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The measurement of the angular distribution of maximally correlated annihilation gamma rays

radiated in coincidence, like those emitted from a 22Na source, is a classic experiment that is

nowadays ordinarily performed in nuclear physics laboratory classes. For the first time, we present

an analytic expression for such angular distributions, which can be easily tested and compared with

the laboratory measurements. VC 2019 American Association of Physics Teachers.

https://doi.org/10.1119/1.5099891

I. INTRODUCTION

Angular correlations of gamma rays emitted in coinci-
dence by a radioactive source have been studied for a long
time.1–4 In order to find such correlations, one measures the
variation of the counts of coincidences, by keeping one of
the detectors fixed and rotating another one around the radio-
active source. The angular correlation function depends only
on the relative angle between the emitted photons, while the
experimental distribution of the counts of coincidences
should clearly be an explicit function of the angle of rotation
of the detector around the source.

If the spatial resolution of the detectors were perfect (i.e., if
one could perfectly reconstruct the trajectory of a detected pho-
ton), two photons in coincidence would be detected only if
their relative angle of emission was precisely equal to the angle
of rotation of the detector. If that were the case, at a given angle
the count of coincidences would simply be proportional to the
angular correlation function. But that is not the case, and one
must therefore account for the effects of the finite size of the
detectors. Because of such effects, the relative angle of the
detectors (having the source as the vertex), when detecting a
coincidence, is not necessarily equal to the relative angle of
emission of the respective pair of photons. Indeed, for a given
angle between the photons, there is a finite range of angles
between the detectors such that the coincidence of the photon
pair can be detected. This is why the experimental angular dis-
tribution is a smeared version of the theoretical correlation
function.5,6 Such smearing is expressed in terms of geometrical
corrections given by coefficients related to the finite solid angle
subtended by each detector.7 But because of the relation
between the “photon” angle and the “detector” angle, the
geometry of the problem at each specific case is often compli-
cated. That is the reason one may find in the literature theoreti-
cal expressions for the angular correlation functions of
different sources,1,3 but not for the experimental angular distri-
butions. This is because the coefficients expressing the finite
solid angle corrections are not determined from the geometry
of the problem (as they could be in principle), but rather always
rather left as parameters to be determined by fitting the experi-
mentally measured counts of coincidences.8,9

The study of angular correlations and coincidence counts
of fully correlated gamma rays, like those emitted from a
22Na source, is nowadays a standard classroom experiment
in undergraduate physics courses.10–12 In this case, the angu-
lar correlation function is trivial and the geometrical analysis
is a priori much simpler. Yet, an expression for the expected
experimental angular distribution of the counts of coinciden-
ces does not exist even for this case.

The goal of this article is to fill that gap in the literature
and provide an analytical expression for such distribution in
terms of variables that can be determined in the laboratory,
so that a more accurate comparison between the predicted
and the measured counts can be made.

The article is organized as follows. In Sec. II, we review
the main concepts associated with this study. We distinguish
between uncorrelated and correlated pairs of gamma rays,
we compute the geometrical efficiency associated with a
detector and, based on that efficiency, we determine the rate
of coincidences for pairs of uncorrelated gamma rays. In
Sec. III, we compute the rate of coincidences for pairs of
fully correlated gamma rays. Finally, in Sec. IV we discuss
our results and further possible extensions.

II. SETUP AND DESCRIPTION OF THE

EXPERIMENT

Consider the detection of an emission of specific gamma
rays by some radioactive nucleus. The counting rate, in s�1,
of the counter associated to the detector is given by

N ¼ A�
X
4p
: (1)

Here, A is the number of gamma rays per second emitted by
the isotropic radioactive source: it is given as the product of
the source activity times the fraction of its decays that result
in the gamma rays we are considering. � is the intrinsic effi-
ciency of the detector for the corresponding gamma ray
energy, and X is the solid angle subtended at the source by
the face of the detector. One often calls the fraction X/4p the
geometrical efficiency of the detector.13

Indeed, we assume that the face of the detector is a circle of
finite radius r, at a distance d from the isotropic source it is fac-
ing. The fraction of events impinging on the detector over the
events emitted by the source corresponds to the area of the
spherical cap limited by the face of the detector (and inserted on
a sphere having the source at its center) divided by the area of
the whole sphere. The radius of that sphere is R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ r2
p

,
and its area is of course 4pR2. Defining the angle

b ¼ arctan
r

d
; (2)

the area of the spherical cap is given by an elementary sur-
face integral as 2pR2ð1� d=RÞ or 2pR2ð1� cos bÞ. Dividing
by the area of the sphere 4pR2, we get for the geometrical
efficiency14 in Eq. (1)

638 Am. J. Phys. 87 (8), August 2019 http://aapt.org/ajp VC 2019 American Association of Physics Teachers 638

https://doi.org/10.1119/1.5099891
http://crossmark.crossref.org/dialog/?doi=10.1119/1.5099891&domain=pdf&date_stamp=2019-07-16


X
4p
¼ 1

2
1� cos bð Þ: (3)

The value of b can be varied by choosing the distance d
between the detector and the source (of course, given the
restrictions in each laboratory). Typical values of b are
small. Smaller values of b mean a larger angular resolution
but a smaller geometrical efficiency.

Consider now the almost simultaneous emission of two
gamma rays, each one being detected by its own detector.
Depending on whether their emissions are or are not inde-
pendent, respective photons are said to be uncorrelated or,
otherwise, correlated. If their detections occur simulta-
neously, the photons are said to be in temporal coincidence.
The relative probability that a photon will be emitted at an
angle h with respect to a previously emitted photon is called
the angular distribution function and denoted W(h).

In general, when two gamma rays are emitted in succession
from an atomic nucleus, their directions are correlated due to
the physics of the emission process. In particular, when an
excited nuclear state decays to the ground state through one or
more intermediate states, the spin of the nucleus affects the
angular distribution of the photons emitted during each transi-
tion. In these cases, the angular distribution function W(h) can
depend both on the spin of the states involved in the transitions
and on the multipole order of the emitted radiation.1 In the limit
case when the two photons are uncorrelated, the angular distri-
bution function is uniform and isotropic: W(h) ¼ 1/(2p).

The other limit case occurs in the simple process when an
isotope undergoes bþ decay, after which the resulting positron
is captured by an electron, and they both annihilate to produce
a pair of 511 keV gamma rays. Because of conservation of
momentum, the two photons must be emitted in exactly oppo-
site directions, with a relative angle h¼p. Therefore, in this
case the two photons are totally correlated and the correspond-
ing angular distribution function is simply given by

WðhÞ ¼ dðh� pÞ; (4)

this is what happens with sodium-22 (22Na).
Studying angular correlations can be very useful for the

analysis of nuclear decay schemes and for the assignment of
spin and parity to excited nuclear states. Assuming one of
the detectors is fixed and the other one can be moved along a
circumference having the source at its center, the rate of
coincident counts (i.e., the counts of photons in temporal
coincidence) can be measured for different values of the
position of the moving detector, which can in principle be
identified with the angle h. Up to an overall normalization,
this rate can be identified with the angular distribution func-
tion, at least if the correlation between the pair of gamma
rays being considered is not very high.

Let �1, �2 be the intrinsic efficiencies and let X1, X2 be the
solid angles subtended by the faces of the two detectors asso-
ciated to the coincidence counts. According to Eq. (1), their
counting rates are respectively given by

N1 ¼ A�1

X1

4p
; (5)

N2 ¼ A�2

X2

4p
: (6)

If the pair of gamma rays being considered is uncorrelated,
or if its correlation is low, the rate of “true” coincidences15 is
given by10,14

CU ¼ A�1�2

X1

4p
X2

4p
: (7)

The solid angles X1, X2 can be obtained from Eq. (3), assum-
ing for each detector geometric configurations with angles
b1,b2. Equation (7), like Eq. (1), contains an overall normali-
zation factor, A, and probabilistic factors, the intrinsic and
geometrical efficiencies. This formula illustrates the fact
that, since the emissions of the gamma rays are independent
events, their joint probability is the product of the probabili-
ties of each separate event. As should be the case, it does not
have any dependence on the angle h.

For correlated photons, there is a strong angular depen-
dence on the rate of coincidence counts, as previously men-
tioned. In general, the rate of coincidences includes a factor
depending on the correlation of the pair of photons (for a dis-
cussion see Ref. 14); such correlation is quite difficult to
determine in principle. But in the limit when the gamma rays
are fully correlated, for instance, when the angular distribu-
tion function is given in Eq. (4), the rate of coincidences can
be worked out. That is the main goal of this article.

III. ANGULAR DISTRIBUTION OF COINCIDENCE

COUNTS FOR MAXIMALLY CORRELATED

GAMMA RAYS

For the remainder of the article, we will assume the exis-
tence of two detectors. For simplicity, we will assume that
the two detectors are identical (that is what typically happens
in practice, although the following discussion can be general-
ized to detectors having different geometries). Yet, the detec-
tors are distinguishable: one of them is fixed, and the other
one can be moved along a circumference. In the center of
that circumference, there is a source of 22Na, emitting pairs
of gamma rays in opposite directions, with an angular distri-
bution function given in Eq. (4). Each of the two detectors is
placed facing the 22Na source (Fig. 1).

If the detectors were point-like, in order to detect a coinci-
dence they would have to be also facing each other, in a
straight line. The angular dependence of the rate of coinci-
dences would be similar to that of Eq. (4) and, up to a nor-
malization, it could be identified with the angular
distribution function, as we mentioned. But the detectors
have a finite size, expressed by the finite solid angle X in Eq.
(1). Because of that finite size, it is possible to detect coinci-
dent photons as long as the two detectors are placed so that
they can be hit by them, even if the detectors are not facing
each other. To illustrate that, let’s make a small geometric
digression.

Fig. 1. The fixed and the rotating detectors and definitions of a, b, r, d.
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As we saw, each of the detectors has a face, a circle of
radius r at a distance d from the source. Associated with
each detector there is a spherical cap, limited by its face, and
corresponding to a solid angle X. Consider now the reflection
of the spherical cap of the moving detector across the plane
that passes by the source and is perpendicular to the fixed
detector. If the moving detector is in its original position,
facing the fixed detector, opposite to it, the reflected spheri-
cal cap of the moving detector will coincide with the original
spherical cap of the fixed detector. The counts in each of the
detectors should be given by Eq. (1), and they should match
the number of coincidences, since each count would corre-
spond to a coincidence. But if one rotates the moving detec-
tor by some angle a around a circumference of radius d (so
that its distance to the source remains constant), the positions
of the reflected and the original spherical caps no longer
coincide. If the angle a of displacement of the moving detec-
tor is smaller than a critical value, the intersection of the two
spherical caps is not empty. In this configuration, for each
detector there are photons hitting it that do not reach the
other detector. From Eq. (1), the probability that a photon
emitted from the source hits the detector is given by the geo-
metrical efficiency X/(4p). The probability that each of the
two fully correlated photons hits a detector, therefore form-
ing a coincidence, is, by the same reasoning, given by

CC ¼ A�1�2

DX
4p

; (8)

DX being the solid angle corresponding to the intersection of
the original (fixed) and the reflected (rotating) spherical
caps. DX/(4p) is the geometrical efficiency corresponding to
the counting of coincidences. This is what we wish to com-
pute, in terms of geometrical variables which can be deter-
mined in the laboratory.

For values of a larger (modulo 2p, of course) than a criti-
cal value, the intersection of the two caps becomes empty.
That critical value of a can be easily determined from Fig. 2;
it is given by

acrit ¼ 2b: (9)

DX (and the number of coincidences) reach a maximum when
a� 0 and a minimum (0) when a� acrit, always modulo 2p.

Despite the area in which we are interested being embed-
ded into a sphere, the problem of calculating it does not have
spherical symmetry. Indeed, such symmetry is broken by the
existence of an axis around which one of the detectors
rotates. Therefore spherical coordinates are not the most suit-
able for this case. But one can use normal Cartesian coordi-
nates. We take the plane of rotation as the x – y plane, with
the source located at the origin. The rotation takes place
therefore around the z axis. Initially the two detectors are
facing each other. One then rotates the moving detector by
an angle a and so does the spherical cap it defines. For con-
venience, we place the center of the face of the fixed detector
at the position ðd sin ða=2Þ;�d cos ða=2Þ; 0Þ, while the center
of the one of the moving detector is at ðd sin ða=2Þ;
d cos ða=2Þ; 0Þ. The center of the reflected face of the moving
detector is at ð�d sin ða=2Þ;�d cos ða=2Þ; 0Þ. In Fig. 2, we
can see the projection in the x – y plane of the intersection of
the original fixed and of the reflected moving spherical caps.
We want to compute the area of such intersection.

It is straightforward to figure out that points P, Q in Fig. 2
have coordinates

P� �R sin b� a
2

� �
;�R cos b� a

2

� �
; 0

� �
;

Q� R sin bþ a
2

� �
;�R cos bþ a

2

� �
; 0

� �
;

from which we get the equation of the plane, perpendicular
to the x – y plane, which passes through these two points
(represented by a straight line in Fig. 2)

y ¼ tan
a
2

� �
xþ R sin b� a

2

� �� �
� R cos b� a

2

� �
:

The surface whose area we wish to compute can be split into
four equal parts. The first one can be seen as the surface plot
of Zðx; yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � x2 � y2

p
(positive z coordinate, above the

x – y plane), with x – y range defined in the third quadrant
(x< 0, y< 0) as

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � x2
p

� y � tan
a
2

� �

� xþ R sin b� a
2

� �� �
� R cos b� a

2

� �
;

�R sin b� a
2

� �
� x � 0:

The second part is given as the surface plot of the same func-
tion, but with x – y range defined in the fourth quadrant
(x> 0, y< 0). This range is analogous to the one of the first
part, but reflected around the y axis. The third and fourth
parts have the same x – y ranges of the first and second part,
respectively, but they are the surface plots of Zðx; yÞ
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � x2 � y2

p
(negative z coordinate, below the x – y

plane). They are the reflections of the first and second parts
around the x – y plane. Clearly, the areas of the four parts are
equal, and we can take for the total area four times the area
of the first part, given by the following surface integral:

Fig. 2. The fixed and the rotating spherical caps and their intersection. The

original (fixed) cone is drawn as a solid curve, while the reflected (rotating)

cone is dashed.
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4

ð0

�R sin b�a
2ð Þ

ð tan a
2ð Þ xþR sin b�a

2ð Þð Þ�R cos b�a
2ð Þ

�
ffiffiffiffiffiffiffiffiffiffi
R2�x2
p

� Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � x2 � y2

p dy dx: (10)

Because we are only interested in the solid angle, we can
simply take R¼ 1 in the previous formula, obtaining

DX ¼ 4

ð0

�sin b�a
2ð Þ

ð tan a
2ð Þ xþsin b�a

2ð Þð Þ�cos b�a
2ð Þ

�
ffiffiffiffiffiffiffiffi
1�x2
p

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2 � y2

p dy dx: (11)

After performing the integrations, the final result is given by

DX a; bð Þ ¼ 4 arccot

ffiffiffi
2
p

sin
jaj
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos a� cos 2b
p

0
@

1
A

0
@

�arccot

ffiffiffi
2
p

cos b sin
jaj
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos a� cos 2b
p

0
@

1
A

cos b

1
CA; (12)

with arccotðxÞ ¼ p=2� arctanðxÞ being the inverse cotan-
gent function with jaj the absolute value of the angle a.

We can check that the result given in Eq. (12) for DX(a,
b) has some properties that one should expect. For a given
value of b, it is a periodic function of a, with period 2p, for
the values of a where it is defined. On a neighborhood of
a¼ 0, it is defined (and positive) only for a� 2b. It vanishes
for a� 2b, the critical value acrit from Eq. (9). It is not
defined as a real function in the intervals 2b< a< 2p – 2b
and �2pþ 2b< a<�2b, but that does not have any physi-
cal or geometrical meaning: for those values of a, the rate of
coincidences should be 0. For a¼ 0 (no rotation of the mov-
ing detector), Eq. (12) reduces to Eq. (3), as it should. In the
limit b ! 0, when the detectors become point-like, Eq. (12)
reduces to Eq. (4) with a¼p – h: in this limit, the angular
resolution of the detectors is the highest, and the rate of coin-
cidences matches the angular distribution function for the
given source, as we saw.

In Fig. 3, we present a plot of the fraction DX/4p as a
function of a for b¼p/16, a value which may be consid-
ered reasonable for a typical laboratory configuration and
similar to the one corresponding to the experiment
described in Ref. 11. From the plot we can see that,
according to Eq. (9), acrit¼p/8. The maximum value of
DX/(4p) is indeed obtained for a¼ 0 and given by
1
2

1� cos p
16

� �
� 0:0096, according to Eq. (3). The shape of

this plot is similar to those of experimental plots of the
rate of coincidences as a function of the rotation angle
(usually expressed in degrees), which can be found, for
instance, in Refs. 3, 10, and 11. Only the values on the y
axis are very different, but here we are just plotting DX/
(4p), while in the experimental plots on the y axis we find
the rate of coincidences, related through Eq. (8) by an
overall factor A�1�2 depending on the source activity and
the detector intrinsic efficiencies.

The angle b can be directly estimated in the laboratory
from quantities which can be measured, using Eq. (2).
Alternatively, one can also determine b from Eq. (9) as half

of the critical rotation angle acrit for which the rate of coin-
cidences vanishes; such angles can also be directly esti-
mated from experimental data. The gamma ray source
activity A and the detector intrinsic efficiencies �1, �2 can
also be obtained experimentally; indeed, considering the
previously described experimental configuration, the rates
of gamma rays in each detector N1, N2 are given, respec-
tively, in Eqs. (5) and (6), with X1¼X2¼X given in Eq.
(3). Without any detector rotation, i.e., with a¼ 0, the rate
of gamma ray coincidences CC is given in Eq. (8), with
DX¼X also given in Eq. (3). Solving Eqs. (5), (6), and (8)
for A, �1, �2, we see that these three quantities can be
expressed in terms of other quantities that are directly mea-
surable in the laboratory16

A ¼ 2

1� cos b
N1 N2

CC a ¼ 0ð Þ ; (13)

�1 ¼
CC a ¼ 0ð Þ

N2

; (14)

�2 ¼
CC a ¼ 0ð Þ

N1

: (15)

As a consistency test, the experimental results for the rate of
coincidences as a function of the rotation angle a can be fit-
ted to Eq. (8) using the expression Eq. (12) we have derived,
taking as fitting parameters the overall factor A�1�2 and the
angle b. The fitted results obtained should be compared to
those directly and independently obtained in the laboratory,
from Eqs. (2) (or Eq. (9)), (13), (14), and (15).

In Ref. 10, there is also a detailed presentation of the
experiment of measuring the angular correlations in c – c
coincidences, focusing on the 22Na source, including a com-
plete description of the experimental apparatus. One can also
find there estimates of the rate of accidental coincidences
and of coincidences due to other uncorrelated gamma rays
emitted by the same source (the 1.277 MeV gamma ray from
the 22Ne neon decay), showing that they are both neglectable
when compared to the rate of coincidences we have been
considering.

Fig. 3. Plot of DX/4p as a function of the rotation angle a, for b¼p/16.
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IV. CONCLUSIONS

In this article, we have derived an expression given in Eq.
(12) for the geometrical factor which, together with Eq. (8),
gives us the angular distribution of the rate of coincidences
for pairs of fully correlated gamma rays like those emitted
by a 22Na source. Although the final result given in Eq. (12)
seems simple, the calculation associated with it is quite non-
trivial and was not yet available in the literature.

Previously, in order to determine such angular distribu-
tions one could just measure the rates of counts at different
angles and check that there was a peak at the central angle.
Having obtained Eq. (12), one can now actually go further
and fit the theoretical rate of coincidences given in Eq. (8) to
experimental data, as a function of the rotation angle a.
From such fitting, one should reobtain the remaining parame-
ters in Eq. (8), corresponding to the angle b related to the
geometry of the detector and the overall factor A�1�2, given
by the product of the source activity and the intrinsic effi-
ciencies of the detectors.

Here we should mention that the main purpose of this fit-
ting which we propose, and of the experiment we have been
considering, is not to directly measure any of the fitting
parameters. As we have discussed, the physical quantities
corresponding to the fitting parameters can be directly and
independently obtained in the laboratory using much simpler
and more accurate processes, like those we have described.
(A very complete discussion on the determination of the
intrinsic efficiency can be found in Ref. 17). The goal of the
fitting is to test the adequacy of the angular distribution
given in Eq. (8) that we obtained.

Having b and A�1�2 and using Eq. (8), one can actually
predict the number of coincidences for a given angle a. The
results of this article therefore allow for a much more com-
plete and detailed study of the c – c coincidences from a
22Na source. Up to now, essentially only a qualitative analy-
sis could be made. The best approximation to our result that
one could often find was to consider an intersection of two
circles instead of two spherical caps and compute the respec-
tive area. That choice, however, is valid when the rays are
parallel, i.e., when the source of radiation is at infinity; the
corresponding calculation is often considered for lasers and
telescopes.18 It does not correspond to our case: a point
source, whose emitted rays are not parallel.

Throughout this article we always considered a point-like
source; a case we did not consider was that of a source with
finite size. That study is presented in Ref. 14 for the counting
rate of a single detector: the result is given in terms of Bessel
functions. Extending such study to the rate of coincidences
we have studied could be the topic of a future project. But, in
general, considering a point-like source is a suitable approxi-
mation for this experiment.

Another project that one can consider is to extend the
computation of the geometrical correction factors to a gen-
eral angular correlation function, and not just to the two sim-
pler cases of uncorrelated and fully correlated gamma rays
we have considered in this article. These factors are left as
parameters that can be fitted to experimental data,8 but we

believe they may also be obtained analytically. We leave this
study to a future work.
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