

misuse or harm, the trust and reluctance in using the Internet and its services starts to
spread [1], e.g., Facebook and Cambridge Analytic scandal in 2018 [6]. Ensuring security

in 10T products and services should be a top priority [1].

As the number of connected devices to Internet increases, new opportunities to exploit
potential security vulnerabilities arise. Badly designed devices can expose data to theft
by leaving data streams inadequately protected; failing or malfunctioning devices can also
create security holes [1]. These problems are just as crucial for the devices in the Internet
of Things as they are for the computers that have been the endpoints of the Internet and
should be taken seriously [1]. Although due to the need of creating 10T devices with
competitive cost and the technical constraints that come with it, manufacturers often don’t
adequately design security features into them, originating security and long-term

maintainability vulnerabilities greater that their computer counterparts [1].

When combining the security design deficiencies in 10T devices with the sheer number
of these devices that continues to grow from day to day, coupling that to the highly
interconnected nature of such devices, every poorly secured device that is connected
online affects the security and resilience of the Internet globally [1], e.g., DoS attacks that

used millions of 10T devices [7].

Therefore, securing 10T devices should be considered a critical issue, has the number of

essential services that depend on these devices increase [1].

2.1.6 Privacy

The Internet of Things is frequently referred to as a large network of sensor-enabled
devices that collect data about the physical world, which often includes data related to
people [1]. This data often provides a benefit to the device’s owner, but most of the times
also to the manufacturer [1]. loT data collection and use becomes a privacy consideration
when the observed individuals have different privacy outlooks about the use and scope of
that data than those of the data collector [1].

Benign collection of data and combination of loT data streams can also jeopardize
people’s privacy [1]. The combination and correlation of several data streams is more
invasive as a detailed digital profile of an individual can be easily created, in contrast to

a single 10T data stream. It becomes particularly critical when 10T devices produce

additional metadata like time stamps and geolocation information, which add even more

detail to the user profile [1].

There may also be situations in which users are not aware that an 10T device is collecting
data about the individual and potentially sharing it with third parties [1]. An individual
may be in the presence of such devices without knowing that their conversations or
activities are being monitored [1], e.g., Samsung smart TVs recorded audio without the
users knowing [8]. Although these features can be of benefit to an informed user, they
can also pose a privacy problem for those unaware of the device’s presence or have no

influence on how the collected data is used [1].

The privacy concerns that come with the widespread of 10T must be addressed as they

have implications on people’s basic rights and the trust put onto the Internet [1].

2.1.7 Interoperability and Standards

Interoperability is the core value of the Internet, as the Internet can only work if connected
systems are able to understand each other, meaning using the same protocols and
encodings [1]. It is so important that the early Internet workshops for equipment vendors
were called “Interops”, also being the goal of the entire Internet Standards created and
published by the IETF [1].

Interoperability is also the basis of the open Internet, as barriers purposely erected to
impede the exchange of data can deny users the ability to connect, speak, share and
innovate [1]. Environments, in which users are only allowed to use a select subset of sites
and services, can considerably lessen the social, political and economic benefits of the

access to the whole Internet [1].

In theory, in a fully interoperable environment, any loT device would be able to connect
and exchange data with any device or system, however, realistically interoperability is
complex, as it happens in varying degrees at different layers within the protocol stack
used [1]. Additionally, complete interoperability transversely is not always possible,
required or wanted, and if forcefully imposed, could provide deterrents for investment

and innovation [1].

Ignoring the technical aspects, interoperability has an enormous effect on the economic

impact of loT [1]. Device interoperability, if well-defined and well-functioning,

10

encourages innovation and provides efficiencies for device manufacturers, increasing the
value of the loT market [1]. Additionally, the implementation of current standards and

development of new open ones, help lessen entry barriers to the 10T world [1].

There are also some companies that see competitive and strategic advantages and,
incentives in building proprietary systems and having a curated environment, however,

economic opportunities may be hampered in a marketplace of silos [1].

Also, from the point of view of users of 10T devices, interoperability should be a
fundamental value, as it facilitates the choice of devices with the best features at the best
value and integrate them to work together [1]. Customers may hesitate to buy IoT devices
and services if there is inflexibility in integrating devices, high ownership complexity,

vendor lock-in or fear of deprecation due to changing standards [1].

The Figures 2.5, 2.6 and 2.7 show the vast Internet of Things world, as of 2018, divided
by three main groups: applications, platforms and building blocks. These figures

demonstrate why interoperability and standards are imperative.

11

0 0
WEARABLES -
ewaren 53 Ml @ /oo @ua P cacorn [f nest B st @0 <o) ot 40 B e s REUE0 s e
"
g tado” @ orving’ 100sth QLIFX S Pomtcnn NG s A azasTics | Dedrone
v £ Tew E ViR oy
MOTIV WEARABLE X Jev RINGLY Token RN o oy [P L wwcaer Flirtoy . P
LITRON cevll e — PR o DRONE BSE e
PREN'V
s : PR e [i
#fithit romrem GARMIN UNDER ARMOUR B2 1ot ut B reotos [ton 22 @ wverizon’ 1ol
? St nest ins BOSCH YOrzom' eC] Essentil 4
JHODP mapmyQfitness AND NAKZ = - .
moov Fuent jvee GiRve Fera Wroas Liesmot ®10TAS [l W ‘ 0 OO E TEsLA YBER gim
GoOH INIWR sensor o striid/ © Vihuami SKULPT 0000 =
Omopbox CYNGN ()PTMYE BEIREE DroinT DAIMLER _vz'
HEALTH ASSAABLOY (1N ° o] B i e, T8 i) DEEPMAP u:m:u
Tir NOKIA oy O o N fotsense 33 cwmono Wl gttty (2 @y 0N vivind » ceLern dNVeAl oanen oy
% v ¥ 1 —— echodot Tencent £72° Vol
IDOXSTTE. @ Swsseis prwibemme W & Poloton - e
SCANADU AliveCor peiee Gingerio = #cholook Pouty DUERGS
® O warrwm - O LATCH » i
Thync Namsrcilley o SANQ t i 00K seoutem susacuons]| Sew SAYSPRING snips o Y R
) @otns Adaviocnn QU bedn MOLEXULE i Fnatromite INBIX hum T p—
N o mreary 0OVdy ARGUS ©51inn O clousean
i s) & o2
dhiier Nai s june ‘) | NETATMO @leco @ sense ‘b openx B fiexor TrueMotion () vinl PSR
SONOS % ooow ROLI C . Giow nanit SNOO ember Tt 9rop porkry hiliu | [0 wee SIS 3 ocorvi Dbie dah @ cemnimen
PRYNT* ien RADEN 18 belsbost (3 e menpoty | SROERERE oRew 1 wwowex TISEE | @ el o motion
ATTATLITES o oewmen Canamp o @ lo0p 0k show
(A ROBOK FOIN e Bil@ mooike worme weACEN ~
spoars " ® DDAty jibo IRobot = SofiFuck whiste | @acio I @ i - oahe wracenionn’ ARBUS SRE! C e
sTRAM HEEN & b () 50w QAL Petiet tile Kitty Hawkc BLGE ORIGIN
[WiLson LI REE iy Y T necto ff_g eretz | E=m 3 90000 [—-] -
ZEPP i eccon BB oo -~ v PR Onasta @ wamwaneno aaiaidh M tascum’ Peascn G
. e nonss | = [T ninositec [l (e
XGer Foncng O | fietits € s ROBOKIND © vazer =3 - sol @ mazazae
DUS
STAKLEY verily s = Medrobotics S gonceonics [l cateRmuLAR siemens) sosen €3 £\ @i relayr o tuuwe
- roteus 2
sty MONTERIS o @vasc "“‘ ou A > ®rnim © %8owcauss - Alluwvium Arch Fe ELEMENT T
HAUCMEDIX drama oo *1# ” Amcio = ™
- - Iovends cvedicat * s
ey Wi pertin® NI e ™ &1‘1_‘, @ SHISIT fpom BENENOC TACHYUS SolwrCity sffies £ 75
Monica 9 ruime 5 Poeomocine © W‘v."}"' E P €-on NENEEE “Tiliant &uwemee GBIET] Bvery I
@ simplfeye «» ot 3 e B B ..o enighted @
& AstoGrid T T - Py
P Denunusre HEE Obucid thinkeco e

§ bossanovs 2 reswsxrians @@ Percolata [dineatro

‘ vomaara s (i Telogis
Ocouron BlwBity EEEEN VARIRBLE dor B somnsromve § o o Ernig

fAomororr 1 CODE Ompyp NEEOUODND TEGO !
o
v 2 [Actomlle @K ONUX camec - S [rmacrienc]

1 HF ConTwons
[—_ - Aobobea - w2l RVILOC <o pourkies SRS
g oplet waxeine GsUb assetpulse” blik STARSHIP SEEEIER

© 2ot afimilkc Vwessons 3 =3 Lrvmsiricirn
Bocapara Cropy, {3 smss TadeptN | g7

Agleader Sy d smape i’ ABB KUKA T finghot @ coane]
Lline Owane s W fetch -

T @ocanars OREY Vietch yomans jnmeveer 2en
savioke @ O | (G oravit Qymosonsx BALYO &
nebbiolo B v GHOSTROBOTICS

wermunnsars | ROBID iy § oo cremmmm o wasa @ 4 arwren s
4% @ pontiot (K Kist LATCH view [l 0AGRI por ®oen wnaranar oy

Figure 2.5 loT 2018 Landscape - Applications (Based on Source: [9])

PLATFORMS (HORIZONTALS)
SOFTWARE SECURITY CONNECTIVITY

FULL STACK MIDDLEWARE
Vsmamec gemato’ THALES S0 | S v Y sigfox GyloT @ om
BT i @pic | SRR e voce QER8E N sartos o, . Bitdefender
. Mocana s lasper @) Svsory
v Q) ommirre Y, ZEBRA o Losttythm) -
Z7Leonardo () BOSCH DRAGCS puzpminET - A K
2 [95 notwon prode Prpocooraon @ N 5 . NGENU 4 senet splunk> o o moiogie P Rt
Ssoftwaro- [RAYr. wcson 2 FOREASK e, i
PUbNUb 4B o TEMPERED O B AT SENSORO g Wiguazio | strim
- MAANA @ikonux PSS p Indegy (= i veogam VENIAM ARKESSA EOEAGEVIEW
I o S BSOUARE Bastille o\l
. thes WSS Sasecd kanzmofc MEMB, 1) roememens ko [Frearst
®CENBLADE AMZON N e R SILVAIR] | 3cren | @machineshop -
i S MOTIVE IFTTT Aenngsauere KORE > -
wisitica electric imp 9. Cnamc @aeris SENTENA! &

DEVELOPE! PAYMENTS & MON

VIRTUA nry PRINTING / SCANNING

Orors VISA @B oot i 20 O, o 2

AP @ YIRO FOVE @
{"" B square £l shopify formlabs % @D reatsense WJET occpital Rometry

iot | @ e&pay sieeup : 3 sony ommm | WewmMIns Ssulpteo rize FEIREES
e PARACOSM Y
O ssoxe vuzee gpsoN O il % carscony g Dipsysrems M ®

* Partce @ ARTIK

§ straasis Carbon DA @ R

-

et cpsas
OO Losant : [nimbics] r:j‘q‘;‘;;nv nuce 4 CONTENT / DESIGN
carriots S % keer #BioTA HoicPayecOne OSUENSE o e (T Sapia [] ©Sketchfab Thinglverse GRABCAD AAVTODESK % ssyas
tempo avtomation” | 8 s R MR pesons) Wevr NN ST SVRF

Figure 2.6 loT 2018 Landscape - Platforms (Based on Source: [9])

12

BUILDING BLOCKS

HARDWARE

(intel) Quucoww TOSHIBA Iu.. f-&r‘l‘sﬁ Atmel Arm ,WEA @LG siEMENS

Forormun €7 - iciug

s P
myTHIc [IESEEESSE

MO v &7 Tt

CLOUD

afvan]n
Cisco

MO 8o, Honeywell & sosch CIRNES Wity Atmel tbetim ,ov7er

Paikick L uatire vatenEewe JADAK b MONNIT -‘EY{ dialog
@3ENEYS Motonloft (o) SST. BSAFECAST

m.n;") =ERAFY'

&

) Google Cioud Platform
1 ARTIK

57 Cloud Platform

INFRASTRUCTURE

amazon Microsoft Azure
WM

EDGE COMPUTING

9,0] ‘ Octoport Weguna £ XLNX 388 xemrv TlTech

EOEEMFOUNDRY HPE Edgeline loT Systems

S T
FOG T
o ——

MOBILE 05

W Wilricity Fihumawox O55iG

CONNECTIVITY

75 an

droid

Ambientos [0 ¥BlackBeny

@[Essential

HomeKit

CONSULTANTS SERVICES
@I Obluetooty @ zighee /' LoRa NB-loT «IMOTT S Eloe . mesw amazon Walmart PN
- . atat) -
- Mobile- Sprint .
< —— 3 ™
(SRS - P D LR B
dirked - —_— >
‘ FLEMNOS
MART | EP< o5 [P Coap Rusee, coewo | [l U e alfiux WR/GA ® g k
3G 36 4G S5G LTE GLOWPAN LPWAN LWM2M LTEM VX s ,,,:,,.. makexyzl @ 8 Tanoet
MM Fl ALLIANCES UFACTURING — FUNDING
D A i gy SAMSUNG Guawoww OneWeb voma ij T FOxXconn et KICKSTARTER
(intel moiscou FREEWAVE aifih.. Atmel S Lreeiommim rannin
ST, PO | rermnen flex JABIL #AngelList
P —— 3 Laird alwali)
"9’“ ibocon. SIEMENS Quacowm Laid il & eero o m PEGATRON NewKinpoGroup | [1
X - | o
satffy QMo EnOcean rem3ta.it astrRans & rume [urma. im I o » Banchmark mmn’

Figure 2.7 loT 2018 Landscape - Building Blocks (Based on Source: [9])

2.2 FIWARE

In 2011, the Internet had almost two billion users, The European Commission launched

a €300 million Future Internet Public Private Partnership (FI-PPP) with the objective of

increasing and sharing the social and economic benefits of the future Internet with

consumers, citizens, private and public sectors [10]. The FI-PPP developed FIWARE,

which combined the best existing technologies to create an opensource platform of

components that could be used to develop smart applications [10]. The FI-PPP also

assisted entrepreneurs, startups, companies, researchers, engineers and academics using

the FIWARE components from the investigation and innovation stage up to the market

ready stage [10].

In 2016, five years later, the Internet had more than 3.75 billion users and hundreds of

startups and dozens of municipalities in Europe were already using FIWARE to provide

advanced digital services and smart apps, develop faster and at lower cost, since FIWARE

avoids vendor lock-in, removes commercial and technical barriers, and is based in

standard open service platform components [10].

13

In autumn 2016, four big companies, Atos, Engineering, Orange and Telefonica launched
the FIWARE Foundation, an open body within the FIWARE Community, with the intent
of promoting, augmenting, protecting and validating the FIWARE brand and its
technologies (FIWARE Platform) [10] [11]. The founding members were soon joined by
others, (e.g., companies, cities, institutions and individual contributors who wanted to
support FIWARE Community [10] [11]). The Foundation is financed by its members and
funds received for participation in several H2020 projects [10].

Currently the FIWARE Foundation has become the main interlocutor between the
opensource developer community, the industry and the end users in different vertical
business [10].

2.2.1 What is FIWARE
FIWARE can be easily defined as the opensource smart solution platform of choice [12].

The FIWARE Community is an independent open community devoted to the FIWARE
mission: “to build an open sustainable ecosystem around public, royalty-free and
implementation-driven software platform standards that will ease the development of new
Smart Applications in multiple sectors” [12]. The Community has as founding principles:

“independence in decision making, openness, transparency and meritocracy” [12].

The Community is formed by contributors to the FIWARE Platform and by those who
contribute in building and making the FIWARE ecosystem sustainable, committing
resources in FIWARE Lab activities or activities of the FIWARE Accelerator, FIWARE
Mundus or FIWARE iHubs programs [12].

The FIWARE Platform provides a set of public and royalty-free Application
Programming Interfaces (APIs) that facilitate the development of smart applications in
vertical sectors. In addition, an opensource reference implementation of every FIWARE

component is also freely available [12].

The FIWARE Community is structured in such a way that encourages all forms of
contributions and provides safeguards in case the balance between the members of the
community is lost [12]. The Community is organized in three teams: FIWARE Chapters,

Technical Committees, responsible for activities of technical nature, and Ecosystem

14

Support Committees, responsible for non-technical activities related to the FIWARE
Accelerator, FIWARE Mundus and FIWARE iHubs programs [12].

2.2.1.1 FIWARE Lab

FIWARE Lab is a non-commercial sandbox environment where members of the
FIWARE Community can research, experiment and test the FIWARE technologies as
well as their applications, making use of Open Data published by cities and other
organizations [13]. The Lab is set up over ageographically distributed network
of federated nodes leveraging on an ample variety of experimental infrastructures [13]. It
is important to note that resources are limited for trial members and unlimited for

members that have an approved project by FIWARE.

2.2.1.2 FIWARE Accelerate

The FIWARE Accelerator Program has the objective of incentivizing the use of FIWARE
technologies amongst solution integrators and application developers, with special

emphasis on Small-to-Medium Enterprises (SMEs) and start-ups [13].

2.2.1.3 FIWARE Mundus

Even thought FIWARE was created in Europe, it was designed from the start with the
objective of going global. The FIWARE Mundus program exists in order win over local
Information and Communications Technology (ICT) players and domain stakeholders
into using FIWARE, ultimately cooperating with local governments in diverse parts of
the world [13].

2.2.1.4 FIWARE iHubs

The FIWARE iHubs Program has the objective of supporting the formation and the
operations of iHubs nodes worldwide, eventually creating a network of iHubs that will
play an important role in building the community of developers adopting and contributing
to FIWARE [13].

15

2.2.2 Powered by FIWARE

The FIWARE Platform is a curated framework of opensource components, which can be
combined with other third-party platform components to hasten the development of smart
solutions [14].

In every smart solution it is essential to gather and manage context information, process
it and inform external actors, allowing them to actuate and so change or enrich the current
context. The FIWARE Context Broker component is the core constituent of any “Powered
by FIWARE?” solution, as it enables the system to update and access the current state of

context, as depicted in Figure 2.8 [14].

r»

Data =
Context Information

D —

Figure 2.8 Context Broker Processes (Source: [14])

As the core, the Context Broker is in turn surrounded by additional components, which
can supply context data from various sources (e.g., a Customer Relationship Management
(CRM) system, social networks, mobile apps, 10T sensors), support to data processing,
analysis and visualization, or adding support to data access control, publication or

monetization [14].

The Figure 2.9 shows an example of a FIWARE reference architecture where it is possible
to visualize the Context Broker surrounded by other components that together form a

system.

3" organizations

SMART INDUSTRY MANAGEMENT SERVICES

Complex Event i § Al A KPIs Ll Operation
—~
§cb Processing *S¥ Algorithms g[]{] monitoring mham Dashboards

Bl Plafform Mashup Platform
Processing Engines (Knowage) M (Wirecloud) Connector
(Flink, Hadoop, Spark, Storm...)

History
Data

Stream

FIWARE Context Broker
(Orion)

IdM & Access Control
API Management
and Biz Framework

Real-time
media processing
(Kurento)

1
. ‘ Cameras and loT
%}- e

Figure 2.9 Example of a FIWARE Reference Architecture for Smart Industry (Source: [15])

ROS-2 intert.

IDAS loT Agents IDAS Systems Adapters
Robotic Systems

§ System System System System
Milling 3D Printer Assembly ‘Welding Transport | CMM Demand Supply D Extended 3rd-party enabler
Machine Machine robots robots. robots B system Mgt Mgt
A HEHE o -
Cyber-Physical Systems (CPS) in shop floor

Information systems FIWARE GE module

16

All communications between applications (frontend) or platform components and the
Context Broker (together form the backend) are done with the use of the FIWARE
NGSIv2 RESTful API [16], a simple and powerful open standard that in the future will
align with the ETSI NGSI-LD [17] specifications that are based and an evolution of the

former, and are currently available for public review [14].

The open standard characteristic of the FIWARE NGSI API allows developers to port
their applications across different “Powered by FIWARE” platforms and a guarantee of
a stable framework for future development [14]. Also, additional functionalities can
easily be added to a solution by using FIWARE or third-party components that comply
to the FIWARE NGSI API. Since all components comply to the same API, integration is
simplified as all components use the same standard interface, eliminating vendor lock-in
[14]. The use of FIWARE also allows for rearchitecting solutions according to the user
or business needs, as all FIWARE architectures are modular due to being made up of

independent components [14].

2.2.3 FIWARE Platform Components

As said before, the FIWARE Platform is a curated framework of opensource components,
these components are named as Generic Enablers (GEs), and can be assembled together

and with other third-party components to build smart solutions [18].

Building around the FIWARE Orion Context Broker Generic Enabler, the core and only
mandatory GE of any “Powered by FIWARE” solution, a rich collection of
complementary FIWARE GEs are available, dealing with [18]:

- Interfacing with the 10T, Robots and third-party systems;
- Context Data/API management, publication and monetization;

- Processing, analysis and visualization of context information.

All of the available FIWARE GEs can be seen in Figure 2.10, although some are still in

incubation.

17

. BigData
Cloud Edge hﬁﬁ?ﬁie Context
(FogFlow¥*) (Knmiage) Analysis
Real-time Processing of (Cosmos) Real-time Processing of
Context Events Media Streams
(Perseo®) (Kurento)
Creation of Handlin
L : i g
Application Context Processing. . B Authorization and
Dashboards P Analysis, Visualization % E ‘Access Control to
/irecloud e = .
e 2 iR
B Core Context Management § § ilma, AuthZForce)
E‘ (Context Broker) E S Publication and
& N Monetization of
A T35 Context Information
A 5

Interface to IoT, Robotics, (CKAN Extensions,

Development of Thir
ird Party Systems .
Context-aware R Data/API Biz

Applications (Orion, Framework)
STH-Comet,
Cygnus, . Co:](:lf;;mn Connection Documents * In Tncubation
Quantum.eap*) (IDAS to Robots Exchange
Open ITEZ*) (FastRTPS*) (Domibus*)

Figure 2.10 FIWARE Generic Enablers (Based on Sources: [18] [19])

Contrary to the FIWARE Orion Context Broker, the use of complementary FIWARE GEs
is not obligatory, as it is possible to develop a “Powered by FIWARE” solution with the
Orion GE and third-party components [18].

2.2.3.1 Core Context Management

The Orion Context Broker, as the core component, allows the management of context
information in a highly decentralized and large-scale manner. It also, provides the
FIWARE NGSIv2 RESTful API, enabling updates, queries or subscriptions to changes
on context information [18]. This GE only holds the latest information about the current
context, however, as context information changes over time it is important to save this
context history [18]. For that the following GEs, as part of the Core Context Management
Chapter, complement the Orion Context Broker [18]:

- The STH Comet Generic Enabler enables storing a Short-Term History of context
data (typically months) on MongoDB;
- The Cygnus Generic Enabler enables managing the history of context, created as

a stream of data which can be injected into several data sinks, including some of

18

the most popular databases like PostgreSQL, MySQL, MongoDB or AWS
DynamoDB as well as BigData platforms like Hadoop, Storm, Spark or Flink.

2.2.3.2 Interface to 10T, Robots and Third-Party Systems

Several GEs are available to facilitate the connection with the Internet of Things, Robots
and third-party systems for the purpose of collecting context information or trigger

actuations in response to context updates [18]:

- The Backend Device Management - IDAS Generic Enabler offers a wide range of
IoT Agents which make it easier to interface with devices using the most widely
used loT protocols:

o Lightweight Machine-to-Machine (LWM2M) over Constrained
Application Protocol (CoAP);

o JavaScript Object Notation (JSON) over Hypertext Transfer Protocol/
Message Queuing Telemetry Transport (HTTP/MQTT);

o Ultralight 2.0 over HTTP/MQTT,;

o Open Platform Communications-Unified Architecture (OPC-UA);

o Long Range Wide Area Network (LoRaWAN).

The tools to develop custom IoT Agents for specific protocols are also available

for developers.

The following Generic Enablers are, at the date of this document, under incubation within
this chapter [18]:

- The Fast Real Time Publish Subscribe (FastRTPS) Incubated Generic Enabler
helps to interface with robotics systems, having been adopted as the default
middleware in ROS2 (Robot Operating System 2.0);

- The Open Machine Type Communication (OpenMTC) Incubated Generic Enabler
is an open source implementation of the One Machine-to-Machine (OneM2M)
standard. A northbound interface with the Orion Context Broker is already

implemented in this GE.

19

2.2.3.3 Processing, Analysis and Visualization of Context Information

Various GEs are available, to ease the processing, analyzing or visualizing of context

information [18]:

The Application Mashup - Wirecloud Generic Enabler, a powerful web mashup
platform which makes it easier to develop operational dashboards highly
customizable by end users;

The Data Visualization - Knowage Generic Enabler, the implementation of
Knowage, a powerful Business Intelligence platform empowering business
analytics and analytics on context data [20];

The Stream-oriented - Kurento Generic Enabler enables real-time processing of
media streams supporting the use of video cameras as sensors, and the integration
of advanced application functions, e.g., integrated audiovisual communications,
augmented reality, flexible media playing, recording;

The BigData Analysis - Cosmos Generic Enabler enables an easy Bigdata analysis

over context information.

The following Generic Enablers are, at the date of this document, under incubation [18]:

The FogFlow Incubated Generic Enabler is a distributed execution framework to
orchestrate dynamic processing flows over cloud and edges;

The Cloud Messaging - AEON Incubated Generic Enabler provides a
communication channel middleware for the fast distribution of messages among
entities;

The Electronic Data Exchange - Domibus Incubated Generic Enabler enables the
exchange of electronic data and documents in a reliable and trusted way.

2.2.3.4 Context Data/API Management, Publication and Monetization

The implementation of secure access to the components of a solution architecture is done

using the following Generic Enablers [18]:

The Identity Management - Keyrock Generic Enabler provides secure and private
OAuth2 authentication of users and devices, management of user profiles,
safekeeping of personal data, Single Sign-On (SSO) and Identity Federation over

several administration domains;

20

- The PEP-Proxy - Wilma Generic Enabler enables proxy functions within OAuth2
authentication schemas and applies Policy Enforcement Point (PEP) functions
within an eXtensible Access Control Markup Language (XACML) schema;

- The Authorization Policy Decision Point (PDP) — AuthZForce Generic Enabler
enforces Policy Decision Point/Policy Authorization Point (PDP/PAP) functions

within an access XACML schema.
Generic Enablers for the publication and monetization of context data resources [18]:

- The Comprehensive Knowledge Archive Network (CKAN) extensions Generic
Enabler provides several add-ons permitting to extend current capabilities of the
CKAN Open Data publication platform, allowing the publication of datasets
matching right-time context data, the assignment of access terms and policies to
those datasets and the assignment of pricing and pay-per-use schemas to datasets;

- The Business API Ecosystem - Biz Framework Generic Enabler provides backend

support for Context API/Data monetization built on TM-Forum Business APIs.

2.3 Used 10T Protocols

As mentioned before the Backend Device Management - IDAS Generic Enabler offers a
wide range of loT Agents that are responsible for translating the different 10T protocols
used by connected devices to the NGSIv2 API, the only language known by the other
FIWARE GEs. Of all the protocols 10T Agents available (each responsible for a different
protocol), only two were considered for this project: 10T Agent for Ultralight 2.0 over
HTTP/MQTT and loT Agent for LoRa.

2.3.1 Ultralight 2.0 Protocol

Ultralight 2.0 is a lightweight text-based protocol designed for constrained devices and

communications, whose bandwidth and memory may be limited [21].

2.3.1.1 Measure Payload Syntax

The payload send from the devices is composed of a list of key-values pairs separated by

the “|” character, as shown in the example below [21].

21

[£130/h[60 |

In this example, two attributes are present, one named “t” with the value of “30” and
another named “h” with the value of “60”. It is also possible to send characters instead of

numbers [21].

It is also possible for the device to send a payload with a timestamp, but it is normally not
done as the 10T Agent can add a timestamp to the received messages, reducing the size
of the messages [21] [22].

[2018-08-10T00:35:30Z|t[30|h]|60 |

The attributes in the messages received are then mapped by the system to the correct

entities attributes, later explained and exemplified.

2.3.1.2 Commands Syntax

Commands are messages sent from the 10T Agent to devices, following the format below
[21].

|<device name>@<command name> |<command value>

Example, in which a Robot is commanded to turn right:

| Robotl@turn|right |

In case a command requires parameters, the “command value” can be used as exemplified

[21]:

|Robotl@turn\paraml:l\param2:2 |

__9 €,

Since the character 1s a forbidden character, is used instead, otherwise the

command will fail and an error message will be returned [21].

After receiving commands, the devices shall respond following the format underneath
[22].

|<device name>@<command name>|<result>

Example, of a reply:

| Robotl@turn|Right Ok |

The Ultralight 2.0 protocol defines the measurements and commands syntax; however, it
does not specify the transport protocol [21]. The loT Agent currently supports two
transport protocol bindings: HTTP and MQTT [21]; of the two the MQTT binding was

22

chosen due to the existence of a tutorial describing how to configure the lIoT Agent to use
MQTT, and due to HTPP not being the ideal protocol for 10T [22].

232 MQTT

Message Queuing Telemetry Transport (MQTT) is a publish-subscribe messaging
protocol used in the Internet of Things, where a “small code footprint” is required and the
network bandwidth is limited [22]. This protocol has the key characteristic of being

bandwidth and power efficient [22].

The Ultralight 2.0 protocol can be carried over HTTP or MQTT [21]. HTTP uses a
request/response model where the devices connect directly to the IoT Agent and therefore
simplifies the system architecture when compared to MQTT which uses a publish
subscribe model that is event driven, publishes messages to clients and requires a central
communication point, known as the MQTT Broker, which is responsible for dispatching
all messages between the senders and the correct receivers, effectively working as a router
[22].

Table 2.1 HTTP vs MQTT [22]

HTTP vs MQTT
loT Agent communicates directly with the IoT Agent communicates indirectly with the

devices (things) devices, via an MQTT Broker
Request-Response model Publish-Subscribe model
Devices must be always ready to receive . .
Devices choose when to receive messages
messages
High power requirement Low power requirement

Every message published must include a topic, that is essentially the routing information
for the broker [22]. To receive messages, a client must inform the broker that it wants to
subscribe to a Topic, informing the broker to deliver all messages with the subscribed
topic to the client [22].

23

Subscriber MQTT Broker Publisher

Subscribe (Topic)

Publish (Topic, Data)

A

Publish (Topic, Data)

F Y

Figure 2.11 MQTT Publish-Subscribe Model

As the clients only communicate over the Topic and don’t have to know each other, it
allows for highly scalable solutions without dependencies between subscribers and
publishers, as the only shared point of communication is the MQTT Broker [22].

MQTT also the publisher to select a Quality of Service (QoS) level, thus increasing the

reliability of the communications. It is possible to select between tree QoS levels [23]:

- QoS 0 — at most once, which guarantees a best effort delivery;
- QoS 1 - at least once, the message is delivered at least one time;

- QoS 2 — exactly once, the message is delivered exactly one time.

The MQTT Broker used in this project is the Mosquitto MQTT Broker, a readily available

and opensource broker.

In Figure 2.12 and 2.13 is possible to compare how the IoT Devices are connected when
using HTTP and MQTT.

Thing [*----» <----+ Thing
IoT Agent
Thing [¢-----» «----- Thing
{ﬁ k\
¥ N
Thing Thing

Figure 2.12 Ultralight over HTTP (Based on Source: [22])

24

TIoT Agent

r'y
I
:
¥
Thing [#----¥ 4 ----+ Thing
MQTT
Broker
Thing |[€-----» € ----+ Thing
I’ k\
l, \l
Thing Thing

Figure 2.13 Ultralight over MQTT (Based on Source: [22])

2.4 Docker

Docker is an open platform for developing, shipping, and running applications through
the use of environments called containers [24]. The isolation and security offered by
containers allow to simultaneously run several containers on a given host [24]. Since
containers are lightweight they don’t require the use of a hypervisor, running directly in
the host kernel, meaning it is possible to run more containers on a given hardware
combination than on virtual machines (VM) [24]. Although it is also possible to run
containers on hosts that are virtual machines [24]. Figure 2.14 compares a container with

a virtual machine, illustrating the differences between them.

CONTAINER VM

App A App B App C App A App B App C
Bins/Libs Bins/Libs Bins/Libs Bins/Libs Bins/Libs Bins/Libs

Guest OS Guest OS Guest OS
Docker |)

Host OS Hypervisor

Infrastructure Infrastructure

Figure 2.14 Containers vs Virtual Machines (Source: [25])

25

2.4.1 Docker Engine

The Docker Engine is a client-server application constituted by three key components, as
shown in Figure 2.15 [24]:

- A Server called a Daemon process, responsible for creating and managing Docker
objects: images, containers, networks and volumes;

- A REST API, specifies the interfaces that programs can use to communicate with
de daemon and direct it;

- A Command Line Interface (CLI) Client, that uses the REST API in to control
and interact with the Daemon.

container image
I
manages —J
Client
docker CLI
netwark data volumes
| REST API l
manages server manages

docker dasmon

Figure 2.15 Representation of the Docker Engine (Source: [24])

26

2.4.2 Docker Architecture

Docker operates on a client-server architecture as can be seen in Figure 2.16 [24].

(G2 o (g
docker build --{--- Docker daemon I
. ‘ ".‘... -~ - -
~
\
/ -

J

:

[
7z,

s

<
v N
» ’ ‘. ~
docker pull j| [Containers \.\ Images j—

\ NGIMX
~.
~, . /

docker run —

Figure 2.16 Representation of an Model Docker Architecture (Source: [24])

The Client (e.g., Docker CLI) communicates with the Docker Daemon, that does all the
work of building, running and distributing the Docker containers [24]. Although the
Client and the Daemon can run on the same host, it is possible to connect a Docker Client
remotely to a Docker Daemon, as the communication between both is done using a REST

API over UNIX sockets or network interfaces [24].

2.4.3 Docker Images and Containers
Docker Image

A Docker Image is an executable read-only template that has everything necessary for
creating a Docker Container: the code, a runtime, libraries, environment variables and
configuration files [24] [25].

An Image is created using a Dockerfile, that has all the steps defined in it to create an
Image and run it [24]. Each instruction in a Docker files creates a new layer in an Image
[24]. When a Dockerfile is modified and the Image rebuild, only the altered layers are
rebuilt, making the Images lightweight, small and fast [24]. It is also possible to build an
Image based on other Images [24].

27

Docker Container

A Docker Container is a runtime instance of a Docker Image [25]. By using the Docker
APl or CLI a Container can be created, started, stopped, moved and deleted [24]. It is also
possible to attach storage to it, connect to networks, and create a new Image based on the

curren9t state of the Container [24].

Although, by default, a Container is well isolated from other Containers and its host, it is
possible to control how isolated a Container’s network, storage and other subsystems are

from other Containers and the host [24].

It is very important that all vital data used by (or created) a Container is kept in persistent
storage (e.g., storage attached), as any changes to the state of a Container when it is

deleted, disappear [24].

2.4.4 Docker Compose

Docker Compose is a tool for defining and deploying multi-container Docker applications
through the use of a YAML Ain't Markup Language (YAML) file, named “docker-
compose.yml”, which contains all the configurations of the needed services [26]. This
allows for the creation and starting of all services with a single command: “docker-

compose up” [26].

version: "3"
services:

mosquitto: € Container 1
image: eclipse-mosquitto
hostname: mosquitto
container name: mosquitto
expose:

- "1883"

- "9o01"
ports:

- "1883:1883"

- "9001:9001"
volumes:

- ./mosquitto/mosquitto.conf:/mosquitto/config/mosquitto.conf
networks:

- default

Container 2:

28

2.5 MongoDB

MongoDB is a cross-platform, document-oriented database which offers high
performance, high availability and scalability [27]. Data is stored in JavaScript Object
Notation (JSON) like documents that provide a flexible way of storing data, as fields can
vary from document to document and the data structure can be changed if needed [28].

A Graphical User Interface (GUI) for MongoDB, named MongoDB Compass is also
available, allowing the visualization and management of databases [29].

2.6 Hardware

This section contains some information about microcontrollers, sensors and actuators,
with the purpose of helping the reader understand the hardware that make up the “Things”
later used in this work.

2.6.1 Microcontrollers

Microcontrollers were created with the purpose of serving as the base of embedded
systems, that is, systems that work without interruption and human intervention, and
therefore are a very useful tool to control something with low resources [6-1].
Microcontrollers have a great flexibility in the creation of software and in the
development of the hardware that surrounds it, taking advantage of the communication
between both [30].

2.6.1.1 Microcontroller Basic Architecture

Just like a computer, a microcontroller is made up of several components (modules), that
while in a computer are separated and visible, and can be easily replaced, in a
microcontroller these modules are all concentrated in a small encapsulation (a chip), thus

ensuring the basic operation of the microcontroller.

A microcontroller typical consists of several modules: memory unit, Central Processing
Unit (CPU), BUS, Input/Output (1/O) ports, serial communication ports, timers, Analog-
to-Digital Converter (ADC) [30]; as can be seen in Figure 2.17, which represents the

general block diagram of a microcontroller.

29

< Timer 1
I'gmptls > ROM RAM EEPROM
ontro < Timer 2
A J
Specific
CPU BUS Interfaces
“ “ l l l l l
Oscillator BUS Serial
Controller b Port
PO P1 P2 P3

Figure 2.17 Basic Architecture of a Microcontroller (Based on Source: [30])

The memory module consists of two types of memories: the Read-Only
Memory/Electrically Erasable Programmable Read-Only Memory (ROM/EEPROM)
memory, in which is saved all the critical and essential data when the power is turned off,
and the Random-Access Memory (RAM) which contains all the data used by a program
(kept in the ROM/EEPROM) during its execution [30]. This data is temporary and not
crucial for the operation of the microcontroller and therefore no damage is done when the
power is turned off and the RAM erased [30].

The CPU is the brain of the microcontroller, being capable of multiplying, dividing,
subtracting summing, and managing the contents of the memories. The CPU is

interconnected with the memory and all other modules via the BUS [30].

The BUS is a group of 8, 16 or more transmission lines, that interconnects all modules

inside the microcontroller [30].

The Serial Communication module has the function of allowing communication with the
outside [30]. This communication is usually done via a Universal Serial Bus (USB), a
Recommended Standard 232 (RS232) port, an Ethernet port or Wi-Fi [30].

The 1/0O ports are used to connect external components to the microcontrollers, therefore

extending the capabilities of the microcontroller [30].

Timers are configurable counters whose register value increases a unit in a fixed time

interval, saving its value during the time instants (T1 and T2) then calculating their

30

difference, thus obtaining the amount of elapsed time [30]. Timers can provide
information about time slots, protocols used and generate signals, namely Pulse-Width

Modulation (PWM) signals, widely used in motor speed control [30].

The ADC has the function of converting analog input signals into digital output signals.

2.6.2 Sensors

Sensors are devices whose behavior changes under the influence of a physical property,
originating directly or indirectly a signal that indicates this greatness [31]. When they
operate directly, they convert a form of neutral energy and are therefore called
transducers; those that operate indirectly alter their physical properties, such as resistance,
capacitance or inductance, under the action of a magnitude of more or less proportional
[31].

Sensors are fundamental for the Internet of Things, as most of the “Things” are sensors,
placed in a medium where measurements are to be carried out, converting the measured
quantity into an electrical signal, which is then processed through conditioning circuits.
After the treatment, the signal is read by a microcontroller programed for the effect and
sent through the Internet to the system, thus allowing the monitoring and automatic

control of the quantities in question.

2.6.2.1 Sensors Classification

Sensors can be divided into three distinct classes: passive and active sensors, both analog,

and digital sensors [31].

Passive sensors are characterized by the occurrence of impedance variations when a
variation of the measured quantity occurs [31]. These sensors can be resistive, capacitive,
inductive and differential [31].

Active sensors are characterized by directly harnessing the energy of the process to be
measured [31]. These sensors can be thermoelectric, pyroelectric, photovoltaic and

electromagnetic [31].

Digital sensors allow the measurement of discrete quantities such as counters and devices

with frequency output [31].

31

2.6.2.2 Passive Sensors

Resistive sensors are characterized by having a resistive output, which may have a linear
variation, e.g., potentiometers and Light-Dependent Resistors (LDRS), or a non-linear
variation, e.g., resistive temperature sensors and force sensors [31]. Figure 2.18 displays
a LDR.

Figure 2.18 LDR (Source: [32])

In the case of capacitive sensors, its output variation is capacitive similar to a variable
capacitor, and its therefore an alternative to resistive sensors due to its high resolution,
stability and immunity to temperature [31]. These sensors are used to measure linear or
angular displacements, distances, liquid level and moisture, being usually used in the
detection of failures in industrial manufacturing process [31]. Figure 2.19 shows two

capacitive sensors.

Figure 2.19 Capacitive Sensors (Source: [31])

Inductive sensors are characterized by having an inductive output, similar to a variable
coil, as they internally consist of a conductive coil, which may have a core, where the
passage of variable electric current in time produces a magnetic field, also variable in
time [31]. These sensors are used to measure displacements, as they have high sensitivity,
resolution and repeatability [31]. Figure 2.20 displays several inductive sensors with

different shapes.

32

g) s 9P

Figure 2.20 Inductive Sensors (Source: [31])

Pressure sensors are intended to measure low pressure, presenting the result in the form
of voltage [31]. This sensor varies its resistance because of a force being applied on it,
thus having a linear variation [31]. The sensor works by having as reference the
atmospheric pressure outside the outside the environment of the system to be measured,
and the other pin inside the system environment [31]. When a positive pressure is applied
to the inner pin, the differential voltage increases linearly, however if the pin is in a
vacuum system the differential voltage decreases linearly [31]. Figure 2.21 displays a

pressure sensor.

Figure 2.21 Pressure Sensor (Source: [31])

2.6.2.3 Active Sensors

Active sensors behave like generators, producing an electric signal through when a
physical phenomenon is detected [31]. Below are some of the most common active

Sensors.

The main characteristic of electromagnetic sensors is the variation of the magnetic field,
which reflects the variability of the measured physical property, without influencing the
sensor inductance [31]. These sensors are based on Faraday’s law, which states that when
there is a relative movement between the conductor and a magnetic field, an electromotive

force appears in the conductor [31]. Figure 2.22 shows an electromagnetic sensor.

33

Figure 2.22 Electromagnetic Sensor (Source: [31])

Thermoelectric sensors, provide the required temperature control in industrial and
commercial processes [31]. To carry out the control, this type of sensor equips a device
called Thermocouple, whose operation is based on three effects: the Seebeck Effect,
which states that different temperatures cause an electric current, the Peltier Effect, which
states the heating or cooling of a junction when traversed by a current, and the Thompson
Effect, which states the absorption or release of a homogeneous conductor with an
inhomogeneous temperature when run by a current [31]. The operation of a
Thermocouple consists of the use of a circuit with two distinct metals joined by two
junctions, so that if one of the junctions is maintained at a reference temperature, the other
junction will serve as a measurement junction, thus converting thermal energy in
electricity [31]. The Thermocouple, as shown in Figure 2.23, has the advantages of a large
measuring range, a rapid response to temperature variation and good reliability [31].
However, the maximum supported temperature must be lower than the semiconductor

melting temperature [31]. Figure 2.23 shows a thermocouple.

Figure 2.23 Thermocouple (Source: [31])

Piezoelectric sensors operation id based on the piezoelectric effect, present in some
metals, which consists in the appearance of a potential difference between opposite faces
of a metal when submitted to mechanical tension [31]. However, the piezoelectric effect
is reversible when a tension is applied between the opposing faces of the material, causing

a deformation thereof [31]. This effect can be applied to both actuators and sensors, being

34

applied force, pressure, acceleration, humidity and ultrasonic sensors [31]. Figure 2.24

shows a pair of piezoelectric sensors.

Figure 2.24 Piezoelectric Sensors (Source: [31])

Pyroelectric sensors operation is based on the pyroelectric effect that occurs in crystalline
materials when subjected to a temperature variation, which originates surface electrical
charges [31]. This type of sensors works similarly to piezoelectric sensors, but instead of
being made of a metal, these have a polarized pyroelectric crystal with two metal
electrodes on opposite faces [31]. The sensors generate a charge due to changes in its
temperature because of incident infrared radiation [31]. These sensors can be used in the
detection of thermal radiation at room temperature, non-contact temperature
measurement (pyrometers) and temperature-triggered alarm systems [31]. Figure 2.25

displays a pyroelectric sensor.

Figure 2.25 Pyroelectric Sensor (Source: [31])

2.6.2.4 Digital Sensors

Digital sensors are the easiest to use as they only have two logic states, 0 or 1, e.g.,
switches, microswitches, buttons and position switches [31]. Figure 2.26 shows a

microswitch.

35

Figure 2.26 Microswitch (Source: [33])

2.6.3 Actuators

Actuators are devices capable of converting electrical, hydraulic or pneumatic energy into
mechanical energy [34]. Through transmission systems normally composed of shafts,
chains or gears the mechanical energy generated by the actuators is sent to the device that
needs to be moved [34]. The actuators can be divided into four groups: hydraulic,
pneumatic, electromechanical and signaletic [34].

Hydraulic actuators are components driven by moving fluids compressed at high
pressures, usually pressurized oil, whereas pneumatic actuators use compressed air
which, when it is at high pressures, assumes the characteristics of a fluid [34]. Hydraulic
actuators have the form of linear cylinders to generate linear movements whereas the
pneumatic actuators can take the form of linear cylinders, which internally have a piston,
or rotating cylinders that have a fin, to provide angular displacements, as seen in Figure
2.27 [34].

Cylinder Flipper

Fluids Hole
Piston

Piston Rod Cylinder

Figure 2.27 Internal Schema of Actuators (Based on Source: [34])

Hydraulic actuators have the advantage of allowing continuous and precise control of

movement and speed due to the incompressibility of the fluid used, but they have the

36

disadvantage of being very difficult the exerted force, whereas the pneumatic actuators
have the advantage of allowing smooth movements, are simple to control and
inexpensive, having the disadvantage of having little stiffness due to the compressibility

of the air and being imprecise [34].

Electromagnetic actuators, have a wide variety of models and types, such as Alternating
Current (AC) motors, Direct Current (DC) motors, servomotors and stepper motors [34].
Electric motors in general have the advantages of having a great diversity of
manufacturers and models, when associated with sensors, they can be used both to control
something (e.g., open a valve) and are easy to control, using signals such as PWM signals

and H bridges.

DC Electromagnetic Motors, are relatively compact and have a torque that is kept
constant with the speed variation of the motor, however these reach a greater mechanical
efficiency if used at high speeds, as such, usually gears are used to reduce the generated
output speed without changing the working speed of the engine, which also has the effect

of increasing the motor force, as can be seen in Figure 2.28 [34].

Figure 2.28 DC Motor with Gears (Source: [35])

AC Motors are highly used in industrial applications, especially in linear motors, which
are motors that generate linear motion without the use of gears or motion control
mechanisms [34]. In Figure 2.29 it is possible to observe AC linear actuators of various

sizes.

37

Figure 2.29 AC Motors (Source: [34])
Luminous Signals, encompass all components whose purpose is to inform or illuminate,
e.g., Light Emitting Diodes (LEDs), displays, lamps.

LED is a semiconductor of p-n junction that when subjected to an electric current emits
visible light when connected correctly, to emit light a led must be polarized directly, such

as shown in Figure 2.30, otherwise the LED can burn.

Reflector

Semiconductor
Wire Bond
Plastic Lens/Case + - + T-

// Cut Cut
L.l_'

Figure 2.30 LEDs (Based on Source: [36])

Cathode

l Je— Anode

+

38

Chapter 3 — Universal 10T System Powered by FIWARE

The development of this project happened in two phases, from the end of 2017 to May of
2018 and then to the end of July.

In the first phase of development, enormous difficulties were encountered due to poor
documentation about FIWARE and nonexistence of tutorials to show how to combine the
FIWARE Generic Enablers. At the time, the existing some of the documentation was
outdated, contained dead links, and didn’t had examples, being the only decent
documentation about the Orion Context Broker Generic Enabler that had some examples
explaining how to work with it. The existence of documentation in different places,
FIWARE webpage, FIWARE and Telefonica GitHub, and Generic Enablers individual
ReadTheDocs webpages, and with different versions between them also didn’t help.
However, it was clear that the use of Docker was necessary and the simplest way of using
the FIWARE technologies, being also the needed to meet the requirement of delivering

the work done.

In the second and last phase of development, which started with the attendance of the
FIWARE Global Summit 2018 in Porto (8" and 9™ of May) and sessions aimed at
developers which made it possible to better understand FIWARE and related
technologies. It was also announced at this Summit that a collection of introductory
tutorials to FIWARE were being created. These tutorials [37] [38] proved to be
fundamental to the development of this project, having finally allowed to understand the
FIWARE technologies and how to connect and interact with the FIWARE GEs, due to

the explanations being done step-by-step.

In the following months after the Summit, a new FIWARE webpage was released with
better information, the documentation about the FIWARE technologies was also
improved, although it continues to be available in different places, it is now the same in

all. New tutorials have been added, and existing ones are continuously updated.

This chapter contains the system architecture diagram, a description of each of the
FIWARE Generic Enablers used, and the tests done to the system.

39

3.1 System Architecture

Based on the available tutorials, mainly on the ones about Orion Context Broker, 10T

Agents and Historic Management, it was put together the system architecture seen in

Figure 3.1.
- —>
Frontend Backend
8666:8666 v
g c _27017:27017 STH-
yen Comet
F 3
5080:5080 5050:5050 27017:27017
v A J
cURL or Orion
» Context >
Postman 1026:1026 27017:27017
Broker
MongoDB
F 3
4041:4041
Ultralight 27017:27017
2.0IoT [«
Agent
A 1883:1883
______________ \
A 4
Thing [€¢----» Mosquitto [€ ™~~~ Thing
MQTT
Broker)
Thing [¢----» <«-----» Thing
X |3
I \
/ \
¥ |
Thing Thing

Figure 3.1 System Architecture Block Diagram

The backend part of the system is made up of four FIWARE Generic Enablers: Orion
Context Broker, Cygnus, STH-Comet and the Ultralight 2.0 IoT Agent; a MongoDB and
a Mosquitto MQTT Broker and several 10T devices (Things).

40

As there was not enough time to develop a frontend webpage or application, it is instead
used cURL commands or the Postman [39] program (used to test and develop APIs), that
allows to send commands just like cURL and visualize the responses in a pretty way,
instead of raw. This allows to simulate the interactions that the frontend would have with
the backend.

3.1.1 Orion Context Broker

The FIWARE Orion Context Broker Generic Enabler is a C++ server implementation of
the FIWARE NGSIv2 REST API binding that allows the management of context

information (updates, queries, registrations and subscriptions) and is availability [40].

Orion relies on MongoDB to keep persistence of the context data such as data entities,
subscriptions and registrations [41].

3.1.1.1 Data Model Guidelines

Although the structure of each data entity within a context can vary according to the use
case, the common structure of each entity type should be standardized to promote reuse
[41]. The full FIWARE data model guidelines [42] are extensive therefore only the

following recommendations are presented here [41]:

- The value fields of context data may be in any language, but all attributes and
types must be in American English;

- Entity types names must start with a Capital letter;

- Entity IDs must follow the NGSI-LD guidelines: urn:ngsi-ld:<entity-
type>:<entity-id>. This guarantees that every ID is unique;

- Data type names must reuse schema.org [43] data types when possible;

- Attribute names must use camel case syntax, e.g., streetAddress;

- Location information must be defined using address and geographical
coordinates;

- Geospatial properties must be GeoJSON [44].

41

3.1.1.2 Service Health

To check if the Orion Context Broker is running, the following HTTP request is used
[41]:

|curl -X GET 'http://localhost:1026/version’

Expected response:

{
"orion": {
"version": "1.12.0-next",
"uptime": "0 d, 0 h, 3 m, 21 s",
"git hash": "e2ffla8d9515ade24cf8d4b90d27af7a616c7725",
"compile time": "Wed Apr 4 19:08:02 UTC 2018",
"compiled by": "root",
"compiled in": "2f4a69bdcl9l",
"release date": "Wed Apr 4 19:08:02 UTC 2018",
"doc": "https://fiware-orion.readthedocs.org/en/master/"
}
}

3.1.1.3 Context Data Creation, Update, Delete

HTTP request to create context data, in this case an example entity of the Store type [41]:

curl -iX POST \
'http://localhost:1026/v2/entities' \
-H 'Content-Type: application/json' \
_d 1
{
"id": "urn:ngsi-1ld:Store:001",
"type": "Store",
"address": {
"type": "PostalAddress",
"value": {
"streetAddress": "Bornholmer StraRe 65",
"addressRegion": "Berlin",
"addressLocality": "Prenzlauer Berg",
"postalCode™: "10439"
}
b
"location": {
"type": "geo:json",
"value": {
"type": "Point",
"coordinates": [13.3986, 52.5547]
}
b
"name": {
"type": "Text",
"value": "BOsebricke Einkauf"
}
}l

42

It is possible to create several entities at once using the same request [45]:

curl -iX POST \
'http://localhost:1026/v2/op/update’ \
-H 'Content-Type: application/json' \
-d '{
"actionType":"APPEND",
"entities": [
{
"id":"urn:ngsi-1d:Shelf:unit001", "type":"Shelf",
"location":{
"type":"geo:json", "value":{
"type":"Point", "coordinates™:[13.3986112, 52.554699]}
1y
"name" : {
"type":"Text", "value":"Corner Unit"
}y
"maxCapacity":{
"type":"Integer", "value":50
}
}y
{

"id":"urn:ngsi-1d:Shelf:unit002", "type":"Shelf",
"location":{

"type":"geo:json","value": {"type":"Point", "coordinates":[13.3987221,
52.55466401]}
}y
"name" : {
"type":"Text", "value":"Wall Unit 1"
}y
"maxCapacity":{
"type":"Integer", "value":100

Update Context Data

This request updates the price attribute of the Product 001 entity [46].

curl -iX PATCH \
--url 'http://localhost:1026/v2/entities/urn:ngsi-
1d:Product:001/attrs"' \
--header 'Content-Type: application/json' \
--data " {
"price":{"type":"Integer", "value": 89}

} 1

43

Delete Context Data

This request deletes the Product 010 entity [46].

--url

curl -iX DELETE \
'http://localhost:1026/v2/entities/urn:ngsi-1d:Product:010"

Although is section contains some of the most basic operations that can be done to manage

context information, more complex operations are also available [46], like batch

operations.

3.1.1.4 Context Data Relationships

Although MongoDB doesn’t support relationships like SQL databases, the Orion Context

Broker can emulate SQL like relationships through the use of references [45], however

data integrity is not guaranteed (e.g., it is possible to make a reference to an inexistent

entity).

One-to-Many Relationship

The following example associates shelfs to stores [45]:

{

curl -iX POST \
'http://localhost:1026/v2/op/update’ \
-H 'Content-Type: application/json' \
-d '{
"actionType" :"APPEND",
"entities": [

"id":"urn:ngsi-1d:Shelf:unit001", "type":

"refStore": {
"type": "Relationship",
"value": "urn:ngsi-1d:Store:001"

"id":"urn:ngsi-1d:Shelf:unit002", "type":

"refStore": {
"type": "Relationship",
"value": "urn:ngsi-1ld:Store:001"

"id":"urn:ngsi-1d:Shelf:unit003", "type"
"refStore": {

"type": "Relationship",

"value": "urn:ngsi-1d:Store:001"

"Shelf",

"Shelf",

:"Shelf",

44

"id":"urn:ngsi-1d:Shelf:unit004", "type":"Shelf",
"refStore": {

"type": "Relationship",

"value": "urn:ngsi-1ld:Store:002"

"id":"urn:ngsi-1d:Shelf:unit005", "type":"Shelf",
"refStore": {

"type": "Relationship",

"value": "urn:ngsi-1d:Store:002"

Many-to-Many Relationships

The following example associates an item to several entities [45]:

curl -iX POST \
'http://localhost:1026/v2/entities' \
-H 'Content-Type: application/json' \
_d |{
"id": "urn:ngsi-ld:InventoryItem:001", "type": "InventoryItem",
"refStore": {
"type": "Relationship",
"value": "urn:ngsi-1d:Store:001"
by
"refShelf": {
"type": "Relationship",
"value": "urn:ngsi-1ld:Shelf:unit001"
}y
"refProduct": {
"type": "Relationship",
"value": "urn:ngsi-1ld:Product:001"
}y
"stockCount": {
"type":"Integer", "value": 10000
by
"shelfCount": {
"type":"Integer", "value": 50

}

} 1

3.1.1.5 Context Data Querying
By ID

This query returns all the entity fields [45].

curl -G -X GET \
'http://localhost:1026/v2/entities/urn:ngsi-1d:Store:001" \
-d 'options=keyValues'

By Type

This query returns all entities whose type is Store [45].

curl -G -X GET \
'http://localhost:1026/v2/entities"' \

-d 'type=Store' \
-d 'options=keyValues'

By Comparing the Values of an Attribute

This query returns all entities of the Store type located in the Kreuzberg district [45].

curl -G -X GET \
'http://localhost:1026/v2/entities"' \

-d 'type=Store' \
-d 'g=address.addressLocality==Kreuzberg' \

-d 'options=keyValues’

By Comparing the Values of a Geo:Json Attribute
This query returns all entities of the Store type within 1.5km of the given coordinates

[45].

curl -G -X GET \
'http://localhost:1026/v2/entities' \
-d 'type=Store' \
-d 'georel=near;maxDistance:1500" \
-d 'geometry=point' \
-d 'coords=52.5162,13.3777"

Reading from Child Entity to Parent Entity

This query returns the Store entity to which the Shelf 001 entity is related [45].

curl -G -X GET \
'http://localhost:1026/v2/entities/urn:ngsi-1d:Shelf:unit001"' \
-d 'type=Shelf' \
-d 'options=values' \
-d 'attrs=refStore'

Reading from Parent Entity to Child Entity

This query returns all Shelfs associated with Store 001 [45].

| curl -G -X GET \

46

'http://localhost:1026/v2/entities' \

-d 'g=refStore==urn:ngsi-1ld:Store:001"' \
-d 'options=count' \

-d 'attrs=type' \

-d 'type=Shelf'

Reading from a Bridge Table

This query returns all Stores selling the Product 001 [45].

curl -G -X GET \
'http://localhost:1026/v2/entities' \
-d 'g=refProduct==urn:ngsi-1d:Product:001"' \
-d 'options=values' \
-d 'attrs=refStore'\
-d 'type=Inventoryltem'

Visualize all Relationships of an Entity

This query returns all entities that have associated to the Store 001 [45]. This request is

helpful to maintain data integrity.

curl -G -X GET \
'http://localhost:1026/v2/entities' \
-d 'g=refStore==urn:ngsi-1ld:Store:001"' \
-d 'options=count' \
-d 'attrs=type'

3.1.1.6 Subscriptions

The Orion Context Broker allows the creation of subscriptions to context information, so
that when a change to an attribute of said context information a notification is sent to the
frontend [41] [47].

A subscription is set up using a POST request, just like in the following example [47]:

curl -iX POST \
--url 'http://localhost:1026/v2/subscriptions' \
--header 'content-type: application/json' \
--data '{
"description": "Notify me of all product price changes",
"subject": {
"entities": [{"idPattern": ".*", "type": "Product"}],
"condition": {
"attrs": ["price"]
}
1y
"notification": {

47

"http": |
"url": "http://<frontendIP>:<frontendPort>/subscription/price-
change"
}
}
}]

This subscription sends a notification to the frontend every time a product price changes.

Delete a Subscription

This request deletes a subscription based on its ID [47].

curl -iX DELETE \
--url 'http://localhost:1026/v2/subscriptions/<subscription-id>"

Update a Subscription

This request updates a subscription notification URL [47].

curl -iX PATCH \
--url
'http://localhost:1026/v2/subscriptions/5ae07c7e6e4£353¢c5163c93e"’ \
--header 'content-type: application/json' \

--data '{
"status": "active",
"notification": {
"http": {
"url": "http://<frontendIP>:<frontendPort>/notify/price-
change"

}
}

} 1

List Subscriptions

This request lists all subscription [47].

Icurl -X GET --url 'http://localhost:1026/v2/subscriptions'

View a Subscription Details

This request allows the visualization of a subscription details [47].

curl -X GET \
--url 'http://localhost:1026/v2/subscriptions/<subscription-id>"

48

3.1.2 Ultralight 2.0 1oT Agent and Mosquitto MQTT Broker

An loT Agent is a FIWARE component that lets Internet of Things devices send their
data to and be managed from a Context Broker, in this case the Orion Context Broker,
using their native protocols [48]. 10T Agents should also deal with security aspects

(authentication and authorization of the channel) [48].

The Orion Context Broker only uses the NGSI API for all interactions, therefore, every
IoT Agent provides a North Port NGSI interface used to interact with the Orion, and a

South Port to interact with the native protocol of the attached devices [48].

This means, that every loT device can use their proprietary protocols and transport
mechanism, whilst the 10T Agent converts them to NGSI request that the Orion Context

Broker can understand [48].

The 10T Agent for the Ultralight 2.0 protocol, used in this project, provides a bridge
between HTTP/MQTT messaging with a UL2.0 payload and the Orion Context Broker
(NGSI) [48].

The loT Agent saves all information such as devices URLs and Keys in a MongoDB
database [48].

3.1.2.1 Interaction Between the 10T Agent and Mosquitto MQTT Broker

The FIWARE loT Agent for Ultralight 2.0 protocol will receive southbound request using
NGSI and convert them to Ultralight 2.0 MQTT topics for the Mosquitto [49] MQTT
Broker [50]. It also listens to the Mosquitto MQTT Broker on registered topics to send

measurement northbound the Orion Context Broker [50].

The Mosquitto MQTT Broker acts the central communication point between the loT

Agent and the 10T devices, passing topics between them as necessary [50].

3.1.2.2 10T Agent Service Health

To check if the 10T Agent is running, the following HTTP request is used [50]:

|curl -X GET 'http://localhost:4041/iot/about’

49

Expected response:

{

"libVersion": "2.6.0-next",
"port": "4041",

"baseRoot": "/",

"version": "1.6.0-next"

3.1.2.3 Mosquitto MQTT Broker Service Health

To check if the Mosquitto MQTT Broker is working properly, a MQTT subscriber and a
publisher are used, and if the messages sent by the publisher are received by the

subscriber, then the Broker is working [50].

Starting a MQTT Subscriber

An MQTT subscriber is started by running a mqtt-subscriber Docker container in a new
terminal [48]:

docker run -it --rm --name mgtt-subscriber \
--network fiware default efrecon/mgtt-client sub -h mosquitto -t

u/#u

In which the “-h” flag indicates the Mosquitto hostname, and the “-t” flag the subscribed
topic. In this case the used topic allows the subscriber to receive all messages,
independent of the topic used by the publisher.

Starting a MQTT Publisher

An MQTT publisher is started by running a mqtt-publisher Docker container in a new
terminal [48]:

docker run -it --rm --name mgtt-publisher \
--network fiware default efrecon/mgtt-client pub -h mosquitto -m
"HELLO WORLD" -t "/test"

In which the “-h” flag indicates the Mosquitto hostname, the “-m” flag the message to be
sent, and the “-t” flag the published topic. In this case it is sent a “HELLO WORLD”
message to the “/test” topic, that if everything is working well, should be received by the

subscriber and shown in the subscriber terminal.

50

3.1.2.4 Connection of 10T Devices

To connect loT Devices to the system (loT Agent) it is necessary first to provision a
service group and then provision the devices [50]. Provisioning a service group allows to
set up a authentication key for a group of devices, and provisioning the devices serves to
map the connected devices to the correct entities, otherwise if the devices are not
provisioned the 10T Agent will automatically create new entities for the connected
devices, however, these entities will have a random id and its attributes will be incomplete
[50].

As there is no guarantee that the IoT devise will always have a unique ID, when

provisioning a device or a service group the following headers are required [50]:

- fiware-service, used to define the MongoDB database where entities for a given
service are held;

- fiware-servicepath, used to distinguish between arrays of devices.

For example, in a smart city system “fiware-service” headers can be used to differentiate
between departments (e.g., parks, transport, buildings, etc) and “fiware-servicepath”
headers would be used to refer to a specific park (e.g., downtown park, uptown park, etc)
[50].

The use of these headers means that data and devices for each service can be identified
and separated as needed without being siloed, as data from different devices and other

entities in other services and paths can be combined and used as necessary [50].

The use these headers also ensures that there is no overlap of used device I1Ds [50].

Provisioning a Service Group for MQTT

Provisioning a service group is always the first step done when connecting IoT devices,

and it is done as in the example below [50]:

curl -iX POST \
'http://localhost:4041/iot/services' \
-H 'Content-Type: application/json' \
-H 'fiware-service: openiot' \
-H 'fiware-servicepath: /' \

-d '{
"services": [
{
"apikey": "4jggokgpepnvsb2uv4s40d590v",

51

"cbroker": "http://orion:1026",
"entity type": "Thing",
"resource": "

]
}]

In this example, the service is “openiot” and there is no separation between devices as the
servicepath is “/” (root) [50]. The authentication key (apikey) is unique to a service group
and is used by when devices when communicating as the topic must contain the key (e.g.,

/4jggokgpepnvsb2uv4s40d59ov)[50}

The “resource” attribute is empty since it is only used when the HTTP transport protocol

is used [50].

The “cbroker” attribute is optional, since if not provided the IoT Agent will use the default
context broker URL defined in its configuration file [50].

Provisioning a Sensor

Provisioning a sensor is mapping the connected 10T device to a corresponding entity, like

in the following example [50]:

curl -iX POST \
'http://localhost:4041/iot/devices"' \
-H 'Content-Type: application/json' \
-H 'fiware-service: openiot' \
-H 'fiware-servicepath: /' \

_d l{
"devices": [
{
"device id": "motion0O01",
"entity name": "urn:ngsd-ld:Motion:001",
"entity type": "Motion",
"protocol": "PDI-IoTA-UltralLight",
"transport": "MQTT",
"timezone": "Europe/Berlin",
"attributes": [
{"object _id": "c", "name": "count", "type": "Integer"}

1,

"static_attributes": [
{"name":"refStore", "type": "Relationship", "value":
"urn:ngsi-1ld:Store:001"}

In this example a motion sensor with the “motion001” ID is associated to an entity with

the “urn:ngsd-1d:Motion:001” ID that is also created at the same time. This

52

association allows the mapping of the sensor reading to a context attribute, in this case

the reading “c” is mapped to the attribute “count” which is defined as an Integer, and

allows to place the sensor in a store through a reference.

By defining the “transport” attribute as MQTT the loT Agent knows that it should
subscribe to the “/<api-key>/<device-id>" topic to receive measurements from this

sensor [50].

The provisioning of devices is important because since devices are managed by the 10T
Agent the Orion Context Broker would not be able to retrieve data from the device, and
by provisioning the device a corresponding entity is created in the data base managed by

Orion allowing it to assess the device (entity) data, as shown in the example below [50].

curl -G -X GET \
'http://localhost:1026/v2/entities/urn:ngsd-1d:Motion:001"
-d 'type=Motion' \
-H 'fiware-service: openiot' \
-H 'fiware-servicepath: /'

Response [50].

"id": "urn:ngsd-1ld:Motion:001", "type": "Motion",
"TimeInstant": {
"type": "ISO8601","value": "2018-05-25T10:51:32.00z",

"metadata": {}

by

"count": {
"type": "Integer","value": "1",
"metadata": {
"TimeInstant": {"type": "IS08601","value": "2018-05-

25T10:51:32.6462"}
}
}
}

The timestamp is created automatically by the 10T Agent when it receives messages.

Provisioning an Actuator

Provisioning an actuator is just like provisioning a sensor, except for the fact that

commands can defined to control the actuator [50].

curl -iX POST \
'http://localhost:4041/iot/devices"' \
-H 'Content-Type: application/json' \
-H 'fiware-service: openiot' \
-H 'fiware-servicepath: /' \
-d '{

53

"devices": [

{

"device id": "door0O01",

"entity name": "urn:ngsi-ld:Door:001",

"entity type": "Door",

"protocol": "PDI-IoTA-UltralLight",

"transport": "MQTT",

"commands": [
{"name": "unlock","type": "command"},
{"name": "open","type": "command"},
{"name": "close","type": "command"},
{"name": "lock","type": "command"}

1y

"attributes": [
{"object id": "s", "name": "state", "type":"Text"}

1,
"static attributes": [
{"name" :"refStore", "type": "Relationship", "value":
"urn:ngsi-1d:Store:001"}
]
}

3.1.2.5 Enable Context Broker Commands

After provisioning the actuators, it is necessary to inform the Orion Context Broker that
commands are available to control the actuators [50]. Example of commands registration
[50]:

curl -iX POST \
'http://localhost:1026/v2/registrations' \
-H 'Content-Type: application/json' \
-H 'fiware-service: openiot' \
-H 'fiware-servicepath: /' \

_d '{
"description": "Door Commands",
"dataProvided": {
"entities™: [
{
"id": "urn:ngsi-1d:Door:001", "type": "Door"
}
1,
"attrs": ["lock", "unlock", "open", "close"]
by
"provider": {
"http": {"url": "http://orion:1026/v1"},

"legacyForwarding": true
}
} |l

In order to send commands to the 10T Agent that then forwards them to the actuator, it is
necessary to use the NGSIv1 API endpoint and legacy forwarding due to the NGSIv2 API

not yet supporting commands.

54

Example of a command (open) invocation [50]:

curl -iX PATCH \
'http://localhost:1026/v2/entities/urn:ngsi-l1d:Lamp:001/attrs' \
-H 'Content-Type: application/json' \
-H 'fiware-service: openiot' \
-H 'fiware-servicepath: /' \
_d '{
"open": {
"type" : "command",
"value" : ""

3.1.3 Cygnus

Since the Orion Context Broker only holds the most recent context information, and rather
than overload Orion with the task of keeping the context history, this task was delegated
to other components FIWARE Cygnus Generic Enabler and FIWARE STH-Comet

Generic Enabler (next sub-section) [51].

The FIWARE Cygnus Generic Enabler can persist context data into one or several

databases, creating a historical view of the context data to which is subscribed to [51].

3.1.3.1 Cygnus Service Health

To check if Cygnus is running, the following HTTP request is used [51]:

|curl -X GET 'http://localhost:5080/v1/version'

Expected response:

{

"success": "true",
"version":
"1.8.0 SNAPSHOT.ed50706880829e97fd4cf926df434flefdfacld7"

}

3.1.3.2 Subscribing to Context Changes

For Cygnus keep a history of context information, it must be aware of context changes,
being informed by the Orion Context Broker through one or more subscriptions, as shown
below [51].

curl -iX POST \
'http://localhost:1026/v2/subscriptions' \

55

-H 'Content-Type: application/json' \
-H 'fiware-service: openiot' \
-H 'fiware-servicepath: /' \
-d '{
"description": "Notify Cygnus of all context changes",
"subject": {
"entities": [
{
"idPattern": ".*x"
}
]
b
"notification": {
"http": {
"url": "http://cygnus:5050/notify"
}y
"attrsFormat": "legacy"
}y
"throttling": 5
}I

The “fiware-service” and “fiware-servicepath” headers are used to filter the connected

loT Sensors [51].

The “idPattern” defines which type of sensors are to be listened (e.g., motion, temp, hum,

etc), in this case Cygnus is informed of all context data changes of every sensor [51].
The “notification url” must match the Cygnus API port [51].

Once again legacy forwarding is used since Cygnus only accepts notification in the older
NGSIv1 API format [51].

The “throttling” value defines the changes sample rate [51].

The database used by Cygnus to persist context data has no influence on the subscription,

as the database or databases used are defined in the initial configuration of Cygnus [51].

3.1.4 STH-Comet

Both Cygnus and STH-Comet Generic Enablers can be used to keep a record of context
information changes, however Cygnus is only capable of saving such changes into several
types of databases, while the STH-Comet can only save changes to a MongoDB database

it can also retrieve time-based data aggregations [52].
STH-Comet can be configured to work in the following operation modes [52]:

- Minimal mode, STH-Comet is responsible for data collection and interpretation;

56

- Formal mode, the collection of data is done by Cygnus and the STH-Comet only

reads data from an existing database.

The differences between the more flexible and future proof “formal mode” and the

simpler and easier to set-up “minimal mode” are summarized in the Table 3.1 [52].

Table 3.1 STH-Comet Minimal Mode vs Formal Mode (Source: [52])

Minimal Mode Formal Mode
Only one configuration Highly configurable — complex
System set-up
supported — easy to set-up to set-up
Component responsible for data
) STH-Comet Cygnus
persistence
Role of STH-Comet Read and write data Data read
Role of Cygnus Not used Data write
] MongoDB database connected | MongoDB database connected
Data aggregation local
to STH-Comet to Cygnus and STH-Comet
] Yes — MongoDB, PostgreSQL,
Multiple databases No
MySQL
) - Does not scale easily — for Scales easily — for complex
Solution scalability]
simple systems systems (future proof)
Throughput rate Use where throughput is low | Use where throughput is high

In this work the “formal mode” is used, therefore it is the only mode that will be described,

with focus on the STH-Comet as Cygnus was already described in the previous section.

3.1.4.1 STH-Comet Service Health

To check if STH-Comet is running, the following HTTP request is used [52]:

|curl -X GET 'http://localhost:8666/version’

Expected response:

{

"version": "2.3.0-next"

}

57

3.1.4.2 Formal Mode Data Aggregation

As the “formal mode” uses Cygnus to aggregate data, the subscription to context changes

is done in the same way as described in the Cygnus related section.
3.1.4.3 Time Series Data Queries

For STH-Comet to retrieve time series data if an adequate amount of data has already
been aggregated and some time has passed [52]. Below are presented some examples of

possible data queries.

To get the history of a context entity attribute is necessary to send a GET request to the
URL: “.../STH/v1/contextEntities/type/<Entity>/id/<entity-id>/att

ributes/<attribute>"[52] (URL used in all examples).

List the first N sampled values

This example request retrieves the first 3 sampled “luminosity” values from “Lamp:001”:

curl -G -X GET \
'http://localhost:8666/STH/vl/contextEntities/type/Lamp/id/Lamp:001/
attributes/luminosity’' \

-d 'hLimit=3"' \

-d 'hOffset=0" \

-H 'fiware-service: openiot' \

-H 'fiware-servicepath: /'

The “hLimit” parameter restricts the result to “N” values, and the “hOffset=0" parameter

restricts the query start to the first value.

List N sampled values at an Offset

This example request retrieves the fourth, fifth and sixth sampled “count” values from
“Motion:001":

curl -G -X GET \
'http://localhost:8666/STH/vl/contextEntities/type/Motion/id/Motion:
001/attributes/count' \

-d 'hLimit=3" \

-d 'hOffset=3' \

-H 'fiware-service: openiot' \

-H 'fiware-servicepath: /'

The “hLimit” parameter restricts the result to “N” values, and the “hOffset!=0" parameter

makes the query start from the Nth measurement.

58

List the latest N sampled values

This example request retrieves the latest three sampled “count” values from

“Motion:001”:

curl -G -X GET \
'http://localhost:8666/STH/vl/contextEntities/type/Motion/id/Motion:
00l/attributes/count' \

-d 'lastN=3' \

-H 'fiware-service: openiot' \

-H 'fiware-servicepath: /'

The “lastN” parameter restricts the result to the last “N” values.

List the sum of values over a period

This example request shows the total “count” values from “Motion:001” over each

minute:

curl -G -X GET \
'http://localhost:8666/STH/vl/contextEntities/type/Motion/id/Motion:
00l/attributes/count' \

-d 'aggrMethod=sum' \

-d 'aggrPeriod=minute' \

-H 'fiware-service: openiot' \

-H 'fiware-servicepath: /'

The “aggrMethod” parameter defines the type of aggregation to perform over the time
series, and the “aggrPeriod” parameter determines the data aggregation period that can

be: second, minute, hour or day.

List the minimum of a value over a period

This example request shows the minimum “luminosity” values from “Lamp:001” over

each minute:

curl -G -X GET \
'http://localhost:8666/STH/vl/contextEntities/type/Lamp/id/Lamp:001/
attributes/luminosity' \

-d 'aggrMethod=min' \

-d 'aggrPeriod=minute' \

-H 'fiware-service: openiot' \

-H 'fiware-servicepath: /'

The “aggrMethod” parameter defines the type of aggregation to perform over the time
series, and the “aggrPeriod” parameter determines the data aggregation period that can

be: second, minute, hour or day.

59

List the maximum of a value over a period

This example request shows the maximum “luminosity” values from “Lamp:001” over

each minute:

curl -G -X GET \
'http://localhost:8666/STH/vl/contextEntities/type/Lamp/id/Lamp:001/
attributes/luminosity' \

-d 'aggrMethod=max' \

-d 'aggrPeriod=minute' \

-H 'fiware-service: openiot' \

-H 'fiware-servicepath: /'

The “aggrMethod” parameter defines the type of aggregation to perform over the time
series, and the “aggrPeriod” parameter determines the data aggregation period that can

be: second, minute, hour or day.

Querying the mean value of an attribute within a period is not supported, however it can
be calculated by combining the sum of the attribute values with the number of samples.

3.1.5 System Configuration Using Docker Compose

As mentioned before, every FIWARE component used, the MongoDB database and the
Mosquitto MQTT Broker are implemented using Docker. To rapidly to assemble the
system architecture, the Docker Compose tool is used, as it allows to configure and run
the components (as containers) by using and running a simple YAML file. When
executing the YAML file, it automatically pulls the necessary Docker images from the
FIWARE and other Docker Hubs, and creates the corresponding containers already

configured.

3.1.5.1 “docker-compose.yml|” File

Below is the “docker-compose.yml” file used in this project.

version: "3"
services:
mosquitto:

image: eclipse-mosquitto
hostname: mosquitto
container name: mosquitto
expose:

- "1883"

—_ "9001"
ports:

60

"1883:1883"
- "9001:9001"
volumes:
- ./mosquitto/mosquitto.conf:/mosquitto/config/mosquitto.conf
networks:
- default

mongo-db:
image: mongo:3.6
hostname: mongo-db
container name: db-mongo
expose:
- "27017"
ports:
"27017:27017"
networks:
- default
command: --bind ip all --smallfiles
volumes:
- mongo-db:/data

orion:
image: fiware/orion:1.14.0
hostname: orion
container name: fiware-orion
depends_on:
- mongo-db
networks:
- default
expose:
—_ "1026"
ports:
- "1026:1026"
command: -dbhost mongo-db -logLevel DEBUG

cygnus:
image: fiware/cygnus-ngsi:latest
hostname: cygnus
container name: fiware-cygnus
depends_on:
- mongo-db
networks:
- default
expose:
"5050"
—_ "5080"
ports:
- "5050:5050"
"5080:5080"
environment:

- "CYGNUS_MONGO_HOSTS=mongo-db:27017" #Comma separated list
of Mongo-DB servers which Cygnus will contact to persist historical
context data

- "CYGNUS LOG LEVEL=DEBUG" #The logging level for Cygnus

- "CYGNUS SERVICE PORT=5050" #Notification Port that Cygnus
listens when subcribing to context data changes

- "CYGNUS API PORT=5080" #Port that Cygnus listens on for
operational reasons

sth-comet:

61

context

info in

mongoDB

image:
hostname:
container name:
depends_on:

iot-
image:
hostname:
container name:
depends_on:

volumes:
mongo-

fiware/sth-comet
sth-comet

- cygnus
- mongo-db

networks:

- default

ports:

- "8666:8666"

environment:

- STH HOST=0.0.0.0

- STH PORT=8666

- DB PREFIX=sth

- DB URI=mongo-db:27017

- LOGOPS LEVEL=DEBUG

agent:

iot-agent

mongo-db
mosquitto

networks:

default

expose:

"4041"
"7896"

ports:

"4041:4041"
"7896:7896"

environment:
- "IOTA CB HOST=orion" #name of

"IOTA NORTH PORT=4041"

fiware-sth-comet

fiware/iotagent-ul:1.6.0

fiware-iot-agent

the context broker to update

- "IOTA CB PORT=1026" #port the context broker listens on to
update context

"IOTA REGISTRY TYPE=mongodb" #Whether to hold IoT device

memory or in a database

"IOTA LOG LEVEL=DEBUG" #The log level of the IoT Agent

"IOTA TIMESTAMP=true"

"IOTA MONGO HOST=mongo-db" #The host name of ongoDB
"IOTA MONGO PORT=27017" # The port mongoDB is listening on
"IOTA MONGO DB=iotagentul" #The name of the database used in

"IOTA MQTT HOST=mosquitto" #The host name of the MQTT Broker
"IOTA MQTT PORT=1883" #The port the MQTT Broker is listening

on to receive topics
"IOTA MQTT QOS=2" #MQTT QoS
- "IOTA PROVIDER URL=http://iot-agent:4041"

networks:
default:

db:

The MongoDB database must be initiated before every other FIWARE Generic Enabler

because some of the GEs depend on the existence of the database to initiate.

62

The configuration of most of the FIWARE GEs are done with the environment variables

as it will be detailed in the following sections.

3.1.5.2 MongoDB Configuration

Configuration extracted from the “docker-compose.yml” file:

mongo-db:
image: mongo:3.6
hostname: mongo-db
container name: db-mongo
expose:
- "27017"
ports:
- "27017:27017"
networks:
- default
command: --bind ip all -smallfiles #binds to all ip addresses
and uses a smaller default file size
volumes:
- mongo-db:/data

The most important thing about the MongoDB configuration is to create a volume in the
local file system, so that when the container is stopped or deleted the databases are not

lost with it. The network ports are the default ones.

3.1.5.3 Orion Context Broker Configuration

Configuration extracted from the “docker-compose.yml” file:

orion:
image: fiware/orion:1.14.0
hostname: orion
container name: fiware-orion
depends on:
- mongo-db
networks:
- default
expose:
- "1026"
ports:
- "1026:1026"
command: -dbhost mongo-db -logLevel DEBUG

While the other FIWARE GEs used in this project can be configured using environment
variables, it was not encountered information that proved that the Orion Context Broker
could also be similarly configured, and after some trial and error experimentation it was
verified that it is not possible to use environment variables. Instead it is necessary to use
commands (a long list of commands is available in [53]) to configure the Orion Context

63

Broker, these commands are then mapped to Orion’s configuration [53] [54] [55]. The
configuration file is available, as an example, in Annex A, and it was used as it is with

everything by default. Other FIWARE components also have similar configuration files.

3.1.5.4 Mosquitto MQTT Broker Configuration

Configuration extracted from the “docker-compose.yml” file:

mosquitto:

image: eclipse-mosquitto
hostname: mosquitto
container name: mosquitto
expose:

- "1883"

- "9001"
ports:

- "1883:1883"

- "9001:9001"
volumes:

- ./mosquitto/mosquitto.conf:/mosquitto/config/mosquitto.conf
networks:

- default

The Mosquitto uses the port 1883 for MQTT topics and the port 9001 for
HTTP/WebSocket communications [50]. The attached volume is the Mosquitto

configuration file [50], available in Annex B.

3.1.5.5 lIoT Agent Configuration

Configuration extracted from the “docker-compose.yml” file:

iot-agent:
image: fiware/iotagent-ul:1.6.0
hostname: iot-agent
container name: fiware-iot-agent
depends on:
- mongo-db
- mosquitto
networks:
- default
expose:
_ "4041"
_ "7896"
ports:
- "4041:4041"
- "7896:7896"
environment:
- "IOTA CB HOST=orion" # name of the context broker to update
context
- "IOTA CB PORT=1026" # port the context broker listens on to
update context

64

- "IOTA NORTH PORT=4041"

- "IOTA REGISTRY TYPE=mongodb" #Whether to hold IoT device
info in memory or in a database

- "IOTA LOG LEVEL=DEBUG" #The log level of the IoT Agent

- "IOTA TIMESTAMP=true"

- "IOTA MONGO HOST=mongo-db" # The host name of ongoDB

- "IOTA MONGO_ PORT=27017" # The port mongoDB is listening on

- "IOTA MONGO DB=iotagentul" # The name of the database used
in mongoDB

- "IOTA MQTT HOST=mosquitto" # The host name of the MQTT
Broker

- "IOTA MQTT PORT=1883" # The port the MQTT Broker is
listening on to receive topics

- "IOTA MQTT QOS=2" # MQTT QoS

- "IOTA PROVIDER URL=http://iot-agent:4041"

The 4041 port is used northbound traffic and the 7896 for southbound traffic. The 10T
Agent can be configured by using the environment variables in Table 3.2, although not
all are used or needed [50] [56].

Table 3.2 IoT Agent Environment Variables — Part 1 (Source: [50] [56])

Variable Value Description
) Hostname of the context broker to
IOTA_CB_HOST orion
update context
Port the context broker listens on to
IOTA_CB_PORT 1026
update context
Port used for configuring the loT
IOTA_NORTH_PORT 4041 Agent and receiving context updates
from the context broker
Whether to hold 10T device info in
IOTA_REGISTRY_TYPE mongodb)
memory or in a database
IOTA_LOG_LEVEL DEBUG The log level of the 10T Agent
Whether to supply timestamp
IOTA_TIMESTAMP true information with each measurement
received from attached devices
The host name of mongoDB - used
IOTA_MONGO_HOST mongo-db) o]
for holding device information
IOTA_MONGO_PORT 27017 The port mongoDB s listening on
) The name of the database used in
IOTA_MONGO_DB iotagentul
mongoDB

65

Table 3.2 IoT Agent Environment Variables — Part 2 (Source: [50] [56])

Username for the MongoDB database
IOTA_MONGO_USER -
user

Password for the MongoDB database
IOTA_MONGO_PASS -
user

URL passed to the Context Broker

when commands are registered, used

IOTA PROVIDER URL http://iot-agent:4041 | as a forwarding URL location when

the Context Broker issues a command
to a device

IOTA MQTT_HOST mosquitto The host name of the MQTT Broker

The port the MQTT Broker is

listening on to receive topics

IOTA_MQTT_PORT 1883

Client username for authentication on
the MQTT Broker

Client password for authentication on
the MQTT Broker

IOTA_ MQTT_QOS 2 Quality of Service level

IOTA_MQTT_USERNAME -

IOTA_MQTT_PASSWORD -

The port where the 10T Agent listens

IOTA_HTTP_PORT 7896 _ i
for 10T device traffic over HTTP

All values shown above are the default ones, that can be used in an initial phase but must

be changed later (usernames and passwords).

Although MQTT supports authentication of clients by using usernames and passwords,
and encryption of the communication channel using Transport Layer Security/Secure
Sockets Layer (TSL/SSL) certificates, these security features that should be implemented
in every solution are not being used in this project stage. However only 10T devices that
know the API Key of a service group can communicate with the system.

3.1.5.6 Cygnus Configuration

Configuration extracted from the “docker-compose.yml” file:

cygnus:
image: fiware/cygnus-ngsi:latest

66

hostname: cygnus
container name: fiware-cygnus
depends_on:

- mongo-db

networks:

- default

expose:

- "5050"

- "5080"

ports:

- "5050:5050"

- "5080:5080"

environment:

- "CYGNUS_MONGO_ HOSTS=mongo-db:27017" # Comma separated list
of Mongo-DB servers which Cygnus will contact to persist historical
context data

- "CYGNUS_LOG_LEVEL=DEBUG" # The logging level for Cygnus

- "CYGNUS_SERVICE PORT=5050" # Notification Port that Cygnus
listens when subcribing to context data changes

- "CYGNUS_API PORT=5080" # Port that Cygnus listens on for
operational reasons

The 5050 port is used to listen for notifications from the Orion Context Broker, and the
5080 port is used for administration purposes [51]. Cygnus can be configured by using
the environment variables in Table 3.3[51] [57].

Table 3.3 Cygnus Environment Variables — Part 1 (Source: [51] [57])

Variable Value Description
Comma separated list of Mongo-DB
mongo-))
CYGNUS_MONGO_HOSTS db:27017 servers which Cygnus will contact to
' persist historical context data
Username for the MongoDB database
CYGNUS_MONGO_USER -
user
Password for the MongoDB database
CYGNUS_MONGO_PASS -
user
CYGNUS LOG_LEVEL DEBUG The logging level for Cygnus
Notification Port that Cygnus listens
CYGNUS_SERVICE_PORT 5050 when subscribing to context data
changes
Port that Cygnus listens on for
CYGNUS_API_PORT 5080)
operational reasons
Hostname of the PostgreSQL server
CYGNUS_POSTGRESQL_HOST | postgres-db o
used to persist historical context data

67

Table 3.3 Cygnus Environment Variables — Part 2 (Source: [51] [57])

Port that the PostgreSQL server uses to
CYGNUS_POSTGRESQL_PORT 5432)
listen to commands
Username for the PostgreSQL database
CYGNUS_POSTGRESQL_USER postgres
user
Password for the PostgreSQL database
CYGNUS_POSTGRESQL_PASS | password
user
CYGNUS_POSTGRESQL_ENAB . Switch to enable caching within the
rue
LE_CACHE PostgreSQL configuration
Hostname of the MySQL server used to
CYGNUS_MYSQL_HOST mysql-db S
persist historical context data
Port that the MySQL server uses to
CYGNUS_MYSQL_PORT 3306]
listen to commands
CYGNUS_MYSQL_USER root Username for the MySQL database user
CYGNUS_MYSQL_PASS 123 Password for the MySQL database user
Whether to persist data into multiple
CYGNUS_MULTIAGENT true
databases.

Not all the environment variables are used, and all sensitive information such as
passwords and usernames should be passed Docker Secrets instead of environment
variables [57]. All values shown above are the default ones, that can be used in an initial

phase but must be changed later (usernames and passwords).

3.1.5.7 STH-Comet Configuration

Configuration extracted from the “docker-compose.yml” file:

sth-comet:

image: fiware/sth-comet
hostname: sth-comet
container name: fiware-sth-comet
depends on:

- cygnus

- mongo-db
networks:

- default
ports:

- "8666:8666"
environment:

- STH HOST=0.0.0.0

68

- STH PORT=8666

- DB PREFIX=sth

- DB_URI=mongo-db:27017
- LOGOPS LEVEL=DEBUG

The 8666 port is used to listen for notifications from the Orion Context Broker, and time-
based queries. The STH-Comet can be configured by using the environment variables in
Table 3.4 [52] [58].

Table 3.4 STH-Comet Environment Variables (Source: [52] [58])

Variable Value Description
The address where STH-Comet is hosted - within
STH_HOST 0.0.0.0 this container it means all IPv4 addresses on the
local machine
Operations Port that STH-Comet listens on, it is
STH_PORT 8666 .
also used when subscribing to context data changes
The prefix added to each database entity if none is
DB_PREFIX sth_)
provided
The Mongo-DB server which STH-Comet will
DB_URI mongo-db:27017 o
contact to persist historical context data
DB_USERNAME - Username for the MongoDB database user
DB_PASSWORD - Password for the MongoDB database user
LOGOPS_LEVEL DEBUG The logging level for STH-Comet

3.2 10T Device and Sensors Used

This section contains a description of the microcontroller used in this project, to which
sensors and actuators are connected. The sensors used are some of the most common
types of sensors that can be found in almost all 1oT applications. Actuators, such as
motors, switches, valves and others similar are not used, instead as most of control
commands of actuators are ON and OFF commands, LEDs are used to visualize the result

of said commands.

69

3.2.1 Microcontroller: NodeMcu Devkit v1.0 ESP8266 Wi-Fi Module ESP-12E

NodeMcu is an opensource firmware e development kit that eases the development of IoT
products [59]. The NodeMcu development kit version 1.0 is a board (Figures 3.2 and 3.3),
similar to Arduino, that integrates the ESP8266-12E Wi-Fi microcontroller [59].

WO AN @
U Az’ Rx® \ x foras, Jud ‘

-

E

N3 LSW/ANe utg
N3 1S

und pne

Figure 3.3 NodeMcu Devkit v1.0 (back)

70

(4]

ADCO GPI016/—{ USER }{ WAKE |

GPI0O }{FLASH
GPIO2 |-{ TXD1 |
3.3v

HEHHHHHHY
AARARRARRAR"®

GND

(GP1014}————— HSCLK]
|GP1012}—————{HMISO

GP1013}- RXD2 }-{HMOSI]|
GPIO15}~ TXD2 }~{ HCS |
GPIO3 |~ RXDO |

_ GPIO1 |- TXDO |

: 2 GND

HSPI/SPI

3.3V
SYSTEM

FLASH ™

DO(GPIO16) can only be used as gpio read/write, no interrupt supported, no pwm/i2c/ow supported.

- EHEE

Figure 3.4 NodeMcu Devkit v1.0 Pinout (Based on Sources: [60] [61])

To operate correctly, the board must be supplied with 5V via the micro-USB port or by
using the Vin pin, however the ESP8266-12E microcontroller operates between 3V and
3.6V [62]. The board has a total of 30 pins, of those:

- 15 pins are General Purpose Input/Output (GPIO), of which 4 pins can also be
used for Hardware Serial Peripheral Interface (HSPI) communication, 5 pins for
Universal Asynchronous Receiver-Transmitter (UART) communication, 2 pins
for Secure Digital Input Output (SDIO), 1 pin for Flash (for flashing firmware),
and 1 pin (Wake) that can be used to wake the microcontroller from sleep mode;

- 4 pins that can be either used for Serial Peripheral Interface (SPI) communication
or for SDIO;

- 1 ADC pin;

- 1reset (RST) pin;

- 1chipenable (EN) pin;

- 2 reserved pins;

- 1 pinfor Vin;

71

- 4 ground pins;

- 3 pins that supply 3.3V.

Only the GPIO pins indicated in the Figure 3.5 can be used for PWM signals through
software programming [63].

® A0 D0 ®
O®RsV AL B A\, PWM Pin 1
PWMPin 12 ", KIHY ey B A\, PWM Pin 2

®sD3 XL A N\, PWMPin 3

® sSD2 YL B A\, PWM Pin 4

®sD1 V30

@cMD E O enD@

® sDo [N RN I B A, PWMPin 5

®CLK pIL B A, PWMPin 6
il A N\, PWM Pin 7
(e B A\, PWMPin 8

o efoloNels]
QQQQQQI

Figure 3.5 NodeMcu Devkit vi.0 PWM Pins (Source: [63])

The ESP8266-12E microcontroller has the architecture displayed in Figure 3.6, which has
some of the blocks previous mentioned [62].

(- ™
RF Analog MAC Interface
o receive QQ receive | Registers | | SDIO I
-} F— ©
© 2 c
SH3 g
e 2} o | CPU | | SPI I
RF Analog S
transmit Qg transmit % | Sequencers I l GPIO]
= o o
I Accelerator I l 12C]
PLL @ 12 PLL |
PMU Crystal Bias circuits SRAM PMU
\ J

Figure 3.6 ESP8266 Block Diagram (Source: [62])

The microcontroller has as main characteristics [62]:

- Support for 802.11 b/g/n Wi-Fi protocols;
- Wi-Fi 2.4 GHz, with WPA/WPA2;

72

- Support for antenna diversity;

- Integrated TCP/IP protocol stack;

- Station/Access Point/Station + Access Point (STA/AP/STA+AP) operation
modes;

- +20dBm output power in 802.11 b mode;

- Operating voltage between 3V and 3.6V;

- Operating current of 80mA,;

- Deep sleep current <10uA,

- Power down leakage current < 5uA;

- Standby power consumption of < 1.0mW;

- Operating temperature range between 40°C and 125°C.
More details can be found on the ESP8266-12E datasheet [62] available in Annex C.

This board and the ESP8266 microcontroller are fully compatible with the Arduino IDE,
meaning it is possible to use the millions of libraries available for Arduino. In Annex D,
a user manual is available for the board that also has step-by-step instructions on how to
configure the Arduino IDE to be used with the board [64].

3.2.2 Sensors

As mentioned before the sensors used are some of the most common types of sensors that
can be found in almost all 10T applications, such as air temperature sensors, air humidity

sensors, ultrasonic sensors, and a more specific, an earth humidity sensor.

3.2.2.1 DHT22 Sensor (Air Temperature and Humidity Sensor)

The DHT22 or AM2303 sensor, Figure 3.7, is a high precision and stable capacitive
sensor that measures the air temperature between -40°C and 80°C, and air humidity
between 0% to 100% [65].

Figure 3.7 DHT22 Sensor (Source: [66])

73

The sensor must be powered by 3.3V to 6V, and typically takes about 2 seconds to collect
data [65]. The sensor datasheet [65] is available in Annex E.

In this project it was used a solution by DFROBOT [67] which offers the sensor in a ready

to use module, as seen in Figure 3.8 [67].

DHT22 Sensor
DFRobot

Figure 3.9 DFROBOT DHT22 Module Pinout (Source: [67])

3.2.2.2 XL-MaxSonar-EZ MB1260 Sensor (Ultrasonic Sensor)

Ultrasonic sensors use high frequency sound to detect and localize objects, by measuring
the time of flight for sound which has been transmitted to and reflected it is possible to

calculate the distance at which the object is.

The sensor used, Figure 3.10, has a minimum range of 22 cm and a maximum range of
7.50 m, aresolution of 1 cm, and requires a power supply of 5V [68]. The sensor datasheet

[68] is available in Annex F.

74

Figure 3.10 XL-MaxSonar-EZ MB1260 Ultrasonic Sensor [Source: [68])

3.2.2.3 Earth-Humidity Sensor

The Earth-Humidity sensor, Figure 3.11, just like the name suggests, it is a sensor used
the measure the humidity value of the soil. The sensor used is fabricated by ITEAD and
is offered in a ready to use module that only needs to be connected to the microcontroller.

Figure 3.11 Earth-Humidity Sensor Module (Source: [4-33])

The sensor can either be powered by 3.3V or 5V, and has two interfaces with three pins
and four pins, the former can only the use of the digital or analog output defined according
to the switch and the latter allows the use of both the digital and analog outputs. The

sensor datasheet [69] is available in Annex G.

3.2.3 Power Supply

As most of the 10T devices are used in remote environments or places without electrical
power, it is necessary to use batteries to power the devices. However as large capacity
batteries are expensive, and they must last for years before being changed, techniques

75

such as limiting the number of transmissions, put the device in sleep mode when not used

or between transmissions, or even use energy harvesting methods, are employed.

Energy harvesting methods include the use of solar panels, generate energy from vibration
and heat, use energy from electromagnetic waves, or even the use of mini wind-powered

generators.

76

Chapter 4 — 10T System Tests and Results

This chapter contains all tests done to the loT System and the results obtained. However,
since to test the system it was always necessary to create context entities and use loT
devices with attached sensors and actuators, a simple fictional use case was devised to
make testing more interesting and to also serve as an example of a practical application

of the Universal 10T System Powered by FIWARE developed.

4.1 Use Case: Control of Water (Irrigation and Supply)

As water is an increasingly scarce natural resource due to global warming and other
environmental factors, it is increasingly important to find innovative and effective ways
to manage this vital resource for life on Earth. It is therefore proposed to create a water
management system, namely on water supply and irrigation, applied to the agricultural

sector, since it is highly dependent on water.

Farms are typical composed of multiple plantation fields and can also have several water
sources, such as wells, reservoirs, boreholes, dams, canals and tanks (springs). The
irrigation system used also depends on the type of plantation, if cereals or similar plants
are being grown then a wide area irrigation system (e.g., sprinklers) is used as the field is
full of millions of individual plants, however, if fruit trees or similar are being grown then
localized irrigation systems (e.g., grip irrigation) are used. For both irrigation systems it
is always essential to monitor the earth humidity to know when the pants need to be
watered, to turn on the irrigation system. If a localized irrigation system is used it is
possible to monitor the needs of each plant individually and only turn water on for plants

in need.

It is also important to monitor the water sources for water level and water temperature as
water to hot or cold can damage the plants. Electro valves, which work like taps, are used
to open or close the irrigation hose for the irrigation system (wide area) and for each
individual plant (localized system, several hoses). This sensors and actuators allow the

System to understand and control the world.

In Figure 4.1 a general scheme for this use case is represented.

77

— i Internet IoT Devices)
Main Valve
(Actuator)
Source:
I
: : /_ - Well
Field A Field B Water - Deposit

PP
P PP
PP

o vl vl e e verle v
e el vie o vlevie ¥
e o e vnle vie v e
o vl vl e vfe oo v

e vlevie S e v vie S

Field C

o vfevle vole e vfe e

- Borehole
-Dam
- Canal

\ - Tank (spring)
All water sources have

a Temperature and
Water Level Sensor;
May also have a Water
Pump (Actuator),

e vl vl Yoo vievie Yo
e vie vl S e vl ¥
e vl le vl vl vlevle S
e vlovie S e vl S

Valve (Actuator) to open or close the plant irrigation hose;

An Earth-Humidity sensor to monitor the earth humidity values;
Only when the earth humidity is below a certain threshold is the
irrigation valve open.

L 6
PP

All Plants

P

All fields have a Weather
Station to monitor the air
temperature and humidity.

Figure 4.1 Fictional Use Case Scheme

4.2 System Tests and Results

The Universal 10T System here morphed to a 10T System to Control Water (Irrigation
and Supply) as per the defined use case for demonstration and testing purposes,
encompasses a farm with three fields (A, B and C), and a well and a tank as water sources.
However, due to hardware limitations only the tank is monitored with an ultrasonic sensor
to observe the water level and simulated valve. For the fields, only field A will have
implemented a weather station to monitor the air temperature and humidity, and an earth-
humidity sensor and valve as part of a localized irrigation system.

The following tests were performed:

- System set-up;
- FIWARE components health check;

78

Entities creation;

Entities association;

Entities modification;

Entities removal;

Mosquitto MQTT Broker health check;

Service group provisioning;

Sensors provisioning;

Actuators provisioning;

Enabling of Context Broker commands;

Obtain measurements from the DHT22 sensor;

Obtain measurements from the ultrasonic sensor;

Obtain measurements from the earth-humidity sensor;

Send measurements from the DHT22 sensor to the System;

Send measurements from the ultrasonic sensor to the System;
Send measurements from the earth-humidity sensor to the System;
Verify if commands are received by I0T Devices with actuators (by turning ON
and OFF LEDs);

Subscriptions;

Data persistence;

Time-series data queries.

4.2.1 System Set-Up

To simplify the 10T System set-up, a simple script named “setup.sh” was created, whose

instructions on how to use are available in Annex H.

4.2.2 FIWARE Components Health Check

After running the set-up script, “create” command, containers for all the architecture

components should have been successfully created and initialized. However, it is

important to check the health of the components, if they are properly working, which is

done by asking every component for its version and by verifying if the databases were

created as they should.

79

For this test and others following it, the Postman program will be used for simple
interactions with the System and cURL commands for complex interactions, such as
creating entities. It will be also used the MongoDB GUI, named Compass, to visualize
the databases.

4.2.2.1 Orion Context Broker Health Check

Figure 4.2 shows the request for verifying if Orion is running and the obtained response.

GET ~ http://localhost:1026/version Params Send 57 Save ¥

Headers
KEY VALUE DESCRIPTION **s | Bulk Ed Presets
Body Status: 200 O Time: 5n 19 B
Pretty JSON v S m Q
- "orion": {
3 "version": "1.14.0",

4 "uptime": "0 d, @ h, 6 m, 48 5",
"git_hash": "819%e40ced43e194a352c906326Fe2846f55a26d91",

6 "compile_time": "Fri Jun 15 10:10:23 UTC 2018",

7 "compiled_by": "root",

8 "compiled_in": "f1c966d77090",

9 "release_date": "Fri Jun 15 10:10:23 UTC 2018",

10 "doc": "https://fiware-orion.readthedocs.org/en/1.14.0/"
11 }

2)

Figure 4.2 Orion Context Broker Health Check

4.2.2.2 10T Agent Health Check

Figure 4.3 shows the request for verifying if the 10T Agent is running and the obtained

response.
GET ~ http://localhost: 4041 //iot/about Params “ Save ¥
Headers
KEY VALUE DESCRIPTION e Bulk Ed Presets
Body 1 Tirm T B
Pretty jsoN v S m Q
=
2 "libVersion": "2.6.0",

3 "port": "4@41",
4 "baseRoot": "/",
5 "version": "1.6.0"

Figure 4.3 loT Agent Context Broker Health Check

80

4.2.2.3 Cygnus Health Check

Figure 4.4 shows the request for verifying if Cygnus is running and the obtained response.

GET ~ http://localhost:5080/v1 fversion Params Save ¥

Headers le
KEY VALUE DESCRIPTION s v

Body (3) Status: 200 0K Time: 137 ms Size: 196 B

Pretty SON Y S W Q

1~

2 "success": "true",

3 "version": "1.9.8_SNAPSHOT.42433ead49c728f0c208a6c730092c10c88660b3"

4}

Figure 4.4 Cygnus Health Check

4.2.2.4 STH-Comet Health Check

Figure 4.5 shows the request for verifying if STH-Comet is running and the obtained
response.

GET ~ http://localhost:8666/version Params Save ¥

Headers C e le
KEY VALUE DESCRIPTION **+ Bulk Edit = Presets
Body 7 Status: 200 OK Time: 54ms Size: 251 B
Pretty JSON v S W Q
i
2 "version": "2.3.0-next"
30}

Figure 4.5 STH-Comet Health Check

81

4.2.2.5 Databases Created

Figure 4.6 displays the connection of Compass to the MongoDB cluster, to visualize the
databases created by the FIWARE GEs.

MongoDB Compass Community - Connect

Connect View Help

[£' CREATE FRE S CLUSTER
e,

Connect to Host

Hostname ocalhost

Port 27017

D RECENTS

SRV Record

Authentication Naone ¥

Replica Set Name

Read Preference Primary v

SSL | None v

SSH Tunnel None v
Favorite Name e.g. Shared Dev, QA Box, PRODUCTION

Figure 4.6 Connection of Compass to the MongoDB Cluster (MongoDB Docker Container)

To simplify the interaction of the FIWARE components with the MongoDB cluster, and
since the FIWARE components that implement security features were used in this system
due to various motives, later explained, it was not defined a username and password for
the MongoDB cluster. However, it is important to note that databases must always be
protected by at least a username and password (there are other and better authentication
methods) that also must not be the default ones.

82

MongoDB Compass Community - localhost:27017

Connect View Help

My Cluster 4 localhost:27017 | STANDALONE MongoDB 3.6.7 Community
i Databases
a
> admin Database Storage Collections Indexes
config Name Size
iotagentul)
admin 16.0KkB 0 1 W
groups
local config 4.0KB 0 2 T
orion
entities iotagentul 4.0KB 1 2 W
local 16.0KB 1 1 T
orion 4.0KB 1 2 W

Figure 4.7 MongoDB Databases

The only FIWARE GEs that automatically create a database at startup are the Orion
Context Broker and the 10T Agent, as Cygnus and SHT-Comet must first be configured
to receive data. As seen in Figure 4.7 both Orion and the 10T Agent are working as

expected as both created the databases (expanded in the figure).

4.2.3 Context Data Management

The following tests serve to verify that is possible to manage context information through
Orion Context Broker as it is expected. As mentioned before cURL will be used to send
information to Orion and Postman will be used to visualize said data in Orion. Through
Compeass it will be also possible visualize data written in the Orion MongoDB database.

The data here created and sent to Orion is based on the use case.

83

4.2.3.1 Entities Creation

For this test, a shell script named “1_use_case_entities_v1.sh”, was created to execute the
cURL commands that create the entities for the farm, for each field (field A, B and C),
for each crop (apples, tomatoes and corn), and for each water source (well, tank and

borehole)., in one go. The contents of the script are available in Annex I.

The script output (Figure 4.8), that depicts the output of each cURL command, shows that
every entity was created successfully.

3 # ./1 use case entities vil.sh
HTTP/1.1 201 Created

Connection: Keep-Alive

Content-Length: @

Location: /v2/entitiesfurn:ngsi-ld:Farm:001?type=Farm
Fiware-Correlator: 3f296826-aa38-11e8-9982-0242ac130005

Date: Mon, 27 Aug 2018 20:31:59 GMT

HTTP/1.1 201 Created

Connection: Keep-Alive

Content-Length: @

Location: /v2/entitiesfurn:ngsi-ld:Field:001?type=Field
Fiware-Correlator: 3f38fd36-aa38-11e8-9156-0242ac130005
Date: Mon, 27 Aug 2018 20:31:59 GMT

HTTP/1.1 201 Created

Connection: Keep-Alive

Content-Length: @

Location: /v2/entitiesjurn:ngsi-ld:Field:e027type=Field
Fiware-Correlator: 3f3bbeef-aa38-11e8-9fdf-0242ac130005
Date: Mon, 27 Aug 2018 20:31:59 GMT

HTTP/1.1 201 Created

Connection: Keep-Alive

Content-Length: @

Location: /v2/entities/urn:ngsi-ld:Field:0037type=Field
Fiware-Correlator: 3f3e1406-aa38-11e8-ac1d-0242ac130005
Date: Mon, 27 Aug 2018 20:31:59 GMT

HTTP/1.1 201 Created

Connection: Keep-Alive

Content-Length: @

Location: /v2/entities/urn:ngsi-ld:Crop:001?type=Crop
Fiware-Correlator: 3f4@5a7c-aa38-11e8-b38f-0242ac130005
Date: Mon, 27 Aug 2018 20:31:59 GMT

HTTP/1.1 201 Created

Connection: Keep-Alive

Content-Length: @

Location: /v2/entitiesjfurn:ngsi-ld:Crop:002?type=Crop
Fiware-Correlator: 3f4285d6-aa38-11e8-97bd-0242ac130005
Date: Mon, 27 Aug 2018 20:31:59 GMT

Figure 4.8 Output of the Commands That Created the Entities — Part 1

84

HTTP/1.1 201 Created

Connection: Keep-Alive

Content-Length: @

Location: fv2/entities/urn:ngsi-ld:Crop:003?type=Crop
Fiware-Correlator: 3f44c7d8-aa38-11e8-9721-0242ac130005
Date: Mon, 27V Aug 2018 20:31:59 GMT

HTTP/1.1 201 Created

Connection: Keep-Alive

Content-Length: @

Location: fv2/entities/urn:ngsi-ld:Well:001?type=Hell
Fiware-Correlator: 3f470f16-a3a38-11e8-a00e-0242ac130005
Date: Mon, 27V Aug 2018 20:31:59 GMT

HTTP/1.1 201 Created

Connection: Keep-Alive

Content-Length: @

Location: /v2/entitiesfurn:ngsi-ld:Tank:001?type=Tank
Fiware-Correlator: 3f495640-aa38-11e8-a84d-0242ac130005
Date: Mon, 27 Aug 2018 20:31:59 GMT

HTTP/1.1 201 Created

Connection: Keep-Alive

Content-Length: @

Location: /v2/entitiesfurn:ngsi-ld:Borehole:001?type=Borehole
Fiware-Correlator: 3f4b77ae-aa38-11e8-8320-0242ac130005

Date: Mon, 27 Aug 2018 20:31:59 GMT

Figure 4.8 Output of the Commands That Created the Entities — Part 2

By updating the MongoDB GUI, Compass, it is possible to verify (Figure 4.9 and Figure
4.10) that a new database named “orion-farmone” (orion + fiware-service) was created.
All commands sent to Orion must have the header that specifies the “fiware-service”

otherwise nothing will be returned as the command is sent to the database name “orion”

(considered the root) which is empty.

MongoDB Compass Community - localhost:27017forion-farmone

Connect View Help

My Cluster 4 localhost:27017 | STANDALONE MongoDB 3.6.7 Community

C 6DBS Collections
Q r CREATE COLLECTION
> admi Avg. Total Num. Total
gdioin Collection Documents o ota um ota
) N Document Document Indexes Index
config Name . . .
Size Size Size
iotagentul
entities 10 553.8B 5.4 KB 2 32.0KB w

local

orion

~ orion-farmone

entities

Figure 4.9 MongoDB Database with the Created Entities

85

MongoDB Compass Community - localhost:27017 forion-farmone.entities

Connect View Co on Help

#& My Cluster 4 localhost:27017 | STANDALONE MongoDB 3.6.7 Community

C s TOTAL SIZE AVG. SIZE TOTAL SIZE
DOCUMENTS 10 5.4KB 554B INDEXES 2 32.0KB

- orion-farmone.entities

> admin
Documents

[field: 'value' } + OPTIONS m 2
VIEW| i= LIST BB TABLE Displaying documents 1 -100f 10 ¢ > €

-~ orion-farmone «_id: object
id: "urn:ngsi-1d:Farm:eo1"
entities type: "Farm"

servicePath: "/’
-« attrNames: Array
@: "address"
1: "location”
2: "name"
~attrs: object
« address: Object
type: "Postaladdress”
creDate: 1535401018
modDate: 1535491018
~value: Object
streetAddress: "Av. das Forcas Armadas 36"
addressRegion: "Li "
addressLocality: "Lishon”
postalcode: "1640-026"
~ mdNames : Array
« location: object
type: "geo:json’
credate: 1535481018
modDate: 1535491018
~value: Object
type: "Point'
-« coordinates: Array
@: 38.7486
1: -9.1544
~ mdNames : Array
~ name: Ohject
type: "Text"
creDate: 1535401018
modbate: 1535401018
value: "GIGA Farm”
~ mdNames : Array
creDate: 1535481018
modDate: 1535481918
~location: Object

Figure 4.10 Visualization of an Entity Details

It was then concluded that the creation of entities is working as expected.

4.2.3.2 Entities Association

For this test, a shell script named “2_use_case_associations_v1.sh”, was created to
execute the cURL commands that do the associations of the previous created entities, in
one go. The contents of the script are available in Annex J.

As the association attribute of each entity was not specified at the creation time but after,
the association tasks done by the script are also considered entity modifications. The
script output (Figure 4.11), that depicts the output of each cURL command, shows that
every entity was created successfully.

86

:~/Desktop/IoT-over-MQTT_v4# ./2 use case associations vi.sh
HTTP/1.1 100 Continue

HTTP/1.1 284 No Content

Connection: Keep-Alive

Content-Length: @

Fiware-Correlator: 86304550-aa3d-11e8-864f-0242ac130005
Date: Mon, 27 Aug 2018 21:09:45 GMT

Figure 4.11 Output of the Command That Associated the Entities

By viewing the Field:001 entity using Compass (Figure 4.12) it is observed that two

attributes (“refFarm” and “refTank”) were added as expected.

MongoDB Compass Community - localhost:27017
Connect View C

#& My Cluster 4 localhost:27017 | STANDALONE MongoDB 3.6.7 Community

C s o

INDEXES 2 320K

TO
DOCUMENTS 10 D.4RK0

orion-farmone.entities

Q

admin
Documents
config

iotagentul { field: 'value' } » OPTIONS m D2
local
VIEW| i= LIST BB TABLE Displaying documents 1-100f 10 ¢ > €

w _id: object
id: "urn:ng
entities type: "Field
servicePath: "/
-« attrNames: Array
@: "location”
1: "name"
2: "area"
3: "refrarm’ €——
4: "refTank" €——
w~attrs: object
~ location: Object
type: "geoc:json
creDate: 1535481019
modDate: 1535481019
w~value: Object
type: "Point'
« coordinates: Array
@:30.7480
1:-9.1534
~ mdNames : Array
~ name: Object
type: "Text"
creDate: 1535481019
modDate: 1535481019
value: "Field A"
~ mdNames : Array
~area: object
type: "Integer"”
crebate: 1535491919
modDate: 1535481019
value: "18
~ mdNames : Array
~ refFarm: Object
value: "urn:ngsi-1ld:Farm:egl"
type: "Relationsh
~ mdNames : Array
creDate: 1535402783
Mate: 1535482783

orion

orion-farmone T Fieldaa1t
i-l1d:Field:oe1"

Figure 4.12 Visualization of Entity Details

87

It is also possible to observe the associations by making a query asking for all entities
related to an entity. In Figure 4.13 a query is made for all entities related to the Farm

entity.

GET ~ http://localhost:1026/v2/entities/?q=refFarm==urn:ngsi- Params m Save ¥
ld:Farm:001&options=count&attrs=type

fiware-service farmOne

Pretty jSON = m Q

3 "id": "urn:ngsi-ld:Field:0@1",
4 "type": "Field"

i
——

7 "id": "urn:ngsi-1d:Field:0@2",
8 "type": "Field"

11 "id": "urn:ngsi-ld:Field:0@83",
12 "type": "Field"

]
——

"id": "urn:ngsi-ld:Crop:0@1",
"type": "Crop"

i

"id": "urn:ngsi-ld:Crop:@@2",
"type": "Crop"

r
——

"id": "urn:ngsi-1d:Crop:063",
24 "type": "Crop"

27 "id": "urn:ngsi-ld:Well:oo1",
28 "type": "Well"

31 "id": "urn:ngsi-ld:Tank:0@1",
32 "type": "Tank"

Figure 4.13 Query for All Entities Associated with the Farm Entity

It was then concluded that the association and alteration of entities is working.

4.2.3.3 Entities Modification

Although it was already proved by the previous test that modifying entities is working a

new test is performed.

For this test, a shell script named “3_use_case_entities_modification_(1)_v1.sh”, was
created to modify a single attribute of an entity, and a script named
“3_use_case_entities_modification_(1)_v1.sh” to modify several attributes of an entity,
which in in this test is the borehole entity, that was created specifically for this. The

contents of the scripts are available in Annex K.

88

Figure 4.14 shows the Borehole entity before changes were made.

GET ~ http://localhost:1026/v2/entities/urn:ngsi-ld:Borehole:001?options=keyValues

Headers (1)
KEY VALUE

fiware-service farmCne

Bady (5)

Pretty JSON + =

]
-~

"id": "urn:ngsi-ld:Borehole:@e1",
"type": "Borehole",
"depth": "20",
"location": {
"type": "Point",
"coordinates": [
47,7489,
-10.1534

4

]

B
"name": "Borehole One"

.,.
2 D AD GO~ O LN s L D e
4

el
L P

[
—

Params Send v Save ¥

Cookies Code
DESCRIPTION **+ Bulk Edit Presets -
Status: 200 OK Time: 5 ms Size: 337 B
m Q

Figure 4.14 Borehole Entity Key Values Before Changes

Figure 4.15 shows the output of the execution of the first script

:~/Desktop/IoT-over-MQTT_v4# ./3_use_case_entities_modification_\(1\)_v1.

sh

HTTP/1.1 204 No Content

Connection: Keep-Alive

Content-Length: ©

Fiware-Correlator: 55b82226-aae7-11e8-b95a-0242ac130085
Date: Tue, 28 Aug 2018 17:25:18 GMT

Figure 4.15 Output of the Command That Modified an Entity (1)

Figure 4.16 shows that the depth attribute was altered from 20 to 25 as expected.

GET ~ http://localhost:1026/v2/entities/urn:ngsi-ld:Borehole:0017options=keyValues

Headers (1)
KEY VALUE

fiware-service farmOne

Body (f
Pretty JSON - =2
ik [
2 "id": "urn:ngsi-ld:Borehole:@e1",
3 "type": "Borehole",
4 "depth": 25,
5~ "location": {
6 "type": "Point",
T~ "coordinates": [
8 47,7489,
& -10.1534
16 1
11 1.
12 "name": "Borehole One"
13}

DESCRIPTION -

Params Send A Save ~

Bulk Edit

Status: 200 0K~ Time: 9ms Size: 335 B

mQ

Figure 4.16 Borehole Entity Key Values After Changes (First Script)

89

Figure 4.17 shows the output of the execution of the second script

yesktop/IoT-over-MQTT_v4# ./3 use case entities modification \(2\) vi.
sh
HTTP/1.1 284 No Content
Connection: Keep-Alive
Content-Length: @
Fiware-Correlator: edf@3ace-aae7-11e8-b08d-0242ac130005
Date: Tue, 28 Aug 2018 17:29:34 GMT

Figure 4.17 Output of the Command That Modified an Entity (2)

Figure 4.18 shows that the depth attribute was altered from 25 to 30 and the name attribute

from “Borehole One” to “Top Borehole” as expected.

GET ~ http://localhost:1026/v2/fentities/urn:ngsi-ld:Borehole:001?options=keyValues Params m Save ¥

Headers (1)
KEY VALUE DESCRIPTION *** BulkEd Presets

fiware-service farmOne

Pretty JSON w = m Q

2 "id": "urn:ngsi-ld:Borehole:@e1",
3 "type": "Borehole",
4 "depth": "308",
- "location": {

"type": "Point",
- "coordinates": [
8 47.7489,
9 -10.1534

]

12 "name": "Top Borehole"

Figure 4.18 Borehole Entity Key Values After Changes (Second Script)

Therefore, it was concluded that the modification of entities is working.

4.2.3.4 Entities Removal

For this test, two shell scripts named “4_use_case_entities_removal_(1)_v1.sh” and
“4 _use_case_entities_removal_(2) _v1.sh”, were created to test the removal of an entity
attribute and the removal of an entity. The contents of the scripts are available in Annex
L.

90

Figure 4.19 shows the output of the execution of the first script.

:~/Desktop/IoT-over-MQTT_v4# ./4 _use_case_entities_removal_\(1\)_vi.sh
HTTP/1.1 204 No Content
Connection: Keep-Alive
Content-Length: @
Fiware-Correlator: 156e823a-aae9-11e8-9323-0242ac130005
Date: Tue, 28 Aug 2018 17:37:49 GMT

Figure 4.19 Output of the Command That Removed an Entity Attribute

Figure 4.20 shows that the depth attribute was removed as expected.

GET ~ http://localhost:1026/v2/entities/urn:ngsi-ld:Borehole:0017options=keyValues Params Save ¥

Headers (1) Cookies Code
KEY VALUE DESCRIPTION *** Bulk Edit = Presets v
fiware-service farmOne
Body (5) Status: 200 OK Time: 7 ms Size: 324 B
Pretty JSON v 5 W Q
L .
2 "id": "urn:ngsi-ld:Borehole:@e1",
3 "type": "Borehole",
4- "location": {
5 "type": "Point",
6~ "coordinates": [
7 A47.7489,
8 -10.1534
9]
10 }

11 "name": "Top Borehole"

Figure 4.20 Borehole Entity Key Values After Removal of an Attribute (First Script)

Figure 4.21 shows the output of the execution of the second script.

:~/Desktop/TIoT-over-MQTT_va# ./4 use case entities removal \(2\) vi.sh
HTTP/1.1 204 No Content
Connection: Keep-Alive
Content-Length: @
Fiware-Correlator: 72e78ee8-aae9-11e8-8953-0242ac130005
Date: Tue, 28 Aug 2018 17:40:26 GMT

Figure 4.21 Output of the Command That Removed an Entity (1)

91

Figure 4.22 shows that the entity was deleted as expected, as an error was returned.

GET ~ http://localhost:1026/v2/entities/urn:ngsi-ld:Borehole:001 7options=keyValues Params m Save ¥

Headers (1)
KEY VALUE DESCRIPTION *er Bulkk Prese A

fiware-service farmOne

Pretty JSON ¥ = m Q
2 "error": "NotFound",

"description": "The reguested entity has not been found. Check type and id"

Figure 4.22 A Query for the Borehole Entity Returns a “Not Found” Error

Therefore, it was concluded that the removal of attributes and entities was working.

4.2.4 Mosquitto MQTT Broker Health Check

To test if the Mosquitto MQTT Broker is working properly, a pair of dummy MQTT
publisher/subscriber are used. The subscriber is configured to receive all messages
independently of the topic sent by the publisher. If everything is working well as intended,

then the subscriber will receive all messages.

The publisher and subscriber are used as Docker Containers and the Mosquitto MQTT

Broker was already created when the system was initiated.

The subscriber (Figure 4.23) is initiated and stays waiting for messages.

:~# docker run -it --rm --name mqtt-subscriber --network fiware_default
efrecon/mgtt-client sub -h 172.17.8.1 -t "/#"

Figure 4.23 Creation of the MQTT Subscriber

Then using a publisher (Figure 4.24) a message is sent.

:~# docker run -it --rm --name mgtt-publisher --network fiware_default
efrecon/mgtt-client pub -h 172.17.8.1 -m "HELLO WORLD" -t "/test"
i~

Figure 4.24 Creation of the MQTT Publisher and Sending of a Message

92

The message is received by the subscriber (Figure 4.25) proving that the Broker is

working well.

:~# docker run -it --rm --name mgtt-subscriber --network fiware default
efrecon/mgtt-client sub -h 172.17.0.1 -t "/#"
HELLO WORLD

Figure 4.25 Message Received by the MQTT Publisher

4.2.5 10T Devices Management

The following tests serve to verify that is possible to manage 10T Devices and associated
services as it is expected. Like before, cURL will be used to send information and
Postman will be used to visualize data. Through Compass it will be also possible visualize

data written in the databases.

The data here created is based on the use case.

4.2.5.1 Service Group Provisioning

For this use case four “fiware-servicepaths” where created to differentiate between arrays
of devices, two paths for the field A devices (sensors path: “/fieldA/sensors”; actuators
path: “/fieldA/actuators”) and two paths for the tank devices (sensors path:
“/tank/sensors”’; actuators path: “/tank/actuators”). Therefore, it is necessary to provision
four corresponding service groups, each with a different API key otherwise an error will
be returned. For this and the following tests a different “fiware-service” was used to easily

observe what is created during the 10T devices set-up.

To provision the service groups in one go, a shell scrip named

“5_use_case_service_groups.sh” was created, whose contents are available in Annex M.

93

The output of the script execution (Figure 4.26) indicates that the service groups were

created successfully.

:~/Desktop/IoT-over-MQTT_v4# ./5 use case service groups.sh
HTTP/1.1 201 Created
X-Powered-By: Express
Fiware-Correlator: 5200a209-e633-499a-8748-9307dd4dab40
Content-Type: application/json; charset=utf-8
Content-Length: 2
ETag: W/"2-vyGp6PvFo4RvsFtPoIWeCReyIC8"
Date: Tue, 28 Aug 2018 19:22:17 GMT
Connection: keep-alive

{JHTTP/1.1 201 Created

X-Powered-By: Express

Fiware-Correlator: c112569c-6e6a-4d38-b5d6-c2a37bebo227
Content-Type: application/json; charset=utf-8
Content-Length: 2

ETag: W/"2-vyGp6PvFo4RvsFtPoIWeCReyIC8"

Date: Tue, 28 Aug 2018 19:22:17 GMT

Connection: keep-alive

{IHTTP/1.1 201 Created

X-Powered-By: Express

Fiware-Correlator: 1a42d52c-8b2c-4fb3-9586-7falacBeadho
Content-Type: application/json; charset=utf-8
Content-Length: 2

ETag: W/"2-vyGp6PvFo4RvsFtPoIWeCReyIC8"

Date: Tue, 28 Aug 2018 19:22:17 GMT

Connection: keep-alive

{JHTTP/1.1 201 Created

X-Powered-By: Express

Fiware-Correlator: f24fa24d-b42f-43f2-94ee-81a3d0eB8a5e9
Content-Type: application/json; charset=utf-8
Content-Length: 2

ETag: W/"2-vyGp6PvFo4RvsFtPoIWeCReyIC8"

Date: Tue, 28 Aug 2018 19:22:17 GMT

Connection: keep-alive

{} :~[/Desktop/IoT-over-MQTT_va# I

Figure 4.26 Output of the Commands That Created the Service Groups

94

In Figure 4.27 it is possible to observe the created service groups in the database

associated to the loT Agent.

MongoDB Compass Community - localhost:27017/iotagentul.groups

Connect View Collection Help

#& My Cluster 1 localhost:27017 | STANDALONE MongoDB 3.6.7 Community
C s TOTAL SIZE AVG. SIZE IG. SIZE
DOCUMENTS 4 7048 176B “B
Q .
iotagentul.groups
EGT
Documents

config

—
¢ iotagentul { field: 'value' } » OPTIONS m 2

groups) ’
VIEW| = LUST [TABLE Displaying documents 1 -4of4 < > €

local _id: objectId("5ba5ae0e07866200801b6ddas")
subservice: "/fielda/sensors"

orion service: "openiot”

: type: "Thing"

orion-farmone apikey: "4jggokgpepnvsbhzuvas4edsoa”

resource: ""
» staticAttributes: Array

_wv:@

_id: objectId("5b85acesTE66200001b6ddaa")
subservice: "/fielda/actuators’

service: "openiot"”

type: "Thing"

apikey: "4jggokgpepnvsb2uv4s4edsob”
resource: ""

» staticAttributes: Array
_wv:a@

_id: objectId("5ba5acesTE66200001b6ddaa")
subservice: "/tank/sensors"
service: "openiot"”
type: "Thing"
apikey: "4jggokgpepnvsbzuvds4edsoc”
resource: ""
staticAttributes: Array
Vi@

_id: objectId("5ba5aces7E66200001b6ddab")
subservice: "/tank/actuators"

service: "openiot"”

type: "Thing"

apikey: "4jggokgpepnvsbzuvds4edsad”
resource: ""

taticattrihutes: Arraw

Figure 4.27 Service Groups Created

It was then concluded that the provisioning of service groups is working as expected.

4.2.5.2 Sensors Provisioning

As mentioned at the beginning of this chapter, a total of five 0T Devices are used, three
on field A (a weather station, an earth-humidity sensor and a valve) and two on the tank

(a water level sensor and a valve). In this test the sensors are provision in order for the

95

system to be able to map the receiving data into the right context entities and therefore be

able to know what is the received data. In the next test, the actuators are provision.

To provision the sensors in one go, a shell scrip named
“6_use_case_sensors_provisioning.sh” was created, whose contents are available in

Annex N.

The output of the script execution (Figure 4.28) indicates that the provisioning of the
sensors was done successfully. It is also possible to observe that is was possible to make
an association of the earth-humidity sensor to an apple tree even though an entity for said
tree was not created, proving that there is no data integrity in a MongoDB database.

B # ./6_use_case_sensors_provisioning.sh
HTTP/1.1 201 Created

X-Powered-By: Express

Fiware-Correlator: e0486ad7-884c-497f-a75d-c80f7e655b24

Content-Type: application/json; charset=utf-8

Content-Length: 2

ETag: W/"2-vyGp6PvFo4RvsFtPoIWeCReyIC8"

Date: Tue, 28 Aug 2018 19:52:42 GMT

Connection: keep-alive

{}JHTTP/1.1 201 Created

X-Powered-By: Express

Fiware-Correlator: 6cea9ee3-aecc-4414-94a4-61d6dde5efo4
Content-Type: application/json; charset=utf-8
Content-Length: 2

ETag: W/"2-vyGp6PvFo4RvsFtPoIWeCReyIC8"

Date: Tue, 28 Aug 2018 19:52:42 GMT

Connection: keep-alive

{}HTTP/1.1 201 Created

X-Powered-By: Express

Fiware-Correlator: c8a4b729-0746-4070-a%be-4aa7a5c6b751
Content-Type: application/json; charset=utf-8
Content-Length: 2

ETag: W/"2-vyGp6PvFo4RvsFtPoIWeCReyIC8"

Date: Tue, 28 Aug 2018 19:52:42 GMT

Connection: keep-alive

{1 : #
Figure 4.28 Output of the Commands That Provisioned the Sensors

96

In Figure 4.29 is observed that in the database managed by the 10T Agent a new directory

for devices was created, and in Figure 4.30, that a new Orion database for the “fiware-

service” used in this test was also created, which contains the devices entities. This are

the entities that are queried when it is necessary to obtain information, and not the devices
in the 1oT Agent.

Connect View

My Cluster
cC 7
o}

admin
config

~ iotagentul
devices

groups

local

orion

orion-farmone
~ orion-openiot

entities

MongoDB Compass Community - localhost:27017fiotagentul.devices

4 localhost:27017 | STANDALONE MongoDB 3.6.7 Community

TOTAL SIZE AVG. SIZE TOTAL SIZE
DOCUMENTS 3 6218 INDEXES 1 6.0KB

iotagentul.devices

Documents

{ field: 'value' } » OPTIONS m 9
\-'IEW = LIST B TABLE Displaying documents 1-30f3 < > €

_id: objectId("5h85a8087865200001b6ddac™)
transport: "MQTT"

protocol: "PDI-IoTA-UltraLight
internalTd: null

subservice: "/fielda/sensors"”

service niot"
name : "'u -1ld:weather:eel’
type: "Wea

id: "weathereol"
creationDate: 2018-08-28 20:52:41.0976
« subscriptions: Array
. staticAttributes: Array
w~8:0bject
value: "urn:ngsi-1d:Field:@81"
type: "Relationship”
name: "refrField"
~1:0bject
value: "48.3982, -3.758"
type: "geo:point”
name: "location’
wactive: Array
w~8:0bject
type: "percentage”
name: "humidity"
object_id: "h"
~1:0bject
type: "degreess"
name: "temperature"
object_id: "c"
w~2:0bject
type: "degrees"
name: "heatIndex"
object_id: "i"
v:@

_id: objectId("5h85a80aT7B66200001b6ddad™)
transport: "MQTT"

J: Do ToTa ilergl ok

Figure 4.29 Provisioned Sensors in the loT Agent

97

Connect View Collection Help

#& My Cluster
c 7

Q

admin
config

- iotagentul
devices

groups

local

orion

orion-farmone
* orion-openiot

entities

4 localhost:27017 | STANDALONE

TOTAL SIZ AVG z T
DOCUMENTS 3 2.7KB 930B INDEXES 2

orion-openiot.entities

Documents

Tield value']

INSERT DOCUMENT RUISUAEE N3}

w _id: object

MongoDB Compass Community - localhost:27017 forion-openiot.entities

MongoDB 3.6.7 Community

ok

» OPTIONS m D

i TABLE Displaying documents1-30f3 ¢ » C

id: "urn:ngsd-1ld:Weather:@e1"

type: "Weather

servicePath: "/fielda/sensors"

w attrNames: Array
@: "humidicy"”

1:
2:
3"

4: "location"
5: "TimeInstant'
w~attrs: object
« humidity: object
type: "percentage”
creDate: 1535485061
modDate: 1535485961
value: " "
- mdNames : Array
« temperature: object
type: "degrees"
creDate: 1535485061
modDate: 1535485961
value: " "
- mdNames : Array
« heatIndex: Object
type: "degrees"
creDate: 1535485061
modDate: 1535485961
value: " "
~ mdNames : Array
« refField: Object

type: "Relationship”

creDate: 1535485961
modDate; 1535485961
value: "urn:ngsi-1d
~ MdNames : Array
« location: Object
type: "geo:point"
creDate: 1535485961

modhotrg: 1= 008

:Field:ee1"

4.2.5.3 Actuators Provisioning

Figure 4.30 Provisioned Sensors Entities in Orion

In this test the actuators are provision in order for the system to be able to map the

receiving data into the right context entities and therefore be able to know what is the

received data, and also to know which commands are accepted by the actuators.

To provision the actuators in one go, a shell scrip named “7_use_case_

actuators_provisioning.sh” was created, whose contents are available in Annex O.

98

The output of the script execution, Figure 4.31, indicates that the provisioning of the

actuators was done successfully.

:~/Desktop/IoT-over-MQTT_v4# ./7_use_case_actuators_provisioning.sh
HTTP/1.1 201 Created
X-Powered-By: Express
Fiware-Correlator: 53747868-5adf-4f21-895b-8d2ae71b6491
Content-Type: application/json; charset=utf-8
Content-Length: 2
ETag: W/"2-vyGp6PvFo4RvsFtPoIWeCReyIC8"
Date: Tue, 28 Aug 2018 20:09:50 GMT
Connection: keep-alive

{JHTTP/1.1 201 Created

X-Powered-By: Express

Fiware-Correlator: 333b8746-a7c3-4cb6-9fc8-712251e6blcc
Content-Type: application/json; charset=utf-8
Content-Length: 2

ETag: W/"2-vyGp6PvFo4RvsFtPoIWeCReyIC8"

Date: Tue, 28 Aug 2018 20:09:50 GMT

Connection: keep-alive

Figure 4.31 Output of the Commands That Provisioned the Actuators

99

In Figure 4.32 is observed that the actuators were added to the lIoT Agent database and

that, in Figure 4.33, the corresponding entities were also created in the Orion database. It

Is also observed, in Figure 4.34, that a new directory was created in the Orion database

that contains information about the actuators commands.

Connect View
My Cluster
c 7

Q

admin
config
TEGERI
devices

groups

local
orion
orion-farmone
orion-openiot

entities

registrations

MongoDB Compass Community - localhost:27017/iotagentul.devices

4 localhost:27017 | STANDALONE MongoDB 3.6.7 Community

TOTAL SIZE A
DOCUMENTS 5 3.1KB

iotagentul.devices

Documents

{ field: 'walue' } » OPTIONS m D
VIEW = LUST [TABLE Displaying documents 1 -50f5 ¢ » C

_id: objectId("5b85acoe7B66200001b6ddat")
transport: "MOQTT"

protocol: "PDI-IoTA-Ultralight'

internalXd: null

registrationId: "Sb8Sacne3ad432f1190d75eac”

id: "valveoo1"
creationDate: 2818-88-28 21:09:58,692

«~ subscriptions: Array
« staticAttributes: Array
w8 0bject
value: "urn:ngsi-1d:Field:@e1”
type: "Relationship”
name: "refField’
~1: object
value: "urn:ngsi-1ld:AppleTree:@e1"
type: "Relati ip"
name: "refappleTree”

«2: 0bject
value: "48.3982, -3.759"
type: " point"

name: "location’
« commands : Array

w8 0bject
object_id: "open"
type: "command"
name: "open”

«1:0bject
object_id: "close”
type: "command”
name: "close’

v:a

_id: objectId({"5b85ac@e7866200001b6ddba")

Figure 4.32 Provisioned Actuators in the loT Agent

100

admin

config
iotagentul

lo

orion
orion-farmone
orion-openiot
entities

registrations

MongoDB Compass Community - localhost:27017forion-openiot.entities

w

1| localhost:27017 | STANDALOME

DOCUMENTS 5
orion-openiot.entities

Documents

[field: 'value'

INSERT DOCUMENT RUISVAEE—NNE)

w _id: object

id: "urn:ngsi
type: "valve'

e

T

E TABLE

-1d:valve:ee1"

servicePath: "/fielda/actuators”

~ attrNames: Array

a: "refField”

1: "refAppleTree”
2: "location”

3: "open_status'
4; "open_info"

5: "close_status”
3 infa"

imeInstant"

~attrs: Object

refField: object
type: "Relationship”
creDate:! 1535486000
modDate; 1535486000

value: "urn:ngsi-1d:Field:g21"

-« mdNames: Array

refAappleTree: Object
type: "Relationship”
creDate: 1535486900
modDate: 1535486000

MongoDB 3.6.7 Community

WG. SIZE
1.0KB INDEXES 2

» OPTIONS m 9

Displaying documents 1 -50f 5 ¢

value: "urn:ngsi-1d:AppleTree:aol"

« mdNames : Array
location: object
type: o:point”
creDate: 1535486000
modDate: 1535486000
value: '
~ mdNames: Array
open_status: object
type: "commandStatus’
creDate: 1535486000
modDate: 1535486000
value: "UNKNDWN"
~ mdNames: Array
open_info: Object

48.392, -3.759"

?

c

Figure 4.33 Provisioned Actuators Entities in Orion

101

MongoDB Compass Community - localhost:27017 forion-openiot.registrations
Connect View Cc ion Help
#& My Cluster 4 localhost:27017 | STANDALONE MongoDB 3.6.7 Community

c 7

TFOTAL SIZE
DOCUMENTS 2 INDEXES 1 |
Q |
orion-openiot.registrations
> admin
Documents
config
iotagentul { field: 'value' } » OPTIONS m D
local
_ (NEIE oINSl VIEW | = LIST | BB TABLE Displaying documents1-20f2 ¢ > € |
orion
orion-farmone _id: objectId("s5ba85acee3a43271190d75eac")
: : expiration: 8078000
~ orion-openiot servicePath: "/fielda/actuators” |
" format: "J150N"
entities . contextRegistration: Array |
R ~@8:0bject
registrations ~entities: Array
~8:0bject

id: "urn:ngsi-1ld:valve:oe1"
type: "valve"
~ attrs: Array
~@:0bject
name: "open”
type: "command"”
ispomain: "false”
~1:0bject
name: "close'
type: "command”
ispomain: "false”
providingApplicati..: "http://iot-agent:4@41"

_did: ObjectId("5b85ac@e3a432f1100d75ead")
expiration: 1538073000
servicePath: "/tank/actuators”
format: "J50N"
» contextRegistration: Array

Figure 4.34 Directory with the Actuators Commands

Therefore, it was concluded that the provisioning of sensors and actuators is working
properly.

4.2.5.4 Enabling Context Broker Commands

Although the actuators commands are already registered in the Orion database, it is
necessary to inform the Orion Context Broker that the commands are available. For that
a script named “8_use_case_enable_commands.sh” was created and whose contents are

available in Annex P.

102

The output of the script execution (Figure 4.35) indicates that the commands were enabled

successfully.

:~/Desktop/IoT-over-MOTT_v4# ./8 use case_enable commands.sh
HTTP/1.1 201 Created
Connection: Keep-Alive
Content-Length: ©
Location: /v2/registrations/5b85aed13a432f1199d75eae
Fiware-Correlator: f72d6036-aaff-11e8-8669-0242ac130005
Date: Tue, 28 Aug 2018 20:21:37 GMT

HTTP/1.1 281 Created

Connection: Keep-Alive

Content-Length: @

Location: fv2/registrations/5b85aed13a432f1199d75eaf
Fiware-Correlator: f7308ec6-aaff-11e8-920a-08242ac136005
Date: Tue. 28 Aua 2018 20:21:37 GMT

Figure 4.35 Output of the Commands That Enabled the Context Broker Commands for the Actuators

In Figure 4.36 is observed that the commands were added to Orion database.

MongoDB Compass Community - localhost:27017/orion-openiot.registrations

Connect View Co ion Help

My Cluster 4 localhost:27017 | STANDALONE MongoDB 3.6.7 Community

c 7

Q

DOCUMENTS 4

orion-openiot.registrations
admin

Documents

config

iotagentul { field: "value' } » OPTIONS m D

local
\-'IEW I= LIST | EE TABLE Displaying documents1-40fd4 ¢ > € |

10 UDTECT IO " S0ESACYESAS S TITYY0 SEan™]
expiration: 1538075096

servicePath: "/tank/actuators”

format: "JS0M"

contextRegistration: Array

orion
orion-farmone

orion-openiot

entities
registrations
_id: ObjectId("5bha85aed13a43271198d75eae")
description: "valve Commands"
expiration: 02233720368547758087
servicePath: "/fielda/actuators”
«~ contextRegistration: Array
~@: 0bject
~entities: Array
~ @: 0bject
id: "urn:ngsi-1d:valwve:@el"
type: "valve'
« ATTrs: Array
~ @: 0bject
name : "open”
type: """
ispomain: "false”
«~1:0bject
name: "close'
type: """
ispomain: "false” |
providingApplicati. : "http://orion: 1026/ v1"
format: "JS0M"

_dd: objectIid("sba5aedlza432f1198d75eaf")

Figure 4.36 Commands Enabled in Orion

It was concluded that the commands activation is working as expected.

103

4.2.6 10T Devices

The following tests serve to mainly verify if the used sensors and microcontrollers are

working properly (actuators are simulated).

4.2.6.1 Test of DHT22 Sensor

To test if the DHT22 air temperature and humidity sensor is working properly it was used
an already existing Arduino library (Figure 4.37) to process the sensor data and print it to
the Arduino serial monitor.

o)

Tipo | Instalado + | Topico | Todos w | |dht

DHT sensor library by Adafruit Vers3o 1.2.0 INSTALLED
Arduino library for DHT11, DHT22, etc Temp & Humidity Sensors Arduino library for DHT11, DHT22, etc Temp & Humidity Sensors
More info

Figure 4.37 Arduino Library Used for the DHT22 Sensor

In the Figure 4.38 can be observed the electrical schematics for connecting the sensor to
the NodeMcu ESP8266 Devkit v1.0 board.

100043a
10SUBS ZZ1HQ

=
x.
uvv
1
=
X
a.,
a:
a:

efleflefoflelofelo)

Figure 4.38 Electrical Schematics for Connecting the DHT22 Sensor to the NodeMcu ESP8266 Devkit v1.0
Board

104

Figure 4.39 shows the experimental montage of the circuit.

OECNY oIVSY
aEREn

)
x o, - i

2 | - - [j N

Z0S 10S OND BOS N OND goe N3 ASH ONO VIn j

Ceoteaee Ohae ‘
-

Figure 4.39 DHT22 Sensor + NodeMcu Circuit Montage

The code uploaded to the board (file name “esp8266_temp_hum_test.ino”) is available in

Annex Q, which outputs the obtained data from the sensor (Figure 4.40).

& coms - | *
Enviar
T T

Humidity: €5.80% Temperature: 28.30*C Heat index: 30.66*C
Humidity: €3.60% Temperature: 28.30%C Heat index: 30.36%C
Humidity: €4.30% Temperature: 28.30*C Heat index: 30.45*C
Humidity: €1.20% Temperature: 28.20%C Heat index: 28.80%C
Humidity: €1.00% Temperature: 28.20%*C Heat index: 29.87*C
Humidity: €0.80% Temperature: 28.10%C Heat index: 29,60%C
Humidity: €0.70% Temperature: 28.10%C Heat index: 20.68%C
Humidity: €0.70% Temperature: 28.10*C Heat index: 29.68*C
Humidity: €0.60% Temperature: 28.10*C Heat index: 29.67*C
Humidity: €62.60% Temperature: 28.10%C Heat index: 20.090%C
Humidity: 72.40% Temperature: 28.10*C Heat index: 31.20*%C
Humidity: 77.50% Temperature: 28.10*C Heat index: 31.96*C
Humidity: 80.70% Temperature: 28.20%C Heat index: 32.72%C
Humidity: 83.00% Temperature: 28.20*C Heat index: 33.11*C
Humidity: 84.90% Temperature: 28.30%C Heat index: 33.74+%C
Humidity: 85.80% Temperature: 28.30%*C Heat index: 33.94%C
Humidity: 86.30% Temperature: 28.30*C Heat index: 34.06*C
Humidity: 86.40% Temperature: 28.40%C Heat index: 34.38%C
Humidity: 79.70% Temperature: 28.40%C Heat index: 33.07*C
Humidity: 80.50% Temperature: 28.40*C Heat index: 33.21*C
Humidity: 84.80% Temperature: 28.40%C Heat index: 34.01%C
Humidity: 82.50% Temperature: 28.50*C Heat index: 33.86*C

[Avango automatico de linha Sem final de linha ~ | |9600 baud

Figure 4.40 Obtained Data from the DHT22 Sensor

105

4.2.6.2 Test of Ultrasonic Sensor

This sensor requires 5V to work however the board is only capable of supplying 3.3V,
however, since the board is being powered through the USB port it is possible to draw

5V from the Vin pin to power the sensor.

In the Figure 4.41 can be observed the electrical schematics for connecting the sensor to
the NodeMcu ESP8266 Devkit v1.0 board.

&Y

G ©

AARARARAR"®

I
I
¢
1
I

efefefofofefeole

Figure 4.41 Electrical Schematics for Connecting the Ultrasonic Sensor to the NodeMcu ESP8266 Devkit
v1.0 Board

Figure 4.42 shows the montage of the circuit.

Figure 4.42 Ultrasonic Sensor + NodeMcu Circuit Montage

106

To test the sensor, it was used an already made example available in the manufacturer
website [70], that had to be adapted to work with the board as it was originally for
Arduino. The code uploaded to the board (file name “esp8266_ultrasonic_test.ino”) is
available in Annex R.

Figure 4.43 shows the output of the obtained data from the sensor.

€ c - O
Enviar
51 = 28cm "
51 = 2Zcm
51 = 24cm
51 = 27cm
51 = 3%cm
51 = 4lcm
51 = 40cm
51 = lélcm
51 = lélcm
51 = lelcm
51 = lélcm
51 = lélcm
51 = lelcm v
[Avanco automético de linha Sem final de linha ~ | 9800 baud

Figure 4.43 Obtained Data from the Ultrasonic Sensor

4.2.6.3 Test of Earth-Humidity Sensor

The Figure 4.44 shows the electrical schematics for connecting the sensor to the
NodeMcu ESP8266 Devkit v1.0 board.

AAARRARAR*®

@ ON9 EAE nd EC 20 14

efefefofofofe]e)
@D ©

1
I
I
I
I
>

Figure 4.44 Electrical Schematics for Connecting the Earth-Humidity Sensor to the NodeMcu ESP8266
Devkit v1.0 Board

107

Figure 4.45 and Figure 4.46 show the montage of the circuit.

escccecccnacsscne
PR
-

seccscccnces

sssee ssmens oo
P

- sessses

:a 4

ol

Figure 4.45 Earth-Humidity Sensor + NodeMcu Circuit Montage (1)

Figure 4.46 Earth-Humidity Sensor + NodeMcu Circuit Montage (2)

To test the sensor, it was used an already made example available in the manufacturer
website [71], that had to be adapted to display better information, such as humidity in
percentage. Both operation modes of the sensor, digital and analogic, were tested however

only the analogic mode is useful for the use case as displays the values of the soil

108

moisture, when the digital mode only returns “1” or “0” if the soil humidity is above or
below a threshold defined by the potentiometer. The analog mode automatically implies
that the ADC is used to convert the sensor analog output into digital values, between 0

and 1024, that are then converted to a percentage.

The code uploaded to the board (file name “esp8266_earth_humidity_test.ino™) is

available in Annex S.

Figure 4.47 shows the output of the obtained data from the sensor. When the sensor probes
were in the air the humidity percentage was 0 and when the probes were connected
through a jump wire the humidity percentage was 100. The other values were obtained

by placing the sensor in a vase.

3]

L

Enviar

ADC reading: 1024 ~
Humidity Percentage: 0
ADC reading: 972
Humidity Percentage: &
ADC reading: 605
Humidity Percentage: 41
ADC reading: 608
Humidity Percentage: 41
ADC reading: 644
Humidity Percentage: 38
ADC reading: 538
Humidity Percentage: 48
ADC reading: 586
Humidity Percentage: 43
ADC reading: 580

L

[] Avanco automéatico de linha Sem final de linha w | 9600 baud

- Fi:quré 4.47 Obtained Data from the Earth-Humidity Sensor

Ideally the sensor probes should have been longer to obtain the humidity values of deeper
soil, as the soil may appear to be dry at the surface but can be wet or moist at higher
depths. For a single pant, multiple sensors with different probe lengths could also be used

to obtain a global humidity reading of the soil.

4.2.6.4 Sending Measurements from DHT?22 Sensor to the 10T System

The programs written for the 0T Devices are based on an existing Arduino MQTT library
[72], which is one of the rare ones that support publishing messages with QoS (0, 1 and

2), being used QoS 2. The code uploaded to the board (file name

109

“matt_esp8266_dht22 qos_v1.ino”’), which collects the sensor data and transmits it to the

system is available in Annex T.

To visualize the message received by the Mosquitto MQTT Broker it was used the
dummy MQTT subscriber (Figure 4.48) previously used when testing the Mosquitto
Health.

:~# docker run -it --rm --name mgqtt-subscriber --network default efre
con/mgtt-client sub -h 172.17.8.1 -t "/#"
h|68.38|t|26.18|1]27.37
h|68.80|t|26.10]1]27.39
h|68.80|t]|26.30|1]|27.68

Figure 4.48 Messages Received by the MQTT Subscriber and Sent by the Weather Sensor

Figure 4.49 shows the received data from the sensor in the database.

MongoDB Compass Community - localhost:27017 forion-openiot.entities
Connect View Collection Help
My Cluster 1 localhost:27017 | STANDALONE MongoDB 3.6.7 Community

c . TOTAL SIZE AVG. SIZE

DOCUMENTS 5.6KB 1.1KB

orion-openiot.entities

SIZE

Q

admin
Documents
config

iotagentul { field: 'value' } » OPTIONS m D
local
VIEW| = LIST @B TABLE Displaying documents1-50f56 < » C

orion-farmone «_id: object
id: "urn:ngsd-1d:Weather:@g1"
type: "Weather"
servicePath: "/fieldassensors"”
« ATTrNames: Array
@: "humidicy"

orion

orion-openiot
entities

registrations

1: "temperature"
2: "heatIndex"
3: "refField”
4: "location™
5: "TimeInstant"

w~attrs: Object
~ humidity: object
value: "68. 88"
type: "percentage"”
wmd: object
~ TimeInstant: 0bject
type: "IS08E61"
value: "2818-08-36T22:00:37.0192"
~ mdNames : Array
@: "TimeInstant"
credate: 1535666781
modDate: 15356660977
« temperature: object
value: "26. 30"
type: "degrees"
«md: 0bject
« TimeInstant: Object
type: "IS08681"
value: "2918-08-38T22:89:37.0192"
- mdNames : Array
@: "TimeInstant'
creDate: 1535666781
modDate: 1535666977
~ heatIndex: Object
value: "Z7.68"
type: "degrees”

Figure 4.49 Received Data in the Weather Sensor Entity

110

Figure 4.50 shows the results of making a query for the sensor data.

GET ~ http://localhost:1026/v2/entities/urn:ngsd-ld:Weather:001?options=keyValues Params “ Save ¥

Headers (1)
KEY VALUE DESCRIPTION *** Bulk Ed Presets
fiware-service openiot
Body atus: 20 im T 103 B
Pretty JsSoN v m Q
1~ {

2 "id": "urn:ngsd-ld:Weather:@e1",
3 "type": "Weather",

4 "TimeInstant": "2018-08-30T22:09:37.002",
5 "heatIndex": "27.68",

G "humidity": "68.80",

T "location": "40.392, -3.759",

8 "refField": "urn:ngsi-1d:Field:@01",

9 "temperature": "26.30"

Figure 4.50 Weather Sensor Key Values

4.2.6.5 Sending Measurements from Ultrasonic Sensor to the 10T System

The code uploaded to the board (file name “mqtt_esp8266_ultrasonic_gos_v1.ino”),
which collects the sensor data and transmits it to the system is available in Annex U.

To visualize the message received by the Mosquitto MQTT Broker it was used the
dummy MQTT subscriber (Figure 4.51) previously used when testing the Mosquitto
Health.

:~# docker run -it --rm --name mqtt-subscriber --network default efre
con/mgtt-client sub -h 172.17.0.1 -t "/#"
1]278.00
1]138.00
1]129.00
1|278.00

Figure 4.51 Messages Received by the MQTT Subscriber and Sent by the Water Level Sensor

111

Figure 4.52 shows the received data from the sensor in the database.

MongoDB Compass Community - localhost:27017

Connect ion Help

A My Cluster 4 localhost:27017 | STANDALONE MongoDB 3.6.7 Community

C TOTAL S
DOCUMENTS O

orion-openiot.entities

admin
Documents
config

iotagentul { field: 'value' } » OPTIONS m D
local
VIEW | i= LIST 8 TABLE Displaying documents1-50f8 < > €

w _id: Object
id: "urn:ngsd-1d:wWaterLevel:@e1"
type: "WaterLevel"”
servicePath: "/tank/sensors"”

orion
orion-farmone

orion-openiot

entities -« attrNames: Array
a: "level”
registrations 1: "refTank"
2: "location"
3: "TimeInstant'

w attrs: Object
« level: Object
value: "278. 00"
type: "Double"
~md: 0bject
« TimeInstant: Object
type: "IS08681"
value: "2818-08-38T22:23:32.9372"
-« mdNames : Array
@: "TimeInstant"
creDate: 1535666781
modDate: 1535667812

Figure 4.52 Received Data in the Water Level Sensor Entity

Figure 4.53 shows the results of making a query for the sensor data.

GET ~ http://localhost:1026/v2/entities/urn:ngsd-ld:WaterLevel:001?options=keyValues Params Save ¥

Headers (1) Code
KEY VALUE DESCRIPTION **+ Bulk Edit Presets -

fiware-service openiot
Body (5) Status: 200 OK Time: 5ms Size: 363 B
Pretty jsSON v S W Q

1~ f

2 "id": "urn:ngsd-ld:WaterLevel:@01",

3 "type": "WaterLewvel",

4 "TimeInstant": "2018-08-30T22:23:32.00Z",

5 "level": "278.00",

6 "location": "40.392, -3.759",

7 "refTank": "urn:ngsi-ld:Tank:881"

8 1

Figure 4.53 Water Level Sensor Key Values

112

4.2.6.6 Sending Measurements from Earth-Humidity Sensor to the 10T System

The code uploaded to the board (file name “mqtt_esp8266_earth_humidity_gos_v1.ino”),

which collects the sensor data and transmits it to the system is available in Annex V.

To visualize the message received by the Mosquitto MQTT Broker it was used the
dummy MQTT subscriber (Figure 4.54) previously used when testing the Mosquitto
Health.

:~# docker run -it --rm --name mqtt-subscriber --network default efre
conf/mgtt-client sub -h 172.17.0.1 -t "/#"
hle
h|17
h|12
h|45

Figure 4.54 Messages Received by the MQTT Subscriber and Sent by the Earth-Humidity Sensor

Figure 4.55 shows the received data from the sensor in the database.

MongoDB Compass Community - localhost:27017forion-openiok.entities
Connect View Collection Help

A& My Cluster 4 localhost:27017 | STANDALONE MongoDB 3.6.7 Community
cC 7 TOTAL SIZE AVG. SIZE TOTA

Q

AVG. SIZE

DOCUMENTS 5.9KB 1.2KB INDEXES 2

orion-openiot.entities

admin
Documents
onfig

iotagentul { field: 'value' } » OPTIONS m D
local
VIEW| i= LIST B8 TABLE Displaying documents1-50f5 < > ¢C

orion
orion-farmone « _id: object
: : id: "urr d-1d:EarthHum: @el1"”
‘ orion-openiot type: "Ear thHum'
- servicePath: "/fielda/sensors"
entities . attrNames: Array
. . @: "humidicy"
registrations 1: "refrield”
2: "refcrop"
3: "refappleTres"
4: "location"”

5: "TimeInstant'
~ attrs: Object
« humidity: object
value: "45"
type: "percentage”
«md: object
« TimeInstant: 0bject
type: "IS08681"
value: "2818-08-38T23:84:33.9412"
« mdNames : Array
@: "TimeInstant'
credate: 1535670091
modDate: 1535670273

Figure 4.55 Received Data in the Earth-Humidity Sensor Entity

113

Figure 4.56 shows the results of making a query for the sensor data.

GET ~ http://localhost:1026/v2/entities/urn:ngsd-ld:EarthHum:001?options=keyValues Params “ Save ¥

Headers
KEY VALUE DESCRIPTION wes r -
fiware-service openiot
Body
Pretty S0N 5 ri Q
- K - .
"id": "urn:ngsd-ld:EarthHum:@01",
"type": "EarthHum",
"TimeInstant": "2018-08-30T23:04:33.002",
"humidity": "45",
"location": "40.392, -3.759",
"refAppleTree": "urn:ngsi-ld:AppleTree:001",
"refCrop”: "urn:ngsi-ld:Crop:001",
"refField": "urn:ngsi-ld:Field:001"
}

Figure 4.56 Earth-Humidity Sensor Key Values

4.2.6.7 Sending Commands from System to 10T Devices (Actuators)

The code uploaded to the board (file names “mqtt_esp8266 valve001 vl1.ino” and
“mqtt_esp8266_valve002_v1.ino”) is available in Annex W. As the only difference
between the two programs is the device Id in the MQTT topics, only of the programs is

presented.

Below is the cURL command sent to the Orion to open the valve 001, which in this case
turns ON the built in LED of the board (all the available commands are in file named

“9 use case send commands.sh” available in Annex X).

curl -iX PATCH \
'http://localhost:1026/v2/entities/urn:ngsi-1d:Valve:001/attrs"' \
-H 'Content-Type: application/json' \
-H 'fiware-service: openiot' \
-H 'fiware-servicepath: /fieldA/actuators' \
-4 ! {
"open": {
"type" : "command",
"Value" mn

114

Figure 4.57 shows the output of the command.

HTTP/1.1 204 No Content

Connection: Keep-Alive

Content-Length: @

Fiware-Correlator: 1c8083de-acbf-11e8-9106-0242ac120004
Date: Thu, 30 Aug 2018 23:55:02 GMT

Figure 4.57 Output of the Command Sent to the Actuator

To visualize the commands, sent by the Orion Context Broker and the actuator reply it
was used the dummy subscriber (Figure 4.58) previously used when testing the Mosquitto
Health.

:~# docker run -it --rm --name mqtt-subscriber --network default efre
con/mqtt-client sub -h 172.17.0.1 -t "/#"
valveB01@open|
valve@@1i@open|Opened ok

valvefBdl@close |
valve@@1@close|Closed ok

Figure 4.58 Messages Containing the Commands Sent to the Actuator and the Response Received

Figure 4.59 shows the results of the “open” command, which turned the board LED on

simulating an open valve.

Figure 4.59 Simulation of an Open Valve (Actuator)

115

Figure 4.60 shows the information about the actuator after the command execution in the

database.

MongoDB Compass Community - localhost:27017 forion-openiot.entities

) View

My Cluster 1 localhost:27017 | STANDALONE MongoDB 3.6.7 Community

TO
DOCUMENTS 5 LK

orion-openiot.entities

INDEXES 2

admin
Documents

config

iotagentul { field: 'value' } » OPTIONS m ko)

local
VIEW| #= LIST B TABLE Displaying documents1-50f56 < > C

w_id: object
id: "urn:ngsi-ld:valve:ge1"
type: "valve'
servicePath: "/fielda/actuators”
« attrNames: Array
@: "refrield”
1: "refAappleTree”
ocation”
en_status'

orion

orion-farmone

orion-openiot
entities

registrations

ra

ose_status"
close_info"
7: "TimeInstant"
~ attrs: Object
» refField: object
» refAppleTree: Object
» location: object
« Open_status: Object
value: "PENDING"
type: "commandstatus”
wmd: 0bject
~ TimeInstant: object
type: "ISo8cel"
value: "2018-08-30T23:52:4
~ mdNames: Array
@: "TimeInstant'
creDate: 1535666788
modDate: 1535673160
« open_info: Object
value: "Opened ok"
type: "commandResult"
wmd: 0bject
«~ TimeInstant: object
type: "IS086@1"
value: "2018-08-38T23:43:16.4812"
~ mdNames: Array
@: "TimeInstant"
creDate: 1535666788
modDate; 1535672506

I]

Figure 4.60 State of the Valve Actuator in the Valve Actuator Entity

116

Figure 4.61 shows the results of making a query for the actuator information.

GET ~ http://localhost:1026/v2/entities/urn:ngsi-ld:Valve:001 foptions=keyValues Params Save ¥

Headers (1)
KEY VALUE DESCRIPTION *** Bylk Ed Presets =

fiware-service openiot
B:Jd),r (5) Status: 200 OK Time: 19 ms Size: 466 B
Prety JSON ¥ m Q

= i

2 "id": "urn:ngsi-ld:valve:0e1",

3 "type": "Valve",

4 "TimeInstant": "2018-08-30723:55:02.00Z",

5 "close_info": " ",

5} "close_status": "UNKNOWN",

7 "location": "40.392, -3.759",

8 "open_info": "Opened ok",

9 "open_status": "OK",

10 "refAppleTree": "urn:ngsi-ld:AppleTree:881",

11 "refField": "urn:ngsi-ld:Field:@e1"

12}

Figure 4.61 Valve Actuator Key Values After a “open” Command

The reply sent by the IoT Devices after executing the command serves to fill in the “_info”

and “_status” attributes, which indicate that the command was executed with success.

If subsequently a command to close the valve was sent (Figure 4.62) then the valve
attributes “close info” and “close status” would be updated as expected, however the
attributes associated to the open command would remain as before therefore it would be
necessary to delete the attributes to avoid misinformation.

GET ~ http://localhost:1026/v2/entities/urn:ngsi-ld:Valve:001?o ptions=keyValues Params Save ¥

Headers (1)
KEY VALUE DESCRIPTION *** Bulk Ed Presets =
fiware-service openiot
Body Status: 200 Time: 16ms Size: 469 B
Pretty jsoN v 3 m Q
e i
2 "id": "urn:ngsi-ld:vValve:@e1",

"type": "Valve",

"TimeInstant": "2018-08-31T00:00:14.00Z",
"close_info": "Closed ok",

["close_status": "OK",

7 "location": "4@.392, -3.759",

8 "open_info": "Opened ok",

9 "open_status": "OK",

10 "refAppleTree": "urn:ngsi-ld:AppleTree:0e1",
11 "refField": "urn:ngsi-1d:Field:@01"

Figure 4.62 Valve Actuator Key Values After a “open” and “close” Command

117

After completing the communication tests, it was determined that the everything is

working as expected.

4.2.7 Subscriptions

To test the if the notifications functionality is working properly an echo server available
in the Orion GitHub webpage [73] was used to visualize the notifications sent by the

Orion Context Broker.

For this test it was created a subscription which would notify the user (echo server)
whenever a weather sensor in field A (the individual device ID was not specified only the
sensor type) returned a temperature above 30°C. For that a script, named
“10_use_case_subscriptions.sh”, containing the subscription was created and whose

contents are available in Annex Y.

Figure 4.63 shows the command output.

HTTP/1.1 201 Created

Connection: Keep-Alive

Content-Length: @

Location: /v2/subscriptions/5b8939a3601531879f22e0c8
Fiware-Correlator: 78cbcf92-adic-11e8-bfb4-8242ac120006
Date: Fri, 31 Aug 2018 12:50:43 GMT

Figure 4.63 Output of the Commands That Enabled Notifications

118

It is also observed, in Figure 4.64, that a new directory was created in the Orion database

which contains information about the subscriptions.

MongoDB Compass Community - localhost:27017 forion-openiot.csubs
Connect View Cc on Help

My Cluster 1 localhost:27017 | STANDALONE MongoDB 3.6.7 Community

c 7 TOTAL

pocuments | 56
Q

orion-openiot.csubs

admin
Documents
config

iotagentul { field: 'value' } » OPTIONS m D
local
VIEW | i= LST B TaBLE Displaying documents1-10f1 ¢ > ¢

orion
orion-farmone _id: objectId("shag3os16e1531879f22e0c7")
: : expiration: 0223372036854775807

orion-openiot reference: "http://192.168.1.6:1828/accumulate”
custom: false

csubs throttling:

L servicePath: "/fielda/sensors”

Sobhes R "Notify me of temp higher than 3e*C in all weather sensors in fiel

descripti.: ,

registrations

status: "active'
w~entities: Array
~@:0bject
id: "'
isPattern: "true"
type: "Weather"”
isTypePattern: false
w attrs: Array
@; "temperature"
« metadata: Array
blacklist: false
« conditiens: Array
@: "temperature"
« expression: object
q: "temperature=3e.8a"
mg: "'
geometry: ""
coords: ""
georel: ""
format: "normalized"

Figure 4.64 Directory Containing Subscriptions

Figure 4.65 shows the echo server startup.

:~/Desktop/IoT-over-MQTT_v5# ./faccumulator-server.py --port 1028 --ur
1 faccumulate --host 192.168.1.6 --pretty-print -v
verbose mode is on
port: 1028
host: 192.168.1.6
server_url: faccumulate
pretty: True
https: False
* Serving Flask app "accumulator-server" (lazy loading)
* Environment: production
WARNING: Do not use the development server in a production environment.
Use a production WSGI server instead.
* Debug mode: off
* Running on http://192.168.1.6:1028/ (Press CTRL+C to quit)

Figure 4.65 Startup of the Echo Server Used to Visualize Notification Sent by Orion

119

Figure 4.66 shows a notification in echo server, informing that the “temperature” attribute

is over 30°C as it was defined.

POST http://192.168.1.6:1028/accumulate
Fiware-Servicepath: /fieldA/sensors
Content-Length: 234

X-Auth-Token: null

User-Agent: orionf1.14.0 libcurl/7.29.0
Ngsiv2-Attrsformat: normalized

Host: 192.168.1.6:1028

Accept: application/json

Fiware-Service: openiot

Content-Type: application/json; charset=utf-8
Fiware-Correlator: 9d6b60f6-adic-11e8-9719-0242ac120006

{
"data": [
{
"id": "urn:ngsd-ld:Weather:001",
"temperature": {
"metadata": {
"TimeInstant": {
"type": "IS08601",
"value”: "2018-08-31T12:51:44.651Z"
1
1,
"type": "degrees",
"value": "38.30"
1,
"type": "Weather"
1
1,
"subscriptionId”: "5b8939a3601531079f22e0c8"
J

Figure 4.66 Notification Received by the Echo Server

Figure 4.67 shows the results of a query for the Weather sensor key values.

GET ~ http://localhost:1026/v2/entities/urn:ngsd-ld:Weather:0017options=keyValues Params Save

Headers (1)
KEY VALUE DESCRIPTION *** Bulk Ed Presets =
fiware-service openiot
Bady (5) Status: 200 OK Time: 9 ms Size: 403 B
Pretty JSON v =S W Q
2 "id": "urn:ngsd-ld:Weather:@01",

"type": "Weather",
"TimeInstant": "2018-08-31T12:51:44.00Z",
"heatIndex": "43.55",

=MD 00 = O LA g L

"humidity": "38.80",
"location": "4@.392, -3.759",
"refField": "urn:ngsi-ld:Field:081",
"temperature": "38.30"

10 }

Figure 4.67 Weather Sensor Key Values

120

Some problems were encountered when using subscriptions with expressions, as not
always the notification was sent. When not using expressions, the notifications work

flawlessly.

The Orion Context Broker doesn’t support rules, as such these must be implemented in
the frontend part by handling the notifications sent by Orion and then sending commands
for Orion to perform a given task.

4.2.8 Data Persistence

The data persistence is done by the pair of FIWARE GEs, Cygnus and STH-Comet, which
are configured to work in formal mode (done in the “docker-compose.yml” file), in which

Cygnus is responsible of data collection and STH-Comet for reading the collected data.

For Cygnus to collect data it must before receive said data, which is done through
subscriptions similar to the last test. However, here Orion uses subscriptions to notify

Cygnus of changes in the context data.

To create the subscriptions that notify Cygnus of all sensor data changes, a shell script
named “11_use_case_subscriptions_cygnus.sh” was created and whose contents are

available in Annex Z.

Figure 4.68 shows the commands output.

B # ./11 use case subscribing cygnus.sh
HTTP/1.1 201 Created
Connection: Keep-Alive
Content-Length: @
Location: /v2/subscriptions/5b8956b6601531879f22e0d0
Fiware-Correlator: cd857d06-ad2d-11e8-b9bf-0242ac120006
Date: Fri, 31 Aug 2018 14:54:46 GMT

HTTP/1.1 201 Created

Connection: Keep-Alive

Content-Length: @

Location: /v2/subscriptions/5b8956b6601531879f22e8d1
Fiware-Correlator: cd87f2fc-ad2d-11e8-96f6-0242ac120006
Date: Fri, 31 Aug 2018 14:54:46 GMT

HTTP/1.1 201 Created

Connection: Keep-Alive

Content-Length: @

Location: /v2/subscriptions/5b8956b66015310879F22e0d2
Fiware-Correlator: cd8ad4dea-ad2d-11e8-ael8-0242ac120006
Date: Fri, 31 Aug 2018 14:54:46 GMT

Figure 4.68 Output of the Commands That Notified Cygnus of Data Alterations

121

Figure 4.69 shows that after the commands execution, the subscriptions that notify

Cygnus were added to the database.

MongoDB Compass Community - localhost:27017/orion-openiot.csubs

4 localhost:27017 [STANDALONE MongoDB 3.6.7 Community

TO
DOCUMENTS 4

orion-openiot.csubs

2.2KB INDEXES 1

admin
Documents
config

iotagentul { field: 'value' } » OPTIONS m ko)
INEIA LTIVl VIEW | = LIST | BB TABLE Displaying documents 1 -4ofd < > C

custom: false

orion-farmone throttling: @

_ _ servicePath: "/fielda/sensors"
orion-openiot description: "Notify cygnus of all weather sensors attr
status: "active'

entities: Array

attrs: Array

metadata: Array

blacklist: false

conditions: Array
lastNotification: 1535727465
sth_openiot count: 7

expression: Object

format: "J50N"

lastSuccess: 1535727465

orion

"

registrations

_id: objectId("sh2956b6608153
expiration: 922337283685477580
reference: "http://cygnus:5e!
custom: false

throttling: @

servicePath: "/fieldA/sensors"”
descriptiol
status: "actiy

entities: Array

attrs: Array

metadata: Array

blacklist: false

conditions: Array
lastNotification: 1535727406
count: 8

expression: Object

format: "JSON"

lastSuccess: 15357274096

_dd: objectIid("shagsebeeels31e7of22end2")
expiration: 9223372836854775807
reference: "http://cygnus:5e
custom: false
throttling: @
servicePath: "/tank/sens
description: "Notify Cyan
status: "active'

= of all water level sensors attrs change”

Figure 4.69 Subscriptions that Notify Cygnus in the Orion Database

122

Figure 4.70 shows that when the subscriptions were created, a new database where the

subscribed data is collected is created.

MongoDB Compass Community - localhost:27017/sth_openiot

Connect View
My Cluster 1 localhost:27017 | STANDALONE MongoDB 3.6.7 Community
C s Collections
a
admin
Documents Avg. Total Num.
config Collection Name * Document Document Indexeq
. " Size Size
iotagentul
lo
th_/fieldA/ :ngsd-
: F /e CR/senI0ns_umngs 12 106.0 B 12KB 1
orion Id:EarthHum:001_EarthHum
orion-farmone
orion-openiot sth_/fieldA/sensors_urn:ngsd- 19 3.8 KB 45.6 KB i
: Id:EarthHum:001_EarthHum.aggr
sth_openiot -
sth_ffieldA/: s :ngsd-Id...
L U sth_/fieldA/sensors_urn:ngsd-
—— i 60 108.3 B 6.3 KB 1
sth_ffieldA/: _um:ngsd-d... Id:Weather:001_Weather
sth = UEEFEHE . Is:r:l;ffiz:dAL:n:Ilirorsg:rn:ngsd— 45 42 KB 188.2 KB 1
sth_ftank/ rs_um:ngsd-ld:... Aeather0li_Teatheragar
sth_/tank/ rs_urn:ngsd-ld:... — g
sth_/tank/sensors_urn:ngs: " 103.0 B 791.0 B ;
Id:WaterLevel:001_WaterLevel
th_/tank/ :ngsd-
sth_/tank/sensors_urn:ngs: 37 KB 99.3 KB i
Id:WaterLevel:001_WaterLevel.aggr

Figure 4.70 Cygnus Database where Collected Data is Saved

123

Figure 4.71 shows some of the data collected for the weather sensor.

MongoDB Compass Community - localhost:27017/sth_openiot.sth_/fieldA/sensors_urn:ngsd-ld:Weather:001_...
Connect Vi c ion Help

#& My Cluster 14 localhost:27017 | STANDALONE MongoDB 3.6.7 Community

C s TOTAL SIZE AVG. SIZE
DOCUMENTS 60 6.3K 0EB

sth_openiot.sth_/fieldA/sensors_urn:ngsd-ld:Weather:001

INDEXES 1

Q

admin
Documents

{ field: 'value' } » OPTIONS m D

local m VIEW Displaying documents 1 - 20 of < c

orion = UST B TABLE 60 >

config

orion-farmone _id: objectId("sb8g55252ab70cen180fe72c")
recvTime: 2018-08-31 15:48:085.149
attrName: "heatIndex'

attrType: "degrees"

attrvalue: "27.381"

orion-openiot

sth_openiot

_id: objectId("sb28055252ab70 1e9fe72d")
recvTime: 2018-08-31 15:48:85.140
attrName: "humidity"

attrType: "percentage”

attrvalue: "71 "

_dd: objectid("sbags5252ab7acenleaferze")
recvTime: 2018-08-31 15:48:85.149
attrName: "temperature”

attrType: "degrees"

attrvalue: "26.30"

_id: 0bjectId("sb8955432ab7ocealaafer2f")
recvTime: 2018-08-31 15:48:35.436
attrName: "heatIndex'

attrType: "degrees"

attrvalue: "27.49"

_id: objectIid("5ba955432ab79ce01e9fer30")
recvTime: 2018-08-31 15:48:35.436

attrName: "humidity"
attrType: "percentage”
attrvalue: "71.308"

_dd: objectid("s5bagas5432ab7acealeafer3l”)
recviime: 2018-08-31 15:48:35.436
attrName: "temperature”

attrType: "degrees"

attrvalue: "26.10"

[

Figure 4.71 Historical Data of the Weather Sensor

It was then concluded that Cygnus is working properly as it can collect and save data.

124

4.2.9 Time-Series Data Queries

As the STH-Comet is only used to visualize the data collected by Cygnus, therefore to
test if it is working properly it is necessary to make a data query. For this test (Figure
4.72) it was made a data query that listed the first 3 sampled temperature values of the

weather sensor.

GET ~ http://localhost:8666/STH/ V1 /contextEntities/type/Weather/id/urn:ngsd- Params m Save ¥

ld:Weather:001/attributes/temperature?hLimit=3&h0Offset=0

Headers (2}
KEY VALUE DESCRIPTION **s Bulk Ed Presets =
fiware-service openiot
fiware-servicepath fMeldAfsensors
Body I Time: 22 733 B
Pretty JSON v =S W Q
1-{
2~ "contextResponses": [
4 "contextElement": {
5 "attributes": [
Ao
7 "name": "temperature”,
a- "values": [
l_-l -
10 "recyTime": "2018-08-31T12:51:44.651Z",
1 "attrType": "degrees”,
2 "attrvalue": "38.30"
3 1
4+ {

"recyTime": "2018-08-31T12:51:44.651Z",
"attrType": "degrees”,
"attrvalue": "38.30"

1.

{
"recyTime": "2018-08-31T14:48:05.149Z",
"attrType": "degrees”,
"attrvalue": "26.30"

1

]
}
1,
"id": "urn:ngsd-ld:Weather:0e1",
"isPattern": false,
"type": "Weather"

31 - "statusCode": {
"code": "200",
"reasonPhrase": "OK"

Figure 4.72 Results of a Query for the First Three Collected Values of the Weather Sensor

It was then confirmed that the STH-Comet can return the historical data collected by

Cygnus, therefore concluding the IoT System tests.

125

Intentionally Left Blank

Chapter 5 — Conclusions

5.1 Main Conclusions
With this dissertation it was demonstrated how to use the FIWARE Platform and its

technologies to develop a modular universal 10T System able to communicate, control

and collet data from 10T devices over a wireless environment.

In the beginning, during the investigation period, enormous difficulties were encountered
due to poor documentation and lack of practical examples, it was possible to comprehend
how to the Orion Context Broker Generic Enabler worker and how it was used, and what
Generic Enablers would have to be used, nevertheless, progress was very slow. However,
with the progressive release by FIWARE of a series of practical tutorials, starting in April
and continuing during the following months, it was possible to understand how to the
other necessary GEs worked and how to implement them.

Afterwards, the system was developed having been used the following FIWARE
components or Generic Enablers: Orion Context Broker, 10T Agent for Ultralight 2.0
Protocol, Cygnus and STH-Comet; and also, a MongoDB database to store data, the
Compass GUI to visualize data in the databases, and a Mosquitto MQTT Broker. The
interaction with the system was done though cURL commands or by using the Postman

program.

During the system testing phase, each component was tested by sending commands
directly to them and by implementing a simple use case that simulated a real-world
implementation of 10T devices with sensors and actuators, which proved that the system

was working well as intended.

However, due to the time and effort spent on studying and understanding FIWARE and
its components some of the desired features were not implemented, the GEs which
implement security were not used (the tutorials were only released in August, and
continue to be released), a GUI was also not developed, and other IoT communication

protocols, in addition to MQTT, were also not implemented.

In spite of this, the student hopes that this dissertation can be useful as an introductory
manual on FIWARE for other who needs to use the FIWARE Platform and its

technologies or continue developing this project.

127

5.2 Future Work

Future work to be done in this project include implementing security, a GUI, other 10T

protocols and respective 10T Agents, and replacing the GEs used for Context History

(STH-Comet and Cygnus) for a new and recent GE.

Security:

The use of the Keyrock ldentity Management GE implements OAuth 2.0
authentication for users and devices, and user profile management, which is kept
in a SQL database;

The use of the Wilma Proxy GE serves as a Policy Enforcement Point as well as
a proxy isolating the rest of the system from the frontend, only allowing
authorized users to interact with the backend;

The AuthZForce PDP/PAP GE serves as a Policy Decision Point and works in

tandem with Wilma to secure the system.

GUI (frontend):

The GUI which can be an application or website, can be developed using the
appropriate technologies as an application or website, which the student never
used and didn’t have time to learn how to. However, FIWARE also has a GE
named Wirecloud which can be used to develop operational dashboards, but the
problem of poor documentation and lack of practical examples prevented the use
of this GE.

Other 10T protocols:

The MQTT protocol was used in this project, however, MQTT is usually used in
Wi-Fi environments were the connection to the Internet is good. If the system was
used in a situation where the devices were located outdoors and distributed over
a large area, like in the test use case, then it would be unrealistic to cover said area
with Wi-Fi due to the large number of antennas needed and the work involved.
That is where the use of protocols such as LoRaWAN which already has an 10T
Agent available and has a coverage radius of kilometers can be used, although it
also requires specific extra hardware that increases the costs of implementation

considerably.

128

Replacement of the context history GEs [74]:

- The QuantumLeap Generic Enabler, made available in November, has the same
functions as the STH-Comet GE, however, while the later doesn’t yet support the
NGSIv2 API, is tied to MongoDB and somewhat obsolete, QuantumLeap
supports several time-series databases (e.g., InfluxDB, RethinkDB and Crate) and
replaces both STH-Comet and Cygnus. In its current state it only supports Crate,
as it is easy scalable, supports geo-queries natively, has a nice SQL-like querying

and supports integration with visualization tools like Grafana

With the implementation of the security GEs and the replacement of the STH-Comet and
Cygnus with QuantumLeap, the system architecture would evolve to be like the one

shown in Figure 5.1. To this architecture other 10T Agents could also be added.

“Frontend I Backend

" [4200:4200 L
Grafana Quantum|4200:4200
8668:8668 :
4 Leap | s
Wilma CrateDB
1027:1027- PEP 18868:8868
e | G | orion
cURL, —{uUantu Context
Postman, | : Leap Broker 27017:27017 MongoDB
WebApp, | | 1026:1026 14041_4041 :
Website | . Wilma - - '
f : | PEP Ultralight},), 5.57017
1027:1027 | Proxy for %0 |0tT «
. i en
: Orion g 7896:7896
!3005:30ﬁ5| 13505:3005 Wil‘ma
: €Yrock 13005:3005 |PEP Proxy
| I\I/clientity <« | forloT
anager
3005:3005 - L Agf"t
| 3306:3306 '1883:1883 .
: — Mosquitto['™ ™~
| -— MQTT (----Thing
MySQL Broker |, ,[Thing

Figure 5.1 Future System Architecture Block Diagram

129

Intentionally Left Blank

Annexes

Annex A — FIWARE Orion Context Broker Configuration File

Copyright 2013 Telefonica Investigacion y Desarrollo, S.A.U
#
This file is part of Orion Context Broker.
#
#

Orion Context Broker is free software: you can redistribute it
and/or
modify it under the terms of the GNU Affero General Public License
as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
#
Orion Context Broker is distributed in the hope that it will be
useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Affero
General Public License for more details.
#
You should have received a copy of the GNU Affero General Public
License
along with Orion Context Broker. If not, see
http://www.gnu.org/licenses/.
#
For those usages not covered by this license please contact with
iot support at tid dot es

#H444

#

Configuration file for orion-broker
#

#H444

BROKER USER - Who to run orion-broker as. Note that you may need
to use root if you want

to run Orion in a privileged port (<1024)

BROKER USER=orion

BROKER PORT - the port/socket where orion-broker will listen for
connections
BROKER PORT=1026

BROKER LOG DIR - Where to log to
BROKER LOG DIR=/var/log/contextBroker

BROKER LOG LEVEL - Log File Level
BROKER LOG LEVEL=WARN

BROKER PID FILE - Where to store the pid for orion-broker
BROKER PID FILE=/var/run/contextBroker/contextBroker.pid

Database configuration for orion-broker
BROKER DATABASE HOST=localhost
BROKER DATABASE NAME=orion

131

Replica set configuration. Note that if you set this parameter,
the BROKER DATABASE HOST

is interpreted as the list of host (or host:port) separated by
commas to use as

replica set seed list (single element lists are also allowed). If
BROKER DATABASE RPL SET

parameter is unset, Orion CB assumes that the

BROKER DATABASE HOST is an stand-alone

mongod instance

#BROKER DATABASE RPLSET=orion rs

Database authentication (not needed if MongoDB doesn't use --auth)
#BROKER_DATABASE_USER=Orion
#BROKER_DATABASE_PASSWORD=orion

Use the following variable if you need extra ops
#BROKER_EXTRA OPS="-t 0-255"

We need to start the CB with log append mode to not overwrite
previous logs and logrotate work correctly

BROKER EXTRA OPS="-multiservice -logAppend"

###4 ADVANCED CONFIGURATION AREA ####

The next environment variable generates, if it is defined as
'true', an archive in the

path /var/cb cores with the core file and the logs when the
process crash (the directory is

automatically created if it doesn't previously exist). Use this
parameter for debug purposes.

In addition, take into account the following:

* BROKER USER is ignored and contextBroker will be started by
root user

* It is assumed bzip2 tool installed in the system

* Core generation requires CB to be launched with -fg and put in
background at shell level

(i.e. "with ending &"). Note this is different from regular CB
launch (i.e. not using -fgqg).

Check /etc/init.d/contextBroker for details

* The file names have the next format:

/var/cb cores/CB core yyyymmdd HHMMSS.tar.bz2, e.g.

/var/cb cores/CB core 220180108 151502.tar.bz2

* To avoid filling the disk only the last 8 cores and logs are
maintained.

* Have a look to the coredump watcher.sh script (can be found at
Orion repo at https://github.com/telefonicaid/fiware-
orion/tree/master/scripts),

which can be used to send an email whenever a new core file is
generated

GENERATE_COREDUMP:false

132

Annex B — Mosquitto MQTT Broker Configuration File

P

+ e

#
#

#
#

Config file for mosquitto
See mosquitto.conf (5) for more information.
Default values are shown, uncomment to change.

Use the # character to indicate a comment, but only if it is the
very first character on the line.

General configuration

Time in seconds to wait before resending an outgoing QoS=1 or
QoS=2 message.

#retry interval 20

Time in seconds between updates of the $SYS tree.
Set to 0 to disable the publishing of the $SYS tree.

#sys_interval 10

Time in seconds between cleaning the internal message store of
unreferenced messages. Lower values will result in lower memory
usage but more processor time, higher values will have the
opposite effect.

Setting a value of 0 means the unreferenced messages will be
disposed of as quickly as possible.

store clean interval 10

Write process id to a file. Default is a blank string which means
a pid file shouldn't be written.

This should be set to /var/run/mosquitto.pid if mosquitto is
being run automatically on boot with an init script and
start-stop-daemon or similar.
pid file

When run as root, drop privileges to this user and its primary
group.

Leave blank to stay as root, but this is not recommended.

If run as a non-root user, this setting has no effect.

Note that on Windows this has no effect and so mosquitto should
be started by the user you wish it to run as.
user mosquitto

The maximum number of QoS 1 and 2 messages currently inflight per
client.

This includes messages that are partway through handshakes and
those that are being retried. Defaults to 20. Set to 0 for no
maximum. Setting to 1 will guarantee in-order delivery of QoS 1
and 2 messages.

max inflight messages 20

The maximum number of QoS 1 and 2 messages to hold in a queue
above those that are currently in-flight. Defaults to 100. Set
to 0 for no maximum (not recommended) .

See also queue gos(0 messages.

max_ queued messages 100

133

Set to true to queue messages with QoS 0 when a persistent client
is

disconnected. These messages are included in the limit imposed by
max queued messages.

Defaults to false.

This is a non-standard option for the MQTT v3.1 spec but is
allowed in

v3.1.1.

#queue gosO0 messages false

This option sets the maximum publish payload size that the broker
will allow.

Received messages that exceed this size will not be accepted by
the broker.

The default value is 0, which means that all valid MQTT messages
are

accepted. MQTT imposes a maximum payload size of 268435455 bytes.
#message size limit 0

This option controls whether a client is allowed to connect with a
zero

length client id or not. This option only affects clients using
MQOTT v3.1.1

and later. If set to false, clients connecting with a zero length
client id

are disconnected. If set to true, clients will be allocated a
client id by

the broker. This means it is only useful for clients with clean
session set

to true.

#allow zero length clientid true

If allow _zero length clientid is true, this option allows you to
set a prefix

to automatically generated client ids to aid visibility in logs.
#auto id prefix

This option allows persistent clients (those with clean session
set to false)

to be removed if they do not reconnect within a certain time
frame.

#

This is a non-standard option in MQTT V3.1 but allowed in MQTT
v3.1.1.

#

Badly designed clients may set clean session to false whilst using
a randomly

generated client id. This leads to persistent clients that will

reconnect. This option allows these clients to be removed.
The expiration period should be an integer followed by one of h d

m y for
hour, day, week, month and year respectively. For example

persistent client expiration 14d
persistent client expiration ly

The default if not set is to never expire persistent clients.
persistent client expiration

#
#
#
w
#
#
persistent client expiration 2m
#
#
#
#
#

134

If a client is subscribed to multiple subscriptions that overlap,
e.g. foo/#

and foo/+/baz , then MQTT expects that when the broker receives a
message on

a topic that matches both subscriptions, such as foo/bar/baz, then
the client

should only receive the message once.

Mosquitto keeps track of which clients a message has been sent to
in order to

meet this requirement. The allow duplicate messages option allows
this

behaviour to be disabled, which may be useful if you have a large
number of

clients subscribed to the same set of topics and are very
concerned about

minimising memory usage.

It can be safely set to true if you know in advance that your
clients will

never have overlapping subscriptions, otherwise your clients must
be able to

correctly deal with duplicate messages even when then have QoS=2.
#allow duplicate messages false

The MQTT specification requires that the QoS of a message
delivered to a

subscriber is never upgraded to match the QoS of the subscription.
Enabling

this option changes this behaviour. If upgrade outgoing gos is set
true,

messages sent to a subscriber will always match the QoS of its
subscription.

This is a non-standard option explicitly disallowed by the spec.
#upgrade outgoing gos false

#
#
#

Default listener

IP address/hostname to bind the default listener to. If not
given, the default listener will not be bound to a specific
address and so will be accessible to all network interfaces.
bind address ip-address/host name

#bind address

Port to use for the default listener.
#port 1883

The maximum number of client connections to allow. This is

a per listener setting.

Default is -1, which means unlimited connections.

Note that other process limits mean that unlimited connections

are not really possible. Typically the default maximum number of
connections possible is around 1024.
#max_ connections -1

Choose the protocol to use when listening.

This can be either mgtt or websockets.

Websockets support is currently disabled by default at compile
time.

Certificate based TLS may be used with websockets, except that

135

only the cafile, certfile, keyfile and ciphers options are
supported.
#protocol mgtt

When a listener is using the websockets protocol, it is possible
to serve

http data as well. Set http dir to a directory which contains the
files you

wish to serve. If this option is not specified, then no normal
http

connections will be possible.

#http dir

Set use username as clientid to true to replace the clientid that
a client

connected with with its username. This allows authentication to be
tied to

the clientid, which means that it is possible to prevent one
client

disconnecting another by using the same clientid.

If a client connects with no username it will be disconnected as
not

authorised when this option is set to true.

Do not use in conjunction with clientid prefixes.

See also use identity as username.

#use username as clientid

+= =
Q
™
B
it
.
"
e
Q
©
et
0}
o
I
n
10}
o
wm
w
=
~
H
=
»m
n
c
e}
o}
e}
N
it

The following options can be used to enable SSL/TLS support for
this listener. Note that the recommended port for MQTT over TLS
is 8883, but this must be set manually.

S o S 3 o

See also the mosquitto-tls man page.

At least one of cafile or capath must be defined. They both
define methods of accessing the PEM encoded Certificate

Authority certificates that have signed your server certificate
and that you wish to trust.

cafile defines the path to a file containing the CA certificates.
capath defines a directory that will be searched for files
containing the CA certificates. For capath to work correctly, the
certificate files must have ".crt" as the file ending and you must
run

"c _rehash <path to capath>" each time you add/remove a
certificate.

#cafile

#capath

P

Path to the PEM encoded server certificate.
#certfile

Path to the PEM encoded keyfile.
#tkeyfile

This option defines the version of the TLS protocol to use for
this listener.

The default value allows vl1.2, vl.1l and v1.0, if they are all
supported by

136

the version of openssl that the broker was compiled against. For
openssl >=

1.0.1 the valid values are tlsvl.2 tlsvl.l and tlsvl. For openssl
< 1.0.1 the

valid values are tlsvl.

#tls version

By default a TLS enabled listener will operate in a similar
fashion to a

https enabled web server, in that the server has a certificate
signed by a CA

and the client will verify that it is a trusted certificate. The
overall aim

is encryption of the network traffic. By setting

require certificate to true,

the client must provide a valid certificate in order for the
network

connection to proceed. This allows access to the broker to be
controlled

outside of the mechanisms provided by MQTT.

#require certificate false

If require certificate is true, you may set

use identity as username to true

to use the CN value from the client certificate as a username. If
this is

true, the password file option will not be used for this listener.
#use identity as username false

If you have require certificate set to true, you can create a
certificate

revocation list file to revoke access to particular client
certificates. If

you have done this, use crlfile to point to the PEM encoded
revocation file.

#crlfile

If you wish to control which encryption ciphers are used, use the
ciphers

option. The list of available ciphers can be optained using the
"openssl

ciphers" command and should be provided in the same format as the
output of

that command.

If unset defaults to

DEFAULT: !aNULL: !eNULL: !LOW: ! EXPORT: ! SSLv2: dSTRENGTH

#ciphers DEFAULT: !aNULL: !eNULL: !LOW: !EXPORT: !SSLv2:@STRENGTH

Pre-shared-key based SSL/TLS support

The following options can be used to enable PSK based SSL/TLS
support for

this listener. Note that the recommended port for MQTT over TLS is
8883, but

this must be set manually.

#

See also the mosquitto-tls man page and the "Certificate based
SSL/TLS

support" section. Only one of certificate or PSK encryption
support can be

137

enabled for any listener.

The psk hint option enables pre-shared-key support for this
listener and also

acts as an identifier for this listener. The hint is sent to
clients and may

be used locally to aid authentication. The hint is a free form
string that

doesn't have much meaning in itself, so feel free to be creative.
If this option is provided, see psk file to define the pre-shared
keys to be

used or create a security plugin to handle them.

#psk _hint

Set use identity as username to have the psk identity sent by the
client used

as its username. Authentication will be carried out using the PSK
rather than

the MQTT username/password and so password file will not be used
for this

listener.

#use identity as username false

When using PSK, the encryption ciphers used will be chosen from
the list of

available PSK ciphers. If you want to control which ciphers are
available,

use the "ciphers" option. The list of available ciphers can be
optained

using the "openssl ciphers" command and should be provided in the
same format

as the output of that command.

#ciphers

#
Extra listeners

=+

Listen on a port/ip address combination. By using this variable
multiple times, mosquitto can listen on more than one port. If
this variable is used and neither bind address nor port given,

then the default listener will not be started.

The port number to listen on must be given. Optionally, an ip

address or host name may be supplied as a second argument. In

this case, mosquitto will attempt to bind the listener to that
address and so restrict access to the associated network and

interface. By default, mosquitto will listen on all interfaces.
listener port-number [ip address/host name]

#listener

The maximum number of client connections to allow. This is
a per listener setting.
Default is -1, which means unlimited connections.
Note that other process limits mean that unlimited connections
are not really possible. Typically the default maximum number of
connections possible is around 1024.
max_ connections -1

T

The listener can be restricted to operating within a topic
hierarchy using

138

the mount point option. This is achieved be prefixing the
mount point string

to all topics for any clients connected to this listener. This
prefixing only

happens internally to the broker; the client will not see the
prefix.

#mount point

Choose the protocol to use when listening.

This can be either mgtt or websockets.

Certificate based TLS may be used with websockets, except that
only the

cafile, certfile, keyfile and ciphers options are supported.
#protocol mgtt

When a listener is using the websockets protocol, it is possible
to serve

http data as well. Set http dir to a directory which contains the
files you

wish to serve. If this option is not specified, then no normal
http

connections will be possible.

#http dir

Set use username as clientid to true to replace the clientid that
a client

connected with with its username. This allows authentication to be
tied to

the clientid, which means that it is possible to prevent one
client

disconnecting another by using the same clientid.

If a client connects with no username it will be disconnected as
not

authorised when this option is set to true.

Do not use in conjunction with clientid prefixes.

See also use identity as username.

#use username as clientid

The following options can be used to enable certificate based
SSL/TLS support

for this listener. Note that the recommended port for MQTT over
TLS is 8883,

but this must be set manually.

#

See also the mosquitto-tls man page and the "Pre-shared-key based
SSL/TLS

support" section. Only one of certificate or PSK encryption
support can be

enabled for any listener.

At least one of cafile or capath must be defined to enable
certificate based

TLS encryption. They both define methods of accessing the PEM
encoded

Certificate Authority certificates that have signed your server
certificate

and that you wish to trust.

cafile defines the path to a file containing the CA certificates.

139

capath defines a directory that will be searched for files

containing the CA certificates. For capath to work correctly, the
certificate files must have ".crt" as the file ending and you must
run

"c_rehash <path to capath>" each time you add/remove a
certificate.

fcafile

#capath

Path to the PEM encoded server certificate.
#certfile

Path to the PEM encoded keyfile.
ftkeyfile

By default an TLS enabled listener will operate in a similar
fashion to a

https enabled web server, in that the server has a certificate
signed by a CA

and the client will verify that it is a trusted certificate. The
overall aim

is encryption of the network traffic. By setting

require certificate to true,

the client must provide a valid certificate in order for the
network

connection to proceed. This allows access to the broker to be
controlled

outside of the mechanisms provided by MQTT.

#require certificate false

If require certificate is true, you may set

use identity as username to true

to use the CN value from the client certificate as a username. If
this is

true, the password file option will not be used for this listener.
#use identity as username false

If you have require certificate set to true, you can create a
certificate

revocation list file to revoke access to particular client
certificates. If

you have done this, use crlfile to point to the PEM encoded
revocation file.

#crlfile

If you wish to control which encryption ciphers are used, use the
ciphers

option. The list of available ciphers can be optained using the
"openssl

ciphers" command and should be provided in the same format as the
output of

that command.

#ciphers

Pre-shared-key based SSL/TLS support

The following options can be used to enable PSK based SSL/TLS
support for

this listener. Note that the recommended port for MQTT over TLS is
8883, but

140

this must be set manually.

#

See also the mosquitto-tls man page and the "Certificate based
SSL/TLS

support" section. Only one of certificate or PSK encryption
support can be

enabled for any listener.

The psk hint option enables pre-shared-key support for this
listener and also

acts as an identifier for this listener. The hint is sent to
clients and may

be used locally to aid authentication. The hint is a free form
string that

doesn't have much meaning in itself, so feel free to be creative.
If this option is provided, see psk file to define the pre-shared
keys to be

used or create a security plugin to handle them.

#psk _hint

Set use identity as username to have the psk identity sent by the
client used

as its username. Authentication will be carried out using the PSK
rather than

the MQTT username/password and so password file will not be used
for this

listener.

#use identity as username false

When using PSK, the encryption ciphers used will be chosen from
the list of

available PSK ciphers. If you want to control which ciphers are
available,

use the "ciphers" option. The list of available ciphers can be
optained

using the "openssl ciphers" command and should be provided in the
same format

as the output of that command.

#ciphers

#
#
#

Persistence

If persistence is enabled, save the in-memory database to disk
every autosave interval seconds. If set to 0, the persistence
database will only be written when mosquitto exits. See also

autosave on changes.

Note that writing of the persistence database can be forced by
sending mosquitto a SIGUSR1 signal.

#autosave interval 1800

If true, mosquitto will count the number of subscription changes,
retained

messages received and queued messages and if the total exceeds

autosave interval then the in-memory database will be saved to
disk.

If false, mosquitto will save the in-memory database to disk by
treating

autosave interval as a time in seconds.

#autosave on changes false

141

Save persistent message data to disk (true/false).

This saves information about all messages, including

subscriptions, currently in-flight messages and retained
messages.

retained persistence is a synonym for this option.
#persistence false

The filename to use for the persistent database, not including
the path.
#persistence file mosquitto.db

Location for persistent database. Must include trailing /

Default is an empty string (current directory).

Set to e.g. /var/lib/mosquitto/ if running as a proper service on
Linux or

similar.

#persistence location

+= =

Logging

=+

Places to log to. Use multiple log dest lines for multiple
logging destinations.
Possible destinations are: stdout stderr syslog topic file

stdout and stderr log to the console on the named output.

syslog uses the userspace syslog facility which usually ends up
in /var/log/messages or similar.

topic logs to the broker topic '$SYS/broker/log/<severity>',
where severity is one of D, E, W, N, I, M which are debug, error,
warning, notice, information and message. Message type severity is
used by

the subscribe/unsubscribe log types and publishes log messages to
$SYS/broker/log/M/susbcribe or $SYS/broker/log/M/unsubscribe.

#

The file destination requires an additional parameter which is the
file to be

logged to, e.g. "log dest file /var/log/mosquitto.log". The file
will be

closed and reopened when the broker receives a HUP signal. Only a
single file

destination may be configured.

#

Note that if the broker is running as a Windows service it will
default to

"log dest none" and neither stdout nor stderr logging is
available.

Use "log dest none" if you wish to disable logging.

#log dest stderr

S E T E E

If using syslog logging (not on Windows), messages will be logged
to the

"daemon" facility by default. Use the log facility option to
choose which of

local0 to local7 to log to instead. The option value should be an
integer

value, e.g. "log facility 5" to use local5.

142

#log facility

Types of messages to log. Use multiple log type lines for logging
multiple types of messages.

Possible types are: debug, error, warning, notice, information,
none, subscribe, unsubscribe, websockets, all.

Note that debug type messages are for decoding the
incoming/outgoing

network packets. They are not logged in "topics".

#log type error

#log type warning

#log_type notice

#log type information

e

Change the websockets logging level. This is a global option, it
is not

possible to set per listener. This is an integer that is
interpreted by

libwebsockets as a bit mask for its lws_log levels enum. See the
libwebsockets documentation for more details. "log_ type
websockets" must also

be enabled.

#websockets log level O

If set to true, client connection and disconnection messages will
be included

in the log.

#connection_messages true

If set to true, add a timestamp value to each log message.
#log timestamp true

#
Security

If set, only clients that have a matching prefix on their

clientid will be allowed to connect to the broker. By default,

all clients may connect.

For example, setting "secure-" here would mean a client "secure-
client™ could connect but another with clientid "mgtt" couldn't.
#clientid prefixes

Boolean value that determines whether clients that connect
without providing a username are allowed to connect. If set to
false then a password file should be created (see the
password file option) to control authenticated client access.
Defaults to true.
#allow anonymous true
In addition to the clientid prefixes, allow anonymous and TLS
authentication options, username based authentication is also
possible. The default support is described in "Default
authentication and topic access control" below. The auth plugin
allows another authentication method to be used.
Specify the path to the loadable plugin and see the
"Authentication and topic access plugin options" section below.

#
#
#
#
#
#
#
#auth plugin

Default authentication and topic access control

143

Control access to the broker using a password file. This file can
be

generated using the mosquitto passwd utility. If TLS support is
not compiled

into mosquitto (it is recommended that TLS support should be
included) then

plain text passwords are used, in which case the file should be a
text file

with lines in the format:

username:password

The password (and colon) may be omitted if desired, although this
offers very little in the way of security.

e

See the TLS client require certificate and
use identity as username options

for alternative authentication options.
#password file

Access may also be controlled using a pre-shared-key file. This
requires

TLS-PSK support and a listener configured to use it. The file
should be text

lines in the format:

identity:key

The key should be in hexadecimal format without a leading "O0x".
#psk file

Control access to topics on the broker using an access control
list

file. If this parameter is defined then only the topics listed
will

have access.

If the first character of a line of the ACL file is a # it is
treated as a

comment .

Topic access is added with lines of the format:

topic [read|write|readwrite] <topic>

S o S S R

The access type is controlled using "read", "write" or
"readwrite". This

parameter is optional (unless <topic> contains a space character)
if not

given then the access is read/write. <topic> can contain the + or

=

wildcards as in subscriptions.

The first set of topics are applied to anonymous clients, assuming
allow anonymous is true. User specific topic ACLs are added after

user line as follows:
user <username>
The username referred to here is the same as in password file. It

S
not the clientid.

S oS S b oS S e e S) S S S e e e |

144

If is also possible to define ACLs based on pattern substitution
within the
topic. The patterns available for substition are:

=+

#

%c to match the client id of the client
%u to match the username of the client
#
#

The substitution pattern must be the only text for that level of
hierarchy.
#
The form is the same as for the topic keyword, but using pattern
as the
keyword.
Pattern ACLs apply to all users even if the "user" keyword has
previously
been given.
#
If using bridges with usernames and ACLs, connection messages can
be allowed
with the following pattern:

pattern write $SYS/broker/connection/%c/state

pattern [read|write|readwrite] <topic>

#

#

#

#

Example:
#

pattern write sensor/%u/data
#
#

acl file

If the auth plugin option above is used, define options to pass to
the

plugin here as described by the plugin instructions. All options
named

using the format auth opt * will be passed to the plugin, for
example:

=

auth opt db host
auth opt db port
auth opt db username
auth opt db password

ERgeE

+ =

Bridges
#

A bridge is a way of connecting multiple MQTT brokers together.
Create a new bridge using the "connection" option as described
below. Set

options for the bridges using the remaining parameters. You must
specify the

address and at least one topic to subscribe to.

Each connection must have a unique name.

The address line may have multiple host address and ports
specified. See

145

below in the round robin description for more details on bridge
behaviour if

multiple addresses are used.

The direction that the topic will be shared can be chosen by

specifying out, in or both, where the default value is out.

The QoS level of the bridged communication can be specified with
the next

topic option. The default QoS level is 0, to change the QoS the
topic

direction must also be given.

The local and remote prefix options allow a topic to be remapped
when it is

bridged to/from the remote broker. This provides the ability to
place a topic

tree in an appropriate location.

For more details see the mosquitto.conf man page.

Multiple topics can be specified per connection, but be careful
not to create any loops.

If you are using bridges with cleansession set to false (the
default), then

you may get unexpected behaviour from incoming topics if you
change what

topics you are subscribing to. This is because the remote broker
keeps the

subscription for the old topic. If you have this problem, connect
your bridge

with cleansession set to true, then reconnect with cleansession
set to false

as normal.

fconnection <name>

faddress <host>[:<port>] [<host>[:<port>]]

#topic <topic> [[[out | in | both] gos-level] local-prefix remote-
prefix]

S o o 3 3

Set the version of the MQTT protocol to use with for this bridge.
Can be one

of mgttv3l or mgttv31ll. Defaults to mgttv3l.

#bridge protocol version mgttv3l

If a bridge has topics that have "out" direction, the default
behaviour is to

send an unsubscribe request to the remote broker on that topic.
This means

that changing a topic direction from "in" to "out" will not keep
receiving

incoming messages. Sending these unsubscribe requests is not
always

desirable, setting bridge attempt unsubscribe to false will
disable sending

the unsubscribe request.

#bridge attempt unsubscribe true

If the bridge has more than one address given in the
address/addresses

configuration, the round robin option defines the behaviour of the

bridge on

a failure of the bridge connection. If round robin is false, the
default

value, then the first address is treated as the main bridge
connection. If

146

the connection fails, the other secondary addresses will be
attempted in

turn. Whilst connected to a secondary bridge, the bridge will
periodically

attempt to reconnect to the main bridge until successful.

If round robin is true, then all addresses are treated as equals.
If a

connection fails, the next address will be tried and if successful
will

remain connected until it fails

#round robin false

Set the client id to use on the remote end of this bridge
connection. If not

defined, this defaults to 'name.hostname' where name is the
connection name

and hostname is the hostname of this computer.

This replaces the old "clientid" option to avoid confusion.
"clientid"

remains valid for the time being.

#remote clientid

Set the clientid to use on the local broker. If not defined, this
defaults to

'local.<clientid>'. If you are bridging a broker to itself, it is
important

that local clientid and clientid do not match.

#local clientid

Set the clean session variable for this bridge.

When set to true, when the bridge disconnects for any reason, all
messages and subscriptions will be cleaned up on the remote

broker. Note that with cleansession set to true, there may be a

significant amount of retained messages sent when the bridge

reconnects after losing its connection.

When set to false, the subscriptions and messages are kept on the
remote broker, and delivered when the bridge reconnects.
fcleansession false

If set to true, publish notification messages to the local and
remote brokers

giving information about the state of the bridge connection.
Retained

messages are published to the topic
$SYS/broker/connection/<clientid>/state

unless the notification topic option is used.

If the message is 1 then the connection is active, or 0 if the
connection has

failed.

#notifications true

Choose the topic on which notification messages for this bridge
are

published. If not set, messages are published on the topic

$SYS/broker/connection/<clientid>/state

#notification topic

Set the keepalive interval for this bridge connection, in
seconds.
#keepalive interval 60

147

Set the start type of the bridge. This controls how the bridge
starts and

can be one of three types: automatic, lazy and once. Note that
RSMB provides

a fourth start type "manual" which isn't currently supported by
mosquitto.

#

"automatic" is the default start type and means that the bridge
connection

will be started automatically when the broker starts and also
restarted

after a short delay (30 seconds) if the connection fails.

#

Bridges using the "lazy" start type will be started automatically
when the

number of queued messages exceeds the number set with the
"threshold"

parameter. It will be stopped automatically after the time set by
the

"idle timeout" parameter. Use this start type if you wish the
connection to

only be active when it is needed.

#

A bridge using the "once" start type will be started automatically
when the

broker starts but will not be restarted if the connection fails.
#start type automatic

Set the amount of time a bridge using the automatic start type
will wait

until attempting to reconnect. Defaults to 30 seconds.
#restart timeout 30

Set the amount of time a bridge using the lazy start type must be
idle before

it will be stopped. Defaults to 60 seconds.

#idle timeout 60

Set the number of messages that need to be queued for a bridge
with lazy

start type to be restarted. Defaults to 10 messages.

Must be less than max queued messages.

#threshold 10

If try private is set to true, the bridge will attempt to indicate
to the

remote broker that it is a bridge not an ordinary client. If
successful, this

means that loop detection will be more effective and that retained
messages

will be propagated correctly. Not all brokers support this feature
so it may

be necessary to set try private to false if your bridge does not
connect

properly.

#try private true

Set the username to use when connecting to a broker that requires
authentication.

This replaces the old "username" option to avoid confusion.
"username"

148

remains valid for the time being.
#remote username

Set the password to use when connecting to a broker that requires
authentication. This option is only used if remote username is
also set.

This replaces the old "password" option to avoid confusion.
"password"

remains valid for the time being.

#remote password

Either bridge cafile or bridge capath must be defined to enable
TLS support

for this bridge.

bridge cafile defines the path to a file containing the

Certificate Authority certificates that have signed the remote
broker

certificate.

bridge capath defines a directory that will be searched for files
containing

the CA certificates. For bridge capath to work correctly, the
certificate

files must have ".crt" as the file ending and you must run
"c_rehash <path to

capath>" each time you add/remove a certificate.

#bridge cafile

#bridge capath

Path to the PEM encoded client certificate, if required by the
remote broker.
#bridge certfile

Path to the PEM encoded client private key, if required by the
remote broker.
#bridge keyfile

When using certificate based encryption, bridge insecure disables
verification of the server hostname in the server certificate.
This can be

useful when testing initial server configurations, but makes it
possible for

a malicious third party to impersonate your server through DNS
spoofing, for

example. Use this option in testing only. If you need to resort to
using this

option in a production environment, your setup is at fault and
there is no

point using encryption.

#bridge insecure false

Pre-shared-key encryption provides an alternative to certificate
based

encryption. A bridge can be configured to use PSK with the
bridge identity

149

and bridge psk options. These are the client PSK identity, and
pre-shared-key

in hexadecimal format with no "Ox". Only one of certificate and
PSK based

encryption can be used on one

bridge at once.

#bridge identity

#bridge psk

#
#
#

External config files

External configuration files may be included by using the

include dir option. This defines a directory that will be searched
for config files. All files that end in '.conf' will be loaded as
a configuration file. It is best to have this as the last option

in the main file. This option will only be processed from the main
configuration file. The directory specified must not contain the

main configuration file.

#include dir

#

rsmb options - unlikely to ever be supported

#

#ffdc_output
#max log entries
#trace level
#trace output

150

Annex C — ESP8266-12E Datasheet

ESP-12E WiFi Module

Version1.0

Disclaimer and Copyright Notice.

Information in this document, including URL references, is subject to change without notice.

THIS DOCUMENT IS PROVIDED AS 15 WITH NO WARRANTIES WHATSOEVER, INCLUDING ANYWARRANTY OF MERCHANTABILITY, NON-
INFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY \WWARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL,
SPECIFICATIONOR SAMPLE. All liability, including liability for infringement of any proprietary rights, relating to use of information in this
document is disclaimed. No licenses express or implied, by estoppel or otherwise, to any intellectual property rights are granted herein.
The WiFi Alliance Member Logo is a trademark of the WiFi Alliance.

All trade names, trademarks and registered trademarks mentioned in this document are property of their respective owners, and are
hereby acknowledged.

Copyright © 2015 Al-Thinker team. All rights reserved.

Motice
Product version upgrades or other reasons, possible changes in the contents of this manual. Al-Thinker reserves in the absence of any
notice or indication of the circumstances the right to modify the content of this manual. This manual is used only as a guide, Ai-thinker

make every effort to provide accurate information in this manual, but Ai-thinker does not ensure that manual content without error, in
this manual all statements, information and advice nor does it constitute any express or implied warranty.

151

1. Preambles

ESP-12E WiFi module is developed by Ai-thinker Team. core processor ESP8266 in smaller sizes of the module
encapsulates Tensilica L106 integrates industry-leading ultra low power 32-bit MCU micro, with the 16-bit short mode,
Clock speed support 80 MHz, 160 MHz, supports the RTOS, integrated Wi-Fi MAC/BB/RF/PA/LNA, on-board antenna.

The module supports standard IEEE802.11 b/g/n agreement, complete TCP/IP protocol stack. Users can use the
add modules to an existing device networking, or building a separate network controller.

ESP8266 is high integration wireless 30Cs, designed for space and power constrained mobile platform designers.
It provides unsurpassed ability to embed Wi-Fi capabilities within other systems, or to function as a standalone
application, with the lowest cost, and minimal space requirement.

i R
| | RF Analog | | MAC Interface
- receive receive Registers
2| |5 z
34z 3
£[]% §
| | RF Analog | | &
transmit transmit = GPIO
L z

Accelerator 12C
PLL @ 12 PLL |

PMU Crystal Bias circuits

|l

PMU

Figure 1 ESP3266EX Block Diagram

ESP8266EX offers a complete and self-contained Wi-Fi networking solution; it can be used to host the application
or to offload Wi-Fi networking functions from another application processor.

When ESP8266EX hosts the application, it boots up directly from an external flash. In has integrated cache to
improve the performance of the system in such applications.

Alternately, serving as a Wi-Fi adapter, wireless internet access can be added to any micro controllerbased design
with simple connectivity (SPI/SDIO or 12C/UART interface).

ESP8266EX is among the most integrated WiFi chip in the industry; it integrates the antenna switches, RF balun,
power amplifier, low noise receive amplifier, filters, power management modules, it requires minimal external circuitry,
and the entire solution, including front-end module, is designed to occupy minimal PCB area.

Shenzhen Anxinke Technology CO;LTD http://www. ai—thinker. com 3

152

ESPB266EX also integrates an enhanced version of Tensilica's L106 Diamond series 32-bit processor, with on-chip
SRAM, besides the Wi-Fi functionalities. ESPB266EX is often integrated with external sensors and other application
specific devices through its GP10s; codes for such applications are provided in examples in the SDK.

Espressif Systems’ Smart Connectivity Platform (ESCP) demonstrates sophisticated system-level features include
fast sleep/wake context switching for energy-efficient VolP, adaptive radio biasing. for low-power operation, advance
signal processing, and spur cancellation and radio co-existence features for common cellular, Bluetooth, DDR, LVDS,
LCD interference mitigation.

1.1. Features

= 802.11b/g/n

* Integrated low power 32-bit MCU

+ Integrated 10-bit ADC

* Integrated TCP/IP protocol stack

* Integrated TR switch, balun, LNA, power amplifier and matching network
* Integrated PLL, regulators, and power management units

* Supports antenna diversity

* Wi-Fi 2.4 GHz, support WPA/WPAZ

* Support STA/AP/STA+AP operation modes

* Support Smart Link Function for both Android and i0S devices
* Support Smart Link Function for both Android and i0S devices
+ SDIO 2.0, (H) SP1, UART, 12C, 125, IRDA, PWM, GPIO

* STBC, 1x1 MIMO, 2x1 MIMO

* A-MPDU & A-MSDU aggregation and 0.4s guard interval

Shenzhen Anxinke Technology CO;LTD http://www. ai—thinker. com 4

153

* Deep sleep power <10uf, Power down leakage current < Suf

* \Wake up and transmit packets in < 2ms

* Standby power consumption of < 1.0mW (DTIM3)

* +20dBm output power in 802.11b mode

* QOperating temperature range -40C ~ 125C

Shenzhen Anxinke Technology CO;LTD http: /S www. ai—thinker. com 5

154

1.2. Parameters

Table 1 below describes the major parameters.

Table 1 Parameters

Categories Items Values
WIFi Protocles 802.11 b/g/n
WIiFi Paramters
Frequency Range 2.4GHz-2.5GHz (2400M-2483.5M)
UART/HSPI/12C/125/Ir Remote Contorl
Peripheral Bus
GPIO/PWM
Operating Voltage 3.03.6V
Hardware Operating Current Average value: 80mA
Paramaters Operating Temperature Range -407~125°
Ambient Temperature Range Normal temperature
Package Size 16mm*24mm*3mm
External Interface N/A
Wi-Fi mode station/softAP/SoftAP+station
Security WPA/WPA2
Encryption WEP/TKIP/AES
UART Download / OTA (via network) /
Firmware Upgrade _
Software download and write firmware via host
Parameters alt - Supports Cloud Server Development / SDK
SOCETNIS Ktpmset for custom firmware development
IPv4, TCP/UDPfHTTP/FTP
Metwork Protocols
AT Instruction Set, Cloud Server, Android/iOs
User Configuration A
pp

Shenzhen Anxinke Technology CO;LTD

http://www. ai—thinker. com

155

2. Pin Descriptions

There are altogether 22 pin counts, the definitions of which are described in Table 2 below,

Table 2 ESP-12E Pin design

Table 3 Pin Descriptions

1 RST Reset the module
2 ADC A/D Conversion result.Input voltage range 0-1v,scope:0-1024
3 EN Chip enable pin.Active high
4 1016 GPI0O16; can be used to wake up the chipset from deep sleep mode.
5 1014 GPIO14; HSPI_CLK
6 1012 GP1012; HSPI_MISO
7 1013 GP1013; HSPI_MOSI; UARTO_CTS
8 vCcC 3.3V power supply (VDD)
9 Cso Chip selection
10 MISO Salve output Main input
Shenzhen Anxinke Technology CO;LTD http://www. ai—thinker. com 7

156

11 109 GPIO9
12 1010 GBIO10
13 MOsI Main output slave input
14 SCLK Clock
15 GND GND
16 1015 GPIO15; MTDO; HSPICS; UARTO_RTS
17 102 GPIO2; UART1_TXD
18 100 GPIOO
19 104 GPI04
20 105 GPI05
21 RXD UARTO_RXD; GPIO3
22 TXD UARTO TXD; GPIO1
Table 4 Pin Mode
Mode GPIO15 GPIO0 GPIO2
UART Low Low High
Flash Boot Low High High

Shenzhen Anxinke Technology CO;LTD

http:/Swww. ai—thinker. com

157

Table 5 Receiver Sensitivity

3. Packaging and Dimension

The external size of the module is 16mm*24mm*3mm, as is illustrated in Figure 3 below. The type of flash integrated
in this module is an 5P flash, the capacity of which is 4 MB, and the package size of which is SOP-210mil. The antenna
applied on this module is a 3DBi PCB-on-board antenna.

Shenzhen Anxinke Technology CO;LTD

http:/ www. ai—thinker. com

Parameters Min Typical Max Unit
Input frequency 2412 2484 MHz

Input impedance 50 Q

Input reflection -10 dB
Qutput power of PA for 72.2Mbps 15.5 16.5 17.5 dBm
Output power of PA for 11b mode 19.5 20.5 21.5 dBm

Sensitivity
DSSS, 1Mbps -98 dBm
CCK, 11Mbps -1 dBm
&Mbps (1/2 BPSK) -93 dBm
S54Mbps (3/4 64-0AM) -75 dBm
HT20, MCS7 (65Mbps, 72 2Mbps) -72 dBm
Adja-:ent Channel Re-ie-:tiun

OFDM, 6Mbps ' 37 dB

OFDM, 54Mbps 21 dB

HT20, MCS0 37 dB

HT20, MCS7 20 dB

158

Figure 3 [Module Pin Counts, 22 pin, 16 mm *24 mm *3 mm)]

Figure 4 Top View of ESP-12E WiFi Module

Shenzhen Anxinke Technology CO;LTD http://www. ai—thinker. com 10

159

Table 5 Dimension of ESP-12E WiFi Modul

Length Width Height PAD Size(Bottom) Pin Pitch

16 mm 24mm 3 mm 0.9 mmx 1.7 mm 2mm
4. Functional Descriptions

41. MCU

ESPB266EX is embedded with Tensilica 1106 32-bit micro controller (MCU), which features extra low power
consumption and 16-bit RSIC. The CPU clock speed is 80MHz. It can also reach a maximum value of 160MHz.
ESPB266EX is often integrated with external sensors and other specific devices through its GPI0s; codes for such
applications are provided in examples in the SDK.

4.2. Memory Organization

4.21. Internal SRAM and ROM

ESP8266EX WiFi SoC is embedded with memory controller, including SRAM and ROM. MCU can visit the memory
units through iBus, dBus, and AHB interfaces. All memory units can be visited upon request, while a memory arbiter
will decide the running sequence according to the time when these requests are received by the processor.

According to our current version of SDK provided, SRAM space that is available to users is assigned as below:

=RAM size < 36kB, that is to say, when ESP8266EX is working under the station mode and is connected to the
router, programmable space accessible to user in heap and data section is around 36kB.)

= There is no programmable ROM in the SoC, therefore, user program must be stored in an external SPI flash.

4.2.2. External SPI Flash

This module is mounted with an 4 MB external SPI flash to store user programs. If larger definable storage space
is required, a SPI flash with larger memory size is preferred. Theoretically speaking, up to 16 MB memory capacity can
be supported.

Suggested SP1 Flash memory capacity:

=0TA is disabled: the minimum flash memory that can be supported is 512 kB;
=0TA is enabled: the minimum flash memory that can be supported is 1 MB.
Several SPl modes can be supported, including Standard SP1, Dual SPI, and Quad SPI.

Shenzhen Anxinke Technology CO;LTD http:/ www. ai—thinker. com 1

160

Therefore, please choose the correct SPI mode when you are downloading into the flash, otherwise
firmwares/programs that you downloaded may not work in the right way.

4.3. Crystal

Currently, the frequency of crystal oscillators supported include 40MHz, 26MHz and 24MHz. The accuracy of
crystal oscillators applied should be +10PPM, and the operating temperature range should be between -20°C and 85°C.

When using the downloading tools, please remember to select the right crystal oscillator type. In circuit design,
capacitors C1 and C2, which are connected to the earth, are added to the input and output terminals of the crystal
oscillator respectively. The values of the two capacitors can be flexible, ranging from 6pF to 22pF, however, the specific
capacitive values of C1 and C2 depend on further testing and adjustment on the overall performance of the whole
circuit. Normally, the capacitive values of C1 and C2 are within 10pF if the crystal oscillator frequency is 26MHz, while
the values of C1 and C2 are 10pF<C1, C2<22pF if the crystal oscillator frequency is 40MHz.

4.4. Interfaces

Table 6 Descriptions of Interfaces

1012(MISO)
1013(MOS!) 1 B 3
HSPI 1014(CLK) SPI Flash 2, display screen, and MCU can be connected using HSPI interface.
1015(CS)
1012(R) Currently the PWM interface has four channels, but users can extend the
PWM 1015(G) channels according to their own needs. PWM interface can be used to control
1013(B) LED lights, buzzers, relays, electronic machines, and so on.
IR Remote I0140R_T) The functionality of _lnfrared remc_)te control inFerface can be impl.emented via
A IO5(IR_R) software programming. NEC coding, modulation, and demodulation are used
= by this interface. The frequency of modulated carrier signal is 38KHz.
ESP8264EX integrates a 10-bit analog ADC. It can be used to test the power-
ADC TOUT supply voltage of VDD3P3 (Pin3 and Pind) and the input power voltage of
TOUT (Pin 6). However, these two functions cannot be used simultaneously.
This interface is typically used in sensor products.
IO14(SCL) 12C interface can be used to connect external sensor products and display
12C
102(SDA) screens, etc.
Shenzhen Anxii Technology CO;LTD http://www. ai—thinker. com

161

Devices with UART interfaces can be connected with the module.
Downloading: UOTXD+UORXD or GPIO2+UORXD

UARTO: Communicating: UARTO: UOTXD, UORXD, MTDO (UORTS), MTCK (UOCTS)
TXD (UOTXD) |Debugging: UART1_TXD (GPIO2) can be used to print debugging
RXD (UORXD) information.
UART 1015 (RTS)
I013(CTS) By default, UARTO will output some printed information when the device is
UART1: powered on and is booting up. If this issue exerts influence on some specific
102(TXD) |applications, users can exchange the inner pins of UART when initializing, that
is to say, exchange UOTXD, UORXD with UORTS, UOCTS.

12S Input:

1012

(I2SI_DATA) ;

1013

(12S1_BCK);

125 1014 (12SI_WS); |125 interface is mainly used for collecting, processing, and transmission of

125 Output: audio data.

1015

(I2SO_BCK);

103

(I2SO_DATA);

102 (12SO_WS).

Shenzhen Anxinke Technology CO;LTD

http://www. ai—thinker. com

162

4.5. Absolute Maximum Ratings

Table 7 Absolute Maximum Ratings

Storage Ternperature 40 to 125 i
Maximum Soldering Temperature 260 °C
Supply Voltage IPC/JEDEC J-5TD-020 +3.0to+3.6 v

4.6. Recommended Operating Conditions

Table 8 Recommended Operating Conditions

Operating Temperature -40 20 125 "

Supply voltage VDD 3.0 33 KN} v

4.7. Digital Terminal Characteristics

Table 9 Digital Terminal Characteristics

Input logic level low Wi -0.3 0.25vDD v
Input logic level high Vi 0.75vVDD | VDD+0.3 v
Output logic level low Vo N 0.1VDD v
Qutput logic level high Vos 0.8VvDD N v
Note: Test conditions: VDD = 3.3V, Temperature = 20 C, if nothing special is stated.
Shenzhen Anxinke Technology CO;LTD http://www. ai—thinker. com 14

163

5. RF Performance

Shenzhen Anxinke Technology CO;LTD

http:/ S www. ai—thinker. com

Input frequency 2400 2483.5 MHz
Input impedance 50 ohm
Input reflection -10 dB
Output power of PA for 72 2Mbps 155 16.5 175 dBm
Qutput power of PA for 11b mode 19.5 20.5 215 dBm
CCK, 1Mbps -98 dBm
CCK, 11Mbps 91 dBm
&Mbps (1/2 BPSK) 93 dBm
S4Mbps (3/4 64-0AM) 75 dBm
HT20, MCS7 (65Mbps, 72.2Mbps) 72 dBm
AdcemChameliecion
OFDM, éMbps a7 dB
OFDM, 54Mbps 21 dB
HT20, MCSO 37 dB
HT20, MCS7 20 dB
Table 10 RF Performance

164

6. Power Consumption

Parameters Min Typical Max Unit

Tx802.11b, CCK 11Mbps, P OUT=+17dBm 170 mA,
Tx 802.11g, OFDM 54Mbps, P QUT =+15dBm | 140 mA
Tx802.11n, MCS7, P OUT =+13dBm 120 mA

Rx B02.11b, 1024 bytes packet length , -80dBm 50 mA
Rx 802.11g, 1024 bytes packet length, -70dBm 36 mA
Rx 802.11n, 1024 bytes packet length, -65dBm | | 5& | mA
Modem-Sleep[15 mA

Light-Sleep@ 0.9 - mA

Deep-Sleep@ 10 uh

Table 11 Power Consumption

@ Modem-Sleep requires the CPU to be working, as in PWM or 125 applications. According to 802.11 standards (like
U-APSD), it saves power to shut down the Wi-Fi Modem circuit while maintaining a Wi-Fi connection with no data
transmission. E.g. in DTIM3, to maintain a sleep 300mswake 3ms cycle to receive AP's Beacon packages, the current is
about 15mA.

@ During Light-Sleep, the CPU may be suspended in applications like Wi-Fi switch. Without data transmission, the
Wi-Fi Modem circuit can be turned off and CPU suspended to save power according to the 802,11 standard (U-APSD).
E.g. in DTIM3, to maintain a sleep 300ms-wake 3ms cycle to receive AP’s Beacon packages, the current is about 0.9maA.
€ Deep-Sleep does not require Wi-Fi connection to be maintained. For application with long time lags between data
transmission, e.g. a temperature sensor that checks the temperature every 100s ,sleep 300 and waking up to connect
to the AP (taking about 0.3~1s), the overall average current is less than ImA.

Shenzhen Anxinke Technology CO;LTD http:// www. ai—thinker. com 16

165

7. Reflow Profile

Ts max to T (Ramp-up Rate)

Table 12 Instructions

3°C/second max

Preheat

Temperature Min.(Ts Min.)
Temperature Typical.(Ts Typ.)
Temperature Min.(Ts Max.)
Time(Ts)

Ramp-up rate (T to Tp)

Time Maintained Above:
--Temperature(T)/Time(T,)

Peak Temperature(Tp)
Target Peak Temperature (Tp Target)
Time within 5°C of actual peak(ts)

Ts max to T, (Ramp-down Rate)

150°C
175°C
200°C
60~180 seconds

3°C/second max

217°C/60~150 seconds
‘ 260°C max. for 10 seconds
. 260°C +0/-5°C
' 20~40 seconds

6°C/second max

Tune 25°C to Peak Temperature (t)

Shenzhen Anxinke Technology CO;LTD

8 minutes max

http://www. ai—thinker. com

17

166

P

et .t i s . i 2

8. Schematics

GND

@
z
G
4
3_]
ulD

AOMREI2AMHz 210ppm

uz

XIN GND

@
z
=]

uf .
Ri1 4
GlD 4
12X 1% 3
.
[} RST 4
vDD33 gﬁ L 4
e | H - '
.
s ™ - L3
DIJF_'-QLF n{{ g 2 :FFF . VDD33 :
By 3 ExggTaes -
GHD GHD Eg =F §§ .
ANT1 [% i' .
T o] g SPIFLASH 4
u
ce 24 GRS 4
5 vooa GPIOS .
! {} LA SD_DATA 1 H————5°00 s 1le, § s 01
5.6oF VDD3P3 SD_DATA_O 57 0 SD_CLK SD_CLK & 2 sopok
2 VDD3P3 SD_CLK o ——ax 0o 4
— VOD_RTC S0 CMD H——=p03
Aa NG -y SDOATA3 f-g—————=om 002 7rong me[2—0D%
CHP_EN SD_DATA_2 7 & 4
~— XPD_DCDC VODPET 4
GND GND e v
ADC_IN = 3
GE Eégégggé GND 1
“P0se SO55556 :
SR ol T '
1 vDo33
9
bt bl -
o SIEss
& & &
Figure 4 Schematics of Esp-12E WiFi Module
http://www. ai—thinker. com 18

Shenzhen Anxinke Technology CO;LTD

167

Annex D — NodeMcu Devkit v1.0 ESP8266 Wi-Fi Module ESP-12E User

Manual

Handson Technology

User Manual V1.2

ESP8266 NodeMCU WiFi Devkit

The ESP8266 is the name of a micro controller designed by Espressif Systems. The
ESP8266 itself is a self-contained WiFi networking solution offering as a bridge from
existing micro controller to WiFi and is also capable of running self-contained applications.

This module comes with a built in USB connector and a rich assortment of pin-outs. With a
micro USB cable, you can connect NodeMCU devkit to your laptop and flash it without any
trouble, just like Arduino. It is also immediately breadboard friendly.

168

1. Specification:
e Voltage:3.3V.
Wi-Fi Direct (P2P), soft-AP.
Current consumption: 10uA~170mA.
Flash memory attachable: 16MB max (512K normal).
Integrated TCP/IP protocol stack.
Processor: Tensilica 1106 32-bit.
Processor speed: 80~160MHz.
RAM: 32K + 80K.
GPIOs: 17 (multiplexed with other functions).
Analog to Digital: 1 input with 1024 step resolution.
+19.5dBm output power in 802.11b mode
802.11 support: b/g/n.
Maximum concurrent TCP connections: 5.

2. Pin Definition:

Bl I B
=32
=
GPI010 GPIOO FLASH
[cerote | H)
=3 o102 f—{ w1 |
[_rost_| 3.3v
e ao
[mso | =23 [tsax |
[_sax | [eeror2 | [_waso |

g

1013 f—{ mx02 j—{ mwost |
P1015 fued TXO2 fued b |
103 fei mx00 |
101 }—{ 10 |

GND

-
-
-

3.3V

K]

DO(GPI016) can only be used as gpio read/write, no interrupt supported, no pwm/i2c/ow supported.

169

3. Using Arduino IDE

The most basic way to use the ESP8266 module is to use serial commands, as the chip is basically a WiFi/Serial
transceiver. However, this is not convenient. What we recommend is using the very cool Arduino ESP8266 project,
which is a modified version of the Arduino IDE that you need to install on your computer. This makes it very
convenient to use the ESP8266 chip as we will be using the well-known Arduino IDE. Following the below step to
install ESP8266 library to work in Arduino IDE environment.

3.1 Install the Arduino IDE 1.6.4 or greater
Download Arduino IDE from Arduino.cc (1.6.4 or greater) - don't use 1.6.2 or lower version! You can use your
existing IDE if you have already installed it.

You can also try downloading the ready-to-go package from the ESP8266-Arduino project, if the proxy is giving you
problems.

3.2 Install the ESP8266 Board Package
Enter http://arduino.esp8266.com/stable/package esp8266com _index.json into Additional Board Manager URLs

field in the Arduino v1.6.4+ preferences.
f Preferences ﬁ
Settings | Netwark

Sketchbook lncation:

C:YUsers\BY \Documents \Arduing| Browse
Editor language: System Default = | {regures restart of Arduing)

Editor fontsize: 13

Show verbose output during: | compilation [| upload

Compiler warnings: | None v |

|| Display ine numiers

|| Enable Code Folding

|| Verify code after upload

[] use external editar

Check for updates on startup

Update sketch files to new extension on save (pde -> .ing)

Save when verifying or uploading

Addtional Boards Manager URLs: | http: ffarduino. espa266. comfstable package_esp&28acom _imdex. json E]
More preferences can be edited directly in the file

C:Wsers\8AppData L ocallArduna 15 \preferences. b

{edit only when Arduino is not running)

Click ‘File” -= ‘Preferences’ to access this panel.

Mext, use the Board manager to install the ESP8266 package.

170

5 Boards Manager

Type &l x| Ve pour search.

“Mcrs info

Arrow Boards Dy Awel Elettromica S.rk
Boards Induded in this package:
SmartEvenything Fox. SmartTusto.
Orline hala

Mers infe

EMORO 2560 by Inevatic-ICT

Boarcs induded in this package

EMoRo 2360, Board based on ATmegs 2360 MCU,
Online halp

Mcrs info

AMEL-Tech Boards by replaced by Arrow Boands
Boarcs induded in this package:
SmartEverything Fox,

Qrline haln

Mcr info

espB206 by ESPER06 Conwmunily varsion 23,0 TNSTALLED
Boards induded in this packans:

Generdc ESPRISE Module. Olimex MOD-WIF-ESREZEE[-DEV]. ModeMCU 0.5 (E5P-1Z2 Module). NodeMZU 1.0 (ESP-12E Module), Adafus
HUZZAH ESPEZES (E5P-12). ESPresso Lt 1.0. ESPresso Lke 2.0. SparkkFun Thing, SweatPaa EGP-2 10, Wadas 0. WeMos D1 minl, ESPing

(F5F-13 Madule], F5FIn (WROOM-0F Modula), Wifinfa, FSEDUIRa.
Grline hla
Hers infe:

:Sds:lwmn -!: Inztal

=

Click ‘Tools' -» ‘Board:’ -> ‘Board Manager..." to access this panel.

Scroll down to * esp8266 by ESP8266 Community * and click “Install” button to install the ESPR266 library package.

Once installation completed, close and re-open Arduino IDE for ESP8266 library to take effect.

3.3 Setup ESP8266 Support

When you've restarted Arduino IDE, select ‘Generic ESP8266 Module’ from the ‘Tools’ -> ‘Board:’ dropdown menu.

I Muta Format Crrl+T
Archive Sketch
Y FixEncoding & Reload
Serial Monitor Ctel+ Shift+ M
Serial Plotter ColeShiftsl 1 oneoe-
Board: "Genesic ESPAIES Module” ' .
Flash Made: *"DIO” (N EREE e
Flash Freguency: "I0MHz" oo |l
1 CPUFrequency: 80 MHZ' ([
Flash Size: "512K (64K SPIFFS)" ! t:::::: m:z: =
Debug port: "Dissbled" ! Arduine Pro or Pro Mini
e l Arduino MG or older
Reset Method: "ct” ! Awiuino Robot Contral
pekevest g ' Acduing Rebet Motor
iz ! Arduino Germma
Programmer "AVRISP midl’ 1 Arduino ARM (32-bits) Boards
Bum Ecotloader Archiine Dus (Prograrrming Port)

Arduing Due [Mative LSS Port)
ESPE266 Modules

® Generic ESPE266 Madul
Generic ESPE2ES Module

Select 80 MHz as the CPU frequency (you can try 160 MHz overclock later)

Select this

171

R ——
Sketch |iw|s Help

_sepdd

setl
put

looj
put

Select ‘115200" baud upload speed is a good place to start - later on you can try higher speeds but 115200 is a good

safe place to start.

Auto Format

Archive Sketch

Fix Encoding 8t Reload
Senal Monitor

Senal Plotter

Board: "Generic ESPE266 Module”
Flash Mode: "DIO"

Flash Frequency: "40MHMz"

CPU Frequency: "80 MHz"

Flash Size: "512K (64K SPIFFS)"
Debug port: “Disabled”

Debug Level: "Mone”

Reset Method: "ck”

Upload Speed: "115200™

Port

Programmer: "AVRISP midl"
Burn Bootloader

Cerd+T

Ctrl+ Shift+M
Ctrl+Shift+L

n once:

Select this

*

[]

L

1@ s0MHz

L] 160 MMz dly:
[]

L]

[]

(o] v

Go to your Windows ‘Device Manager’ to find out which Com Port ‘USB-Serial CH340' is assigned to. Select the
matching COM/serial port for your CH340 USB-Serial interface.

Auto Format

Archive Sketch

Fix Encoding & Reload
Serial Monitor

Senal Plotter

Board: "Genenic ESPE266 Module”
Flash Mede: "DIO"

Flash Frequency: "40MHz"

CPU Frequency: "80 MHz"

Flash Size: "512K (4K SPIFFS)”
Debug pert: "Disabled”

Debug Level: “None™

Reset Method: "ck”

Upload Speed: "115200"

Port

Programmer: "AVRISP midl”
Burn Bootloader

Ctrl=T

Ctrl+Shift+M
Ctrl+Shift+L

n once:

repeatedly:

172

= Device Manager

B Dizplay adapters
il DVD/CD-ROM drives
5 [Human Interface Devices
> g IDE ATASATAFI controllers
o ¥ Jungo
5 Keyboards
.] Mach3 Pulseing Engine
5 ,n Mice and other painting devices
» &l Monitors
¥ Metwaork sdapters
I3 Ports (COM & LPT)
L ¥§ Communications Port [COML)
i T Printer Port (LPTL)

—_—

Tools| Help

File Action View Help Auto Fermat CtrlsT
e | @ E HE| N E&8S Archive Sketch
28 BY-PC Fix Encoding & Reload
- M Computer Senial Monitor Ctrl+ Shift+M
g Disk drives Serial Plotter Chrl Shiftal.

Board: "Generic ESPE266 Module™
Flach Mede: "DIO™

Flash Frequency: "40MHz"

CPU Frequency: "80 MHz"

Flash Size: "512K (64K SPIFFS)"
Debug port: "Disabled”

Debug Levek "None”

Reset Method: “ck”

Upload Speed: 115200

i -'? LISB-SERIAL CH340 [COMI1L) Port: "COMIL" L Serial ports
: I Processors .) COMI
o4y Seund, video and game controllers Programmer. "AVRISP mkll !

¥ com

3 l; System devices Burn Bootloader
¥ Universal Serial Bus controllers
A} WD Drive Management dewices

Find out which Com Port is assign for CH340 Select the correct Com Port as indicated on ‘Device Manager”

Note: if this is your first time using CH340 * USB-to-Serial ” interface, please install the driver first before proceed
the above Com Port setting. The CH340 driver can be download the below site:

https://{qgithub.com/nodemcu/nodemcu-devkit/tree/master/Drivers

3.4 Blink Test

We'll begin with the simple blink test.

Enter this into the sketch window (and sawve since you'll have to). Connect a LED as shown in Figure3-1.

vold setup() {
pinMade (5, OUTEUT) ; // GPIOD5, Digital Pin D1

1

vold loop() {
digitalWrite (5, HIGH):

delay (200)
digitalWrite (>, LOW):
delay(500) ;

Now you'll need to put the board into bootload mode. You'll have to do this before each upload. There is no timeout
for bootload mode, so you don't have to rush!

* Hold down the ‘Flash’ button.
* While holding down * Flash’, press the ‘RST' button.
» Release '‘RST’, then release ‘Flash’

173

When you release the ‘RST' button, the blue indication will blink once, this means its ready to bootlead.

This blue indicator will
blink ance when
release RTS in step 2.

Step 1: Hold
down this
‘Flash’ button.

FLASH 33

Step 2: Press
once and
release this

/ button

Step 3: Release ' Flash’ button. Now
the board is in ‘hootload’ mode.

Once the ESP board is in bootload mode, upload the sketch via the IDE, Figure 3-2.

Cathode

Figure3-1: Connection diagram for the blinking test

174

Annex E — DHT?22 Datasheet

Aosong(Guangzhou) Electronics Co.,Ltd

Tell: +86-020-36380552, +86-020-36042809 Fax: +86-020-36380562
http://www.aosong.com

Email: thomasliul 98518 @vahoo.com.cn_ sales(@aosong. com

Address: No.56. Renhe Road. Renhe Town. Baivun Dhstrict. Guangzhou. China

Digital-output relative humidity & temperature sensor/module
AM2303

Capacitive-type humidity and temperature module/sensor

1. Feature & Application:

* Full range temperature compensated * Relative humidity and temperature measurement

* Calibrated digital signal *Qutstanding long-term stability *Extra components not needed

* Long transmission distance * Low power consumption *4 pins packaged and fully interchangeable
2.Description:

AM?303 output calibrated digital signal It uiilizes exclusive digital-signal-collecting-technique and humidity
sensing technology, assuring its reliability and stability Its sensing elements i1s connected with 8-bit single-chip

computer.

Every sensor of this model 1s temperature compensated and calibrated 1 accurate calibration chamber and the
calibration-coefficient is saved in type of programme in OTP memory, when the sensor 1s detecting, 1t will cite

coefficient from memory.

Small size & low consumption & long transmission distance(20m) enable AM2303 to be suited in all kinds of

harsh application occasions.

Single-row packaged with four pins, making the connection very convenient.

3. Technical Specification:

Model AM?2303
Power supply 33-6VDC
Qutput signal digital signal via single-bus
| Sensing element Polymer humidity capacitor & DS18B20 for detecting temperature
Measuring range humidity 0-100%ERH; temperature -40~125Celsius

175

Aosong(Guangzhou) Electronies Co.,Ltd

Tell: +86-020-36380552, +86-020-36042809
http://www.aosong.com

Email: thomasliul 9851 8@ vahoo.com.cn sales(@aosong.com

Fax: +86-020-36380562

Address: No.56. Renhe Road. Renhe Town. Baryun District. Guangzhou. China
Accuracy humidity +-2%RH(Max +-5%RH); temperature +-0.2Celsius
I Resolution or sensitivity | humidity 0.1%EH; temperature 0.1Celsus
| Repeatability humidity +1%RH; temperature +-0 2Celsius
Humidity hysteresis +-0.3%RH
Long-term Stability +-0.5%RH/year
Sensing period Average: 2s
Interchangeability fully interchangeable

4.Dimensions: (unit-—mm)

Pin sequence number: 12 3 4 (from left to right direction).

Pin Function
1 VYDD—power supply
2 DATA—signal
3 NULL
4 GND
3. Operating specifications:
(1) Power and Pins

Power's voltage should be 3 .3-6V DC. When power is supplied to sensor, don't send any instruction to the sensor
within one second to pass unstable status. One capacitor valued 100nF can be added between VDD and GND for

wave filtering.

(2) Communication and signal

Single-bus data 1s used for communication between MCU and AM?2303, it costs SmS for single time

communication.

176

Aosong(Guangzhou) Electronics Co.,Ltd

Tell: +86-020-36380552, +86-020-36042809
http://www.aosong.com

Email: thomasliul 9851 8(@vahoo.com.cn_ sales(@aosong com
Address: No.56. Renhe Road. Renhe Town. Bar District. Gu.

Fax: +86-020-36380562

ou. China

Data 1s comprised of mtegral and decimal part, the following 1s the formula for data.

AM?2303 send out higher data bit firstly!

DATA=E bit integral RH data+8 bit decimal RH data+8 bit integral T data+8 bit decimal T data+8 bit check-

sum

If the data transmission 1s right, check-sum should be the last 8 bit of "8 bit integral RH data+8 bit decimal RH

data+8 bit integral T data+8 bit decimal T data".

When MCU send start signal, AM2303 change from low-power-consumption-mode to running-mode. When
MCU finishs sending the start signal, AM2303 will send response signal of 40-bit data that reflect the relative
humidity and temperature information to MCU. Without start signal from MCU, AM2303 will not give response
signal to MCU. One start signal for one time's response data that reflect the relative humidity and temperature
information from AM?2303. AM?2303 will change to low-power-consumption-mode when data collecting finish if

1t don't recerve start signal from MCU again.

1) Check bellow picture for overall communication process:

Host computer send out
start signal.
Sensor send out

response signal Output data: 1bit"0"

?

— LHEF e — IJHLF{ -— — HEY P
s | | &% |

Yoo 1l } | ..-in.iin'.h]__:-. AR SR LR |
GND-e] | |y e NP

i |

lwgH |
b - PTG -
/
o4

e

Hli.%‘ g lﬂ'l'llf%‘;‘
v v

Pull up dnd wait Host's signal Sensor's signal
response from sensor
Pull up voltage and get
ready for sensor's output.
A

Single-bus output

Data transmission finished,
and RL pull up bus's voltage
for next transmission

Output data: 1bit "1"
Sensor pull down
bus's voltage

177

Aosong(Guangzhou) Electronics Co.,L.td

Tell: +86-020-36380552, +86-020-36042809 Fax: +86-020-36380562
http-//www aosong com
Email: thomaslm198518@vahoo com.cn sales(@aosong. com
Address: No.56. Renhe Road. Renhe Town. Baiyun District. Guangzhou. China
2) Step 1: MCU send out start signal to AM2303
Data-bus's free status is high voltage level When communication between MCU and AM2303 begin, program
of MCU will transform data-bus's voltage level from high to low level and this process must beyond at least 18ms
to ensure AM2303 could detect MCU's signal, then MCU wall wait 20-40us for AM2303's response.

Check bellow picture for step 1:

Host computer send start signal Sensor send out response signal
- and keep this signal at least 500us - and keep this signal 80us
'y
Host pull up voltage
-and wait sensor's response Sesnor pull up bus's voltage

—{ Tt -
| | Bous | |
Ve ' e —— - TN
| | 1 }
A l (Rt .
I | I y m&r g | |
Bi8 e~ ”'am O
R
e mﬁﬁ%
Signal from host Start data transmission
Signal from sensor
Single-bus signal

Step 2: AM2303 send response signal to MCU

When AM2303 detect the start signal, AM2303 will send out low-voltage-level signal and this signal last 80us
as response signal, then program of AM2303 transform data-bus's voltage level from low to high level and last
80us for AM2303's preparation to send data.

Check bellow picture for step 2:

178

Aosong(Guangzhou) Electronics Co.,Ltd

Tell: +86-020-36380552, +86-020-36042809 Fax: +86-020-36380362
http://www.aosong.com

Email: thomasliul 9851 8@ vahoo.com.cn sales(@aosong.com

Address: No.56. Renhe Road. Renhe Town, Bar District. Gu. ou. China

T0us voltage-length means 1bit data "1"
'y
Start transmit 1bit data Start transmit next bit data
4

| —-4 Tous [
| | Fm'l i
T('('.........-',_..:..:.:_:l. ________________ t__.i;'-.....-.....1.....-....1.-,..i..-...-.'.-.H,._!___:.._EI-... = —F—'bil%
QN === B - v
| 1BidFG | i
BEE —w gous | fe— |
SR H:
iﬁuﬁa m}/ﬂ%‘%
Host signal Sensor's signal

Single-bus signal

If signal from AM2303 1s always high-voltage-level, it means AM2303 15 not working properly, please check

the electrical connection status.

6. Electrical Characteristics:
Ttem Condition Min Typical Max Unit
Power supply | DC 33 5 5.5 vV
Current supply | Measuring 13 15 21 mA
Average 0.5 08 11 mA
Collecting Second 1.7 2 Second
period

*Collecting period should be : =1.7 second.

7_Attentions of application:

(1) Operating and storage conditions

We don't recommend the applying RH-range beyond the range stated in this specification. The DHT11 sensor

179

Aosong(Guangzhou) Electronics Co.,Ltd

Tell: +86-020-36380552, +86-020-36042809 Fax: +86-020-36380562
http-//www aosong com
Email: thomaslinl 98518 @vahoo.com.cn_ salesi@aosong com
Address: No 56. Renhe Road. Renhe Town. Baiyun District. Guangzhou. China
can recover after working in non-normal operating condition to calibrated status, but will accelerate sensors'
aging.
(2) Attentions to chemical materials

Vapor from chemical materials may interfere AM2303's sensitive-elements and debase AM2303's sensitivity.
(3) Dusposal when (1) & (2) happens

Step one: Keep the AM2303 sensor at condition of Temperature 50~60Celsius, humidity <10%RH for 2 hours;

Step two: After step one, keep the AM2303 sensor at condition of Temperature 20~30Celsius, humidity
=70%RH for 5 hours.
(4) Attention to temperature's affection

Relative humidity strongly depend on temperature, that is why we use temperature compensation technology
to ensure accurate measurement of RH. But it's still be much better to keep the sensor at same temperature when
sensing.

AM?2303 should be mounted at the place as far as possible from parts that may cause change to temperature.
(5) Attentions to light

Long time exposure to strong light and ultraviolet may debase AM2303's performance.
(6) Attentions to connection wires

The connection wires' quality will effect communication's quality and distance, high quality shielding-wire 1s
recommended.
(7) Other attentions

* Welding temperature should be bellow 260Celsius.

* Avoid using the sensor under dew condition.

* Don't use this product in safety or emergency stop devices or any other occasion that failure of AM2303
may cause personal injury.

180

Annex F — XL-MaxSonar-EZ MB1260 Sensor Datasheet

XL-MaxSonar®-EZ/AE™ Series

XL-MaxSonar®- EZ™ Series =
High Performance Sonar Range Finder '
g3

MB1200, MB1210, MB1220, MB1230, MB1240, MB1260, MB1261

MB1300, MB1310, MB1320, MB1330, MB1340, MB1360, MB1361°

The XL-MaxSonar-EZ series has high pewer output along with real-time auto calibration for %ﬂ
changing condifions (temperature, voltage and acoustic or electrical noise) that ensure you
receive the most reliable (in air) ranging data for every reading taken The XL-MocSonar-EZ/AE sensors have a low power
requirement of 3.3V — 3.3V and operation provides very short to J‘:m_g—rangte detection and ranging, in a tiny and compact form facior.
The MB1200 and MBI300 sensor series detecis objects from 0-cm’ to 763-cm (25.1 feet) or 1068cm (33 feet) (select models) and

provide sonar range information from 20-cm’ out to763-cm or 1068-cm (select models) with I-cm resolution. OBbjects from O-crt’ 1o
20-cm™ typically range as 20-cm™. The interface output formats included are pulse width owtput (MBI1200 series), real-time analog

voltage envelope (MBI300 series), analog voltage output, and serial digital output.
“O%jects from O-mmwe fo J-mum may nof be defscisd. “Fov the MBIV MBI, MBI 210310, MBI 260 MBIS60, and MBIIGI MBI 36, this distamce is 5-cm. “Flease see Close Rawge Operation

Features

= High acoustic power output

» Real-time auto calibration and noise
rejection for every ranging cycle

= Calibrated beam angle

= Continuously vaniable gain

= Obyject detection as close as 1-mm
from the sensor

= 3.3V to 5.5V supply with very low
average current draw®’

= Readings can occur up to every
100mS. (10-Hz rate)

» Free run operation can
continually measure and output range
information

= Triggered operation provides the
range reading as desired

= Pulse Width (MB1200 series)

= Real-time analog envelope (MB1300
series)

= All nterfaces are active
simultaneously

= Sensor operates at 42KHz

= Senal, 0 to Ve, 9600Baud, 81N

- Analog, (Vee/1024) / cm®

« Analog, (Vee/1024 / 2em’

Benefits

= Acoustic and electrical noise
resistance

= Reliable and stable range data

= Low cost

= Quality controlled beam
characteristics

= Very low power ranger, excellent for
multiple sensor or battery based
systems

= Ranging can be tnggered externally
or internally

- Sensor reports the range reading
directly, frees up user processor

= Fast measurement cycle

= User can choose any of the sensor
outputs

» Easy mounting

= No power up calibration required

= Perfect for objects may be directly in
front of the sensor during power up

Applications and Uses
+ Bin level measurement

+ Proxinuty zone detection

+ People detection

» Robot ranging sensor

» Autonomous navigation

- Environments with acoustic and
electrical noise

= Multi-sensor arrays

= Distance measuring

+ Long range object detection

» Users who prefer to process the
analog voltage envelope (MB1300
series)

- 40°C to +65°C operation (+85°C
limited operation) (40°C to 0°C
recommended operation in
environments that are non-frosting,
non-condensation, and indoor only)’

Notes:

' Ohjects from O-mm to 1-mm may not be detected.
?For the ME1200/3B 1300, ME1210/1310,
MEI280NB1360, and ME1ISLMEL36], this
distance 15 25-cm.

* Please sea Close Range Operation.

‘ME1200 through ME1240 and MB1300 through
MMB1340.

*ME1260, ME1261, ME1360, ME1361.

" Bee paze 2, Pin 6 Ve Operation.

" Please reference page 4 for minimom

operating voltazs verses femperature

mformation.

" Please reference page 16 for part nomber key.

Close Range Operation

Applications requiring 100% reading-to-reading reliability should not use MaxSonar sensors at a distance closer than
20cm. Although most users find MaxSonar sensors to work reliably from 0 to 20cm (25cm select models) for detecting
objects in many applications, MaxBotix® Inc. does not guarantee operational reliability for objects closer than the
mummum reported distance. Because of ultrasonic physics, these sensors are unable to achieve 100% reliability at close

distances.

Warning: Personal Safety Applications

We do not recommend or endorse this product be used as a component in any personal safety applications. This product
1s not designed, intended or authorized for such use. These sensors and controls do not include the self-checking
redundant circuitry needed for such use. Such unauthorized use may create a failure of the MaxBotix® Inc. product which
may result in personal injury or death. MaxBotix® Inc. will not be held liable for unauthorized use of this component.

MaxBotix® inc.

oxynqntzous - 20115 MaxBotlx Incorporated
Patent 7,675,596

MaxBotix Inc., products are engineered and assembled in the USA.

Page 1
Web: www.maxboticcom
PO11B408

181

XL-MaxSonar®-EZ/AE™ Series

About Ultrasonic Sensors

Our ultrasonic sensors are in air, non-contact object detection and ranging sensors that detect objects within an area. These
sensors are not affected by the color or other visual characteristics of the detected object. Ultrasonic sensors use lugh
frequency sound to detect and localize obyects 1 a vanety of environments. Ultrasonic sensors measure the time of flight
for sound that has been transmitied to and reflected back from nearby objects. Based upon the time of flight, the sensor
then outputs a range reading.

Pin Out

Pin 1-BW-Leave open (or high) for serial output on the P 5 output. When Pin 1 is held low the Pin 5 output sends a
pulse (instead of senial data), sutable for low noise chaimng.

Pin 2-PW- For the MB1200 (EZ) sensor sertes, this pin outputs a pulse width representation of range. To calculate
distance, use the scale factor of 58uS per cm.

For the MB1300 (AE) sensor series, this pin outputs the analog voltage envelope of the acoustic wave form. The output
allows the user to process the raw waveform of the sensor.

Pin 3-AN- For the 7.6 meter sensors (all sensors except for MB1260, MB1261, MB1360, and MB1361), this pin outputs
analog voltage with a scaling factor of (Vee/1024) per cm. A supply of 5V yields ~4 9mV/em , and 3.3V yields ~3 2mV/
cm. Hardware limits the maximum reported range on this output to ~700cm at 5V and ~600cm at 3.3V. The output 1s
buffered and corresponds to the most recent range data.

For the 10 meter sensors (MB1260, MB1261, MB1360, MB1361), this pin outputs analog voltage with a scaling factor of
{(Vec/1024) per 2 em. A supply of 5V yields ~4.9mV/2cm | and 3 3V vields ~3 2mV/2cm The output is buffered and
corresponds to the most recent range data.

Pin 4-RX— This pin is internally pulled high. The XL-MaxSonar-EZ sensors will continmally measure range and output
1f the pin 1s left unconnected or held high. If held low the will stop ranging. Bring high 20uS or more for range reading.
Pin 5-TX- When Pin 1 15 open or held high_ the Pin 5 output delivers asynchronous serial with an R8232 format. except
voltages are 0-Vee. The output is an ASCII capital “R”, followed by three ASCII character digits representing the range
in centimeters up to a maximum of 765, followed by a carnage return (ASCII 13). The baud rate 15 9600, 8 bits, no parity,
with one stop bit. Although the voltage of 0-Vee 1s outside the RS232 standard, most R5232 devices have sufficient
margin to read 0-Vee serial data. If standard voltage level RS232 is desired, mvert, and connect an R5232 converter such
as a MAX232

When Pin 1 15 held low, the Pin 5 output sends a single pulse, suitable for low noise chaining (no serial data).

Pin 6-+5V- Vcc — Operates on 3.3V - 5V. The average (and peak) current draw for 3.3V operation 1s 2. 1mA (50mA
peak) and at 5V operation 1s 3. 4mA (100mA peak) respectively. Peak current 1s used during sonar pulse transmit. Please
reference page 4 for minimum operating voltage verses temperature information.

Pin 7-GND- Retumn for the DC power supply. GND (& V+) must be ripple and noise free for best operation.

Product Release Notes

For all MB1260/MB 1360 sensors sold after Feb 20, 2013, the minimum reported distance 1s 25cm.
For all MB1261/MB1361 sensors sold after Feb 20, 2013, the munimum reported distance 1s 25cm.
For all MB1200/MB 1300 sensors sold after Oct 01, 2013, the mimimum reporied distance 1s 25cm.
For all MB1210/MB1310 sensors sold after Oct 01, 2013, the mimimum reporied distance 1s 25cm.

182

XL-MaxSonar®-EZ/AE™ Series ___

Sensor Minimum Distance

The sensor minimum reported distance is 20cm’ (7.87 inches). However, the XL-MaxSonar-EZ will range and report
targets to the front sensor face. Large targets closer than 20cm’ will typically range as 20em’.

Sensor Operation from 6-inches to 20-inches

Because of acoustic phase effects in the near field, objects between 20cm and 50cm may experience acoustic phase
cancellation of the returning waveform resulting in inaccuracies. These effects become less prevalent as the target distance
increases, and has not been observed past 50cm. For this reason, industrial users that require the highest sensor accuracy
are encouraged to mount the XI-MaxSonar-EZ from objects that are farther than 50cm.

Range “0” Location

The XL-MaxSonar-EZ reports the range to distant targets starting from the front of the sensor as shown in the diagram
below.

ll< >
The range 15 measured from front of the sensor "
Target Face

Range Zero

In general, the XI-MaxSonar-EZ will report the range to the leading edge of the closest detectable object. Target
detection has been characterized in the sensor beam patterns.

Mechanical Dimensions

A 0785 |196mm |L 0735 |1B7mm
B|0A70 | Z.9mm |M|0085 |1.7mm J
C[oi00 |Z5amm |N 0038 [1.0mme UT—“ =
D | o100 254mm | P | 0837 13 Bdmm
E | DE7T 1W0mm |Q]|03M |7.72mm it & K
Flosw [155mm |R|oas [aseem | Il
G012~ |Zimme. |5 0417 | 105mm
H[000r | Z5amm |T |006% | 1.6mm
) [oeser [ZSaimm U |03 |[8.38mm
K|08a5 [164mm |V 0492 [125mm
values are rominal Weight, 59 grams

Real-Time Auto Calibration

Each time before the XIL-MaxSonar sensor takes a range reading it calibrates itself. The sensor then uses this data to
range to objects. If the temperature, humidity, or applied voltage changes during operation, the sensor will continue to
function normally. The sensor does not apply compensation for the speed of sound change versus temperature to any
range readings.

Temperature Compensation

The speed of sound in air increases about 0.6 meters per second, per degree centigrade. The XL-MaxSonar-EZ sensors are
not equipped with an internal temperature compensation. If temperature compensation 1s desired, contact MaxBotix and
request the temperature compensation formula PDF. This will allow users to compensation for speed of sound changes.

183

XL-MaxSonar®-EZ/AE™ Series

Voltage vs Temperature

The graph below shows numimum operating voltage of the sensor verses temperature.

Supply Voltage (V)

35

3.25

2.75

2.5

2.25

Minimum Operating Voltage vs Temperature

For operation to -40°C voltage
shall be 3.2V or higher

AN

~

40 20 0 20 40 60 80
Temperature (°C)

184

XL-MaxSonar®-EZ/AE™ Series

Real-time Noise Rejection

While the XL-MaxSonar® iz designed to operate in the presence of noise, best operation is obtained when noise strength is
low and desired signal strength 1s higsh. Hence, the user 1s encouraged to mount the sensor in such a way that minimizes
outside acoustic noise pickup. In addition, keep the DC power to the sensor free of notse. This will let the sensor deal
with noise issues outside of the users direct control (in general, the sensor will still function well even if these things are
1gnored). Users are encouraged to test the sensor in their application to verifyy usability.

For every ranging cycle, ndividual filtening for that specific cycle 1s applied. In general, noise from regularly occurring
periodic noise sources such as motors, fans, vibration, etc_, will not falsely be detected as an object. This holds true even
1f the periodic noise increases or decreases (such as might occur in engine throttling or an increase/decrease of wind
movement over the sensor). Even so. it 15 possible for sharp non-peniodic tnioise sources to cause false target detection. In
addition, *(because of dynamic range and signal to noise physics_) as the noise level increases, at first only small

targets muight be missed, but if noise increases to very high levels, it 1s likely that even large targets will be missed.

*In high noise environments, if needed, wse 5V power to keep acoustic signal power high. In addition, a high acoustic noise
environment may use some of the dynamic range of the sensor, so consider a part with less gain such as the MB1220/ME1320

MB1230/MB1330 or MB1240/MB1340. For applications with large targets, consider a part with ultra clutter rejection like the
MBT369.

Typical Performance to Target

Analog Envelope Qutput Analog Envelope OQutput
(Dowels, 5V) (Dowels, 3.3V)
- Transmit Ta= 20°C, Viee=5.0v Transmit Ta= 20°C, Vec=3.3V
s Burst Realtime on Fin 2 of MB13X0 / Burst Realtime on Pin 2 of MB13X0
~ | | T {or MB12X0 intermal) —) B | {or MBA2X0 internal)
w _Targets Targets = w Targels =
g 0.6cm dia. at 66cm, & 0.6cm dia. at 66cm,
= 2.5cm dia. at 111cm, d 2.5¢cm dia. at 111cm,
£z 8.9cm dia. at 189cm, | 129k | = 89cm dia. at 188%cm,
e and a 1m by 2m llat 4 & and a 1m by 2m flat
8 panel at 704cm 8 14 panel at T04cm Target 1
3, | 4
: J L 2 \
< < ! .
First target rangas at ~66cm. First target ranges at ~66cm.
Conditions = acoustic test chamber Conditions = acoustic test chamber
o 4 . . } 0
10ms/DIV 10ms/DIV
Typical Performance in clutter
Analog Envelope Output Analog Envelope Output
{Clutter, 5.0V) (Clutter, 3.3V)
_ Transmit T,= 20°C, Vec=5.0V Transmit Burst Ta= 20°C, Vee=3.3V
3 q__ Burst Targst |- Realtime on Pin 2 of MB13X0 _| 4 Realtime on Pin 2 of MB13X0
= | {or MB12X0 internal) S Targel —-(0r MB12X0 internal) i
w Target = 30cm sq. w i Target = 30cm sq.
% at 2 meters % al 2 meters
= Conditions = 1.5 = Conditions = 1.5
= 2 | mlclnr wide hall:.\'ay g meter wide hallway
ﬁ with cluttered sides E with cluttered sides
3 ' Clutier ranges €51 Clulter ranges
9 h at ~104cm. 9 at ~104em.
<! VN =
s =
Object clutter from many objects at the sides of the & \ T
1.5 meler wide hallway. (Side cluller is detected.) Object clutter from many objects at the sides of the
o | | | . 1.5 meter wide haliway. (Side clutler is detected.)

10ms/DiIv 10ms/DIV

185

XL-MaxSonar®- EZ/AE™ Series

Sensor Timing Diagrams
Power Up Timing

Power Up Timing

Vee
Pin & (Veel Jclun stabla p-nﬂlr pmvmd o Vee
o Ivotsses werenoed =
Pin & Low idle state
(RS232 Serial output) e B for R5232

Pin 4
(Ranging start/stop)

Start ranging or
monitoring begins

Ilﬁm !Hﬁﬂ-ﬂ"i‘#wwﬁd‘ﬁ

Tima 0mS ~50mSs ~-B0mS =175ms

Sensor Free-Run Timing

Free-Run QOperation
Vee Power supply must be free of noise
Claar, stable power provided to Vee PELY
Pin & ivec) (A" gnalz are refarensed by Voo and O) for best results

Pin 4 Start ranging or

(Ranging start/stop manitoaring begins
Fin 3 The Analog valtage output holcs
(Analag voltage) _/ to tha lastast measurement

iz The range informatian is cutpur with a high
i, "-l [” [” Iﬂ Iﬂ lﬂ |n [ﬂ pulse width batween 1.16mS ard 44 4ms!

(Wavefarm autput) H——

Pin §

(R5232 Sarial cutauth n I-I I-l I-I I-I [-] I_] I-[Low idle state for R5232

Motes: 1

B

Real-Time Operation

Real-time Operation

Weo
Pin 6 (Vee) Clean, stable o mwm IDV:I: Power supply must be free of
8 vigrants ar: e noise for best resuits

Bing [Ny et low J I
|] i g e 2 o
(Ranglng start/stop
The Analog voltage outpet maintains
r::l;og Voltage) “"““"3 Tt el i i the voltage corresponding to the
latest measurement
Pin 2 Range information is output with a high pukse
IWaveform output) between 1.16ms and 44.4m5" or 62ms”
Pin 5
(R5232 serial output) m Lo |dle state for RS232
L R] Edmg -BLImS 38mE Motes: 1- 7.85 mater sersors
2 - 10.68 mater sensors

Timing Description

175mS after power-up, the XL-MaxSonar is ready to begin ranging. If Pin-4 1s left open or held high (20uS or greater),
the sensor will take a range reading. The XI.-MaxSonar checks the Pin-4 at the end of every cycle. Range data can be
acquired once every 99mS. Each 99mS period starts by Pin-4 being high or open, after which the XL-MaxSonar
calibrates and calculates for 20.5mS, and after which, twenty 42KHz waves are sent.

At this point, for the MB1260, the pulse width (PW) Pin-2 is set high and until an object 1s detected after whj-::1h the pin is
set low. If no target is detected the PW pin will be held high for up to 44.4mS' (Le. 58uS * 765cm) or 62.0mS” (Le. 58uS
* 1068cm). (For the most accurate range data, use the PW output.)

For the MB1300 sensor series, The analog envelope output, Pin-2, will show the real-time signal return information of the
analog waveform.

For both parts, the remainder of the 99mS time (less 4. 7mS) 1s spent adjusting the analog voltage to the correct level, (and
allowing the high acoustic power to dissipate). During the last 4.7mS, the serial data 1s sent.

186

XL-MaxSonar®- EZ/AE™ Series

Using Multiple Sensors in a single system

When using multiple ultrasonic sensors in a single system, there can be interference (cross-talk) from the other sensors.
MaxBotix Inc., has engineered a solution to this problem for the XI.-MaxSonar-EZ sensors. The solution 1s referred to as
chaining. We have 3 methods of chaining that work well to avoid the issue of cross-talk.

The first method is AN Output Commanded Loop. The first sensor will range, then trigger the next sensor to range and so
on for all the sensor in the array. Once the last sensor has ranged. the array stops until the first sensor is triggered to range
again. Below is a diagram on how to set this up.

Then just strobe the
first sensor’s RX pin
and the rest of the
sensors will read the
range in sequence.

Connect to GND Connect to GND l

Wire AN pin to ADC input | [Wire AN pin to ADC input | |Wire AN pin to ADC input |

Repeat to add as many sensors as desired

The next method is AN Output Constantly Looping. The first sensor will range, then trigger the next sensor to range and
so on for all the sensor in the array. Once the last sensor has ranged, 1t will trigger the first sensor in the array to range
again and will continue this loop indefinitely. Below 1s a diagram on how to set this up.

Pull RX pin high on the
first sensor for at least
20usS. Then the micro
controller will have to

return it's pin to a high

Impedance state so .

that the next time

around the TX output Connect to GND | Connect to GND I Connect to GND I

from the last sensor ire AN pin to ADC input] ire AN pin to ADC input I \Wire AN pin to ADC input]

will make it's way to
the RX of the first
sensor. IT

1 Repeat to add as many sensors as desired

The final method 1s AN Output Simultaneous Operation. This method does not work in all applications and is sensitive to
how the other sensors in the array are positioned in comparison to each other. Testing is recommend to verify this method
will work for your application. All the sensors RX pins are conned together and triggered at the same time causing all the
sensor to take a range reading at the same time. Once the range reading is complete, the sensors stop ranging until
triggered next time. Below is a diagram on how to set this up.

Pull RX pin high for at
least 20uS. Then just
strobe the sensors’ RX
pins and the rest of the
sensors will read the
range simultaneously.

Wire AN pin to ADC input | | Wire AN pin to ADC input | | Wire AN pin to ADC input |
Repeat to add as many sensors as desired

187

XL-MaxSonar®-EZ/AE™ Series

Independent Sensor Operation

The XIL-MaxSonar-EZ sensors have the capability to operating independently when the user desires. When using the
XL-MaxSonar-EZ sensors in single or independent sensor operation, 1t 1s easiest to allow the sensor to free-run. Free-run
1s the default mode of operation for all of the MaxBotix Inc., sensors. The XL-MaxSonar-EZ sensors have three separate
outputs that update the range data simultaneously: Analog Voltage, Pulse Width, and RS232 Senial. Below are diagrams
on how to connect the sensor for each of the three outputs when operating in a single or independent sensor operating
environment.

Analog Output Sensor Operation

| Ground or Gireuit Gommen | Ground er Gireuit commen

| Supply Voltage of 3.3 to 5.5 voits [Bupply voltage af 3.3 to & 5 voits

| Wire AN pin to use with an ADC [wire Senial pin to wse the AZ32 output

Selecting a XL-MaxSonar-EZ/AE

Dufferent applications require different sensors. The XI-MaxSonar-EZ/AE product line offers vaned sensitivity to allow
vou to select the best sensor to meet vour needs.
The XL-MaxSonar-EZ Sensors At a Glance

People Detection Large Targeis
Wide Beam Best Balance Narrow Beam
High Sensitivity Noise Tolerance
MB1200/MB1300 MB1210/MB1310 MB1220/MB1320 MB1230/MB1330 MB1240/MB1340
MB1260/MB1261 MB1261/MB1361

The diagram above shows how each product balances sensitivity and noise tolerance. This does not effect the maximum
range, pin outputs, or other operations of the sensor. To view how each sensor will function to different sized targets

reference the XIL-MaxSonar-EZ Beam Patterns.

Beam Characteristics
Background Information Regarding our Beam Patterns

Each XI-MaxSonar-EZ sensor has a calibrated beam pattern. Each sensor 1s matched to provide the People Sensing:
approximate detection paitern shown in this datasheet. This allows end users to select the part For users that
number that matches their given sensing application. Each part number has a consistent field of desire to detect
detection so additional units of the same part number will have similar beam patterns. The beam | People. the

plots are provided to help identify an estimated detection zone for an application based on the de‘tﬁct}on area to
acoustic properties of a target versus the plotted beam patterns. the 1-inch]
Each beam pattern 1s a 2D representation of the detection area of the sensor. The beam pattern 1s diameter dowel, in
actually shaped like a 3D cone (having the same detection pattern both vertically and horizontally). general, represents
Detection patterns for dowels are used to show the beam pattern of each sensor. Dowels are long the area thﬂt the
cylindered targets of a given diameter. The dowels provide consistent target detection characteristics | *o o cr vall

for a given size target which allows easy comparison of one MaxSonar sensor to another MaxSonar ;Z];;I;?_ detect
sensor. -

For each part number, the four patterns (A, B, C, and D) represent the detection zone for a given
target size. Each beam pattern shown is determined by the sensor’s part number and target size.

The actual beam angle changes over the full range. Use the beam pattern for a specific target at any given distance to
calculate the beam angle for that target at the specific distance. Generally, smaller targets are detected over a narrower
beam angle and a shorter distance. Larger targets are detected over a wider beam angle and a longer range.

188

MB1260/MB1360: XL-MaxSonar-EZ/AEL0
The XL-MaxSonar-EZL/AELQ has the same gain and sensitive as the MB1200/MB1300. This sensor features a longer
range of 1068cm to large targets. This sensor is recommended for long range measurement to large targets.

XL-MaxSonar®-EZ/AE™ Series

Note: Firmware rev 1.6b and newer have a 25cm minimum reported distance. This applies to all sensors

sold sfter February 20, 2013. All sensors sold before this date have 3 20cm minimum

rted distance.

MB1260-MB1360 ;
-—
_1050 cm
XL-MaxSonar®-EZ/AELO™ Beam Pattern)
Sample results for measured beam pattern are shown on a 30-cm grid. The detection
pattern is shown for dowels of varying diameters that are placed in front of the sensor _900cm
A 6.1-mm (0.25-inch) diameter dowel D 11-inch wide board moved left to right with (~30 ft.)
B 2.54-cm (1-inch) diameter dowel the board parallel to the front sensor face.
C 8.89-cm (3.5-inch) diameter dowel This shows the sensor’s range capability.
Note: For people detection the pattern _750cm
typically falls between charts A and B. (~251t.)
C
600 cm
@® 33v
/ N EAREKE _ 450 cm
A (~15 ft.)
- b —~300cm
- - : d (~101t.)
-
AK ° “ . A _150cm
[® e (~5 ft.)
HE _30cm
A & LT (~11t)
Beam Characteristics are Approximate
Beam Pattern drawn to a 1:95 scale for easy comparison to our other products.
MB1260/MB1360 MB1260/MB1360

Features and Benefits

« Shares same beam pattern with
MB1200/MB1300

» Maximum range of 1068cm to large
targets

» Low power consumption

- Easy to use interface

« Can detect people to approximately
18feet

« 3.3v to 5v operational voltage

Applications and Uses

» Great for people detection

« Security

« Motion detection

« Used with battery power

» Autonomous navigation

» Educational and hobby robotics
» Collision avoidance

+ Long range detection

189

Part Numbers

All part mymbers are a combination of a six-character base followed by a dash and a three-digit product code.
Please review the following table for more information on the three-digit product code.

M B 1

2 0 0

- 0

Wire

Base Housing Options
T
I
0 Not Applicable 0 Mo Options (Bagged) 0 No Wire
1 34" NPSWR 1 F-Option 1 Wire Attached
2 34" NPS WRC 2 P-Option
3 Ulira Compact 3 F-Option and P-Option
4 Ulira Compact Flush Mount 4 Mo Options (Trayed)
5 1" NPS 5 TTL (Bagged)
6 1" BSPP 7] TTL (Trayed)
7 J0MM 1.5
8 Extended Homn
The following table displays all of the active and valid part numbers for this product.
Active Part Numbers for
MB1200, MB1210, MB1220, MB1230, MB1240, MB1260 and MB1261
ME1200-000 |MB1210-000 |MB1220-000 |MB1230-000 |[ME1240-000 |[MB1260-000 |MB1261-000
ME1200-040 |MB1210-040 |MB1220-040 |MB1230-040 |[ME1240-040 |[MB1260-040 |MB1261-040
Active Part Numbers for
MB1300, MB1310, MB1320, MB1330, MB1340, MB1360 and MB1361
MB1300-000 |MB1310-000 |MB1320-000 |MB1330-000 |[ME1340-000 [MB1360-000 |MB1361-000
MB1300-040 |MB1310-040 |MB1320-040 |MB1330-040 |[ME1340-040 |[MB1360-040 |MB1361-040

XL-MaxSonar®- EZ/AE™ Series

190

Annex G — Earth-Humidity Sensor Datasheet

maks npuratien easine Tech Support: support@iteadstudio.com

Soil Moisture Sensor

Overview

)
-
(”

What is an electronic brick? An electronic brick is an electronic module which can be assembled like Lego bricks simply by
plugging in and pulling out. Compared to traditional universal boards and circuit modules assembled with various
electronic components, electronic brick has standardized interfaces, plug and play, simplifying construction of prototype
circuit on one’ s own. There are many types of electronic bricks, and we provide more than twenty types with different
functions including buttons, sensors, Bluetooth modules, etc, whose functions cover from sensor to motor drive, from
Ethernet to wireless communication via Bluetooth, and so on. We will continue to add more types to meet the various
needs of different projects.

Electronic brick of soil moisture sensor is mainly used to detect the moisture content in the soil. The control board can get

the moisture value or thresheld in the soil via analog or digital pins.

Features

1. Plug and play, easy to use. Compatible with the mainstream 2.54 interfaces and 4-Pin Grove interfaces in the market.

191

|(;.)mnsrmm

make mpevalion easiar Tech Support: support@iteadstudio.com

2. With use of M4 standard fixed holes, compatible with M4-standard kits such as Lego and Makeblock.

3. With switch to shift between analog and digital output. Able to read the specific soil moisture information (analog) or
the over-wet or over-dry soil information according to the threshold (digital). The adjustable potentiometer is used to
set the moisture threshold.

192

%l‘l‘EAllSl'Um

Tech Support: support@iteadstudio.com

4. With hysteresis comparator circuit for more stable digital output voltage.

Specifications
PCB size 71.65mm X 24.00mm X 1.6mm
Working voltage 3.30r 5V DC
Operating voltage 33 o0r5vVDC
Compatible interfaces 2.54 3-pin interface and 4-pin Grove interface@

Note 1 : D for digital output port, A for analog output port, S for analog/digital output port (defined according to the

switch), V and G for voltage at the common collector and ground respectively

Note 2 : When setting as analog output, output range is 0-3.3V or 0-5V according to the working voltage; when setting as
digital output, output is 0/3.3V or 0/5V according to the working voltage.

Electrical characteristics

Working voltage 21 5 5.5 vDC
Analog output voltage (VCC=5V) Vout 5 \
Digital output voltage (VCC=5V) 0 - \
Working current (VCC=5V) - 5 - mA
Threshold hysteresis AUth - VCC*0.09 - Vv

193

I(;)mnsnmm

Wk RLTaATien S asiRr Tech Support: support@iteadstudio.com

Hardware

. Hes |
(1] e
] e I | Digital Outpat
-y @ 11
- -
B nE
= = . — * AnalogThgital
mm mEm YCC _ . Oupm Switcher
L |
g & |Analog Cutput
.
Top view

Switch and indicator

1. Regulating of threshold voltage:

The threshold voltage is a voltage for comparison. When the soil moisture value read by the sensor is above the threshold
value, a low level (0V) will be digitally output; when the soil moisture value read by the sensor is below the threshold value,
a high level (3.3V or 5V) will be digitally output. In this way, the digital pin can be used directly to read the current soil
moisture value to see if it is above the threshold or not. The threshold voltage can be regulated by simply twisting the
potentiometer which is shown in Figure 1., and it increases by rotating to left side and decreases by rotating to right side.

194

q)rnmnsnmml

WS RN SRR Tech Support: support@iteadstudio.com

Vv

VCC GNIDY

133623
[y g e |

2. Switch to shift between analog and digital output

For 4-pin Grove interface, this switch makes no sense.

For § pin in 2.54mm 3-pin interface, it outputs analog signals when switch is pushed to A terminal and digital signals
when pushed to D terminal. When there is analog signal output, it can read the specific soil moisture value; when
there is digital signal output, it can only indicate whether the soil moisture value is above threshold value or not.

DEMO

1. Push the snap switch of sensor to analog output, connect S port to AD port of Arduino board, and we will use the

following program to read the analog value of soil and send it to computer for display via the serial port.

int ASignal = AD:;
void setup() {
Serial.begin(9600);

void loop() {
int sensorValue = analogRead(ASignal);

Serial.printin(sensorValue);

2. Push the snap switch of sensor to digital output, connect S port to D2 port of Arduine board, and we will use the
following program to read the digital value of soil and send the threshold to computer for display .

int DSIGNAL = 2;
void setup()

{
Serial.begin(9600);

195

|(;-)I'I'EAIISI'UIID

maks mpuratien easinr Tech Support: support@iteadstudio.com
pinMode(DSIGNAL, INPUT);

}

void loop()

{

int DsignalState = digitalRead(DSIGNAL);
Serial.printin(DsignalState);
delay(100);

}

Revision history

v1.0 Initial edition 12t April, 2013 Stan Lee Tse Zhe

196

Annex H — System Set-Up

To simplify the 10T System set-up a simple shell script was written, named “setup.sh”,
which only requires the user to insert well defined commands to manage the System and
the underlying Docker Images and Containers without the need to know Docker

commands.

echo "This is a script created to help set up the IoT System
Available commands:

create --> creates and starts the system containers based
on the docker-compose.yml file

pause --> pause the system containers (dooesn't delete
data)

unpause

stop --> stop the system containers without removing

start --> start stopped system containers

removeC --> remove system containers

removel --> remove system containers and images"

echo -n "Insert Command: "
read x

command="5x"
case "${command}" in
llhelpll)
echo "usage: commands
[create|pause|unpause|stop|start|remove]"

rs

"create")

echo "downloading images, creating containers, starting

containers"

docker-compose -p iotSystem up -d --remove-orphans

sleep 2
"pause")

echo "pausing containers"

docker-compose -p iotSystem pause
"unpause™)

echo "unpausing containers"

docker-compose -p iotSystem unpause
"StOp")

echo "stopping containers"

docker-compose -p iotSystem stop
"start")

echo "starting containers"

docker-compose -p iotSystem start
"removeC")

echo "removing containers"

docker-compose -p iotSystem down
"removel")

echo "removing containers and images"

docker-compose -p iotSystem down --rmi all

197

*)
echo "Command not Found."
Echo "usage: commands
[create|pause|unpause|stop|start|remove]"
exit 127;

rs

esac

When the set-up shell script is run, the following output is presented, Figure H.1, asking

the user to insert one of the commands available.

3 # ./setup.sh
This is a script created to help set up the IoT System
Available commands:

create --> creates and starts the system containers based on the docker-com
pose.yml file

pause --> pause the system containers (dooesn't delete data)

unpause

stop --> stop the system containers without removing

start --> start stopped system containers

removeC --> remove system containers
removel --> remove system containers and images
Insert Command:

Figure H.2 Set-Up Shell Script Output

The “create” command, runs the appropriate Docker-Compose command to pull the
necessary Images, create, configure and start the Containers as defined in the “docker-

compose.yml” file presented in the previous section.

The “pause” command, pauses the loT System Containers, which can be unpaused by

using the “unpause” command.

The “stop” command, stops the IoT System Containers, which can be started again, by

using the “start” command.
The “removeC” command, removes the [oT System Containers and all data is lost.

The “removel” commands, removes the IoT System Containers and the Docker Images

used to create them, allowing to restart from zero.

If none of the above commands is inserted, an error is returned, and the script exits.

198

“create” Command

Figure H.2 shows the Docker Images and Containers before the script execution, where

it is observed that there aren’t any Images and Containers.

:~# docker images

REPOSITORY TAG IMAGE ID CREATED SIZE
:~# docker ps -a

CONTAINER ID IMAGE COMMAND CREATED STAT

us PORTS NAMES

Figure H.3 Docker Images and Containers Before the Script Execution

Figure H.3 displays the script execution output, where it is possible to visualize the

downloading of the Images and the creation of the Containers.

:~fDesl fIoT- OTT_va# . [setup.sh
This is a scrlpt created to help set up the IoT System
Available commands:

create --> creates and starts the system containers based on the docker-com
pose.yml file

pause --> pause the system containers (dooesn't delete data)

unpause

stop --> stop the system containers without removing

start --> start stopped system containers

removelC --> remove system containers

removel --> remove system containers and images
Insert Command: create
downloding images, creating containers, starting containers
Creating network "iotsystem default" with the default driver
Pulling mongo-db (mongo:3.6)...
3.6: Pulling from library/mongo
Sbba3ecbd4cd6: Pull complete
c9f47d82692c: Pull complete
254ab97aaba6: Pull complete
1d7273ca6586: Pull complete
995a5e99cabdf: Pull complete
6c160d1e2f5a: Pull complete
d3444a609078: Pull complete
edb5f9bc4c64: Pull complete
f2c3deses5783: Pull complete
b6az2ibledce5: Pull complete
Digest: sha256:aaf24744dee3aeb61af6asbeddce5a4dsb2d544152fe35125fada311f11ec1ed
Status: Downloaded newer image for mongo:3.6
Pulling cygnus (fiware/cygnus-ngsi:latest)..
latest: Pulling from fiware/cygnus-ngsi
18b8eb7e7f@1: Pull complete
82bf57678464: Pull complete
91eb32dfab16: Pull complete
doddef297462: Pull complete
f154845d5ac@: Pull complete
S5dda6121eab3: Pull complete
Digest: sha256:10480137T0c34e0066904abe181a33635b4acb4dafo3faal803cf32cdb2f27af
Status: Downloaded newer image for fiware/cygnus-ngsi:latest
Pulling orion (fiware/orion:1.14.0)...
1.14.0: Pulling from fiware/orion
18b8eb7e7f01: Already exists
8dfe7feeff3b: Pull complete
Digest: sha256:414281d14b38ca486e27686288038afff96b287d723bfaad7dbb845b173e33a5
Status: Downloaded newer image for fiware/orion:1.14.0

Figure H.3 "create" Command Output — Part 1

199

Pulling mosquitto (eclipse-mosquitto:latest)...

latest: Pulling from library/eclipse-mosquitto

605celbd3f31: Pull complete

ad67714bead1: Pull complete

d2ddf5912b7f: Pull complete

Digest: sha256:bb177e7bd81746fc59b919cch84b6ffffbelec1f7f933fa68c3acadbabe364bs

Status: Downloaded newer image for eclipse-mosquitto:latest

Pulling sth-comet (fiware/sth-comet:latest)...

latest: Pulling from fiware/sth-comet

7dc@dca2b151: Pull complete

2bfifasidefs: Pull complete

9fbbc7256684: Pull complete

Digest: sha256:180dcfe2ff5b852c51adac5e5ddo14a22d651c3e5ee1b88fdagd40027b81ddbt

Status: Downloaded newer image for fiware/iotagent-ul:1.6.0

Creating db-mongo ..

Creating mosquitto .

Creating mosquitto

Creating db-mongo ... done

Creating fiware-orion

Creating fiware-cygnus

Creating fiware-iot-agent ...

Creating fiware-iot-agent

Creating fiware-orion

Creating fiware-cygnus ... done

Creating fiware-sth-comet ...

Creating fiware-sth-comet ... done
:~/Desktop/IoT-over-MQTT_v4# I

Figure H.4 "create" Command Output — Part 2

Figure H.4 shows the Docker Images and Containers after the script execution,

confirming that the Images where downloaded and that the Containers where created and

are running.

:~# docker images

REPOSITORY TAG IMAGE ID CREATED
mongo 3.6 7efbladc67ca 3 days ago
fiware/cygnus-ngsi latest OeBc48lea752 3 weeks ago
fiware/sth-comet latest 45e60618b71e 3 weeks ago
fiwareforion 1.14.0 92459152faf9 2 months ago
fiware/iotagent-ul 1.6.0 3c32a7efbefs 6 months ago
eclipse-mosquitto latest bds92a7asbcf 7 months ago
B
:~# docker ps -a

CONTAINER ID IMAGE COMMAND CREATED

STATUS PORTS NAMES
€5526336ae03 fiware/sth-comet "/bin/sh -c bin/sth" 15 minut
o Up 15 minutes 0.0.0.0:8666->8666/tcp fiwar
-comet
d5cfc735750e fiwarefcygnus-ngsi:latest "fcygnus-entrypoint..." 15 minut
o Up 15 minutes 0.0.0.0:5050->5050/tcp, 0.0.0.0:5080->5080/tcp fiwar
nus
82d62c55eb70 fiware/orion:1.14.0 "Jusr/bin/contextBro.." 15 minut
o Up 15 minutes 0.0.0.0:1026->1026/ tcp fiwar
on
93e8c6aefaa7 fiware/iotagent-ul:1.6.0 "/bin/sh -c 'bin/iot."” 15 minut
o Up 15 minutes 0.0.0.0:4041->4041/tcp, 0.0.0.0:7896->7896/tcp fiwar
-agent
c6681fe33183 mongo:3.6 "docker-entrypoint.s.." 15 minut
o Up 15 minutes 0.0.0.0:27017->27017 /tcp db-mo
741c99bagsds8l eclipse-mosquitto " /docker-entrypoint..." 15 minut
o Up 15 minutes 0.0.0.0:1883->1883/tcp, 0.0.0.0:9001->9001/tcp mosqu

-2 []

Figure H.5 Docker Images and Containers After the Script Execution

SIZE

368MB
516MB
303MB
272MB
375MB
4.38M

es ag
e-sth

es ag
e-cyg

es ag
e-ori

es ag
e-iot

es ag
ngo

es ag
itto

200

“pause” Command

Figure H.5 displays the script execution output, where it is observed that the Containers

where paused.

:~/Desktop/IoT-over-MQTT_va# . [fsetup.sh
This is a script created to help set up the IoT System
Available commands:

create --> creates and starts the system containers based on the docker-com
pose.yml file

pause --> pause the system containers (dooesn't delete data)

unpause

stop --> stop the system containers without removing

start --> start stopped system containers

removel --> remove system containers

removel --> remove system containers and images
Insert Command: pause
pausing containers

Pausing mosquitto ... done

Pausing db-mongo ... done

Pausing fiware-iot-agent ... done

Pausing fiware-orion ... done

Pausing fiware-cygnus ... done

Pausing fiware-sth-comet ... done
:~/Desktop/IoT-over-MQTT_vdi# I

Figure H.6 "pause" Command Output

Figure H.6 shows the Docker Containers after the script execution, confirming that the

Containers where indeed paused.

:~# docker ps -a

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS
NAMES
c5526336ae03 fiware/sth-comet "/bin/sh -c bin/sth" 18 minutes
ago Up 18 minutes (Paused) 0.08.0.0:8666->8666/tcp
fiware-sth-comet
d5cfc735750e fiware/cygnus-ngsi:latest "fcygnus-entrypoint..." 18 minutes
ago Up 18 minutes (Paused) 0.0.0.0:5050->5050/tcp, 0.0.0.0:5080->5080/tcp
fiware-cygnus
82d62c55eb7@ fiware/orion:1.14.0 "Jusr/bin/contextBro.." 18 minutes
ago Up 18 minutes (Paused) 0.0.0.0:1026->1026/tcp
fiware-orion
93e8c6aefaa’ fiware/iotagent-ul:1.6.0 "/binfsh -c 'bin/iot.." 18 minutes
ago Up 18 minutes (Paused) 0.0.0.0:4041->4041/tcp, 0.0.0.0:7896->7896/tcp
fiware-iot-agent
c66817e33183 mongo:3.6 "docker-entrypoint.s.." 18 minutes
ago Up 18 minutes (Paused) ©.0.0.0:27017->27017/tcp
db-mongo
741c99ba9ds81 eclipse-mosquitto "/docker-entrypoint..." 18 minutes
ago Up 18 minutes (Paused) 0.0.0.0:1883->1883/tcp, 0.0.0.0:9001-=9001/tcp
mosquitto

I ~# I

Figure H.7 Docker Containers After “pause” Command

201

“unpause” Command

Figure H.7 displays the script execution output, where it is observed that the Containers

where unpaused.

:—kafaktuh}IuT-uvfr-MQTT:vé# ./setup.sh
This is a script created to help set up the IoT System
Available commands:

create --> creates and starts the system containers based on the docker-com
pose.yml file

pause --> pause the system containers (dooesn't delete data)

unpause

stop --> stop the system containers without removing

start --> start stopped system containers

removeC --> remove system contailners

removel --> remove system containers and images
Insert Command: unpause
unpausing containers
Unpausing fiware-sth-comet ... done

Unpausing fiware-cygnus ... done
Unpausing fiware-orion ... done
Unpausing fiware-iot-agent ... done
Unpausing db-mongo ... done
Unpausing mosquitto ... done
:~fDesktop/IoT-over-MQTT_v4# I

Figure H.8 "unpause" Command Output

Figure H.8 shows the Docker Containers after the script execution, confirming that the

Containers where indeed unpaused.

:~# docker ps -a

CONTAINER ID IMAGE COMMAND CREATED

STATUS PORTS NAME
S
c€5526336ae03 fiware/sth-comet "/bin/sh -c bin/sth" 22 hours a
go Up 22 hours 0.0.0.0:8666->8666/tcp fiwa
re-sth-comet
d5cfc735750e fiware/cygnus-ngsi:latest "fcygnus-entrypoint..." 22 hours a
go Up 22 hours 0.0.0.0:5050-=5050/tcp, 0.0.0.0:5080->5080/tcp fiwa
re-cygnus
82d62c55eb70 fiwareforion:1.14.0 "fusr/bin/contextBro.." 22 hours a
go Up 22 hours 0.0.0.0:1026->1026/tcp fiwa
re-orion
93eBc6aefaa7 fiware/iotagent-ul:1.6.0 "/binfsh -c 'binfiot." 22 hours a
go Up 22 hours 0.0.0.0:4041->4041/tcp, 0.0.0.0:7896->7896/tcp fiwa
re-iot-agent
c6681Te33183 mongo:3.6 "docker-entrypoint.s.." 22 hours a
go Up 22 hours 0.0.0.0:27017->27017/tcp db-m
ongo
741c99baods1 eclipse-mosquitto "/docker-entrypoint..." 22 hours a
go Up 22 hours 0.0.0.0:1883->1883/tcp, 0.0.0.0:9001->9001/tcp mosq
uitto

=l |

Figure H.9 Docker Container After "unpause" Command

202

“stop” Command

Figure H.9 displays the script execution output, where it is observed that the Containers

where stopped.

:~/Desktop/IoT-over-MQTT_v4# .[setup.sh
This is a script created to help set up the IoT System
Available commands:

create --> creates and starts the system containers based on the docker-com
pose.yml file

pause --> pause the system containers (dooesn't delete data)

unpause

stop --> stop the system containers without removing

start --> start stopped system containers

removeC --=
removel --=
Insert Command: stop

remove system contailners
remove system containers and images

stopping containers

Stopping fiware-sth-comet ... done
Stopping fiware-cygnus . done
Stopping fiware-orion .. done
Stopping fiware-iot-agent ... done
Stopping db-mongo . done
Stopping mosquitto ... done

:~/Desktop/IoT-over-MQTT_v4# !

Figure H.10 "stop" Command Output

Figure H.10 shows the Docker Containers after the script execution, confirming that the

Containers where indeed stopped.

:~# docker ps -a

CONTAIMER ID IMAGE COMMAND CREATED

STATUS PORTS NAMES
9c116b828e53 fiware/sth-comet "/bin/sh -c bin/sth" 3 minutes
ago Exited (137) 2 minutes ago fiware-sth-comet
3205917fe338 fiwarefcygnus-ngsi:latest "fcygnus-entrypoint...” 3 minutes
ago Exited (137) 2 minutes ago fiware-cygnus
7252d65350ee fiwareforion:1.14.0 "fusr/bin/contextBro.." 3 minutes
ago Exited (@) 2 minutes ago fiware-orion
8déed7efbdee fiware/iotagent-ul:1.6.0 "/bin/sh -c 'binfiot.." 3 minutes
ago Exited (137) 2 minutes ago fiware-iot-agent
200afeeB8eBf eclipse-mosquitto " /docker-entrypoint..." 3 minutes
ago Exited (@) 2 minutes ago mosquitto
a7edfze3ad44 mongo:3.6 "docker-entrypoint.s.." 3 minutes
ago Exited (@) 2 minutes ago db-mongo

i~

Figure H.11 Docker Containers After "stop" Command

203

“start” Command

Figure H.11 displays the script execution output, where it is observed that the stopped

Containers where started.

:—fﬁfhkfﬁﬁfIﬁT-ﬁﬁfr-HUTT:¥4# . /setup.sh
This is a script created to help set up the IoT System
Available commands:

create --> creates and starts the system containers based on the docker-co
mpose.yml file

pause --> pause the system containers (dooesn't delete data)

unpause

stop --> stop the system containers without removing

start -->» start stopped system containers

removeC --> remove system contailners
removel --> remove system containers and images

Insert Command: start

starting containers

Starting mongo-db ... done

Starting cygnus ... done

Starting orion ... done

Starting mosquitto ... done

Starting sth-comet ... done

Starting iot-agent ... done

:~/Desktop/IoT-over-MQTT_v4# [

Figure H.12 "start" Command Output

Figure H.12 shows the Docker Containers after the script execution, confirming that the

Containers where indeed started.

:~# docker ps -a

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAME

5

9c116b828e53 fiware/sth-comet "/binfsh -c bin/sth" 4 minutes

ago Up 5 seconds 0.0.0.0:8666->8666/tcp fiwa

re-sth-comet

32605917Te338 fiware/cygnus-ngsi:latest "fcygnus-entrypoint..." 4 minutes

ago Up 6 seconds 0.0.0.0:5050->5050/tcp, 0.0.0.0:5080->5080/tcp fiwa

re-cygnus

7252d65350ee fiware/orion:1.14.0 "fusr/bin/contextBro.." 4 minutes

ago Up 4 seconds 0.0.0.0:1026->1026/tcp fiwa

re-orion

gdéed7efbdee fiware/iotagent-ul:1.6.0 "/bin/sh -c 'bin/iot."” 4 minutes

ago Up 2 seconds 0.0.0.0:4041->4041/tcp, 0.0.0.0:7896->7896/tcp fiwa

re-iot-agent

200a0eeB8Be8f eclipse-mosquitto " /docker-entrypoint..." 4 minutes

ago Up 3 seconds 0.0.0.0:1883->1883ftcp, 0.0.0.0:9001->9001/tcp mosq

uitto

a7edf203ad44 mongo:3.6 "docker-entrypoint.s.." 4 minutes

ago Up 7 seconds 0.0.0.0:27017->27017/tcp db-m

ongo

HE 4 I

Figure H.13 Docker Containers After "start" Command

204

“removeC” Command

Figure H.13 displays the script execution output, where it is observed that the Containers

where stopped and then removed.

:~/Des /IoT- TT sA# . [setup.sh
This is a SCFlpt created to help set up the IoT System
Available commands:

create --> creates and starts the system containers based on the docker-co
mpose.yml file

pause --> pause the system containers (dooesn't delete data)

unpause

stop --> stop the system containers without removing

start -->» start stopped system containers

removeC --> remove system contailners

removel --> remove system containers and images
Insert Command: removeC
removing containers
Stopping fiware-sth-comet ... done

Stopping fiware-cygnus ... done
Stopping fiware-orion ... done
Stopping fiware-iot-agent ... done
Stopping mosquitto ... done
Stopping db-mongo ... done
Removing fiware-sth-comet ... done
Removing fiware-cygnus ... done
Removing fiware-orion ... done
Removing fiware-iot-agent ... done
Removing mosquitto ... done
Removing db-mongo done
Removing network lotsystem default
Jes fIoT- QTT_va#

Figure H.14 "removeC" Command Output

Figure H.14 shows the Docker Images and Containers after the script execution,

confirming that the Containers where indeed removed and that the Images remained.

:~# docker images

REPOSITORY TAG IMAGE ID CREATED S5I
ZE
mongo 3.6 7efbladc67ca 4 days ago 36
8MB
fiware/cygnus-ngsi latest BeBc481ea752 3 weeks ago 51
6MB
fiware/sth-comet latest 45e60618b71e 3 weeks ago 30
3MB
fiware/forion 1.14.0 92459152faf9 2 months ago 27
2MB
fiware/iotagent-ul 1.6.0 3c32a7e@befs 6 months ago 37
S5MB
eclipse-mosquitto latest bd592a7asbcf 7 months ago 4.
38MB

:~# docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STA
TUs PORTS NAMES

~# I

Figure H.15 Docker Images and Containers After "removeC" Command

205

“removel” Command

Figure H.15 displays the script execution output, where it is observed that the Containers

where stopped and then removed, and the Images were also removed.

3 # ./setup.sh
This is a script created to help set up the IoT System
Available commands:

create --> creates and starts the system containers based on the docker-co
mpose.yml file

pause --> pause the system containers (dooesn't delete data)

unpause

stop --> stop the system containers without removing

start -->» start stopped system containers

removeC --> remove system contailners
removel --> remove system containers and images
Insert Command: removel
removing containers and images
Stopping fiware-sth-comet ... done
Stopping fiware-iot-agent ... done

Stopping fiware-cygnus ... done
Stopping fiware-orion ... done
Stopping mosquitto ... done
Stopping db-mongo ... done

Removing fiware-sth-comet ... done
Removing fiware-iot-agent ... done

Removing fiware-cygnus ... done
Removing fiware-orion ... done
Removing mosquitto ... done
Removing db-mongo . done

Removing network iotsystem default

Removing image mongo:3.6

Removing image fiware/cygnus-ngsi:latest

Removing image fiware/orion:1.14.8

Removing image eclipse-mosquitto

Removing image fiware/sth-comet

Removing image fiware/iotagent-ul:1.6.0 [
: #

Figure H.16 "removel” Command Output

Figure H.16 shows the Docker Images and Containers after the script execution,

confirming that the Images and Containers where indeed removed.

:~# docker images

REPOSITORY TAG IMAGE ID CREATED S1Z
E

:~# docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STA
TUsS PORTS NAMES

I ~# I

Figure H.17 Docker Images and Containers After "removel” Command

206

Annex | — Entities Creation Script

Farm001

curl -iX POST \
'http://localhost:1026/v2/entities' \
-H 'Content-Type: application/json' \
-H 'fiware-service: farmOne' \

curl -iX POST \
'http://localhost:1026/v2/entities' \
-H 'Content-Type: application/json' \
-H 'fiware-service: farmOne' \
_d '

"id": "urn:ngsi-1ld:Field:001",
"type": "Field",
"location": {
"type": "geo:json",
"value": {
"type": "Point",
"coordinates": [39.7489, -9.1534]
}
b
"name": {
"type": "Text",
"value": "Field A"
b
"area": {
"type": "Integer",
"value": "10"

_d '
{
"id": "urn:ngsi-1ld:Farm:001",
"type": "Farm",
"address": {
"type": "PostalAddress",
"value": {
"streetAddress": "Av. das Forcas Armadas 36",
"addressRegion": "Lisbon",
"addressLocality": "Lisbon",
"postalCode": "1649-026"
}
b
"location": {
"type": "geo:json",
"value": {
"type": "Point",
"coordinates": [38.7486, -9.1544]
}
b
"name": {
"type": "Text",
"value": "GIGA Farm"
}
}l
Fields

207

curl -iX POST \
'http://localhost:1026/v2/entities' \
-H 'Content-Type: application/json' \
-H 'fiware-service: farmOne' \

_d '

"id": "urn:ngsi-1d:Field:002",
"type": "Field",
"location": {
"type": "geo:json",
"value": {
"type": "Point",
"coordinates": [39.7489, -9.1534]
}
by
"name": {
"type": "Text",
"value": "Field B"

s

"area": {
"type": "Integer",
"Value" : "5"

}]

curl -iX POST \
'http://localhost:1026/v2/entities"' \
-H 'Content-Type: application/json' \
-H 'fiware-service: farmOne' \
_d 1

"id": "urn:ngsi-1d:Field:003",
"type": "Field",
"location": {
"type": "geo:json",
"value": {
"type": "Point",
"coordinates": [39.7489, -9.1534]
}
by
"name": {
"type" : "Text",
"value": "Field C"
by
"area": {
"type": "Integer",
"value" : "5"

} |l

Crops

curl -iX POST \
'http://localhost:1026/v2/entities"' \
-H 'Content-Type: application/json' \

-H 'fiware-service: farmOne' \
_d 1

"id": "urn:ngsi-1ld:Crop:001",
"type": "Crop",

208

"name": {
lltype" : "TeXt",
"value": "Apples"

}]

curl -iX POST \
'http://localhost:1026/v2/entities' \
-H 'Content-Type: application/json' \
-H 'fiware-service: farmOne' \
_d '

"id": "urn:ngsi-ld:Crop:002",
"type": "Crop",
"name": {

"type": "Text",

"value": "Tomatoes"

} A\l

curl -iX POST \
'http://localhost:1026/v2/entities"' \
-H 'Content-Type: application/json' \
-H 'fiware-service: farmOne' \

_d '
{
"id": "urn:ngsi-1d:Crop:003",
"type": "Crop",
"name": {
"type": "Text",
"value": "Corn"
}
}l
Well

curl -iX POST \
'http://localhost:1026/v2/entities"' \
-H 'Content-Type: application/json' \
-H 'fiware-service: farmOne' \
_d 1

"id": "urn:ngsi-1ld:Well:001",
"type": "Well",
"location": {
"type": "geo:json",
"value": {
"type": "Point",
"coordinates": [39.7489, -9.1534]
}
b
"name": {
"type": "Text",
"value": "Well One"
b
"depth": {
"type": "Integer",
"Value": "lo"

209

Tank

curl -iX POST \
'http://localhost:1026/v2/entities' \

-H 'Content-Type: application/json' \
-H 'fiware-service: farmOne' \
_d '

"id": "urn:ngsi-1d:Tank:001",
"type": "Tank",
"location": {
"type": "geo:json",
"value": {
"type": "Point",

"coordinates": [45.7489, -9.1534]
}
b
"name": {
"type": "Text",
"value": "Tank One"
by
"depth": {
"type": "Integer",
"value": "3"
}
}]
Borehole
curl -iX POST \
\

'http://localhost:1026/v2/entities’
-H 'Content-Type: application/json' \
-H 'fiware-service: farmOne' \

_d '

"id": "urn:ngsi-1d:Borehole:001",
"type": "Borehole",
"location": {
"type": "geo:json",
"value": {
"type": "Point",
"coordinates": [47.7489, -10.1534]

}
s

"name": {
"type": "Text",
"value": "Borehole One"

s
"depth": {
"type": "Integer",

"value": "20"

210

Annex J — Entities Association Script

Associlations

curl -iX POST \
'http://localhost:1026/v2/op/update' \
-H 'Content-Type: application/json' \
-H 'fiware-service: farmOne' \
-d '{
"actionType":"APPEND",
"entities": [
{
"id":"urn:ngsi-1d:Field:001", "type":"Field",
"refFarm": {
"type": "Relationship",
"value": "urn:ngsi-ld:Farm:001"
}y
"refTank": {
"type": "Relationship",
"value": "urn:ngsi-1d:Tank:001"

"id":"urn:ngsi-1d:Field:002", "type":"Field",
"refFarm": {
"type": "Relationship",
"value": "urn:ngsi-ld:Farm:001"
}y
"refWell": {
"type": "Relationship",
"value": "urn:ngsi-1d:Well:001"

"id":"urn:ngsi-1d:Field:003", "type":"Field",
"refFarm": {
"type": "Relationship",
"value": "urn:ngsi-ld:Farm:001"
s
"refwell": {
"type": "Relationship",
"value": "urn:ngsi-1d:Well:001"

"id":"urn:ngsi-1d:Crop:001", "type":"Crop",
"refFarm": {
"type": "Relationship",
"value": "urn:ngsi-1ld:Farm:001"
3y
"refField": {
"type": "Relationship",
"value": "urn:ngsi-1d:Field:001"

"id":"urn:ngsi-1d:Crop:002", "type":"Crop",
"refFarm": {

"type": "Relationship",

"value": "urn:ngsi-ld:Farm:001"

}y
"refField": {
"type": "Relationship",
"value": "urn:ngsi-1d:Field:002"

"id":"urn:ngsi-1d:Crop:003", "type":"Crop",
"refFarm": {
"type": "Relationship",
"value": "urn:ngsi-1ld:Farm:001"
b
"refField": {
"type": "Relationship",
"value": "urn:ngsi-1d:Field:003"

"id":"urn:ngsi-1d:Well:001", "type":"Well",
"refFarm": {

"type": "Relationship",

"value": "urn:ngsi-ld:Farm:001"

"id":"urn:ngsi-1d:Tank:001", "type":"Tank",
"refFarm": {

"type": "Relationship",

"value": "urn:ngsi-ld:Farm:001"

Annex K — Entities Modification Scripts

Borehole - Original Entity

#curl -iX POST \

'http://localhost:1026/v2/entities"' \
-H 'Content-Type: application/json' \
-H 'fiware-service: farmOne' \

_d '

—_~

"id": "urn:ngsi-1ld:Borehole:001",
"type": "Borehole",
"location": {
"type": "geo:json",
"value": {
"type": "Point",
"coordinates": [47.7489, -10.1534]
}
b
"name": {
"type": "Text",
"value": "Borehole One"
by
"depth": {
"type": "Integer",

oS S S SR SR e e Sk b o SR o e e 3k o o o

212

"value": "20"

#}!

Script “3_use_case_entities_modification_(1)_v1.sh”
#Overwrite a single attribute value (depth)

curl -iX PUT \

--url 'http://localhost:1026/v2/entities/urn:ngsi-
1d:Borehole:001/attrs/depth/value' \

--header 'Content-Type: text/plain' \

--header 'fiware-service: farmOne' \

--data 25

Script “3_use_case_entities_modification_(2)_v1.sh”
#Overwrite multiple attributes

curl -iX PATCH \
--url 'http://localhost:1026/v2/entities/urn:ngsi-
1d:Borehole:001/attrs"' \
--header 'Content-Type: application/json' \
--header 'fiware-service: farmOne' \

--data ' {
"name": {"type":"Text", "value": "Top Borehole"},
"depth":{"type":"Integer", "value": "30"}

Annex L — Entities Removal Scripts

Script “4_use_case_entities_removal_(1)_vl.sh”
Borehole - remove attribute
curl -iX DELETE 'http://localhost:1026/v2/entities/urn:ngsi-

1d:Borehole:001/attrs/depth' \
-H 'fiware-service: farmOne'

Script “4_use_case_entities_removal_(2) v1.sh”
Borehole - remove entity
curl -iX DELETE 'http://localhost:1026/v2/entities/urn:ngsi-

1d:Borehole: 001" \
-H 'fiware-service: farmOne'

213

Annex M — Service Group Provisioning Script

#field A service groups

curl -iX POST \
'http://localhost:4041/iot/services' \
-H 'Content-Type: application/json' \
-H 'fiware-service: openiot' \
-H 'fiware-servicepath: /fieldA/sensors' \

-d '{
"services": [
{
"apikey": "4jggokgpepnvsb2uv4ds40d59a",
"cbroker": "http://orion:1026",
"entity type": "Thing",
"resource": "

]
}]

curl -iX POST \
'http://localhost:4041/iot/services' \
-H 'Content-Type: application/json' \
-H 'fiware-service: openiot' \
-H 'fiware-servicepath: /fieldA/actuators' \

]
} A\l

#tank service groups

curl -iX POST \
'http://localhost:4041/iot/services' \
-H 'Content-Type: application/json' \
-H 'fiware-service: openiot' \
-H 'fiware-servicepath: /tank/sensors' \

]
} 1

curl -iX POST \
'http://localhost:4041/iot/services' \
-H 'Content-Type: application/json' \
-H 'fiware-service: openiot' \
-H 'fiware-servicepath: /tank/actuators' \
_d '{

-d '{
"services": [
{
"apikey": "4jggokgpepnvsb2uv4s40d59b",
"cbroker": "http://orion:1026",
"entity type": "Thing",
"resource": "

_d '{
"services": [
{
"apikey": "4jggokgpepnvsb2uv4s40d59c",
"cbroker": "http://orion:1026",
"entity type": "Thing",
"resource": "o

214

"services": [

{

"apikey": "4jggokgpepnvsb2uv4s40d459d",
"cbroker": "http://orion:1026",

"entity type": "Thing",

"resource": "

Annex N — Sensors Provisioning Script

curl -iX POST \
'http://localhost:4041/iot/devices' \
-H 'Content-Type: application/json' \
-H 'fiware-service: openiot' \
-H 'fiware-servicepath: /fieldA/sensors' \

-d "{
"devices": [
{
"device id": "weather001",
"entity name": "urn:ngsd-ld:Weather:001",
"entity type": "Weather",
"protocol": "PDI-IoTA-UltralLight",
"transport": "MQTT",
"timezone": "Europe/Lisbon",
"attributes": [
{ "object id": "h", "name": "humidity", "type": "percentage"
}y
{ "object id": "t", "name": "temperature", "type": "degrees"
}y
{ "object id": "i", "name": "heatIndex", "type": "degrees" }

1,

"static attributes": [

{"name" :"refField", "type": "Relationship", "value":
"urn:ngsi-1d:Field:001"},

{"name":"location", "type": "geo:point", "value": "40.392, -
3.759"}

]
}
]
} A\l

curl -iX POST \
'"http://localhost:4041/iot/devices' \
-H 'Content-Type: application/json' \
-H 'fiware-service: openiot' \
-H 'fiware-servicepath: /fieldA/sensors' \

_d l{
"devices": [
{

"device id": "earthHum001",
"entity name": "urn:ngsd-ld:EarthHum:001",
"entity type": "EarthHum",
"protocol": "PDI-IoTA-UltralLight",
"transport": "MQTT",
"timezone": "Europe/Lisbon",
"attributes": [

{"object id": "h", "name": "humidity", "type": "percentage"

}

215

1,
"static attributes": [
{"name" :"refField", "type": "Relationship", "value":
"urn:ngsi-1d:Field:001"},
{"name" :"refCrop", "type": "Relationship","value": "urn:ngsi-
1d:Crop:001"},
{"name" :"refAppleTree", "type": "Relationship","value":
"urn:ngsi-1ld:AppleTree: 001"},
{"name":"location", "type": "geo:point", "value": "40.392, -
3.759"}
]
}
]
}l
curl -iX POST \
'http://localhost:4041/iot/devices"' \
-H 'Content-Type: application/json' \
-H 'fiware-service: openiot' \
-H 'fiware-servicepath: /tank/sensors' \
_dl{
"devices": [
{
"device id": "waterLevelOO0O1",
"entity name": "urn:ngsd-ld:WaterLevel:001",
"entity type": "WaterLevel",
"protocol": "PDI-IoTA-UltraLight",
"transport": "MQTT",
"timezone": "Europe/Lisbon",
"attributes": [
{ "object id": "1", "name": "level", "type": "Double" }
1,
"static attributes": [
{ "name":"refTank", "type": "Relationship", "value":
"urn:ngsi-1d:Tank:001"},
{ "name":"location", "type": "geo:point", "value": "40.392, -
3.759"}
]
}
]
}l

Annex O — Actuators Provisioning Script

curl -iX POST \

-H 'Content-Type:

-H 'fiware-service:

-H 'fiware-servicepath:
_d ' {

"devices": [
{
"device id":
"entity name":
"entity type":
"protocol":
"transport":
"timezone":
"commands": [

'http://localhost:4041/iot/devices' \
application/Jjson' \
openiot' \

"valveOO1",
"urn:
"Valve",
"PDI-IoTA-UltralLight",
"MQTT" ,
"Europe/Lisbon",

/fieldA/actuators' \

ngsi-1d:Valve:001",

216

{ "name": "open", "type": "command" 1},
{ "name": "close", "type": "command" }
1,
"static attributes": [

{"name" :"refField", "type": "Relationship","value":
"urn:ngsi-1d:Field:001"},

{"name" :"refAppleTree", "type": "Relationship","value":
"urn:ngsi-1ld:AppleTree: 001"},

{"name":"location", "type": "geo:point", "value": "40.392,

-3.759"}
]
}
]
} A\l

curl -iX POST \
'http://localhost:4041/iot/devices"' \
-H 'Content-Type: application/json' \
-H 'fiware-service: openiot' \
-H 'fiware-servicepath: /tank/actuators' \

_d '{
"devices": [
{
"device id": "valveOO02",
"entity name": "urn:ngsi-ld:Valve:002",
"entity type": "Valve",
"protocol": "PDI-IoTA-UltralLight",
"transport": "MQTT",
"timezone": "Europe/Lisbon",
"commands": [
{ "name": "open", "type": "command" },
{ "name": "close", "type": "command" }
1,
"static attributes": [
{"name" :"refTank", "type": "Relationship","value":
"urn:ngsi-1d:Tank:001"},
{ "name":"location", "type": "geo:point", "value": "40.392,
-3.759"}

]
}

Annex P — Enabling Context Broker Commands Script

curl -iX POST \

'http://localhost:1026/v2/registrations' \
-H 'Content-Type: application/json' \
-H 'fiware-service: openiot' \
-H 'fiware-servicepath: /fieldA/actuators' \
_d l{
"description": "Valve Commands",
"dataProvided": {

"entities": [

{ "id": "urn:ngsi-1d:Valve:001", "type": "Valve" }

1,

"attrs": ["open", "close"]
by

"provider": {

217

"http": {"url": "http://orion:1026/v1"},
"legacyForwarding": true
}
} A\l

curl -iX POST \
'http://localhost:1026/v2/registrations' \
-H 'Content-Type: application/json' \
-H 'fiware-service: openiot' \
-H 'fiware-servicepath: /tank/actuators' \

-d '{
"description": "Valve Commands",
"dataProvided": {
"entities": [
{ "id": "urn:ngsi-1d:Valve:002", "type": "Valve" }
1,
"attrs": ["open", "close"]
b
"provider": {
"http": {"url": "http://orion:1026/v1"},
"legacyForwarding": true

Annex Q — Code for Testing the DHT?22 Sensor

// Example testing sketch for various DHT humidity/temperature
sensors

// Written by ladyada, public domain

#include "DHT.h"
#include <ESP8266WiFi.h>
#include <PubSubClient.h>

#define DHTPIN 2 // what digital pin we're connected to

// Uncomment whatever type you're using!

//#define DHTTYPE DHT11 // DHT 11

#define DHTTYPE DHT22 // DHT 22 (AM2302), AM2321
//#define DHTTYPE DHT21 // DHT 21 (AM2301)

// Connect pin 1 (on the left) of the sensor to +5V

// NOTE: If using a board with 3.3V logic like an Arduino Due
connect pin 1

// to 3.3V instead of 5V!

// Connect pin 2 of the sensor to whatever your DHTPIN is

// Connect pin 4 (on the right) of the sensor to GROUND

// Connect a 10K resistor from pin 2 (data) to pin 1 (power) of the
sensor

// Initialize DHT sensor.

// Note that older versions of this library took an optional third
parameter to

// tweak the timings for faster processors. This parameter is no
longer needed

// as the current DHT reading algorithm adjusts itself to work on
faster procs.

218

DHT dht (DHTPIN, DHTTYPE);

void setup() {
Serial.begin (9600);
Serial.println ("DHT22 test!"™);

dht.begin () ;
}

void loop () {
// Wait a few seconds between measurements.

delay (2000) ;

// Reading temperature or humidity takes about 250 milliseconds!
// Sensor readings may also be up to 2 seconds 'old' (its a very
slow sensor)

float h = dht.readHumidity () ;

// Read temperature as Celsius (the default)
float t = dht.readTemperature();

// Read temperature as Fahrenheit (isFahrenheit = true)
float f = dht.readTemperature(true);

// Check if any reads failed and exit early (to try again).

if (isnan(h) || disnan(t) || disnan(f)) {
Serial.println("Failed to read from DHT sensor!");
return;

}

// Compute heat index in Celsius (isFahreheit = false)

float hic = dht.computeHeatIndex(t, h, false);

Serial.print ("Humidity: ");
Serial.print (h);
Serial.print ("% "),
Serial.print ("Temperature: ");
Serial.print (t);
Serial.print ("*C ");
Serial.print ("Heat index: ");
Serial.print (hic);
Serial.println("*C ");

Annex R — Code for Testing the Ultrasonic Sensor

/*

Test code for the Arduino Uno

Written by Tom Bonar for testing

Sensors being used for this code are the MB12X0 from MaxBotix
*/

const int pwmPin = 2; //GPIO2 (PWM pin 4)

long sensorl, cm;

void setup () {

219

Serial.begin (9600) ;
pinMode (pwmPin, INPUT) ;
}

void read sensor () {
sensorl = pulseln (pwmPin, HIGH) ;
cm = sensorl/58;

}

void loop () {
read sensor();
printall () ;
delay (1000) ;

}

void printall ()
Serial.print ("S1"
Serial.print (" =
Serial.print (cm);
Serial.print ("cm");
Serial.println();

Annex S — Code for Testing the Earth-Humidity Sensor

//sensor dgital output to read the soil mosture, returns 1 above a
threshould defined by the potenciometer, otherwise returns 0

//int DSIGNAL = 2; //GPIO2 --> pin D4
//

//void setup() {

// Serial.begin (9600) ;

// pinMode (DSIGNAL, INPUT);

//}

//

//void loop () A

// int DsignalState = digitalRead (DSIGNAL) ;
// Serial.println(DsignalState);

// delay(1000);

//}

//sensor analog output to read the soil mosture
int ASignal = AQ; //ADC pin

void setup() {
Serial.begin (9600) ;
}

void loop () |

int sensorValue = analogRead(ASignal);

Serial.print ("ADC reading: ");

Serial.println (sensorValue) ;

int valuePercentage = map (sensorValue, 0, 1024, 100, 0); //convert
the ADC values to percentage

Serial.print ("Humidity Percentage: ");

Serial.println(valuePercentage) ;

delay (1000) ;

}

220

Annex T — Code for Sensing Measurements from DHT22 Sensor to the

loT Sensor

#include <ESP8266WiFi.h>
#include <PubSubClient.h>
#include "DHT.h"

const char *ssid = "***xxx"; // cannot be longer than 32 characters!
const char *pass = "**x*xxw. = //

// Update these with values suitable for your network.
IPAddress server (192, 168, 1, 06);

#define deviceId "weather001"
#define outTopic "/4jggokgpepnvsb2uv4ds40d59a/weather001/attrs" //
/apikey/deviceID/attrs

#define DHTPIN 2 // what digital pin we're connected to
#define DHTTYPE DHT22 // DHT 22 (AM2302), AM2321

DHT dht (DHTPIN, DHTTYPE); // Initialize DHT sensor.

WiFiClient wclient;
PubSubClient client (wclient, server):;

void setup() {
// Setup console
//Serial.begin (115200);
delay (10);

}

void loop () {
if (WiFi.status() != WL _CONNECTED) {
//Serial.print ("Connecting to ");
//Serial.print (ssid);
//Serial.println("...");
WiFi.begin(ssid, pass);

if (WiFi.waitForConnectResult () != WL CONNECTED)
return;
//Serial.println ("WiFi connected");

}

if (WiFi.status () == WL7CONNECTED) {
if (!client.connected()) {
if (client.connect (deviceId)) {
//client.set callback(callback);
}
}

if (client.connected())
client.loop();

float h = dht.readHumidity ()

// Read temperature as Celsius (the default)

float t = dht.readTemperature()

// Compute heat index in Celsius (isFahreheit = false)
float hic = dht.computeHeatIndex(t, h, false);

221

String ul = "h|" + String(h) + "|t|" + String(t) + "[i|" +
String(hic);

//Serial.print ("Publish message: ");
//Serial.println(ul);

//client.publish (outTopic, ul); //publish with QoS 0

//client.publish (MQTT: :Publish (outTopic, ul).set gos(1l));
//publish with QoS 1

client.publish (MQTT: :Publish (outTopic, ul).set gos(2));
//publish with QoS 2

delay (30000); //delay 30 seconds between messages transmissions

}

void callback(const MQTT: :Publish& pub) { //only when the device
susbcribes to messages (actuators)
// handle message arrived

}

Annex U — Code for Sensing Measurements from Ultrasonic Sensor to
the 10T System

#include <ESP8266WiFi.h>
#include <PubSubClient.h>

const char *ssid = "xxxxx"; // cannot be longer than 32 characters!
const char *pass = "kx**xxx", //

// Update these with values suitable for your network.
IPAddress server (192, 168, 1, 6);

#define deviceId "waterLevelOO1"
#define outTopic "/4jggokgpepnvsb2uv4dsd0d59c/waterLevel001/attrs™ //
/apikey/deviceID/attrs

const int pwmPin = 2; //GPIO2 (PWM pin 4)

const int tankDepth = 322; //tank is 3 meters deep + 22 cm of
minimum reading distance of the sensor (virtual 0)

long sensorl, cm;

WiFiClient wclient;
PubSubClient client (wclient, server);

void setup() {
// Setup console
//Serial.begin (115200) ;
delay (10);
pinMode (pwmPin, INPUT) ;
}

void loop () {
if (WiFi.status () != WL7CONNECTED) {

222

//Serial.print ("Connecting to ");
//Serial.print (ssid);
//Serial.println("...");
WiFi.begin(ssid, pass);

if (WiFi.waitForConnectResult () != WL CONNECTED)
return;
//Serial.println ("WiFi connected");

}

if (WiFi.status () == WL_CONNECTED) {
if (!client.connected()) {
if (client.connect (deviceId)) {
//client.set callback(callback);
}
}

if (client.connected())
client.loop();

read sensor();
//printall () ;

double waterLevel = tankDepth - cm;
String ul = "1|" + String(waterLevel);

//Serial.print ("Publish message: ");
//Serial.println(ul);

//client.publish (outTopic, ul); //publish with QoS 0

//client.publish (MQTT: :Publish (outTopic, ul).set gos(l));
//publish with QoS 1

client.publish (MQTT: :Publish (outTopic, ul).set gos(2));
//publish with QoS 2

delay (30000); //delay 30 seconds between messages transmissions
}
}

void read sensor() {
sensorl = pulseln (pwmPin, HIGH);
cm = sensorl / 58;

}

//void printall () {

// Serial.print ("S1");
// Serial.print (" = ");
// Serial.print (cm);

// Serial.print ("cm");
// Serial.println();
//}

void callback (const MQTT: :Publishé& pub) { //only when the device
susbcribes to messages (actuators)
// handle message arrived

}

223

Annex V — Code for Sensing Measurements from Earth-Humidity

Sensor to the 10T System

#include <ESP8266WiFi.h>
#include <PubSubClient.h>

const char *ssid MH KA A S // cannot be longer than 32 characters!
const char *pass = "**x*x*x", //

// Update these with values suitable for your network.
IPAddress server (192, 168, 1, 6);

#define deviceId "EarthHum0O01"
#define outTopic "/4jggokgpepnvsb2uv4ds40d59a/EarthHum001/attrs" //
/apikey/deviceID/attrs

WiFiClient wclient;
PubSubClient client (wclient, server):;

int ASignal = AQ; //ADC pin

void setup() {
// Setup console
//Serial.begin (115200);
delay (10);

}

void loop () {
if (WiFi.status() != WL_CONNECTED) {
//Serial.print ("Connecting to ");
//Serial.print (ssid);
//Serial.println("...");
WiFi.begin(ssid, pass);

if (WiFi.waitForConnectResult () != WL CONNECTED)
return;
//Serial.println ("WiFi connected");

}

if (WiFi.status () == WL CONNECTED) {
if (!client.connected()) {
if (client.connect (deviceId)) {
//client.set callback(callback);
}
}

if (client.connected())
client.loop();

int sensorValue = analogRead(ASignal);

//Serial.print ("ADC reading: ");

//Serial.println (sensorValue) ;

int valuePercentage = map (sensorValue, 0, 1024, 100, 0);
//convert the ADC values to percentage

String ul = "h|" + String(valuePercentage);

//Serial.print ("Publish message: ");

224

//Serial.println (ul);

//client.publish (outTopic, ul); //publish with QoS 0

//client.publish (MQTT: :Publish (outTopic, ul).set gos(1l));
//publish with QoS 1

client.publish (MQTT: :Publish (outTopic, ul).set gos(2));
//publish with QoS 2

delay (30000); //delay 30 seconds between messages transmissions

}
}

void callback(const MQTT::Publish& pub) { //only when the device
susbcribes to messages (actuators)
// handle message arrived

}

Annex W — Code for Receiving Commands from the 10T System

#include <ESP8266WiFi.h>
#include <PubSubClient.h>

const char *ssid = "***xxx"; // cannot be longer than 32 characters!
const char *pass = "**xxxn, //

// Update these with values suitable for your network.
IPAddress server (192, 168, 1, 6);

WiFiClient wclient;
PubSubClient client (wclient, server);

#define deviceId "valveOO01"

#define outTopic "/4jggokgpepnvsb2uv4s40d59b/valve00l/attrs"”
#define inTopic "/4jggokgpepnvsb2uv4s40d59b/valve00l/attrs"

void setup() {

// Setup console

//Serial.begin (115200) ;

delay (10);

pinMode (BUILTIN LED, OUTPUT); // Initialize the BUILTIN LED pin as
an output

digitalWrite (BUILTIN LED, HIGH); //turn LED OFF
}

void loop () {
if (WiFi.status () != WL7CONNECTED) {
//Serial.print ("Connecting to ");
//Serial.print (ssid);
//Serial.println("...");
WiFi.begin(ssid, pass);

if (WiFi.waitForConnectResult() != WL CONNECTED)
return;

//Serial.println ("WiFi connected");

225

if (WiFi.status () == WL_CONNECTED) {
if (!client.connected()) {
if (client.connect (devicelId)) {
client.set callback(callback);
client.subscribe (inTopic) ;

}

if (client.connected())
client.loop();

// Callback function | process the received message

void callback (const MQTT::Publishé& pub) {
// In order to republish this payload, a copy must be made
// as the orignal payload buffer will be overwritten whilst
// constructing the PUBLISH packet.

//Serial.print ("Message Received: ");
//Serial.println(pub.payload string());

String msg = pub.payload string();

if (String(msg) == "valveOOl@open|") { //execute command
digitalWrite(BUILTIN_LED, LOW); //LED ON

String reply = String(msg) + "Opened ok";
client.publish (MQTT: :Publish (outTopic, reply).set gos(2));
//reply
}
if (String(msg) == "valveOOl@close|") { //execute command
digitalWrite (BUILTIN LED, HIGH); //LED OFF

String reply = String(msg) + "Closed ok";
client.publish (MQTT::Publish (outTopic, reply).set gos(2));
//reply
}
}

Annex X — Available Commands to Control Actuators

#valve00l (fieldA) commands

curl -iX PATCH \
'http://localhost:1026/v2/entities/urn:ngsi-1d:Valve:001/attrs"' \
-H 'Content-Type: application/json' \
-H 'fiware-service: openiot' \
-H 'fiware-servicepath: /fieldA/actuators' \

_d v {

"open": {
"type" : "command",
"Value" mn

}
}]

curl -iX PATCH \

226

'http://localhost:1026/v2/entities/urn:ngsi-1d:Valve:001/attrs"' \
-H 'Content-Type: application/json' \

-H 'fiware-service: openiot' \

-H 'fiware-servicepath: /fieldA/actuators' \

_d ' {

"close": {
"type" : "command",
"Value" mn

}
}]

#valve002 (tank) commands

curl -iX PATCH \
'http://localhost:1026/v2/entities/urn:ngsi-1d:Valve:002/attrs' \
-H 'Content-Type: application/json' \
-H 'fiware-service: openiot' \
-H 'fiware-servicepath: /tank/actuators' \

_d ' {

"open": {
"type" : "command",
"Value" mn

}

}]

curl -iX PATCH \
'http://localhost:1026/v2/entities/urn:ngsi-1d:Valve:002/attrs' \
-H 'Content-Type: application/json' \
-H 'fiware-service: openiot' \
-H 'fiware-servicepath: /tank/actuators' \

_d ' {

"close"™: {
"type" : "command",
"Value" mn

Annex Y — Subscriptions Script

curl -iX POST \

'http://localhost:1026/v2/subscriptions' \

-H 'Content-Type: application/json' \

-H 'fiware-service: openiot' \

-H 'fiware-servicepath: /fieldA/sensors' \

-d '{

"description": "Notify me of temp higher than 30*C in all weather
sensors in field A",

"subject": {

"entities": [{"idPattern": ".*","type": "Weather"}],
"condition": {
"attrs": ["temperature"],
"expression": {
"g": "temperature>30"
}
}
by
"notification": {

227

"http": {

"url": "http://192.168.1.6:1028/accumulate"
b
"attrs": [

"temperature"

Annex Z — Data Persistence Script

weather sensors

curl -iX POST \

'http://localhost:1026/v2/subscriptions' \

-H 'Content-Type: application/json' \

-H 'fiware-service: openiot' \

-H 'fiware-servicepath: /fieldA/sensors' \

_d '{

"description":

change",

"subject": {
"entities": [

{

"Notify Cygnus of all weather sensors attrs

"idPattern": "Weather.*"

}
1,

"condition": {
"attrs": [
"humidity",
"temperature",
"heatIndex"

}
b
"notification": {
"http": {
"url": "http://cygnus:5050/notify"
b
"attrs": [
"humidity",
"temperature",
"heatIndex"
1,
"attrsFormat": "legacy"
}
}]

earth humidity sensors

curl -iX POST \
'http://localhost:1026/v2/subscriptions' \
-H 'Content-Type: application/json' \
-H 'fiware-service: openiot' \
-H 'fiware-servicepath: /fieldA/sensors' \
_d '{
"description":
change",
"subject": {

"Notify Cygnus of all earth humidity sensors attrs

228

"entities": [
{
"idPattern": "EarthHum.*"
}
1,
"condition": {
"attrs": [
"humidity"

}
}y
"notification": {
"http": {
"url": "http://cygnus:5050/notify"
}y
"attrs": [
"humidity"
1y
"attrsFormat": "legacy"
}
}]

waterlevel sensors

curl -iX POST \
'http://localhost:1026/v2/subscriptions’' \
-H 'Content-Type: application/json' \
-H 'fiware-service: openiot' \
-H 'fiware-servicepath: /tank/sensors' \
_d '{
"description":
change",
"subject": {
"entities": [
{

"idPattern": "WaterLevel.*"

}

"Notify Cygnus of all water level sensors attrs

1,

"condition": {
"attrs": [
"level"

}
s

"notification": {
"http": {
"url": "http://cygnus:5050/notify"

b
"attrs": [
"level"

1y

"attrsFormat": "legacy"

229

Annex AA — Paper

Universal Internet of Things System Powered by
FIWARE

Diogo Lopes
Department of Information Science and Technology
ISCTE-University Institute of Lisbon
Lisbon. Portugal
Diogo_Rodrigues{@iscte-iul pt

Abstracr— Internet of Things has grown exponentially in
recent vears and will continue to grow for some time, with ever
more IoT devices available, there are also increasingly systems
and platforms that use and support these devices, thus
providing the possibility to view information by these collected
or control them through a graphical interface, which can be a
website or an application.

Due to the expansion of the Internet market of Things
resulting from a wide variety of devices and systems from
different manufacturers it is difficult to find systems that are
compatible with all or several devices from different
manufacturers, since many use proprietary communication
protocols. This dissertation aims at the development of a
universal InT system using the FIWARE platform, promoted
by the European Commission, which allows the use of the
modular components that make up this platform to develop the
intended universal system.

A set of microcontrollers coupled to various sensors and
actuators will be used to test the system and to verify the
proper funcrioning of the same and each FIWARE component
used, which will communicate with the system transmitting the
collected data or receiving commands in the case of the
actuators.

Keyvwords— Internet of Things; FIWARE; Microconiroller;
Sensor; Actuator

I. INTRODUCTION (HEADING 1)

The Internet of Things is becoming more and more
popular, transition from only being know and used in the
industry to the general people, which are becoming ever
more dependent on the new IoT devices and services that
come out almost every day. For the general people these
devices can transform their way of live, making tasks easier
or even provide constant health monitoring, and all appears
to just work like a miracle, it 1s possible to connect these IoT
devices to a computer or smartphone and control them from
there and visualize the data collected by them However, in
reality, things are more complex than that, it 15 necessary to
have a whole system belund these devices and most of all
they all have to be able to communicate with each other,
which can be done directly or through the Internet.

To capitalize on the growth of the Internet of Tlungs. the
European Commussion promoted and created FIWARE. an
opensource smart solution platform. with the aim of bringing
the benefits of the Internet of Things and the Internet to
everyone. This is done by allowing everyone to use the
FIWARE technologies to develop new smart solutions,
easing the creation of new and mnovative services and
products before inexistent Nowadays FIWARE is an

Pedro Sebastido
Department of Information Science and Technology
ISCTE-University Institute of Lisbon
Instituto de Telecomumicagdes
Lisbon, Portugal
Pedro.Sebastiao@iscte-iul pt

independent foundation its community, being general people
or enterprises, 15 growing year after year making FIWARE
mereasingly know and adopted by new people and business.

A. Objectives

The maimn objective of tlus project i1s to develop an
Universal Internet of Things System Powered by FIWARE,
which as the name indicates it implies the implementation of
the available FIWARE techunologies and some other
complementary technologies as necessary, to create an IoT
System which can be used with an array of different devices.
sensors and actuators.

B. Document Sctucture
This article has five more chapters:

» FIWARE, a Bt of History:

+ Powered by FIWARE;

* Universal IoT System Powered by FIWARE:
» Future Work: Secunity Implementation;

+ Conclusions.

II. FTWARE, A BIT OF HISTORY

In 2011. the Internet had almost two billion users, The
European Commmssion launched a €300 mullion Future
Internet Public Private Partnership (FI-PPP) with the
objective of increasing and sharing the social and economic
benefits of the future Intemet with consumers, citizens,
prvate and public sectors [1]. The FI-PPP developed
FIWARE, which combined the best existing technologies to
create an opensource platform of compenents that could be
used to develop smart applications [1].

In autumn 2016, four big companies, Atos. Engineering,
Orange and Telefonica launched the FIWARE Foundation,
an open body within the FIWARE Community, with the
mtent of promoting. augmenting, protecting and validating
the FTWARE brand and its technologies (FIWARE Platform)
(121

III. POWERED BY FIWARE
The FIWARE Platform is a curated framework of
opensource components, named Generic Enablers (GEs),
which can be combined with other tlurd-party platform
components to hasten the development of smart solutions

31

230

In every smart solution it i1s essential to gather and
manage context information. process it and inform external
actors, allowing them to actuate and so change or ennich the
current context. The FIWARE Context Broker component is
the core constituent of any “Powered by FTIWARE” solution,
as 1t enables the system to update and access the current state
of context [3].

As the core, the Context Broker 1s in tum surrounded by
additional components. as shown in Figure 1. which can
supply context data from various sources (e.g., a Customer
Relationship Management (CRM) system. social networks,
mobile apps, IoT sensors), support to data processing,
analysis and visualization. or adding support to data access
control, publication or monetization [3].

*In Incubation | Business Real-time Processing of
Real-time | Intelligence| iMedia Streams (Kurento)
Processingof | (KNOWage} | i ‘siapata Context Analysis (Cosmeos)

Context Events .., .me--iCloud Edge (FogFlow®)

{Persea®)
- Context .S Handling
greartlop of | o] Processing, E =| | Authorizationand
pplication E Analysis, = Bl Access Control to
Dashboards | 15| visualization g% APIs [Keyrock,
(Wirecloud) | Core Context | E 5 | Wilma, AuthZFarce)
I%euetloptment of 1E| Management |2 2| Publication and
A oieagent® | |2] (Context Broker) = 5| = Monetization of
pplications | 5 | Context Information
(Orion, STH- | |@]Interface to loT, |5 84 .
fat : ; B =|| (CKAN Extensions,
Comet, Cygnus, | |7 Robotics, Third 3 .g Data/APIBiz
QuantumLeap*) Paﬂ!r 5:"“'?'3?,__.__ & Framework)
Connectionto loT || Connectionto | [Documents Exchange
(IDAS, OpenhTC*)| Robots (FastRTPS*) (Domibus*)

Fig. 1. FIWARE Generic Enablers (Based on Sources: [6] [7])

All communications between applications (frontend) or
platform components and the Context Broker (together form
the backend) are done with the use of the FIWARE NGSIv2
REST{ul API [4], a sumple and powerful open standard that
i the foture will align with the ETSI NGSI-LD [5]
specifications that are based and an evolution of the former,
and are currently available for public review [3].

The open standard characteristic of the FIWARE NGSI
API allows developers to port their applications across
different “Powered by FIWARE™ platforms and a guarantee
of a stable framework for future development [3]. Also,
additional functionalities can easily be added to a solution by
using FIWARE or third-party components that comply to the
FIWARE NGSI APL Smce all components comply to the
same AP, integration is simplified as all components use the
same standard mterface, eliminating vendor lock-in [3]. The
use of FIWARE also allows for rearchitecting solutions
according to the user or business needs, as all FIWARE
architectures are modular due to being made up of
independent components [3].

IV. UNIVERSALIOT SYSTEM POWERED BY FIWARE

As the name implies, a universal IoT system must be able
to commumcate with an array of devices regardless of the
comnmmication protocel used by these devices. The use of
the FIWARE enables this. as the protocols used by the
devices are converied by the IDAS component to the NGSI
API which is used internally and common to all FIWARE
components.

However, while the universality is the focus of this work,
the core of every FIWARE powered system is the context
management, which 1s done by using the Orion Context
Broker, and extended using three other components [6] [17]:

e The Orion Context Broker Generic Enabler, which
as the core component, allows the management of
context information in a highly decentralized and
large-scale manner, and provides the FIWARE
NGSIv2 RESTful APL enabling updates, queries or
subscriptions to changes on context mnformation saved
on a MongoDB database. However, as this GE only
holds the latest information about the current context,
the following components are used to save context
information permanently, allowing the visualization
of a context story;

s The STH-Comet Generic Enabler enables storing a
Short-Term History of context data (typically months)
on MongoDB;

* The Cygnus Generic Enabler enables managing the
history of context. created as a stream of data which
can be injected into several data smks, including some
of the most popular databases like PostereSQL.
MySQL, MongoDB or AWS DynamoDB as well as
BigData platforms like Hadoop, Storm. Spark or
Flink:

¢ The QuantumLeap Generic Enabler, has the same
functions as the STH-Comet GE. however, while the
later doesn’t yet support the NGSIv2 APL 1s tied to
MongoDB and somewhat obsolete, Quantumleap
supports several time-series databases (e.g.
InfluxDB, RetlunkDB and Crate). In its current state
1t only supports Crate, as it 1s easy scalable, supports
geo-quenies natively, has a nice SQL-like querying
and supports integration with visualization tools like
Grafana.

As mentioned at the beginming of tlus chapter, the
comnection with the devices for collecting information or
trigger actuations in response to context updates is done
using the IDAS component [6]:

s The Backend Device Management - IDAS Generic
Enabler offers a wide range of IoT Agents which
make it easier to interface with devices using the most
widely used IoT protocols:

o Lightweight Machine-to-Machine (LWM2M)
over Constramed Application Protocol (CoAP):
o JavaScript Object Notation (JSON) over

Hypertext Transfer Protocol/ Message Queuing
Telemetry Transport (HT TE/MQTT);

o Ultralight 2.0 over HTTP/MQTT:

o Open Platform
Architecture (OPC-UA);

o Long Range Wide Area Network (LoRaWAN).
It 15 also possible to develop custom IoT Agents for

specific protocols using the tools available for
developers.

As all FIWARE components are available as Docker
Images, 1t 15 possible to set-up a simple system architecture,
as exemplified in Figure 2. This system implements the

Communications-Unified

231

Onion Context Broker, Cygnus, STH-Comet and the
Ultralight 2.0 IoT Agent Generic Enablers; a MongoDB and
a Mosquitte MQTT Tbroker to handle MQTT
commmmications. Although this example only uses one type
of IoT Agent, muliiple Agents could be implemented at the
same time, and the same goes for the databases connected
and used by Cygnus, which can also use multiple databases
at the same time.

- >
Frontend | Backend

86668666
5080:50\82?0[7.‘1?01?
*—Cmus
S050:5050 27017:27017
cUEL, :
Orion o
tman. e
P?S ————» Confexl +————» e
WebApp, | 1o26-1026 Broker |2 /017:27017 e
Website MongaDB
$4041:4{Hl 'y
Ultralight
20T0T [#——
Agent |27017:27017
:1883:1883
Mosquitto [L Ihing

MQTT [+ # Thing
Broker [, Thing

Fig. 2. System Architecture Block Diagram

The Orion Context Broker, the core of the system. allows
the management of context mformation (creation, removal,
updates, queries, relationships. repistrations and
subscriptions) and 1ts availability [8].

The IoT Agent for UltraLight 2.0 provides a North Port
MNGSI interface used to interact with the Orion, and a South
Port to interact with the native protocol of the attached
devices, converting the protocols [9]. In this case the IoT
Agent converts NGSI requests to UltraLight 2.0 MQTT
topics for the Mosquitto MQTT Broker and vice-versa.

The Mosquitto MQTT Broker acts as the central
commumucation pownt between the IoT Agent and the IoT
devices, passing topics between them as necessary [10].

Since the Orion Context Broker only holds the most
recent context information, and rather than overload Ornon
with the task of keeping the context history, this task was
delegated to Cygnus, STH-Comet and Quantumleap [11].

Cygnus, persists context data into one or several
databases, creating a historical view of the context data to
which 1s subscribed to [11].

While both Cygnus and STH-Comet can be used to keep
a record of context information changes, Cygnus 1s only
capable of saving such changes infto several types of
databases and not perform queries, whereas STH-Comet can
only save changes to a MongoDB database it can also
retrieve time-based data aggregations [12].

STH-Comet can be configured to work in the following
operation modes [12]:

s Mimmal mode, simpler and easter to set-up. STH-
Comet is responsible for data collection and
interpretation:

s Formal mode. more flexible and future proof the
collection of data 1s done by Cygnus and the STH-
Comet only reads data from an existing database
(used in this system).

At the time tlus architecture was designed the
Quantuml eap Generic Enabler was in incubation and not yet
available, therefore 1t was not implement nor tested, and wall
not be further elaborated beyond the mnitial explanation
written at the beginning of this chapter.

The MongoDB database 1s used by Orion to hold context
information, such as entities, subscriptions and registrations;
by Cyegnus to hold time-based historical context data and by
STH-Comet to read said data (formal mode); and by the IoT
Apgent to hold information about devices, such as API Keys,
Ids and other attributes [10].

For testing proposes several devices, composed of a
microcontroller (NodeMeu Devkit v1.0 ESP8266 Wi-Fi
Module ESP-12E) like the one in Figure 3 connected to a
generic sensor (air temperature, air humidity or ultrasomc) or
actuator (simulated by tuming a LED on or off), were
comnected to the system. using the UltraLight 2.0 Protocol
over MQTT to communicate to the system.

Fig. 3. NedeMcu Devkit v1.0 (front)

After configunng the system (every component).
registering the devices in it, and program the devices by
using the Arduino IDE and using available libraries for
MQTT and the sensors it was possible to send data from the
sensors to the system, visualize the data by querymng the
Orion Context Broker (Figure 4, request sent by using
Postman), obtain the context listory by querying the STH-
Comet and control the actuators by sending commands to
Orion.

GET = hest:10 t 17opt ¥
caders
KEY VALUE
B wareservice operiot
Body
Preity]
I
“1d's "wrn:ngsd-ld:Weather: 881",
"type": "Heather”,
“TineInstant"; "2006-66- MT22:09:37.002",
“heatIndex”: *27.68",
6 *hunidi BO"

*location”: "48.392, -3.75%",
“refField": "urningsi-ld:Field:o0i",
"tenperature”: "26.34°

Fig. 4. Weather (Air Temperature and Humidity) Sensor Key Values

And also visualize data m all the databases used by each
component through the use of the MongoDB GUIL Compass.
as shown 1n Figure 5.

232

MongoDB ¢
Y Collection Help

ity - localhost:2T017 forle n-apeni|

My Cluster 4 locallostITT | STANGALGHE

oocuvenrs D SEHE

onon-openiot.entities

Documents
Leld

M TABLE Display

FEBATE | 153500RETT

Fig. 5. Received Data in the Weather Sensor Entity

Although the system works properly if implement as
shown before and on the devices part MQTT has security
features built in and only devices which know the API Key
can successful communicate with the system, if kept as 1t 1s,
anyone would be able to access the system it as no secunty
and access control are employed.

V. SECURITY IMPLEMENTATION

Due to the modularity of the FIWARE platform 1t 15
always possible to add to a system architecture new Generic
Enablers to mmprove said system or add new functionalities.
In this case, security features are added to the system by
implementing the following GEs [6]:

s The Identity Management - Kevrock Generic
Enabler provides secure and provate OAuth?
authentication of users and devices, management of
user profiles, safekeeping of personal data, Single
Sign-On (SSO) and Identity Federation over several
administration domains;

s The PEP-Proxy - Wilma Generic Enabler enables
proxy functions within OAuth? authentication
schemas and applies Policy Enforcement Point (PEP)
functions within an eXtensible Access Control
Markup Language (XACML) schema;

» The Authorization Policy Decision Point (PDP) —

AuthZForce Generic Enabler enforces Policy
Decision Pomt/Policy Authorization — Point
(PDP/PAP) functions within an access XACML
schema.

Figure 6, shows the iteration of previous system
architecture when the security related GEs are implemented.

-+ >
Frontend = Backend
1027:1027

Wilma PEP Proxy for STH-Comet

3005:3005
5080:50 pow— 2701727007 | o
1027:1027, Wilma ISOSO:SOSO 27017:27017
IPEP) | Orion
<URL, — o PO O}y et o e—
D Cyenus Broker 27017:27017
WebApp, 102¢6:1026 t4u41 A1
Website Wilma | | [iralight
PEP 2.0I0T [*
1027:1027 7| Proxy 27017:27017
for Orion 7806:7506
3005:3005) Iaﬂus-sms Wilma
o[Keyrock | 3005:3003 PEP
| Identity Proxy for
A005:3003 Manager IoT igem
$3306:3306 Sl883:1883
— Mosquitto [
— MQTT |« Thing
MySQL Broker == Thing

Fig. 6. System Architecture with Security GEs Block Diagram

Keyrock is used to create and manage accounts, roles and
permissions for humans and non-human objects like other
GEs (e.g., IoT Agent, Wilma PEP Proxy, Devices), which
are stored in a MySQL database. This GE 1s also responsible
for authenticating all accounts returming the user access
token if successful, which 1s then used in the requests header
[13][14].

The Wilma PEP Proxy is used to challenge the nghts of
every user, checking with Keyrock every request before
forwarding 1t to the protected GE. The scrutiny of the PEP
Proxy depends on the level of security configured [13] [15]
[16]:

s Level 1, checks if the token mcluded in the request
header corresponded to an authenticated user;

s Level 2. checks if the token included in the request
header comesponded to an authenticated user and 1f
the user roles allow it to access the specified
request;

s Level 3, checks if the token included in the request
header corresponded to an authenticated user and
other advanced parameters like the request headers
and body.

Although security 15 extremely important, these GEs are
still being studied therefore are not yet implement nor tested.
bemng the mitegration of these and the replacement of STH-
Comet and Cygnus with Quantuml eap the next phase of this
work.

VI. CONCLUSIONS

With this article it was demonstrated how to use the
FIWARE platform and its technologies to develop a modular
universal IoT System able to commumicate, control and
collet data from IoT devices over a wireless environment.

233

In the begmning. during the investigation period,
enormous difficulties were encountered due to poor
documentation and lack of practical examples. it was
possible to comprehend how to the Orion Context Broker
Genenic Enabler worker and how it was used., and what
Generic Enablers would have to be used. nevertheless,
progress was very slow. However., with the progressive
release by FIWARE of a senies of practical tutorials, stariing
i1 May and continuing during the followmg months, it was
possible to understand how the necessary GEs worked and
how to implement them.

Afterwards, the system was developed having been used
the following FTWARE Generic Enablers: Ornion Context
Broker, IoT Agent for Ultralight 2.0 Protocol, Cygnus and
STH-Comet; and also, a MongoDB database to store data,
the Compass GUI to visualize data in the databases. and a
Mosquitto MQTT Broker. The mteraction with the system
was done though cURL commands or by using the Postman
program.

During the system testing phase. each component was
tested by sending commands directly to them and by
implementing an array of IoT devices with sensors and
actuators, which proved that the system was working well as
intended.

However, due to the tume and effort spent on studying
and understanding FIWARE and its components some of the
desired features were not vet implemented. the GEs which
implement security were not used. a GUI was also not
developed, as it i1s necessary to give the system a focus
theme, and other IoT communication protocols, in addition
to MQTT, were also not implemented.

Despite this, the base work 15 done and will continue to
be improved and incremented.

A Future Work

As mentioned above. security. a GUI and other IoT
protocols were not implemented m this project.

Securnty:
* The use of the Keyrock Identity Management GE
implements QAuth 2.0 authentication for users and

devices, and user profile management, which 1s kept
in a SQL database;

* The use of the Wilma Proxy GE serves as a Policy
Enforcement Point as well as a proxy isolating the
rest of the system from the frontend. only allowing
authorized users to interact with the backend;

+ The AuthZForce PDP/PAP GE serves as a Policy
Decision Point and works 1n tandem with Wilma to
secure the system.

GUI (frontend):

* The GUI which can be an application or website, can
be developed using the appropniate technologies as an
application or website. which the student never used
and didn’t have tume to leam how to. However.
FIWARE also has a GE named Wirecloud which can
be used to develop operational dashboards. but the
problem of lack poor decumentation and practical
examples prevented the use of this GE.

(1

[2]

[3]
[4]

[3]

[6]

[8]

[9

[10]

[11]

[12]

[13]

[14]

[13]

Other IoT protocols:

s The MQTT protocol was used in this project.
however, MQTT 1is wusnally uwsed m Wi-Fi
environments were the connection to the Internet is
good. If the system was used in a situation where the
devices were located outdoor and distributed over a
large area, like m the test use case, then it would be
unrealistic to cover said area with Wi-Fi due to the
large number of antennas needed and the work
involved. That is where the use of protocols such as
LoRA which already has an IoT Agent available and
has a coverage radius of kilometers can be used.
although 1t also requires specific extra hardware that
increases the costs of implementation considerably.

REFERENCES

"FIWARE moves on: From research and innovation te setting
European standards and business success”, Digital Single Market,
2017. [Online]. Available: hitps://ec.europa eu/digital- smg].e—
market/en/news/fiware-moves-research-and-inmovation-setting-
european-standards-and-busmess-success. [Accessed: 30- J1u:l-2018]
"After the Open Day: from the FI-PPP to the FIWARE Foundation -
FIWARE", FIWARE, 2017. [Online]. Available:
https:/www fiware.org/2017/03/09/after-the-epen-day-from-the-fi-
ppp-to-the-fiware-foundation/. [Accessed: 30-Jun-2018]
"Developers - FIWARE". FIWARE. [Onlme]. Available:
https:/www_fiware .org/developers’. [Accessed: 30-Jun-2018]
1. Hiemro, M. Beyes, K Zangelin, I Leén, C. Brox, A. Navamo, M.
Capdevielle, G. Privat, S. Goimez and M. Bauer, "FIWARE-NGSI v2
Speciﬁ.caﬁom‘ Fiware.githubio, 2018 [Online]. Available:
http://fiware. github io/specifications ngsiv2/stable/. [Accessed: 01-
Jul-2018]
ETSL "Context Information Management (CIM); Application
Programming Interface (API)", ETSL 2018 [Online]. Avalable:
https://dochox etsi.org/ISG/CIM /OpenTSG_CIVM_NGSI-
LD _API Draft_for_public_review pdf [Accessed: 01-Jul- 2018]
"Developers Catalogue - FIWARE", FIWARE. [Online]. Available:
hetps:/www._fiware.org/developers/catalogue/. [Accessed: 01-Jul-

2018]

U. Ahle, "FIWARE Global Summit - FIWARE Today and
Tomorrow", 2018,

"Home - Fiware-Onon". Fiware-orionreadthedocsio. [Online].
Available: https://fiware-onon readthedocs io/en/latest!. [Accessed:

12-Aug-2018]

"IoT Agent - Step-by-Step”, Fiware-tutorials readthedocs.io, 2018.
[Online]. Available: https://fiware-
tutorials. readthedocs io/en/latest/iot-agentmdex html. [Accessed: 16-
Ang-2018]

"ToT over MQTT - Step-by-5Step”. Fiware-tutorials.readthedocs.io,
2018, [Online]. Awailable: https:/fiware-
tutorials.readthedocs io/enlatestiot-over-matt /index html.

[Accessed: 16-Ang-2018]
"Persisting Context - Step-by-Step”. Fiware-tutorials readthedocs io,
2018, [Online]. Available: https://fiware-
tutonials. readthedocs.io/en/latest histonc-context /mdex html.
[Accessed: 18-Ang-2018]
"Short Term History - Step-by-Step”, Flwm‘e—mtm'lals:eadl.hadocs ie,
2018, [Online]. “Available: https://fiware-
tutorials.readthedocs io/en/latest/short-term-history /index html.
[Accessed: 18-Ang-2018]
"Admimistrating Users - Step-by-Step”, Fiware-
tutorials readthedocs.io, 2013, [Online]. Awailable: https://fiware-
tutorials. readthedocs io/enlatest identity-management/index. html.
[Accessed: 20- Nov- 2018].
"Managing Roles and Permissions - Step-by-Step”, Fiware-
tutorials.readthedocs.io, 2018. [Online]. Awvailable: https:/fiware-
tutorials.readthedocs.io/en/latest/Toles-permissions/index html.
[Accessed: 20- Nov- 2018].
"Securing Application
tutorials. readthedocs.io,

Access -
2018. [Online].

Step-by-Step”, Fiware-
Available: https://fiware-

234

tutorials. readthedocs 10/en/latest/securing-access/index html. [17] "Home - Quantumleap”, Smarisdk github.io, 2018. [Online].

[Accessed: 20- Nov- 2018]. Available: https:/'smartsdk. github.io/mgsi-timeseries-api/. [Accessed:
[16] "ging/fiware-pep-proxy”, GitHub, 2018. [Online]. Available: 20- Nov- 2018].

https://github.com/ging/fiware-pep-

proxy/blob/master/doc/user_guide md#level-1-authentication.

[Accessed: 20- Nov- 2018].

235

Intentionally Left Blank

References

[1] K. Rose, S. Eldridge and L. Chapin, The Internet Of Things: An Overview. The
Internet Society, 2015 [Online]. Available: https://www.internetsociety.org/wp-
content/uploads/2017/08/ISOC-1oT-Overview-20151221-en.pdf. [Accessed: 15-Jun-
2018]

[2] "Internet Toaster, John Romkey, Simon Hackett", Livinginternet.com. [Online].
Available: https://www.livinginternet.com/i/ia_myths_toast.htm. [Accessed: 15-Jun-
2018]

[3] "Internet of Things At-a-Glance”, Cisco, 2016 [Online]. Available:
https://www.cisco.com/c/dam/en/us/products/collateral/se/internet-of-things/at-a-
glance-c45-731471.pdf. [Accessed: 15-Jun-2018]

[4] H. Tschofenig, ARM Ltd., J. Arkko, D. Thaler and D. McPherson, "Architectural
Considerations in Smart Object Networking”, RFC Editor, 2015 [Online]. Available:
https://www.rfc-editor.org/rfc/rfc7452.txt. [Accessed: 16-Jun-2018]

[5] C. Marsan, "IAB Releases Guidelines for Internet-of-Things Developers", IETF
Jounal, 2015 [Online]. Available: https://www.ietfjournal.org/iab-releases-guidelines-

for-internet-of-things-developers/. [Accessed: 16-Jun-2018]

[6] "Facebook scandal 'hit 87 million users™, BBC News, 2018. [Online]. Available:
https://www.bbc.com/news/technology-43649018. [Accessed: 16-Jun-2018]

[7] P. Paganini, "Using Unsecured loT Devices, DDoS Attacks Doubled in the First
Half of 2017", Security Affairs, 2017. [Online]. Available: https://securityaffairs.co
/wordpress/65827/hacking/iot-devices-ddos-attacks.html. [Accessed: 16-Jun-2018]

[8] C. Matyszczyk, "Samsung's warning: Our Smart TVs record your living room
chatter”, CNET, 2015. [Online]. Available: https://www.cnet.com/news/samsungs-

warning-our-smart-tvs-record-your-living-room-chatter/. [Accessed: 16-Jun-2018]

[9] M. Turck, "Growing Pains: The 2018 Internet of Things Landscape", Matt Turck,
2018. [Online]. Available: http://mattturck.com/iot2018/. [Accessed: 17-Jun-2018]

[10] "FIWARE moves on: From research and innovation to setting European standards

and business success”, Digital Single Market, 2017. [Online]. Available:

237

https://ec.europa.eu/digital-single-market/en/news/fiware-moves-research-and-

innovation-setting-european-standards-and-business-success. [Accessed: 30-Jun-2018]

[11] "After the Open Day: from the FI-PPP to the FIWARE Foundation - FIWARE",
FIWARE, 2017. [Online]. Available: https://www.fiware.org/2017/03/09/after-the-open-
day-from-the-fi-ppp-to-the-fiware-foundation/. [Accessed: 30-Jun-2018]

[12] "What is FIWARE? - FIWARE", FIWARE, 2011. [Online]. Available:
https://www.fiware.org/2011/05/17/what-is-fiware/. [Accessed: 30-Jun-2018]

[13] "About Us - FIWARE", FIWARE. [Online]. Available: https://www.fiware
.org/about-us/. [Accessed: 30-Jun-2018]

[14] "Developers - FIWARE", FIWARE. [Online]. Available: https://www.fiware
.org/developers/. [Accessed: 30-Jun-2018]

[15] "Smart Industry - FIWARE", FIWARE. [Online]. Available: https://www.fiware
.0rg /community /smart-industry/. [Accessed: 30-Jun-2018]

[16] J. Hierro, M. Reyes, K. Zangelin, I. Ledn, C. Brox, A. Navarro, M. Capdevielle,
G. Privat, S. Gdmez and M. Bauer, "FIWARE-NGSI v2 Specification", Fiware.github.io,
2018. [Online]. Awvailable: http://fiware.github.io/specifications/ngsiv2/stable/.
[Accessed: 01-Jul-2018]

[17] ETSI, "Context Information Management (CIM); Application Programming
Interface (API)", ETSI, 2018 [Online]. Available: https://docbox.etsi.org/ISG/CIM
/Open/ISG_CIM_NGSI-LD_API_Draft_for_public_review.pdf. [Accessed: 01-Jul-
2018]

[18] "Developers Catalogue - FIWARE", FIWARE. [Online]. Available:

https://www.fiware.org/developers/catalogue/. [Accessed: 01-Jul-2018]
[19] U. Ahle, "FIWARE Global Summit - FIWARE Today and Tomorrow", 2018.

[20] Engineering Group and FIWARE Foundation, "Engineering Group and FIWARE
Foundation announce Knowage as new FIWARE generic enabler for Business
Intelligence and Data Analytics on Context Data”, 2017 [Online]. Available:
https://www.knowage-suite.com/site/wp-content/uploads/2017/06/PR_Knowage
FIWARE.v2-revised-5.06.2017.pdf. [Accessed: 01- ul-2018]

238

[21] "Fiware-iotagent-ul - APl Walkthrough & Development intro”, Fiware-iotagent-
ul.readthedocs.io. [Online]. Available: https://fiware-iotagent-ul.readthedocs.io/en/latest

/usermanual/index.html#user-programmers-manual. [Accessed: 28-Jul-2018]

[22] "loT over MQTT - Step-by-Step"”, Fiware-tutorials.readthedocs.io, 2018.
[Online]. Awvailable: http://fiware-tutorials.readthedocs.io/en/latest/iot-over-mqtt/index
html. [Accessed: 28-Jul-2018]

[23] "MQTT Essentials Part 6: Quality of Service 0, 1 & 2", HiveMQ, 2015. [Online].
Available: https://www.hivemg.com/blog/magtt-essentials-part-6-mqtt-quality-of-service
-levels. [Accessed: 28-Jul-2018]

[24] "Docker overview", Docker Documentation. [Online]. Available:

https://docs.docker.com/engine/docker-overview/. [Accessed: 30-Jul-2018]

[25] "Get Started, Part 1: Orientation and setup”, Docker Documentation. [Online].
Available: https://docs.docker.com/get-started/. [Accessed: 30-Jul-2018]

[26] "Overview of Docker Compose”, Docker Documentation. [Online]. Available:

https://docs.docker.com/compose/overview/. [Accessed: 30-Jul-2018]

[27] "MongoDB Quick Guide", www.tutorialspoint.com. [Online]. Auvailable:
https://www.tutorialspoint.com/mongodb/mongodb_quick guide.htm. [Accessed: 30-
Jul- 2018]

[28] "What Is MongoDB?", MongoDB. [Online]. Available: https://www.mongodb
.com/ what-is-mongodb. [Accessed: 30-Jul-2018]

[29] "Getting Started — MongoDB Manual”, Docs.mongodb.com. [Online].
Available: https://docs.mongodb.com/manual/tutorial/getting-started/. [Accessed: 30-
Jul- 2018]

[30] L. Pires, Microcontroladores. 2010.
[31] L. Pires, Sensores e Transdutores. 2009.

[32] "Resisténcia LDR 3,4mm - sensor de luz", Electronicaembajadores.com, 2018.
[Online]. Available: https://www.electronicaembajadores.com/pt/Productos/Detalle
/SSLDR34/sensores/sensores-de-brilho-cor-/resistencia-ldr-3-4mm-sensor-de-luz.
[Accessed: 10-Aug-2018]

239

[33] "Switch”, 2015 [Online]. Awvailable: https://upload.wikimedia.org/wikiversity
len/7/7b/4.Switch.wiki.20150330.pdf. [Accessed: 10-Aug-2018]

[34] M. Inacio, "Sensores e Atuadores (2)", 2009.

[35] "Motor de engranajes DC RS Pro, Con escobillas, 3V, 1,5 — 3 V dc, 50 gcm, 2 -
2300 rpm, 16 W", Ptrs-online.com. [Online]. Available: https:/pt.rs-
online.com/web/p/motores-dc-con-caja-reductora/2389844/. [Accessed: 10- Aug- 2018]
[36] "LED, Diodo Emissor de Luz", Eletronica PT. [Online]. Available:
https://www.electronica-pt.com/led. [Accessed: 10-Aug-2018]

[37] "FIWARE Step-by-Step”, Fiware-tutorials.readthedocs.io, 2018. [Online].
Available: https://fiware-tutorials.readthedocs.io/en/latest/index.html. [Accessed: 12-
Aug- 2018]

[38] "Fiware/tutorials.Step-by-Step”, GitHub, 2018. [Online]. Available:
https://github.com/Fiware/tutorials.Step-by-Step. [Accessed: 12-Aug-2018]

[39] "Postman", Postman. [Online]. Available: https://www.getpostman.com/.
[Accessed: 12-Aug-2018]

[40] "Home - Fiware-Orion", Fiware-orion.readthedocs.io. [Online]. Available:
https://fiware-orion.readthedocs.io/en/latest/. [Accessed: 12-Aug-2018]

[41] "Entity Relationships - Step-by-Step”, Fiware-tutorials.readthedocs.io, 2018.
[Online]. Available: https://fiware-tutorials.readthedocs.io/en/latest/entity-relationships
/index.html. [Accessed: 12-Aug-2018]

[42] "Guidelines - Fiware-DataModels", Fiware-datamodels.readthedocs.io. [Online].
Available: http://fiware-datamodels.readthedocs.io/en/latest/guidelines/index.html.
[Accessed: 12-Aug-2018]

[43] "Home - schema.org”, Schema.org. [Online]. Available: http://schema.org/.
[Accessed: 12-Aug-2018]

[44] "GeoJSON", Geojson.org. [Online]. Available: http://geojson.org/. [Accessed:
12-Aug-2018]

240

[45] "Entity Relationships - Step-by-Step”, Fiware-tutorials.readthedocs.io, 2018.
[Online]. Available: https://fiware-tutorials.readthedocs.io/en/latest/entity-relationships
/index.html. [Accessed: 15-Aug-2018]

[46] "CRUD Operations - Step-by-Step”, Fiware-tutorials.readthedocs.io, 2018.
[Online]. Available: https://fiware-tutorials.readthedocs.io/en/latest/crud-operations
/index.html. [Accessed: 15-Aug-2018]

[47] "Subscriptions - Step-by-Step", Fiware-tutorials.readthedocs.io, 2018. [Online].
Available: https://fiware-tutorials.readthedocs.io/en/latest/subscriptions/index.html.
[Accessed: 15-Aug-2018]

[48] "loT Agent - Step-by-Step”, Fiware-tutorials.readthedocs.io, 2018. [Online].
Available: https://fiware-tutorials.readthedocs.io/en/latest/iot-agent/index.html.
[Accessed: 16-Aug-2018]

[49] "Eclipse Mosquitto an open source MQTT broker”, Eclipse Mosquitto, 2018.
[Online]. Available: https://mosquitto.org/. [Accessed: 16-Aug-2018]

[50] "loT over MQTT - Step-by-Step”, Fiware-tutorials.readthedocs.io, 2018.
[Online]. Awvailable: https://fiware-tutorials.readthedocs.io/en/latest/iot-over-mqtt
/index.html. [Accessed: 16-Aug-2018]

[51] "Persisting Context - Step-by-Step”, Fiware-tutorials.readthedocs.io, 2018.
[Online]. Awvailable: https://fiware-tutorials.readthedocs.io/en/latest/historic-context
/index.html. [Accessed: 18-Aug-2018]

[52] "Short Term History - Step-by-Step”, Fiware-tutorials.readthedocs.io, 2018.
[Online]. Awvailable: https:/fiware-tutorials.readthedocs.io/en/latest/short-term-history
/index.html. [Accessed: 18-Aug 2018]

[53] "Running Orion from command line - Fiware-Orion", Fiware-
orion.readthedocs.io. [Online]. Available: https://fiware-orion.readthedocs.io/en
/master/admin/cli/index.html#command-line-options. [Accessed: 18-Aug-2018]

[54] "Running Orion as system service - Fiware-Orion™, Fiware-orion.readthedocs.io.
[Online]. Awvailable: https://fiware-orion.readthedocs.io/en/master/admin/running
[#configuration-file. [Accessed: 18-Aug-2018]

241

[55] “telefonicaid/fiware-orion”, GitHub. [Online]. Available: https://github.com
/telefonicaid/fiware-orion/blob/master/etc/config/contextBroker. [Accessed: 18-Aug-
2018]

[56] "telefonicaid/iotagent-ul Installation & Administration Guide", GitHub. [Online].
Available: https://github.com/telefonicaid/iotagent-ul/blob/master/docs/installationguide
.md #installation. [Accessed: 18-Aug-2018]

[57] T"telefonicaid/fiware-cygnus cygnus-ngsi docker”, GitHub. [Online]. Available:
https://github.com/telefonicaid/fiware-cygnus/blob/master/doc/cygnus-ngsi/installation
_and_administration_guide/install_with_docker.md. [Accessed: 20-Aug-2018]

[58] "telefonicaid/fiware-sth-comet”, GitHub. [Online]. Available: https://github.com
ltelefonicaid/fiware-sth-comet/blob/master/rpom/EXAMPLES/sth_default.conf.
[Accessed: 20-Aug-2018]

[59] "NodeMcu -- An open-source firmware based on ESP8266 wifi-soc.",
Nodemcu.com. [Online]. Awvailable: http://www.nodemcu.com/index_en.html.
[Accessed: 22-Aug-2018]

[60] J. Alves, "ESP8266", jpralves.net, 2016. [Online]. Available:
https://jpralves.net/post/2016/11/15/esp8266.html. [Accessed: 22-Aug-2018]

[61] "nodemcu/nodemcu-devkit-v1.0", GitHub. [Online]. Available:
https://github.com /nodemcu/nodemcu-devkit-v1.0. [Accessed: 22-Aug-2018]

[62] Al - Thinker, ESP - 12E WiFi Module Version1.0. Al - Thinker, 2015 [Online].
Available: https://www.kloppenborg.net/images/blog/esp8266/esp8266-espl2e-specs
.pdf. [Accessed: 22-Aug-2018]

[63] "Nodemcu Pwm With Arduino Ide", Electronicwings.com. [Online]. Available:
http://www.electronicwings.com/nodemcu/nodemcu-pwm-with-arduino-ide. [Accessed:
22-Aug-2018]

[64] Handsontec, User Manual ESP8266 NodeMCU WiFi Devkit. Handsontec
[Online]. Available: http://www.handsontec.com/pdf_learn/esp8266-V10.pdf.
[Accessed: 22-Aug-2018]

[65] Awosong (Guangzhou) Electronics, Digital-output relative humidity & temperature
sensor/module AM2303. Aosong (Guangzhou) Electronics [Online]. Available:

242

https://www.electroschematics.com/wp-content/uploads/2015/02/DHT22-datasheet. pdf.
[Accessed: 22-Aug-2018]

[66] "Sensor de Umidade e Temperatura AM2302 DHT22", FilipeFlop. [Online].
Available: https://www.filipeflop.com/produto/sensor-de-umidade-e-temperatura-am
2302-dht22/. [Accessed: 22-Aug-2018]

[67] "DHT22 Temperature and humidity module SKU:SENO0137", Dfrobot.com, 2016.
[Online]. Awvailable: https://www.dfrobot.com/wiki/index.php/DHT22_Temperature_
and_humidity _module_SKU:SENO0137. [Accessed: 22-Aug-2018]

[68] MaxBotix, XL-MaxSonar-EZ Series High Performance Sonar Range Finder
MB1200, MB1210, MB1220, MB1230, MB1240, MB1260, MB1261, MB1300, MB1310,
MB1320, MB1330, MB1340, MB1360, MB1361. MaxBotix [Online]. Available:
https://www.maxbotix.com/documents/XL-MaxSonar-EZ_Datasheet.pdf. ~ [Accessed:
23-Aug-2018]

[69] S. Lee, Soil Moisture Sensor, 1st ed. ITEAD STUDIO, 2013 [Online]. Available:
http://ftp://imall.iteadstudio.com/Electronic_Brick/IM121017001/DS_1M121017001.pd
f. [Accessed: 23-Aug-2018]

[70] "How to Use an Ultrasonic Sensor with Arduino [With Code Examples]”,
MaxBotix Inc.. [Online]. Available: https://www.maxbotix.com/Arduino-Ultrasonic-
Sensors-085/. [Accessed: 23-Aug-2018]

[71] "Moisture Sensor”, Itead.cc, 2014. [Online]. Available: https://www.itead.cc
/wiki/Moisture_Sensor. [Accessed: 23-Aug-2018]

[72] "Imroy/pubsubclient A client library for the ESP8266 that provides support for
MQTT", GitHub. [Online]. Awvailable: https://github.com/Imroy/pubsubclient.
[Accessed: 23-Aug-2018]

[73] "telefonicaid/fiware-orion”, GitHub. [Online]. Available: https://github.com
ltelefonicaid/fiware-orion/blob/master/scripts/accumulator-server.py. [Accessed: 23-
Aug-2018]

[74] "Home - QuantumLeap”, Smartsdk.github.io, 2018. [Online]. Available:
https://smartsdk.github.io/ngsi-timeseries-api/. [Accessed: 20- Nov- 2018]

243

