

Department of Information Science and Technology

Universal Internet of Things System

Powered by FIWARE

Diogo Alexandre Rodrigues Lopes

Dissertation presented in partial fulfillment of the requirements for the degree of

Master in Telecommunications and Computer Engineering

Supervisor:

Pedro Joaquim Amaro Sebastião, Assistant Professor

ISCTE-IUL

December 2018

ii

iii

To those who continue to live forever within our memories

iv

v

Resumo

A Internet das Coisas tem crescido exponencialmente nos últimos anos e continuará a

crescer por algum tempo, com cada vez mais dispositivos IoT disponíveis no mercado de

consumo e específicos, havendo também cada vez mais sistemas e plataformas que

utilizam e suportam estes dispositivos, fornecendo assim a possibilidade de visualizar

informação por estes recolhida ou controlar os mesmos através de uma interface gráfica,

que pode ser um website ou uma aplicação.

Devido á expansão do mercado da Internet das Coisas resultante de haver uma grande

variedade de dispositivos e sistemas de diferentes fabricantes é difícil encontrar sistemas

que sejam compatíveis com todos ou vários dispositivos de diferentes fabricantes, pois

muitos utilizam protocolos de comunicação proprietários. Esta dissertação tem como

objectivo o desenvolvimento de um sistema IoT universal, utilizando-se para tal a

plataforma FIWARE, que foi impulsionada pela Comissão Europeia, e que permite

utilizando os componentes modulares que compõem esta plataforma, desenvolver o

sistema universal pretendido.

Para testar o sistema e comprovar o bom funcionamento do mesmo e de cada componente

FIWARE utilizado, serão utilizados um conjunto de microcontroladores acoplados a

diversos sensores e actuadores, que comunicarão com o sistema transmitindo os dados

recolhidos ou recebendo comandos no caso dos actuadores.

Estas “coisas” foram utilizadas no âmbito de um caso de estudo fictício simulando uma

implementação real do sistema, tendo-se conseguido com que este funcionasse

correctamente, capaz de receber dados dos sensores, apresentar os mesmos quando

necessário, e de controlar os actuadores.

Palavras-chave: Internet of Things; FIWARE; Microcontrolador; Sensor; Actuador

vi

vii

Abstract

Internet of Things has grown exponentially in recent years and will continue to grow for

some time, with more and more IoT devices available in the consumer market and

specific, there are also increasingly systems and platforms that use and support these

devices, thus providing the possibility to view information by these collected or control

them through a graphical interface, which can be a website or an application.

Due to the expansion of the Internet market of Things resulting from a wide variety of

devices and systems from different manufacturers it is difficult to find systems that are

compatible with all or several devices from different manufacturers, since many use

proprietary communication protocols. This dissertation aims at the development of an

universal IoT system using the FIWARE Platform, promoted by the European

Commission, which allows the use of the modular components that make up this platform

to develop the intended universal system.

A set of microcontrollers coupled to various sensors and actuators will be used to test the

system and to verify the proper functioning of the same and each FIWARE component

used, which will communicate with the system transmitting the collected data or receiving

commands in the case of the actuators.

These "things" were used in the context of a fictional use case simulating a real

implementation of the system, having been able to function properly, able to receive data

from the sensors, present data when necessary, and control the actuators.

Keywords: Internet of Things; FIWARE; Microcontroller; Sensor; Actuator

viii

ix

Contents

Resumo ... v

Abstract ... vii

List of Figures ... xv

List of Tables ... xxi

Abbreviations .. xxiii

Chapter 1 – Introduction ... 1

1.1 Objectives ... 1

1.2 Contributions .. 2

1.3 Document Structure .. 2

Chapter 2 – Literature Review.. 3

2.1 Internet of Things .. 3

2.1.1 Origins .. 3

2.1.2 Popularity ... 4

2.1.3 The Growth of Devices and Traffic ... 4

2.1.4 Communication Models ... 5

2.1.5 Security... 8

2.1.6 Privacy .. 9

2.1.7 Interoperability and Standards ... 10

2.2 FIWARE ... 13

2.2.1 What is FIWARE ... 14

2.2.1.1 FIWARE Lab ... 15

2.2.1.2 FIWARE Accelerate .. 15

2.2.1.3 FIWARE Mundus .. 15

2.2.1.4 FIWARE iHubs ... 15

2.2.2 Powered by FIWARE... 16

2.2.3 FIWARE Platform Components .. 17

2.2.3.1 Core Context Management .. 18

2.2.3.2 Interface to IoT, Robots and Third-Party Systems 19

2.2.3.3 Processing, Analysis and Visualization of Context Information 20

2.2.3.4 Context Data/API Management, Publication and Monetization 20

2.3 Used IoT Protocols ... 21

2.3.1 Ultralight 2.0 Protocol .. 21

2.3.1.1 Measure Payload Syntax ... 21

x

2.3.1.2 Commands Syntax ... 22

2.3.2 MQTT... 23

2.4 Docker ... 25

2.4.1 Docker Engine .. 26

2.4.2 Docker Architecture ... 27

2.4.3 Docker Images and Containers .. 27

2.4.4 Docker Compose .. 28

2.5 MongoDB ... 29

2.6 Hardware ... 29

2.6.1 Microcontrollers ... 29

2.6.1.1 Microcontroller Basic Architecture ... 29

2.6.2 Sensors ... 31

2.6.2.1 Sensors Classification .. 31

2.6.2.2 Passive Sensors .. 32

2.6.2.3 Active Sensors ... 33

2.6.2.4 Digital Sensors ... 35

2.6.3 Actuators .. 36

Chapter 3 – Universal IoT System Powered by FIWARE ... 39

3.1 System Architecture .. 40

3.1.1 Orion Context Broker ... 41

3.1.1.1 Data Model Guidelines .. 41

3.1.1.2 Service Health.. 42

3.1.1.3 Context Data Creation, Update, Delete ... 42

3.1.1.4 Context Data Relationships ... 44

3.1.1.5 Context Data Querying .. 45

3.1.1.6 Subscriptions ... 47

3.1.2 Ultralight 2.0 IoT Agent and Mosquitto MQTT Broker 49

3.1.2.1 Interaction Between the IoT Agent and Mosquitto MQTT Broker 49

3.1.2.2 IoT Agent Service Health .. 49

3.1.2.3 Mosquitto MQTT Broker Service Health .. 50

3.1.2.4 Connection of IoT Devices .. 51

3.1.2.5 Enable Context Broker Commands ... 54

3.1.3 Cygnus .. 55

3.1.3.1 Cygnus Service Health .. 55

3.1.3.2 Subscribing to Context Changes.. 55

xi

3.1.4 STH-Comet .. 56

3.1.4.1 STH-Comet Service Health ... 57

3.1.4.2 Formal Mode Data Aggregation .. 58

3.1.4.3 Time Series Data Queries .. 58

3.1.5 System Configuration Using Docker Compose ... 60

3.1.5.1 “docker-compose.yml” File ... 60

3.1.5.2 MongoDB Configuration ... 63

3.1.5.3 Orion Context Broker Configuration ... 63

3.1.5.4 Mosquitto MQTT Broker Configuration ... 64

3.1.5.5 IoT Agent Configuration ... 64

3.1.5.6 Cygnus Configuration ... 66

3.1.5.7 STH-Comet Configuration .. 68

3.2 IoT Device and Sensors Used ... 69

3.2.1 Microcontroller: NodeMcu Devkit v1.0 ESP8266 Wi-Fi Module ESP-12E . 70

3.2.2 Sensors ... 73

3.2.2.1 DHT22 Sensor (Air Temperature and Humidity Sensor) 73

3.2.2.2 XL-MaxSonar-EZ MB1260 Sensor (Ultrasonic Sensor) 74

3.2.2.3 Earth-Humidity Sensor .. 75

3.2.3 Power Supply ... 75

Chapter 4 – IoT System Tests and Results ... 77

4.1 Use Case: Control of Water (Irrigation and Supply) ... 77

4.2 System Tests and Results .. 78

4.2.1 System Set-Up .. 79

4.2.2 FIWARE Components Health Check .. 79

4.2.2.1 Orion Context Broker Health Check ... 80

4.2.2.2 IoT Agent Health Check .. 80

4.2.2.3 Cygnus Health Check .. 81

4.2.2.4 STH-Comet Health Check ... 81

4.2.2.5 Databases Created.. 82

4.2.3 Context Data Management ... 83

4.2.3.1 Entities Creation .. 84

4.2.3.2 Entities Association ... 86

4.2.3.3 Entities Modification ... 88

4.2.3.4 Entities Removal ... 90

4.2.4 Mosquitto MQTT Broker Health Check .. 92

xii

4.2.5 IoT Devices Management .. 93

4.2.5.1 Service Group Provisioning... 93

4.2.5.2 Sensors Provisioning ... 95

4.2.5.3 Actuators Provisioning .. 98

4.2.5.4 Enabling Context Broker Commands .. 102

4.2.6 IoT Devices .. 104

4.2.6.1 Test of DHT22 Sensor ... 104

4.2.6.2 Test of Ultrasonic Sensor .. 106

4.2.6.3 Test of Earth-Humidity Sensor .. 107

4.2.6.4 Sending Measurements from DHT22 Sensor to the IoT System 109

4.2.6.5 Sending Measurements from Ultrasonic Sensor to the IoT System 111

4.2.6.6 Sending Measurements from Earth-Humidity Sensor to the IoT System

 ... 113

4.2.6.7 Sending Commands from System to IoT Devices (Actuators) 114

4.2.7 Subscriptions .. 118

4.2.8 Data Persistence ... 121

4.2.9 Time-Series Data Queries .. 125

Chapter 5 – Conclusions ... 127

5.1 Main Conclusions ... 127

5.2 Future Work .. 128

Annexes .. 130

Annex A – FIWARE Orion Context Broker Configuration File 131

Annex B – Mosquitto MQTT Broker Configuration File ... 133

Annex C – ESP8266-12E Datasheet ... 151

Annex D – NodeMcu Devkit v1.0 ESP8266 Wi-Fi Module ESP-12E User Manual 168

Annex E – DHT22 Datasheet ... 175

Annex F – XL-MaxSonar-EZ MB1260 Sensor Datasheet 181

Annex G – Earth-Humidity Sensor Datasheet .. 191

Annex H – System Set-Up .. 197

“create” Command .. 199

“pause” Command ... 201

“unpause” Command ... 202

“stop” Command ... 203

“start” Command ... 204

“removeC” Command ... 205

xiii

“removeI” Command ... 206

Annex I – Entities Creation Script .. 207

Annex J – Entities Association Script ... 211

Annex K – Entities Modification Scripts .. 212

Annex L – Entities Removal Scripts ... 213

Annex M – Service Group Provisioning Script .. 214

Annex N – Sensors Provisioning Script ... 215

Annex O – Actuators Provisioning Script .. 216

Annex P – Enabling Context Broker Commands Script ... 217

Annex Q – Code for Testing the DHT22 Sensor .. 218

Annex R – Code for Testing the Ultrasonic Sensor .. 219

Annex S – Code for Testing the Earth-Humidity Sensor ... 220

Annex T – Code for Sensing Measurements from DHT22 Sensor to the IoT Sensor

 .. 221

Annex U – Code for Sensing Measurements from Ultrasonic Sensor to the IoT

System ... 222

Annex V – Code for Sensing Measurements from Earth-Humidity Sensor to the IoT

System ... 224

Annex W – Code for Receiving Commands from the IoT System 225

Annex X – Available Commands to Control Actuators ... 226

Annex Y – Subscriptions Script .. 227

Annex Z – Data Persistence Script ... 228

Annex AA – Paper .. 230

References .. 237

xiv

xv

List of Figures

Figure 2.1 Exemple of Device-to-Device Communication Pattern (Based on Sources: [1]

[4]) .. 5

Figure 2.2 Example of Device-to-Cloud Communication Pattern (Based on Sources: [1]

[4]) .. 6

Figure 2.3 Example of Device-to-Gateway Communication Pattern (Based on Sources:

[1] [4]) .. 7

Figure 2.4 Example of Back-End Data Sharing Pattern (Based on Sources: [1] [4]) 8

Figure 2.5 IoT 2018 Landscape - Applications (Based on Source: [9]) 12

Figure 2.6 IoT 2018 Landscape - Platforms (Based on Source: [9]) 12

Figure 2.7 IoT 2018 Landscape - Building Blocks (Based on Source: [9]) 13

Figure 2.8 Context Broker Processes (Source: [14]) .. 16

Figure 2.9 Example of a FIWARE Reference Architecture for Smart Industry (Source:

[15]) .. 16

Figure 2.10 FIWARE Generic Enablers (Based on Sources: [18] [19]) 18

Figure 2.11 MQTT Publish-Subscribe Model .. 24

Figure 2.12 Ultralight over HTTP (Based on Source: [22]) ... 24

Figure 2.13 Ultralight over MQTT (Based on Source: [22]) ... 25

Figure 2.14 Containers vs Virtual Machines (Source: [25]) .. 25

Figure 2.15 Representation of the Docker Engine (Source: [24]) 26

Figure 2.16 Representation of an Model Docker Architecture (Source: [24]) 27

Figure 2.17 Basic Architecture of a Microcontroller (Based on Source: [30]) 30

Figure 2.18 LDR (Source: [32]) ... 32

Figure 2.19 Capacitive Sensors (Source: [31]) ... 32

Figure 2.20 Inductive Sensors (Source: [31]) ... 33

Figure 2.21 Pressure Sensor (Source: [31]) .. 33

Figure 2.22 Electromagnetic Sensor (Source: [31]) ... 34

Figure 2.23 Thermocouple (Source: [31]) .. 34

Figure 2.24 Piezoelectric Sensors (Source: [31]) ... 35

Figure 2.25 Pyroelectric Sensor (Source: [31]) .. 35

Figure 2.26 Microswitch (Source: [33]) ... 36

Figure 2.27 Internal Schema of Actuators (Based on Source: [34]) 36

Figure 2.28 DC Motor with Gears (Source: [35]) .. 37

Figure 2.29 AC Motors (Source: [34]) ... 38

Figure 2.30 LEDs (Based on Source: [36]) .. 38

xvi

Figure 3.1 System Architecture Block Diagram .. 40

Figure 3.2 NodeMcu Devkit v1.0 (front) ... 70

Figure 3.3 NodeMcu Devkit v1.0 (back) .. 70

Figure 3.4 NodeMcu Devkit v1.0 Pinout (Based on Sources: [60] [61]) 71

Figure 3.5 NodeMcu Devkit v1.0 PWM Pins (Source: [63]) ... 72

Figure 3.6 ESP8266 Block Diagram (Source: [62]) ... 72

Figure 3.7 DHT22 Sensor (Source: [66]) ... 73

Figure 3.8 DFROBOT DHT22 Module (Source: [67]) .. 74

Figure 3.9 DFROBOT DHT22 Module Pinout (Source: [67]) 74

Figure 3.10 XL-MaxSonar-EZ MB1260 Ultrasonic Sensor [Source: [68]) 75

Figure 3.11 Earth-Humidity Sensor Module (Source: [4-33]) 75

Figure 4.1 Fictional Use Case Scheme ... 78

Figure 4.2 Orion Context Broker Health Check ... 80

Figure 4.3 IoT Agent Context Broker Health Check.. 80

Figure 4.4 Cygnus Health Check .. 81

Figure 4.5 STH-Comet Health Check .. 81

Figure 4.6 Connection of Compass to the MongoDB Cluster (MongoDB Docker

Container) ... 82

Figure 4.7 MongoDB Databases .. 83

Figure 4.8 Output of the Commands That Created the Entities – Part 2 85

Figure 4.9 MongoDB Database with the Created Entities ... 85

Figure 4.10 Visualization of an Entity Details ... 86

Figure 4.11 Output of the Command That Associated the Entities 87

Figure 4.12 Visualization of Entity Details .. 87

Figure 4.13 Query for All Entities Associated with the Farm Entity 88

Figure 4.14 Borehole Entity Key Values Before Changes ... 89

Figure 4.15 Output of the Command That Modified an Entity (1) 89

Figure 4.16 Borehole Entity Key Values After Changes (First Script) 89

Figure 4.17 Output of the Command That Modified an Entity (2) 90

Figure 4.18 Borehole Entity Key Values After Changes (Second Script) 90

Figure 4.19 Output of the Command That Removed an Entity Attribute 91

Figure 4.20 Borehole Entity Key Values After Removal of an Attribute (First Script). 91

Figure 4.21 Output of the Command That Removed an Entity (1) 91

Figure 4.22 A Query for the Borehole Entity Returns a “Not Found” Error 92

Figure 4.23 Creation of the MQTT Subscriber .. 92

xvii

Figure 4.24 Creation of the MQTT Publisher and Sending of a Message 92

Figure 4.25 Message Received by the MQTT Publisher.. 93

Figure 4.26 Output of the Commands That Created the Service Groups 94

Figure 4.27 Service Groups Created .. 95

Figure 4.28 Output of the Commands That Provisioned the Sensors 96

Figure 4.29 Provisioned Sensors in the IoT Agent ... 97

Figure 4.30 Provisioned Sensors Entities in Orion .. 98

Figure 4.31 Output of the Commands That Provisioned the Actuators 99

Figure 4.32 Provisioned Actuators in the IoT Agent ... 100

Figure 4.33 Provisioned Actuators Entities in Orion ... 101

Figure 4.34 Directory with the Actuators Commands .. 102

Figure 4.35 Output of the Commands That Enabled the Context Broker Commands for

the Actuators ... 103

Figure 4.36 Commands Enabled in Orion .. 103

Figure 4.37 Arduino Library Used for the DHT22 Sensor .. 104

Figure 4.38 Electrical Schematics for Connecting the DHT22 Sensor to the NodeMcu

ESP8266 Devkit v1.0 Board ... 104

Figure 4.39 DHT22 Sensor + NodeMcu Circuit Montage ... 105

Figure 4.40 Obtained Data from the DHT22 Sensor .. 105

Figure 4.41 Electrical Schematics for Connecting the Ultrasonic Sensor to the NodeMcu

ESP8266 Devkit v1.0 Board ... 106

Figure 4.42 Ultrasonic Sensor + NodeMcu Circuit Montage 106

Figure 4.43 Obtained Data from the Ultrasonic Sensor ... 107

Figure 4.44 Electrical Schematics for Connecting the Earth-Humidity Sensor to the

NodeMcu ESP8266 Devkit v1.0 Board .. 107

Figure 4.45 Earth-Humidity Sensor + NodeMcu Circuit Montage (1) 108

Figure 4.46 Earth-Humidity Sensor + NodeMcu Circuit Montage (2) 108

Figure 4.47 Obtained Data from the Earth-Humidity Sensor 109

Figure 4.48 Messages Received by the MQTT Subscriber and Sent by the Weather Sensor

 .. 110

Figure 4.49 Received Data in the Weather Sensor Entity .. 110

Figure 4.50 Weather Sensor Key Values ... 111

Figure 4.51 Messages Received by the MQTT Subscriber and Sent by the Water Level

Sensor ... 111

Figure 4.52 Received Data in the Water Level Sensor Entity 112

Figure 4.53 Water Level Sensor Key Values ... 112

xviii

Figure 4.54 Messages Received by the MQTT Subscriber and Sent by the Earth-Humidity

Sensor ... 113

Figure 4.55 Received Data in the Earth-Humidity Sensor Entity 113

Figure 4.56 Earth-Humidity Sensor Key Values .. 114

Figure 4.57 Output of the Command Sent to the Actuator ... 115

Figure 4.58 Messages Containing the Commands Sent to the Actuator and the Response

Received ... 115

Figure 4.59 Simulation of an Open Valve (Actuator) .. 115

Figure 4.60 State of the Valve Actuator in the Valve Actuator Entity 116

Figure 4.61 Valve Actuator Key Values After a “open” Command 117

Figure 4.62 Valve Actuator Key Values After a “open” and “close” Command 117

Figure 4.63 Output of the Commands That Enabled Notifications 118

Figure 4.64 Directory Containing Subscriptions .. 119

Figure 4.65 Startup of the Echo Server Used to Visualize Notification Sent by Orion 119

Figure 4.66 Notification Received by the Echo Server .. 120

Figure 4.67 Weather Sensor Key Values ... 120

Figure 4.68 Output of the Commands That Notified Cygnus of Data Alterations 121

Figure 4.69 Subscriptions that Notify Cygnus in the Orion Database 122

Figure 4.70 Cygnus Database where Collected Data is Saved 123

Figure 4.71 Historical Data of the Weather Sensor .. 124

Figure 4.72 Results of a Query for the First Three Collected Values of the Weather Sensor

 .. 125

Figure 5.1 Future System Architecture Block Diagram ... 129

Figure H.1 Set-Up Shell Script Output ... 198

Figure H.2 Docker Images and Containers Before the Script Execution 199

Figure H.3 "create" Command Output – Part 1 .. 199

Figure H.3 "create" Command Output – Part 2 .. 200

Figure H.4 Docker Images and Containers After the Script Execution 200

Figure H.5 "pause" Command Output .. 201

Figure H.6 Docker Containers After “pause” Command ... 201

Figure H.7 "unpause" Command Output .. 202

Figure H.8 Docker Container After "unpause" Command ... 202

Figure H.9 "stop" Command Output .. 203

Figure H.10 Docker Containers After "stop" Command .. 203

Figure H.11 "start" Command Output .. 204

Figure H.12 Docker Containers After "start" Command ... 204

xix

Figure H.13 "removeC" Command Output .. 205

Figure H.14 Docker Images and Containers After "removeC" Command 205

Figure H.15 "removeI" Command Output ... 206

Figure H.16 Docker Images and Containers After "removeI" Command 206

xx

xxi

List of Tables

Table 2.1 HTTP vs MQTT [22] ... 23

Table 3.1 STH-Comet Minimal Mode vs Formal Mode (Source: [52]) 57

Table 3.2 IoT Agent Environment Variables – Part 1 (Source: [50] [56]) 65

Table 3.2 IoT Agent Environment Variables – Part 2 (Source: [50] [56]) 66

Table 3.3 Cygnus Environment Variables – Part 1 (Source: [51] [57]) 67

Table 3.3 Cygnus Environment Variables – Part 2 (Source: [51] [57]) 68

Table 3.4 STH-Comet Environment Variables (Source: [52] [58]) 69

xxii

xxiii

Abbreviations

AC – Alternating Current

ADC – Analog-to-Digital Converter

ALG – Application-Layer Gateway

API – Application Programming Interfaces

AWS – Amazon Web Services

CKAN – Comprehensive Knowledge Archive Network

CLI – Command Line Interface

CoAP – Constrained Application Protocol

CPU – Central Processing Unit

CRM – Customer Relationship Management

CS – Chip Select

cURL – Client URL

DB – Database

DC – Direct Current

DoS – Denial-of-Service

DTLS – Datagram Transport Layer Security

EEPROM – Electrically Erasable Programmable Read-Only Memory

EN – Enable

ETSI – European Telecommunications Standards Institute

FastRTPS – Fast Real Time Publish Subscribe

FI-PPP – Future Internet Public Private Partnership

GE – Generic Enablers

GHz – Gigahertz

xxiv

GND – Ground

GPIO – General Purpose Input/Output

GUI – Graphical User Interface

H2020 – Horizon 2020

HCS – Hardware Chip Select

HMISO – Hardware Master In / Slave Out

HMOSI – Hardware Master Out / Slave In

HSCLK – Hardware Serial Clock

HSPI – Hardware Serial Peripheral Interface

HTTP – Hypertext Transfer Protocol

HTTPS – Hyper Text Transfer Protocol Secure

I/O – Input / Output

I2C – Inter-Integrated Circuit

IAB – Internet Architecture Board

ICT – Information and Communications Technology

IDE – Integrated Development Environment

IETF – Internet Engineering Task Force

IoT – Internet of Things

IP – Internet Protocol

JSON – JavaScript Object Notation

LDR – Light-Dependent Resistor

LED – Light Emitting Diode

LoRaWAN – Long Range Wide Area Network

LWM2M – Lightweight Machine-to-Machine

xxv

M2M – Machine-to-Machine

MISO – Master In / Slave Out

MOSI – Master Out / Slave In

MQTT – Message Queuing Telemetry Transport

NGSI – Next Generation Services Interface

NGSI-LD – Next Generation Services Interface - Linked Data

OAuth2 – Open Authorization 2.0

OneM2M – One Machine-to-Machine

OPC-UA – Open Platform Communications-Unified Architecture

OpenMTC – Open Machine Type Communication

OS – Operative System

PAP – Policy Authorization Point

PDP – Policy Decision Point

PEP – Policy Enforcement Point

PLL – Phase Locked Loop

PMU – Power Management Unit

PWM – Pulse-Width Modulation

QoS – Quality of Service

RAM – Random-Access Memory

REST – Representational State Transfer

RF – Radio frequency

RFC – Request for Comments

ROM – Read-Only Memory

RS232 – Recommended Standard 232

xxvi

RST – Reset

RX – Receiver

SCLK – Serial Clock

SDCLK – Secure Digital Clock

SDCMD – Secure Digital Command Line

SDD – Secure Digital Data

SDIO – Secure Digital Input Output

SMEs – Small-to-Medium Enterprises

SPI – Serial Peripheral Interface

SQL – Structured Query Language

SRAM – Static Random-Access Memory

SSH – Secure Shell

SSO – Single Sign-On

STH-Comet – Short-Term History - Comet

TCP – Transmission Control Protocol

TLS – Transport Layer Security

TOUT – Timer Output

TV – Television

TX – Transmitter

UART – Universal Asynchronous Receiver-Transmitter

UDP – User Datagram Protocol

UL2.0 – Ultralight 2.0 Protocol

URL – Uniform Resource Locator

URN – Uniform Resource Name

xxvii

USB – Universal Serial Bus

VCC – Voltage Common Collector

VCO – Voltage-Controlled Oscillator

VM – Virtual Machine

WPA – Wi-Fi Protected Access

XACML – eXtensible Access Control Markup Language

YAML – YAML Ain't Markup Language

xxviii

1

Chapter 1 – Introduction

The Internet of Things is becoming more and more popular, transition from only being

know and used in the industry to the general people, which are becoming ever more

dependent on the new IoT devices and services that come out almost every day. For the

general people these devices can transform their way of live, making tasks easier or even

provide constant health monitoring, and all appears to just work like a miracle, it is

possible to connect these IoT devices to a computer or smartphone and control them from

there and visualize the data collected by them. However, in reality, things are more

complex than that, it is necessary to have a whole system behind these devices and, above

all, they all have to be able to communicate with each other, which can be done directly

or through the Internet.

To capitalize on the growth of the Internet of Things, the European Commission promoted

and created FIWARE, an opensource smart solution platform, with the aim of bringing

the benefits of the Internet of Things and the Internet to everyone. This is done by

allowing everyone to use the FIWARE technologies to develop new smart solutions,

easing the creation of new and innovative services and products before inexistent.

Nowadays FIWARE is an independent foundation with a community, made of general

people and enterprises, which is growing year after year making FIWARE increasingly

known and adopted by new people and business.

1.1 Objectives

The main objective of this project is to develop an Universal Internet of Things System

Powered by FIWARE, which as the name indicates it implies the implementation of the

available FIWARE technologies and some other complementary technologies as

necessary, to create an IoT System which can be used with an array of different devices,

sensors and actuators.

To prove that the system is working correctly it is necessary to connect devices to it, a

practical use case will be used, making testing more interesting and serving as an example

of a type of application of the system.

2

1.2 Contributions

The main contribution of this dissertation is paving the way for whoever wants to use the

FIWARE Platform in future IoT projects.

A scientific paper based on the work done was also submitted to the IEEE 5th World

Forum on Internet of Things. The paper is available in Annex AA.

1.3 Document Structure

This document has the following structure:

- Chapter 1 – Introduction;

- Chapter 2 – Literature Review, where all technical-scientific knowledge which

serves as the bases for this project and necessary to understand it is given;

- Chapter 3 – Universal IoT System Powered by FIWARE, where all the pieces

that make the System are explained in detail;

- Chapter 4 – IoT System Tests and Results, where all the results of the

experiments done to the System are presented;

- Chapter 5 – Conclusion, where the main conclusions about the project and

future work that can be done are presented;

- Annexes, where extra and complementary information is presented.

3

Chapter 2 – Literature Review

This chapter contains all the technical-scientific knowledge collected from different

sources during the investigation phase, and then edited into an easy to read and understand

format with the purpose of allowing the reader to better understand the work done. All

credit for the collected knowledge goes to the respective authors.

2.1 Internet of Things

Over the last years, the Internet of Things (IoT) has become an increasingly growing topic

in technology, political and social spheres, becoming more and more popular year after

year as a wide variety of new products based on IoT that target the public and not only

the industry become available [1].

This technology is, in a simply way, the interconnection of an extensive of networked

products, systems and sensors, that take advantage of the newest advancements in

computing power, electronics miniaturization and network technologies, to offer new and

revolutionary capabilities that were once considered impossible [1].

2.1.1 Origins

The term “Internet of Things” was first coined by Kevin Ashton, a British technology

inventor, in 1999 to describe a system in which objects in the physical world could be

connected to the “Internet of Sensors”, currently, this term is used to designate situations

in which a series of objects, devices, sensors, and ordinary items are connected to the

Internet and have some computer capabilities [1].

Even though the term IoT was created in 1999, and has only recently became “famous”,

the truth is that the concept of interconnecting computers and networks to monitor and

control devices has been around for a long time [1]. By the end of 1970, systems that

relied on telephone lines to remotely monitor the power grid were already a reality [1]. In

the 90s, industrial solutions for equipment monitoring and operation become widespread

due to advancements in wireless technologies that allowed Machine-to-Machine (M2M)

scenarios [1]. However, many of these solutions were built on dedicated and closed

networks, and proprietary or industry specific standards, rather than on open Internet

4

standards and Internet Protocol (IP) based networks [1], which increased the complexity

and cost of implementation of such solutions.

In 1990, at an Internet conference, an IP-enabled toaster that could be turned on and off

over the Internet was introduced [2], paving the way for other “things” being connected

over the next years and originating a robust field of research and development into “smart

object networking”, creating the foundations of today’s Internet of Things [1].

2.1.2 Popularity

The “Internet of Things” popularity derives from a combination of factors, resulting from

the evolution and advancements made by the industry and technology [1]:

1) Low-cost, high-speed and widespread network connectivity;

2) Widespread IP-based networking;

3) Superior computing power at lower prices and better power efficiency;

4) Technology miniaturization;

5) Improvement of data analytics;

6) Growth of cloud computing.

2.1.3 The Growth of Devices and Traffic

As the number of “things” connected to the Internet rises, the amount of traffic generated

also rises significantly. Cisco estimates that Internet traffic generated by these devices

will rise to just about 70% in 2019, also forecasting that the number of M2M connections

will also rise to 43% [1]. These numbers will continue to grow as the number of smart,

connected devices continues to increase, being expected to exist 500 billion of “things”

connected to the Internet by 2030 [3] generating data that IoT applications use to

aggregate, analyze and deliver insight, helping drive more informed decisions and

actions.

5

2.1.4 Communication Models

In March 2015, a guiding architectural document for networking of smart objects (RFC

7452) [4] was released by the Internet Architecture Board (IAB) with the purpose of

outlining the four most common communication models used by IoT devices [1] [4]:

1) Device-to-Device:

The device-to-device communication model represents two or more devices that

directly communicate with each other, rather than through an intermediary

application server. The devices can communicate over many type of networks,

including IP networks, however the communication is more often established

using Bluetooth, Z-Wave or ZigBee, as shown in Figure 2.1.

Figure 2.1 Exemple of Device-to-Device Communication Pattern (Based on Sources: [1] [4])

This model is commonly used in home automation systems or similar, which use

small data packets to communicate between devices with low data requirements,

e.g. light bulbs, light switches, thermostats, door locks and some appliances.

This approach illustrates many of the interoperability challenges to be presented

in Sub-Section 2.1.7. An Internet Engineering Task Force (IETF) Journal article

describes, “these devices often have a direct relationship, they usually have built-

in security and trust [mechanisms], but they also use device-specific data models

that require redundant development efforts [by device manufacturers]” [5],

meaning that manufacturers need to invest time and money to implement device-

specific data formats rather than use open approaches that empower standard data

formats.

On the other hand, this situation limits the user’s choice since most of the time

devices of different manufacturers use different protocols that are not compatible,

6

forcing the user to select a family of devices that employ a common protocol

and/or are all of the same manufacturer. Although, the user can also benefit from

knowing that products within a family tend to communicate well.

2) Device-to-Cloud:

In this communication model, the devices connect directly the Internet, more

precisely to a cloud service like an application provider to exchange data and

control traffic. This model takes advantage of already existing Ethernet or Wi-Fi

networks to establish a connection between the device and the cloud, as shown in

Figure 2.2.

Figure 2.2 Example of Device-to-Cloud Communication Pattern (Based on Sources: [1] [4])

This model allows the device to send relevant data to a cloud database where the

data can be analyzed and provide relevant information to the user. It also enables

the user to obtain remote access to their device via a smartphone app or Web

interface, allowing also the manufacturer to update the software/firmware of

device. These or similar cases, add value to the user by extending the

functionalities of the device(s) beyond its native features.

Once again, like the model before, interoperability challenges can arise when

attempting to integrate devices of different vendors. Usually the devices and the

cloud service are of the same manufacturers, limiting the user choice, even more

if the proprietary data protocols are used to communicate to/from the cloud

service. At the same time, users can generally have assurance that devices

designed for the specific platform can be integrated seamlessly.

7

However, there are also opensource solutions like FIWARE that allow the

integration of devices that use different communication protocols, by translating

these protocols to one used internally by FIWARE.

3) Device-to-Gateway:

In this communication model, the device connects to an Application-Layer

Gateway (ALG) as a channel to reach a cloud service. This gateway acts as an

intermediary between the device and the cloud server, providing enhanced

security and other functionalities such as data or protocol translation. The model

is shown in Figure 2.3.

Figure 2.3 Example of Device-to-Gateway Communication Pattern (Based on Sources: [1] [4])

This model is often found in consumer devices, being the most common case, a

smartphone acting as a gateway to a device, e.g., fitness band communicates with

the smartphone running an app that relays the information to the cloud service.

This communication model is also usually used as a bridge when integrating new

devices into a legacy system not natively interoperable with.

8

The downside of this approach is that the development of the gateway increases

the complexity and cost of the system.

4) Back-End Sharing:

This communication model, denotes a communication architecture that enables

users to export and analyze devices data from a cloud service in combination with

data from other sources, also allowing sharing uploaded data with third parties.

This architecture allows the data collected from IoT devices to be aggregated and

analyzes in the cloud, also allowing the users to move their data when switching

between IoT services, breaking down the traditional data silos. This model also

tries to achieve interoperability between back-end systems. A representation of

this architecture is shown in Figure 2.4.

Figure 2.4 Example of Back-End Data Sharing Pattern (Based on Sources: [1] [4])

2.1.5 Security

Guaranteeing the security, reliability, resilience and stability of Internet applications and

services is critical to promoting trust and use of the Internet [1].

Internet users need to have the guarantee that the Internet, its applications and devices

linked to it are secure enough to use it, and the Internet of Things is no different in this

aspect, as security in IoT is deeply linked to the user’s capability to trust this environment

[1]. If people don’t believe in their connected devices and information are secure from

9

misuse or harm, the trust and reluctance in using the Internet and its services starts to

spread [1], e.g., Facebook and Cambridge Analytic scandal in 2018 [6]. Ensuring security

in IoT products and services should be a top priority [1].

As the number of connected devices to Internet increases, new opportunities to exploit

potential security vulnerabilities arise. Badly designed devices can expose data to theft

by leaving data streams inadequately protected; failing or malfunctioning devices can also

create security holes [1]. These problems are just as crucial for the devices in the Internet

of Things as they are for the computers that have been the endpoints of the Internet and

should be taken seriously [1]. Although due to the need of creating IoT devices with

competitive cost and the technical constraints that come with it, manufacturers often don’t

adequately design security features into them, originating security and long-term

maintainability vulnerabilities greater that their computer counterparts [1].

When combining the security design deficiencies in IoT devices with the sheer number

of these devices that continues to grow from day to day, coupling that to the highly

interconnected nature of such devices, every poorly secured device that is connected

online affects the security and resilience of the Internet globally [1], e.g., DoS attacks that

used millions of IoT devices [7].

Therefore, securing IoT devices should be considered a critical issue, has the number of

essential services that depend on these devices increase [1].

2.1.6 Privacy

The Internet of Things is frequently referred to as a large network of sensor-enabled

devices that collect data about the physical world, which often includes data related to

people [1]. This data often provides a benefit to the device’s owner, but most of the times

also to the manufacturer [1]. IoT data collection and use becomes a privacy consideration

when the observed individuals have different privacy outlooks about the use and scope of

that data than those of the data collector [1].

Benign collection of data and combination of IoT data streams can also jeopardize

people’s privacy [1]. The combination and correlation of several data streams is more

invasive as a detailed digital profile of an individual can be easily created, in contrast to

a single IoT data stream. It becomes particularly critical when IoT devices produce

10

additional metadata like time stamps and geolocation information, which add even more

detail to the user profile [1].

There may also be situations in which users are not aware that an IoT device is collecting

data about the individual and potentially sharing it with third parties [1]. An individual

may be in the presence of such devices without knowing that their conversations or

activities are being monitored [1], e.g., Samsung smart TVs recorded audio without the

users knowing [8]. Although these features can be of benefit to an informed user, they

can also pose a privacy problem for those unaware of the device’s presence or have no

influence on how the collected data is used [1].

The privacy concerns that come with the widespread of IoT must be addressed as they

have implications on people’s basic rights and the trust put onto the Internet [1].

2.1.7 Interoperability and Standards

Interoperability is the core value of the Internet, as the Internet can only work if connected

systems are able to understand each other, meaning using the same protocols and

encodings [1]. It is so important that the early Internet workshops for equipment vendors

were called “Interops”, also being the goal of the entire Internet Standards created and

published by the IETF [1].

Interoperability is also the basis of the open Internet, as barriers purposely erected to

impede the exchange of data can deny users the ability to connect, speak, share and

innovate [1]. Environments, in which users are only allowed to use a select subset of sites

and services, can considerably lessen the social, political and economic benefits of the

access to the whole Internet [1].

In theory, in a fully interoperable environment, any IoT device would be able to connect

and exchange data with any device or system, however, realistically interoperability is

complex, as it happens in varying degrees at different layers within the protocol stack

used [1]. Additionally, complete interoperability transversely is not always possible,

required or wanted, and if forcefully imposed, could provide deterrents for investment

and innovation [1].

Ignoring the technical aspects, interoperability has an enormous effect on the economic

impact of IoT [1]. Device interoperability, if well-defined and well-functioning,

11

encourages innovation and provides efficiencies for device manufacturers, increasing the

value of the IoT market [1]. Additionally, the implementation of current standards and

development of new open ones, help lessen entry barriers to the IoT world [1].

There are also some companies that see competitive and strategic advantages and,

incentives in building proprietary systems and having a curated environment, however,

economic opportunities may be hampered in a marketplace of silos [1].

Also, from the point of view of users of IoT devices, interoperability should be a

fundamental value, as it facilitates the choice of devices with the best features at the best

value and integrate them to work together [1]. Customers may hesitate to buy IoT devices

and services if there is inflexibility in integrating devices, high ownership complexity,

vendor lock-in or fear of deprecation due to changing standards [1].

The Figures 2.5, 2.6 and 2.7 show the vast Internet of Things world, as of 2018, divided

by three main groups: applications, platforms and building blocks. These figures

demonstrate why interoperability and standards are imperative.

12

Figure 2.5 IoT 2018 Landscape - Applications (Based on Source: [9])

Figure 2.6 IoT 2018 Landscape - Platforms (Based on Source: [9])

13

Figure 2.7 IoT 2018 Landscape - Building Blocks (Based on Source: [9])

2.2 FIWARE

In 2011, the Internet had almost two billion users, The European Commission launched

a €300 million Future Internet Public Private Partnership (FI-PPP) with the objective of

increasing and sharing the social and economic benefits of the future Internet with

consumers, citizens, private and public sectors [10]. The FI-PPP developed FIWARE,

which combined the best existing technologies to create an opensource platform of

components that could be used to develop smart applications [10]. The FI-PPP also

assisted entrepreneurs, startups, companies, researchers, engineers and academics using

the FIWARE components from the investigation and innovation stage up to the market

ready stage [10].

In 2016, five years later, the Internet had more than 3.75 billion users and hundreds of

startups and dozens of municipalities in Europe were already using FIWARE to provide

advanced digital services and smart apps, develop faster and at lower cost, since FIWARE

avoids vendor lock-in, removes commercial and technical barriers, and is based in

standard open service platform components [10].

14

In autumn 2016, four big companies, Atos, Engineering, Orange and Telefonica launched

the FIWARE Foundation, an open body within the FIWARE Community, with the intent

of promoting, augmenting, protecting and validating the FIWARE brand and its

technologies (FIWARE Platform) [10] [11]. The founding members were soon joined by

others, (e.g., companies, cities, institutions and individual contributors who wanted to

support FIWARE Community [10] [11]). The Foundation is financed by its members and

funds received for participation in several H2020 projects [10].

Currently the FIWARE Foundation has become the main interlocutor between the

opensource developer community, the industry and the end users in different vertical

business [10].

2.2.1 What is FIWARE

FIWARE can be easily defined as the opensource smart solution platform of choice [12].

The FIWARE Community is an independent open community devoted to the FIWARE

mission: “to build an open sustainable ecosystem around public, royalty-free and

implementation-driven software platform standards that will ease the development of new

Smart Applications in multiple sectors” [12]. The Community has as founding principles:

“independence in decision making, openness, transparency and meritocracy” [12].

The Community is formed by contributors to the FIWARE Platform and by those who

contribute in building and making the FIWARE ecosystem sustainable, committing

resources in FIWARE Lab activities or activities of the FIWARE Accelerator, FIWARE

Mundus or FIWARE iHubs programs [12].

The FIWARE Platform provides a set of public and royalty-free Application

Programming Interfaces (APIs) that facilitate the development of smart applications in

vertical sectors. In addition, an opensource reference implementation of every FIWARE

component is also freely available [12].

The FIWARE Community is structured in such a way that encourages all forms of

contributions and provides safeguards in case the balance between the members of the

community is lost [12]. The Community is organized in three teams: FIWARE Chapters,

Technical Committees, responsible for activities of technical nature, and Ecosystem

15

Support Committees, responsible for non-technical activities related to the FIWARE

Accelerator, FIWARE Mundus and FIWARE iHubs programs [12].

2.2.1.1 FIWARE Lab

FIWARE Lab is a non-commercial sandbox environment where members of the

FIWARE Community can research, experiment and test the FIWARE technologies as

well as their applications, making use of Open Data published by cities and other

organizations [13]. The Lab is set up over a geographically distributed network

of federated nodes leveraging on an ample variety of experimental infrastructures [13]. It

is important to note that resources are limited for trial members and unlimited for

members that have an approved project by FIWARE.

2.2.1.2 FIWARE Accelerate

The FIWARE Accelerator Program has the objective of incentivizing the use of FIWARE

technologies amongst solution integrators and application developers, with special

emphasis on Small-to-Medium Enterprises (SMEs) and start-ups [13].

2.2.1.3 FIWARE Mundus

Even thought FIWARE was created in Europe, it was designed from the start with the

objective of going global. The FIWARE Mundus program exists in order win over local

Information and Communications Technology (ICT) players and domain stakeholders

into using FIWARE, ultimately cooperating with local governments in diverse parts of

the world [13].

2.2.1.4 FIWARE iHubs

The FIWARE iHubs Program has the objective of supporting the formation and the

operations of iHubs nodes worldwide, eventually creating a network of iHubs that will

play an important role in building the community of developers adopting and contributing

to FIWARE [13].

16

2.2.2 Powered by FIWARE

The FIWARE Platform is a curated framework of opensource components, which can be

combined with other third-party platform components to hasten the development of smart

solutions [14].

In every smart solution it is essential to gather and manage context information, process

it and inform external actors, allowing them to actuate and so change or enrich the current

context. The FIWARE Context Broker component is the core constituent of any “Powered

by FIWARE” solution, as it enables the system to update and access the current state of

context, as depicted in Figure 2.8 [14].

Figure 2.8 Context Broker Processes (Source: [14])

As the core, the Context Broker is in turn surrounded by additional components, which

can supply context data from various sources (e.g., a Customer Relationship Management

(CRM) system, social networks, mobile apps, IoT sensors), support to data processing,

analysis and visualization, or adding support to data access control, publication or

monetization [14].

The Figure 2.9 shows an example of a FIWARE reference architecture where it is possible

to visualize the Context Broker surrounded by other components that together form a

system.

Figure 2.9 Example of a FIWARE Reference Architecture for Smart Industry (Source: [15])

17

All communications between applications (frontend) or platform components and the

Context Broker (together form the backend) are done with the use of the FIWARE

NGSIv2 RESTful API [16], a simple and powerful open standard that in the future will

align with the ETSI NGSI-LD [17] specifications that are based and an evolution of the

former, and are currently available for public review [14].

The open standard characteristic of the FIWARE NGSI API allows developers to port

their applications across different “Powered by FIWARE” platforms and a guarantee of

a stable framework for future development [14]. Also, additional functionalities can

easily be added to a solution by using FIWARE or third-party components that comply

to the FIWARE NGSI API. Since all components comply to the same API, integration is

simplified as all components use the same standard interface, eliminating vendor lock-in

[14]. The use of FIWARE also allows for rearchitecting solutions according to the user

or business needs, as all FIWARE architectures are modular due to being made up of

independent components [14].

2.2.3 FIWARE Platform Components

As said before, the FIWARE Platform is a curated framework of opensource components,

these components are named as Generic Enablers (GEs), and can be assembled together

and with other third-party components to build smart solutions [18].

Building around the FIWARE Orion Context Broker Generic Enabler, the core and only

mandatory GE of any “Powered by FIWARE” solution, a rich collection of

complementary FIWARE GEs are available, dealing with [18]:

- Interfacing with the IoT, Robots and third-party systems;

- Context Data/API management, publication and monetization;

- Processing, analysis and visualization of context information.

All of the available FIWARE GEs can be seen in Figure 2.10, although some are still in

incubation.

18

Figure 2.10 FIWARE Generic Enablers (Based on Sources: [18] [19])

Contrary to the FIWARE Orion Context Broker, the use of complementary FIWARE GEs

is not obligatory, as it is possible to develop a “Powered by FIWARE” solution with the

Orion GE and third-party components [18].

2.2.3.1 Core Context Management

The Orion Context Broker, as the core component, allows the management of context

information in a highly decentralized and large-scale manner. It also, provides the

FIWARE NGSIv2 RESTful API, enabling updates, queries or subscriptions to changes

on context information [18]. This GE only holds the latest information about the current

context, however, as context information changes over time it is important to save this

context history [18]. For that the following GEs, as part of the Core Context Management

Chapter, complement the Orion Context Broker [18]:

- The STH Comet Generic Enabler enables storing a Short-Term History of context

data (typically months) on MongoDB;

- The Cygnus Generic Enabler enables managing the history of context, created as

a stream of data which can be injected into several data sinks, including some of

19

the most popular databases like PostgreSQL, MySQL, MongoDB or AWS

DynamoDB as well as BigData platforms like Hadoop, Storm, Spark or Flink.

2.2.3.2 Interface to IoT, Robots and Third-Party Systems

Several GEs are available to facilitate the connection with the Internet of Things, Robots

and third-party systems for the purpose of collecting context information or trigger

actuations in response to context updates [18]:

- The Backend Device Management - IDAS Generic Enabler offers a wide range of

IoT Agents which make it easier to interface with devices using the most widely

used IoT protocols:

o Lightweight Machine-to-Machine (LWM2M) over Constrained

Application Protocol (CoAP);

o JavaScript Object Notation (JSON) over Hypertext Transfer Protocol/

Message Queuing Telemetry Transport (HTTP/MQTT);

o Ultralight 2.0 over HTTP/MQTT;

o Open Platform Communications-Unified Architecture (OPC-UA);

o Long Range Wide Area Network (LoRaWAN).

The tools to develop custom IoT Agents for specific protocols are also available

for developers.

The following Generic Enablers are, at the date of this document, under incubation within

this chapter [18]:

- The Fast Real Time Publish Subscribe (FastRTPS) Incubated Generic Enabler

helps to interface with robotics systems, having been adopted as the default

middleware in ROS2 (Robot Operating System 2.0);

- The Open Machine Type Communication (OpenMTC) Incubated Generic Enabler

is an open source implementation of the One Machine-to-Machine (OneM2M)

standard. A northbound interface with the Orion Context Broker is already

implemented in this GE.

20

2.2.3.3 Processing, Analysis and Visualization of Context Information

Various GEs are available, to ease the processing, analyzing or visualizing of context

information [18]:

- The Application Mashup - Wirecloud Generic Enabler, a powerful web mashup

platform which makes it easier to develop operational dashboards highly

customizable by end users;

- The Data Visualization - Knowage Generic Enabler, the implementation of

Knowage, a powerful Business Intelligence platform empowering business

analytics and analytics on context data [20];

- The Stream-oriented - Kurento Generic Enabler enables real-time processing of

media streams supporting the use of video cameras as sensors, and the integration

of advanced application functions, e.g., integrated audiovisual communications,

augmented reality, flexible media playing, recording;

- The BigData Analysis - Cosmos Generic Enabler enables an easy Bigdata analysis

over context information.

The following Generic Enablers are, at the date of this document, under incubation [18]:

- The FogFlow Incubated Generic Enabler is a distributed execution framework to

orchestrate dynamic processing flows over cloud and edges;

- The Cloud Messaging - AEON Incubated Generic Enabler provides a

communication channel middleware for the fast distribution of messages among

entities;

- The Electronic Data Exchange - Domibus Incubated Generic Enabler enables the

exchange of electronic data and documents in a reliable and trusted way.

2.2.3.4 Context Data/API Management, Publication and Monetization

The implementation of secure access to the components of a solution architecture is done

using the following Generic Enablers [18]:

- The Identity Management - Keyrock Generic Enabler provides secure and private

OAuth2 authentication of users and devices, management of user profiles,

safekeeping of personal data, Single Sign-On (SSO) and Identity Federation over

several administration domains;

21

- The PEP-Proxy - Wilma Generic Enabler enables proxy functions within OAuth2

authentication schemas and applies Policy Enforcement Point (PEP) functions

within an eXtensible Access Control Markup Language (XACML) schema;

- The Authorization Policy Decision Point (PDP) – AuthZForce Generic Enabler

enforces Policy Decision Point/Policy Authorization Point (PDP/PAP) functions

within an access XACML schema.

Generic Enablers for the publication and monetization of context data resources [18]:

- The Comprehensive Knowledge Archive Network (CKAN) extensions Generic

Enabler provides several add-ons permitting to extend current capabilities of the

CKAN Open Data publication platform, allowing the publication of datasets

matching right-time context data, the assignment of access terms and policies to

those datasets and the assignment of pricing and pay-per-use schemas to datasets;

- The Business API Ecosystem - Biz Framework Generic Enabler provides backend

support for Context API/Data monetization built on TM-Forum Business APIs.

2.3 Used IoT Protocols

As mentioned before the Backend Device Management - IDAS Generic Enabler offers a

wide range of IoT Agents that are responsible for translating the different IoT protocols

used by connected devices to the NGSIv2 API, the only language known by the other

FIWARE GEs. Of all the protocols IoT Agents available (each responsible for a different

protocol), only two were considered for this project: IoT Agent for Ultralight 2.0 over

HTTP/MQTT and IoT Agent for LoRa.

2.3.1 Ultralight 2.0 Protocol

Ultralight 2.0 is a lightweight text-based protocol designed for constrained devices and

communications, whose bandwidth and memory may be limited [21].

2.3.1.1 Measure Payload Syntax

The payload send from the devices is composed of a list of key-values pairs separated by

the “|” character, as shown in the example below [21].

22

t|30|h|60

In this example, two attributes are present, one named “t” with the value of “30” and

another named “h” with the value of “60”. It is also possible to send characters instead of

numbers [21].

It is also possible for the device to send a payload with a timestamp, but it is normally not

done as the IoT Agent can add a timestamp to the received messages, reducing the size

of the messages [21] [22].

2018-08-10T00:35:30Z|t|30|h|60

The attributes in the messages received are then mapped by the system to the correct

entities attributes, later explained and exemplified.

2.3.1.2 Commands Syntax

Commands are messages sent from the IoT Agent to devices, following the format below

[21].

<device name>@<command name>|<command value>

Example, in which a Robot is commanded to turn right:

Robot1@turn|right

In case a command requires parameters, the “command value” can be used as exemplified

[21]:

Robot1@turn|param1:1|param2:2

Since the character “=” is a forbidden character, “:” is used instead, otherwise the

command will fail and an error message will be returned [21].

After receiving commands, the devices shall respond following the format underneath

[22].

<device name>@<command name>|<result>

Example, of a reply:

Robot1@turn|Right Ok

The Ultralight 2.0 protocol defines the measurements and commands syntax; however, it

does not specify the transport protocol [21]. The IoT Agent currently supports two

transport protocol bindings: HTTP and MQTT [21]; of the two the MQTT binding was

23

chosen due to the existence of a tutorial describing how to configure the IoT Agent to use

MQTT, and due to HTPP not being the ideal protocol for IoT [22].

2.3.2 MQTT

Message Queuing Telemetry Transport (MQTT) is a publish-subscribe messaging

protocol used in the Internet of Things, where a “small code footprint” is required and the

network bandwidth is limited [22]. This protocol has the key characteristic of being

bandwidth and power efficient [22].

The Ultralight 2.0 protocol can be carried over HTTP or MQTT [21]. HTTP uses a

request/response model where the devices connect directly to the IoT Agent and therefore

simplifies the system architecture when compared to MQTT which uses a publish

subscribe model that is event driven, publishes messages to clients and requires a central

communication point, known as the MQTT Broker, which is responsible for dispatching

all messages between the senders and the correct receivers, effectively working as a router

[22].

Table 2.1 HTTP vs MQTT [22]

HTTP vs MQTT

IoT Agent communicates directly with the

devices (things)

IoT Agent communicates indirectly with the

devices, via an MQTT Broker

Request-Response model Publish-Subscribe model

Devices must be always ready to receive

messages
Devices choose when to receive messages

High power requirement Low power requirement

Every message published must include a topic, that is essentially the routing information

for the broker [22]. To receive messages, a client must inform the broker that it wants to

subscribe to a Topic, informing the broker to deliver all messages with the subscribed

topic to the client [22].

24

Figure 2.11 MQTT Publish-Subscribe Model

As the clients only communicate over the Topic and don’t have to know each other, it

allows for highly scalable solutions without dependencies between subscribers and

publishers, as the only shared point of communication is the MQTT Broker [22].

MQTT also the publisher to select a Quality of Service (QoS) level, thus increasing the

reliability of the communications. It is possible to select between tree QoS levels [23]:

- QoS 0 – at most once, which guarantees a best effort delivery;

- QoS 1 – at least once, the message is delivered at least one time;

- QoS 2 – exactly once, the message is delivered exactly one time.

The MQTT Broker used in this project is the Mosquitto MQTT Broker, a readily available

and opensource broker.

In Figure 2.12 and 2.13 is possible to compare how the IoT Devices are connected when

using HTTP and MQTT.

Figure 2.12 Ultralight over HTTP (Based on Source: [22])

25

Figure 2.13 Ultralight over MQTT (Based on Source: [22])

2.4 Docker

Docker is an open platform for developing, shipping, and running applications through

the use of environments called containers [24]. The isolation and security offered by

containers allow to simultaneously run several containers on a given host [24]. Since

containers are lightweight they don’t require the use of a hypervisor, running directly in

the host kernel, meaning it is possible to run more containers on a given hardware

combination than on virtual machines (VM) [24]. Although it is also possible to run

containers on hosts that are virtual machines [24]. Figure 2.14 compares a container with

a virtual machine, illustrating the differences between them.

Figure 2.14 Containers vs Virtual Machines (Source: [25])

26

2.4.1 Docker Engine

The Docker Engine is a client-server application constituted by three key components, as

shown in Figure 2.15 [24]:

- A Server called a Daemon process, responsible for creating and managing Docker

objects: images, containers, networks and volumes;

- A REST API, specifies the interfaces that programs can use to communicate with

de daemon and direct it;

- A Command Line Interface (CLI) Client, that uses the REST API in to control

and interact with the Daemon.

Figure 2.15 Representation of the Docker Engine (Source: [24])

27

2.4.2 Docker Architecture

Docker operates on a client-server architecture as can be seen in Figure 2.16 [24].

Figure 2.16 Representation of an Model Docker Architecture (Source: [24])

The Client (e.g., Docker CLI) communicates with the Docker Daemon, that does all the

work of building, running and distributing the Docker containers [24]. Although the

Client and the Daemon can run on the same host, it is possible to connect a Docker Client

remotely to a Docker Daemon, as the communication between both is done using a REST

API over UNIX sockets or network interfaces [24].

2.4.3 Docker Images and Containers

Docker Image

A Docker Image is an executable read-only template that has everything necessary for

creating a Docker Container: the code, a runtime, libraries, environment variables and

configuration files [24] [25].

An Image is created using a Dockerfile, that has all the steps defined in it to create an

Image and run it [24]. Each instruction in a Docker files creates a new layer in an Image

[24]. When a Dockerfile is modified and the Image rebuild, only the altered layers are

rebuilt, making the Images lightweight, small and fast [24]. It is also possible to build an

Image based on other Images [24].

28

Docker Container

A Docker Container is a runtime instance of a Docker Image [25]. By using the Docker

API or CLI a Container can be created, started, stopped, moved and deleted [24]. It is also

possible to attach storage to it, connect to networks, and create a new Image based on the

curren9t state of the Container [24].

Although, by default, a Container is well isolated from other Containers and its host, it is

possible to control how isolated a Container’s network, storage and other subsystems are

from other Containers and the host [24].

It is very important that all vital data used by (or created) a Container is kept in persistent

storage (e.g., storage attached), as any changes to the state of a Container when it is

deleted, disappear [24].

2.4.4 Docker Compose

Docker Compose is a tool for defining and deploying multi-container Docker applications

through the use of a YAML Ain't Markup Language (YAML) file, named “docker-

compose.yml”, which contains all the configurations of the needed services [26]. This

allows for the creation and starting of all services with a single command: “docker-

compose up” [26].

version: "3"

services:

 mosquitto: Container 1

 image: eclipse-mosquitto

 hostname: mosquitto

 container_name: mosquitto

 expose:

 - "1883"

 - "9001"

 ports:

 - "1883:1883"

 - "9001:9001"

 volumes:

 - ./mosquitto/mosquitto.conf:/mosquitto/config/mosquitto.conf

 networks:

 - default

 Container 2:

 …

29

2.5 MongoDB

MongoDB is a cross-platform, document-oriented database which offers high

performance, high availability and scalability [27]. Data is stored in JavaScript Object

Notation (JSON) like documents that provide a flexible way of storing data, as fields can

vary from document to document and the data structure can be changed if needed [28].

A Graphical User Interface (GUI) for MongoDB, named MongoDB Compass is also

available, allowing the visualization and management of databases [29].

2.6 Hardware

This section contains some information about microcontrollers, sensors and actuators,

with the purpose of helping the reader understand the hardware that make up the “Things”

later used in this work.

2.6.1 Microcontrollers

Microcontrollers were created with the purpose of serving as the base of embedded

systems, that is, systems that work without interruption and human intervention, and

therefore are a very useful tool to control something with low resources [6-1].

Microcontrollers have a great flexibility in the creation of software and in the

development of the hardware that surrounds it, taking advantage of the communication

between both [30].

2.6.1.1 Microcontroller Basic Architecture

Just like a computer, a microcontroller is made up of several components (modules), that

while in a computer are separated and visible, and can be easily replaced, in a

microcontroller these modules are all concentrated in a small encapsulation (a chip), thus

ensuring the basic operation of the microcontroller.

A microcontroller typical consists of several modules: memory unit, Central Processing

Unit (CPU), BUS, Input/Output (I/O) ports, serial communication ports, timers, Analog-

to-Digital Converter (ADC) [30]; as can be seen in Figure 2.17, which represents the

general block diagram of a microcontroller.

30

Figure 2.17 Basic Architecture of a Microcontroller (Based on Source: [30])

The memory module consists of two types of memories: the Read-Only

Memory/Electrically Erasable Programmable Read-Only Memory (ROM/EEPROM)

memory, in which is saved all the critical and essential data when the power is turned off,

and the Random-Access Memory (RAM) which contains all the data used by a program

(kept in the ROM/EEPROM) during its execution [30]. This data is temporary and not

crucial for the operation of the microcontroller and therefore no damage is done when the

power is turned off and the RAM erased [30].

The CPU is the brain of the microcontroller, being capable of multiplying, dividing,

subtracting summing, and managing the contents of the memories. The CPU is

interconnected with the memory and all other modules via the BUS [30].

The BUS is a group of 8, 16 or more transmission lines, that interconnects all modules

inside the microcontroller [30].

The Serial Communication module has the function of allowing communication with the

outside [30]. This communication is usually done via a Universal Serial Bus (USB), a

Recommended Standard 232 (RS232) port, an Ethernet port or Wi-Fi [30].

The I/O ports are used to connect external components to the microcontrollers, therefore

extending the capabilities of the microcontroller [30].

Timers are configurable counters whose register value increases a unit in a fixed time

interval, saving its value during the time instants (T1 and T2) then calculating their

31

difference, thus obtaining the amount of elapsed time [30]. Timers can provide

information about time slots, protocols used and generate signals, namely Pulse-Width

Modulation (PWM) signals, widely used in motor speed control [30].

The ADC has the function of converting analog input signals into digital output signals.

2.6.2 Sensors

Sensors are devices whose behavior changes under the influence of a physical property,

originating directly or indirectly a signal that indicates this greatness [31]. When they

operate directly, they convert a form of neutral energy and are therefore called

transducers; those that operate indirectly alter their physical properties, such as resistance,

capacitance or inductance, under the action of a magnitude of more or less proportional

[31].

Sensors are fundamental for the Internet of Things, as most of the “Things” are sensors,

placed in a medium where measurements are to be carried out, converting the measured

quantity into an electrical signal, which is then processed through conditioning circuits.

After the treatment, the signal is read by a microcontroller programed for the effect and

sent through the Internet to the system, thus allowing the monitoring and automatic

control of the quantities in question.

2.6.2.1 Sensors Classification

Sensors can be divided into three distinct classes: passive and active sensors, both analog,

and digital sensors [31].

Passive sensors are characterized by the occurrence of impedance variations when a

variation of the measured quantity occurs [31]. These sensors can be resistive, capacitive,

inductive and differential [31].

Active sensors are characterized by directly harnessing the energy of the process to be

measured [31]. These sensors can be thermoelectric, pyroelectric, photovoltaic and

electromagnetic [31].

Digital sensors allow the measurement of discrete quantities such as counters and devices

with frequency output [31].

32

2.6.2.2 Passive Sensors

Resistive sensors are characterized by having a resistive output, which may have a linear

variation, e.g., potentiometers and Light-Dependent Resistors (LDRs), or a non-linear

variation, e.g., resistive temperature sensors and force sensors [31]. Figure 2.18 displays

a LDR.

Figure 2.18 LDR (Source: [32])

In the case of capacitive sensors, its output variation is capacitive similar to a variable

capacitor, and its therefore an alternative to resistive sensors due to its high resolution,

stability and immunity to temperature [31]. These sensors are used to measure linear or

angular displacements, distances, liquid level and moisture, being usually used in the

detection of failures in industrial manufacturing process [31]. Figure 2.19 shows two

capacitive sensors.

Figure 2.19 Capacitive Sensors (Source: [31])

Inductive sensors are characterized by having an inductive output, similar to a variable

coil, as they internally consist of a conductive coil, which may have a core, where the

passage of variable electric current in time produces a magnetic field, also variable in

time [31]. These sensors are used to measure displacements, as they have high sensitivity,

resolution and repeatability [31]. Figure 2.20 displays several inductive sensors with

different shapes.

33

Figure 2.20 Inductive Sensors (Source: [31])

Pressure sensors are intended to measure low pressure, presenting the result in the form

of voltage [31]. This sensor varies its resistance because of a force being applied on it,

thus having a linear variation [31]. The sensor works by having as reference the

atmospheric pressure outside the outside the environment of the system to be measured,

and the other pin inside the system environment [31]. When a positive pressure is applied

to the inner pin, the differential voltage increases linearly, however if the pin is in a

vacuum system the differential voltage decreases linearly [31]. Figure 2.21 displays a

pressure sensor.

Figure 2.21 Pressure Sensor (Source: [31])

2.6.2.3 Active Sensors

Active sensors behave like generators, producing an electric signal through when a

physical phenomenon is detected [31]. Below are some of the most common active

sensors.

The main characteristic of electromagnetic sensors is the variation of the magnetic field,

which reflects the variability of the measured physical property, without influencing the

sensor inductance [31]. These sensors are based on Faraday’s law, which states that when

there is a relative movement between the conductor and a magnetic field, an electromotive

force appears in the conductor [31]. Figure 2.22 shows an electromagnetic sensor.

34

Figure 2.22 Electromagnetic Sensor (Source: [31])

Thermoelectric sensors, provide the required temperature control in industrial and

commercial processes [31]. To carry out the control, this type of sensor equips a device

called Thermocouple, whose operation is based on three effects: the Seebeck Effect,

which states that different temperatures cause an electric current, the Peltier Effect, which

states the heating or cooling of a junction when traversed by a current, and the Thompson

Effect, which states the absorption or release of a homogeneous conductor with an

inhomogeneous temperature when run by a current [31]. The operation of a

Thermocouple consists of the use of a circuit with two distinct metals joined by two

junctions, so that if one of the junctions is maintained at a reference temperature, the other

junction will serve as a measurement junction, thus converting thermal energy in

electricity [31]. The Thermocouple, as shown in Figure 2.23, has the advantages of a large

measuring range, a rapid response to temperature variation and good reliability [31].

However, the maximum supported temperature must be lower than the semiconductor

melting temperature [31]. Figure 2.23 shows a thermocouple.

Figure 2.23 Thermocouple (Source: [31])

Piezoelectric sensors operation id based on the piezoelectric effect, present in some

metals, which consists in the appearance of a potential difference between opposite faces

of a metal when submitted to mechanical tension [31]. However, the piezoelectric effect

is reversible when a tension is applied between the opposing faces of the material, causing

a deformation thereof [31]. This effect can be applied to both actuators and sensors, being

35

applied force, pressure, acceleration, humidity and ultrasonic sensors [31]. Figure 2.24

shows a pair of piezoelectric sensors.

Figure 2.24 Piezoelectric Sensors (Source: [31])

Pyroelectric sensors operation is based on the pyroelectric effect that occurs in crystalline

materials when subjected to a temperature variation, which originates surface electrical

charges [31]. This type of sensors works similarly to piezoelectric sensors, but instead of

being made of a metal, these have a polarized pyroelectric crystal with two metal

electrodes on opposite faces [31]. The sensors generate a charge due to changes in its

temperature because of incident infrared radiation [31]. These sensors can be used in the

detection of thermal radiation at room temperature, non-contact temperature

measurement (pyrometers) and temperature-triggered alarm systems [31]. Figure 2.25

displays a pyroelectric sensor.

Figure 2.25 Pyroelectric Sensor (Source: [31])

2.6.2.4 Digital Sensors

Digital sensors are the easiest to use as they only have two logic states, 0 or 1, e.g.,

switches, microswitches, buttons and position switches [31]. Figure 2.26 shows a

microswitch.

36

Figure 2.26 Microswitch (Source: [33])

2.6.3 Actuators

Actuators are devices capable of converting electrical, hydraulic or pneumatic energy into

mechanical energy [34]. Through transmission systems normally composed of shafts,

chains or gears the mechanical energy generated by the actuators is sent to the device that

needs to be moved [34]. The actuators can be divided into four groups: hydraulic,

pneumatic, electromechanical and signaletic [34].

Hydraulic actuators are components driven by moving fluids compressed at high

pressures, usually pressurized oil, whereas pneumatic actuators use compressed air

which, when it is at high pressures, assumes the characteristics of a fluid [34]. Hydraulic

actuators have the form of linear cylinders to generate linear movements whereas the

pneumatic actuators can take the form of linear cylinders, which internally have a piston,

or rotating cylinders that have a fin, to provide angular displacements, as seen in Figure

2.27 [34].

Figure 2.27 Internal Schema of Actuators (Based on Source: [34])

Hydraulic actuators have the advantage of allowing continuous and precise control of

movement and speed due to the incompressibility of the fluid used, but they have the

37

disadvantage of being very difficult the exerted force, whereas the pneumatic actuators

have the advantage of allowing smooth movements, are simple to control and

inexpensive, having the disadvantage of having little stiffness due to the compressibility

of the air and being imprecise [34].

Electromagnetic actuators, have a wide variety of models and types, such as Alternating

Current (AC) motors, Direct Current (DC) motors, servomotors and stepper motors [34].

Electric motors in general have the advantages of having a great diversity of

manufacturers and models, when associated with sensors, they can be used both to control

something (e.g., open a valve) and are easy to control, using signals such as PWM signals

and H bridges.

DC Electromagnetic Motors, are relatively compact and have a torque that is kept

constant with the speed variation of the motor, however these reach a greater mechanical

efficiency if used at high speeds, as such, usually gears are used to reduce the generated

output speed without changing the working speed of the engine, which also has the effect

of increasing the motor force, as can be seen in Figure 2.28 [34].

Figure 2.28 DC Motor with Gears (Source: [35])

AC Motors are highly used in industrial applications, especially in linear motors, which

are motors that generate linear motion without the use of gears or motion control

mechanisms [34]. In Figure 2.29 it is possible to observe AC linear actuators of various

sizes.

38

Figure 2.29 AC Motors (Source: [34])

Luminous Signals, encompass all components whose purpose is to inform or illuminate,

e.g., Light Emitting Diodes (LEDs), displays, lamps.

LED is a semiconductor of p-n junction that when subjected to an electric current emits

visible light when connected correctly, to emit light a led must be polarized directly, such

as shown in Figure 2.30, otherwise the LED can burn.

Figure 2.30 LEDs (Based on Source: [36])

39

Chapter 3 – Universal IoT System Powered by FIWARE

The development of this project happened in two phases, from the end of 2017 to May of

2018 and then to the end of July.

In the first phase of development, enormous difficulties were encountered due to poor

documentation about FIWARE and nonexistence of tutorials to show how to combine the

FIWARE Generic Enablers. At the time, the existing some of the documentation was

outdated, contained dead links, and didn’t had examples, being the only decent

documentation about the Orion Context Broker Generic Enabler that had some examples

explaining how to work with it. The existence of documentation in different places,

FIWARE webpage, FIWARE and Telefonica GitHub, and Generic Enablers individual

ReadTheDocs webpages, and with different versions between them also didn’t help.

However, it was clear that the use of Docker was necessary and the simplest way of using

the FIWARE technologies, being also the needed to meet the requirement of delivering

the work done.

In the second and last phase of development, which started with the attendance of the

FIWARE Global Summit 2018 in Porto (8th and 9th of May) and sessions aimed at

developers which made it possible to better understand FIWARE and related

technologies. It was also announced at this Summit that a collection of introductory

tutorials to FIWARE were being created. These tutorials [37] [38] proved to be

fundamental to the development of this project, having finally allowed to understand the

FIWARE technologies and how to connect and interact with the FIWARE GEs, due to

the explanations being done step-by-step.

In the following months after the Summit, a new FIWARE webpage was released with

better information, the documentation about the FIWARE technologies was also

improved, although it continues to be available in different places, it is now the same in

all. New tutorials have been added, and existing ones are continuously updated.

This chapter contains the system architecture diagram, a description of each of the

FIWARE Generic Enablers used, and the tests done to the system.

40

3.1 System Architecture

Based on the available tutorials, mainly on the ones about Orion Context Broker, IoT

Agents and Historic Management, it was put together the system architecture seen in

Figure 3.1.

Figure 3.1 System Architecture Block Diagram

The backend part of the system is made up of four FIWARE Generic Enablers: Orion

Context Broker, Cygnus, STH-Comet and the Ultralight 2.0 IoT Agent; a MongoDB and

a Mosquitto MQTT Broker and several IoT devices (Things).

41

As there was not enough time to develop a frontend webpage or application, it is instead

used cURL commands or the Postman [39] program (used to test and develop APIs), that

allows to send commands just like cURL and visualize the responses in a pretty way,

instead of raw. This allows to simulate the interactions that the frontend would have with

the backend.

3.1.1 Orion Context Broker

The FIWARE Orion Context Broker Generic Enabler is a C++ server implementation of

the FIWARE NGSIv2 REST API binding that allows the management of context

information (updates, queries, registrations and subscriptions) and is availability [40].

Orion relies on MongoDB to keep persistence of the context data such as data entities,

subscriptions and registrations [41].

3.1.1.1 Data Model Guidelines

Although the structure of each data entity within a context can vary according to the use

case, the common structure of each entity type should be standardized to promote reuse

[41]. The full FIWARE data model guidelines [42] are extensive therefore only the

following recommendations are presented here [41]:

- The value fields of context data may be in any language, but all attributes and

types must be in American English;

- Entity types names must start with a Capital letter;

- Entity IDs must follow the NGSI-LD guidelines: urn:ngsi-ld:<entity-

type>:<entity-id>. This guarantees that every ID is unique;

- Data type names must reuse schema.org [43] data types when possible;

- Attribute names must use camel case syntax, e.g., streetAddress;

- Location information must be defined using address and geographical

coordinates;

- Geospatial properties must be GeoJSON [44].

42

3.1.1.2 Service Health

To check if the Orion Context Broker is running, the following HTTP request is used

[41]:

curl -X GET 'http://localhost:1026/version'

Expected response:

{

 "orion": {

 "version": "1.12.0-next",

 "uptime": "0 d, 0 h, 3 m, 21 s",

 "git_hash": "e2ff1a8d9515ade24cf8d4b90d27af7a616c7725",

 "compile_time": "Wed Apr 4 19:08:02 UTC 2018",

 "compiled_by": "root",

 "compiled_in": "2f4a69bdc191",

 "release_date": "Wed Apr 4 19:08:02 UTC 2018",

 "doc": "https://fiware-orion.readthedocs.org/en/master/"

 }

}

3.1.1.3 Context Data Creation, Update, Delete

HTTP request to create context data, in this case an example entity of the Store type [41]:

curl -iX POST \

 'http://localhost:1026/v2/entities' \

 -H 'Content-Type: application/json' \

 -d '

{

 "id": "urn:ngsi-ld:Store:001",

 "type": "Store",

 "address": {

 "type": "PostalAddress",

 "value": {

 "streetAddress": "Bornholmer Straße 65",

 "addressRegion": "Berlin",

 "addressLocality": "Prenzlauer Berg",

 "postalCode": "10439"

 }

 },

 "location": {

 "type": "geo:json",

 "value": {

 "type": "Point",

 "coordinates": [13.3986, 52.5547]

 }

 },

 "name": {

 "type": "Text",

 "value": "Bösebrücke Einkauf"

 }

}'

43

It is possible to create several entities at once using the same request [45]:

curl -iX POST \

 'http://localhost:1026/v2/op/update' \

 -H 'Content-Type: application/json' \

 -d '{

 "actionType":"APPEND",

 "entities":[

 {

 "id":"urn:ngsi-ld:Shelf:unit001", "type":"Shelf",

 "location":{

 "type":"geo:json", "value":{

"type":"Point","coordinates":[13.3986112, 52.554699]}

 },

 "name":{

 "type":"Text", "value":"Corner Unit"

 },

 "maxCapacity":{

 "type":"Integer", "value":50

 }

 },

 {

 "id":"urn:ngsi-ld:Shelf:unit002", "type":"Shelf",

 "location":{

"type":"geo:json","value":{"type":"Point","coordinates":[13.3987221,

52.5546640]}

 },

 "name":{

 "type":"Text", "value":"Wall Unit 1"

 },

 "maxCapacity":{

 "type":"Integer", "value":100

 }

 }

]

}'

Update Context Data

This request updates the price attribute of the Product 001 entity [46].

curl -iX PATCH \

 --url 'http://localhost:1026/v2/entities/urn:ngsi-

ld:Product:001/attrs' \

 --header 'Content-Type: application/json' \

 --data ' {

 "price":{"type":"Integer", "value": 89}

}'

44

Delete Context Data

This request deletes the Product 010 entity [46].

curl -iX DELETE \

 --url 'http://localhost:1026/v2/entities/urn:ngsi-ld:Product:010'

Although is section contains some of the most basic operations that can be done to manage

context information, more complex operations are also available [46], like batch

operations.

3.1.1.4 Context Data Relationships

Although MongoDB doesn’t support relationships like SQL databases, the Orion Context

Broker can emulate SQL like relationships through the use of references [45], however

data integrity is not guaranteed (e.g., it is possible to make a reference to an inexistent

entity).

One-to-Many Relationship

The following example associates shelfs to stores [45]:

curl -iX POST \

 'http://localhost:1026/v2/op/update' \

 -H 'Content-Type: application/json' \

 -d '{

 "actionType":"APPEND",

 "entities":[

 {

 "id":"urn:ngsi-ld:Shelf:unit001", "type":"Shelf",

 "refStore": {

 "type": "Relationship",

 "value": "urn:ngsi-ld:Store:001"

 }

 },

 {

 "id":"urn:ngsi-ld:Shelf:unit002", "type":"Shelf",

 "refStore": {

 "type": "Relationship",

 "value": "urn:ngsi-ld:Store:001"

 }

 },

 {

 "id":"urn:ngsi-ld:Shelf:unit003", "type":"Shelf",

 "refStore": {

 "type": "Relationship",

 "value": "urn:ngsi-ld:Store:001"

 }

 },

 {

45

 "id":"urn:ngsi-ld:Shelf:unit004", "type":"Shelf",

 "refStore": {

 "type": "Relationship",

 "value": "urn:ngsi-ld:Store:002"

 }

 },

 {

 "id":"urn:ngsi-ld:Shelf:unit005", "type":"Shelf",

 "refStore": {

 "type": "Relationship",

 "value": "urn:ngsi-ld:Store:002"

 }

 }

]

}'

Many-to-Many Relationships

The following example associates an item to several entities [45]:

curl -iX POST \

 'http://localhost:1026/v2/entities' \

 -H 'Content-Type: application/json' \

 -d '{

 "id": "urn:ngsi-ld:InventoryItem:001", "type": "InventoryItem",

 "refStore": {

 "type": "Relationship",

 "value": "urn:ngsi-ld:Store:001"

 },

 "refShelf": {

 "type": "Relationship",

 "value": "urn:ngsi-ld:Shelf:unit001"

 },

 "refProduct": {

 "type": "Relationship",

 "value": "urn:ngsi-ld:Product:001"

 },

 "stockCount":{

 "type":"Integer", "value": 10000

 },

 "shelfCount":{

 "type":"Integer", "value": 50

 }

}'

3.1.1.5 Context Data Querying

By ID

This query returns all the entity fields [45].

curl -G -X GET \

 'http://localhost:1026/v2/entities/urn:ngsi-ld:Store:001' \

 -d 'options=keyValues'

46

By Type

This query returns all entities whose type is Store [45].

curl -G -X GET \

 'http://localhost:1026/v2/entities' \

 -d 'type=Store' \

 -d 'options=keyValues'

By Comparing the Values of an Attribute

This query returns all entities of the Store type located in the Kreuzberg district [45].

curl -G -X GET \

 'http://localhost:1026/v2/entities' \

 -d 'type=Store' \

 -d 'q=address.addressLocality==Kreuzberg' \

 -d 'options=keyValues’

By Comparing the Values of a Geo:Json Attribute

This query returns all entities of the Store type within 1.5km of the given coordinates

[45].

curl -G -X GET \

 'http://localhost:1026/v2/entities' \

 -d 'type=Store' \

 -d 'georel=near;maxDistance:1500' \

 -d 'geometry=point' \

 -d 'coords=52.5162,13.3777'

Reading from Child Entity to Parent Entity

This query returns the Store entity to which the Shelf 001 entity is related [45].

curl -G -X GET \

 'http://localhost:1026/v2/entities/urn:ngsi-ld:Shelf:unit001' \

 -d 'type=Shelf' \

 -d 'options=values' \

 -d 'attrs=refStore'

Reading from Parent Entity to Child Entity

This query returns all Shelfs associated with Store 001 [45].

curl -G -X GET \

47

 'http://localhost:1026/v2/entities' \

 -d 'q=refStore==urn:ngsi-ld:Store:001' \

 -d 'options=count' \

 -d 'attrs=type' \

 -d 'type=Shelf'

Reading from a Bridge Table

This query returns all Stores selling the Product 001 [45].

curl -G -X GET \

 'http://localhost:1026/v2/entities' \

 -d 'q=refProduct==urn:ngsi-ld:Product:001' \

 -d 'options=values' \

 -d 'attrs=refStore'\

 -d 'type=InventoryItem'

Visualize all Relationships of an Entity

This query returns all entities that have associated to the Store 001 [45]. This request is

helpful to maintain data integrity.

curl -G -X GET \

 'http://localhost:1026/v2/entities' \

 -d 'q=refStore==urn:ngsi-ld:Store:001' \

 -d 'options=count' \

 -d 'attrs=type'

3.1.1.6 Subscriptions

The Orion Context Broker allows the creation of subscriptions to context information, so

that when a change to an attribute of said context information a notification is sent to the

frontend [41] [47].

A subscription is set up using a POST request, just like in the following example [47]:

curl -iX POST \

 --url 'http://localhost:1026/v2/subscriptions' \

 --header 'content-type: application/json' \

 --data '{

 "description": "Notify me of all product price changes",

 "subject": {

 "entities": [{"idPattern": ".*", "type": "Product"}],

 "condition": {

 "attrs": ["price"]

 }

 },

 "notification": {

48

 "http": {

 "url": "http://<frontendIP>:<frontendPort>/subscription/price-

change"

 }

 }

}'

This subscription sends a notification to the frontend every time a product price changes.

Delete a Subscription

This request deletes a subscription based on its ID [47].

curl -iX DELETE \

 --url 'http://localhost:1026/v2/subscriptions/<subscription-id>'

Update a Subscription

This request updates a subscription notification URL [47].

curl -iX PATCH \

 --url

'http://localhost:1026/v2/subscriptions/5ae07c7e6e4f353c5163c93e' \

 --header 'content-type: application/json' \

 --data '{

 "status": "active",

 "notification": {

 "http": {

 "url": "http://<frontendIP>:<frontendPort>/notify/price-

change"

 }

 }

}'

List Subscriptions

This request lists all subscription [47].

curl -X GET --url 'http://localhost:1026/v2/subscriptions'

View a Subscription Details

This request allows the visualization of a subscription details [47].

curl -X GET \

 --url 'http://localhost:1026/v2/subscriptions/<subscription-id>'

49

3.1.2 Ultralight 2.0 IoT Agent and Mosquitto MQTT Broker

An IoT Agent is a FIWARE component that lets Internet of Things devices send their

data to and be managed from a Context Broker, in this case the Orion Context Broker,

using their native protocols [48]. IoT Agents should also deal with security aspects

(authentication and authorization of the channel) [48].

The Orion Context Broker only uses the NGSI API for all interactions, therefore, every

IoT Agent provides a North Port NGSI interface used to interact with the Orion, and a

South Port to interact with the native protocol of the attached devices [48].

This means, that every IoT device can use their proprietary protocols and transport

mechanism, whilst the IoT Agent converts them to NGSI request that the Orion Context

Broker can understand [48].

The IoT Agent for the Ultralight 2.0 protocol, used in this project, provides a bridge

between HTTP/MQTT messaging with a UL2.0 payload and the Orion Context Broker

(NGSI) [48].

The IoT Agent saves all information such as devices URLs and Keys in a MongoDB

database [48].

3.1.2.1 Interaction Between the IoT Agent and Mosquitto MQTT Broker

The FIWARE IoT Agent for Ultralight 2.0 protocol will receive southbound request using

NGSI and convert them to Ultralight 2.0 MQTT topics for the Mosquitto [49] MQTT

Broker [50]. It also listens to the Mosquitto MQTT Broker on registered topics to send

measurement northbound the Orion Context Broker [50].

The Mosquitto MQTT Broker acts the central communication point between the IoT

Agent and the IoT devices, passing topics between them as necessary [50].

3.1.2.2 IoT Agent Service Health

To check if the IoT Agent is running, the following HTTP request is used [50]:

curl -X GET 'http://localhost:4041/iot/about'

50

Expected response:

{

 "libVersion": "2.6.0-next",

 "port": "4041",

 "baseRoot": "/",

 "version": "1.6.0-next"

}

3.1.2.3 Mosquitto MQTT Broker Service Health

To check if the Mosquitto MQTT Broker is working properly, a MQTT subscriber and a

publisher are used, and if the messages sent by the publisher are received by the

subscriber, then the Broker is working [50].

Starting a MQTT Subscriber

An MQTT subscriber is started by running a mqtt-subscriber Docker container in a new

terminal [48]:

docker run -it --rm --name mqtt-subscriber \

 --network fiware_default efrecon/mqtt-client sub -h mosquitto -t

"/#"

In which the “-h” flag indicates the Mosquitto hostname, and the “-t” flag the subscribed

topic. In this case the used topic allows the subscriber to receive all messages,

independent of the topic used by the publisher.

Starting a MQTT Publisher

An MQTT publisher is started by running a mqtt-publisher Docker container in a new

terminal [48]:

docker run -it --rm --name mqtt-publisher \

 --network fiware_default efrecon/mqtt-client pub -h mosquitto -m

"HELLO WORLD" -t "/test"

In which the “-h” flag indicates the Mosquitto hostname, the “-m” flag the message to be

sent, and the “-t” flag the published topic. In this case it is sent a “HELLO WORLD”

message to the “/test” topic, that if everything is working well, should be received by the

subscriber and shown in the subscriber terminal.

51

3.1.2.4 Connection of IoT Devices

To connect IoT Devices to the system (IoT Agent) it is necessary first to provision a

service group and then provision the devices [50]. Provisioning a service group allows to

set up a authentication key for a group of devices, and provisioning the devices serves to

map the connected devices to the correct entities, otherwise if the devices are not

provisioned the IoT Agent will automatically create new entities for the connected

devices, however, these entities will have a random id and its attributes will be incomplete

[50].

As there is no guarantee that the IoT devise will always have a unique ID, when

provisioning a device or a service group the following headers are required [50]:

- fiware-service, used to define the MongoDB database where entities for a given

service are held;

- fiware-servicepath, used to distinguish between arrays of devices.

For example, in a smart city system “fiware-service” headers can be used to differentiate

between departments (e.g., parks, transport, buildings, etc) and “fiware-servicepath”

headers would be used to refer to a specific park (e.g., downtown park, uptown park, etc)

[50].

The use of these headers means that data and devices for each service can be identified

and separated as needed without being siloed, as data from different devices and other

entities in other services and paths can be combined and used as necessary [50].

The use these headers also ensures that there is no overlap of used device IDs [50].

Provisioning a Service Group for MQTT

Provisioning a service group is always the first step done when connecting IoT devices,

and it is done as in the example below [50]:

curl -iX POST \

 'http://localhost:4041/iot/services' \

 -H 'Content-Type: application/json' \

 -H 'fiware-service: openiot' \

 -H 'fiware-servicepath: /' \

 -d '{

 "services": [

 {

 "apikey": "4jggokgpepnvsb2uv4s40d59ov",

52

 "cbroker": "http://orion:1026",

 "entity_type": "Thing",

 "resource": ""

 }

]

}'

In this example, the service is “openiot” and there is no separation between devices as the

servicepath is “/” (root) [50]. The authentication key (apikey) is unique to a service group

and is used by when devices when communicating as the topic must contain the key (e.g.,

/4jggokgpepnvsb2uv4s40d59ov) [50].

The “resource” attribute is empty since it is only used when the HTTP transport protocol

is used [50].

The “cbroker” attribute is optional, since if not provided the IoT Agent will use the default

context broker URL defined in its configuration file [50].

Provisioning a Sensor

Provisioning a sensor is mapping the connected IoT device to a corresponding entity, like

in the following example [50]:

curl -iX POST \

 'http://localhost:4041/iot/devices' \

 -H 'Content-Type: application/json' \

 -H 'fiware-service: openiot' \

 -H 'fiware-servicepath: /' \

 -d '{

 "devices": [

 {

 "device_id": "motion001",

 "entity_name": "urn:ngsd-ld:Motion:001",

 "entity_type": "Motion",

 "protocol": "PDI-IoTA-UltraLight",

 "transport": "MQTT",

 "timezone": "Europe/Berlin",

 "attributes": [

 {"object_id": "c", "name": "count", "type": "Integer"}

],

 "static_attributes": [

 {"name":"refStore", "type": "Relationship", "value":

"urn:ngsi-ld:Store:001"}

]

 }

]

}'

In this example a motion sensor with the “motion001” ID is associated to an entity with

the “urn:ngsd-ld:Motion:001” ID that is also created at the same time. This

53

association allows the mapping of the sensor reading to a context attribute, in this case

the reading “c” is mapped to the attribute “count” which is defined as an Integer, and

allows to place the sensor in a store through a reference.

By defining the “transport” attribute as MQTT the IoT Agent knows that it should

subscribe to the “/<api-key>/<device-id>” topic to receive measurements from this

sensor [50].

The provisioning of devices is important because since devices are managed by the IoT

Agent the Orion Context Broker would not be able to retrieve data from the device, and

by provisioning the device a corresponding entity is created in the data base managed by

Orion allowing it to assess the device (entity) data, as shown in the example below [50].

curl -G -X GET \

 'http://localhost:1026/v2/entities/urn:ngsd-ld:Motion:001'

 -d 'type=Motion' \

 -H 'fiware-service: openiot' \

 -H 'fiware-servicepath: /'

Response [50].

{

 "id": "urn:ngsd-ld:Motion:001", "type": "Motion",

 "TimeInstant": {

 "type": "ISO8601","value": "2018-05-25T10:51:32.00Z",

 "metadata": {}

 },

 "count": {

 "type": "Integer","value": "1",

 "metadata": {

 "TimeInstant": {"type": "ISO8601","value": "2018-05-

25T10:51:32.646Z"}

 }

 }

}

The timestamp is created automatically by the IoT Agent when it receives messages.

Provisioning an Actuator

Provisioning an actuator is just like provisioning a sensor, except for the fact that

commands can defined to control the actuator [50].

curl -iX POST \

 'http://localhost:4041/iot/devices' \

 -H 'Content-Type: application/json' \

 -H 'fiware-service: openiot' \

 -H 'fiware-servicepath: /' \

 -d '{

54

 "devices": [

 {

 "device_id": "door001",

 "entity_name": "urn:ngsi-ld:Door:001",

 "entity_type": "Door",

 "protocol": "PDI-IoTA-UltraLight",

 "transport": "MQTT",

 "commands": [

 {"name": "unlock","type": "command"},

 {"name": "open","type": "command"},

 {"name": "close","type": "command"},

 {"name": "lock","type": "command"}

],

 "attributes": [

 {"object_id": "s", "name": "state", "type":"Text"}

],

 "static_attributes": [

 {"name":"refStore", "type": "Relationship","value":

"urn:ngsi-ld:Store:001"}

]

 }

]

}'

3.1.2.5 Enable Context Broker Commands

After provisioning the actuators, it is necessary to inform the Orion Context Broker that

commands are available to control the actuators [50]. Example of commands registration

[50]:

curl -iX POST \

 'http://localhost:1026/v2/registrations' \

 -H 'Content-Type: application/json' \

 -H 'fiware-service: openiot' \

 -H 'fiware-servicepath: /' \

 -d '{

 "description": "Door Commands",

 "dataProvided": {

 "entities": [

 {

 "id": "urn:ngsi-ld:Door:001", "type": "Door"

 }

],

 "attrs": ["lock", "unlock", "open", "close"]

 },

 "provider": {

 "http": {"url": "http://orion:1026/v1"},

 "legacyForwarding": true

 }

}'

In order to send commands to the IoT Agent that then forwards them to the actuator, it is

necessary to use the NGSIv1 API endpoint and legacy forwarding due to the NGSIv2 API

not yet supporting commands.

55

Example of a command (open) invocation [50]:

curl -iX PATCH \

 'http://localhost:1026/v2/entities/urn:ngsi-ld:Lamp:001/attrs' \

 -H 'Content-Type: application/json' \

 -H 'fiware-service: openiot' \

 -H 'fiware-servicepath: /' \

 -d '{

 "open": {

 "type" : "command",

 "value" : ""

 }

}'

3.1.3 Cygnus

Since the Orion Context Broker only holds the most recent context information, and rather

than overload Orion with the task of keeping the context history, this task was delegated

to other components FIWARE Cygnus Generic Enabler and FIWARE STH-Comet

Generic Enabler (next sub-section) [51].

The FIWARE Cygnus Generic Enabler can persist context data into one or several

databases, creating a historical view of the context data to which is subscribed to [51].

3.1.3.1 Cygnus Service Health

To check if Cygnus is running, the following HTTP request is used [51]:

curl -X GET 'http://localhost:5080/v1/version'

Expected response:

{

 "success": "true",

 "version":

"1.8.0_SNAPSHOT.ed50706880829e97fd4cf926df434f1ef4fac147"

}

3.1.3.2 Subscribing to Context Changes

For Cygnus keep a history of context information, it must be aware of context changes,

being informed by the Orion Context Broker through one or more subscriptions, as shown

below [51].

curl -iX POST \

 'http://localhost:1026/v2/subscriptions' \

56

 -H 'Content-Type: application/json' \

 -H 'fiware-service: openiot' \

 -H 'fiware-servicepath: /' \

 -d '{

 "description": "Notify Cygnus of all context changes",

 "subject": {

 "entities": [

 {

 "idPattern": ".*"

 }

]

 },

 "notification": {

 "http": {

 "url": "http://cygnus:5050/notify"

 },

 "attrsFormat": "legacy"

 },

 "throttling": 5

}'

The “fiware-service” and “fiware-servicepath” headers are used to filter the connected

IoT Sensors [51].

The “idPattern” defines which type of sensors are to be listened (e.g., motion, temp, hum,

etc), in this case Cygnus is informed of all context data changes of every sensor [51].

The “notification url” must match the Cygnus API port [51].

Once again legacy forwarding is used since Cygnus only accepts notification in the older

NGSIv1 API format [51].

The “throttling” value defines the changes sample rate [51].

The database used by Cygnus to persist context data has no influence on the subscription,

as the database or databases used are defined in the initial configuration of Cygnus [51].

3.1.4 STH-Comet

Both Cygnus and STH-Comet Generic Enablers can be used to keep a record of context

information changes, however Cygnus is only capable of saving such changes into several

types of databases, while the STH-Comet can only save changes to a MongoDB database

it can also retrieve time-based data aggregations [52].

STH-Comet can be configured to work in the following operation modes [52]:

- Minimal mode, STH-Comet is responsible for data collection and interpretation;

57

- Formal mode, the collection of data is done by Cygnus and the STH-Comet only

reads data from an existing database.

The differences between the more flexible and future proof “formal mode” and the

simpler and easier to set-up “minimal mode” are summarized in the Table 3.1 [52].

Table 3.1 STH-Comet Minimal Mode vs Formal Mode (Source: [52])

 Minimal Mode Formal Mode

System set-up
Only one configuration

supported – easy to set-up

Highly configurable – complex

to set-up

Component responsible for data

persistence
STH-Comet Cygnus

Role of STH-Comet Read and write data Data read

Role of Cygnus Not used Data write

Data aggregation local
MongoDB database connected

to STH-Comet

MongoDB database connected

to Cygnus and STH-Comet

Multiple databases No
Yes – MongoDB, PostgreSQL,

MySQL

Solution scalability
Does not scale easily – for

simple systems

Scales easily – for complex

systems (future proof)

Throughput rate Use where throughput is low Use where throughput is high

In this work the “formal mode” is used, therefore it is the only mode that will be described,

with focus on the STH-Comet as Cygnus was already described in the previous section.

3.1.4.1 STH-Comet Service Health

To check if STH-Comet is running, the following HTTP request is used [52]:

curl -X GET 'http://localhost:8666/version'

Expected response:

{

 "version": "2.3.0-next"

}

58

3.1.4.2 Formal Mode Data Aggregation

As the “formal mode” uses Cygnus to aggregate data, the subscription to context changes

is done in the same way as described in the Cygnus related section.

3.1.4.3 Time Series Data Queries

For STH-Comet to retrieve time series data if an adequate amount of data has already

been aggregated and some time has passed [52]. Below are presented some examples of

possible data queries.

To get the history of a context entity attribute is necessary to send a GET request to the

URL: “.../STH/v1/contextEntities/type/<Entity>/id/<entity-id>/att

ributes/<attribute>” [52] (URL used in all examples).

List the first N sampled values

This example request retrieves the first 3 sampled “luminosity” values from “Lamp:001”:

curl -G -X GET \

'http://localhost:8666/STH/v1/contextEntities/type/Lamp/id/Lamp:001/

attributes/luminosity' \

 -d 'hLimit=3' \

 -d 'hOffset=0' \

 -H 'fiware-service: openiot' \

 -H 'fiware-servicepath: /'

The “hLimit” parameter restricts the result to “N” values, and the “hOffset=0” parameter

restricts the query start to the first value.

List N sampled values at an Offset

This example request retrieves the fourth, fifth and sixth sampled “count” values from

“Motion:001”:

curl -G -X GET \

'http://localhost:8666/STH/v1/contextEntities/type/Motion/id/Motion:

001/attributes/count' \

 -d 'hLimit=3' \

 -d 'hOffset=3' \

 -H 'fiware-service: openiot' \

 -H 'fiware-servicepath: /'

The “hLimit” parameter restricts the result to “N” values, and the “hOffset!=0” parameter

makes the query start from the Nth measurement.

59

List the latest N sampled values

This example request retrieves the latest three sampled “count” values from

“Motion:001”:

curl -G -X GET \

'http://localhost:8666/STH/v1/contextEntities/type/Motion/id/Motion:

001/attributes/count' \

 -d 'lastN=3' \

 -H 'fiware-service: openiot' \

 -H 'fiware-servicepath: /'

The “lastN” parameter restricts the result to the last “N” values.

List the sum of values over a period

This example request shows the total “count” values from “Motion:001” over each

minute:

curl -G -X GET \

'http://localhost:8666/STH/v1/contextEntities/type/Motion/id/Motion:

001/attributes/count' \

 -d 'aggrMethod=sum' \

 -d 'aggrPeriod=minute' \

 -H 'fiware-service: openiot' \

 -H 'fiware-servicepath: /'

The “aggrMethod” parameter defines the type of aggregation to perform over the time

series, and the “aggrPeriod” parameter determines the data aggregation period that can

be: second, minute, hour or day.

List the minimum of a value over a period

This example request shows the minimum “luminosity” values from “Lamp:001” over

each minute:

curl -G -X GET \

'http://localhost:8666/STH/v1/contextEntities/type/Lamp/id/Lamp:001/

attributes/luminosity' \

 -d 'aggrMethod=min' \

 -d 'aggrPeriod=minute' \

 -H 'fiware-service: openiot' \

 -H 'fiware-servicepath: /'

The “aggrMethod” parameter defines the type of aggregation to perform over the time

series, and the “aggrPeriod” parameter determines the data aggregation period that can

be: second, minute, hour or day.

60

List the maximum of a value over a period

This example request shows the maximum “luminosity” values from “Lamp:001” over

each minute:

curl -G -X GET \

'http://localhost:8666/STH/v1/contextEntities/type/Lamp/id/Lamp:001/

attributes/luminosity' \

 -d 'aggrMethod=max' \

 -d 'aggrPeriod=minute' \

 -H 'fiware-service: openiot' \

 -H 'fiware-servicepath: /'

The “aggrMethod” parameter defines the type of aggregation to perform over the time

series, and the “aggrPeriod” parameter determines the data aggregation period that can

be: second, minute, hour or day.

Querying the mean value of an attribute within a period is not supported, however it can

be calculated by combining the sum of the attribute values with the number of samples.

3.1.5 System Configuration Using Docker Compose

As mentioned before, every FIWARE component used, the MongoDB database and the

Mosquitto MQTT Broker are implemented using Docker. To rapidly to assemble the

system architecture, the Docker Compose tool is used, as it allows to configure and run

the components (as containers) by using and running a simple YAML file. When

executing the YAML file, it automatically pulls the necessary Docker images from the

FIWARE and other Docker Hubs, and creates the corresponding containers already

configured.

3.1.5.1 “docker-compose.yml” File

Below is the “docker-compose.yml” file used in this project.

version: "3"

services:

 mosquitto:

 image: eclipse-mosquitto

 hostname: mosquitto

 container_name: mosquitto

 expose:

 - "1883"

 - "9001"

 ports:

61

 - "1883:1883"

 - "9001:9001"

 volumes:

 - ./mosquitto/mosquitto.conf:/mosquitto/config/mosquitto.conf

 networks:

 - default

 mongo-db:

 image: mongo:3.6

 hostname: mongo-db

 container_name: db-mongo

 expose:

 - "27017"

 ports:

 - "27017:27017"

 networks:

 - default

 command: --bind_ip_all --smallfiles

 volumes:

 - mongo-db:/data

 orion:

 image: fiware/orion:1.14.0

 hostname: orion

 container_name: fiware-orion

 depends_on:

 - mongo-db

 networks:

 - default

 expose:

 - "1026"

 ports:

 - "1026:1026"

 command: -dbhost mongo-db -logLevel DEBUG

 cygnus:

 image: fiware/cygnus-ngsi:latest

 hostname: cygnus

 container_name: fiware-cygnus

 depends_on:

 - mongo-db

 networks:

 - default

 expose:

 - "5050"

 - "5080"

 ports:

 - "5050:5050"

 - "5080:5080"

 environment:

 - "CYGNUS_MONGO_HOSTS=mongo-db:27017" #Comma separated list

of Mongo-DB servers which Cygnus will contact to persist historical

context data

 - "CYGNUS_LOG_LEVEL=DEBUG" #The logging level for Cygnus

 - "CYGNUS_SERVICE_PORT=5050" #Notification Port that Cygnus

listens when subcribing to context data changes

 - "CYGNUS_API_PORT=5080" #Port that Cygnus listens on for

operational reasons

 sth-comet:

62

 image: fiware/sth-comet

 hostname: sth-comet

 container_name: fiware-sth-comet

 depends_on:

 - cygnus

 - mongo-db

 networks:

 - default

 ports:

 - "8666:8666"

 environment:

 - STH_HOST=0.0.0.0

 - STH_PORT=8666

 - DB_PREFIX=sth_

 - DB_URI=mongo-db:27017

 - LOGOPS_LEVEL=DEBUG

 iot-agent:

 image: fiware/iotagent-ul:1.6.0

 hostname: iot-agent

 container_name: fiware-iot-agent

 depends_on:

 - mongo-db

 - mosquitto

 networks:

 - default

 expose:

 - "4041"

 - "7896"

 ports:

 - "4041:4041"

 - "7896:7896"

 environment:

 - "IOTA_CB_HOST=orion" #name of the context broker to update

context

 - "IOTA_CB_PORT=1026" #port the context broker listens on to

update context

 - "IOTA_NORTH_PORT=4041"

 - "IOTA_REGISTRY_TYPE=mongodb" #Whether to hold IoT device

info in memory or in a database

 - "IOTA_LOG_LEVEL=DEBUG" #The log level of the IoT Agent

 - "IOTA_TIMESTAMP=true"

 - "IOTA_MONGO_HOST=mongo-db" #The host name of ongoDB

 - "IOTA_MONGO_PORT=27017" # The port mongoDB is listening on

 - "IOTA_MONGO_DB=iotagentul" #The name of the database used in

mongoDB

 - "IOTA_MQTT_HOST=mosquitto" #The host name of the MQTT Broker

 - "IOTA_MQTT_PORT=1883" #The port the MQTT Broker is listening

on to receive topics

 - "IOTA_MQTT_QOS=2" #MQTT QoS

 - "IOTA_PROVIDER_URL=http://iot-agent:4041"

networks:

 default:

volumes:

 mongo-db:

The MongoDB database must be initiated before every other FIWARE Generic Enabler

because some of the GEs depend on the existence of the database to initiate.

63

The configuration of most of the FIWARE GEs are done with the environment variables

as it will be detailed in the following sections.

3.1.5.2 MongoDB Configuration

Configuration extracted from the “docker-compose.yml” file:

mongo-db:

 image: mongo:3.6

 hostname: mongo-db

 container_name: db-mongo

 expose:

 - "27017"

 ports:

 - "27017:27017"

 networks:

 - default

 command: --bind_ip_all –smallfiles #binds to all ip addresses

and uses a smaller default file size

 volumes:

 - mongo-db:/data

The most important thing about the MongoDB configuration is to create a volume in the

local file system, so that when the container is stopped or deleted the databases are not

lost with it. The network ports are the default ones.

3.1.5.3 Orion Context Broker Configuration

Configuration extracted from the “docker-compose.yml” file:

orion:

 image: fiware/orion:1.14.0

 hostname: orion

 container_name: fiware-orion

 depends_on:

 - mongo-db

 networks:

 - default

 expose:

 - "1026"

 ports:

 - "1026:1026"

 command: -dbhost mongo-db -logLevel DEBUG

While the other FIWARE GEs used in this project can be configured using environment

variables, it was not encountered information that proved that the Orion Context Broker

could also be similarly configured, and after some trial and error experimentation it was

verified that it is not possible to use environment variables. Instead it is necessary to use

commands (a long list of commands is available in [53]) to configure the Orion Context

64

Broker, these commands are then mapped to Orion’s configuration [53] [54] [55]. The

configuration file is available, as an example, in Annex A, and it was used as it is with

everything by default. Other FIWARE components also have similar configuration files.

3.1.5.4 Mosquitto MQTT Broker Configuration

Configuration extracted from the “docker-compose.yml” file:

mosquitto:

 image: eclipse-mosquitto

 hostname: mosquitto

 container_name: mosquitto

 expose:

 - "1883"

 - "9001"

 ports:

 - "1883:1883"

 - "9001:9001"

 volumes:

 - ./mosquitto/mosquitto.conf:/mosquitto/config/mosquitto.conf

 networks:

 - default

The Mosquitto uses the port 1883 for MQTT topics and the port 9001 for

HTTP/WebSocket communications [50]. The attached volume is the Mosquitto

configuration file [50], available in Annex B.

3.1.5.5 IoT Agent Configuration

Configuration extracted from the “docker-compose.yml” file:

iot-agent:

 image: fiware/iotagent-ul:1.6.0

 hostname: iot-agent

 container_name: fiware-iot-agent

 depends_on:

 - mongo-db

 - mosquitto

 networks:

 - default

 expose:

 - "4041"

 - "7896"

 ports:

 - "4041:4041"

 - "7896:7896"

environment:

 - "IOTA_CB_HOST=orion" # name of the context broker to update

context

 - "IOTA_CB_PORT=1026" # port the context broker listens on to

update context

65

 - "IOTA_NORTH_PORT=4041"

 - "IOTA_REGISTRY_TYPE=mongodb" #Whether to hold IoT device

info in memory or in a database

 - "IOTA_LOG_LEVEL=DEBUG" #The log level of the IoT Agent

 - "IOTA_TIMESTAMP=true"

 - "IOTA_MONGO_HOST=mongo-db" # The host name of ongoDB

 - "IOTA_MONGO_PORT=27017" # The port mongoDB is listening on

 - "IOTA_MONGO_DB=iotagentul" # The name of the database used

in mongoDB

 - "IOTA_MQTT_HOST=mosquitto" # The host name of the MQTT

Broker

 - "IOTA_MQTT_PORT=1883" # The port the MQTT Broker is

listening on to receive topics

 - "IOTA_MQTT_QOS=2" # MQTT QoS

 - "IOTA_PROVIDER_URL=http://iot-agent:4041"

The 4041 port is used northbound traffic and the 7896 for southbound traffic. The IoT

Agent can be configured by using the environment variables in Table 3.2, although not

all are used or needed [50] [56].

Table 3.2 IoT Agent Environment Variables – Part 1 (Source: [50] [56])

Variable Value Description

IOTA_CB_HOST orion
Hostname of the context broker to

update context

IOTA_CB_PORT 1026
Port the context broker listens on to

update context

IOTA_NORTH_PORT 4041

Port used for configuring the IoT

Agent and receiving context updates

from the context broker

IOTA_REGISTRY_TYPE mongodb
Whether to hold IoT device info in

memory or in a database

IOTA_LOG_LEVEL DEBUG The log level of the IoT Agent

IOTA_TIMESTAMP true

Whether to supply timestamp

information with each measurement

received from attached devices

IOTA_MONGO_HOST mongo-db
The host name of mongoDB - used

for holding device information

IOTA_MONGO_PORT 27017 The port mongoDB is listening on

IOTA_MONGO_DB iotagentul
The name of the database used in

mongoDB

66

Table 3.2 IoT Agent Environment Variables – Part 2 (Source: [50] [56])

IOTA_MONGO_USER -
Username for the MongoDB database

user

IOTA_MONGO_PASS -
Password for the MongoDB database

user

IOTA_PROVIDER_URL http://iot-agent:4041

URL passed to the Context Broker

when commands are registered, used

as a forwarding URL location when

the Context Broker issues a command

to a device

IOTA_MQTT_HOST mosquitto The host name of the MQTT Broker

IOTA_MQTT_PORT 1883
The port the MQTT Broker is

listening on to receive topics

IOTA_MQTT_USERNAME -
Client username for authentication on

the MQTT Broker

IOTA_MQTT_PASSWORD -
Client password for authentication on

the MQTT Broker

IOTA_MQTT_QOS 2 Quality of Service level

IOTA_HTTP_PORT 7896
The port where the IoT Agent listens

for IoT device traffic over HTTP

All values shown above are the default ones, that can be used in an initial phase but must

be changed later (usernames and passwords).

Although MQTT supports authentication of clients by using usernames and passwords,

and encryption of the communication channel using Transport Layer Security/Secure

Sockets Layer (TSL/SSL) certificates, these security features that should be implemented

in every solution are not being used in this project stage. However only IoT devices that

know the API Key of a service group can communicate with the system.

3.1.5.6 Cygnus Configuration

Configuration extracted from the “docker-compose.yml” file:

cygnus:

 image: fiware/cygnus-ngsi:latest

67

 hostname: cygnus

 container_name: fiware-cygnus

 depends_on:

 - mongo-db

 networks:

 - default

 expose:

 - "5050"

 - "5080"

 ports:

 - "5050:5050"

 - "5080:5080"

 environment:

 - "CYGNUS_MONGO_HOSTS=mongo-db:27017" # Comma separated list

of Mongo-DB servers which Cygnus will contact to persist historical

context data

 - "CYGNUS_LOG_LEVEL=DEBUG" # The logging level for Cygnus

 - "CYGNUS_SERVICE_PORT=5050" # Notification Port that Cygnus

listens when subcribing to context data changes

 - "CYGNUS_API_PORT=5080" # Port that Cygnus listens on for

operational reasons

The 5050 port is used to listen for notifications from the Orion Context Broker, and the

5080 port is used for administration purposes [51]. Cygnus can be configured by using

the environment variables in Table 3.3[51] [57].

Table 3.3 Cygnus Environment Variables – Part 1 (Source: [51] [57])

Variable Value Description

CYGNUS_MONGO_HOSTS
mongo-

db:27017

Comma separated list of Mongo-DB

servers which Cygnus will contact to

persist historical context data

CYGNUS_MONGO_USER -
Username for the MongoDB database

user

CYGNUS_MONGO_PASS -
Password for the MongoDB database

user

CYGNUS_LOG_LEVEL DEBUG The logging level for Cygnus

CYGNUS_SERVICE_PORT 5050

Notification Port that Cygnus listens

when subscribing to context data

changes

CYGNUS_API_PORT 5080
Port that Cygnus listens on for

operational reasons

CYGNUS_POSTGRESQL_HOST postgres-db
Hostname of the PostgreSQL server

used to persist historical context data

68

Table 3.3 Cygnus Environment Variables – Part 2 (Source: [51] [57])

CYGNUS_POSTGRESQL_PORT 5432
Port that the PostgreSQL server uses to

listen to commands

CYGNUS_POSTGRESQL_USER postgres
Username for the PostgreSQL database

user

CYGNUS_POSTGRESQL_PASS password
Password for the PostgreSQL database

user

CYGNUS_POSTGRESQL_ENAB

LE_CACHE
true

Switch to enable caching within the

PostgreSQL configuration

CYGNUS_MYSQL_HOST mysql-db
Hostname of the MySQL server used to

persist historical context data

CYGNUS_MYSQL_PORT 3306
Port that the MySQL server uses to

listen to commands

CYGNUS_MYSQL_USER root Username for the MySQL database user

CYGNUS_MYSQL_PASS 123 Password for the MySQL database user

CYGNUS_MULTIAGENT true
Whether to persist data into multiple

databases.

Not all the environment variables are used, and all sensitive information such as

passwords and usernames should be passed Docker Secrets instead of environment

variables [57]. All values shown above are the default ones, that can be used in an initial

phase but must be changed later (usernames and passwords).

3.1.5.7 STH-Comet Configuration

Configuration extracted from the “docker-compose.yml” file:

sth-comet:

 image: fiware/sth-comet

 hostname: sth-comet

 container_name: fiware-sth-comet

 depends_on:

 - cygnus

 - mongo-db

 networks:

 - default

 ports:

 - "8666:8666"

 environment:

 - STH_HOST=0.0.0.0

69

 - STH_PORT=8666

 - DB_PREFIX=sth_

 - DB_URI=mongo-db:27017

 - LOGOPS_LEVEL=DEBUG

The 8666 port is used to listen for notifications from the Orion Context Broker, and time-

based queries. The STH-Comet can be configured by using the environment variables in

Table 3.4 [52] [58].

Table 3.4 STH-Comet Environment Variables (Source: [52] [58])

Variable Value Description

STH_HOST 0.0.0.0

The address where STH-Comet is hosted - within

this container it means all IPv4 addresses on the

local machine

STH_PORT 8666
Operations Port that STH-Comet listens on, it is

also used when subscribing to context data changes

DB_PREFIX sth_
The prefix added to each database entity if none is

provided

DB_URI mongo-db:27017
The Mongo-DB server which STH-Comet will

contact to persist historical context data

DB_USERNAME - Username for the MongoDB database user

DB_PASSWORD - Password for the MongoDB database user

LOGOPS_LEVEL DEBUG The logging level for STH-Comet

3.2 IoT Device and Sensors Used

This section contains a description of the microcontroller used in this project, to which

sensors and actuators are connected. The sensors used are some of the most common

types of sensors that can be found in almost all IoT applications. Actuators, such as

motors, switches, valves and others similar are not used, instead as most of control

commands of actuators are ON and OFF commands, LEDs are used to visualize the result

of said commands.

70

3.2.1 Microcontroller: NodeMcu Devkit v1.0 ESP8266 Wi-Fi Module ESP-12E

NodeMcu is an opensource firmware e development kit that eases the development of IoT

products [59]. The NodeMcu development kit version 1.0 is a board (Figures 3.2 and 3.3),

similar to Arduino, that integrates the ESP8266-12E Wi-Fi microcontroller [59].

Figure 3.2 NodeMcu Devkit v1.0 (front)

Figure 3.3 NodeMcu Devkit v1.0 (back)

71

Figure 3.4 NodeMcu Devkit v1.0 Pinout (Based on Sources: [60] [61])

To operate correctly, the board must be supplied with 5V via the micro-USB port or by

using the Vin pin, however the ESP8266-12E microcontroller operates between 3V and

3.6V [62]. The board has a total of 30 pins, of those:

- 15 pins are General Purpose Input/Output (GPIO), of which 4 pins can also be

used for Hardware Serial Peripheral Interface (HSPI) communication, 5 pins for

Universal Asynchronous Receiver-Transmitter (UART) communication, 2 pins

for Secure Digital Input Output (SDIO), 1 pin for Flash (for flashing firmware),

and 1 pin (Wake) that can be used to wake the microcontroller from sleep mode;

- 4 pins that can be either used for Serial Peripheral Interface (SPI) communication

or for SDIO;

- 1 ADC pin;

- 1 reset (RST) pin;

- 1 chip enable (EN) pin;

- 2 reserved pins;

- 1 pin for Vin;

72

- 4 ground pins;

- 3 pins that supply 3.3V.

Only the GPIO pins indicated in the Figure 3.5 can be used for PWM signals through

software programming [63].

Figure 3.5 NodeMcu Devkit v1.0 PWM Pins (Source: [63])

The ESP8266-12E microcontroller has the architecture displayed in Figure 3.6, which has

some of the blocks previous mentioned [62].

Figure 3.6 ESP8266 Block Diagram (Source: [62])

The microcontroller has as main characteristics [62]:

- Support for 802.11 b/g/n Wi-Fi protocols;

- Wi-Fi 2.4 GHz, with WPA/WPA2;

73

- Support for antenna diversity;

- Integrated TCP/IP protocol stack;

- Station/Access Point/Station + Access Point (STA/AP/STA+AP) operation

modes;

- +20dBm output power in 802.11 b mode;

- Operating voltage between 3V and 3.6V;

- Operating current of 80mA;

- Deep sleep current <10uA;

- Power down leakage current < 5uA;

- Standby power consumption of < 1.0mW;

- Operating temperature range between 40ºC and 125ºC.

More details can be found on the ESP8266-12E datasheet [62] available in Annex C.

This board and the ESP8266 microcontroller are fully compatible with the Arduino IDE,

meaning it is possible to use the millions of libraries available for Arduino. In Annex D,

a user manual is available for the board that also has step-by-step instructions on how to

configure the Arduino IDE to be used with the board [64].

3.2.2 Sensors

As mentioned before the sensors used are some of the most common types of sensors that

can be found in almost all IoT applications, such as air temperature sensors, air humidity

sensors, ultrasonic sensors, and a more specific, an earth humidity sensor.

3.2.2.1 DHT22 Sensor (Air Temperature and Humidity Sensor)

The DHT22 or AM2303 sensor, Figure 3.7, is a high precision and stable capacitive

sensor that measures the air temperature between -40ºC and 80ºC, and air humidity

between 0% to 100% [65].

Figure 3.7 DHT22 Sensor (Source: [66])

74

The sensor must be powered by 3.3V to 6V, and typically takes about 2 seconds to collect

data [65]. The sensor datasheet [65] is available in Annex E.

In this project it was used a solution by DFROBOT [67] which offers the sensor in a ready

to use module, as seen in Figure 3.8 [67].

Figure 3.8 DFROBOT DHT22 Module (Source: [67])

Figure 3.9 DFROBOT DHT22 Module Pinout (Source: [67])

3.2.2.2 XL-MaxSonar-EZ MB1260 Sensor (Ultrasonic Sensor)

Ultrasonic sensors use high frequency sound to detect and localize objects, by measuring

the time of flight for sound which has been transmitted to and reflected it is possible to

calculate the distance at which the object is.

The sensor used, Figure 3.10, has a minimum range of 22 cm and a maximum range of

7.50 m, a resolution of 1 cm, and requires a power supply of 5V [68]. The sensor datasheet

[68] is available in Annex F.

75

Figure 3.10 XL-MaxSonar-EZ MB1260 Ultrasonic Sensor [Source: [68])

3.2.2.3 Earth-Humidity Sensor

The Earth-Humidity sensor, Figure 3.11, just like the name suggests, it is a sensor used

the measure the humidity value of the soil. The sensor used is fabricated by ITEAD and

is offered in a ready to use module that only needs to be connected to the microcontroller.

Figure 3.11 Earth-Humidity Sensor Module (Source: [4-33])

The sensor can either be powered by 3.3V or 5V, and has two interfaces with three pins

and four pins, the former can only the use of the digital or analog output defined according

to the switch and the latter allows the use of both the digital and analog outputs. The

sensor datasheet [69] is available in Annex G.

3.2.3 Power Supply

As most of the IoT devices are used in remote environments or places without electrical

power, it is necessary to use batteries to power the devices. However as large capacity

batteries are expensive, and they must last for years before being changed, techniques

76

such as limiting the number of transmissions, put the device in sleep mode when not used

or between transmissions, or even use energy harvesting methods, are employed.

Energy harvesting methods include the use of solar panels, generate energy from vibration

and heat, use energy from electromagnetic waves, or even the use of mini wind-powered

generators.

77

Chapter 4 – IoT System Tests and Results

This chapter contains all tests done to the IoT System and the results obtained. However,

since to test the system it was always necessary to create context entities and use IoT

devices with attached sensors and actuators, a simple fictional use case was devised to

make testing more interesting and to also serve as an example of a practical application

of the Universal IoT System Powered by FIWARE developed.

4.1 Use Case: Control of Water (Irrigation and Supply)

As water is an increasingly scarce natural resource due to global warming and other

environmental factors, it is increasingly important to find innovative and effective ways

to manage this vital resource for life on Earth. It is therefore proposed to create a water

management system, namely on water supply and irrigation, applied to the agricultural

sector, since it is highly dependent on water.

Farms are typical composed of multiple plantation fields and can also have several water

sources, such as wells, reservoirs, boreholes, dams, canals and tanks (springs). The

irrigation system used also depends on the type of plantation, if cereals or similar plants

are being grown then a wide area irrigation system (e.g., sprinklers) is used as the field is

full of millions of individual plants, however, if fruit trees or similar are being grown then

localized irrigation systems (e.g., grip irrigation) are used. For both irrigation systems it

is always essential to monitor the earth humidity to know when the pants need to be

watered, to turn on the irrigation system. If a localized irrigation system is used it is

possible to monitor the needs of each plant individually and only turn water on for plants

in need.

It is also important to monitor the water sources for water level and water temperature as

water to hot or cold can damage the plants. Electro valves, which work like taps, are used

to open or close the irrigation hose for the irrigation system (wide area) and for each

individual plant (localized system, several hoses). This sensors and actuators allow the

System to understand and control the world.

In Figure 4.1 a general scheme for this use case is represented.

78

Figure 4.1 Fictional Use Case Scheme

4.2 System Tests and Results

The Universal IoT System here morphed to a IoT System to Control Water (Irrigation

and Supply) as per the defined use case for demonstration and testing purposes,

encompasses a farm with three fields (A, B and C), and a well and a tank as water sources.

However, due to hardware limitations only the tank is monitored with an ultrasonic sensor

to observe the water level and simulated valve. For the fields, only field A will have

implemented a weather station to monitor the air temperature and humidity, and an earth-

humidity sensor and valve as part of a localized irrigation system.

The following tests were performed:

- System set-up;

- FIWARE components health check;

79

- Entities creation;

- Entities association;

- Entities modification;

- Entities removal;

- Mosquitto MQTT Broker health check;

- Service group provisioning;

- Sensors provisioning;

- Actuators provisioning;

- Enabling of Context Broker commands;

- Obtain measurements from the DHT22 sensor;

- Obtain measurements from the ultrasonic sensor;

- Obtain measurements from the earth-humidity sensor;

- Send measurements from the DHT22 sensor to the System;

- Send measurements from the ultrasonic sensor to the System;

- Send measurements from the earth-humidity sensor to the System;

- Verify if commands are received by IoT Devices with actuators (by turning ON

and OFF LEDs);

- Subscriptions;

- Data persistence;

- Time-series data queries.

4.2.1 System Set-Up

To simplify the IoT System set-up, a simple script named “setup.sh” was created, whose

instructions on how to use are available in Annex H.

4.2.2 FIWARE Components Health Check

After running the set-up script, “create” command, containers for all the architecture

components should have been successfully created and initialized. However, it is

important to check the health of the components, if they are properly working, which is

done by asking every component for its version and by verifying if the databases were

created as they should.

80

For this test and others following it, the Postman program will be used for simple

interactions with the System and cURL commands for complex interactions, such as

creating entities. It will be also used the MongoDB GUI, named Compass, to visualize

the databases.

4.2.2.1 Orion Context Broker Health Check

Figure 4.2 shows the request for verifying if Orion is running and the obtained response.

Figure 4.2 Orion Context Broker Health Check

4.2.2.2 IoT Agent Health Check

Figure 4.3 shows the request for verifying if the IoT Agent is running and the obtained

response.

Figure 4.3 IoT Agent Context Broker Health Check

81

4.2.2.3 Cygnus Health Check

Figure 4.4 shows the request for verifying if Cygnus is running and the obtained response.

Figure 4.4 Cygnus Health Check

4.2.2.4 STH-Comet Health Check

Figure 4.5 shows the request for verifying if STH-Comet is running and the obtained

response.

Figure 4.5 STH-Comet Health Check

82

4.2.2.5 Databases Created

Figure 4.6 displays the connection of Compass to the MongoDB cluster, to visualize the

databases created by the FIWARE GEs.

Figure 4.6 Connection of Compass to the MongoDB Cluster (MongoDB Docker Container)

To simplify the interaction of the FIWARE components with the MongoDB cluster, and

since the FIWARE components that implement security features were used in this system

due to various motives, later explained, it was not defined a username and password for

the MongoDB cluster. However, it is important to note that databases must always be

protected by at least a username and password (there are other and better authentication

methods) that also must not be the default ones.

83

Figure 4.7 MongoDB Databases

The only FIWARE GEs that automatically create a database at startup are the Orion

Context Broker and the IoT Agent, as Cygnus and SHT-Comet must first be configured

to receive data. As seen in Figure 4.7 both Orion and the IoT Agent are working as

expected as both created the databases (expanded in the figure).

4.2.3 Context Data Management

The following tests serve to verify that is possible to manage context information through

Orion Context Broker as it is expected. As mentioned before cURL will be used to send

information to Orion and Postman will be used to visualize said data in Orion. Through

Compass it will be also possible visualize data written in the Orion MongoDB database.

The data here created and sent to Orion is based on the use case.

84

4.2.3.1 Entities Creation

For this test, a shell script named “1_use_case_entities_v1.sh”, was created to execute the

cURL commands that create the entities for the farm, for each field (field A, B and C),

for each crop (apples, tomatoes and corn), and for each water source (well, tank and

borehole)., in one go. The contents of the script are available in Annex I.

The script output (Figure 4.8), that depicts the output of each cURL command, shows that

every entity was created successfully.

Figure 4.8 Output of the Commands That Created the Entities – Part 1

85

Figure 4.8 Output of the Commands That Created the Entities – Part 2

By updating the MongoDB GUI, Compass, it is possible to verify (Figure 4.9 and Figure

4.10) that a new database named “orion-farmone” (orion + fiware-service) was created.

All commands sent to Orion must have the header that specifies the “fiware-service”

otherwise nothing will be returned as the command is sent to the database name “orion”

(considered the root) which is empty.

Figure 4.9 MongoDB Database with the Created Entities

86

Figure 4.10 Visualization of an Entity Details

It was then concluded that the creation of entities is working as expected.

4.2.3.2 Entities Association

For this test, a shell script named “2_use_case_associations_v1.sh”, was created to

execute the cURL commands that do the associations of the previous created entities, in

one go. The contents of the script are available in Annex J.

As the association attribute of each entity was not specified at the creation time but after,

the association tasks done by the script are also considered entity modifications. The

script output (Figure 4.11), that depicts the output of each cURL command, shows that

every entity was created successfully.

87

Figure 4.11 Output of the Command That Associated the Entities

By viewing the Field:001 entity using Compass (Figure 4.12) it is observed that two

attributes (“refFarm” and “refTank”) were added as expected.

Figure 4.12 Visualization of Entity Details

88

It is also possible to observe the associations by making a query asking for all entities

related to an entity. In Figure 4.13 a query is made for all entities related to the Farm

entity.

Figure 4.13 Query for All Entities Associated with the Farm Entity

It was then concluded that the association and alteration of entities is working.

4.2.3.3 Entities Modification

Although it was already proved by the previous test that modifying entities is working a

new test is performed.

For this test, a shell script named “3_use_case_entities_modification_(1)_v1.sh”, was

created to modify a single attribute of an entity, and a script named

“3_use_case_entities_modification_(1)_v1.sh” to modify several attributes of an entity,

which in in this test is the borehole entity, that was created specifically for this. The

contents of the scripts are available in Annex K.

89

Figure 4.14 shows the Borehole entity before changes were made.

Figure 4.14 Borehole Entity Key Values Before Changes

Figure 4.15 shows the output of the execution of the first script

Figure 4.15 Output of the Command That Modified an Entity (1)

Figure 4.16 shows that the depth attribute was altered from 20 to 25 as expected.

Figure 4.16 Borehole Entity Key Values After Changes (First Script)

90

Figure 4.17 shows the output of the execution of the second script

Figure 4.17 Output of the Command That Modified an Entity (2)

Figure 4.18 shows that the depth attribute was altered from 25 to 30 and the name attribute

from “Borehole One” to “Top Borehole” as expected.

Figure 4.18 Borehole Entity Key Values After Changes (Second Script)

Therefore, it was concluded that the modification of entities is working.

4.2.3.4 Entities Removal

For this test, two shell scripts named “4_use_case_entities_removal_(1)_v1.sh” and

“4_use_case_entities_removal_(2)_v1.sh”, were created to test the removal of an entity

attribute and the removal of an entity. The contents of the scripts are available in Annex

L.

91

Figure 4.19 shows the output of the execution of the first script.

Figure 4.19 Output of the Command That Removed an Entity Attribute

Figure 4.20 shows that the depth attribute was removed as expected.

Figure 4.20 Borehole Entity Key Values After Removal of an Attribute (First Script)

Figure 4.21 shows the output of the execution of the second script.

Figure 4.21 Output of the Command That Removed an Entity (1)

92

Figure 4.22 shows that the entity was deleted as expected, as an error was returned.

Figure 4.22 A Query for the Borehole Entity Returns a “Not Found” Error

Therefore, it was concluded that the removal of attributes and entities was working.

4.2.4 Mosquitto MQTT Broker Health Check

To test if the Mosquitto MQTT Broker is working properly, a pair of dummy MQTT

publisher/subscriber are used. The subscriber is configured to receive all messages

independently of the topic sent by the publisher. If everything is working well as intended,

then the subscriber will receive all messages.

The publisher and subscriber are used as Docker Containers and the Mosquitto MQTT

Broker was already created when the system was initiated.

The subscriber (Figure 4.23) is initiated and stays waiting for messages.

Figure 4.23 Creation of the MQTT Subscriber

Then using a publisher (Figure 4.24) a message is sent.

Figure 4.24 Creation of the MQTT Publisher and Sending of a Message

93

The message is received by the subscriber (Figure 4.25) proving that the Broker is

working well.

Figure 4.25 Message Received by the MQTT Publisher

4.2.5 IoT Devices Management

The following tests serve to verify that is possible to manage IoT Devices and associated

services as it is expected. Like before, cURL will be used to send information and

Postman will be used to visualize data. Through Compass it will be also possible visualize

data written in the databases.

The data here created is based on the use case.

4.2.5.1 Service Group Provisioning

For this use case four “fiware-servicepaths” where created to differentiate between arrays

of devices, two paths for the field A devices (sensors path: “/fieldA/sensors”; actuators

path: “/fieldA/actuators”) and two paths for the tank devices (sensors path:

“/tank/sensors”; actuators path: “/tank/actuators”). Therefore, it is necessary to provision

four corresponding service groups, each with a different API key otherwise an error will

be returned. For this and the following tests a different “fiware-service” was used to easily

observe what is created during the IoT devices set-up.

To provision the service groups in one go, a shell scrip named

“5_use_case_service_groups.sh” was created, whose contents are available in Annex M.

94

The output of the script execution (Figure 4.26) indicates that the service groups were

created successfully.

Figure 4.26 Output of the Commands That Created the Service Groups

95

In Figure 4.27 it is possible to observe the created service groups in the database

associated to the IoT Agent.

Figure 4.27 Service Groups Created

It was then concluded that the provisioning of service groups is working as expected.

4.2.5.2 Sensors Provisioning

As mentioned at the beginning of this chapter, a total of five IoT Devices are used, three

on field A (a weather station, an earth-humidity sensor and a valve) and two on the tank

(a water level sensor and a valve). In this test the sensors are provision in order for the

96

system to be able to map the receiving data into the right context entities and therefore be

able to know what is the received data. In the next test, the actuators are provision.

To provision the sensors in one go, a shell scrip named

“6_use_case_sensors_provisioning.sh” was created, whose contents are available in

Annex N.

The output of the script execution (Figure 4.28) indicates that the provisioning of the

sensors was done successfully. It is also possible to observe that is was possible to make

an association of the earth-humidity sensor to an apple tree even though an entity for said

tree was not created, proving that there is no data integrity in a MongoDB database.

Figure 4.28 Output of the Commands That Provisioned the Sensors

97

In Figure 4.29 is observed that in the database managed by the IoT Agent a new directory

for devices was created, and in Figure 4.30, that a new Orion database for the “fiware-

service” used in this test was also created, which contains the devices entities. This are

the entities that are queried when it is necessary to obtain information, and not the devices

in the IoT Agent.

Figure 4.29 Provisioned Sensors in the IoT Agent

98

Figure 4.30 Provisioned Sensors Entities in Orion

4.2.5.3 Actuators Provisioning

In this test the actuators are provision in order for the system to be able to map the

receiving data into the right context entities and therefore be able to know what is the

received data, and also to know which commands are accepted by the actuators.

To provision the actuators in one go, a shell scrip named “7_use_case_

actuators_provisioning.sh” was created, whose contents are available in Annex O.

99

The output of the script execution, Figure 4.31, indicates that the provisioning of the

actuators was done successfully.

Figure 4.31 Output of the Commands That Provisioned the Actuators

100

In Figure 4.32 is observed that the actuators were added to the IoT Agent database and

that, in Figure 4.33, the corresponding entities were also created in the Orion database. It

is also observed, in Figure 4.34, that a new directory was created in the Orion database

that contains information about the actuators commands.

Figure 4.32 Provisioned Actuators in the IoT Agent

101

Figure 4.33 Provisioned Actuators Entities in Orion

102

Figure 4.34 Directory with the Actuators Commands

Therefore, it was concluded that the provisioning of sensors and actuators is working

properly.

4.2.5.4 Enabling Context Broker Commands

Although the actuators commands are already registered in the Orion database, it is

necessary to inform the Orion Context Broker that the commands are available. For that

a script named “8_use_case_enable_commands.sh” was created and whose contents are

available in Annex P.

103

The output of the script execution (Figure 4.35) indicates that the commands were enabled

successfully.

Figure 4.35 Output of the Commands That Enabled the Context Broker Commands for the Actuators

In Figure 4.36 is observed that the commands were added to Orion database.

Figure 4.36 Commands Enabled in Orion

It was concluded that the commands activation is working as expected.

104

4.2.6 IoT Devices

The following tests serve to mainly verify if the used sensors and microcontrollers are

working properly (actuators are simulated).

4.2.6.1 Test of DHT22 Sensor

To test if the DHT22 air temperature and humidity sensor is working properly it was used

an already existing Arduino library (Figure 4.37) to process the sensor data and print it to

the Arduino serial monitor.

Figure 4.37 Arduino Library Used for the DHT22 Sensor

In the Figure 4.38 can be observed the electrical schematics for connecting the sensor to

the NodeMcu ESP8266 Devkit v1.0 board.

Figure 4.38 Electrical Schematics for Connecting the DHT22 Sensor to the NodeMcu ESP8266 Devkit v1.0
Board

105

Figure 4.39 shows the experimental montage of the circuit.

Figure 4.39 DHT22 Sensor + NodeMcu Circuit Montage

The code uploaded to the board (file name “esp8266_temp_hum_test.ino”) is available in

Annex Q, which outputs the obtained data from the sensor (Figure 4.40).

Figure 4.40 Obtained Data from the DHT22 Sensor

106

4.2.6.2 Test of Ultrasonic Sensor

This sensor requires 5V to work however the board is only capable of supplying 3.3V,

however, since the board is being powered through the USB port it is possible to draw

5V from the Vin pin to power the sensor.

In the Figure 4.41 can be observed the electrical schematics for connecting the sensor to

the NodeMcu ESP8266 Devkit v1.0 board.

Figure 4.41 Electrical Schematics for Connecting the Ultrasonic Sensor to the NodeMcu ESP8266 Devkit
v1.0 Board

Figure 4.42 shows the montage of the circuit.

Figure 4.42 Ultrasonic Sensor + NodeMcu Circuit Montage

107

To test the sensor, it was used an already made example available in the manufacturer

website [70], that had to be adapted to work with the board as it was originally for

Arduino. The code uploaded to the board (file name “esp8266_ultrasonic_test.ino”) is

available in Annex R.

Figure 4.43 shows the output of the obtained data from the sensor.

Figure 4.43 Obtained Data from the Ultrasonic Sensor

4.2.6.3 Test of Earth-Humidity Sensor

The Figure 4.44 shows the electrical schematics for connecting the sensor to the

NodeMcu ESP8266 Devkit v1.0 board.

Figure 4.44 Electrical Schematics for Connecting the Earth-Humidity Sensor to the NodeMcu ESP8266
Devkit v1.0 Board

108

Figure 4.45 and Figure 4.46 show the montage of the circuit.

Figure 4.45 Earth-Humidity Sensor + NodeMcu Circuit Montage (1)

Figure 4.46 Earth-Humidity Sensor + NodeMcu Circuit Montage (2)

To test the sensor, it was used an already made example available in the manufacturer

website [71], that had to be adapted to display better information, such as humidity in

percentage. Both operation modes of the sensor, digital and analogic, were tested however

only the analogic mode is useful for the use case as displays the values of the soil

109

moisture, when the digital mode only returns “1” or “0” if the soil humidity is above or

below a threshold defined by the potentiometer. The analog mode automatically implies

that the ADC is used to convert the sensor analog output into digital values, between 0

and 1024, that are then converted to a percentage.

The code uploaded to the board (file name “esp8266_earth_humidity_test.ino”) is

available in Annex S.

Figure 4.47 shows the output of the obtained data from the sensor. When the sensor probes

were in the air the humidity percentage was 0 and when the probes were connected

through a jump wire the humidity percentage was 100. The other values were obtained

by placing the sensor in a vase.

Figure 4.47 Obtained Data from the Earth-Humidity Sensor

Ideally the sensor probes should have been longer to obtain the humidity values of deeper

soil, as the soil may appear to be dry at the surface but can be wet or moist at higher

depths. For a single pant, multiple sensors with different probe lengths could also be used

to obtain a global humidity reading of the soil.

4.2.6.4 Sending Measurements from DHT22 Sensor to the IoT System

The programs written for the IoT Devices are based on an existing Arduino MQTT library

[72], which is one of the rare ones that support publishing messages with QoS (0, 1 and

2), being used QoS 2. The code uploaded to the board (file name

110

“mqtt_esp8266_dht22_qos_v1.ino”), which collects the sensor data and transmits it to the

system is available in Annex T.

To visualize the message received by the Mosquitto MQTT Broker it was used the

dummy MQTT subscriber (Figure 4.48) previously used when testing the Mosquitto

Health.

Figure 4.48 Messages Received by the MQTT Subscriber and Sent by the Weather Sensor

Figure 4.49 shows the received data from the sensor in the database.

Figure 4.49 Received Data in the Weather Sensor Entity

111

Figure 4.50 shows the results of making a query for the sensor data.

Figure 4.50 Weather Sensor Key Values

4.2.6.5 Sending Measurements from Ultrasonic Sensor to the IoT System

The code uploaded to the board (file name “mqtt_esp8266_ultrasonic_qos_v1.ino”),

which collects the sensor data and transmits it to the system is available in Annex U.

To visualize the message received by the Mosquitto MQTT Broker it was used the

dummy MQTT subscriber (Figure 4.51) previously used when testing the Mosquitto

Health.

Figure 4.51 Messages Received by the MQTT Subscriber and Sent by the Water Level Sensor

112

Figure 4.52 shows the received data from the sensor in the database.

Figure 4.52 Received Data in the Water Level Sensor Entity

Figure 4.53 shows the results of making a query for the sensor data.

Figure 4.53 Water Level Sensor Key Values

113

4.2.6.6 Sending Measurements from Earth-Humidity Sensor to the IoT System

The code uploaded to the board (file name “mqtt_esp8266_earth_humidity_qos_v1.ino”),

which collects the sensor data and transmits it to the system is available in Annex V.

To visualize the message received by the Mosquitto MQTT Broker it was used the

dummy MQTT subscriber (Figure 4.54) previously used when testing the Mosquitto

Health.

Figure 4.54 Messages Received by the MQTT Subscriber and Sent by the Earth-Humidity Sensor

Figure 4.55 shows the received data from the sensor in the database.

Figure 4.55 Received Data in the Earth-Humidity Sensor Entity

114

Figure 4.56 shows the results of making a query for the sensor data.

Figure 4.56 Earth-Humidity Sensor Key Values

4.2.6.7 Sending Commands from System to IoT Devices (Actuators)

The code uploaded to the board (file names “mqtt_esp8266_valve001_v1.ino” and

“mqtt_esp8266_valve002_v1.ino”) is available in Annex W. As the only difference

between the two programs is the device Id in the MQTT topics, only of the programs is

presented.

Below is the cURL command sent to the Orion to open the valve 001, which in this case

turns ON the built in LED of the board (all the available commands are in file named

“9_use_case_send_commands.sh” available in Annex X).

curl -iX PATCH \

 'http://localhost:1026/v2/entities/urn:ngsi-ld:Valve:001/attrs' \

 -H 'Content-Type: application/json' \

 -H 'fiware-service: openiot' \

 -H 'fiware-servicepath: /fieldA/actuators' \

 -d '{

 "open": {

 "type" : "command",

 "value" : ""

 }

}'

115

Figure 4.57 shows the output of the command.

Figure 4.57 Output of the Command Sent to the Actuator

To visualize the commands, sent by the Orion Context Broker and the actuator reply it

was used the dummy subscriber (Figure 4.58) previously used when testing the Mosquitto

Health.

Figure 4.58 Messages Containing the Commands Sent to the Actuator and the Response Received

Figure 4.59 shows the results of the “open” command, which turned the board LED on

simulating an open valve.

Figure 4.59 Simulation of an Open Valve (Actuator)

116

Figure 4.60 shows the information about the actuator after the command execution in the

database.

Figure 4.60 State of the Valve Actuator in the Valve Actuator Entity

117

Figure 4.61 shows the results of making a query for the actuator information.

Figure 4.61 Valve Actuator Key Values After a “open” Command

The reply sent by the IoT Devices after executing the command serves to fill in the “_info”

and “_status” attributes, which indicate that the command was executed with success.

If subsequently a command to close the valve was sent (Figure 4.62) then the valve

attributes “close_info” and “close_status” would be updated as expected, however the

attributes associated to the open command would remain as before therefore it would be

necessary to delete the attributes to avoid misinformation.

Figure 4.62 Valve Actuator Key Values After a “open” and “close” Command

118

After completing the communication tests, it was determined that the everything is

working as expected.

4.2.7 Subscriptions

To test the if the notifications functionality is working properly an echo server available

in the Orion GitHub webpage [73] was used to visualize the notifications sent by the

Orion Context Broker.

For this test it was created a subscription which would notify the user (echo server)

whenever a weather sensor in field A (the individual device ID was not specified only the

sensor type) returned a temperature above 30ºC. For that a script, named

“10_use_case_subscriptions.sh”, containing the subscription was created and whose

contents are available in Annex Y.

Figure 4.63 shows the command output.

Figure 4.63 Output of the Commands That Enabled Notifications

119

It is also observed, in Figure 4.64, that a new directory was created in the Orion database

which contains information about the subscriptions.

Figure 4.64 Directory Containing Subscriptions

Figure 4.65 shows the echo server startup.

Figure 4.65 Startup of the Echo Server Used to Visualize Notification Sent by Orion

120

Figure 4.66 shows a notification in echo server, informing that the “temperature” attribute

is over 30ºC as it was defined.

Figure 4.66 Notification Received by the Echo Server

Figure 4.67 shows the results of a query for the Weather sensor key values.

Figure 4.67 Weather Sensor Key Values

121

Some problems were encountered when using subscriptions with expressions, as not

always the notification was sent. When not using expressions, the notifications work

flawlessly.

The Orion Context Broker doesn’t support rules, as such these must be implemented in

the frontend part by handling the notifications sent by Orion and then sending commands

for Orion to perform a given task.

4.2.8 Data Persistence

The data persistence is done by the pair of FIWARE GEs, Cygnus and STH-Comet, which

are configured to work in formal mode (done in the “docker-compose.yml” file), in which

Cygnus is responsible of data collection and STH-Comet for reading the collected data.

For Cygnus to collect data it must before receive said data, which is done through

subscriptions similar to the last test. However, here Orion uses subscriptions to notify

Cygnus of changes in the context data.

To create the subscriptions that notify Cygnus of all sensor data changes, a shell script

named “11_use_case_subscriptions_cygnus.sh” was created and whose contents are

available in Annex Z.

Figure 4.68 shows the commands output.

Figure 4.68 Output of the Commands That Notified Cygnus of Data Alterations

122

Figure 4.69 shows that after the commands execution, the subscriptions that notify

Cygnus were added to the database.

Figure 4.69 Subscriptions that Notify Cygnus in the Orion Database

123

Figure 4.70 shows that when the subscriptions were created, a new database where the

subscribed data is collected is created.

Figure 4.70 Cygnus Database where Collected Data is Saved

124

Figure 4.71 shows some of the data collected for the weather sensor.

Figure 4.71 Historical Data of the Weather Sensor

It was then concluded that Cygnus is working properly as it can collect and save data.

125

4.2.9 Time-Series Data Queries

As the STH-Comet is only used to visualize the data collected by Cygnus, therefore to

test if it is working properly it is necessary to make a data query. For this test (Figure

4.72) it was made a data query that listed the first 3 sampled temperature values of the

weather sensor.

Figure 4.72 Results of a Query for the First Three Collected Values of the Weather Sensor

It was then confirmed that the STH-Comet can return the historical data collected by

Cygnus, therefore concluding the IoT System tests.

126

Intentionally Left Blank

127

Chapter 5 – Conclusions

5.1 Main Conclusions

With this dissertation it was demonstrated how to use the FIWARE Platform and its

technologies to develop a modular universal IoT System able to communicate, control

and collet data from IoT devices over a wireless environment.

In the beginning, during the investigation period, enormous difficulties were encountered

due to poor documentation and lack of practical examples, it was possible to comprehend

how to the Orion Context Broker Generic Enabler worker and how it was used, and what

Generic Enablers would have to be used, nevertheless, progress was very slow. However,

with the progressive release by FIWARE of a series of practical tutorials, starting in April

and continuing during the following months, it was possible to understand how to the

other necessary GEs worked and how to implement them.

Afterwards, the system was developed having been used the following FIWARE

components or Generic Enablers: Orion Context Broker, IoT Agent for Ultralight 2.0

Protocol, Cygnus and STH-Comet; and also, a MongoDB database to store data, the

Compass GUI to visualize data in the databases, and a Mosquitto MQTT Broker. The

interaction with the system was done though cURL commands or by using the Postman

program.

During the system testing phase, each component was tested by sending commands

directly to them and by implementing a simple use case that simulated a real-world

implementation of IoT devices with sensors and actuators, which proved that the system

was working well as intended.

However, due to the time and effort spent on studying and understanding FIWARE and

its components some of the desired features were not implemented, the GEs which

implement security were not used (the tutorials were only released in August, and

continue to be released), a GUI was also not developed, and other IoT communication

protocols, in addition to MQTT, were also not implemented.

In spite of this, the student hopes that this dissertation can be useful as an introductory

manual on FIWARE for other who needs to use the FIWARE Platform and its

technologies or continue developing this project.

128

5.2 Future Work

Future work to be done in this project include implementing security, a GUI, other IoT

protocols and respective IoT Agents, and replacing the GEs used for Context History

(STH-Comet and Cygnus) for a new and recent GE.

Security:

- The use of the Keyrock Identity Management GE implements OAuth 2.0

authentication for users and devices, and user profile management, which is kept

in a SQL database;

- The use of the Wilma Proxy GE serves as a Policy Enforcement Point as well as

a proxy isolating the rest of the system from the frontend, only allowing

authorized users to interact with the backend;

- The AuthZForce PDP/PAP GE serves as a Policy Decision Point and works in

tandem with Wilma to secure the system.

GUI (frontend):

- The GUI which can be an application or website, can be developed using the

appropriate technologies as an application or website, which the student never

used and didn’t have time to learn how to. However, FIWARE also has a GE

named Wirecloud which can be used to develop operational dashboards, but the

problem of poor documentation and lack of practical examples prevented the use

of this GE.

Other IoT protocols:

- The MQTT protocol was used in this project, however, MQTT is usually used in

Wi-Fi environments were the connection to the Internet is good. If the system was

used in a situation where the devices were located outdoors and distributed over

a large area, like in the test use case, then it would be unrealistic to cover said area

with Wi-Fi due to the large number of antennas needed and the work involved.

That is where the use of protocols such as LoRaWAN which already has an IoT

Agent available and has a coverage radius of kilometers can be used, although it

also requires specific extra hardware that increases the costs of implementation

considerably.

129

Replacement of the context history GEs [74]:

- The QuantumLeap Generic Enabler, made available in November, has the same

functions as the STH-Comet GE, however, while the later doesn’t yet support the

NGSIv2 API, is tied to MongoDB and somewhat obsolete, QuantumLeap

supports several time-series databases (e.g., InfluxDB, RethinkDB and Crate) and

replaces both STH-Comet and Cygnus. In its current state it only supports Crate,

as it is easy scalable, supports geo-queries natively, has a nice SQL-like querying

and supports integration with visualization tools like Grafana

With the implementation of the security GEs and the replacement of the STH-Comet and

Cygnus with QuantumLeap, the system architecture would evolve to be like the one

shown in Figure 5.1. To this architecture other IoT Agents could also be added.

Figure 5.1 Future System Architecture Block Diagram

130

Intentionally Left Blank

131

Annexes

Annex A – FIWARE Orion Context Broker Configuration File

Copyright 2013 Telefonica Investigacion y Desarrollo, S.A.U

This file is part of Orion Context Broker.

Orion Context Broker is free software: you can redistribute it

and/or

modify it under the terms of the GNU Affero General Public License

as

published by the Free Software Foundation, either version 3 of the

License, or (at your option) any later version.

Orion Context Broker is distributed in the hope that it will be

useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

Affero

General Public License for more details.

You should have received a copy of the GNU Affero General Public

License

along with Orion Context Broker. If not, see

http://www.gnu.org/licenses/.

For those usages not covered by this license please contact with

iot_support at tid dot es

Configuration file for orion-broker

BROKER_USER - Who to run orion-broker as. Note that you may need

to use root if you want

to run Orion in a privileged port (<1024)

BROKER_USER=orion

BROKER_PORT - the port/socket where orion-broker will listen for

connections

BROKER_PORT=1026

BROKER_LOG_DIR - Where to log to

BROKER_LOG_DIR=/var/log/contextBroker

BROKER_LOG_LEVEL - Log File Level

BROKER_LOG_LEVEL=WARN

BROKER_PID_FILE - Where to store the pid for orion-broker

BROKER_PID_FILE=/var/run/contextBroker/contextBroker.pid

Database configuration for orion-broker

BROKER_DATABASE_HOST=localhost

BROKER_DATABASE_NAME=orion

132

Replica set configuration. Note that if you set this parameter,

the BROKER_DATABASE_HOST

is interpreted as the list of host (or host:port) separated by

commas to use as

replica set seed list (single element lists are also allowed). If

BROKER_DATABASE_RPL_SET

parameter is unset, Orion CB assumes that the

BROKER_DATABASE_HOST is an stand-alone

mongod instance

#BROKER_DATABASE_RPLSET=orion_rs

Database authentication (not needed if MongoDB doesn't use --auth)

#BROKER_DATABASE_USER=orion

#BROKER_DATABASE_PASSWORD=orion

Use the following variable if you need extra ops

#BROKER_EXTRA_OPS="-t 0-255"

We need to start the CB with log append mode to not overwrite

previous logs and logrotate work correctly

BROKER_EXTRA_OPS="-multiservice -logAppend"

ADVANCED CONFIGURATION AREA ####

The next environment variable generates, if it is defined as

'true', an archive in the

path /var/cb_cores with the core file and the logs when the

process crash (the directory is

automatically created if it doesn't previously exist). Use this

parameter for debug purposes.

In addition, take into account the following:

* BROKER_USER is ignored and contextBroker will be started by

root user

* It is assumed bzip2 tool installed in the system

* Core generation requires CB to be launched with -fg and put in

background at shell level

(i.e. "with ending &"). Note this is different from regular CB

launch (i.e. not using -fg).

Check /etc/init.d/contextBroker for details

* The file names have the next format:

/var/cb_cores/CB_core_yyyymmdd_HHMMSS.tar.bz2, e.g.

/var/cb_cores/CB_core_220180108_151502.tar.bz2

* To avoid filling the disk only the last 8 cores and logs are

maintained.

* Have a look to the coredump_watcher.sh script (can be found at

Orion repo at https://github.com/telefonicaid/fiware-

orion/tree/master/scripts),

which can be used to send an email whenever a new core file is

generated

GENERATE_COREDUMP=false

133

Annex B – Mosquitto MQTT Broker Configuration File

Config file for mosquitto

See mosquitto.conf(5) for more information.

Default values are shown, uncomment to change.

Use the # character to indicate a comment, but only if it is the

very first character on the line.

===

General configuration

===

Time in seconds to wait before resending an outgoing QoS=1 or

QoS=2 message.

#retry_interval 20

Time in seconds between updates of the $SYS tree.

Set to 0 to disable the publishing of the $SYS tree.

#sys_interval 10

Time in seconds between cleaning the internal message store of

unreferenced messages. Lower values will result in lower memory

usage but more processor time, higher values will have the

opposite effect.

Setting a value of 0 means the unreferenced messages will be

disposed of as quickly as possible.

#store_clean_interval 10

Write process id to a file. Default is a blank string which means

a pid file shouldn't be written.

This should be set to /var/run/mosquitto.pid if mosquitto is

being run automatically on boot with an init script and

start-stop-daemon or similar.

#pid_file

When run as root, drop privileges to this user and its primary

group.

Leave blank to stay as root, but this is not recommended.

If run as a non-root user, this setting has no effect.

Note that on Windows this has no effect and so mosquitto should

be started by the user you wish it to run as.

#user mosquitto

The maximum number of QoS 1 and 2 messages currently inflight per

client.

This includes messages that are partway through handshakes and

those that are being retried. Defaults to 20. Set to 0 for no

maximum. Setting to 1 will guarantee in-order delivery of QoS 1

and 2 messages.

#max_inflight_messages 20

The maximum number of QoS 1 and 2 messages to hold in a queue

above those that are currently in-flight. Defaults to 100. Set

to 0 for no maximum (not recommended).

See also queue_qos0_messages.

#max_queued_messages 100

134

Set to true to queue messages with QoS 0 when a persistent client

is

disconnected. These messages are included in the limit imposed by

max_queued_messages.

Defaults to false.

This is a non-standard option for the MQTT v3.1 spec but is

allowed in

v3.1.1.

#queue_qos0_messages false

This option sets the maximum publish payload size that the broker

will allow.

Received messages that exceed this size will not be accepted by

the broker.

The default value is 0, which means that all valid MQTT messages

are

accepted. MQTT imposes a maximum payload size of 268435455 bytes.

#message_size_limit 0

This option controls whether a client is allowed to connect with a

zero

length client id or not. This option only affects clients using

MQTT v3.1.1

and later. If set to false, clients connecting with a zero length

client id

are disconnected. If set to true, clients will be allocated a

client id by

the broker. This means it is only useful for clients with clean

session set

to true.

#allow_zero_length_clientid true

If allow_zero_length_clientid is true, this option allows you to

set a prefix

to automatically generated client ids to aid visibility in logs.

#auto_id_prefix

This option allows persistent clients (those with clean session

set to false)

to be removed if they do not reconnect within a certain time

frame.

This is a non-standard option in MQTT V3.1 but allowed in MQTT

v3.1.1.

Badly designed clients may set clean session to false whilst using

a randomly

generated client id. This leads to persistent clients that will

never

reconnect. This option allows these clients to be removed.

The expiration period should be an integer followed by one of h d

w m y for

hour, day, week, month and year respectively. For example

persistent_client_expiration 2m

persistent_client_expiration 14d

persistent_client_expiration 1y

The default if not set is to never expire persistent clients.

#persistent_client_expiration

135

If a client is subscribed to multiple subscriptions that overlap,

e.g. foo/#

and foo/+/baz , then MQTT expects that when the broker receives a

message on

a topic that matches both subscriptions, such as foo/bar/baz, then

the client

should only receive the message once.

Mosquitto keeps track of which clients a message has been sent to

in order to

meet this requirement. The allow_duplicate_messages option allows

this

behaviour to be disabled, which may be useful if you have a large

number of

clients subscribed to the same set of topics and are very

concerned about

minimising memory usage.

It can be safely set to true if you know in advance that your

clients will

never have overlapping subscriptions, otherwise your clients must

be able to

correctly deal with duplicate messages even when then have QoS=2.

#allow_duplicate_messages false

The MQTT specification requires that the QoS of a message

delivered to a

subscriber is never upgraded to match the QoS of the subscription.

Enabling

this option changes this behaviour. If upgrade_outgoing_qos is set

true,

messages sent to a subscriber will always match the QoS of its

subscription.

This is a non-standard option explicitly disallowed by the spec.

#upgrade_outgoing_qos false

===

Default listener

===

IP address/hostname to bind the default listener to. If not

given, the default listener will not be bound to a specific

address and so will be accessible to all network interfaces.

bind_address ip-address/host name

#bind_address

Port to use for the default listener.

#port 1883

The maximum number of client connections to allow. This is

a per listener setting.

Default is -1, which means unlimited connections.

Note that other process limits mean that unlimited connections

are not really possible. Typically the default maximum number of

connections possible is around 1024.

#max_connections -1

Choose the protocol to use when listening.

This can be either mqtt or websockets.

Websockets support is currently disabled by default at compile

time.

Certificate based TLS may be used with websockets, except that

136

only the cafile, certfile, keyfile and ciphers options are

supported.

#protocol mqtt

When a listener is using the websockets protocol, it is possible

to serve

http data as well. Set http_dir to a directory which contains the

files you

wish to serve. If this option is not specified, then no normal

http

connections will be possible.

#http_dir

Set use_username_as_clientid to true to replace the clientid that

a client

connected with with its username. This allows authentication to be

tied to

the clientid, which means that it is possible to prevent one

client

disconnecting another by using the same clientid.

If a client connects with no username it will be disconnected as

not

authorised when this option is set to true.

Do not use in conjunction with clientid_prefixes.

See also use_identity_as_username.

#use_username_as_clientid

Certificate based SSL/TLS support

The following options can be used to enable SSL/TLS support for

this listener. Note that the recommended port for MQTT over TLS

is 8883, but this must be set manually.

See also the mosquitto-tls man page.

At least one of cafile or capath must be defined. They both

define methods of accessing the PEM encoded Certificate

Authority certificates that have signed your server certificate

and that you wish to trust.

cafile defines the path to a file containing the CA certificates.

capath defines a directory that will be searched for files

containing the CA certificates. For capath to work correctly, the

certificate files must have ".crt" as the file ending and you must

run

"c_rehash <path to capath>" each time you add/remove a

certificate.

#cafile

#capath

Path to the PEM encoded server certificate.

#certfile

Path to the PEM encoded keyfile.

#keyfile

This option defines the version of the TLS protocol to use for

this listener.

The default value allows v1.2, v1.1 and v1.0, if they are all

supported by

137

the version of openssl that the broker was compiled against. For

openssl >=

1.0.1 the valid values are tlsv1.2 tlsv1.1 and tlsv1. For openssl

< 1.0.1 the

valid values are tlsv1.

#tls_version

By default a TLS enabled listener will operate in a similar

fashion to a

https enabled web server, in that the server has a certificate

signed by a CA

and the client will verify that it is a trusted certificate. The

overall aim

is encryption of the network traffic. By setting

require_certificate to true,

the client must provide a valid certificate in order for the

network

connection to proceed. This allows access to the broker to be

controlled

outside of the mechanisms provided by MQTT.

#require_certificate false

If require_certificate is true, you may set

use_identity_as_username to true

to use the CN value from the client certificate as a username. If

this is

true, the password_file option will not be used for this listener.

#use_identity_as_username false

If you have require_certificate set to true, you can create a

certificate

revocation list file to revoke access to particular client

certificates. If

you have done this, use crlfile to point to the PEM encoded

revocation file.

#crlfile

If you wish to control which encryption ciphers are used, use the

ciphers

option. The list of available ciphers can be optained using the

"openssl

ciphers" command and should be provided in the same format as the

output of

that command.

If unset defaults to

DEFAULT:!aNULL:!eNULL:!LOW:!EXPORT:!SSLv2:@STRENGTH

#ciphers DEFAULT:!aNULL:!eNULL:!LOW:!EXPORT:!SSLv2:@STRENGTH

Pre-shared-key based SSL/TLS support

The following options can be used to enable PSK based SSL/TLS

support for

this listener. Note that the recommended port for MQTT over TLS is

8883, but

this must be set manually.

See also the mosquitto-tls man page and the "Certificate based

SSL/TLS

support" section. Only one of certificate or PSK encryption

support can be

138

enabled for any listener.

The psk_hint option enables pre-shared-key support for this

listener and also

acts as an identifier for this listener. The hint is sent to

clients and may

be used locally to aid authentication. The hint is a free form

string that

doesn't have much meaning in itself, so feel free to be creative.

If this option is provided, see psk_file to define the pre-shared

keys to be

used or create a security plugin to handle them.

#psk_hint

Set use_identity_as_username to have the psk identity sent by the

client used

as its username. Authentication will be carried out using the PSK

rather than

the MQTT username/password and so password_file will not be used

for this

listener.

#use_identity_as_username false

When using PSK, the encryption ciphers used will be chosen from

the list of

available PSK ciphers. If you want to control which ciphers are

available,

use the "ciphers" option. The list of available ciphers can be

optained

using the "openssl ciphers" command and should be provided in the

same format

as the output of that command.

#ciphers

===

Extra listeners

===

Listen on a port/ip address combination. By using this variable

multiple times, mosquitto can listen on more than one port. If

this variable is used and neither bind_address nor port given,

then the default listener will not be started.

The port number to listen on must be given. Optionally, an ip

address or host name may be supplied as a second argument. In

this case, mosquitto will attempt to bind the listener to that

address and so restrict access to the associated network and

interface. By default, mosquitto will listen on all interfaces.

listener port-number [ip address/host name]

#listener

The maximum number of client connections to allow. This is

a per listener setting.

Default is -1, which means unlimited connections.

Note that other process limits mean that unlimited connections

are not really possible. Typically the default maximum number of

connections possible is around 1024.

#max_connections -1

The listener can be restricted to operating within a topic

hierarchy using

139

the mount_point option. This is achieved be prefixing the

mount_point string

to all topics for any clients connected to this listener. This

prefixing only

happens internally to the broker; the client will not see the

prefix.

#mount_point

Choose the protocol to use when listening.

This can be either mqtt or websockets.

Certificate based TLS may be used with websockets, except that

only the

cafile, certfile, keyfile and ciphers options are supported.

#protocol mqtt

When a listener is using the websockets protocol, it is possible

to serve

http data as well. Set http_dir to a directory which contains the

files you

wish to serve. If this option is not specified, then no normal

http

connections will be possible.

#http_dir

Set use_username_as_clientid to true to replace the clientid that

a client

connected with with its username. This allows authentication to be

tied to

the clientid, which means that it is possible to prevent one

client

disconnecting another by using the same clientid.

If a client connects with no username it will be disconnected as

not

authorised when this option is set to true.

Do not use in conjunction with clientid_prefixes.

See also use_identity_as_username.

#use_username_as_clientid

Certificate based SSL/TLS support

The following options can be used to enable certificate based

SSL/TLS support

for this listener. Note that the recommended port for MQTT over

TLS is 8883,

but this must be set manually.

See also the mosquitto-tls man page and the "Pre-shared-key based

SSL/TLS

support" section. Only one of certificate or PSK encryption

support can be

enabled for any listener.

At least one of cafile or capath must be defined to enable

certificate based

TLS encryption. They both define methods of accessing the PEM

encoded

Certificate Authority certificates that have signed your server

certificate

and that you wish to trust.

cafile defines the path to a file containing the CA certificates.

140

capath defines a directory that will be searched for files

containing the CA certificates. For capath to work correctly, the

certificate files must have ".crt" as the file ending and you must

run

"c_rehash <path to capath>" each time you add/remove a

certificate.

#cafile

#capath

Path to the PEM encoded server certificate.

#certfile

Path to the PEM encoded keyfile.

#keyfile

By default an TLS enabled listener will operate in a similar

fashion to a

https enabled web server, in that the server has a certificate

signed by a CA

and the client will verify that it is a trusted certificate. The

overall aim

is encryption of the network traffic. By setting

require_certificate to true,

the client must provide a valid certificate in order for the

network

connection to proceed. This allows access to the broker to be

controlled

outside of the mechanisms provided by MQTT.

#require_certificate false

If require_certificate is true, you may set

use_identity_as_username to true

to use the CN value from the client certificate as a username. If

this is

true, the password_file option will not be used for this listener.

#use_identity_as_username false

If you have require_certificate set to true, you can create a

certificate

revocation list file to revoke access to particular client

certificates. If

you have done this, use crlfile to point to the PEM encoded

revocation file.

#crlfile

If you wish to control which encryption ciphers are used, use the

ciphers

option. The list of available ciphers can be optained using the

"openssl

ciphers" command and should be provided in the same format as the

output of

that command.

#ciphers

Pre-shared-key based SSL/TLS support

The following options can be used to enable PSK based SSL/TLS

support for

this listener. Note that the recommended port for MQTT over TLS is

8883, but

141

this must be set manually.

See also the mosquitto-tls man page and the "Certificate based

SSL/TLS

support" section. Only one of certificate or PSK encryption

support can be

enabled for any listener.

The psk_hint option enables pre-shared-key support for this

listener and also

acts as an identifier for this listener. The hint is sent to

clients and may

be used locally to aid authentication. The hint is a free form

string that

doesn't have much meaning in itself, so feel free to be creative.

If this option is provided, see psk_file to define the pre-shared

keys to be

used or create a security plugin to handle them.

#psk_hint

Set use_identity_as_username to have the psk identity sent by the

client used

as its username. Authentication will be carried out using the PSK

rather than

the MQTT username/password and so password_file will not be used

for this

listener.

#use_identity_as_username false

When using PSK, the encryption ciphers used will be chosen from

the list of

available PSK ciphers. If you want to control which ciphers are

available,

use the "ciphers" option. The list of available ciphers can be

optained

using the "openssl ciphers" command and should be provided in the

same format

as the output of that command.

#ciphers

===

Persistence

===

If persistence is enabled, save the in-memory database to disk

every autosave_interval seconds. If set to 0, the persistence

database will only be written when mosquitto exits. See also

autosave_on_changes.

Note that writing of the persistence database can be forced by

sending mosquitto a SIGUSR1 signal.

#autosave_interval 1800

If true, mosquitto will count the number of subscription changes,

retained

messages received and queued messages and if the total exceeds

autosave_interval then the in-memory database will be saved to

disk.

If false, mosquitto will save the in-memory database to disk by

treating

autosave_interval as a time in seconds.

#autosave_on_changes false

142

Save persistent message data to disk (true/false).

This saves information about all messages, including

subscriptions, currently in-flight messages and retained

messages.

retained_persistence is a synonym for this option.

#persistence false

The filename to use for the persistent database, not including

the path.

#persistence_file mosquitto.db

Location for persistent database. Must include trailing /

Default is an empty string (current directory).

Set to e.g. /var/lib/mosquitto/ if running as a proper service on

Linux or

similar.

#persistence_location

===

Logging

===

Places to log to. Use multiple log_dest lines for multiple

logging destinations.

Possible destinations are: stdout stderr syslog topic file

stdout and stderr log to the console on the named output.

syslog uses the userspace syslog facility which usually ends up

in /var/log/messages or similar.

topic logs to the broker topic '$SYS/broker/log/<severity>',

where severity is one of D, E, W, N, I, M which are debug, error,

warning, notice, information and message. Message type severity is

used by

the subscribe/unsubscribe log_types and publishes log messages to

$SYS/broker/log/M/susbcribe or $SYS/broker/log/M/unsubscribe.

The file destination requires an additional parameter which is the

file to be

logged to, e.g. "log_dest file /var/log/mosquitto.log". The file

will be

closed and reopened when the broker receives a HUP signal. Only a

single file

destination may be configured.

Note that if the broker is running as a Windows service it will

default to

"log_dest none" and neither stdout nor stderr logging is

available.

Use "log_dest none" if you wish to disable logging.

#log_dest stderr

If using syslog logging (not on Windows), messages will be logged

to the

"daemon" facility by default. Use the log_facility option to

choose which of

local0 to local7 to log to instead. The option value should be an

integer

value, e.g. "log_facility 5" to use local5.

143

#log_facility

Types of messages to log. Use multiple log_type lines for logging

multiple types of messages.

Possible types are: debug, error, warning, notice, information,

none, subscribe, unsubscribe, websockets, all.

Note that debug type messages are for decoding the

incoming/outgoing

network packets. They are not logged in "topics".

#log_type error

#log_type warning

#log_type notice

#log_type information

Change the websockets logging level. This is a global option, it

is not

possible to set per listener. This is an integer that is

interpreted by

libwebsockets as a bit mask for its lws_log_levels enum. See the

libwebsockets documentation for more details. "log_type

websockets" must also

be enabled.

#websockets_log_level 0

If set to true, client connection and disconnection messages will

be included

in the log.

#connection_messages true

If set to true, add a timestamp value to each log message.

#log_timestamp true

===

Security

===

If set, only clients that have a matching prefix on their

clientid will be allowed to connect to the broker. By default,

all clients may connect.

For example, setting "secure-" here would mean a client "secure-

client" could connect but another with clientid "mqtt" couldn't.

#clientid_prefixes

Boolean value that determines whether clients that connect

without providing a username are allowed to connect. If set to

false then a password file should be created (see the

password_file option) to control authenticated client access.

Defaults to true.

#allow_anonymous true

In addition to the clientid_prefixes, allow_anonymous and TLS

authentication options, username based authentication is also

possible. The default support is described in "Default

authentication and topic access control" below. The auth_plugin

allows another authentication method to be used.

Specify the path to the loadable plugin and see the

"Authentication and topic access plugin options" section below.

#auth_plugin

Default authentication and topic access control

144

Control access to the broker using a password file. This file can

be

generated using the mosquitto_passwd utility. If TLS support is

not compiled

into mosquitto (it is recommended that TLS support should be

included) then

plain text passwords are used, in which case the file should be a

text file

with lines in the format:

username:password

The password (and colon) may be omitted if desired, although this

offers very little in the way of security.

See the TLS client require_certificate and

use_identity_as_username options

for alternative authentication options.

#password_file

Access may also be controlled using a pre-shared-key file. This

requires

TLS-PSK support and a listener configured to use it. The file

should be text

lines in the format:

identity:key

The key should be in hexadecimal format without a leading "0x".

#psk_file

Control access to topics on the broker using an access control

list

file. If this parameter is defined then only the topics listed

will

have access.

If the first character of a line of the ACL file is a # it is

treated as a

comment.

Topic access is added with lines of the format:

topic [read|write|readwrite] <topic>

The access type is controlled using "read", "write" or

"readwrite". This

parameter is optional (unless <topic> contains a space character)

- if not

given then the access is read/write. <topic> can contain the + or

wildcards as in subscriptions.

The first set of topics are applied to anonymous clients, assuming

allow_anonymous is true. User specific topic ACLs are added after

a

user line as follows:

user <username>

The username referred to here is the same as in password_file. It

is

not the clientid.

145

If is also possible to define ACLs based on pattern substitution

within the

topic. The patterns available for substition are:

%c to match the client id of the client

%u to match the username of the client

The substitution pattern must be the only text for that level of

hierarchy.

The form is the same as for the topic keyword, but using pattern

as the

keyword.

Pattern ACLs apply to all users even if the "user" keyword has

previously

been given.

If using bridges with usernames and ACLs, connection messages can

be allowed

with the following pattern:

pattern write $SYS/broker/connection/%c/state

pattern [read|write|readwrite] <topic>

Example:

pattern write sensor/%u/data

#acl_file

Authentication and topic access plugin options

If the auth_plugin option above is used, define options to pass to

the

plugin here as described by the plugin instructions. All options

named

using the format auth_opt_* will be passed to the plugin, for

example:

auth_opt_db_host

auth_opt_db_port

auth_opt_db_username

auth_opt_db_password

===

Bridges

===

A bridge is a way of connecting multiple MQTT brokers together.

Create a new bridge using the "connection" option as described

below. Set

options for the bridges using the remaining parameters. You must

specify the

address and at least one topic to subscribe to.

Each connection must have a unique name.

The address line may have multiple host address and ports

specified. See

146

below in the round_robin description for more details on bridge

behaviour if

multiple addresses are used.

The direction that the topic will be shared can be chosen by

specifying out, in or both, where the default value is out.

The QoS level of the bridged communication can be specified with

the next

topic option. The default QoS level is 0, to change the QoS the

topic

direction must also be given.

The local and remote prefix options allow a topic to be remapped

when it is

bridged to/from the remote broker. This provides the ability to

place a topic

tree in an appropriate location.

For more details see the mosquitto.conf man page.

Multiple topics can be specified per connection, but be careful

not to create any loops.

If you are using bridges with cleansession set to false (the

default), then

you may get unexpected behaviour from incoming topics if you

change what

topics you are subscribing to. This is because the remote broker

keeps the

subscription for the old topic. If you have this problem, connect

your bridge

with cleansession set to true, then reconnect with cleansession

set to false

as normal.

#connection <name>

#address <host>[:<port>] [<host>[:<port>]]

#topic <topic> [[[out | in | both] qos-level] local-prefix remote-

prefix]

Set the version of the MQTT protocol to use with for this bridge.

Can be one

of mqttv31 or mqttv311. Defaults to mqttv31.

#bridge_protocol_version mqttv31

If a bridge has topics that have "out" direction, the default

behaviour is to

send an unsubscribe request to the remote broker on that topic.

This means

that changing a topic direction from "in" to "out" will not keep

receiving

incoming messages. Sending these unsubscribe requests is not

always

desirable, setting bridge_attempt_unsubscribe to false will

disable sending

the unsubscribe request.

#bridge_attempt_unsubscribe true

If the bridge has more than one address given in the

address/addresses

configuration, the round_robin option defines the behaviour of the

bridge on

a failure of the bridge connection. If round_robin is false, the

default

value, then the first address is treated as the main bridge

connection. If

147

the connection fails, the other secondary addresses will be

attempted in

turn. Whilst connected to a secondary bridge, the bridge will

periodically

attempt to reconnect to the main bridge until successful.

If round_robin is true, then all addresses are treated as equals.

If a

connection fails, the next address will be tried and if successful

will

remain connected until it fails

#round_robin false

Set the client id to use on the remote end of this bridge

connection. If not

defined, this defaults to 'name.hostname' where name is the

connection name

and hostname is the hostname of this computer.

This replaces the old "clientid" option to avoid confusion.

"clientid"

remains valid for the time being.

#remote_clientid

Set the clientid to use on the local broker. If not defined, this

defaults to

'local.<clientid>'. If you are bridging a broker to itself, it is

important

that local_clientid and clientid do not match.

#local_clientid

Set the clean session variable for this bridge.

When set to true, when the bridge disconnects for any reason, all

messages and subscriptions will be cleaned up on the remote

broker. Note that with cleansession set to true, there may be a

significant amount of retained messages sent when the bridge

reconnects after losing its connection.

When set to false, the subscriptions and messages are kept on the

remote broker, and delivered when the bridge reconnects.

#cleansession false

If set to true, publish notification messages to the local and

remote brokers

giving information about the state of the bridge connection.

Retained

messages are published to the topic

$SYS/broker/connection/<clientid>/state

unless the notification_topic option is used.

If the message is 1 then the connection is active, or 0 if the

connection has

failed.

#notifications true

Choose the topic on which notification messages for this bridge

are

published. If not set, messages are published on the topic

$SYS/broker/connection/<clientid>/state

#notification_topic

Set the keepalive interval for this bridge connection, in

seconds.

#keepalive_interval 60

148

Set the start type of the bridge. This controls how the bridge

starts and

can be one of three types: automatic, lazy and once. Note that

RSMB provides

a fourth start type "manual" which isn't currently supported by

mosquitto.

"automatic" is the default start type and means that the bridge

connection

will be started automatically when the broker starts and also

restarted

after a short delay (30 seconds) if the connection fails.

Bridges using the "lazy" start type will be started automatically

when the

number of queued messages exceeds the number set with the

"threshold"

parameter. It will be stopped automatically after the time set by

the

"idle_timeout" parameter. Use this start type if you wish the

connection to

only be active when it is needed.

A bridge using the "once" start type will be started automatically

when the

broker starts but will not be restarted if the connection fails.

#start_type automatic

Set the amount of time a bridge using the automatic start type

will wait

until attempting to reconnect. Defaults to 30 seconds.

#restart_timeout 30

Set the amount of time a bridge using the lazy start type must be

idle before

it will be stopped. Defaults to 60 seconds.

#idle_timeout 60

Set the number of messages that need to be queued for a bridge

with lazy

start type to be restarted. Defaults to 10 messages.

Must be less than max_queued_messages.

#threshold 10

If try_private is set to true, the bridge will attempt to indicate

to the

remote broker that it is a bridge not an ordinary client. If

successful, this

means that loop detection will be more effective and that retained

messages

will be propagated correctly. Not all brokers support this feature

so it may

be necessary to set try_private to false if your bridge does not

connect

properly.

#try_private true

Set the username to use when connecting to a broker that requires

authentication.

This replaces the old "username" option to avoid confusion.

"username"

149

remains valid for the time being.

#remote_username

Set the password to use when connecting to a broker that requires

authentication. This option is only used if remote_username is

also set.

This replaces the old "password" option to avoid confusion.

"password"

remains valid for the time being.

#remote_password

Certificate based SSL/TLS support

Either bridge_cafile or bridge_capath must be defined to enable

TLS support

for this bridge.

bridge_cafile defines the path to a file containing the

Certificate Authority certificates that have signed the remote

broker

certificate.

bridge_capath defines a directory that will be searched for files

containing

the CA certificates. For bridge_capath to work correctly, the

certificate

files must have ".crt" as the file ending and you must run

"c_rehash <path to

capath>" each time you add/remove a certificate.

#bridge_cafile

#bridge_capath

Path to the PEM encoded client certificate, if required by the

remote broker.

#bridge_certfile

Path to the PEM encoded client private key, if required by the

remote broker.

#bridge_keyfile

When using certificate based encryption, bridge_insecure disables

verification of the server hostname in the server certificate.

This can be

useful when testing initial server configurations, but makes it

possible for

a malicious third party to impersonate your server through DNS

spoofing, for

example. Use this option in testing only. If you need to resort to

using this

option in a production environment, your setup is at fault and

there is no

point using encryption.

#bridge_insecure false

PSK based SSL/TLS support

Pre-shared-key encryption provides an alternative to certificate

based

encryption. A bridge can be configured to use PSK with the

bridge_identity

150

and bridge_psk options. These are the client PSK identity, and

pre-shared-key

in hexadecimal format with no "0x". Only one of certificate and

PSK based

encryption can be used on one

bridge at once.

#bridge_identity

#bridge_psk

===

External config files

===

External configuration files may be included by using the

include_dir option. This defines a directory that will be searched

for config files. All files that end in '.conf' will be loaded as

a configuration file. It is best to have this as the last option

in the main file. This option will only be processed from the main

configuration file. The directory specified must not contain the

main configuration file.

#include_dir

===

rsmb options - unlikely to ever be supported

===

#ffdc_output

#max_log_entries

#trace_level

#trace_output

151

Annex C – ESP8266-12E Datasheet

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

Annex D – NodeMcu Devkit v1.0 ESP8266 Wi-Fi Module ESP-12E User

Manual

169

170

171

172

173

174

175

Annex E – DHT22 Datasheet

176

177

178

179

180

181

Annex F – XL-MaxSonar-EZ MB1260 Sensor Datasheet

182

183

184

185

186

187

188

189

190

191

Annex G – Earth-Humidity Sensor Datasheet

192

193

194

195

196

197

Annex H – System Set-Up

To simplify the IoT System set-up a simple shell script was written, named “setup.sh”,

which only requires the user to insert well defined commands to manage the System and

the underlying Docker Images and Containers without the need to know Docker

commands.

echo "This is a script created to help set up the IoT System

Available commands:

 create --> creates and starts the system containers based

on the docker-compose.yml file

 pause --> pause the system containers (dooesn't delete

data)

 unpause

 stop --> stop the system containers without removing

 start --> start stopped system containers

 removeC --> remove system containers

 removeI --> remove system containers and images"

echo -n "Insert Command: "

read x

command="$x"

case "${command}" in

 "help")

 echo "usage: commands

[create|pause|unpause|stop|start|remove]"

 ;;

 "create")

 echo "downloading images, creating containers, starting

containers"

 docker-compose -p iotSystem up -d --remove-orphans

 sleep 2

 ;;

 "pause")

 echo "pausing containers"

 docker-compose -p iotSystem pause

 ;;

 "unpause")

 echo "unpausing containers"

 docker-compose -p iotSystem unpause

 ;;

 "stop")

 echo "stopping containers"

 docker-compose -p iotSystem stop

 ;;

 "start")

 echo "starting containers"

 docker-compose -p iotSystem start

 ;;

 "removeC")

 echo "removing containers"

 docker-compose -p iotSystem down

 ;;

 "removeI")

 echo "removing containers and images"

 docker-compose -p iotSystem down --rmi all

198

 ;;

 *)

 echo "Command not Found."

 Echo "usage: commands

[create|pause|unpause|stop|start|remove]"

 exit 127;

 ;;

esac

When the set-up shell script is run, the following output is presented, Figure H.1, asking

the user to insert one of the commands available.

Figure H.2 Set-Up Shell Script Output

The “create” command, runs the appropriate Docker-Compose command to pull the

necessary Images, create, configure and start the Containers as defined in the “docker-

compose.yml” file presented in the previous section.

The “pause” command, pauses the IoT System Containers, which can be unpaused by

using the “unpause” command.

The “stop” command, stops the IoT System Containers, which can be started again, by

using the “start” command.

The “removeC” command, removes the IoT System Containers and all data is lost.

The “removeI” commands, removes the IoT System Containers and the Docker Images

used to create them, allowing to restart from zero.

If none of the above commands is inserted, an error is returned, and the script exits.

199

“create” Command

Figure H.2 shows the Docker Images and Containers before the script execution, where

it is observed that there aren’t any Images and Containers.

Figure H.3 Docker Images and Containers Before the Script Execution

Figure H.3 displays the script execution output, where it is possible to visualize the

downloading of the Images and the creation of the Containers.

Figure H.3 "create" Command Output – Part 1

200

Figure H.4 "create" Command Output – Part 2

Figure H.4 shows the Docker Images and Containers after the script execution,

confirming that the Images where downloaded and that the Containers where created and

are running.

Figure H.5 Docker Images and Containers After the Script Execution

201

“pause” Command

Figure H.5 displays the script execution output, where it is observed that the Containers

where paused.

Figure H.6 "pause" Command Output

Figure H.6 shows the Docker Containers after the script execution, confirming that the

Containers where indeed paused.

Figure H.7 Docker Containers After “pause” Command

202

“unpause” Command

Figure H.7 displays the script execution output, where it is observed that the Containers

where unpaused.

Figure H.8 "unpause" Command Output

Figure H.8 shows the Docker Containers after the script execution, confirming that the

Containers where indeed unpaused.

Figure H.9 Docker Container After "unpause" Command

203

“stop” Command

Figure H.9 displays the script execution output, where it is observed that the Containers

where stopped.

Figure H.10 "stop" Command Output

Figure H.10 shows the Docker Containers after the script execution, confirming that the

Containers where indeed stopped.

Figure H.11 Docker Containers After "stop" Command

204

“start” Command

Figure H.11 displays the script execution output, where it is observed that the stopped

Containers where started.

Figure H.12 "start" Command Output

Figure H.12 shows the Docker Containers after the script execution, confirming that the

Containers where indeed started.

Figure H.13 Docker Containers After "start" Command

205

“removeC” Command

Figure H.13 displays the script execution output, where it is observed that the Containers

where stopped and then removed.

Figure H.14 "removeC" Command Output

Figure H.14 shows the Docker Images and Containers after the script execution,

confirming that the Containers where indeed removed and that the Images remained.

Figure H.15 Docker Images and Containers After "removeC" Command

206

“removeI” Command

Figure H.15 displays the script execution output, where it is observed that the Containers

where stopped and then removed, and the Images were also removed.

Figure H.16 "removeI" Command Output

Figure H.16 shows the Docker Images and Containers after the script execution,

confirming that the Images and Containers where indeed removed.

Figure H.17 Docker Images and Containers After "removeI" Command

207

Annex I – Entities Creation Script

Farm001

curl -iX POST \

 'http://localhost:1026/v2/entities' \

 -H 'Content-Type: application/json' \

 -H 'fiware-service: farmOne' \

 -d '

{

 "id": "urn:ngsi-ld:Farm:001",

 "type": "Farm",

 "address": {

 "type": "PostalAddress",

 "value": {

 "streetAddress": "Av. das Forças Armadas 36",

 "addressRegion": "Lisbon",

 "addressLocality": "Lisbon",

 "postalCode": "1649-026"

 }

 },

 "location": {

 "type": "geo:json",

 "value": {

 "type": "Point",

 "coordinates": [38.7486, -9.1544]

 }

 },

 "name": {

 "type": "Text",

 "value": "GIGA Farm"

 }

}'

Fields

curl -iX POST \

 'http://localhost:1026/v2/entities' \

 -H 'Content-Type: application/json' \

 -H 'fiware-service: farmOne' \

 -d '

{

 "id": "urn:ngsi-ld:Field:001",

 "type": "Field",

 "location": {

 "type": "geo:json",

 "value": {

 "type": "Point",

 "coordinates": [39.7489, -9.1534]

 }

 },

 "name": {

 "type": "Text",

 "value": "Field A"

 },

 "area": {

 "type": "Integer",

 "value": "10"

 }

}'

208

curl -iX POST \

 'http://localhost:1026/v2/entities' \

 -H 'Content-Type: application/json' \

 -H 'fiware-service: farmOne' \

 -d '

{

 "id": "urn:ngsi-ld:Field:002",

 "type": "Field",

 "location": {

 "type": "geo:json",

 "value": {

 "type": "Point",

 "coordinates": [39.7489, -9.1534]

 }

 },

 "name": {

 "type": "Text",

 "value": "Field B"

 },

 "area": {

 "type": "Integer",

 "value": "5"

 }

}'

curl -iX POST \

 'http://localhost:1026/v2/entities' \

 -H 'Content-Type: application/json' \

 -H 'fiware-service: farmOne' \

 -d '

{

 "id": "urn:ngsi-ld:Field:003",

 "type": "Field",

 "location": {

 "type": "geo:json",

 "value": {

 "type": "Point",

 "coordinates": [39.7489, -9.1534]

 }

 },

 "name": {

 "type": "Text",

 "value": "Field C"

 },

 "area": {

 "type": "Integer",

 "value": "5"

 }

}'

Crops

curl -iX POST \

 'http://localhost:1026/v2/entities' \

 -H 'Content-Type: application/json' \

 -H 'fiware-service: farmOne' \

 -d '

{

 "id": "urn:ngsi-ld:Crop:001",

 "type": "Crop",

209

 "name": {

 "type": "Text",

 "value": "Apples"

 }

}'

curl -iX POST \

 'http://localhost:1026/v2/entities' \

 -H 'Content-Type: application/json' \

 -H 'fiware-service: farmOne' \

 -d '

{

 "id": "urn:ngsi-ld:Crop:002",

 "type": "Crop",

 "name": {

 "type": "Text",

 "value": "Tomatoes"

 }

}'

curl -iX POST \

 'http://localhost:1026/v2/entities' \

 -H 'Content-Type: application/json' \

 -H 'fiware-service: farmOne' \

 -d '

{

 "id": "urn:ngsi-ld:Crop:003",

 "type": "Crop",

 "name": {

 "type": "Text",

 "value": "Corn"

 }

}'

Well

curl -iX POST \

 'http://localhost:1026/v2/entities' \

 -H 'Content-Type: application/json' \

 -H 'fiware-service: farmOne' \

 -d '

{

 "id": "urn:ngsi-ld:Well:001",

 "type": "Well",

 "location": {

 "type": "geo:json",

 "value": {

 "type": "Point",

 "coordinates": [39.7489, -9.1534]

 }

 },

 "name": {

 "type": "Text",

 "value": "Well One"

 },

 "depth": {

 "type": "Integer",

 "value": "10"

 }

}'

210

Tank

curl -iX POST \

 'http://localhost:1026/v2/entities' \

 -H 'Content-Type: application/json' \

 -H 'fiware-service: farmOne' \

 -d '

{

 "id": "urn:ngsi-ld:Tank:001",

 "type": "Tank",

 "location": {

 "type": "geo:json",

 "value": {

 "type": "Point",

 "coordinates": [45.7489, -9.1534]

 }

 },

 "name": {

 "type": "Text",

 "value": "Tank One"

 },

 "depth": {

 "type": "Integer",

 "value": "3"

 }

}'

Borehole

curl -iX POST \

 'http://localhost:1026/v2/entities' \

 -H 'Content-Type: application/json' \

 -H 'fiware-service: farmOne' \

 -d '

{

 "id": "urn:ngsi-ld:Borehole:001",

 "type": "Borehole",

 "location": {

 "type": "geo:json",

 "value": {

 "type": "Point",

 "coordinates": [47.7489, -10.1534]

 }

 },

 "name": {

 "type": "Text",

 "value": "Borehole One"

 },

 "depth": {

 "type": "Integer",

 "value": "20"

 }

}'

211

Annex J – Entities Association Script

Associations

curl -iX POST \

 'http://localhost:1026/v2/op/update' \

 -H 'Content-Type: application/json' \

 -H 'fiware-service: farmOne' \

 -d '{

 "actionType":"APPEND",

 "entities":[

 {

 "id":"urn:ngsi-ld:Field:001", "type":"Field",

 "refFarm": {

 "type": "Relationship",

 "value": "urn:ngsi-ld:Farm:001"

 },

 "refTank": {

 "type": "Relationship",

 "value": "urn:ngsi-ld:Tank:001"

 }

 },

 {

 "id":"urn:ngsi-ld:Field:002", "type":"Field",

 "refFarm": {

 "type": "Relationship",

 "value": "urn:ngsi-ld:Farm:001"

 },

 "refWell": {

 "type": "Relationship",

 "value": "urn:ngsi-ld:Well:001"

 }

 },

 {

 "id":"urn:ngsi-ld:Field:003", "type":"Field",

 "refFarm": {

 "type": "Relationship",

 "value": "urn:ngsi-ld:Farm:001"

 },

 "refwell": {

 "type": "Relationship",

 "value": "urn:ngsi-ld:Well:001"

 }

 },

 {

 "id":"urn:ngsi-ld:Crop:001", "type":"Crop",

 "refFarm": {

 "type": "Relationship",

 "value": "urn:ngsi-ld:Farm:001"

 },

 "refField": {

 "type": "Relationship",

 "value": "urn:ngsi-ld:Field:001"

 }

 },

 {

 "id":"urn:ngsi-ld:Crop:002", "type":"Crop",

 "refFarm": {

 "type": "Relationship",

 "value": "urn:ngsi-ld:Farm:001"

212

 },

 "refField": {

 "type": "Relationship",

 "value": "urn:ngsi-ld:Field:002"

 }

 },

 {

 "id":"urn:ngsi-ld:Crop:003", "type":"Crop",

 "refFarm": {

 "type": "Relationship",

 "value": "urn:ngsi-ld:Farm:001"

 },

 "refField": {

 "type": "Relationship",

 "value": "urn:ngsi-ld:Field:003"

 }

 },

 {

 "id":"urn:ngsi-ld:Well:001", "type":"Well",

 "refFarm": {

 "type": "Relationship",

 "value": "urn:ngsi-ld:Farm:001"

 }

 },

 {

 "id":"urn:ngsi-ld:Tank:001", "type":"Tank",

 "refFarm": {

 "type": "Relationship",

 "value": "urn:ngsi-ld:Farm:001"

 }

 }

]

}'

Annex K – Entities Modification Scripts

Borehole - Original Entity

#curl -iX POST \

'http://localhost:1026/v2/entities' \

-H 'Content-Type: application/json' \

-H 'fiware-service: farmOne' \

-d '

#{

"id": "urn:ngsi-ld:Borehole:001",

"type": "Borehole",

"location": {

"type": "geo:json",

"value": {

"type": "Point",

"coordinates": [47.7489, -10.1534]

}

},

"name": {

"type": "Text",

"value": "Borehole One"

},

"depth": {

"type": "Integer",

213

"value": "20"

}

#}'

Script “3_use_case_entities_modification_(1)_v1.sh”

#Overwrite a single attribute value (depth)

curl -iX PUT \

 --url 'http://localhost:1026/v2/entities/urn:ngsi-

ld:Borehole:001/attrs/depth/value' \

 --header 'Content-Type: text/plain' \

 --header 'fiware-service: farmOne' \

 --data 25

Script “3_use_case_entities_modification_(2)_v1.sh”

#Overwrite multiple attributes

curl -iX PATCH \

 --url 'http://localhost:1026/v2/entities/urn:ngsi-

ld:Borehole:001/attrs' \

 --header 'Content-Type: application/json' \

 --header 'fiware-service: farmOne' \

 --data ' {

 "name":{"type":"Text", "value": "Top Borehole"},

 "depth":{"type":"Integer", "value": "30"}

}'

Annex L – Entities Removal Scripts

Script “4_use_case_entities_removal_(1)_v1.sh”

Borehole - remove attribute

curl -iX DELETE 'http://localhost:1026/v2/entities/urn:ngsi-

ld:Borehole:001/attrs/depth' \

 -H 'fiware-service: farmOne'

Script “4_use_case_entities_removal_(2)_v1.sh”

Borehole - remove entity

curl -iX DELETE 'http://localhost:1026/v2/entities/urn:ngsi-

ld:Borehole:001' \

 -H 'fiware-service: farmOne'

214

Annex M – Service Group Provisioning Script

#field A service groups

curl -iX POST \

 'http://localhost:4041/iot/services' \

 -H 'Content-Type: application/json' \

 -H 'fiware-service: openiot' \

 -H 'fiware-servicepath: /fieldA/sensors' \

 -d '{

 "services": [

 {

 "apikey": "4jggokgpepnvsb2uv4s40d59a",

 "cbroker": "http://orion:1026",

 "entity_type": "Thing",

 "resource": ""

 }

]

}'

curl -iX POST \

 'http://localhost:4041/iot/services' \

 -H 'Content-Type: application/json' \

 -H 'fiware-service: openiot' \

 -H 'fiware-servicepath: /fieldA/actuators' \

 -d '{

 "services": [

 {

 "apikey": "4jggokgpepnvsb2uv4s40d59b",

 "cbroker": "http://orion:1026",

 "entity_type": "Thing",

 "resource": ""

 }

]

}'

#tank service groups

curl -iX POST \

 'http://localhost:4041/iot/services' \

 -H 'Content-Type: application/json' \

 -H 'fiware-service: openiot' \

 -H 'fiware-servicepath: /tank/sensors' \

 -d '{

 "services": [

 {

 "apikey": "4jggokgpepnvsb2uv4s40d59c",

 "cbroker": "http://orion:1026",

 "entity_type": "Thing",

 "resource": ""

 }

]

}'

curl -iX POST \

 'http://localhost:4041/iot/services' \

 -H 'Content-Type: application/json' \

 -H 'fiware-service: openiot' \

 -H 'fiware-servicepath: /tank/actuators' \

 -d '{

215

 "services": [

 {

 "apikey": "4jggokgpepnvsb2uv4s40d59d",

 "cbroker": "http://orion:1026",

 "entity_type": "Thing",

 "resource": ""

 }

]

}'

Annex N – Sensors Provisioning Script

curl -iX POST \

 'http://localhost:4041/iot/devices' \

 -H 'Content-Type: application/json' \

 -H 'fiware-service: openiot' \

 -H 'fiware-servicepath: /fieldA/sensors' \

 -d '{

 "devices": [

 {

 "device_id": "weather001",

 "entity_name": "urn:ngsd-ld:Weather:001",

 "entity_type": "Weather",

 "protocol": "PDI-IoTA-UltraLight",

 "transport": "MQTT",

 "timezone": "Europe/Lisbon",

 "attributes": [

 { "object_id": "h", "name": "humidity", "type": "percentage"

},

 { "object_id": "t", "name": "temperature", "type": "degrees"

},

 { "object_id": "i", "name": "heatIndex", "type": "degrees" }

],

 "static_attributes": [

 {"name":"refField", "type": "Relationship", "value":

"urn:ngsi-ld:Field:001"},

 {"name":"location", "type": "geo:point", "value": "40.392, -

3.759"}

]

 }

]

}'

curl -iX POST \

 'http://localhost:4041/iot/devices' \

 -H 'Content-Type: application/json' \

 -H 'fiware-service: openiot' \

 -H 'fiware-servicepath: /fieldA/sensors' \

 -d '{

 "devices": [

 {

 "device_id": "earthHum001",

 "entity_name": "urn:ngsd-ld:EarthHum:001",

 "entity_type": "EarthHum",

 "protocol": "PDI-IoTA-UltraLight",

 "transport": "MQTT",

 "timezone": "Europe/Lisbon",

 "attributes": [

 {"object_id": "h", "name": "humidity", "type": "percentage" }

216

],

 "static_attributes": [

 {"name":"refField", "type": "Relationship", "value":

"urn:ngsi-ld:Field:001"},

 {"name":"refCrop", "type": "Relationship","value": "urn:ngsi-

ld:Crop:001"},

 {"name":"refAppleTree", "type": "Relationship","value":

"urn:ngsi-ld:AppleTree:001"},

 {"name":"location", "type": "geo:point", "value": "40.392, -

3.759"}

]

 }

]

}'

curl -iX POST \

 'http://localhost:4041/iot/devices' \

 -H 'Content-Type: application/json' \

 -H 'fiware-service: openiot' \

 -H 'fiware-servicepath: /tank/sensors' \

 -d '{

 "devices": [

 {

 "device_id": "waterLevel001",

 "entity_name": "urn:ngsd-ld:WaterLevel:001",

 "entity_type": "WaterLevel",

 "protocol": "PDI-IoTA-UltraLight",

 "transport": "MQTT",

 "timezone": "Europe/Lisbon",

 "attributes": [

 { "object_id": "l", "name": "level", "type": "Double" }

],

 "static_attributes": [

 { "name":"refTank", "type": "Relationship", "value":

"urn:ngsi-ld:Tank:001"},

 { "name":"location", "type": "geo:point", "value": "40.392, -

3.759"}

]

 }

]

}'

Annex O – Actuators Provisioning Script

curl -iX POST \

 'http://localhost:4041/iot/devices' \

 -H 'Content-Type: application/json' \

 -H 'fiware-service: openiot' \

 -H 'fiware-servicepath: /fieldA/actuators' \

 -d '{

 "devices": [

 {

 "device_id": "valve001",

 "entity_name": "urn:ngsi-ld:Valve:001",

 "entity_type": "Valve",

 "protocol": "PDI-IoTA-UltraLight",

 "transport": "MQTT",

 "timezone": "Europe/Lisbon",

 "commands": [

217

 { "name": "open", "type": "command" },

 { "name": "close", "type": "command" }

],

 "static_attributes": [

 {"name":"refField", "type": "Relationship","value":

"urn:ngsi-ld:Field:001"},

 {"name":"refAppleTree", "type": "Relationship","value":

"urn:ngsi-ld:AppleTree:001"},

 {"name":"location", "type": "geo:point", "value": "40.392,

-3.759"}

]

 }

]

}'

curl -iX POST \

 'http://localhost:4041/iot/devices' \

 -H 'Content-Type: application/json' \

 -H 'fiware-service: openiot' \

 -H 'fiware-servicepath: /tank/actuators' \

 -d '{

 "devices": [

 {

 "device_id": "valve002",

 "entity_name": "urn:ngsi-ld:Valve:002",

 "entity_type": "Valve",

 "protocol": "PDI-IoTA-UltraLight",

 "transport": "MQTT",

 "timezone": "Europe/Lisbon",

 "commands": [

 { "name": "open", "type": "command" },

 { "name": "close", "type": "command" }

],

 "static_attributes": [

 {"name":"refTank", "type": "Relationship","value":

"urn:ngsi-ld:Tank:001"},

 { "name":"location", "type": "geo:point", "value": "40.392,

-3.759"}

]

 }

]

}'

Annex P – Enabling Context Broker Commands Script

curl -iX POST \

 'http://localhost:1026/v2/registrations' \

 -H 'Content-Type: application/json' \

 -H 'fiware-service: openiot' \

 -H 'fiware-servicepath: /fieldA/actuators' \

 -d '{

 "description": "Valve Commands",

 "dataProvided": {

 "entities": [

 { "id": "urn:ngsi-ld:Valve:001", "type": "Valve" }

],

 "attrs": ["open", "close"]

 },

 "provider": {

218

 "http": {"url": "http://orion:1026/v1"},

 "legacyForwarding": true

 }

}'

curl -iX POST \

 'http://localhost:1026/v2/registrations' \

 -H 'Content-Type: application/json' \

 -H 'fiware-service: openiot' \

 -H 'fiware-servicepath: /tank/actuators' \

 -d '{

 "description": "Valve Commands",

 "dataProvided": {

 "entities": [

 { "id": "urn:ngsi-ld:Valve:002", "type": "Valve" }

],

 "attrs": ["open", "close"]

 },

 "provider": {

 "http": {"url": "http://orion:1026/v1"},

 "legacyForwarding": true

 }

}'

Annex Q – Code for Testing the DHT22 Sensor

// Example testing sketch for various DHT humidity/temperature

sensors

// Written by ladyada, public domain

#include "DHT.h"

#include <ESP8266WiFi.h>

#include <PubSubClient.h>

#define DHTPIN 2 // what digital pin we're connected to

// Uncomment whatever type you're using!

//#define DHTTYPE DHT11 // DHT 11

#define DHTTYPE DHT22 // DHT 22 (AM2302), AM2321

//#define DHTTYPE DHT21 // DHT 21 (AM2301)

// Connect pin 1 (on the left) of the sensor to +5V

// NOTE: If using a board with 3.3V logic like an Arduino Due

connect pin 1

// to 3.3V instead of 5V!

// Connect pin 2 of the sensor to whatever your DHTPIN is

// Connect pin 4 (on the right) of the sensor to GROUND

// Connect a 10K resistor from pin 2 (data) to pin 1 (power) of the

sensor

// Initialize DHT sensor.

// Note that older versions of this library took an optional third

parameter to

// tweak the timings for faster processors. This parameter is no

longer needed

// as the current DHT reading algorithm adjusts itself to work on

faster procs.

219

DHT dht(DHTPIN, DHTTYPE);

void setup() {

 Serial.begin(9600);

 Serial.println("DHT22 test!");

 dht.begin();

}

void loop() {

 // Wait a few seconds between measurements.

 delay(2000);

 // Reading temperature or humidity takes about 250 milliseconds!

 // Sensor readings may also be up to 2 seconds 'old' (its a very

slow sensor)

 float h = dht.readHumidity();

 // Read temperature as Celsius (the default)

 float t = dht.readTemperature();

 // Read temperature as Fahrenheit (isFahrenheit = true)

 float f = dht.readTemperature(true);

 // Check if any reads failed and exit early (to try again).

 if (isnan(h) || isnan(t) || isnan(f)) {

 Serial.println("Failed to read from DHT sensor!");

 return;

 }

 // Compute heat index in Celsius (isFahreheit = false)

 float hic = dht.computeHeatIndex(t, h, false);

 Serial.print("Humidity: ");

 Serial.print(h);

 Serial.print("% ");

 Serial.print("Temperature: ");

 Serial.print(t);

 Serial.print("*C ");

 Serial.print("Heat index: ");

 Serial.print(hic);

 Serial.println("*C ");

}

Annex R – Code for Testing the Ultrasonic Sensor

/*

Test code for the Arduino Uno

Written by Tom Bonar for testing

Sensors being used for this code are the MB12X0 from MaxBotix

*/

const int pwmPin = 2; //GPIO2 (PWM pin 4)

long sensor1, cm;

void setup () {

220

 Serial.begin(9600);

 pinMode(pwmPin, INPUT);

}

void read_sensor(){

 sensor1 = pulseIn(pwmPin, HIGH);

 cm = sensor1/58;

}

void loop () {

 read_sensor();

 printall();

 delay(1000);

}

void printall(){

 Serial.print("S1");

 Serial.print(" = ");

 Serial.print(cm);

 Serial.print("cm");

 Serial.println();

}

Annex S – Code for Testing the Earth-Humidity Sensor

//sensor dgital output to read the soil mosture, returns 1 above a

threshould defined by the potenciometer, otherwise returns 0

//int DSIGNAL = 2; //GPIO2 --> pin D4

//

//void setup() {

// Serial.begin(9600);

// pinMode(DSIGNAL, INPUT);

//}

//

//void loop() {

// int DsignalState = digitalRead(DSIGNAL);

// Serial.println(DsignalState);

// delay(1000);

//}

//sensor analog output to read the soil mosture

int ASignal = A0; //ADC pin

void setup() {

 Serial.begin(9600);

}

void loop() {

 int sensorValue = analogRead(ASignal);

 Serial.print("ADC reading: ");

 Serial.println(sensorValue);

 int valuePercentage = map(sensorValue, 0, 1024, 100, 0); //convert

the ADC values to percentage

 Serial.print("Humidity Percentage: ");

 Serial.println(valuePercentage);

 delay(1000);

}

221

Annex T – Code for Sensing Measurements from DHT22 Sensor to the

IoT Sensor

#include <ESP8266WiFi.h>

#include <PubSubClient.h>

#include "DHT.h"

const char *ssid = "*****"; // cannot be longer than 32 characters!

const char *pass = "*****"; //

// Update these with values suitable for your network.

IPAddress server(192, 168, 1, 6);

#define deviceId "weather001"

#define outTopic "/4jggokgpepnvsb2uv4s40d59a/weather001/attrs" //

/apikey/deviceID/attrs

#define DHTPIN 2 // what digital pin we're connected to

#define DHTTYPE DHT22 // DHT 22 (AM2302), AM2321

DHT dht(DHTPIN, DHTTYPE); // Initialize DHT sensor.

WiFiClient wclient;

PubSubClient client(wclient, server);

void setup() {

 // Setup console

 //Serial.begin(115200);

 delay(10);

}

void loop() {

 if (WiFi.status() != WL_CONNECTED) {

 //Serial.print("Connecting to ");

 //Serial.print(ssid);

 //Serial.println("...");

 WiFi.begin(ssid, pass);

 if (WiFi.waitForConnectResult() != WL_CONNECTED)

 return;

 //Serial.println("WiFi connected");

 }

 if (WiFi.status() == WL_CONNECTED) {

 if (!client.connected()) {

 if (client.connect(deviceId)) {

 //client.set_callback(callback);

 }

 }

 if (client.connected())

 client.loop();

 float h = dht.readHumidity();

 // Read temperature as Celsius (the default)

 float t = dht.readTemperature();

 // Compute heat index in Celsius (isFahreheit = false)

 float hic = dht.computeHeatIndex(t, h, false);

222

 String ul = "h|" + String(h) + "|t|" + String(t) + "|i|" +

String(hic);

 //Serial.print("Publish message: ");

 //Serial.println(ul);

 //client.publish(outTopic, ul); //publish with QoS 0

 //client.publish(MQTT::Publish(outTopic, ul).set_qos(1));

//publish with QoS 1

 client.publish(MQTT::Publish(outTopic, ul).set_qos(2));

//publish with QoS 2

 delay(30000); //delay 30 seconds between messages transmissions

 }

}

void callback(const MQTT::Publish& pub) { //only when the device

susbcribes to messages (actuators)

 // handle message arrived

}

Annex U – Code for Sensing Measurements from Ultrasonic Sensor to

the IoT System

#include <ESP8266WiFi.h>

#include <PubSubClient.h>

const char *ssid = "*****"; // cannot be longer than 32 characters!

const char *pass = "*****"; //

// Update these with values suitable for your network.

IPAddress server(192, 168, 1, 6);

#define deviceId "waterLevel001"

#define outTopic "/4jggokgpepnvsb2uv4s40d59c/waterLevel001/attrs" //

/apikey/deviceID/attrs

const int pwmPin = 2; //GPIO2 (PWM pin 4)

const int tankDepth = 322; //tank is 3 meters deep + 22 cm of

minimum reading distance of the sensor (virtual 0)

long sensor1, cm;

WiFiClient wclient;

PubSubClient client(wclient, server);

void setup() {

 // Setup console

 //Serial.begin(115200);

 delay(10);

 pinMode(pwmPin, INPUT);

}

void loop() {

 if (WiFi.status() != WL_CONNECTED) {

223

 //Serial.print("Connecting to ");

 //Serial.print(ssid);

 //Serial.println("...");

 WiFi.begin(ssid, pass);

 if (WiFi.waitForConnectResult() != WL_CONNECTED)

 return;

 //Serial.println("WiFi connected");

 }

 if (WiFi.status() == WL_CONNECTED) {

 if (!client.connected()) {

 if (client.connect(deviceId)) {

 //client.set_callback(callback);

 }

 }

 if (client.connected())

 client.loop();

 read_sensor();

 //printall();

 double waterLevel = tankDepth - cm;

 String ul = "l|" + String(waterLevel);

 //Serial.print("Publish message: ");

 //Serial.println(ul);

 //client.publish(outTopic, ul); //publish with QoS 0

 //client.publish(MQTT::Publish(outTopic, ul).set_qos(1));

//publish with QoS 1

 client.publish(MQTT::Publish(outTopic, ul).set_qos(2));

//publish with QoS 2

 delay(30000); //delay 30 seconds between messages transmissions

 }

}

void read_sensor() {

 sensor1 = pulseIn(pwmPin, HIGH);

 cm = sensor1 / 58;

}

//void printall() {

// Serial.print("S1");

// Serial.print(" = ");

// Serial.print(cm);

// Serial.print("cm");

// Serial.println();

//}

void callback(const MQTT::Publish& pub) { //only when the device

susbcribes to messages (actuators)

 // handle message arrived

}

224

Annex V – Code for Sensing Measurements from Earth-Humidity

Sensor to the IoT System

#include <ESP8266WiFi.h>

#include <PubSubClient.h>

const char *ssid = "*****"; // cannot be longer than 32 characters!

const char *pass = "*****"; //

// Update these with values suitable for your network.

IPAddress server(192, 168, 1, 6);

#define deviceId "EarthHum001"

#define outTopic "/4jggokgpepnvsb2uv4s40d59a/EarthHum001/attrs" //

/apikey/deviceID/attrs

WiFiClient wclient;

PubSubClient client(wclient, server);

int ASignal = A0; //ADC pin

void setup() {

 // Setup console

 //Serial.begin(115200);

 delay(10);

}

void loop() {

 if (WiFi.status() != WL_CONNECTED) {

 //Serial.print("Connecting to ");

 //Serial.print(ssid);

 //Serial.println("...");

 WiFi.begin(ssid, pass);

 if (WiFi.waitForConnectResult() != WL_CONNECTED)

 return;

 //Serial.println("WiFi connected");

 }

 if (WiFi.status() == WL_CONNECTED) {

 if (!client.connected()) {

 if (client.connect(deviceId)) {

 //client.set_callback(callback);

 }

 }

 if (client.connected())

 client.loop();

 int sensorValue = analogRead(ASignal);

 //Serial.print("ADC reading: ");

 //Serial.println(sensorValue);

 int valuePercentage = map(sensorValue, 0, 1024, 100, 0);

//convert the ADC values to percentage

 String ul = "h|" + String(valuePercentage);

 //Serial.print("Publish message: ");

225

 //Serial.println(ul);

 //client.publish(outTopic, ul); //publish with QoS 0

 //client.publish(MQTT::Publish(outTopic, ul).set_qos(1));

//publish with QoS 1

 client.publish(MQTT::Publish(outTopic, ul).set_qos(2));

//publish with QoS 2

 delay(30000); //delay 30 seconds between messages transmissions

 }

}

void callback(const MQTT::Publish& pub) { //only when the device

susbcribes to messages (actuators)

 // handle message arrived

}

Annex W – Code for Receiving Commands from the IoT System

#include <ESP8266WiFi.h>

#include <PubSubClient.h>

const char *ssid = "*****"; // cannot be longer than 32 characters!

const char *pass = "*****"; //

// Update these with values suitable for your network.

IPAddress server(192, 168, 1, 6);

WiFiClient wclient;

PubSubClient client(wclient, server);

#define deviceId "valve001"

#define outTopic "/4jggokgpepnvsb2uv4s40d59b/valve001/attrs"

#define inTopic "/4jggokgpepnvsb2uv4s40d59b/valve001/attrs"

void setup() {

 // Setup console

 //Serial.begin(115200);

 delay(10);

 pinMode(BUILTIN_LED, OUTPUT); // Initialize the BUILTIN_LED pin as

an output

 digitalWrite(BUILTIN_LED, HIGH); //turn LED OFF

}

void loop() {

 if (WiFi.status() != WL_CONNECTED) {

 //Serial.print("Connecting to ");

 //Serial.print(ssid);

 //Serial.println("...");

 WiFi.begin(ssid, pass);

 if (WiFi.waitForConnectResult() != WL_CONNECTED)

 return;

 //Serial.println("WiFi connected");

 }

226

 if (WiFi.status() == WL_CONNECTED) {

 if (!client.connected()) {

 if (client.connect(deviceId)) {

 client.set_callback(callback);

 client.subscribe(inTopic);

 }

 }

 if (client.connected())

 client.loop();

 }

}

// Callback function | process the received message

void callback(const MQTT::Publish& pub) {

 // In order to republish this payload, a copy must be made

 // as the orignal payload buffer will be overwritten whilst

 // constructing the PUBLISH packet.

 //Serial.print("Message Received: ");

 //Serial.println(pub.payload_string());

 String msg = pub.payload_string();

 if (String(msg) == "valve001@open|") { //execute command

 digitalWrite(BUILTIN_LED, LOW); //LED ON

 String reply = String(msg) + "Opened ok";

 client.publish(MQTT::Publish(outTopic, reply).set_qos(2));

//reply

 }

 if (String(msg) == "valve001@close|") { //execute command

 digitalWrite(BUILTIN_LED, HIGH); //LED OFF

 String reply = String(msg) + "Closed ok";

 client.publish(MQTT::Publish(outTopic, reply).set_qos(2));

//reply

 }

}

Annex X – Available Commands to Control Actuators

#valve001 (fieldA) commands

curl -iX PATCH \

 'http://localhost:1026/v2/entities/urn:ngsi-ld:Valve:001/attrs' \

 -H 'Content-Type: application/json' \

 -H 'fiware-service: openiot' \

 -H 'fiware-servicepath: /fieldA/actuators' \

 -d '{

 "open": {

 "type" : "command",

 "value" : ""

 }

}'

curl -iX PATCH \

227

 'http://localhost:1026/v2/entities/urn:ngsi-ld:Valve:001/attrs' \

 -H 'Content-Type: application/json' \

 -H 'fiware-service: openiot' \

 -H 'fiware-servicepath: /fieldA/actuators' \

 -d '{

 "close": {

 "type" : "command",

 "value" : ""

 }

}'

#valve002 (tank) commands

curl -iX PATCH \

 'http://localhost:1026/v2/entities/urn:ngsi-ld:Valve:002/attrs' \

 -H 'Content-Type: application/json' \

 -H 'fiware-service: openiot' \

 -H 'fiware-servicepath: /tank/actuators' \

 -d '{

 "open": {

 "type" : "command",

 "value" : ""

 }

}'

curl -iX PATCH \

 'http://localhost:1026/v2/entities/urn:ngsi-ld:Valve:002/attrs' \

 -H 'Content-Type: application/json' \

 -H 'fiware-service: openiot' \

 -H 'fiware-servicepath: /tank/actuators' \

 -d '{

 "close": {

 "type" : "command",

 "value" : ""

 }

}'

Annex Y – Subscriptions Script

curl -iX POST \

 'http://localhost:1026/v2/subscriptions' \

 -H 'Content-Type: application/json' \

 -H 'fiware-service: openiot' \

 -H 'fiware-servicepath: /fieldA/sensors' \

 -d '{

 "description": "Notify me of temp higher than 30*C in all weather

sensors in field A",

 "subject": {

 "entities": [{"idPattern": ".*","type": "Weather"}],

 "condition": {

 "attrs": ["temperature"],

 "expression": {

 "q": "temperature>30"

 }

 }

 },

 "notification": {

228

 "http": {

 "url": "http://192.168.1.6:1028/accumulate"

 },

 "attrs": [

 "temperature"

]

 }

}'

Annex Z – Data Persistence Script

weather sensors

curl -iX POST \

 'http://localhost:1026/v2/subscriptions' \

 -H 'Content-Type: application/json' \

 -H 'fiware-service: openiot' \

 -H 'fiware-servicepath: /fieldA/sensors' \

 -d '{

 "description": "Notify Cygnus of all weather sensors attrs

change",

 "subject": {

 "entities": [

 {

 "idPattern": "Weather.*"

 }

],

 "condition": {

 "attrs": [

 "humidity",

 "temperature",

 "heatIndex"

]

 }

 },

 "notification": {

 "http": {

 "url": "http://cygnus:5050/notify"

 },

 "attrs": [

 "humidity",

 "temperature",

 "heatIndex"

],

 "attrsFormat": "legacy"

 }

}'

earth humidity sensors

curl -iX POST \

 'http://localhost:1026/v2/subscriptions' \

 -H 'Content-Type: application/json' \

 -H 'fiware-service: openiot' \

 -H 'fiware-servicepath: /fieldA/sensors' \

 -d '{

 "description": "Notify Cygnus of all earth humidity sensors attrs

change",

 "subject": {

229

 "entities": [

 {

 "idPattern": "EarthHum.*"

 }

],

 "condition": {

 "attrs": [

 "humidity"

]

 }

 },

 "notification": {

 "http": {

 "url": "http://cygnus:5050/notify"

 },

 "attrs": [

 "humidity"

],

 "attrsFormat": "legacy"

 }

}'

waterlevel sensors

curl -iX POST \

 'http://localhost:1026/v2/subscriptions' \

 -H 'Content-Type: application/json' \

 -H 'fiware-service: openiot' \

 -H 'fiware-servicepath: /tank/sensors' \

 -d '{

 "description": "Notify Cygnus of all water level sensors attrs

change",

 "subject": {

 "entities": [

 {

 "idPattern": "WaterLevel.*"

 }

],

 "condition": {

 "attrs": [

 "level"

]

 }

 },

 "notification": {

 "http": {

 "url": "http://cygnus:5050/notify"

 },

 "attrs": [

 "level"

],

 "attrsFormat": "legacy"

 }

}'

230

Annex AA – Paper

231

232

233

234

235

236

Intentionally Left Blank

237

References

[1] K. Rose, S. Eldridge and L. Chapin, The Internet Of Things: An Overview. The

Internet Society, 2015 [Online]. Available: https://www.internetsociety.org/wp-

content/uploads/2017/08/ISOC-IoT-Overview-20151221-en.pdf. [Accessed: 15-Jun-

2018]

[2] "Internet Toaster, John Romkey, Simon Hackett", Livinginternet.com. [Online].

Available: https://www.livinginternet.com/i/ia_myths_toast.htm. [Accessed: 15-Jun-

2018]

[3] "Internet of Things At-a-Glance", Cisco, 2016 [Online]. Available:

https://www.cisco.com/c/dam/en/us/products/collateral/se/internet-of-things/at-a-

glance-c45-731471.pdf. [Accessed: 15-Jun-2018]

[4] H. Tschofenig, ARM Ltd., J. Arkko, D. Thaler and D. McPherson, "Architectural

Considerations in Smart Object Networking", RFC Editor, 2015 [Online]. Available:

https://www.rfc-editor.org/rfc/rfc7452.txt. [Accessed: 16-Jun-2018]

[5] C. Marsan, "IAB Releases Guidelines for Internet-of-Things Developers", IETF

Jounal, 2015 [Online]. Available: https://www.ietfjournal.org/iab-releases-guidelines-

for-internet-of-things-developers/. [Accessed: 16-Jun-2018]

[6] "Facebook scandal 'hit 87 million users'", BBC News, 2018. [Online]. Available:

https://www.bbc.com/news/technology-43649018. [Accessed: 16-Jun-2018]

[7] P. Paganini, "Using Unsecured IoT Devices, DDoS Attacks Doubled in the First

Half of 2017", Security Affairs, 2017. [Online]. Available: https://securityaffairs.co

/wordpress/65827/hacking/iot-devices-ddos-attacks.html. [Accessed: 16-Jun-2018]

[8] C. Matyszczyk, "Samsung's warning: Our Smart TVs record your living room

chatter", CNET, 2015. [Online]. Available: https://www.cnet.com/news/samsungs-

warning-our-smart-tvs-record-your-living-room-chatter/. [Accessed: 16-Jun-2018]

[9] M. Turck, "Growing Pains: The 2018 Internet of Things Landscape", Matt Turck,

2018. [Online]. Available: http://mattturck.com/iot2018/. [Accessed: 17-Jun-2018]

[10] "FIWARE moves on: From research and innovation to setting European standards

and business success", Digital Single Market, 2017. [Online]. Available:

238

https://ec.europa.eu/digital-single-market/en/news/fiware-moves-research-and-

innovation-setting-european-standards-and-business-success. [Accessed: 30-Jun-2018]

[11] "After the Open Day: from the FI-PPP to the FIWARE Foundation - FIWARE",

FIWARE, 2017. [Online]. Available: https://www.fiware.org/2017/03/09/after-the-open-

day-from-the-fi-ppp-to-the-fiware-foundation/. [Accessed: 30-Jun-2018]

[12] "What is FIWARE? - FIWARE", FIWARE, 2011. [Online]. Available:

https://www.fiware.org/2011/05/17/what-is-fiware/. [Accessed: 30-Jun-2018]

[13] "About Us - FIWARE", FIWARE. [Online]. Available: https://www.fiware

.org/about-us/. [Accessed: 30-Jun-2018]

[14] "Developers - FIWARE", FIWARE. [Online]. Available: https://www.fiware

.org/developers/. [Accessed: 30-Jun-2018]

[15] "Smart Industry - FIWARE", FIWARE. [Online]. Available: https://www.fiware

.org /community /smart-industry/. [Accessed: 30-Jun-2018]

[16] J. Hierro, M. Reyes, K. Zangelin, I. León, C. Brox, A. Navarro, M. Capdevielle,

G. Privat, S. Gómez and M. Bauer, "FIWARE-NGSI v2 Specification", Fiware.github.io,

2018. [Online]. Available: http://fiware.github.io/specifications/ngsiv2/stable/.

[Accessed: 01-Jul-2018]

[17] ETSI, "Context Information Management (CIM); Application Programming

Interface (API)", ETSI, 2018 [Online]. Available: https://docbox.etsi.org/ISG/CIM

/Open/ISG_CIM_NGSI-LD_API_Draft_for_public_review.pdf. [Accessed: 01-Jul-

2018]

[18] "Developers Catalogue - FIWARE", FIWARE. [Online]. Available:

https://www.fiware.org/developers/catalogue/. [Accessed: 01-Jul-2018]

[19] U. Ahle, "FIWARE Global Summit - FIWARE Today and Tomorrow", 2018.

[20] Engineering Group and FIWARE Foundation, "Engineering Group and FIWARE

Foundation announce Knowage as new FIWARE generic enabler for Business

Intelligence and Data Analytics on Context Data", 2017 [Online]. Available:

https://www.knowage-suite.com/site/wp-content/uploads/2017/06/PR_Knowage_

FIWARE.v2-revised-5.06.2017.pdf. [Accessed: 01- ul-2018]

239

[21] "Fiware-iotagent-ul - API Walkthrough & Development intro", Fiware-iotagent-

ul.readthedocs.io. [Online]. Available: https://fiware-iotagent-ul.readthedocs.io/en/latest

/usermanual/index.html#user-programmers-manual. [Accessed: 28-Jul-2018]

[22] "IoT over MQTT - Step-by-Step", Fiware-tutorials.readthedocs.io, 2018.

[Online]. Available: http://fiware-tutorials.readthedocs.io/en/latest/iot-over-mqtt/index

.html. [Accessed: 28-Jul-2018]

[23] "MQTT Essentials Part 6: Quality of Service 0, 1 & 2", HiveMQ, 2015. [Online].

Available: https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service

-levels. [Accessed: 28-Jul-2018]

[24] "Docker overview", Docker Documentation. [Online]. Available:

https://docs.docker.com/engine/docker-overview/. [Accessed: 30-Jul-2018]

[25] "Get Started, Part 1: Orientation and setup", Docker Documentation. [Online].

Available: https://docs.docker.com/get-started/. [Accessed: 30-Jul-2018]

[26] "Overview of Docker Compose", Docker Documentation. [Online]. Available:

https://docs.docker.com/compose/overview/. [Accessed: 30-Jul-2018]

[27] "MongoDB Quick Guide", www.tutorialspoint.com. [Online]. Available:

https://www.tutorialspoint.com/mongodb/mongodb_quick_guide.htm. [Accessed: 30-

Jul- 2018]

[28] "What Is MongoDB?", MongoDB. [Online]. Available: https://www.mongodb

.com/ what-is-mongodb. [Accessed: 30-Jul-2018]

[29] "Getting Started — MongoDB Manual", Docs.mongodb.com. [Online].

Available: https://docs.mongodb.com/manual/tutorial/getting-started/. [Accessed: 30-

Jul- 2018]

[30] L. Pires, Microcontroladores. 2010.

[31] L. Pires, Sensores e Transdutores. 2009.

[32] "Resistência LDR 3,4mm - sensor de luz", Electronicaembajadores.com, 2018.

[Online]. Available: https://www.electronicaembajadores.com/pt/Productos/Detalle

/SSLDR34/sensores/sensores-de-brilho-cor-/resistencia-ldr-3-4mm-sensor-de-luz.

[Accessed: 10-Aug-2018]

240

[33] "Switch", 2015 [Online]. Available: https://upload.wikimedia.org/wikiversity

/en/7/7b/4.Switch.wiki.20150330.pdf. [Accessed: 10-Aug-2018]

[34] M. Inácio, "Sensores e Atuadores (2)", 2009.

[35] "Motor de engranajes DC RS Pro, Con escobillas, 3 V, 1,5 → 3 V dc, 50 gcm, 2 -

2.300 rpm, 1,6 W", Pt.rs-online.com. [Online]. Available: https://pt.rs-

online.com/web/p/motores-dc-con-caja-reductora/2389844/. [Accessed: 10- Aug- 2018]

[36] "LED, Díodo Emissor de Luz", Eletronica PT. [Online]. Available:

https://www.electronica-pt.com/led. [Accessed: 10-Aug-2018]

[37] "FIWARE Step-by-Step", Fiware-tutorials.readthedocs.io, 2018. [Online].

Available: https://fiware-tutorials.readthedocs.io/en/latest/index.html. [Accessed: 12-

Aug- 2018]

[38] "Fiware/tutorials.Step-by-Step", GitHub, 2018. [Online]. Available:

https://github.com/Fiware/tutorials.Step-by-Step. [Accessed: 12-Aug-2018]

[39] "Postman", Postman. [Online]. Available: https://www.getpostman.com/.

[Accessed: 12-Aug-2018]

[40] "Home - Fiware-Orion", Fiware-orion.readthedocs.io. [Online]. Available:

https://fiware-orion.readthedocs.io/en/latest/. [Accessed: 12-Aug-2018]

[41] "Entity Relationships - Step-by-Step", Fiware-tutorials.readthedocs.io, 2018.

[Online]. Available: https://fiware-tutorials.readthedocs.io/en/latest/entity-relationships

/index.html. [Accessed: 12-Aug-2018]

[42] "Guidelines - Fiware-DataModels", Fiware-datamodels.readthedocs.io. [Online].

Available: http://fiware-datamodels.readthedocs.io/en/latest/guidelines/index.html.

[Accessed: 12-Aug-2018]

[43] "Home - schema.org", Schema.org. [Online]. Available: http://schema.org/.

[Accessed: 12-Aug-2018]

[44] "GeoJSON", Geojson.org. [Online]. Available: http://geojson.org/. [Accessed:

12-Aug-2018]

241

[45] "Entity Relationships - Step-by-Step", Fiware-tutorials.readthedocs.io, 2018.

[Online]. Available: https://fiware-tutorials.readthedocs.io/en/latest/entity-relationships

/index.html. [Accessed: 15-Aug-2018]

[46] "CRUD Operations - Step-by-Step", Fiware-tutorials.readthedocs.io, 2018.

[Online]. Available: https://fiware-tutorials.readthedocs.io/en/latest/crud-operations

/index.html. [Accessed: 15-Aug-2018]

[47] "Subscriptions - Step-by-Step", Fiware-tutorials.readthedocs.io, 2018. [Online].

Available: https://fiware-tutorials.readthedocs.io/en/latest/subscriptions/index.html.

[Accessed: 15-Aug-2018]

[48] "IoT Agent - Step-by-Step", Fiware-tutorials.readthedocs.io, 2018. [Online].

Available: https://fiware-tutorials.readthedocs.io/en/latest/iot-agent/index.html.

[Accessed: 16-Aug-2018]

[49] "Eclipse Mosquitto an open source MQTT broker", Eclipse Mosquitto, 2018.

[Online]. Available: https://mosquitto.org/. [Accessed: 16-Aug-2018]

[50] "IoT over MQTT - Step-by-Step", Fiware-tutorials.readthedocs.io, 2018.

[Online]. Available: https://fiware-tutorials.readthedocs.io/en/latest/iot-over-mqtt

/index.html. [Accessed: 16-Aug-2018]

[51] "Persisting Context - Step-by-Step", Fiware-tutorials.readthedocs.io, 2018.

[Online]. Available: https://fiware-tutorials.readthedocs.io/en/latest/historic-context

/index.html. [Accessed: 18-Aug-2018]

[52] "Short Term History - Step-by-Step", Fiware-tutorials.readthedocs.io, 2018.

[Online]. Available: https://fiware-tutorials.readthedocs.io/en/latest/short-term-history

/index.html. [Accessed: 18-Aug 2018]

[53] "Running Orion from command line - Fiware-Orion", Fiware-

orion.readthedocs.io. [Online]. Available: https://fiware-orion.readthedocs.io/en

/master/admin/cli/index.html#command-line-options. [Accessed: 18-Aug-2018]

[54] "Running Orion as system service - Fiware-Orion", Fiware-orion.readthedocs.io.

[Online]. Available: https://fiware-orion.readthedocs.io/en/master/admin/running

/#configuration-file. [Accessed: 18-Aug-2018]

242

[55] "telefonicaid/fiware-orion", GitHub. [Online]. Available: https://github.com

/telefonicaid/fiware-orion/blob/master/etc/config/contextBroker. [Accessed: 18-Aug-

2018]

[56] "telefonicaid/iotagent-ul Installation & Administration Guide", GitHub. [Online].

Available: https://github.com/telefonicaid/iotagent-ul/blob/master/docs/installationguide

.md #installation. [Accessed: 18-Aug-2018]

[57] "telefonicaid/fiware-cygnus cygnus-ngsi docker", GitHub. [Online]. Available:

https://github.com/telefonicaid/fiware-cygnus/blob/master/doc/cygnus-ngsi/installation

_and_administration_guide/install_with_docker.md. [Accessed: 20-Aug-2018]

[58] "telefonicaid/fiware-sth-comet", GitHub. [Online]. Available: https://github.com

/telefonicaid/fiware-sth-comet/blob/master/rpm/EXAMPLES/sth_default.conf.

[Accessed: 20-Aug-2018]

[59] "NodeMcu -- An open-source firmware based on ESP8266 wifi-soc.",

Nodemcu.com. [Online]. Available: http://www.nodemcu.com/index_en.html.

[Accessed: 22-Aug-2018]

[60] J. Alves, "ESP8266", jpralves.net, 2016. [Online]. Available:

https://jpralves.net/post/2016/11/15/esp8266.html. [Accessed: 22-Aug-2018]

[61] "nodemcu/nodemcu-devkit-v1.0", GitHub. [Online]. Available:

https://github.com /nodemcu/nodemcu-devkit-v1.0. [Accessed: 22-Aug-2018]

[62] AI - Thinker, ESP - 12E WiFi Module Version1.0. AI - Thinker, 2015 [Online].

Available: https://www.kloppenborg.net/images/blog/esp8266/esp8266-esp12e-specs

.pdf. [Accessed: 22-Aug-2018]

[63] "Nodemcu Pwm With Arduino Ide", Electronicwings.com. [Online]. Available:

http://www.electronicwings.com/nodemcu/nodemcu-pwm-with-arduino-ide. [Accessed:

22-Aug-2018]

[64] Handsontec, User Manual ESP8266 NodeMCU WiFi Devkit. Handsontec

[Online]. Available: http://www.handsontec.com/pdf_learn/esp8266-V10.pdf.

[Accessed: 22-Aug-2018]

[65] Aosong (Guangzhou) Electronics, Digital-output relative humidity & temperature

sensor/module AM2303. Aosong (Guangzhou) Electronics [Online]. Available:

243

https://www.electroschematics.com/wp-content/uploads/2015/02/DHT22-datasheet.pdf.

[Accessed: 22-Aug-2018]

[66] "Sensor de Umidade e Temperatura AM2302 DHT22", FilipeFlop. [Online].

Available: https://www.filipeflop.com/produto/sensor-de-umidade-e-temperatura-am

2302-dht22/. [Accessed: 22-Aug-2018]

[67] "DHT22 Temperature and humidity module SKU:SEN0137", Dfrobot.com, 2016.

[Online]. Available: https://www.dfrobot.com/wiki/index.php/DHT22_Temperature_

and_humidity _module_SKU:SEN0137. [Accessed: 22-Aug-2018]

[68] MaxBotix, XL-MaxSonar-EZ Series High Performance Sonar Range Finder

MB1200, MB1210, MB1220, MB1230, MB1240, MB1260, MB1261, MB1300, MB1310,

MB1320, MB1330, MB1340, MB1360, MB1361. MaxBotix [Online]. Available:

https://www.maxbotix.com/documents/XL-MaxSonar-EZ_Datasheet.pdf. [Accessed:

23-Aug-2018]

[69] S. Lee, Soil Moisture Sensor, 1st ed. ITEAD STUDIO, 2013 [Online]. Available:

http://ftp://imall.iteadstudio.com/Electronic_Brick/IM121017001/DS_IM121017001.pd

f. [Accessed: 23-Aug-2018]

[70] "How to Use an Ultrasonic Sensor with Arduino [With Code Examples]",

MaxBotix Inc.. [Online]. Available: https://www.maxbotix.com/Arduino-Ultrasonic-

Sensors-085/. [Accessed: 23-Aug-2018]

[71] "Moisture Sensor", Itead.cc, 2014. [Online]. Available: https://www.itead.cc

/wiki/Moisture_Sensor. [Accessed: 23-Aug-2018]

[72] "Imroy/pubsubclient A client library for the ESP8266 that provides support for

MQTT", GitHub. [Online]. Available: https://github.com/Imroy/pubsubclient.

[Accessed: 23-Aug-2018]

[73] "telefonicaid/fiware-orion", GitHub. [Online]. Available: https://github.com

/telefonicaid/fiware-orion/blob/master/scripts/accumulator-server.py. [Accessed: 23-

Aug-2018]

[74] "Home - QuantumLeap", Smartsdk.github.io, 2018. [Online]. Available:

https://smartsdk.github.io/ngsi-timeseries-api/. [Accessed: 20- Nov- 2018]

