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Abstract 

This work presents a simple wearable, non-intrusive affordable mobile framework that 

allows remote patient monitoring during gait rehabilitation, by doctors and physiotherapists. The 

system includes a set of 2 Shimmer3 9DoF Inertial Measurement Units (IMUs), Bluetooth 

compatible from Shimmer, an Android smartphone for collecting and primary processing of data 

and persistence in a local database.  

Low computational load algorithms based on Euler angles and accelerometer, gyroscope 

and magnetometer signals were developed and used for the classification and identification of 

several gait disturbances. These algorithms include the alignment of IMUs sensors data by means 

of a common temporal reference as well as heel strike and stride detection algorithms to help 

segmentation of the remotely collected signals by the System app to identify gait strides and extract 

relevant features to feed, train and test a classifier to predict gait abnormalities in gait sessions.   

 A set of drivers from Shimmer manufacturer is used to make the connection 

between the app and the set of IMUs using Bluetooth.   

The developed app allows users to collect data and train a classification model for 

identifying abnormal and normal gait types. 

The system provides a REST API available in a backend server along with Java 

and Python libraries and a PostgreSQL database. 

The machine-learning type is Supervised using Extremely Randomized Trees 

method.  Frequency, time and time-frequency domain features were extracted  from the 

collected and processed signals to train the classifier. 

To test the framework a set of gait abnormalities and normal gait were used to 

train a model and test the classifier. 

 

 

Keywords: Gait, Classification, Rehabilitation, Android 



Gait Rehabilitation Monitor 

 

 

 

Resumo 

Este trabalho apresenta uma estrutura móvel acessível, simples e não intrusiva, que permite 

a monitorização e a assistência remota de pacientes durante a reabilitação da marcha, por médicos 

e fisioterapeutas que monitorizam a reabilitação da marcha do paciente. O sistema inclui um 

conjunto de 2 IMUs (Inertial Mesaurement Units) Shimmer3 da marca Shimmer, compatíveís com 

Bluetooth, um smartphone Android para recolha, e pré-processamento de dados e armazenamento 

numa base de dados local. 

Algoritmos de baixa carga computacional baseados em ângulos Euler e sinais de 

acelerómetros, giroscópios e magnetómetros foram desenvolvidos e utilizados para a classificação 

e identificação de diversas perturbações da marcha. Estes algoritmos incluem o alinhamento e 

sincronização dos dados dos sensores IMUs usando uma referência temporal comum, além de 

algoritmos de detecção de passos e strides para auxiliar a segmentação dos sinais recolhidos 

remotamente pela app desta framework e identificar os passos da marcha extraindo as características 

relevantes para treinar e testar um classificador que faça a predição de deficiências na marcha 

durante as sessões de monitorização. 

Um conjunto de drivers do fabricante Shimmer é usado para fazer a conexão entre a app e 

o conjunto de IMUs através de Bluetooth. 

A app desenvolvida permite aos utilizadores recolher dados e treinar um modelo de 

classificação para identificar os tipos de marcha normais e patológicos. 

O sistema fornece uma REST API disponível num servidor backend recorrendo a 

bibliotecas Java e Python e  a uma base de dados PostgreSQL. 

O tipo de machine-learning é Supervisionado usando Extremely Randomized Trees.  

Features no domínio do tempo, da frequência e do tempo-frequência foram extraídas dos sinais 

recolhidos e processados para treinar o classificador. 

Para testar a estrutura, um conjunto de marchas patológicas e normais foram utilizadas para 

treinar um modelo e testar o classificador. 
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Chapter 1 – Introduction 

     The aim of this work is to study abnormal gait signals, collected from wearable 

Shimmer3 devices and develop signal processing algorithms for feature extraction to feed 

machine-learning classifiers using Python, Java and Android languages, to build a 

wearable, non-intrusive remote low-cost mobile system to help monitor gait 

rehabilitation. 

Gait analysis is an important human locomotion study to recognize normal or 

pathological patterns of walking, and its results have plenty of applications in medical 

programs (Lee & Lee, 2002), physical therapy (Kong, Sessa, Cosentino, & Zecca, 2013), 

and sports training (Muro-De-La-Herran, A., Garcia-Zapirain, & Mendez-Zorrilla, 2014). 

For example, with detailed gait feature analysis, therapists can quantify the rehabilitation 

progress of the patients after surgery, and the corresponding treatment and training can 

be customized according to an individual’s status (Zerin, Majumder, Ahamed, & Smith, 

2015).  

Wearable inertial sensors can be used to analyse human physical activity for prolonged 

periods of time and with minimal subject’s discomfort. Within this context, the 

assessment of gait in terms of quality and quantity is of great relevance since it provides 

indications of the level of physical mobility, of the risk of fall or of the effects of a therapy 

(Mannini, Trojaniello, Cereatti, & Sabatini, 2016). 

Gait may reflect the motor capabilities of humans (Sun, Wang, & Banda, 2014). The 

information of the human behaviour in gait rehabilitation such as walking speed, walking 

distance, and gait pattern is very important for medical diagnosis of ambulation, progress 

of gait pattern, and estimation of energy consumption (Kong, Sessa, Cosentino, & Zecca, 

2013) 

From the clinical point of view, the importance of human gait analysis lies in the fact 

that gait disorders affect a high percentage of the world’s population and may be an 

expression of neurodegenerative diseases such as multiple sclerosis, amyotrophic lateral 

sclerosis or Parkinson’s disease, as well as in many others such as myelopathies, spinal 

amyotrophy, cerebellar ataxia, brain tumours, cranioencephalic trauma, neuromuscular 

diseases (myopathies), cerebrovascular pathologies, certain types of dementia, heart 

disease or ageing (Muro-De-La-Herran, A., Garcia-Zapirain, & Mendez-Zorrilla, 2014). 
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Rehabilitation can help elderly to regain their motor ability through physical training. 

Its efficacy on relieving pain, improving strength and mobility, and training the subject 

to perform important everyday tasks, has been demonstrated (Kong, Sessa, Cosentino, & 

Zecca, 2013). Usually, physical rehabilitation exercises are performed in specific medical 

centres. However, the high costs of special equipment and human resources, limit the 

number and availability of rehabilitation centres. As a result, a growing number of people, 

especially those who live in small communities, cannot enjoy the benefit of rehabilitation 

programs (Lee & Lee, 2002). 

Changes in gait reveal key information about persons’ quality of life. This is of special 

interest when searching for reliable information on the evolution of different diseases: 

 (a) neurological diseases such as multiple sclerosis or Parkinson’s; 

(b) systemic diseases such as cardiopathies (in which gait is clearly affected);  

(c) alterations in deambulation dynamic due to sequelae from stroke and  

(d) diseases caused by ageing, which affect a large percentage of the population.  

Accurate reliable knowledge of gait characteristics at a given time, and even more 

importantly, monitoring and evaluating them over time, will enable early diagnosis of 

diseases and their complications and help to find the best treatment (Muro-De-La-Herran, 

A., Garcia-Zapirain, & Mendez-Zorrilla, 2014). The traditional scales used to analyse gait 

parameters in clinical conditions are subjective (Muro-De-La-Herran, A., Garcia-

Zapirain, & Mendez-Zorrilla, 2014). In contrast to this background, progress in new 

technologies has given rise to devices and techniques which allow an objective evaluation 

of different gait parameters, resulting in more efficient measurement and providing 

specialists with a large amount of reliable information on patients’ gaits. This reduces the 

error margin caused by subjective techniques and permit to evaluate the recovery rithm 

so as to predict the recovery period duration. 

Walking involves a series of complex movements associated with human lower limbs. 

Over the last few decades, important research has focused on gait analysis. From visual 

inspection, sensor technology, to motion capture system, various studies have led to 

different applications (Hsieh, et al., 2012). 

The current gold standard that is the most reliable in performing gait analysis is 

believed to be the combination of motion capture system and force plate system, which 
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is able to provide both kinematic and kinetic information in spatial coordination, such as 

the VICON motion capture system and the Kistler force plate system (Hsieh, et al., 2012). 

Among them, the motion capture system is marker-based, requiring the subject to be 

placed with numerous markers on the body. It often takes more than an hour to place the 

markers on the subject. In addition, the force plate is mounted on the floor and is needed 

to be stepped by the subject correctly to obtain good results. As a result, the subject 

needed to be trained for the experiment, and the experiment could only be done in the 

professional motion laboratory that has trained operators and is able to afford the 

expensive equipment (Hsieh, et al., 2012). 

Nowadays, gait analysis system can be classified into non-wearable sensors (NWS) 

based and wearable sensors (WS). NWS systems usually require optical sensors or 

pressure sensors on the floor (Hsieh, et al., 2012). Gait features are extracted by 

processing image or video data. WS systems are based on motion-recording sensors 

which are attached to moving subjects. Motion-record sensors (e.g., accelerometers, 

gyrometers, force sensors) are usually attached to various parts of the body such as the 

ankle, hip and waist (Sun, Wang, & Banda, 2014). Foot switches, plantar pressure 

sensors, and accelerometers have been used previously to evaluate human gait (Lee & 

Lee, 2002). 

A simple and accurate measurement system is required to evaluate the efficiency of 

rehabilitation (Lee & Lee, 2002). 

Inertial measurement units (IMUs) including combinations of accelerometers and 

gyroscopes have been successfully used for assessing gait characteristics (i.e., gait spatio-

temporal parameters, gait variability) and the quality and quantity of physical activity in 

both healthy and motor impaired population (Mannini, Trojaniello, Cereatti, & Sabatini, 

2016). 

In this work, a wearable, non-intrusive affordable mobile system is presented allowing 

physiotherapy sessions local or remotely helping monitoring gait rehabilitation using a 

simple algorithm based on Euler angles and data collected from IMU devices positioned 

in the right leg shank. The Euler angles vary along the gait cycle depending on each type 

of gait. The algorithm consists on calculating the value of the Euler angles along with 

data from the accelerometer contained inside the Shimmer3 IMU. These values are used 

to calculate the standard deviation and the ratios of the Euler angles minimum absolute 

value to the Euler angles maximum value. The signal representing a person’s gait cycle 
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may have some differences concerning amplitude, shape, gait cycle duration depending 

on several characteristics like age, height and gender which makes it difficult to find fixed 

values of Euler angles and acceleration that can describe a gait type. Hence, rather than 

establishing fixed values to describe gait, it is important to find ratios. Regardless of the 

amplitude and cycle duration, experiments in this study showed that gait cycles from 

different persons tend to have similar ratios concerning same types of gait. For these 

reasons, the proposed algorithm calculates ratios of Euler angles absolute minimum 

values to Euler angles maximum values and takes also into consideration the percentage 

of time during a gait cycle where a typical value above a relative threshold describing a 

gait type occurs. Statistical measures like standard deviation is also taken into account. 

This work contributions are: 

• Heel strike detection algorithm. 

• Stride detection algorithm. 

• Data alignment using a System timestamp. 

• A simple wearable, non-intrusive affordable mobile framework that allows 

monitoring and remotely assistance of patients during gait rehabilitation. 

• Publication of an article:  

- Gait Rehabilitation Monitor: DOI: 10.1109/EHB.2017.7995455, : 2017 E-

Health and Bioengineering Conference (EHB) 

 

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.1109/EHB.2017.7995455
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7987616
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7987616
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Chapter 2 – Related Work 

 Begg, Palaniswami and Owen apply an artificial intelligence technique [support 

vector machines (SVM)] for the automatic recognition of young-old gait types from their 

respective gait-patterns (Begg, Palaniswami, & Owen, 2005). One of the aims is to 

identify gait variables that reflect gait degeneration due to ageing that might have closer 

linkage to the causes of falls (Begg, Palaniswami, & Owen, 2005). This would help to 

undertake appropriate measures to prevent falls (Begg, Palaniswami, & Owen, 2005). 

Like in many other developed countries, falls in older population has been identified as a 

major health issue in Australia, costing the community ~2.4 $billion per annum (Begg, 

Palaniswami, & Owen, 2005). It has been suggested that more sensitive gait variables 

such as foot clearance during walking over the walking surface should be used to describe 

age-related declines in gait in an effort to find predictors of falls risk (Begg, Palaniswami, 

& Owen, 2005). Early identification of at-risk gait in older population provides the 

opportunity to undertake measures to prevent falls (Begg, Palaniswami, & Owen, 2005). 

At present, research in the area of automatic identification of gait types from their gait 

features is less prevalent (Begg, Palaniswami, & Owen, 2005). Neural network (NN) 

technology has been employed to classify various gait types (Begg, Palaniswami, & 

Owen, 2005).  For instance, Barton and Lees   applied NN to differentiate simulated gait 

(e.g., leg length discrepancy) using features from lower-limb joint-angle measures, while 

Holzreiterand Kohle applied NNs for classification of normal and pathological gait using 

force platform recordings of foot-ground reaction forces (Begg, Palaniswami, & Owen, 

2005). 

Seong-Beom Koh et. al investigated gait dynamics and kinematics in patients with 

Parkinson’s disease (PD) and correlated these features with the predominant clinical 

features and with the presence of the freezing of gait (FOG) and also measured the 

temporospatial and kinematic parameters of gait in 30 patients with PD using a 

computerized video motion analysis system (Koh, Park, Lee, Kim, & Yoon, 2008). 

A method for measuring human gait posture using wearable sensors was proposed by 

Takeda et al. The sensor used consist of a tri-axial acceleration sensor and three gyro 

sensors aligned on three axes. These are worn on the abdomen and the lower limb 

segments (both thighs, both shanks and both feet) to measure acceleration and angular 

velocity during walking (Takeda, Tadano, Todoh, & Yoshinari, 2009). Three dimensional 

positions of each lower limb joint are calculated from segment lengths and joint angles 
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(Takeda, Tadano, Todoh, & Yoshinari, 2009). Segment lengths are calculated by physical 

measurement and joint angles can be estimated mechanically from the gravitational 

acceleration along the anterior axis of the segments (Takeda, Tadano, Todoh, & 

Yoshinari, 2009). Because the cyclic patterns of acceleration data can be found during 

constant walking, a FFT analysis was applied to obtain some characteristic frequencies 

(Takeda, Tadano, Todoh, & Yoshinari, 2009). Gait analysis is an important clinical tool 

for diagnosing patients with walking disabilities (Takeda, Tadano, Todoh, & Yoshinari, 

2009). Currently, the main method for gait analysis is done by tracking a patient’s 

movement through camera-based analysis systems, like the Vicon motion analysis system 

(Vicon Motion Systems, Inc.) (Takeda, Tadano, Todoh, & Yoshinari, 2009).  

Secondary quantities such as velocity, displacement and joint angles can be calculated 

through integration of acceleration and angular velocities (Charry, T.H. Lai, Begg, & 

Palaniswami, 2009). It is broadly accepted that this procedure is significantly influenced 

by accumulative errors due to integration, arising from sensor noise, non-linearities and 

asymmetrical sensitivity/offset signals and bias drifts (Charry, T.H. Lai, Begg, & 

Palaniswami, 2009). Charry et al. assess the effectiveness of applying band-pass filtering 

to raw inertial sensor data under the assumption that sensor drift errors occur in the low 

frequency spectrum. The normalized correlation coefficient ρ of the Fast Fourier 

Transform (FFT) spectra corresponding to vertical toe acceleration from inertial sensors 

and from a video capture system as a function of digital band-pass filter parameters is 

compared. MEMs provide the possibility to measure physical quantities such as 

accelerations and angular velocities using smaller and cheaper inertial sensors (Charry, 

T.H. Lai, Begg, & Palaniswami, 2009). These inertial measurement units (IMUs) 

generally consist of accelerometers and gyroscopes. In gait analysis, reduced sensor sizes 

promise better portability and opens avenues to research of gait in natural environments 

(Charry, T.H. Lai, Begg, & Palaniswami, 2009). Recent studies have begun applying 

inertial sensor technologies to monitoring gait, in particular foot motion (Charry, T.H. 

Lai, Begg, & Palaniswami, 2009). Charry et al. work revealed that inertial sensors can 

show good performance comparable to video-based systems (Charry, T.H. Lai, Begg, & 

Palaniswami, 2009). A simple technique such as band pass filtering instead of low pass 

filtering can remove a large source of sensor error and potentially minimize the 

requirement for more complex methods such as gait event detections and strap down 

integration (Charry, T.H. Lai, Begg, & Palaniswami, 2009). This could reduce the 
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computational needs of future on-chip implementations of algorithms and portable 

devices for measuring displacement and velocities from inertial sensors (Charry, T.H. 

Lai, Begg, & Palaniswami, 2009). 

Stéphane Bonnet and Pierre Jallon presented a technique for recognition of different 

gait conditions from body-worn sensor data. A sensor located at subject’s shank, is a 

combination of a 3-D accelerometer and a 3-D magnetometer (Bonnet & Jallon, 2010). 

Stride detection method relies on the use of the sole magnetometer readings (Bonnet & 

Jallon, 2010). Feature extraction combines both modalities in an original manner and 

spatial, temporal, and angular parameters are extracted for subsequent classification 

(Bonnet & Jallon, 2010).  Hidden Markov models are employed to identify the types of 

gait being performed (Bonnet & Jallon, 2010).  Different feature modelizations are 

typically considered with the use of Gaussian mixture laws (Bonnet & Jallon, 2010). 

Inertial Microelectrical-mechanical systems (MEMs)-based technology is well suited for 

long-term ambulatory monitoring of physical activity (Bonnet & Jallon, 2010). Indeed, 

accelerometers and gyroscopes are highly-integrated chips that can be embedded into 

low-power body-worn sensor nodes with on-board memory capability (Bonnet & Jallon, 

2010). Several biomedical applications have been designed with this unique capability of 

remote (from the hospital) monitoring of physical activity (Bonnet & Jallon, 2010).  

Several articles have been published on the topic of gait classification from video cameras 

or from body-worn sensors, where gait features are either based on temporal, spatial or 

angular gait parameters (Bonnet & Jallon, 2010).  The approach proposed by Bonnet and 

Jallon is carried out in two distinct steps with first the identification of stride events along 

with their characterization and second the stride classification, i.e., the determination of 

the associated gait class using hidden Markov models (Bonnet & Jallon, 2010).   

Using inertial sensors to track motion is so appealing because the inertial sensors are 

not confined to the dependence of external auxiliary devices in comparison to the camera-

based motion tracking system (Zhou, Chen, & X. Lu, 2013). A self-contained integrated 

sensor module will satisfy the motion capture requirements (Zhou, Chen, & X. Lu, 2013). 

Some researchers carry out the motion tracking technique only using accelerometers in a 

relatively simple way while some others are using a sophisticated method with 

accelerometers, gyroscopes and magnetometers combinedly (Zhou, Chen, & X. Lu, 

2013). 
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Alcaraz et. al (Alcaraz, Moghaddamnia, & Peissig, 2015) proposed a system using an 

IMU Shimmer2R and an Android application for mobile gait performance evaluation and 

feedback where the extraction of important features from accelerometer raw data in both 

time and frequency domain are considered to be used in gait classification where each 

peak within a data window is processed to distinguish between normal and abnormal gait.  

G. Cola et. al, (Cola, Avvenuti, Vecchio, Z., & Lo, 2015) proposed a method using k-

Nearest Neighbours for capturing deviation in gait using a wearable tri-axial 

accelerometer placed at the waist (Shimmer2R IMU). To this purpose, eleven 

acceleration-based features were extracted and provided as inputs to an anomaly detection 

algorithm. Gait is detected by analysing the peaks in the acceleration magnitude, which 

are generated by the ground reaction force when the foot hits the ground. A new gait 

segment is detected when eight consecutive steps are found. Feature selection was 

performed by means of a greedy heuristic approach, starting from a set of 43 features 

(Cola, Avvenuti, Vecchio, Z., & Lo, 2015). The optimized metric was the average 

classification accuracy obtained by the anomaly detection algorithm. Mean, median, 

Peak-to-Peak amplitude (P2P), RMS, standard deviation, and Zero Crossing Rate (ZCR) 

are statistical measures which have been widely used for activity recognition purposes. 

Duration is the duration of the gait segment (Cola, Avvenuti, Vecchio, Z., & Lo, 2015). 

The proposed anomaly detection algorithm is a binary classifier based on k-Nearest 

Neighbours (k-NN) analysis. Gait instances are either classified as abnormal (positive) or 

normal (negative) (Cola, Avvenuti, Vecchio, Z., & Lo, 2015). 

 A. Ramp et al. (Rampp, et al., 2015) presented a method that is able to calculate 

clinically relevant gait parameters from inertial sensor data of gait sequences. For data 

collection, the inertial sensor platform Shimmer 2R was used. It consists of a three-axis 

gyroscope (range: ±500 ◦/s) and a three-axis accelerometer (range: ±6 g). Subjects wore 

shoes with a sensor placed laterally right below each ankle joint. To apply the stride 

segmentation, a template of a single stride was defined manually from the gyroscope z-

axis. To segment strides, the algorithm searched for parts in the continuous signal that 

were similar to the template (Rampp, et al., 2015). To generate a step template, the 

complete data from template dataset was used. This dataset included only gait exercises 

where subjects walked straight on a ten-meter track for four times. In this special case, 

peak detection was used to extract steps. Peak detection is done on the gyroscope data 

from the sagittal plane by searching for local maxima, which corresponded to mid swing 
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and the minima before and after. With this information the gait cycle was defined, and all 

extracted steps were interpolated to 200 samples. This was done to build an averaged step 

out of 25 datasets and 681 resulting steps. At Heel Strike (HS), the foot decelerates 

abruptly when the heel hits the ground. To detect HS, only the segment between the 

absolute maximum and the end of the first half of the gyroscope’s z-axis signal was 

considered. Within this segment, HS was found by searching for the minimum between 

the point of the steepest negative slope and the point of steepest positive slope in 

following signal (Rampp, et al., 2015).  

Ranveer Joyseeree, Rami Abou Sabha and Henning Mueller presented a machine -learning 

framework to identify the specific disease afflicting certain patients using only gait analysis data. 

Classifying such data into disease types consumes valuable clinical time that may be better spent. 

Effective classification also facilitates its future retrieval (Joyseeree, Sabha, & Müller, 2015). A 

machine-learning framework to identify the specific disease afflicting certain patients using only 

gait analysis data is presented (Joyseeree, Sabha, & Müller, 2015). Classifying such data into disease 

types consumes valuable clinical time that may be better spent (Joyseeree, Sabha, & Müller, 

2015).Effective classification also facilitates its future retrieval (Joyseeree, Sabha, & Müller, 2015). 

To classify the data into one of the three categories: healthy, Neurological and Neuromuscular 

Diseases (NND), and Juvenile Idiopathic Arthritis (JIA), certain parameters were carefully selected 

from them and used to train Random Forest (RF), boosting, Multilayer Perceptron (MLP), and 

SVM classifiers (Joyseeree, Sabha, & Müller, 2015). Gait analysis has been carried out for decades 

and it involves the measurement and detailed study of quantities associated with human locomotion 

(Joyseeree, Sabha, & Müller, 2015). Currently, these quantities are collected using a range of 

sensors and are saved in an appropriate format for future reference (Joyseeree, Sabha, & Müller, 

2015). Analysis of the locomotion of patients can greatly help clinicians in the diagnosis of the type 

of disease afflicting the former (Joyseeree, Sabha, & Müller, 2015). Accurate diagnoses allow the 

patient to receive the appropriate care as soon as possible, which minimises their suffering and 

allows them to enjoy an improved quality of life (Joyseeree, Sabha, & Müller, 2015). Automating 

the process of classifying gait data can therefore allow clinicians to better invest their time in other 

care-giving activities (Joyseeree, Sabha, & Müller, 2015). The main purpose of Joyseeree, Sabhab 

and Mueller study is to facilitate the automatic classification of gait data in terms of disease type. 

Successful classification will facilitate the retrieval of archived gait information to complement new 

studies. To achieve those objectives, a machine learning algorithm is proposed. It is tested on images 

of healthy individuals, patients affected by Neurological and Neuromuscular Diseases (NND), and 
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those affected by Juvenile Idiopathic Arthritis (JIA) (Joyseeree, Sabha, & Müller, 2015). Zheng et 

al. used Random Forests (RF) and KStar to discriminate between neuro-degenerative diseases 

(Joyseeree, Sabha, & Müller, 2015). 

Gait analysis using wearable wireless sensors can be an economical, convenient and 

effective way to provide diagnostic and clinical information for various health-related 

issues (Nukala, et al., 2016). In Nukala, et al work a custom designed low-cost wireless 

gait analysis sensor that contains a basic inertial measurement unit (IMU) was used to 

collect the gait data for four patients diagnosed with balance disorders and additionally 

three normal subjects, each performing the Dynamic Gait Index (DGI) tests while wearing 

the custom wireless gait analysis sensor (WGAS) (Nukala, et al., 2016). The raw gait data 

are wirelessly transmitted from the WGAS to a near-by PC for real-time gait data 

collection and analysis (Nukala, et al., 2016). Algorithms as back propagation artificial 

neural network (BP-ANN), support vector machine (SVM), k-nearest neighbours (KNN) 

and binary decision trees (BDT) were used based on features extracted from the raw gait 

data of the gyroscopes and accelerometers (Nukala, et al., 2016). Nukala et al. results 

show that gait data collected from their very low-cost wearable wireless gait sensor can 

effectively differentiate patients with balance disorders from normal subjects in real time 

using various classifiers, the success of which may eventually lead to accurate and 

objective diagnosis of abnormal human gaits and their underlying etiologies in the future, 

as more patient data are being collected. A basic IMU that includes 3D gyroscopes and 

accelerometers can measure angular velocity and linear acceleration for each of the X/Y/Z 

axes, respectively, and these inexpensive IMUs have been used as wearable sensors that 

provide a powerful option for human gait analysis (Nukala, et al., 2016). Aminian et al. 

and Selles et al. reported methods of measuring both terminal contact (TC) that defines 

the beginning of the swing phase, as well as the initial contact (IC) that defines the 

beginning of the gait cycle timing information using those body-worn sensors (Nukala, 

et al., 2016). On the other hand, Yoshida et al. used an accelerometer/IMU sensor attached 

to the patient’s waist and observed frequency peaks in the anterior plane to detect leg 

injury (Nukala, et al., 2016). Boutaayamou et al. developed a signal processing algorithm 

to automatically extract, on a stride-by-stride basis, four consecutive fundamental events 

of walking, i.e., HS, toe strike (TS), heel-off (HO) and toe-off (TO), from wireless 

accelerometers applied to the right and left foot (Nukala, et al., 2016). An ambulatory 
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monitoring method using an IMU sensor for patients with Parkinson’s disease has also 

been developed (Nukala, et al., 2016). 

In recent years, a weighty research effort which focuses on the monitoring and 

recognition of human activity patterns which collected via motion sensors has been 

witnessed (Erdaş, Atasoy, Açıcı, & Oğul, 2016). Various application domains contain 

activity recognition technologies such as health and elder care or sportive motion tracker 

devices (Erdaş, Atasoy, Açıcı, & Oğul, 2016). Many previous studies have proposed to 

use an accelerometer sensor to accomplish the recognition process (Erdaş, Atasoy, Açıcı, 

& Oğul, 2016). Accelerometers have been widely accepted devices for measuring 

personal daily activities such as walking, standing and running owing to their minimal 

size, low power requirements, cost and the ability of producing data directly from the 

motion (Erdaş, Atasoy, Açıcı, & Oğul, 2016). Previous researches have shown that 

machine learning methodologies are effective for classification of different activities from 

sensor data (Erdaş, Atasoy, Açıcı, & Oğul, 2016). They often operate in two steps: First, 

relevant features are calculated from accelerometer signal data (Erdaş, Atasoy, Açıcı, & 

Oğul, 2016). Then a classifier algorithm is used to determine the activity corresponding 

to those features (Erdaş, Atasoy, Açıcı, & Oğul, 2016). The common features involve the 

statistics extracted from time-domain signal analysis, frequency-domain analysis and 

wavelet analysis, which is also referred as time-frequency analysis (Erdaş, Atasoy, Açıcı, 

& Oğul, 2016). Activity recognition problem is considered as a supervised classification 

task where a subsequence of accelerometer reads is fed into a machine learning classifier 

(Erdaş, Atasoy, Açıcı, & Oğul, 2016). The input data is normalized as to have a mean of 

zero and a standard deviation of one. The features are extracted from segmented parts of 

normalized data where a segment refers to a number of consecutive accelerometers reads 

(Erdaş, Atasoy, Açıcı, & Oğul, 2016). Fixed length segments are used since no prior 

knowledge is available about activity boundaries. Assuming that any activity can exhibit 

at least one of its cycles in 4 seconds, each segment is built to have 208 samples (Erdaş, 

Atasoy, Açıcı, & Oğul, 2016). An overlap of 50% in length is allowed between two 

consecutive samples as in previous works (Erdaş, Atasoy, Açıcı, & Oğul, 2016). In 

classification stage, several machine learning classifiers are employed, i.e., Random 

Forest, k-Nearest Neighbour (kNN), and Support Vector Machine (SVM) (Erdaş, Atasoy, 

Açıcı, & Oğul, 2016). 
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Remote care and telemonitoring have become essential component of current geriatric 

medicine. Intelligent use of wireless sensors is a major issue in relevant computational studies to 

realize these concepts in practice (Açıcı, et al., 2017). While there has been a growing interest in 

recognizing daily activities of patients through wearable sensors, the efforts towards utilizing the 

streaming data from these sensors for clinical practices are limited (Açıcı, et al., 2017). Açıcı, et al 

present a practical application of clinical data mining from wearable sensors with a particular 

objective of diagnosing Parkinson’s Disease from gait analysis through a sets of ground reaction 

force (GRF) sensors worn under the foots, introducing a supervised learning method based on 

Random Forests that analyse the multi-sensor data to classify the person wearing these sensors, 

extracting a set of time-domain and frequency-domain features that would be effective in 

distinguishing normal and diseased people from their gait signals.  

It is important to remotely detect the physical activity of PD patients to treat the patients 

more adequately and to increase their quality of life (Açıcı, et al., 2017). An accelerometer mounted 

on the knee has been experimentally demonstrated in several studies where the values recorded 

from the sensor are significantly different when compared to healthy and PD patients marches and 

therefore can be used for long-term gait analysis of accelerometer sensors (Açıcı, et al., 2017). 

2.1. Gait abnormalities 

Normal human walking and running can be defined as a method of locomotion involving the use 

of the two legs, alternately, to provide both support and propulsion (Levine, Richards, & Whittle, 

2012). In order to exclude running, we must add at least one foot being in contact with the ground 

at all times (Levine, Richards, & Whittle, 2012). 

Most people tend to use the words gait and walking interchangeably (Levine, Richards, & 

Whittle, 2012). However, there is a difference: the word gait describes the manner or style of 

walking, rather than the process of walking itself (Levine, Richards, & Whittle, 2012).It thus makes 

more sense to talk about a difference in gait between two individuals than about a difference in 

walking (Levine, Richards, & Whittle, 2012). 

 There is an identifiable pattern of walking and a normal range can be defined for all of the 

variables which can be measured (Levine, Richards, & Whittle, 2012). Pathology of the locomotor 

system frequently produces gait patterns which are clearly abnormal (Levine, Richards, & Whittle, 

2012). 

 For a person to walk, the locomotor system must be able to accomplish 4 things (Levine, 

Richards, & Whittle, 2012): 
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1. Each leg in turn must be able to support the body weight without collapsing 

(Levine, Richards, & Whittle, 2012). 

2. Balance must be maintained, either statically or dynamically, during single leg 

stance (Levine, Richards, & Whittle, 2012). 

3. The swinging leg must be able to advance to a position where it can take over the 

supporting role (Levine, Richards, & Whittle, 2012). 

4. Enough power must be provided to make the necessary limb movements and to 

advance the trunk (Levine, Richards, & Whittle, 2012). 

In normal walking, all of these are achieved without any apparent difficulty and with a 

modest energy consumption (Levine, Richards, & Whittle, 2012). However, in many forms of 

pathological gait they can be accomplished only by means of abnormal movements (Levine, 

Richards, & Whittle, 2012). 

Abnormal gait may result from a disorder in any part of the locomotor system, including 

the brain, spinal cord, nerves, muscles, joints and skeleton and may also result from the presence of 

pain (Levine, Richards, & Whittle, 2012). 

The most common gait abnormalities are (Levine, Richards, & Whittle, 2012): 

1. Lateral trunk bending: bending the trunk towards the side of the supporting limb 

during the stance phase. Due to inadequate hip abductors, the pelvis drops on the 

unsupported side when one foot is lifted off the ground. To compensate, the subject 

bends the trunk over the supporting hip (Levine, Richards, & Whittle, 2012). 

Figure 1 Lateral trunk bending, from (Levine, Richards, & Whittle, 2012) 
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2. Anterior trunk bending: subject flexes the trunk forwards early in the stance phase. 

If only one leg is affected, the trunk is straightened again around the time of 

opposite initial contact. If both sides are affected, the trunk may be kept flexed 

throughout the gait cycle (Levine, Richards, & Whittle, 2012). 

 

3. Posterior trunk bending: In normal walking, the line of force early in the stance 

phase passes in front of the hip; posterior trunk bending brings the line of force 

behind the hip, to compensate for weak hip extensors (Levine, Richards, & Whittle, 

2012). 

 

Figure 2 Anterior trunk bending, from (Levine, Richards, & Whittle, 2012) 

Figure 3 Posterior trunk bending, from (Levine, Richards, & Whittle, 2012) 
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4. Increased lumbar lordosis: When there is a fixed flexion deformity of the hip (left 

panel), the whole pelvis must rotate forwards for the femur to move into a vertical 

position (right panel) with a resulting increase in lumbar lordosis (Levine, Richards, 

& Whittle, 2012). 

 

 

5. Functional leg length discrepancy   

• Circumduction: the swinging leg moves in arc, rather than 

straight forwards, to increase the ground clearance for the swing 

foot (Levine, Richards, & Whittle, 2012). 

 

 

 

Figure 4 Increased Lumbar Lordosis, from (Levine, Richards, & Whittle, 

2012) 

Figure 5 Circumduction, from (Levine, Richards, & Whittle, 2012) 
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• Hip hiking: the swing phase leg is lifted by raising the pelvis on 

that side (Levine, Richards, & Whittle, 2012). 

• Steppage: increased hip and knee flexion improve ground 

clearance for the swing phase leg, in this case necessitated by a 

foot drop (Levine, Richards, & Whittle, 2012). 

 

Figure 6 Hip hiking, from (Levine, Richards, & Whittle, 2012) 

Figure 7 Steppage, from (Levine, Richards, & Whittle, 2012) 
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• Vaulting: the subject goes up on the toes of the stance phase leg to increase ground 

clearance for the swing phase leg (Levine, Richards, & Whittle, 2012). 

6. Abnormal hip rotation: abnormal rotation at the hip involves the whole leg, with 

the foot showing an abnormal toe in or toe out alignment (Levine, Richards, & 

Whittle, 2012). 

7. Excessive knee extension: the normal stance phase flexion of the knee is lost, to be 

replaced by full extension or even hyperextension, in which the knee is angulated 

backwards, this best seen from the side (Levine, Richards, & Whittle, 2012). 

8. Excessive knee flexion: in late stance phase there is increased knee flexion, caused 

by a flexion contracture of the hip (Levine, Richards, & Whittle, 2012). 

Figure 9 Excessive knee flexion, from (Levine, Richards, & Whittle, 2012) 

Figure 8 Vaulting, from (Levine, Richards, & Whittle, 2012) 
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9. Inadequate dorsiflexion control: may result from weakness or paralysis of the 

anterior tibial muscles or from these muscles being overpowered by spasticity of 

the triceps surae (Levine, Richards, & Whittle, 2012). An inability to dorsiflex the 

foot during the swing phase causes a functional length discrepancy (Levine, 

Richards, & Whittle, 2012). During load response, the dorsiflexors resist the 

external plantarflexion moment, thus permitting the foot to be lowered to the 

ground gently (Levine, Richards, & Whittle, 2012). If they are weak, the foot is 

lowered abruptly in a foot slap (Levine, Richards, & Whittle, 2012). The 

dorsiflexors are also active during the swing phase, when they are used to raise the 

foot and achieve ground clearance (Levine, Richards, & Whittle, 2012). Failure to 

raise the foot sufficiently during initial swing may cause toe drag (Levine, 

Richards, & Whittle, 2012).  

10. Abnormal foot contact: The foot may be abnormally loaded so that the weight is 

primarily borne on only one of its four quadrants (Levine, Richards, & Whittle, 

2012). 

 

Figure 10 Abnormal foot contact, from (Levine, Richards, & Whittle, 2012) 
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11. Abnormal foot rotation: normal individuals place the foot on the ground 

approximately in line with the direction of walk, typically with a few degrees of toe 

out (Levine, Richards, & Whittle, 2012). Pathological toe in or toe out angles may 

be produced by internal or external hip rotation, torsion (twisting) of the femur or 

tibia, or deformity of the foot itself (Levine, Richards, & Whittle, 2012). 

 

12. Insufficient push off: the weight is taken primarily on the heel and there is 

no push-off phase (Levine, Richards, & Whittle, 2012). 

13. Abnormal walking base: the foot is placed on the ground wider apart than 

usual. This can be caused by the fear of falling and instability or by a 

deformity like abducted hip or valgus knee (Levine, Richards, & Whittle, 

2012). 

14. Rhythmic disturbances: 

• Asymmetrical rhythmic disturbance: difference in the gait timing 

between the two legs (Levine, Richards, & Whittle, 2012). 

• Irregular rhythmic disturbance: differences between one stride and 

the next (Levine, Richards, & Whittle, 2012). 

2.2. Gait cycle 

According to Figure 12 the events in a cycle are: 

• Initial contact: Right initial contact occurs while the left foot is still on the 

ground and there is a period of double support (double limb stance) between 

initial contact on the right and toe off on the left. 

• Opposite toe off 

• Heel rise 

Figure 11 Abnormal foot rotation, from (Levine, Richards, & Whittle, 2012) 
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• Opposite initial contact 

• Toe off 

• Feet adjacent 

• Tibia vertical 

These seven events subdivide the gait cycle into seven periods, four of which occur in 

the stance phase, when the foot is on the ground, and three in the swing phase, when the 

foot is moving forward through the air  (Kharb, Saini, Jain, & Dhiman, 2011). 

The stance phase lasts from initial contact to toe off and includes the periods (Kharb, 

Saini, Jain, & Dhiman, 2011): 

• Loading response 

• Mid-stance 

• Terminal stance 

• Pre - swing 

The swing phase lasts from toe off to the next initial contact and includes the periods 

(Kharb, Saini, Jain, & Dhiman, 2011): 

• Initial swing 

• Mid-swing 

Figure 12 Events in a gait cycle, from (Kharb, Saini, Jain, & Dhiman, 2011) 
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• Terminal swing. 

During the swing phase on the left side, only the right foot is on the ground, giving a 

period of right single support (or single limb stance), which ends with initial contact by 

the left foot. There is then another period of double support, until toe off on the right side 

(Kharb, Saini, Jain, & Dhiman, 2011). 

 Left single support corresponds to the right swing phase and the cycle ends with the 

next initial contact on the right. In each double support phase, one foot is forward, having 

just landed on the ground, and the other one is backward, being just about to leave the 

ground (Kharb, Saini, Jain, & Dhiman, 2011). 

The duration of a complete gait cycle is known as the cycle time, which is divided into 

stance time and swing time (Kharb, Saini, Jain, & Dhiman, 2011). 

In each gait cycle, there are two periods of double support and two periods of single 

support. The stance phase usually lasts about 60% of the cycle, the swing phase about 

40% and each period of double support about 10% (Kharb, Saini, Jain, & Dhiman, 2011). 

The final disappearance of the double support phase marks the transition from walking to 

running. Between successive steps in running there is a flight phase, also known as the 

float, double-float or non-support phase, when neither foot is on the ground (Kharb, Saini, 

Jain, & Dhiman, 2011). 

A stride consists of two successive placements of the same foot (Kharb, Saini, Jain, & 

Dhiman, 2011). 

Each stride contains eight functional patterns (functional intervals phases). 

 The sequential combination of this phases enables the limb to accomplish three basic 

tasks (Kharb, Saini, Jain, & Dhiman, 2011). The tasks are: 

• Weight acceptance task phases:  

- Initial contact: heel contact to the ground (Streifeneder ortho.production 

GmbH, 2018). 

- Loading response: shock absorption in knee and ankle joint, load 

transmission and stability in the hip, forward motion by heel rocker 

(Streifeneder ortho.production GmbH, 2018). 
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• Single limb support task phases: 

- Mid stance phase: controlled forward motion of the tibia, shifting of the 

gravity centre to the front by ankle rocker (Streifeneder ortho.production 

GmbH, 2018). 

- Terminal stance phase:  controlled dorsal extension at the ankle joint with 

lifting the heel from the ground (Streifeneder ortho.production GmbH, 

2018). 

• Limb advancement task phases: 

- Pre-swing: passive knee joint flexion of 40°, plantar flexion of the ankle 

joint (Streifeneder ortho.production GmbH, 2018). 

- Initial swing: minimum 55° knee flexion for enough ground clearance 

(Streifeneder ortho.production GmbH, 2018). 

- Mid swing: increasing hip flexion to 25°, dorsal extension of the ankle joint 

to neutral-zero-position (Streifeneder ortho.production GmbH, 2018). 

- Terminal swing:  knee joint extension to neutral-flexion, preparation for 

stance phase (Streifeneder ortho.production GmbH, 2018). 

The stride length is the distance between two successive placements of the same foot. 

It consists of two step lengths, left and right, each of which is the distance by which the 

named foot moves forward in front of the other one. This definition of a stride is not 

applicable in some pathological gaits, in which one foot makes a series of hopping 

movements while the other is in the air (Kharb, Saini, Jain, & Dhiman, 2011). 
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Chapter 3 – System description 

The proposed system is comprised by an Android Smartphone and an Android app 

developed for the purpose that controls the system, a remote server using Java and Python 

programming languages for data processing and classification using machine-learning, a 

database and two Shimmer3 devices. 

The system architecture is illustrated in Figure 13. Shimmer3 devices (Figure 14) are 

IMUs that include an accelerometer, a gyroscope and magnetometer, all tri-axial. In the 

presented system Shimmer devices are attached to the person’s both legs shanks and are 

connected to the Android app via Bluetooth. 

 

Figure 13 System architecture 

Figure 14 Shimmer device 
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The system smartphone starts the communication with the paired Bluetooth devices. 

Streaming of both Shimmer devices is initiated by pressing the start streaming app 

buttons, provided by the open source shimmer drivers software, shown in Figure 15. 

 

Figure 15 Initial panel of Shimmer mobile software driver - connect to Shimmer 



Gait Rehabilitation Monitor 

 

 

33 

From the developed app menus, a user can choose to make a test or train the classifier, 

as show in Figure 16. 

Immediately after user starts walking by pressing the walk app button, Figure 17, the 

raw data from the tri-axis accelerometer, gyroscope and magnetometer is collected, pre-

processed and assembled in a csv file.  

Whether it is a gait test session to monitor gait or a gait train session to train the 

classifier, data is sent over the internet to the server invoking the developed API. The 

invoked services provided by the available server API manages the file storage and 

processes data executing python scripts. It also creates a response that is sent back to the 

client app. The server response includes the test and train results, and the storage 

successfulness in case of storing files for later processing. The classification model and 

the test results are persisted in a local PostgreSQL database. 

Figure 16 Left side: Gait session menu. Right side: Train classifier menu 

Figure 17 App walk view buttons 
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3.1. Hardware – Shimmer3 device 

The hardware of the system includes 2 Shimmer3 IMU. Shimmer3 is a small wireless 

sensor device, well suited for wearable applications. The integrated kinematic sensors, 

large storage and low-power standards-based communication capabilities enable 

emerging applications in motion capture, long-term data acquisition and real-time 

monitoring. 

3.1.1. Shimmer3 coordinate system 

 

Shimmer3 coordinate system used to calibrate the device is displayed in Figure 18 

3.1.2. Shimmer3 calibration 

  

When acquiring data from a Shimmer device the data is output in raw Analog-to-

Digital converter (ADC) values. To convert the raw ADC values to standard units, e.g., 

m/s2, degrees/s, and obtain calibrated data, calibration parameters must be applied to 

these raw values. Shimmer 9DoF Calibration Application allows the calculation of the 

calibration parameters for a tri-axial accelerometer, gyroscope and magnetometer 

(Shimmer, 2017). 

If the Shimmer device is calibrated correctly the location of the “−1” and “1” values 

in the alignment matrix should be as in Figures 19, 20 and 21, as it determines the 

alignment of the sensors.  

The calibration parameters are: the offset vector that defines the zero offset for each 

axes of the tri-axial sensor, the sensitivity matrix that defines the sensitivity of each axes 

of the tri-axial sensor, and the alignment matrix.  

Figure 18 Shimmer3 calibration axis 
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The alignment matrix can be used to (Shimmer, 2017):  

• allow the user to define to which axes they wish to assign the name x-axis, y-

axis and z-axis. 

• define which direction they wish to be considered the positive direction of the 

measuring axis 

• correct for Shimmer design discrepancies whereby the XYZ outputs of each 

sensor do not agree.  

• correct for any misalignment of axes within each sensor, i.e., the fact that all 

three axes are not perfectly orthogonal 

 

Figure 19 shows the panel to calibrate the accelerometer. The accelerometer option is 

set to the default Low Noise option and the default range is +-2g.  

 

Figure 19 Shimmer3 accelerometer calibration parameters, from (9DoF Calibration Application 2017) 



Gait Rehabilitation Monitor 

 

 

36 

The gyroscope calibration panel and calibration parameters are illustrated in Figure 20 

with a sensitivity range, in this example, of 500 dps. 

 Figure 21 depicts the magnetometer panel and calibration parameters. The graphics 

of the calibrated magnetometer output, in Figure 21, should each display a unit circle 

centred at (0,0) when the magnetometer is rotated about all of its axes (Shimmer, 2017). 

Figure 20 Shimmer3 gyroscope calibration parameters, from (9DoF Calibration Application 2017) 

Figure 21 Shimmer3 magnetometer calibration parameters, from (9DoF Calibration Application 2017) 
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3.1.3. Shimmer3 key features 

 

Figure 22 depicts Shimmer3 mainboard key features: 

Figure 22 Shimmer3 mainboard key features, from (Shimmer, 2016) 
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3.2. Software 

This section describes the software developed and used in the described System. 

3.2.1. Android app 

The developed Android app was developed based on Multi Shimmer Template 

example and on Shimmer drivers (Shimmer, 2016). 

´The app features are: 

• Login 

• Registration 

• Shimmer connection 

• Plot signals 

• Train classifier 

• Gait test session 

Login view, Figure 23, holds username, user ID, password, and server IP. Users’ 

details are persisted in a PostgreSQL database. Users log in into the system with SSH2 

implemented via JSch, Java Secure Channel, and port forwarding.  

Figure 23 App login view 
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SSH provides support for secure remote login, secure file transfer, and secure TCP/IP 

and X11 forwarding from port 22 to application server listening port. It can automatically 

encrypt, authenticate, and compress transmitted data.  

For not registered users a register must be done to make login into the system and use 

the app. The input data is the same as the login and uses the same SSH2 network protocol. 

The register app view is shown in Figure 24. 

Shimmer open-source available drivers are used to connect the app to the Shimmer3 

devices. This open-source functionality has been developed by Shimmer and has been 

integrated in the system app. Figure 25 illustrates this functionality. The red led displayed 

is lit when the Shimmer3 devices are not connected. The led colour may change to yellow 

(connecting), green (connected) and to blue (streaming). 

 

Figure 24 App register view 
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The signal collected from Shimmer3 devices may be plotted in a graphic. In Figure 26 

Euler angles acquired from right and left Shimmer3 devices are displayed in a graphic. 

Figure 25 Shimmer driver 

Figure 26 Right and left Euler angles 
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The data transmitted by the Bluetooth devices is assembled by the app in a csv file and 

sent over to the server using SSH2. The classifier is trained, and the new model becomes 

automatically active. 

Any tests performed after this step will be processed using the new classifier model, 

persisted in the system database. 

                  

Figure 27 shows the train feature app view. This view differs from the walk view 

in that it has two extra buttons, save button to save the data in the server and train button 

to train the classifier. In Figure 28 the buttons with legend are displayed. 

 

 

Figure 27 Train app view 

Figure 28 Train app view buttons 
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The label button in Figure 28 is an important feature because the system classifier 

is supervised, and data must be labelled to train the classifier. Figure 29 illustrates the 

view displayed after pressing label button. 

 

 

 

Train classifier feature enables the app to collect data after pressing the start 

button. After stopping walking and pressing the train button a command to train the 

classifier is executed based on the performed gait session. The flow that follows in Figure 

30 illustrates algorithm for training gait classifier. 

Figure 29 Classification label popup 
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Figure 30 Algorithm for training gait classifier 
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The Algorithm for training gait classifier depicted in Figure 30 consists on storing 

data in database for later processing. When the session is done, the classifier is trained, 

and the model persisted in database becoming the available model. As soon as the data is 

stored in database, the server sends back a response, as illustrated in Figure 31: 

 

A gait test session is performed to monitor the user’s gait assuming the classifier 

has been previously trained, and a classification model is ready and available. For a gait 

test session to be performed the user must be registered.  

Figure 31 Dataset upload 
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Figure 32 Algorithm for classification of gait 
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As represented in Figure 32 the algorithm for classification of gait starts with the 

user validation. If the user is not registered, he must register to proceed with login. After 

logging in, the test data is collected. The result of the test is displayed in the app, after 

stopping walking. The gait test session result from the server is displayed as illustrated in 

Figure 33, showing the identified gait. 

 

3.2.2. Shimmer drivers 

Data is acquired from the Shimmer3 devices using open-source Shimmer drivers’ 

class (Shimmer, 2016) to make the connection with the Android Smartphone and transfer 

data over Bluetooth. 

The Shimmer drivers are:  

• ShimmerDriver  

• ShimmerAndroidInstrumentDriver. 

 

Figure 33 Gait session result 
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Shimmer drivers are illustrated in Figure 34.  

The most important java classes from Shimmer drivers in this work are: 

• ShimmerObject.java 

 – Abstract class that contains important methods to process and manage 

threads running the connections with the Shimmer Bluetooth devices. 

Bluetooth packets are processed and transformed in to clusters 

(ObjectCluster java objects) which carry all the raw data collected as well 

as samples’ timestamps. Class from ShimmerDriver. 

• ShimmerBluetooth.java  

– In ShimmerDriver driver, abstract class that extends 

ShimmerObject.class and belongs to driver ShimmerDriver. Contains 

methods related to data streaming over Bluetooth.  

• ObjectCluster.java  

- represents data from tri-axial accelerometer, gyroscope and 

magnetometer received from Shimmer3 devices over Bluetooth and have 

instance variables such as the device name, device Bluetooth address, raw 

data. This class belongs to driver ShimmerDriver. It is used to encapsulate 

data from the driver. Contains a MultiMap (PropertyCluster) where each 

key represents a Property (e.g., Accelerometer; Gyroscope, 

Magnetometer) and each value the FormatCluster of that property. The 

FormatCluster is an object which holds the format (e.g., Calibrated), units 

and data of the property (Shimmer, 2016). 

• Shimmer.java  

- class that belongs to driver ShimmerAndroidInstrumentDriver and 

extends ShimmerBluetooth.java. Inherits and implements methods from 

ShimmerDriver to make the connections between the Android app and the 

Shimmer3 IMU over Bluetooth. 
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ShimmerDriver and ShimmerAndroidInstrumentDriver drivers are open-source. 

The Shimmer class, Figure 35, relies on the Bluetooth stack provided by Android to 

connect with the Shimmer device via the Serial Port Profile (SPP). SPP emulates a serial 

cable link over Bluetooth wireless technology. Each Shimmer device connected to the 

Android Device is represented by a Shimmer object which is an instance of the Shimmer 

class (Shimmer, 2016). 

Figure 34 Shimmer drivers 

Figure 35 Shimmer class, from (Shimmer, Shimmer Java/Android API 2014). 
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Shimmer device responds with an Acknowledge packet whenever a command is 

received (Shimmer, 2016). 

Multiple Shimmer devices can be connected simultaneously to an Android device 

using multiple instances of the Shimmer Class object (Shimmer, 2016), as depicted in 

Figure 36. 

In ObjectCluster java class, under the scope of this project and for shimmer 

devices synchronization datetime fields were added to keep system timestamps, for each 

received cluster to have an associated system timestamp other than the internal timestamp, 

which will be useful to align data from multiple Shimmer3.  

3.2.3. Entity - Relationship model 

The classification model, the test results, the train and test datasets and the users’ 

information is persisted in the System database. 

The database schema has the following 6 tables, illustrated in Figure 37: 

• gait_classification_test_data:  keeps all the test results 

• monitorized_test_person: has the user details 

• train_data_collected: collected train datasets 

Figure 36 Multiple Shimmer connection, from (Shimmer, Shimmer Java/Android API 2014) 
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• test_data_collected: collected test datasets 

• classification_models: the models from the several training operations 

performed 

• train_models: holds the available classification algorithms 

 

3.2.4. System backend 

The system backend contains a Wildfly 10 Application Server, a REST API, a database 

and Java and Python scripts to process the datasets. The system REST API available 

services are: 

• insertFile – stores dataset csv files in database 

• loginPerson – checks if user is valid  

• registerPerson – create a new user 

• trainClassifier - trains the classifier 

Figure 37 Entity-Relationship model 
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Figure 38 depicts the system REST API services. 

 

3.2.5. Python data processing 

Train and test datasets are processed in Python. Scikit-learn along with Numpy 

and Scipy are the used libraries. Two Python scripts were implemented to process the 

data. Both scripts use a common code. Besides the common implemented code, the main 

differences between the scripts are: 

1. test.py: calls the persisted active model to execute a test and persists the results. 

2. train.py: trains and persists the classifier in the database. 

The common shared code between these scripts has the following steps: 

1. Query database to get the not processed records 

2. Extraction of user, classifier, file type (if it is a file containing test or train records), 

Bluetooth address, and label (important for a train file) fields 

3. Retrieval from the PostgreSQL database of the csv file stored in a bytea field. It 

contains data from both Shimmer devices from both right and left legs. Data is then 

split into right and left leg data 

Figure 38 REST API services 
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4. The csv columns hold tri-axial data retrieved from accelerometer, gyroscope and 

magnetometer contained in the Shimmer3 devices, as well as the tri-axial Euler 

angles, and the timestamp to synchronize and align data from both devices 

5. Signal filtering with digital Butterworth filters 

6. Heel strike and stride detection 

7. Data synchronization and alignment 

8. Feature extraction 

9. Preparation of inputs for classification, creation of labels and features sets 

Data collected from the two Shimmer3 devices is pre-processed by the Android device. 

The data from the two Shimmer is transformed by the app into a csv file containing the 

columns: 

• IMU Bluetooth address 

• Device sampling rate 

• Gait label (if reading data to train the classifier) 

• Raw data from the tri-axial accelerometer 

• Raw data from the tri-axial gyroscope 

• Raw data from the tri-axial magnetometer 

• Aligned timestamps: Each line of the csv file containing each read sample has a 

column containing the system timestamp at the moment it arrived in the Android 

device aligned to a common reference - The moment gait has started 

• Tri-axial Euler angles 

• IMU Bluetooth address: Bluetooth address is useful to distinguish between the 

different devices and process the data coming from each of the two devices. 

• Sampling rate 

The synchronization of the two IMU devices has been done based on Multi Shimmer 

Sync for Android software application (Shimmer, 2016). Shimmer3 devices have an 

internal clock that can be reset. Considering that different devices can be reset at different 
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times the timestamps from the signal samples of a gait session are prone to have different 

timestamps (Shimmer, 2016). 

Each Shimmer3 device generates its own internal timestamp based on its crystal 

oscillator which has a frequency of 32.768 kHz. The uncalibrated timestamp values are 

ticks of the 32.768 kHz clock on the shimmer, which are stored in a 2-byte (16-bit) 

variable, so the value will overflow every 2 seconds (Shimmer, 2016). 

Sampled signals collected from the different devices do not arrive at the same time at 

the System Android smartphone which is caused by the data latency over the Bluetooth 

channel (Shimmer, 2016). 

According to the devices’ Shimmer3 manufacturer, the Shimmer3 internal timestamp 

is assigned to a data sample immediately before the sample is processed by the Shimmer3 

ADC and it is assumed to be the moment of reading (Shimmer, 2016). 

A common referential time must be determined for both system devices and data must 

be aligned to this common reference. A common time referential can be the instant when 

the sample is received by the Android Smartphone (Shimmer, 2016). 

Table 1 shows the results of an experiment performed by Shimmer in order to measure 

synchronization accuracy when data was streamed over one hour from two Shimmers at 

different sampling frequencies. 

Data arrives in the application from the Bluetooth stack on the Android, which is 

subject to a randomly varying latency (Shimmer, 2016). The main effect of this random 

variation in latency is that, when sampling at high frequencies (sampling period less than 

the variation in latency), there can be some instances when subsequent timestamps are 

not monotonically increasing. This occurrence is very rare (in experimental tests at 256 

Hz, there were, on average, 3.75 out of 1 million samples for which the timestamps were 

not monotonically increasing) (Shimmer, 2016).  

In this project to synchronize samples from both IMU devices at the time of arrival of 

each sample to the smartphone the system timestamp is collected. The common reference 

time for both devices is the moment gait starts. Hence, each device sample is associated 

with a timestamp according to Equation 1: 

ct – current timestamp 

ws – start walking timestamp 
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sat – sample timestamp arrival in the smartphone 

   

𝑐𝑡 = 𝑤𝑠 − 𝑠𝑎𝑡  
 

                                                        Equation 1 Current timestamp 

 

Samples with timestamp prior to the moment gait starts are ignored. The timestamp 

alignment is done by the Android device and kept in a buffer to be sent for postprocessing. 

Table 1 Shimmer3 synchronization – sampling frequency, from (Shimmer, MSS Android User Guide 2016) 

 

 

3.2.6. Euler angles 

Euler angles are a convenient set of generalized coordinates for describing the 

orientation of a body-fixed coordinate frame (Charles, 2008). A transformation can be 

carried out from a given Cartesian coordinate system to another by means of three 

successive rotations performed in a specific sequence. The Euler angles are then defined 

as the three successive angles and  only describe the current orientation (Charles, 2008) 

and are often presented in parallel with transformation matrices (Charles, 2008). Euler 

angles can also be used specifically to define anatomical terms of movement (Charles, 

2008). 

Euler’s Theorem: The general displacement of a rigid body with one point fixed is a 

rotation about some axis (Goldstein, 1980). 

A rotation is a displacement in which at least one point of the rigid body remains in its 

initial position and not all lines in the body remain parallel to their initial orientations 

(Vidakovic, Lazarevic, Kvrgic, Dancuo, & Ferenc, 2014). Physically, a rotation may be 

explained as reorientation of a body without changing the body’s size and shape 

(Vidakovic, Lazarevic, Kvrgic, Dancuo, & Ferenc, 2014). All mathematical formalisms 

Sampling rate [Hz] Median Abs Sync Error [ms] Max Abs Sync Error 

(ms) 

51.2 4.7 17.47 

102.4 3.14 10.38 

256 1.5 6.9 

512 1.12 6.15 
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used to describe attitude of the rigid body are derived from Euler’s rotation theorem 

(Vidakovic, Lazarevic, Kvrgic, Dancuo, & Ferenc, 2014). 

According to Euler’s rotation theorem, any rotational movement of a rigid body in 

three-dimensional space such that a point of the rigid body remains fixed throughout the 

movement is equivalent to a single rotation about particular axis passing through the fixed 

point. The axis of rotation is represented by a unit vector uˆ called Euler axis (Vidakovic, 

Lazarevic, Kvrgic, Dancuo, & Ferenc, 2014). Hence, any rotation in three-dimensional 

space can be represented via unit vector indicating the direction of a rotational axis and a 

scalar  (angle of rotation). This rotation representation is called axis-angle representation 

(Vidakovic, Lazarevic, Kvrgic, Dancuo, & Ferenc, 2014). The axis-angle representation 

is illustrated in Figure 39. 

 

 

 

 

 

    

 

 

 

 

 

 

 

Besides the axis-angle and rotational vector representations, several sets of three-

parameter representations have been reported in the literature. These three-parameter 

representations are called minimal representations (Vidakovic, Lazarevic, Kvrgic, 

Dancuo, & Ferenc, 2014).  

Figure 39 Axis- angle representation, from (Vidakovic, et al. 2014) 
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In the Euler angle representation, three rotations in sequence about the coordinate axis 

of either a fixed or a moving coordinate frame can describe any rotation provided that 

two successive rotations are not performed about parallel axes (Vidakovic, Lazarevic, 

Kvrgic, Dancuo, & Ferenc, 2014). If these elemental rotations are performed about the 

axes of the fixed frame, they are called extrinsic rotations (Vidakovic, Lazarevic, Kvrgic, 

Dancuo, & Ferenc, 2014). Otherwise, if the frame about which axes rotations are 

performed is local frame, these elemental rotations are called intrinsic (Vidakovic, 

Lazarevic, Kvrgic, Dancuo, & Ferenc, 2014). These two sets can be classified in two 

groups, called proper Euler angles, depicted in Figure 40, and Tait–Bryan angles also 

known as roll, pitch and yaw (RPY angles) (Vidakovic, Lazarevic, Kvrgic, Dancuo, & 

Ferenc, 2014). In the case of proper Euler angles, the first and third rotational axis are the 

same (e.g., x-y-x, or z-y’-z″) (Vidakovic, Lazarevic, Kvrgic, Dancuo, & Ferenc, 2014).  

RPY angles represent rotations about three different axes (e.g., x-y-z, or x-y’-z″) 

(Vidakovic, Lazarevic, Kvrgic, Dancuo, & Ferenc, 2014). 

In this work System Shimmer coordinates, the yaw axis is YY axis, pitch axis is ZZ 

axis and roll axis is XX axis. 

The principal axes are (NASA, 2018): 

• Normal axis: yaw axis. In this project Shimmer3’ coordinates system 

corresponds to YY axis (NASA, 2018). 

Figure 40 Proper Euler angles, from (Vidakovic, et al. 2014) 
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• Transverse axis: lateral axis, pitch axis. In this system corresponds to ZZ axis 

(NASA, 2018)  

• Longitudinal axis: roll axis, corresponds to XX axis (NASA, 2018) 

 

Considering the plane in Figure 41, the nose of the plane is pointing in the 

direction of ZZ + axis. In this System Shimmer3 coordinates ZZ + axis corresponds 

to axis XX+ (Figure 41). The normal axis YY in figure 42 is the same axis as in Figure 

41. The XX axis in Figure 41 corresponds to the transverse ZZ axis of Figure 42. 

 In Figure 43, the pitch, roll and yaw angles are depicted for system coordinates. 

Figure 41 Euler angles - Roll, pitch and yaw, from (Learn OpenGL, 2018) 

Figure 42 Shimmer3 calibration coordinates 



Gait Rehabilitation Monitor 

 

 

58 

 

 

A gimbal is a physical device consisting of spherical concentric hoops with pivots 

connecting adjacent hoops, allowing them to rotate within each other (Vidakovic, 

Lazarevic, Kvrgic, Dancuo, & Ferenc, 2014). A gimbal is constructed by aligning three 

rings and attaching them orthogonally. Gimbals are often seen in gyroscopes used by the 

aeronautical industry. Gimbal lock, illustrated in Figure 44, is loss of one degree of 

Figure 43 Pitch, yaw and roll angles 
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freedom which occurs when two rotational axes align (Vidakovic, Lazarevic, Kvrgic, 

Dancuo, & Ferenc, 2014). 

In this work quaternions are obtained from Axis-angle, using Shimmer drivers. Then 

a conversion is made from quaternion to Euler angles. 

Unit quaternion is a convenient and compact mathematical notation for describing the 

attitude of rigid bodies in three dimensions (Vidakovic, Lazarevic, Kvrgic, Dancuo, & 

Ferenc, 2014). 

From Euler rotational theorem it can be concluded that any rotation in 3-dimensional 

space can be described by unit vector indicating the direction of rotational axis and a 

rotational angle θ (Vidakovic, Lazarevic, Kvrgic, Dancuo, & Ferenc, 2014). Using 

extension of Euler formula, this transformation in unit quaternion space becomes 

(Vidakovic, Lazarevic, Kvrgic, Dancuo, & Ferenc, 2014): 

If rotation is given in the axis-angle form where rotational axis is defined by unit 

vector, Equation 2 (Vidakovic, Lazarevic, Kvrgic, Dancuo, & Ferenc, 2014): 

 û =  uxî + 𝑢𝑦ĵ + 𝑢𝑧k̂ 

Equation 2 Unit vector 

 and by angle of rotation  , quaternion representing this rotation is in Equation 3 

(Vidakovic, Lazarevic, Kvrgic, Dancuo, & Ferenc, 2014): 

𝑞 = (cos (
θ

2
) , sin (

θ

2
) (𝑢𝑥, 𝑢𝑦, 𝑢𝑧)) 

               Equation 3 Quaternion 

To define pure rotation, quaternions must satisfy |q| =1, i.e., pure rotation is defined 

by unit quaternions (Vidakovic, Lazarevic, Kvrgic, Dancuo, & Ferenc, 2014). 

Figure 44 Gimbal with 3 DoF and gimbal lock situation in which 1 DoF is lost, from (Vidakovic, et al. 2014) 
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In Figure 45 the unit quaternion through the relation with Axis-angle is depicted: 

The numbers 1, 2, 3 and 4 in Figure 45 correspond to the following equations: 

Number “1”: 

2arccosq1 

                                                            Equation 4 q1 relation with the axis angle 

Number “2”: 

𝑞4

sin (𝑎𝑟𝑐𝑐𝑜𝑠𝑞1)
 

 

Equation 5  q4 and q1 relation with the axis angle 

Number “3”: 

𝑞2

sin (𝑎𝑟𝑐𝑐𝑜𝑠𝑞1)
 

 

Equation 6  q2 and q1 relation with the axis angle 

Number “4”: 

𝑞3

sin (𝑎𝑟𝑐𝑐𝑜𝑠𝑞1)
 

 

Equation 7  q3 and q1 relation with the axis angle 

Figure 45 Unit quaternion parameters through relation with axis-angle, from (Vidakovic, et al. 2014) 
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The formulas used by Shimmer drivers to convert quaternions to Euler angles are: 

 

𝐸𝑢𝑙𝑒𝑟𝑥 =

arctan (
2 ∗  (q1 ∗  q2 +  q3 ∗  q4)

1 −  (2 ∗  (q2 ∗  q2 +  q3 ∗  q3))
)

π ∗ 180
 

 

Equation 8  Euler x 

    

𝐸𝑢𝑙𝑒𝑟𝑦 =
arcsin(2 ∗  (q1 ∗  q3 −  q4 ∗  q2))

π ∗ 180
 

 

Equation 9 Euler y 

    

𝐸𝑢𝑙𝑒𝑟𝑧 =

arctan (
2 ∗  (q1 ∗  q4 +  q2 ∗  q3)

1 − (2 ∗  (q3 ∗  q3 +  q4 ∗  q4))
)

π ∗ 180
 

 

Equation 10 Euler z 

3.2.7. Heel strike detection algorithm 

 

A set of tri-axial signals is obtained from the accelerometer, gyroscope and 

magnetometer. Euler angles are calculated from this set of signals. These angles play a 

very important role in the detection of the heel strikes (HSs) that occur during the gait 

cycles. Euler angle from YY axis is the one that matters in this algorithm because it tells 

us the angle a leg makes with YY axis. The importance of the YY axis in this calculation 

comes from the way the devices were calibrated as depicted in the Hardware System 

Description section. 

The steps of the HS detection algorithm are: 

1. Calculation of the mean value of the discrete YY axis Euler signal (Figure 46) 
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2. Determination of the signal indexes where values are below the signal mean value 

(red dots sequences in Figure 46) 

 

3. The goal is to find real HSs (blue circles in Figure 46), by calculating the 

maximum value between the lower and upper limits of the signal samples 

sequences determined in 2. (red dots in Figure 46) in noisy signals or in signals 

with many peaks, and elimination of peaks that may be misidentified as HSs 

4. Consider that if two identified samples below the mean have more than two 

samples above the mean between them (initial adaptive distance = two samples) 

then there might exist a HS between them. At each iteration through samples 

determined in step 2., adjust the adaptive distance if the number of samples above 

the mean in between is greater than the considered adaptive distance, Equation 

11: 

 

d = distance, l = last sample, n = next sample. 

𝑑 =  
(𝑑

2⁄   + 𝑎𝑏𝑠(𝑙 − 𝑛))  

2
 

            Equation 11 Adaptive distance 

5. Storing the identified HSs in a buffer 

Figure 46 Heel strike detection using Euler angle 
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6. Calculation of the mean difference between HSs identified in step 5. 

7. Iteration through the HSs (indexes) and get the segments of the original discrete 

YY axis Euler signal between those HSs 

8. Use of the following formula, to calculate the HSs index in the original signal: 

a = current index in the iteration 

b = index of the maximum value of the current segment above the mean 

 

ℎ𝑒𝑒𝑙𝑠𝑡𝑟𝑖𝑘𝑒 = 𝑎 + 𝑏 

                                                                      Equation 12 Original signal heel strike index 

 

There are available peak detection algorithms in Python, but a high number of peaks 

were misidentified: a constant distance between the peaks must be considered in some of 

the peak detection algorithms provided by the python libraries, which is a drawback for 

signals from many different types of gait. 

3.2.8. Stride detection algorithm 

Two shimmer devices are used to collect the gait data, each one placed in each of the 

two legs shank. These two devices are synchronized by the system’s timestamp collected 

from each device at the time of arrival in Android smartphone. Each collected sample 

from a device is aligned with the collected sample from the pair device by its timestamp 

using a common temporal reference. 

After synchronizing the gait cycles from each Shimmer device and identifying the HSs 

the strides can easily be obtained to extract the stride features to later train the classifier. 

The signal segmentation depends on the way Shimmer IMU were calibrated. In this 

case the YY axis is pointing vertically up. Ideally, Shimmer devices are calibrated and 

not affected by the environment conditions (network electromagnetic field and noise). 

Shimmer3 ideally should be placed correctly, fixed in legs with elastic tissue or some 

other fixing artefact. However, not always these conditions are achieved. Generally 

during a gait session, the shimmer devices’ position is affected and that will influence the 

data collected.  
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An identified gait cycle from a segmented Euler YY axis signal is illustrated in Figure 

47.  

The steps of the stride’s detection algorithm are: 

1. Calculation of the mean distance between the identified HSs of a YY Euler 

angle signal 

2. Iteration through the HSs and extraction of the signals segments from the 

original signal contained in-between 

3. Storing in a key-value list the timestamp associated to the start of each segment 

and the segment itself. 

4. Elimination of all signal segments which length do not fit in the interval based 

on the mean segments distance: 

[0.7*mean segments distance ;1.3*mean segments distance] 

5. By considering the segments of one of the two Euler angle signals, iteration 

through the segments and for each segment iteration through the key-value list 

of the other signal (other leg) that maps the start of an identified segment with 

a timestamp. If there is a segment timestamp that fits in the temporal window 

of the second signal extracted segment, then the current segment is accepted 

and the two segments from the different devices are considered as a gait stride. 

Otherwise the segment is excluded. 

Figure 47 Gait cycles from right and left leg 
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In Figure 48 the gait cycle is depicted as well as the stride. The maximum amplitude value 

of the Euler YY angle signal corresponds to initial contact period in Weight Acceptance 

task. The minimum amplitude value occurs in Limb Advancement task at Pre-Swing 

period. Also, in Figure 48 half-stride can be seen for the left leg as a stride consists of two 

successive placements of the same foot (Kharb, Saini, Jain, & Dhiman, 2011). For the 

right leg a stride is identified and mapped with the auxiliary graphic depicting the signal 

from the Shimmer3 placed in the right leg. The value of the YY Euler angle should be 

close to 0º in the mid-stance period of the single limb support task, according to the way 

Shimmer3 was calibrated where YY axis is pointing vertically up. However, Shimmer3 

devices sometimes become wrongly placed due to the legs gait movement, and this might 

have been one of those cases.   

 

Figure 48 Stride identification, from (RESNA, 2008) 
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Figures 49, 50 and 51 show the tri-axial Euler signal identified strides’ segments obtained 

using the HS detection algorithm and the stride detection algorithm. 

   

 

 
 

Figure 50 Stride segments – Euler XX signal 

 

 
 

          Figure 51 Stride segments – Euler ZZ signal 

 

 

Figure 49 Stride segments – Euler YY signal 
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3.2.9. Signal filtering 

Signals are filtered in the server-side using Python to improve signal quality and 

remove noise which will help gait classification. Extracting features from signals carrying 

useful information has effect on training a more accurate classification model to identify 

different gait types and disturbances. 

A digital Butterworth bandpass filter with 0.7 Hz lowcut and 35 Hz high-cut 

frequencies with 4th order has been applied to the accelerometer signal (Charry, T.H. Lai, 

Begg, & Palaniswami, 2009). A digital Butterworth lowpass filter with 10 Hz cut-off 

frequency with 1st order has been applied to Gyroscope and Magnetometer signals and 

Euler angles. 

Figure 52 illustrates the frequency response of the Butterworth bandpass filter along 

with the original XX accelerometer signal from Shimmer placed in the right leg and the 

filtered signal. The YY and ZZ accelerometer signals are shown in Figure 53. 

Figure 52 Butterworth bandpass filter – Top: Frequency response. – Bottom: Right leg XX 

accelerometer original and filtered signal  
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For the left leg, Figure 54 shows XX and YY accelerometer signals. 

´ 

 

Figure 53 Right leg - Top: YY accelerometer original and filtered signal – Bottom: ZZ 

accelerometer signal and filtered signal 

Figure 54 Left leg - Top: XX accelerometer original and filtered signal – Bottom: YY 

accelerometer signal and filtered signal 
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Figure 55 illustrates ZZ accelerometer left leg signal. 

Figures 56 depicts the low-pass 1st order filter frequency response with 10 Hz cut-off 

frequency and right leg gyroscope original and filtered signals. 

 

 

Figure 55 Left leg: ZZ accelerometer original and filtered signal 

Figure 56  Right leg. Top: Low pass filter Frequency response –Bottom: XX Gyroscope 

original and filtered signal 
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Figure 57 shows YY and ZZ right leg gyroscope signals. 

 

 

Figure 58 and 59 show XX, YY and ZZ left leg gyroscope signals. 

Figure 57 Right leg. Top: YY Gyroscope original and filtered signal –Bottom: ZZ 

Gyroscope original and filtered signal 

Figure 58 Left leg. Top: XX Gyroscope original and filtered signal –Bottom: YY Gyroscope 

original and filtered signal 
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Figures 60 and 61 illustrate right leg magnetometer original and filtered signals. 

 

Figure 59 Left leg: ZZ gyroscope original and filtered signal 

Figure 60 Right leg. Top: XX magnetometer original and filtered signal –Bottom: YY 

magnetometer original and filtered signal 
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 Figures 62 and 63 depict left leg magnetometer original and filtered signals. 

Figure 61 Right leg – ZZ magnetometer original and filtered signal 

Figure 62 Left leg. Top: XX magnetometer original and filtered signal –Bottom: YY 

magnetometer original and filtered signal 
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The bandpass filter applied to the accelerometer signal removed abrupt signal 

variation and centred the signal around zero. The filtered magnetometer and gyroscope 

signals have some differences from the original signal with less noise and removed peaks 

with abnormal amplitudes.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 63 Left leg - ZZ Magnetometer original and filtered signal 
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Chapter 4 – Classification 

Machine learning (ML) is one of the fastest growing areas of computer science, with 

far-reaching applications (Osisanwo, et al., 2017). It refers to the automated detection of 

meaningful patterns in data (Osisanwo, et al., 2017). ML tools are concerned with 

endowing programs with the ability to learn and adapt (Osisanwo, et al., 2017). 

The performance and computational analysis of machine learning algorithms is a 

branch of statistics known as computational learning theory. ML is about designing 

algorithms that allow a computer to learn (Ayodele, 2010). 

4.1. Types of ML algorithms 

 

The common types of ML algorithms are: 

• Supervised learning (SL) generates a function that maps inputs to desired 

outputs (Osisanwo, et al., 2017) 

• Unsupervised learning: labelled examples are not available (Ayodele, 2010). 

• Semi-supervised learning: combines both labelled and unlabelled examples to 

generate an appropriate function or classifier (Ayodele, 2010). 

• Reinforcement learning: The algorithm learns a policy of how to act given an 

observation of the world. Every action has some impact in the environment, 

and the environment provides feedback that guides the learning algorithm 

(Ayodele, 2010). 

• Transduction: like supervised learning but does not explicitly construct a 

function. Instead, tries to predict new outputs based on training inputs, training 

outputs, and new inputs (Ayodele, 2010). 

• Learning to learn: The algorithm learns its own inductive bias based on 

previous experience (Ayodele, 2010). 

SL is common in classification problems because the goal is often to get the 

computer to learn a classification system that we have created (Osisanwo, et al., 2017). 

In the classification problem, the goal of the learning algorithm is to minimize the 

error with respect to the given inputs (Ayodele, 2010). 

SL is one of the most widely researched and investigated areas of machine 

learning and is the most common technique for training neural networks and decision 

trees (Ayodele, 2010), having the aim to learn from a set of examples with known classes, 
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a function that outputs a prediction for the class of a previously unseen example (Ayodele, 

2010). 

The steps for applying supervised ML to a real-world problem are: 

• Collecting dataset 

• Data preparation and data pre-processing 

• Definition of training set: selection of the most important features, these 

inputs are the examples from which the classifier tries to learn 

• Algorithm selection 

• Training 

• Evaluation with test set 

These steps are depicted in Figure 64. The classifiers have parameters that can be 

tuned influencing the classifier predictions. 

4.2. Supervised learning algorithm – Decision trees 

 

Decision Trees (DTs) are a non-parametric supervised learning method used for 

classification and regression (scikit-learn.org, 2018) The goal is to create a model that 

predicts the value of a target variable by learning simple decision rules inferred from the 

data features (scikit-learn.org, 2018). DTs are capable of fitting complex datasets and 

performing both classification and regression tasks (kdnuggets, 2018). The idea behind a 

tree is to search for a pair of variable-value within the training set and split it in such a 

way that will generate the best two child subsets (kdnuggets, 2018).  The decision tree is 

a simple model in which the root node creates binary splits until certain criteria is met 

(ORACLE+datascience.com, 2018). The goal is to create branches and leaves based on 

an optimal splitting criterion, a process called tree growing (kdnuggets, 2018). The 

algorithm used to train a tree is called CART (Classification and Regression Tree) 

(kdnuggets, 2018). This binary splitting of nodes provides a predicted value based on the 

interior nodes leading to the terminal (final) nodes (ORACLE+datascience.com, 2018). 
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Trees have a high risk of overfitting the training data as well as becoming 

computationally complex during the growing stage (kdnuggets, 2018). Decision trees 

tend to have high variance when they utilize different training and test sets of the same 

data, since they tend to overfit on training data (ORACLE+datascience.com, 2018). This 

leads to poor performance on unseen data. An approach to deal with this problem is to 

use ensemble learning (kdnuggets, 2018). 

 

An ensemble learning algorithm consists of aggregating multiple outputs made by 

a diverse set of predictors to obtain better results, averaging out the outcome of individual 

predictions by diversifying the set of predictors, reducing the variance, obtaining a strong 

prediction model and less overfitting (kdnuggets, 2018). Ensemble classifiers 

significantly reduce the variance of the classifier and retain the most part of its bias 

(Zhang, Ren, & Suganthan, 2014). 

Figure 64 Steps for applying supervised machine learning, from (Ayodele, 2010) 



Gait Rehabilitation Monitor 

 

 

77 

4.2.1. Random Forests 

A more recently developed category of methods for classification and regression is 

known as ensemble learning, in which predictions of several base estimators are 

aggregated to produce results that are often better than any one of the individual 

estimators (Huang, Di Troia, & Stamp, 2018). Random Forests (RF) are one such 

ensemble learning method (Huang, Di Troia, & Stamp, 2018). A random forest is based 

on a set of DTs (Huang, Di Troia, & Stamp, 2018).  The general method by which these 

trees are combined is through bootstrap aggregating, or bagging in which each classifier 

is trained on a different, randomized subset of the features and the training data (Huang, 

Di Troia, & Stamp, 2018).  This method reduces correlation between trees, which in turn 

often reduces the tendency of decision trees to overfit the training data (Huang, Di Troia, 

& Stamp, 2018). 

The main effect of RF and other ensemble classifiers is to reduce variance (Zhang, 

Ren, & Suganthan, 2014).  

RF is a ML algorithm from the ensemble family of algorithms, which creates multiple 

models (called weak learners) and combines them to make a decision, in order to increase 

the prediction accuracy (Olivera, et al., 2017), as illustrated in Figure 65. 

The main idea of this technique is to build a forest of random decision trees and use 

them to classify a new case. Each tree is generated using a random variable subset from 

the candidate’s predictor variables and a random subset of data, generated by means of 

bootstrap. This algorithm also can be used to estimate variable relevance (Olivera, et al., 

2017). 

RF combine the concepts of bagging and random subspace to build a classification 

ensemble with a set of decision trees that grow using randomly selected subspaces of data 

(Zhang, Ren, & Suganthan, 2014). RF are well-known ensemble classifiers which have 

gained popularity in high-dimensional and ill-posed classification and regression tasks, 

for example on micro-arrays, time series, or spectral data, but also for inference in 

applications such as image segmentation and object recognition in computer vision 

(Zhang, Ren, & Suganthan, 2014). RF are comparable in performance to many other non-

linear learning algorithms (Zhang, Ren, & Suganthan, 2014).  They often do well with 

little parameter tuning and are able to identify relevant feature subsets even in the 

presence of a large number of irrelevant classifiers (Zhang, Ren, & Suganthan, 2014). 
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4.2.2. Extremely Randomized Trees 

The extremely randomized trees (Extra-Trees) method uses the same bagging and 

random subspace methods but introduces further randomization at cut-point choices while 

splitting tree nodes (Huang, Di Troia, & Stamp, 2018).   

This method is similar to the RF algorithm in the sense that it is based on selecting at 

each node a random subset of K features to decide on the split (Geurts P. L., 2011). Unlike 

in the RF method, each tree is built from the complete learning sample (no bootstrap 

copying) and, most importantly, for each of the features (randomly selected at each 

interior node) a discretization threshold (cut-point) is selected at random to define a split, 

instead of choosing the best cut-point based on the local sample (as in Tree Bagging or in 

the Random Forests method) (Geurts P. L., 2011). 

4.3. Classification features used in this system 

  

In this work, the extracted features from the collected signals used to train and feed 

the classifier are of three types: 

1. Time domain features 

2. Frequency domain features 

3. Time-frequency domain features 

Figure 65 Random Forests, from (kdnuggets, 2018) 
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The extracted time domain features for this system are: 

• Standard deviation 

• Maximum 

• Minimum 

• Skew 

• Kurtosis 

• Area 

• Displacement 

• Interquartile range - IQR 

• Mean absolute deviation – MAD 

The extracted frequency domain features for this system are: 

• Discrete fast Fourier transform 

• Power spectral density – Welch method 

The extracted time-frequency domain features for this system are: 

• Discrete Wavelet Transform (Daubechies db4) (standard deviation of the 

approximation and detail coefficients) 

Standard deviation 

Standard deviation measures the spread of a data distribution. It measures the typical 

distance between each data point and the mean (Khan Academy, 2018): 

 

 

𝜎 =  √
∑(𝑥𝑖 − 𝜇)2 

𝑁
 

 

                                                                          Equation 13 Standard deviation 

 

 

Skewness and Kurtosis 

 

Skewness is a measure of symmetry, or more precisely, the lack of symmetry. A 

distribution, or data set, is symmetric if it looks the same to the left and right of the centre 

point. For univariate data Y1, Y2, ..., YN, the formula for skewness is 

(NIST/SEMATECH, 2018): 
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𝑔1 = ∑

(𝑌𝑖 − 𝑌)
3

𝑁
𝑠3

𝑁

𝑛=1

 

 Equation 14 Skewness 

 

Where Y is the mean, N the number of data points (NIST/SEMATECH, 2018). The 

skewness for a normal distribution is zero, and any symmetric data should have a 

skewness near zero (NIST/SEMATECH, 2018). Negative values for the skewness 

indicate data that are skewed left and positive values for the skewness indicate data that 

are skewed right (NIST/SEMATECH, 2018).  

For univariate data Y1, Y2, ..., YN, the formula for kurtosis is (NIST/SEMATECH, 

2018): 

 

𝑔1 = ∑

(𝑌𝑖 − 𝑌)
4

𝑁
𝑠4

− 3

𝑁

𝑛=1

 

                              Equation 15 Kurtosis 

Kurtosis measures the peakedness of a distribution. The excess kurtosis should be zero 

for a perfectly normal distribution. Distributions with positive excess kurtosis are called 

leptokurtic distribution meaning high peak, and distributions with negative excess 

kurtosis are called platykurtic distribution meaning flat-topped curve (Kim, 2013).      

Area 

 

The area under the signals calculated with the trapezoid rule was considered as a feature: 

 

 

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

 ≈ ∑
𝑓(𝑥𝑘−1)  + 𝑓(𝑥𝑘)

2

𝑁

𝑘=1

∆𝑥𝑘 

Equation 16 Area 
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Interquartile range – IQR 

IQR is the distance between the 3rd quartile and the 1st quartile. Hence the interquartile 

range describes the middle 50% of observations. If the interquartile range is large it means 

that the middle 50% of observations are spaced wide apart (Manikandan, 2011). The 

important advantage of interquartile range is that it can be used as a measure of variability 

if the extreme values are not being recorded exactly (as in case of open-ended class 

intervals in the frequency distribution) (Manikandan, 2011). It is not affected by extreme 

values (Manikandan, 2011). 

Mean Absolute Deviation – MAD 

The mean absolute deviation of a dataset is the average distance between each data point 

and the mean. It gives an idea about the variability in a dataset. 

Discrete Fourier transform 

 

𝑥[𝑛] =
1

𝑁
∑ e2πj

𝑘𝑛
𝑁

𝑁−1

𝑘=0

𝑦[𝑘] 

                                                                  Equation 17 Discrete Fourier Transform 

The maximum value of the FFT coefficients and the standard deviation were 

extracted as features. 

Power spectral density – Welch method 

For deriving the frequency domain features Power spectral density (PSD) is generally 

used (Chung, Purwar, & Sharma, 2008). PSD gives a variation of signal strength versus 

frequency (Chung, Purwar, & Sharma, 2008). Calculations of Power Spectrum Density 

were performed using Welch method (Chung, Purwar, & Sharma, 2008). This method is 

an improved estimator of PSD in terms of spectral leakage over the periodogram method 

(Chung, Purwar, & Sharma, 2008). 

Discrete wavelet transform (DWT) 

 

The discrete wavelet transform of a signal 𝑥(𝑛) is defined as (Mostayed, 

Mazumder, Kim, & Park, 2008): 

 

𝑥(𝑛) =  ∑ [∑ 𝑑𝑙(𝑘)Ψ∗(𝑛 − 2𝑙𝑘) +  ∑ 𝑎𝑙(𝑘)∅(𝑛 − 2𝑙𝑘)

𝑘∈𝑍𝑘∈𝑍

]

𝐿

𝑙=1

 

 

         Equation 18 Discrete wavelet transform 
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 𝑑𝑙  𝑎𝑛𝑑 𝑎𝑙 are the detailed and approximate coefficients of DWT at first level of 

decomposition. L is the level of decomposition with {𝑛, 𝑘} ∈

𝑍 (Mostayed, Mazumder, Kim, & Park, 2008).  

Ψ  and ∅ are the synthesis and scaling function respectively (Mostayed, Mazumder, Kim, 

& Park, 2008). The wavelet coefficients are (Mostayed, Mazumder, Kim, & Park, 2008): 

 

al(𝑛) = ∑ 𝑔(𝑘 − 2𝑙𝑛)al−1

𝑛

𝑘∈𝑍

(𝑘) 

 

                                                              Equation 19 Approximate DWT coefficients 

 

 

𝑑𝑙(𝑛) = ∑ ℎ(𝑘 − 2𝑙𝑛)al−1

𝑛

𝑘∈𝑍

(𝑘) 

 

                                                                    Equation 20 Detailed DWT coefficients 

where h and g are the coefficients of the discrete filters associated with the scaling and 

synthesis function respectively (Mostayed, Mazumder, Kim, & Park, 2008). 

Daubechies 4 (db4) wavelet is used as the mother wavelet in this study since that it is 

most suitable to process biomedical signals (Cheong, Sudirman, & Hussin, 2015). 

The standard deviation of the coefficients is used as time domain feature. 
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Chapter 5 – Experimental results 

The implemented gait assessment system was tested with 4 volunteers that 

reproduced abnormal and normal gait types. A walking distance of nearly 40 meters for 

each gait was used to train the classifier, and of 10 meters to test the classification 

algorithm. 

Concerning abnormal gait, the reproduced gait abnormalities int this work are: 

• Parkinsonian gait 

• Hemiplegic gait – right leg 

• Hemiplegic gait – left leg 

• Equinus gait 

• Gluteus Maximus gait – right leg 

• Gluteus Maximus gait – left leg 

The normal gait included: 

• Normal gait 

• Very slow gait 

• Running gait 

5.1. Experimental setup 

The experimental set-up includes two Shimmer3 devices, sampling frequency 

Fs=51.2 Hz and an Android Smartphone Alcatel U5 (Quad-core 1.3 GHz, 8GB ROM + 

1 GB RAM, Android 7.0 Nougat). 

Figure 66 illustrates how Shimmer3 devices are fixed on the legs right above the 

ankle, using elastic net to prevent devices from falling and a strong elastic to fix firmly 

the devices and avoid wrong readings. 

Figure 66 Shimmers fixed on legs above the ankles 
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The Shimmer3 IMUs were calibrated before starting the gait sessions. No feature 

scaling was done to features collected from data as in Decision Trees and experimentally 

it does not seem to affect the results. 

The types of gait used to feed, train and test the classifier are depicted in Table 2. 

Table 2 Gait types 

Gait Type Description 

Parkinsonian gait  

Progressively shorter but accelerated steps forward, often in a 

shuffling manner or as if falling forwards, in an attempt to 

maintain the position of the feet beneath the forward moving 

trunk. This tends to occur in later in Parkinson’s (European 

Parkinson’s Disease Association, 2018) 

Hemiplegic gait  

The patient stands with unilateral weakness on the affected side, 

arm flexed, adducted and internally rotated. Leg on same side is 

in extension with plantar flexion of the foot and toes. When 

walking, the patient will hold his or her arm to one side and 

drags his or her affected leg in a semicircle (circumduction) due 

to weakness of distal muscles (foot drop) and extensor 

hypertonia in lower limb. This is most commonly seen in stroke. 

With mild hemiparesis, loss of normal arm swing and slight 

circumduction may be the only abnormalities (Medicine, 2018) 

Equinus gait (jump knee gait) 

The jump gait pattern is very commonly seen in children with 

diplegia, who have more proximal involvement, with spasticity 

of the hamstrings and hip flexors in addition to calf spasticity. 

The ankle is in Equinus, the knee and hip are in flexion, there is 

an anterior pelvic tilt and an increased lumbar lordosis. There is 

often a stiff knee because of rectus femoris activity in the swing 

phase of gait (Physiopedia, 2018) 

Gluteus Maximus gait 

A backward trunk lurch persists throughout stance phase to 

maintain centre of mass behind the hip axis, locking the hip in 

extension. The hamstring muscles may compensate in some 

cases (Orthopedia Wiki, 2018) 

Very slow gait Average normal gait in a very slow fashion 

Normal gait Average normal gait 

Running gait Normal running gait 

 

The type of classification used in this work is Supervised, the method is Extremely 

Randomized Trees and the labels used to train the classifier are depicted in Table 3. 
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                                      Table 3 Gait types’ labels 

Gait Type Label 

Normal gait 1 

Very slow gait 2 

Parkinsonian gait 3 

Hemiplegic gait – right leg 4 

Equinus gait (jump knee gait) 5 

Gluteus Maximus gait – right leg 6 

Gluteus Maximus gait – left leg 7 

Running gait 8 

Hemiplegic gait – left leg 9 

 

The Volunteers’ Biometrics characteristics are shown in Table 4 

Table 4  Volunteers’ Biometrics characteristics 

 Height (m) Age Gender Weight (Kg) 

Volunteer 1 1.70 36 M 86 

Volunteer 2 1.73 45 M 75 

Volunteer 3 1.71 33 M 67 

Volunteer 4 1.79 41 M 84 

 

GridSearchCV was used to find the best estimator parameters using cross-validation. 
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The data collected from the 4 volunteers in Table 4 was used for training and testing 

the classifier.  

5.2. Classifier results 

The classifier was trained 6 times and its average scores Precision, Recall and F1 at 

stride level are illustrated in Table 5. 

Precision is the percentage of guesses that are correct: 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑔𝑢𝑒𝑠𝑠𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓𝑜𝑢𝑡𝑝𝑢𝑡 𝑔𝑢𝑒𝑠𝑠𝑒𝑠
 

Equation 21 Precision 

Recall is the percentage of retrieved guesses: 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑔𝑢𝑒𝑠𝑠𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡ℎ𝑖𝑛𝑔𝑠 𝑡𝑜 𝑔𝑢𝑒𝑠𝑠
 

Equation 22 Recall 

F1-measure: 

 

𝐹1 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

  Equation 23 F1-measure 

Parkinsonian gait had the best scores. Except for Hemiplegic gait – right leg -, that 

had a Recall of 88.9%. However, all the other scores are greater or equal to 90%. The 

data was collected separately from each volunteer in different environments and not all 

volunteers were able to reproduce exactly each gait abnormality. 
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Table 5 Classifier scores 

 

 Precision Recall F1 

Normal gait 1.000 0.951 0.974 

Very slow gait 0.948 0.981 0.963 

Parkinsonian gait 1.000 1.000 1.000 

Hemiplegic gait – right leg 0.916 0.889 0.900 

Equinus gait (jump knee gait) 0.948 0.983 0.964 

Gluteus maximus gait – right leg 0.972 0.935 0.952 

Gluteus maximus gait – left leg 1.000 0.914 0.954 

Running gait 0.944 1.000 0.969 

Hemiplegic gait – left leg 0.972 1.000 0.985 

 

5.3. Gait session results 

The data collected from sessions walking for 10 meters was used to test the capacity 

of the system for correctly identify the gait features. In this test, the classifier model did 

not have any information about the tested volunteer. For each session each left-out tested 

volunteer, was tested with a classifier model trained with data from the set of the other 

three volunteers from the set of 4 volunteers in Table 4. 

For these test results the most frequent identified stride label was considered as the 

identified gait type.  Volunteers 2 and 4 and had 9 gait types 100 % correctly identified. 

Volunteer 1 had one misidentified gait: Gluteus Maximus - right leg as Gluteus Maximus 
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- left leg and Volunteer 3 had one misidentified gait: Gluteus Maximus - left leg as Gluteus 

Maximus - right leg. 
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Chapter 6 – Conclusion and Future Work 

In this work, a wearable sensor system that can identify different gait types using 

ExtraTrees classifier using a mobile application is described.  

The remote functionality provided by the app offers a tool for the health 

institutions that facilitates not only the patients’ life but also the way gait rehabilitation is 

performed in that the system app is very easy to use and very practical. On one hand this 

system brings the patient comfort because he has no need to travel to the Hospital as often 

as it is currently done by the patients followed by most of the Hospitals and health clinics, 

making patients’ life easier and more economical, improving their life quality and 

rehabilitation.  On the other hand, it helps physiotherapists have an auxiliary objective 

evaluation when monitoring rehabilitation or diagnosing. The interest in remotely assist 

patients and elderly by means of wireless IMUs is growing but the market and the effort 

in providing and investing in a low-cost, practical and remote product using machine 

learning such as the presented in this work is still very limited. The reduced size, low 

weight and long-life batteries of Shimmer3 devices used in this system increase even 

more this system portability and effectiveness. 

Regarding the classifier scores, Parkinsonian gait had the best scores. Except for 

Hemiplegic gait – right leg -, that had a Recall of 88.9%, all the other scores are greater 

or equal to 90%. The data was collected at different times from each volunteer in different 

environments and not all volunteers were able to reproduce exactly each gait abnormality 

and these facts may explain the differences presented in the classifier scores as the 

Shimmer3 devices are easily affected by the environment and the gait disturbances data 

reproduced by the volunteers was fed to the supervised classifier associated with a label. 

The proposed system was tested and identified correctly 9 gait types for volunteers 

2 and 4 and 8 gait types for volunteers 1 and 3. The misidentified gait types were probably 

caused by the fact that one of the volunteers have not performed a normal gait when data 

was collected for training, originating contradictory data. Two algorithms were 

developed: HS detection algorithm and Stride detection algorithm. The former consists 

on identifying HSs using Euler angles calculated from data collected from the two 

Shimmer3 IMUs fixed on each leg above the ankle. HSs are used to segment the received 

signals. The latter consists on identifying gait strides by finding and validating each pair 

of signal segments corresponding to both right and left gait steps belonging to a stride. 
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Shimmer drivers were used to develop an app than can establish a connection with 

Shimmer3 IMUs using Bluetooth, receive and pre-process data and invoke the 

implemented backend REST services for additional processing persisting the trained 

classification model and test results in a relational database, resulting in a low-cost mobile 

framework and flexible system that contributes to help gait rehabilitation and identify a 

range of gait abnormalities.  

Synchronization of both devices has been made to improve the gait types’ 

identification, aligning data received from both devices by means of a common temporal 

reference using system timestamps. 

To improve classification, raw data from the accelerometers, gyroscopes and 

magnetometers has been filtered. Time, frequency and time-frequency domain features 

were extracted from signals and fed to the classifier. 

 A gait session depends on several components, so for good results during the gait 

sessions is very important to previously calibrate and fully charge the Shimmer3 IMUs 

and the Android phone to prevent interruptions and lost connections during the sessions.  

As Future Work, the classifier could be better tuned and trained with samples from 

a big population of patients with pathologic and abnormal gait. A regressor could be 

implemented to predict the evolution of the patient rehabilitation considering the patients’ 

gait session results historic. Shimmer3 devices calibration is easily affected by the 

environment affecting the raw data collected and as consequence the gait test results. 

Hence, an improvement in the HS and stride detection algorithms could be done in order 

to detect strides when the signal is noisy or presents a wandering behaviour as in these 

cases it becomes difficult to detect the HSs as well as in the case when the steps have 

such a short length that along with a noisy signal makes it very difficult for the algorithms 

to detect the strides. Optional feedback in the form of sounds or messages could be 

provided to the user in real-time during the rehabilitation gait session for the users to get 

information during the session of the gait being performed. More IMUs, classification 

features and other machine learning methods could be added to the framework to help 

identify the different stages of each gait abnormality. 
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