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Resumo

Muitas plataformas online permitem que os seus utilizadores façam upload de im-
agens para o perfil das respetivas contas. O facto de um utilizador ser livre de
submeter qualquer imagem do seu agrado para uma plataforma de universidade
ou de emprego, pode resultar em ocorrências de casos onde as imagens de perfil
não são adequadas ou profissionais nesses contextos. Outro problema associado
à submissão de imagens para um perfil é que, mesmo que haja algum tipo de
controlo sobre cada imagem submetida, esse controlo é feito manualmente. Esse
processo, por si, só pode ser aborrecido e demorado, especialmente em situações
de grande afluxo de novos utilizadores a inscreverem-se nessas plataformas.
Com base em normas internacionais utilizadas para validar fotografias de doc-
umentos de viagem de leitura óptica, existem SDKs que já realizam a classifi-
cação automática da qualidade dessas fotografias. No entanto, essa classificação é
baseada em algoritmos tradicionais de visão computacional.
Com a crescente popularidade e o poderoso desempenho de redes neurais profun-
das, seria interessante examinar como é que estas se comportam nesta tarefa.
Assim, esta dissertação propõe um modelo de rede neural profunda para classi-
ficar a qualidade de imagens de perfis e faz uma comparação deste modelo com
algoritmos tradicionais de visão computacional, no que respeita à complexidade da
implementação, qualidade das classificações e ao tempo de computação associado
ao processo de classificação. Tanto quanto sabemos, esta dissertação é a primeira a
estudar o uso de redes neurais profundas na classificação da qualidade de imagem.

Palavras-chave: classificação qualidade imagem; normas ICAO; redes neuronais
profundas; algoritmos de visão computacional;
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Abstract

Many online platforms allow their users to upload images to their account profile.
The fact that a user is free to upload any image of their liking to a university
or a job platform, has resulted in occurrences of profile images that weren’t very
professional or adequate in any of those contexts. Another problem associated
with submitting a profile image is that even if there is some kind of control over
each submitted image, this control is performed manually by someone, and that
process alone can be very tedious and time-consuming, especially when there are
cases of a large influx of new users joining those platforms.
Based on international compliance standards used to validate photographs for
machine-readable travel documents, there are SDKs that already perform auto-
matic classification of the quality of those photographs, however, the classification
is based on traditional computer vision algorithms.
With the growing popularity and powerful performance of deep neural networks,
it would be interesting to examine how would these perform in this task.
This dissertation proposes a deep neural network model to classify the quality of
profile images, and a comparison of this model against traditional computer vision
algorithms, with respect to the complexity of the implementation, the quality of
the classifications, and the computation time associated to the classification pro-
cess. To the best of our knowledge, this dissertation is the first to study the use
of deep neural networks on image quality classification.

Keywords: image quality classification; ICAO standards; deep neural networks;
computer vision algorithms;
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Chapter 1

Introduction

1.1 Motivation

Many online platforms allow their users to upload images to their account profile.

The fact that a user is free to upload any image of their liking to a university

or a job platform, has resulted in occurrences of profile images that weren’t very

professional or adequate in any of those contexts (e.g. a person wearing sunglasses

or a hat). Not only are circumstances like these inappropriate, but there may also

be cases where it’s either difficult or not even possible to identify the person in the

image, which leads to wasting time while attempting to do it, and consequently

making the person in question lose some credibility. Another problem associated

with submitting a profile image, is that even if there is some kind of control over

each submitted image, this control is performed manually by someone, and that

process alone can be very tedious and time-consuming, especially when there are

cases of a large influx of new users joining those platforms (e.g. every year when

new students join a university).

When it comes to validating photographs submitted for machine-readable travel

documents, there is a strict control over the quality of each photograph. That

quality is based on a set of pre-defined compliance requirements that every pho-

tograph must follow. An example of such requirements is provided in the ICAO

1



9303 [24]. Based on these requirements, the authors from [17] developed an SDK

that automatically evaluates an image’s quality, and compared it with two com-

mercial SDKs. However, the authors used traditional computer vision algorithms

to evaluate the compliance of each requirement.

With the recent and continuously growing popularity of deep neural networks

(DNN), mostly due to their superior performance over traditional computer vision

algorithms, it would be interesting to examine how would these perform on the

image quality classification task. To the best of our knowledge, this dissertation is

the first to study the use of deep neural networks on image quality classification.

Based on the same principle used to evaluate the quality of photographs for

machine-readable travel documents, this dissertation will focus on evaluating the

quality of profile images for an online university platform.

1.2 Proposed work

With regard to the problems described previously, one of the goals of this disser-

tation is the development of a DNN model capable of classifying profile images in

terms of their quality. This model results from the concatenation of multiple DNN

models trained to classify individual compliance requirements. Secondly, it’ll be

performed a comparison between using a DNN and using traditional computer vi-

sion algorithms to evaluate compliance requirements, in order to determine which

of these approaches is better suited for the image quality classification task. This

comparison will focus on each method’s complexity of implementation, classifica-

tion results, and the computational time associated with the classification process.

1.3 Dissertation structure

This dissertation is structured in 5 chapters, Introduction, State of the Art, Im-

plementation, Discussion, and Conclusion.

The second chapter, State of the Art, presents the compliance requirements that

2



will be used to classify an image’s compliance, available computer vision algo-

rithms used to evaluate each of these requirements, and some key concepts about

artificial neural networks.

The third chapter, Implementation, presents the ISCTE-IUL database, how each

experiment dataset is created, how the experiments are carried out and what met-

rics are used to evaluate them. The results of the two approaches used in each

experiment are presented at the end of this chapter.

The fourth chapter, Discussion, provides an analysis of the results and a compar-

ison between the two approaches, regarding the metrics used, and it presents a

case study of the ISCTE-IUL database.

The fifth chapter, Conclusions and future work, provides a general overview and

summarizes the main points of this dissertation, and also presents future work.
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Chapter 2

State of the Art

2.1 Image quality

The quality of photographs for machine-readable travel documents is visually

determined based on a set of international standards that can be found in the

ISO19794-5 [25] and ICAO9303 [24]. However, according to [17], there was still

some subjectivity and ambiguity associated with some of the requirements’ de-

scriptions. To clarify that ambiguity, the authors presented 30 well-defined char-

acteristics based on the ISO/ICAO standards to determine an image’s quality.

The same authors also provided a benchmark, that can be found on the FVC-

onGoing website [1]. The FVC-onGoing is an ongoing online competition of fin-

gerprint recognition algorithms, where participants can test their algorithms on the

provided benchmarks, and publish their results. Within the available benchmarks,

there is the “Face Image ISO Compliance Verification” benchmark. This bench-

mark provides 24 tests and each test evaluates a different compliance requirement.

These 24 requirements are a subset of the initial 30 characteristics defined by the

authors. The fact that there is still such a benchmark in this ongoing competition

reveals that this is still a matter of importance and interest, and worthy of further

research.
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The following Table 2.1 and Figure 2.1, present and display each of the 24 require-

ments:

Table 2.1: ISO standard compliance requirements. Extracted from [1].

ID Compliance requirement
1 Eye center location accuracy
2 Blurred
3 Looking away
4 Ink marked/creased
5 Unnatural skin tone
6 Too dark/light
7 Washed out
8 Pixelation
9 Hair across eyes
10 Eyes closed
11 Varied background
12 Roll/pitch/yaw rotations greater than a predefined threshold
13 Flash reflection on skin
14 Red eyes
15 Shadows behind head
16 Shadows across face
17 Dark tinted lenses
18 Flash reflection on lenses
19 Frames too heavy
20 Frame covering eyes
21 Hat/cap
22 Veil over face
23 Mouth open
24 Presence of other faces or toys too close to face
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Figure 2.1: Examples of images non-compliant to each requirement. Extracted
from [1].

2.1.1 Selected image quality criteria

Based on the same principles used to evaluate a photograph from a machine-

readable travel document, the evaluation of a profile picture will also be based on

the 24 compliance requirements present in the aforementioned benchmark. How-

ever, since in a university context it would be too strict and constraining to submit

a profile image in conformity to all the 24 requirements, a subset of 10 require-

ments will be used. Each of these 10 requirements has been carefully selected, with

the assumption that they represent good image quality standards in this context,

as a whole.

A brief description of methods used to evaluate the compliance of each of these

requirements will now be presented.
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Blurred

An image is considered blurred whenever the person’s face looks visually blurred.

The Top Sharpening Index [18] is used in [17] to evaluate this requirement’s compli-

ance, which consists of convolving a gray level normalized image with a sharpening

kernel and accumulating the pixels with the highest sharpening response. The au-

thor evaluates the image’s compliance score by scaling this method’s output to a

range between [0-100].

Another method is proposed in [38], which consists of converting an image to

grayscale and calculating its Laplacian’s variance. A higher variance corresponds

to a sharper image.

Unnatural skin tone

The non-compliance of this requirement is met when a person’s skin color seems

unnatural. The methods proposed in [4] and [17] to evaluate this requirement’s

compliance are very similar. Both methods consist of extracting the face region and

using a previously defined color range in the YCbCr color space to detect natural

skin pixels. The compliance score corresponds to the percentage of natural skin

pixels found within the extracted region.

Too dark/light

The non-compliance of this requirement is met if the contrast and brightness of

the image do not seem appropriate, resulting in a dark or bright image. The

method proposed in [17] consists of taking the grayscale histogram of the face

region, and using the gray levels to calculate the image’s compliance score ranging

from [0-100].

Washed out

If the image’s color appears to have been washed out, the image fails to com-

ply with this requirement. This requirement’s compliance evaluation is proposed

in [17], and it consists of converting an image to grayscale and rescaling its dynamic

range to a range from [0-100], which determines its compliance score.
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Pixelation

The non-compliance of this requirement is met whenever the image appears to be

pixelated. The method proposed in [17] evaluates this requirement’s compliance

using the eye region, where a Prewitt operator [21] and a Hough Transform algo-

rithm [16] are sequentially applied, in order to identify lines. A higher number of

horizontal and vertical lines found corresponds to a lower compliance score. Sim-

ilarly to the previous method, [36] also uses the eye region and the Canny edge

detector [10] followed by the Hough Transform algorithm to identify lines. The

compliance score is given by percentage of horizontal and vertical lines within the

total of lines found.

Eyes closed.

The non-compliance of this requirement is met whenever one or both eyes are

closed. The method proposed in [17] to evaluate this requirement’s compliance

consists of measuring the amount of visible eye sclera within extracted eye re-

gions, using a defined RGB color range. The compliance score corresponds to the

percentage of sclera pixels found within the extracted regions.

Another method proposed in [8] consists of using the eye region and a combina-

tion of two measures. The first measure converts the eye images to grayscale,

and through threshold binarization, it clusters the black pixels from the iris and

eyelashes into continuous regions, to find how closed the eyes are. The second

measure determines the percentage of white regions belonging to the sclera.

In [48], it’s used a combination of three classifiers for eye-open analysis: Ad-

aBoost [19] classifiers, Active Appearance Model [12], and Iris localization on each

eye region.

The last method that can also act as a closed-eyes detector, consists of using the

Haar feature-based cascade classifier approach [56]. If the eyes are closed, they

aren’t detected by the cascade classifier.
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Red eyes

The non-compliance of this requirement is met whenever one or both of the per-

son’s eyes present the red eyes from flash effect. This requirement’s compliance is

evaluated in [17], and it consists of examining the iris regions and detecting red or

natural eye color pixels using an RGB threshold. The compliance score is equal

to the percentage of natural eye color pixels found in the region.

Another method proposed in [8], evaluates the red-eyes compliance using a com-

bination of two methods that look at the HSV and RGB color spaces to identify

non-skin and red pixels. The compliance score results from the combination and

analysis of the results of these two methods.

Dark tinted lenses

The non-compliance of this requirement is met whenever the person is wearing sun-

glasses. The method proposed in [17] to evaluate this requirement’s compliance

extracts the eye region from a color corrected image, and binarizes the image that

resulted from the difference taken between the U channel and V channel (YUV

color space). A dot product is performed between the probability of the presence

of glasses and the binarized image, to obtain the compliance score.

Two other approaches are presented in [47], the first uses the H-channel (HSV

color space) to detect occlusions, and the second is the improvement of the first ap-

proach, which consists of combining an Active Shape Model [13] and a component-

based Principal Component Analysis [26] subspace reconstruction.

An alternative method that also can be used for dark tinted lenses detection is

the histogram intersection method [50]. This method consists of taking the color

histogram of an image and computing the intersection with histograms from pre-

viously stored images, to determine which of the stored images is the most similar

to the input image.
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Hat/cap

The non-compliance of this requirement is met whenever there is a hat or cap on

top of the person’s head. The method proposed in [17] to evaluate this require-

ment’s compliance, consists of color correcting an image and extracting a rectangle

region on the upper part of the person’s face, and use a threshold to binarize the

H channel (from the HSV color space) to identify occluded pixels. The compliance

score is given by the percentage of non-occluded pixels found in the region.

Mouth open

The non-compliance of this requirement is met whenever the person’s mouth ap-

pears to be open. The method proposed in [17] to evaluate this requirement’s

compliance consists of extracting the mouth region and identifying teeth pixels

that belong to a defined RGB color range. The compliance score results from a

weighted sum of the mouth height and the percentage of teeth pixels detected.

Another color-based method proposed in [36] uses color information from the lips

and teeth and performs mask operations to evaluate this requirement’s compliance

score.

The method proposed in [48] uses 5 classifiers for the analysis of closed mouth:

EigenMouth model, dark blob detection, two mouth-closed AdaBoost [19] classi-

fiers, and a mouth-open classifier.

Finally, the method proposed in [3], consists of using an AdaBoost classifier to

extract the mouth position, a Principal Component Analysis [26] for feature ex-

traction and finally a support vector machine classifier to classify the mouth as

good or bad.

2.2 Artificial neural networks

This section presents an overview of what an artificial neural network is, key

concepts and how does it work.
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2.2.1 Shallow and deep neural networks

2.2.1.1 Basics and key concepts

An artificial neural network (ANN) is a powerful algorithm composed by intercon-

nected artificial neurons organized in layers: the input layer, one or more hidden

layers, and an output layer.

Feed-forward neural networks

A feed-forward neural network (Fig. 2.2) is a type of ANN where the data flows

in one direction (i.e. from the input layer to the output layer) and in an acyclic

manner. The current state of the art for the majority of the visual recognition

tasks are all based on a feed-forward network architecture called Convolutional

neural network (CNN). Before diving into the CNN architecture, this section will

first present the basics of a regular feed-forward neural network.

Shallow feed-forward neural network

A shallow feed-forward neural network contains one hidden layer and the way it

works is very simple. The input layer receives external data that will be passed

to the hidden layer where the data is processed, and the output layer will then

present the model’s prediction.

Figure 2.2: Example of a shallow neural network architecture. Extracted
from [43].

The input layer is the first layer of the network, and it receives the external data

fed to the network, (e.g. a profile image), where each of its composing neurons

holds a piece (e.g. a pixel) of the input data. The input layer then sends its data

to the next layer through weighted connections. A weighted connection is a link

between two neurons of different layers with a weight value assigned to it.
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When data flows from one neuron to another (e.g. from the input layer to the

hidden layer), the output of the first neuron will be multiplied by the connection’s

weight value and added with a bias value. The result is then transferred to the

second neuron. Since each neuron from the first layer is connected to all the

neurons of the second layer, each neuron of the second layer ends up receiving

multiple weighted connections, resulting in a weighted sum of all these connections.

These weights are parameters of the network that will be adjusted through a

process of training. Changing the weights’ values will have an impact on the

model’s accuracy, which will be explained later on.

The hidden layer is located in the middle layer of the network and it’s composed

of hidden neurons, also known as hidden units. Each of these neurons will receive

a weighted sum from the neurons of the previous layer. This operation is followed

by the application of an activation function (e.g. ReLu function) to the weighted

sum (Fig. 2.3). Using an activation function introduces non-linearity into the

output layer, allowing the separation of data that’s not linearly separable.

Once the activation function has been applied, the neurons will output their results

to the next layer (i.e. output layer).

Figure 2.3: Application of an activation function f to the weighted sum of the
inputs. Extracted from [34].

The output layer is the last layer of the neural network and it’s used to compute

the model’s output value (i.e. prediction). Depending on the problem assigned

to the model, the output can assume the shape of a regression (e.g. predict the

numeric price of a house) or a classification (e.g. predict whether a profile image

has good quality or not). This dissertation’s proposed work is a classification type

of problem.
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Training a neural network

In order to have a model consistently performing correct predictions, it is necessary

to train it first. Using a supervised learning approach, the model is fed with

training data from which the correct output for each training sample is already

known. For each training sample, the model will compute an output (i.e. forward-

pass), which is then compared with the sample’s correct output. A cost function

is used to measure the difference between the model predictions and the desired

outputs, which reflects how well the model is doing. As previously mentioned,

adjusting the weights and biases of the model will result in different predictions,

therefore it’s necessary to find out exactly what adjustments need to be made, to

lower the cost. To do that, back-propagation [41] is used to compute the model

gradients, by repeatedly using the chain rule. Based on the choice of the optimizer

(e.g. SGD, Adam [28]), these gradients will be used to update the weights and

biases of the model, and consequently lower the cost.

Training a model consists essentially of the repetition of these 4 steps: forward-

pass, calculation of the cost, back-propagation, and the update of the parameters.

Once the model’s training has been completed, it can be tested on a test dataset

to evaluate how well is it capable of making predictions using data not yet seen

by the model (i.e. generalization).

Deep neural networks

The way that a deep neural network works is quite similar to the way a shallow

neural network does (i.e. the input layer is fed with data that goes through the

hidden layers and ends up in the output layer, resulting in a prediction). The

difference between the two architectures is the number of hidden layers the data

must pass through, as deep architectures consist of two or more hidden layers.

Since deep architectures have multiple hidden layers, the input data will also

pass through more activation functions. As a consequence of that, the model is

able to learn more complex and difficult data representations (e.g. images, video,

voice-recognition). Deep architectures have also better performance [23] and gen-

eralization [7] compared to shallow architectures.

Another important aspect about deep networks is their ability to automatically
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extract relevant data features [29], without being specifically taught to do so (i.e.

end-to-end). Unlike deep neural networks, the traditional computer vision algo-

rithms require the features to be manually engineered, which can be very time

consuming and expensive.

Although deep architectures perform better than shallow architectures, there are

also some less positive aspects to it, such as being much more computationally

expensive due to their size (i.e. more hidden layers corresponds to more parame-

ters). These models need a lot more data to learn, and they also take a lot longer

to train (e.g. weeks).

2.2.1.2 Activation functions

Each neuron in the hidden layers of a network has an activation function assigned

to it. The fact that these activation functions are nonlinear functions, allows the

model to learn more complex functions and data representations (Fig. 2.4), in

order to solve difficult and non-linearly separable problems [22].

Figure 2.4: Representation of linear data (left) and non-linear data (right).
Extracted from [40].

The popular activation function’s choice for the hidden layers is usually the rec-

tified linear unit (ReLu) f(x) = max(0, x). Among other activation functions

like the traditional sigmoid and tanh, ReLu is a safe choice due to the fact that

unlike sigmoid and tanh, it rarely suffers from vanishing gradient [33], and it also

introduces sparsity to the network [20], which improves the process of analyzing

and extracting features from the data.

15



2.2.1.3 Regularization

When a neural network model is learning from the training data, there is a possi-

bility that the model will start to overfit to the data. This means that the model

will perform extremely well on the training data but it’ll have a poor generaliza-

tion on new and unseen data. This is a big problem for neural networks since the

main goal of training them is to use them to perform tasks on new data.

Regularization is used to prevent the overfitting problem which is very important

when training a neural network. A deep neural network is more prone to overfit

the data compared to shallow networks, because of the bigger number of parame-

ters introduced into the network [46].

A regularization method such as the Dropout [46] is a way to address overfitting

the data. Dropout consists of picking random neurons and just drop them from

the network during training. This prevents the neurons from adjusting too much

to the training data, resulting in a more balanced model that’s able to generalize

unseen data.

2.2.2 Convolutional neural networks

A convolutional neural network [30] also known as (CNN) is a type of deep neural

network designed to process images as the main input, which proved to be very

powerful when used on visual recognition tasks [29, 51, 23, 44] leading to huge

advances in the computer vision field and completely outperforming architectures

that used feature-based approaches, such as the scale-invariant feature transform

(SIFT) [31], and the speeded up robust features (SURF) [6] approach.

2.2.2.1 The layers of a CNN

A CNN is typically composed of three different layer types: a convolutional layer,

a pooling layer, and a fully-connected layer.
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Convolutional layer

A convolutional layer [30] (CONV) consists of sliding a collection of learnable

filters (or kernels) of a fixed size, over the input data (e.g. profile image) in a

sliding window manner. The region of the input covered by a filter is called the

receptive field. These filters work like feature detectors where each filter looks for

some specific characteristic present in the input data (e.g. edges, curves). For

each region of the input data covered by the filter, it’s performed a dot product

between the filter’s matrix and the matrix of the region covered, and everything

is summed into one value (i.e. convolution operation, Fig. 2.5) followed by the

application of a ReLu function. Once the filters slide across the whole input, this

will result in a feature map composed of all the convolution operations done to

the input data.

Figure 2.5: Example of a convolution operation. Extracted from [54].

Assuming the convolutional layer is the first layer of the CNN, this layer will start

looking at low-level features. These low features can be something as simple as

edges or curves. Adding a second convolution layer on the output of the first

convolutional layer will generate even more complex features and shapes such as

circles or squares. Increasing the number of convolutional layers used will continue

to increase the complexity of the shapes created, making them so abstract that

they end up not being visually interpretable by humans.

Pooling layer

The pooling layers (POOL) are usually used after a convolutional layer, and these

layers decrease the feature map’s dimensionality for better computational effi-

ciency. Just like convolution layers, pooling layers also use a sliding window to
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cover the input regions. There are two types of pooling layers, the max, and the

average pooling layer. When using the max pooling layer, the covered region will

output the max value of that region whereas the average pooling layer will output

the average of the values from that region.

Figure 2.6: An example of a max pooling operation. Extracted from [35].

Fully connected layers

The fully-connected layers (FC) are usually attached to the end of the CNN serving

as output layers, and they work the same way as the regular feed-forward neural

networks described previously.

2.2.2.2 Main CNN architectures

In this section, it’s presented an overview of some CNN architectures that have

made important contributions to the use of CNN architectures.

AlexNet

The ImageNet Large Scale Visual Recognition Competition (ILSVRC) [42] is an

annual competition where different research teams evaluate their algorithms for

object detection and image classification at a large scale.

In 2012, AlexNet [29], a convolutional neural network, won the ILSVRC’12 compe-

tition achieving a top-5 error (i.e. 1 of the 5 model’s labeled predictions is correct)

of 15.4% while the second best achieved a top-5 error of 26.2%. This moment was

one of the biggest game changers in modern computer vision. New convolutional

neural networks architectures started to emerge [44, 51] and other computer vision

techniques started to fall off.
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The AlexNet’s architecture consisted of five convolutional layers and three fully-

connected layers, with the purpose of classifying images with 1000 possible classes.

Using the ReLu nonlinear activation function and highly optimized GPU imple-

mentation, the network was able to train much faster.

AlexNet artificially enlarged its training dataset through data-augmentation tech-

niques consisting of image patch extractions, translations, and horizontal reflec-

tions, which prevented the model from overfitting the data. In addition to these

techniques, Dropout [46] was also used. Since AlexNet’s appearance, new CNN

architectures began appearing in later ILSVRC competitions.

VGG

The VGG [44] architecture got the second place on the ILSVRC 2014 competition

with a top-5 error of 7.3%, and was known for its uniform and simple network. The

important contribution of this paper was the discovery that a CONV layer with a

large filter could be replaced with multiple CONV layers with 3 × 3 sized filters.

This technique maintains the same receptive field and uses fewer parameters. In

addition, this also means that more activation functions are used, resulting in

better feature extraction.

The drawback of this architecture is that it can be computationally expensive to

train due to its number of parameters.

GoogLeNet

The GoogLeNet [51] is a 22-layered architecture that won the ILSVRC 2014 com-

petition with a top-5 error of 6.7%.

The main focus of this network was about creating a deeper model that was more

computationally efficient, achieved with the introduction of the inception module

used in stacked layers, which resulted in a reduction from 60 million parameters

(AlexNet) to just 4 million. Some features of this architecture that contributed to

this optimization were the use of average pooling layers as classifiers instead of the

traditional fully connected layers, and the fact that each of the inception modules

used a 1× 1 convolution filter for dimensional reduction.
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Residual Networks

The Residual Networks (ResNets) [23] won the first place in the ILSVRC 2015

competition with a top-5 error of 3.57%, using a very deep architecture composed

of 152 layers.

This model consists of stacking residual learning blocks (Fig. 2.7). These residual

blocks are essentially just two stacked CONV layers with an identity mapping

shortcut connection that is added to the output of the second CONV layer. This

simple technique allows the building of much deeper neural networks and it also

addresses the vanishing/exploding gradient problem, that can occur when training

regular deep architectures.

Figure 2.7: A residual block. Extracted from [23].

2.2.2.3 Transfer learning

Transfer learning [57] is a special feature of deep learning that allows transferring a

model’s knowledge to perform a specific task and apply that knowledge to another

task.

The process of transferring learning consists of using a model previously trained

on a big dataset (e.g.ImageNet [42]) and replacing its output layer with a new

output layer for the new task. The last step is to train the model, and only the

new layer is necessary to be trained. Optionally, it’s possible to train more than

just the output layer, but that is only recommended if there’s enough training

data available, to avoid overfitting.

Transfer learning works because a pre-trained model was already trained to detect

common features (e.g. edges, curves, etc) that exist in every object. The use of

transfer learning not only eliminates the need for a large amount of training data
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(i.e. millions of labelled images) to train a deep neural network, but also, it de-

creases the time it takes to set up a usable model, since it can take weeks just to

train a model from scratch whereas it takes only a couple of epochs using transfer

learning.

Given these advantages and the fact that the training data available for the pro-

posed work may not be sufficient to train a model from scratch, transfer learning

is an approach that will be used in this dissertation.

2.2.3 Deep learning frameworks

As deep learning continues to grow and become more popular, deep learning frame-

works also keep being developed. There is a wide range of frameworks available,

from low-level API frameworks such as TensorFlow [2], developed by Google, to

high-level API frameworks such as Keras [11], which is more beginner friendlier,

and also the framework that will be used in this dissertation.

The process of creating a CNN model is very easy using a framework such as Keras

because only a few lines of code are needed to create and stack layers and train

the model. In addition, there are pre-trained models available in the framework

that can be imported and used immediately to make classifications, or to modify

them as needed (e.g. add/ remove/ freeze layers), in order to set the model ready

for transfer-learning.

Another advantage of using a framework is that when a model is being trained, the

computation of the model gradients and the update of the parameters are carried

out by the framework. This feature saves a lot of time in the model implemen-

tation process and also prevents potential bugs that could result from manually

coding these calculations for millions of parameters.

Finally, the fact that these frameworks are already programmed to run efficiently

on a GPU [11], speeds up the training time exponentially. The GPUs are great

at parallel processing, and since training a CNN model consists of large matrix

computations, the training process becomes a lot faster using them [53]. :
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Chapter 3

Implementation

To compare the DNN approach against the traditional computer vision algorithm

approach, a set of experiments will be performed (one for each requirement) where

the classification results, the complexity of the implementation and the computa-

tional time associated to the classification process will be taken into account for

both methods. In every experiment, a traditional algorithm is implemented and

tuned, and a DNN model is trained to classify the compliance of the experiment’s

requirement. Each requirement will be individually classified so that it can be

determined which specific requirements are or aren’t compliant with the image.

In order to tune and train the traditional algorithms and the DNNs used in the

experiments, we define two types of datasets for each experiment: (i) a “compliant

dataset” composed by a collection of images that are compliant with the respec-

tive requirement; and, (ii) a “non-compliant dataset” composed by a collection of

images that fail to comply with that requirement. The strategy used to collect

images for each of these datasets and the way they’ll be processed is described

also in this chapter. The strategy used to collect images for each of these datasets

and the way they’ll be processed is described also in this chapter.
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3.1 Dataset

3.1.1 ISCTE-IUL database

Given the purpose of this dissertation, most of the image data used belongs to the

ISCTE-IUL database. This database consists mainly of photos of students and

employees, taken at shoulder level, with their faces visible, and facing the camera.

For each photo, its original and thumbnail versions (max width/height: 100px) are

available, however, a big portion of the photos only have their thumbnail version

stored, especially the older ones.

The following table presents the ISCTE-IUL database:

Table 3.1: Initial ISCTE-IUL database.

Version Images
Images with thumbnail version only 22154
Images with original version only 33
Images with both versions 23380
Total thumbnail versions available 45534
Total original versions available 23413
Total 68947

After further analysis, it was observed that 10682 images with both original and

thumbnail versions available, had their thumbnail versions mistakenly stored as

both versions, decreasing even more, the number of images with original versions

available. This issue could be verified by checking and comparing the dimensions

of both image versions.

After every image had their versions checked and corrected, the following table

presents the processed database:

Table 3.2: ISCTE-IUL database after being processed.

Version Images
Images with thumbnail version only 22154
Images with original version only 33
Images with both versions 12698
Total thumbnail versions available 45534
Total original versions available 12731
Total 58265

24



Only the original version of the images is used on the experiments, as these images

are easier to manually label due to their dimensions, and also because the exper-

iments will reshape every input images to a dimension of 512 × 512, which could

lead to a quality loss if the thumbnail version was used. Of the 12,731 images with

original versions available, only a subset of 9,264 images was used and manually

labelled due to time constraints and also because this database wasn’t providing

enough images to populate most of the non-compliant datasets.

3.1.2 External datasets

Since it’s beneficial performance-wise to provide the DNN models with more rel-

evant and similar image data, and because the ISCTE-IUL database does not

contain enough image data to create some of the non-compliant datasets, other

external datasets are also used.

The following table lists the datasets from which image data will be collected:

Table 3.3: Datasets used on the experiments.

Dataset
ISCTE-IUL database
AR Face Database [50]
Chicago Face Database [32]
Closed Eyes in the Wild Dataset [45]
Face Research Lab London Set [14]
MR2 dataset [49]
ImageNet [42]
NimStim dataset [52]
PUT Face Database [27]
Siblings Dataset [55]
Young Adult White Faces [15]

3.1.3 Datasets for the quality requirements

Since each experiment evaluates a different requirement, it’s necessary to create

a different dataset according to the quality requirement being evaluated. Given

that 10 requirements are evaluated in this dissertation, 10 non-compliant datasets
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and 1 fully-compliant dataset are required. To that end, the process of creating

each dataset is described next.

Compliant dataset

The compliant dataset consists of images in conformance with the quality require-

ment being evaluated. Each image from this dataset was carefully selected and

collected from the datasets previously mentioned.

Blurred dataset

The blurred dataset is created using images collected from the compliant dataset.

Using Python’s OpenCV library [9], two types of blurring methods are applied to

the images: Gaussian blur and motion blur.

Unnatural skin tone dataset

The unnatural skin tone dataset is created using images collected from the com-

pliant dataset. Using Python’s OpenCV library [9], a yellow toned color is applied

to the person’s skin pixels, resulting in an unnatural skin tone color.

Too dark/light dataset

The too dark/light dataset is created using images collected from the compliant

dataset. Using Python’s OpenCV library [9], each image’s V channel (HSV color

space) is adjusted accordingly, in order to obtain lighter/darker images. Increasing

the value of the V channel will generate brighter images whereas doing the opposite

will generate darker images.

Pixelation dataset

The pixelation dataset is created using images collected from the compliant dataset.

Using Python’s OpenCV library [9], each image is scaled down and scaled back to

its original size, generating a pixelation effect.

Washed out dataset

The washed out dataset is created using images collected from the compliant

dataset. Using Python’s OpenCV library [9], a white overlay with some trans-

parency is added on top of the image, creating a washed out effect.
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Eyes closed dataset

The eyes closed dataset is created using a collection of images from the Closed

Eyes in the Wild Dataset and some images carefully selected from Google Images.

Red eyes dataset

The red eyes dataset is created using images collected from the compliant dataset.

Using Python’s OpenCV library [9], each individual had a transparent red colored

overlay added to their eye pupils, creating the red eyes from flash effect.

Dark tinted lenses dataset

The dark tinted lenses dataset is created by carefully selecting images collected

from the AR Face Dataset, from Google Images, and images labeled as sunglasses

from the ImageNet dataset.

Hats dataset

The hats dataset is created by carefully selecting images from Google Images and

images labeled as a hat from the ImageNet dataset.

Mouth closed dataset

The mouth closed dataset is created by collecting images from the ISCTE-IUL

database, the AR Face Database, the Face Research Lab London Set and the

NimStim dataset, where the individuals have their mouths open.

At the end of each dataset creation process, in order to maintain consistent image

dimensions and also due to the fact that the collected images had originally very

different resolutions that could affect each experiment’s performance, every image

is scaled down to a maximum width or height of 512, while maintaining its original

aspect ratio.
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3.2 Experimental setup

3.2.1 Experiment dataset

An experiment dataset is created for each experiment, consisting of a compliant

dataset for the compliant class, and a non-compliant dataset for the non-compliant

class. The experiment dataset is split randomly into different sets, to train or tune

the algorithms according to the approach used:

• Traditional algorithm: 90% train set, 10% test set.

• DNN: 80% train set, 10% validation set, 10% test set

It’s not necessary to generate a validation set for the traditional algorithms used,

as overfitting the data is only an issue for the DNN approach.

Once the traditional algorithms have been tuned and the DNN training is com-

plete, the performance of both methods is measured on the test set using metrics

that will be presented further in this section. In order to ensure a fair comparison

of the results, the test sets of both methods are exactly the same.

3.2.2 Experimental environment setup

All experiments are conducted in the same environment: a machine equipped with

an NVIDIA TITAN Xp GPU, Intel(R) Xeon(R) CPU E5-2660 0 @ 2.20GHz and

32 GB of RAM.

3.2.3 DNN model setup

VGG-16

Due to its popularity, simplicity, and accuracy, the VGG-16 is the architecture

of choice for the DNN approach, on every experiment. Using the Keras frame-

work [11], the VGG-16 model can be easily imported and optionally loaded with
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the ImageNet weights for transfer-learning. The input size of the model is set to

512× 512, as it is desired to classify images with similar dimensions, and its last 3

dense layers are swapped with a flatten and dense layer of two units (two classes),

using softmax as the activation function.

Two approaches are analyzed in the training of the DNN model: one consists of

training the model from scratch, the other consists of training the model using

transfer-learning, since the available training data may not be enough to train a

model from scratch without causing overfitting issues.

In each experiment, the model is trained 7 different times, once from scratch, and

the other six times using transfer-learning while unfreezing a different number of

blocks of convolutional layers each time, as it’s shown in the following table:

Table 3.4: DNN model variants.

Variant Weights Layers
trained Parameters

1 Randomly initialized 14 14,976,834
2 ImageNet 1 262,146
3 ImageNet 4 7,341,570
4 ImageNet 7 13,241,346
5 ImageNet 10 14,716,674
6 ImageNet 12 14,938,114
7 ImageNet 14 14,976,834

From these 7 model variants, the one that provides the best classification results

on the validation set is to be selected as the model that classifies the test set.

Hyperparameters

Some hyperparameter optimization was also done in each experiment in order

to find the appropriate learning rate, optimizer, and batch-size1. This process

consisted of training the model for two epochs2 with different parameter values

and selecting the combination of parameters with the best results on the validation

set. The optimizers evaluated were the SGD and Adam, the learning-rates values

used were [0.0001, 0.00001, 0.00002, 0.00005], and the batch-sizes were [1, 8, 16,

32]. The batch-size could not be further increased due to memory constraints.
1Number of training examples used per iteration.
2Number of passes through the entire dataset.
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Since the combination of the Adam Optimizer with a learning rate of 0.0001 and

a batch size of 32 performed best in the hyperparameters optimization of every

experiment, the combination of these parameters was used in all the experiments.

The number of epochs used to train the model was set to 100, even though models

using transfer-learning do not require as many epochs as training a model from

scratch would.

The Keras callbacks functionality was also used while training the models: the

EarlyStop callback to stop the model from training if the validation loss stops

improving after 10 epochs, the ModelCheckpoint callback to save the model every

time the validation loss decreases, and the ReduceLROnPlateau callback to reduce

the learning rate by a factor of 0.5 when the validation loss stops improving every

2 epochs, to help the model reach the minimum cost.

Data augmentation

Data augmentation was performed in each experiment, using the Keras built-in

image augmentation functionality. The augmentation techniques used for each

experiment were carefully selected, as some of the techniques could negatively

affect some datasets and thus degrade the model’s performance. An example of

image augmentation misuse would be, applying brightness modifications to the

“too dark/light” dataset.

Imbalanced data

Some of the experiment datasets suffered from imbalanced data issues (i.e. size

discrepancies between the compliant and non-compliant classes) which could lead

to misleading results, therefore, class weight adjustments are performed in each

experiment as needed.

The weight adjustments consist of changing the weight of the class from the smaller

dataset, to the magnitude of the larger dataset compared to the smaller dataset.
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3.2.4 Metrics

In each experiment, the two approaches’ classification results are compared using

the metrics Precision, Recall, and the F1-Score on both classes (using Python’s

Scikit-learn library [39]), as well as the computational time associated. To mea-

sure a method’s computational time, the test set is classified 10 times, from which

the samples with the shortest and longest duration are removed, and an average

of the remaining samples is taken to obtain the computational time. This ap-

proach is used in order to minimize certain factors associated with setting up the

scripts which could affect the computational time of each method (e.g. memory

allocation to run the scripts), and thus obtain a value that’s closer to the actual

computational time.

3.3 Experiments

In this section, it’ll be performed an experiment for each of the 10 quality re-

quirements, where both DNN and traditional algorithms approaches are evaluated

regarding the metrics previously mentioned.

3.3.1 Blurred

The following table presents the class composition of this experiment’s dataset:

Table 3.5: Blurred experiment dataset.

Number of images
Compliant 6088
Non-Compliant 18259

Traditional algorithm

This algorithm was implemented based on the approach proposed in [38], as de-

scribed in section 2.1.1, using the Laplacian and variance function from Python’s

OpenCV library [9]. The algorithm was tuned on the training set, which con-

sisted of trying different variance thresholds and selecting the one that provided
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the best classification results. After further threshold tuning, it was determined

that images with a Laplacian variance above 45 will be considered compliant.

Deep neural network

Due to the presence of class imbalance issues on this dataset, the following class

weights were used:

Table 3.6: Adjusted class weights of the blurred experiment dataset.

Class weights
Compliant 3.0
Non-Compliant 1.0

The following data augmentation techniques were used: horizontal flip, rotation

range (10◦), conversion to grayscale and brightness adjustment.

The training of the 7 model variants is performed and the final model is selected

based on the validation set results. In this experiment, the variant using transfer-

learning and trained with 14 layers performed the best (Table A.1).

3.3.2 Unnatural skin tone

The following table presents the class composition of this experiment’s dataset:

Table 3.7: Unnatural skin tone experiment dataset.

Number of images
Compliant 6081
Non-Compliant 2057

Traditional algorithm

This algorithm was implemented based on the method proposed in [17], as de-

scribed in section 2.1.1. The face region is extracted using the OpenCV cascade

and then converted into the YCrCb color space where a color threshold [5] (133

< Cr < 173 and 77 < Cb < 127) is sequentially applied. Finally, the percentage

of natural skin within the region is calculated.

The algorithm was tuned on the training set to find the threshold that will define

the image as compliant or non-compliant. After further threshold tuning, it was

determined that images with natural skin above 60% are considered compliant.
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Deep neural network

Due to the presence of class imbalance issues on this dataset, the following class

weights were used:

Table 3.8: Adjusted class weights of the unnatural skin tone experiment
dataset.

Class weights
Compliant 1.0
Non-Compliant 2.98

The following data augmentation techniques were used: horizontal flip, zoom range

(0.05) and rotation range (10◦).

The training of the 7 model variants is performed and the final model is selected

based on the validation set results. In this experiment, the variant using transfer-

learning and trained with 7 layers performed the best (Table A.2).

3.3.3 Too dark/light

The following table presents the class composition of this experiment’s dataset:

Table 3.9: Too dark/light experiment dataset.

Number of images
Compliant 5488
Non-Compliant 11477

Traditional algorithm

The algorithm used in this experiment was implemented based on the method used

in [17], as described in section 2.1.1. Using the OpenCV library [9] for Python,

the image was converted to grayscale and its color histogram was generated to

calculate the compliance score.

While the author’s method outputs an image’s compliance score from [0-100], this

algorithm evaluates the images as compliant or not-compliant based on a threshold

value that must be tuned. After further threshold tuning, it was determined that

images with a score above 60 will be considered compliant.
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Deep neural network

Due to the presence of class imbalance issues on this dataset, the following class

weights were used:

Table 3.10: Adjusted class weights of the too dark/light experiment dataset.

Class weights
Compliant 2.09
Non-Compliant 1.0

The following data augmentation techniques were used: horizontal flip, zoom range

(0.05) and rotation range (10◦).

The training of the 7 model variants is performed and the final model is selected

based on the validation set results. In this experiment, the variant using transfer-

learning and trained with 12 layers performed the best (Table A.3).

3.3.4 Washed out

The following table presents the class composition of this experiment’s dataset:

Table 3.11: Washed out experiment dataset.

Number of images
Compliant 6130
Non-Compliant 6131

Traditional algorithm

The algorithm used in this experiment was implemented based on the method used

in [17], as described in section 2.1.1. Using the OpenCV library [9] for Python, the

image was converted to grayscale and the histogram used to calculate the image

compliance score is generated.

While the author’s method outputs the images’ compliance score from [0-100], this

algorithm evaluates the images as compliant or not-compliant based on a threshold

value that must be tuned. After further threshold tuning, it was determined that

images with a score above 70 will be considered compliant.
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Deep neural network

As both classes in this dataset are balanced, no class weight adjustments have

been made.

The following data augmentation techniques were used: horizontal flip, zoom range

(0.05) and rotation range (10). The training of the 7 model variants is performed

and the final model is selected based on the validation set results. In this experi-

ment, the variant using transfer-learning and trained with 14 layers performed the

best (Table A.4).

3.3.5 Pixelation

The following table presents the class composition of this experiment’s dataset:

Table 3.12: Pixelation experiment dataset.

Number of images
Compliant 3350
Non-Compliant 3351

Traditional algorithm

The algorithm used in this experiment was implemented based on the approach

proposed in [36], as described in section 2.1.1. Using Python’s OpenCV library

[9], the cascade function was used to find the face region which was then converted

to grayscale. The Canny edge detector followed by the Hough Transform function

was used to detect lines.

While the author’s method outputs the images’ compliance score from [0-100], this

algorithm evaluates the images as compliant or not-compliant based on a threshold

value that must be tuned. After further threshold tuning, it was determined that

images with a score above 50 will be considered compliant.

Deep neural network

As both classes in this dataset are balanced, no class weight adjustments have

been made.

The following data augmentation techniques were used: horizontal flip and con-

version to grayscale. The training of the 7 model variants is performed and the
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final model is selected based on the validation set results. In this experiment,

the variant using transfer-learning and trained with 4 layers performed the best

(Table A.5).

3.3.6 Eyes closed

The following table presents the class composition of this experiment’s dataset:

Table 3.13: Eyes closed experiment dataset.

Number of images
Compliant 6131
Non-Compliant 1798

Traditional algorithm

The algorithm used in this experiment was implemented using the Haar feature-

based cascade classifier approach [56], as described in section 2.1.1. Using Python’s

OpenCV library [9], the cascade function is used to find the face and the eyes

regions. The face and the eyes cascades are provided in the library.

The image is considered compliant if the person’s face and both eyes are detected.

Deep neural network

Due to the presence of class imbalance issues on this dataset, the following class

weights were used:

Table 3.14: Adjusted class weights of the eyes closed experiment dataset.

Class weights
Compliant 1.0
Non-Compliant 3.4

The following data augmentation techniques were used: horizontal flip, zoom range

(0.05), rotation range (10◦), conversion to grayscale and brightness adjustment.

The training of the 7 model variants is performed and the final model is selected

based on the validation set results. In this experiment, the variant using transfer-

learning and trained with 14 layers performed the best (Table A.6).
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3.3.7 Red eyes

The following table presents the class composition of this experiment’s dataset:

Table 3.15: Red eyes experiment dataset

Number of images
Compliant 3488
Non-Compliant 830

Traditional algorithm

The algorithm used in this experiment was implemented based on the approach

proposed in [17], as described in section 2.1.1. Using Python’s OpenCV library [9],

the cascade function is used to find each eye region from which the red-eye pixels

are identified based on a color threshold [58]. This algorithm uses the percentage of

red pixels within the eye regions to classify the image’s compliance. After further

tuning the threshold value, it was determined that images with a presence of red

pixels below 20% will be considered compliant.

Deep neural network

Due to the presence of class imbalance issues on this dataset, the following class

weights were used:

Table 3.16: Adjusted class weights of the red eyes experiment dataset.

Class weights
Compliant 1.0
Non-Compliant 4.2

The following data augmentation techniques were used: horizontal flip, zoom range

(0.05) and rotation range (10◦).

The training of the 7 model variants is performed and the final model is selected

based on the validation set results. In this experiment, the variant using transfer-

learning and trained with 12 layers performed the best (Table A.7).

3.3.8 Dark tinted lenses

The following table presents the class composition of this experiment’s dataset:
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Table 3.17: Dark tinted lenses experiment dataset

Number of images
Compliant 5820
Non-Compliant 1833

Traditional algorithm

This algorithm was implemented using the histogram intersection approach [50],

as described in section 2.1.1, which is implemented in a Python library called

Deepgaze [37]. The algorithm starts by extracting the eyes region from the image

as an input image, which is used to compute the histogram intersection with

previously stored images of extracted eye regions of people who are and who aren’t

wearing sunglasses.

If the stored image that is the most similar to the input image belongs to a person

not wearing dark tinted lenses, the image is considered compliant.

Deep neural network

Due to the presence of class imbalance issues on this dataset, the following class

weights were used:

Table 3.18: Adjusted class weights of the dark tinted lenses experiment
dataset.

Class weights
Compliant 1.0
Non-Compliant 3.17

The following data augmentation techniques were used: horizontal flip, zoom range

(0.05), rotation range (10◦), conversion to grayscale and brightness adjustment.

The training of the 7 model variants is performed and the final model is selected

based on the validation set results. In this experiment, the variant using transfer-

learning and trained with 4 layers performed the best (Table A.8).

3.3.9 Hat/cap

The following table presents the class composition of this experiment’s dataset:
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Table 3.19: Hat/cap experiment dataset.

Number of images
Compliant 6131
Non-Compliant 1968

Traditional algorithm

The algorithm used in this experiment was implemented based on the hat/cap

compliance validation approach proposed in [17], as described in section 2.1.1.

The algorithm starts by using the Python’s OpenCV [9] library to extract the face

region, and use it to find the rectangular region on the upper part of the face,

as suggested by the author. The image is color corrected and binarized in the

H channel to find the hat pixels. The compliance score results from calculating

the percentage of non-hat pixels within the extracted region. After further tuning

the threshold values, it was determined that images with a percentage of non-hat

pixels above 80 are considered compliant.

Deep neural network

Due to the presence of class imbalance issues on this dataset, the following class

weights were used:

Table 3.20: Adjusted class weights of the hat/cap experiment dataset.

Class weights
Compliant 1.0
Non-Compliant 3.11

The following data augmentation techniques were used: horizontal flip, zoom range

(0.05), rotation range (10◦), conversion to grayscale and brightness adjustment.

The training of the 7 model variants is performed and the final model is selected

based on the validation set results. In this experiment, the variant using transfer-

learning and trained with 10 layers performed the best (Table A.9).

3.3.10 Mouth open

The following table presents the class composition of this experiment’s dataset:
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Table 3.21: Mouth open experiment dataset.

Number of images
Compliant 3350
Non-Compliant 3351

Traditional algorithm

The algorithm used in this experiment was implemented based on the mouth open

compliance validation approach, proposed in [17], as described in section 2.1.1.

Using Python’s OpenCV [9] cascade function, the mouth region is extracted and

a color range in the HSV colorspace ((-15 < H < 90) & (0 < S < 65) & (130 < V

< 295)) is used to find teeth pixels.

A threshold of the percentage of teeth pixels within the mouth region is tuned,

in order to classify the image’s compliance. After further threshold tuning, it was

determined that images with a presence of teeth pixels below 4% will be considered

compliant

Deep neural network

As both classes in this dataset are balanced, no class weight adjustments have

been made.

The following data augmentation techniques were used: horizontal flip, zoom range

(0.05), rotation range (10◦), conversion to grayscale and brightness adjustment.

The training of the 7 model variants is performed and the final model is selected

based on the validation set results. In this experiment, the variant using transfer-

learning and trained with 10 layers performed the best (Table A.10).

40



3.4 Results

This section presents the classification and computational time results of each

method, on the test sets.

3.4.1 Blurred

Classification results

Table 3.22: Blurred – Traditional algorithm classification results.

Precision Recall F1-score Number of
test set images

Compliant 0.83 0.96 0.89 571
Non-Compliant 0.99 0.93 0.96 1706
Avg/ Total 0.95 0.94 0.94 2277

Table 3.23: Blurred – DNN classification results.

Precision Recall F1-score Number of
test set images

Compliant 1.0 1.0 1.0 571
Non-Compliant 1.0 1.0 1.0 1706
Avg/ Total 1.0 1.0 1.0 2277

Computational time

Table 3.24: Blurred – Computational time results.

Method Execution time
(seconds)

Avg per image
(seconds) Images

Traditional algorithm 37.3 0.016
DNN 32.41 0.014 2277
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3.4.2 Unnatural skin tone

Classification results

Table 3.25: Unnatural skin tone – Traditional algorithm classification results.

Precision Recall F1-score Number of
test set images

Compliant 0.92 0.97 0.94 564
Non-Compliant 0.91 0.76 0.83 205
Avg/ Total 0.92 0.92 0.91 769

Table 3.26: Unnatural skin tone – DNN classification results.

Precision Recall F1-score Number of
test set images

Compliant 1.0 1.0 1.0 564
Non-Compliant 1.0 1.0 1.0 205
Avg/ Total 1.0 1.0 1.0 769

Computational time

Table 3.27: Unnatural skin tone – Computational time results

Method Execution time
(seconds)

Avg per image
(seconds) Images

Traditional algorithm 11.20 0.015
DNN 11.02 0.014 769

3.4.3 Too dark/light

Classification results

Table 3.28: Too dark/light – Traditional algorithm classification results.

Precision Recall F1-score Number of
test set images

Compliant 0.71 0.89 0.79 525
Non-Compliant 0.94 0.83 0.88 1091
Avg/ Total 0.86 0.85 0.85 1616
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Table 3.29: Too dark/light – DNN classification results.

Precision Recall F1-score Number of
test set images

Compliant 0.97 1.0 0.98 525
Non-Compliant 1.0 0.99 0.99 1091
Avg/ Total 0.99 0.99 0.99 1616

Computational time

Table 3.30: Too dark/light – Computational time results.

Method Execution time
(seconds)

Avg per image
(seconds) Images

Traditional algorithm 143.0 0.88
DNN 23.2 0.014 1616

3.4.4 Washed out

Classification results

Table 3.31: Washed out – Traditional algorithm classification results.

Precision Recall F1-score Number of
test set images

Compliant 1.0 0.98 0.99 613
Non-Compliant 0.98 1.0 0.99 614
Avg/ Total 0.99 0.99 0.99 1277

Table 3.32: Washed out – DNN classification results.

Precision Recall F1-score Number of
test set images

Compliant 1.0 1.0 1.0 613
Non-Compliant 1.0 1.0 1.0 614
Avg/ Total 1.0 1.0 1.0 1277
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Computational time

Table 3.33: Washed out – Computational time results.

Method Execution time
(seconds)

Avg per image
(seconds) Images

Traditional algorithm 2.90 0.002
DNN 32.41 0.014 1277

3.4.5 Pixelation

Classification results

Table 3.34: Pixelation – Traditional algorithm classification results.

Precision Recall F1-score Number of
test set images

Compliant 0.84 0.99 0.91 333
Non-Compliant 0.99 0.81 0.89 334
Avg/ Total 0.92 0.90 0.90 667

Table 3.35: Pixelation – DNN classification results.

Precision Recall F1-score Number of
test set images

Compliant 1.0 1.0 1.0 333
Non-Compliant 1.0 1.0 1.0 334
Avg/ Total 1.0 1.0 1.0 667

Computational time

Table 3.36: Pixelation – Computational time results.

Method Execution time
(seconds)

Avg per image
(seconds) Images

Traditional algorithm 9.37 0.0140
DNN 9.25 0.0138 667
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3.4.6 Eyes closed

Classification results

Table 3.37: Eyes closed – Traditional algorithm classification results.

Precision Recall F1-score Number of
test set images

Compliant 0.94 0.87 0.90 614
Non-Compliant 0.64 0.79 0.71 180
Avg/ Total 0.87 0.85 0.86 794

Table 3.38: Eyes closed – DNN classification results.

Precision Recall F1-score Number of
test set images

Compliant 1.0 0.99 1.0 614
Non-Compliant 0.97 1.0 0.98 180
Avg/ Total 0.99 0.99 0.99 794

Computational time

Table 3.39: Eyes closed – Computational time results.

Method Execution time
(seconds)

Avg per image
(seconds) Images

Traditional algorithm 19.62 0.025
DNN 11.02 0.014 794

3.4.7 Red eyes

Classification results

Table 3.40: Red eyes – Traditional algorithm classification results.

Precision Recall F1-score Number of
test set images

Compliant 0.95 0.95 0.95 349
Non-Compliant 0.77 0.78 0.78 83
Avg/ Total 0.91 0.91 0.91 432
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Table 3.41: Red eyes – DNN classification results.

Precision Recall F1-score Number of
test set images

Compliant 1.0 1.0 1.0 349
Non-Compliant 1.0 1.0 1.0 83
Avg/ Total 1.0 1.0 1.0 432

Computational time

Table 3.42: Red eyes – Computational time results.

Method Execution time
(seconds)

Avg per image
(seconds) Images

Traditional algorithm 6.17 0.0143
DNN 6.08 0.0141 432

3.4.8 Dark tinted lenses

Classification results

Table 3.43: Dark tinted lenses – Traditional algorithm classification results.

Precision Recall F1-score Number of
test set images

Compliant 0.91 0.89 0.90 582
Non-Compliant 0.71 0.75 0.73 207
Avg/ Total 0.86 0.85 0.85 789

Table 3.44: Dark tinted lenses – DNN classification results.

Precision Recall F1-score Number of
test set images

Compliant 0.99 0.99 0.99 582
Non-Compliant 0.99 0.99 0.99 207
Avg/ Total 0.99 0.99 0.99 789
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Computational time

Table 3.45: Dark tinted lenses – Computational time results.

Method Execution time
(seconds)

Avg per image
(seconds) Images

Traditional algorithm 84.41 0.107
DNN 11.13 0.014 789

3.4.9 Hat/cap

Classification results

Table 3.46: Hat/cap – Traditional algorithm classification results.

Precision Recall F1-score Number of
test set images

Compliant 0.82 0.88 0.85 582
Non-Compliant 0.54 0.43 0.48 194
Avg/ Total 0.75 0.77 0.76 776

Table 3.47: Hat/cap – DNN classification results.

Precision Recall F1-score Number of
test set images

Compliant 1.0 0.99 0.99 582
Non-Compliant 0.98 0.99 0.98 194
Avg/ Total 0.99 0.99 0.99 776

Computational time

Table 3.48: Hat/cap – Computational time results.

Method Execution time
(seconds)

Avg per image
(seconds) Images

Traditional algorithm 21.76 0.028
DNN 11.07 0.014 776
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3.4.10 Mouth open

Classification results

Table 3.49: Mouth open – Traditional algorithm classification results.

Precision Recall F1-score Number of
test set images

Compliant 0.78 0.85 0.81 599
Non-Compliant 0.78 0.68 0.73 460
Avg/ Total 0.78 0.78 0.78 1059

Table 3.50: Mouth open – DNN classification results.

Precision Recall F1-score Number of
test set images

Compliant 0.99 0.99 0.99 599
Non-Compliant 0.99 0.99 0.99 460
Avg/ Total 0.99 0.99 0.99 1059

Computational time

Table 3.51: Mouth open – Computational time results.

Method Execution time
(seconds)

Avg per image
(seconds) Images

Traditional algorithm 32.57 0.030
DNN 15.04 0.014 1059

48



Chapter 4

Discussion

4.1 Discussion

As originally expected, the DNN models trained from scratch performed worse

than the ones trained with transfer-learning, however, it was still surprising that 8

out of 10 models trained from scratch were able to achieve an accuracy over 90 per-

cent, and some even achieved results close to those trained with transfer-learning.

The reason this happened is likely thanks to the use of image augmentation, which

helped these models converge despite the image data available. The two models

trained from scratch which produced the worse accuracy results, were coinciden-

tally the models whose datasets contained considerably less image data. This

could explain why these models suffered from overfitting issues, leading to a poor

generalization of their respective validation sets.

The potential of transfer-learning was known, and the fact that the models per-

formed extremely well in classifying images not included in the ImageNet dataset

while using the few available training data, merely confirmed that potential. Dur-

ing the training of the model variants that used transfer-learning, it was observed

that the majority of the models achieved better results when 3 or more blocks

of convolutional layers were unfrozen. Since the imported VGG-16 models were

initially loaded with ImageNet weights and trained on image data different from
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what they were originally trained on, these models benefited from training more

layer weights in order to adapt to the new data.

Classification results

As it was also originally expected, every DNN model achieved much better classi-

fication results than the traditional algorithms, and by a large margin. In contrast

to the traditional algorithms, the DNN models presented little to no misclassifica-

tions in the test set. Most of the traditional algorithms used were based on color

detection techniques and color thresholds, and since most of the images used were

from the ISCTE-IUL database, many images were not captured in a professional

setting, so some lighting or color issues were likely to affect the performance of

these algorithms. During the tuning of the thresholds of each algorithm, it was

necessary to make decisions regarding the tradeoff between detecting more com-

pliant or more non-compliant images, whereas this wasn’t required to do using

DNN models.

Complexity

Complexity-wise, the DNN approach was easier to set up especially using the high-

level deep learning framework, Keras. The same model architecture was reused

in each experiment with little to no adjustments performed, which demonstrates

the DNN’s ability to adapt and converge using different image data. On the other

hand, the traditional algorithms had to be developed and tailored to each specific

requirement, and were also more difficult to implement.

Before the training of the DNN models began, it was necessary to do a lot of

image collection, pre-processing and manual labeling, which took up most of DNN

setup process. Additionally, training a DNN model took more than a day in some

cases, and since 10 models had to be trained, it took over a week to set up all

these models. On the other hand, the traditional algorithms have the advantage

of requiring only a small amount of image data for tuning purposes, and they are

ready to use as soon as they are implemented, taking only a few hours to adjust

the threshold values.
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Computational time

Looking at the computational results, the DNN models were also faster than the

traditional algorithms with the exception of one case (i.e. washed out). There

were some cases where the two methods were close, but there were some critical

cases where the difference was more than one minute. In total, the time it would

take a DNN model to evaluate an image using the 10 requirements would be about

0.14 seconds, while using traditional algorithms would take about 1.13 seconds. If

1,000,000 images were to be classified, it would take the DNN model 1.62 days,

and about 13 days using a traditional algorithm, a significant difference.

Overall, the DNN models may take longer to set up in order to begin classifying

images to the duration of the training process, but they are easier to set up thanks

to high-level frameworks such as Keras. The DNN approach also presented almost

error-free classifications and little computational time associated with that process.
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4.2 ISCTE-IUL case study

In this section, every image from the ISCTE-IUL database with an original version

was classified using the previously trained DNN models that presented the best

results on the experiments’ test sets. These classifications were performed in order

to understand the current state of the ISCTE-IUL database images, regarding

their quality. The results are presented in the following table:

Table 4.1: Quality compliance results of the ISCTE-IUL database.

Requirement Compliant Non
compliant

Total
images

Compliant
(%)

Non
compliant

(%)
Blurred 5277 7 5284 99.9 0.1
Unnatural skin tone 12637 94 12731 99.3 0.7
Too dark/light 10019 2712 12731 78.7 21.3
Washed out 12704 27 12731 99.8 0.2
Pixelation 5278 6 5284 99.9 0.1
Eyes closed 12621 110 12731 99.1 0.9
Red eyes 12562 169 12731 98.7 1.3
Dark tinted lenses 12571 160 12731 98.7 1.3
Hat/cap 12461 270 12731 97.9 2.1
Mouth open 7247 5484 12731 56.9 43.1

The blurred and pixelation requirements had fewer images classified because the

DNN models were trained with an input of 512×512, and only images with a width

or height value above 512 were used. Images with both width and height values

below 512 would have to be upsampled to meet the input dimensions, ending up

creating blurred or pixelated images, and consequentially leading to inaccurate

model predictions.

Regarding the results obtained, the ISCTE-IUL database presents overall good

quality, although, the too dark/light and mouth open requirements present less

compliant images. The percentage of non-compliant cases of the too dark/light

requirement is most likely due to the fact that the photographs of new students

joining the ISCTE-IUL university are taken using a tablet camera, under poor

lighting conditions.

Regarding the percentage of non-compliant cases of the mouth-open requirement,
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it was observed that most people just tend to smile at the camera, which results

in a high percentage of non-compliant occurrences.
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Chapter 5

Conclusions and future work

5.1 Conclusions

In this dissertation, it was proposed a DNN that resulted from the concatenation of

different DNN models based on the VGG-16 architecture, capable of classifying an

image’s quality regarding 10 different compliance requirements. Secondly, it was

proposed a comparison of each of the 10 DNN models against existing traditional

computer vision algorithms used to evaluate these requirements. This comparison

focused on the complexity of the implementation, the classification results, and

the computational time associated with the classification process.

While developing the DNN approach, it was also tested whether a model trained

from scratch could outperform a model using transfer-learning. Due to the lack of

available training data which caused overfitting issues on the models trained from

scratch, the transfer-learning models always presented better classification results.

Using a high-level deep-learning such as Keras, made the DNN implementation

much easier and every DNNmodel was able to reuse the same architecture, whereas

a different traditional algorithm had to be developed and tuned for every require-

ment.

Classification wise, the DNN approach performance was significantly superior to

the traditional algorithms, achieving zero to none misclassifications on the test
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set.

Regarding the computational time, the DNN always achieved better results with

the exception of one case (i.e. washed out).

The use of deep neural networks for the image classification task has proved to be

the ideal solution, with nearly perfect results.

5.2 Future work

It would be interesting to continue the study of the comparison between the DNN

and the traditional algorithms approaches, but using the requirements that were

not included in the subset of this dissertation.

It would also be of interest to analyze and define which and how many requirements

are needed to be in conformance within an image, in order to determine that

image’s quality.

To allow others to make use of the trained DNN models, an application could

be developed to evaluate an image’s quality in real-time, while the user is taking

it. Another option would be the creation of an API to let the users upload and

classify their own images.
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Appendix A

DNN – Validation set results

A.1 Blurred

Table A.1: Blurred – Validation set results of the VGG-16 variants.

Model Weight layers
trained

Validation
Loss

Validation
Score Epochs

VGG-16 14 0.0048 0.998 3
ImageNet VGG-16 1 0.0015 1.0 4
ImageNet VGG-16 4 0.0015 1.0 8
ImageNet VGG-16 7 0.0017 0.999 6
ImageNet VGG-16 10 0.0012 1.0 9
ImageNet VGG-16 12 0.0016 0.999 1

ImageNet VGG-16 14 0.0001 1.0 11

A.2 Unnatural skin tone
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Table A.2: Unnatural skin tone – Validation set results of the VGG-16 variants.

Model Weight layers
trained

Validation
Loss

Validation
Score Epochs

VGG-16 14 0.011 0.996 11
ImageNet VGG-16 1 0.044 0.990 10
ImageNet VGG-16 4 0.027 0.995 3

ImageNet VGG-16 7 0.013 0.997 4
ImageNet VGG-16 10 0.014 0.997 5
ImageNet VGG-16 12 0.106 0.967 1
ImageNet VGG-16 14 0.055 0.986 1

A.3 Too dark/light

Table A.3: Too dark/light – Validation set results of the VGG-16 variants.

Model Weight layers
trained

Validation
Loss

Validation
Score Epochs

VGG-16 14 0.0362 0.988 17
ImageNet VGG-16 1 0.1728 0.938 18
ImageNet VGG-16 4 0.0725 0.979 7
ImageNet VGG-16 7 0.0418 0.985 9
ImageNet VGG-16 10 0.0307 0.988 15

ImageNet VGG-16 12 0.0312 0.991 12
ImageNet VGG-16 14 0.0308 0.990 12

A.4 Washed out

Table A.4: Washed out – Validation set results of the VGG-16 variants.

Model Weight layers
trained

Validation
Loss

Validation
Score Epochs

VGG-16 14 0.0006387 1.0 5
ImageNet VGG-16 1 0.0129880 0.99 15
ImageNet VGG-16 4 0.0004279 1.0 8
ImageNet VGG-16 7 0.0000255 1.0 7
ImageNet VGG-16 10 0.0001694 1.0 6
ImageNet VGG-16 12 0.0000011 1.0 2

ImageNet VGG-16 14 0.0000001 1.0 4
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A.5 Pixelation

Table A.5: Pixelation – Validation set results of the VGG-16 variants.

Model Weight layers
trained

Validation
Loss

Validation
Score Epochs

VGG-16 14 0.6900000 0.5 5
ImageNet VGG-16 1 0.0053100 1.0 12

ImageNet VGG-16 4 0.0000004 1.0 16
ImageNet VGG-16 7 0.0000100 1.0 3
ImageNet VGG-16 10 0.0000100 1.0 24
ImageNet VGG-16 12 0.0000100 1.0 2
ImageNet VGG-16 14 0.0000100 1.0 9

A.6 Eyes closed

Table A.6: Eyes closed – Validation set results of the VGG-16 variants.

Model Weight layers
trained

Validation
Loss

Validation
Score Epochs

VGG-16 14 0.139 0.94 19
ImageNet VGG-16 1 0.053 0.981 20
ImageNet VGG-16 4 0.019 0.992 7
ImageNet VGG-16 7 0.023 0.987 9
ImageNet VGG-16 10 0.010 0.993 15
ImageNet VGG-16 12 0.008 0.996 11

ImageNet VGG-16 14 0.006 0.997 14

A.7 Red eyes
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Table A.7: Red eyes – Validation set results of the VGG-16 variants.

Model Weight layers
trained

Validation
Loss

Validation
Score Epochs

VGG-16 14 0.600 0.670 6
ImageNet VGG-16 1 0.357 0.850 6
ImageNet VGG-16 4 0.040 0.980 9
ImageNet VGG-16 7 0.019 0.995 6
ImageNet VGG-16 10 0.005 0.997 5

ImageNet VGG-16 12 0.001 1.0 11
ImageNet VGG-16 14 0.002 1.0 14

A.8 Dark tinted lenses

Table A.8: Dark tinted lenses – Validation set results of the VGG-16 variants.

Model Weight layers
trained

Validation
Loss

Validation
Score Epochs

VGG-16 14 0.095 0.973 8
ImageNet VGG-16 1 0.020 0.996 13

ImageNet VGG-16 4 0.011 0.996 3
ImageNet VGG-16 7 0.019 0.992 4
ImageNet VGG-16 10 0.022 0.994 5
ImageNet VGG-16 12 0.023 0.992 3
ImageNet VGG-16 14 0.018 0.993 2

A.9 Hat/cap

Table A.9: Hat/cap – Validation set results of the VGG-16 variants.

Model Weight layers
trained

Validation
Loss

Validation
Score Epochs

VGG-16 14 0.15 0.949 8
ImageNet VGG-16 1 0.05 0.980 13
ImageNet VGG-16 4 0.02 0.989 7
ImageNet VGG-16 7 0.02 0.990 5

ImageNet VGG-16 10 0.01 0.992 10
ImageNet VGG-16 12 0.03 0.992 12
ImageNet VGG-16 14 0.03 0.987 4
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A.10 Mouth open

Table A.10: Mouth open – Validation set results of the VGG-16 variants.

Model Weight layers
trained

Validation
Loss

Validation
Score Epochs

VGG-16 14 0.179 0.930 6
ImageNet VGG-16 1 0.244 0.890 16
ImageNet VGG-16 4 0.075 0.982 5
ImageNet VGG-16 7 0.060 0.991 5

ImageNet VGG-16 10 0.05 0.994 7
ImageNet VGG-16 12 0.047 0.989 5
ImageNet VGG-16 14 0.690 0.575 5
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Appendix B

Confusion matrixes – Test set

The following section presents the confusion matrixes of each approach on the test

set.

The Positive corresponds to the Non-Compliant class and the Negative corresponds

to the Compliant class.

B.1 Blurred

Table B.1: Confusion matrix of the traditional algorithm on the blurred test
set.

Traditional Algorithm
True Negative: 548 False Positive: 23
False Negative: 112 True Positive: 1594

Table B.2: Confusion matrix of the DNN model on the blurred test set.

DNN
True Negative: 571 False Positive: 0
False Negative: 0 True Positive: 1706

B.2 Unnatural skin tone
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Table B.3: Confusion matrix of the traditional algorithm on the unnatural
skin tone test set.

Traditional Algorithm
True Negative: 549 False Positive: 15
False Negative: 50 True Positive: 155

Table B.4: Confusion matrix of the DNN model on the unnatural skin tone
test set.

DNN
True negative: 564 False positive: 0
False negative: 0 True positive: 205

B.3 Too dark/light

Table B.5: Confusion matrix of the traditional algorithm on the too dark/light
test set.

Traditional Algorithm
True Negative: 465 False Positive: 60
False Negative: 187 True Positive: 904

Table B.6: Confusion matrix of the DNN model on the too dark/light test set.

DNN
True Negative: 524 False Positive: 1
False Negative: 15 True Positive: 1076

B.4 Washed out

Table B.7: Confusion matrix of the traditional algorithm on the washed out
test set.

Traditional Algorithm
True Negative: 600 False Positive: 13
False Negative: 0 True Positive: 614

Table B.8: Confusion matrix of the DNN model on the washed out test set.

DNN
True Negative: 613 False Positive: 0
False Negative: 0 True Positive: 614
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B.5 Pixelation

Table B.9: Confusion matrix of the traditional algorithm on the pixelation
test set.

Traditional Algorithm
True Negative: 330 False Positive: 3
False Negative: 62 True Positive: 272

Table B.10: Confusion matrix of the DNN model on the pixelation test set.

DNN
True Negative: 332 False Positive: 1
False Negative: 1 True Positive: 333

B.6 Eyes closed

Table B.11: Confusion matrix of the traditional algorithm on the eyes closed
test set.

Traditional Algorithm
True Negative: 533 False Positive: 81
False Negative: 37 True Positive: 143

Table B.12: Confusion matrix of the DNN model on the eyes closed test set.

DNN
True Negative: 608 False Positive: 6
False Negative: 1 True Positive: 179

B.7 Red eyes

Table B.13: Confusion matrix of the traditional algorithm on the red eyes test
set.

Traditional Algorithm
True Negative: 331 False Positive: 18
False Negative: 17 True Positive: 66
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Table B.14: Confusion matrix of the DNN model on the red eyes test set.

DNN
True Negative: 348 False Positive: 0
False Negative: 0 True Positive: 83

B.8 Dark tinted lenses

Table B.15: Confusion matrix of the traditional algorithm on the dark tinted
lenses test set.

Traditional Algorithm
True Negative: 518 False Positive: 64
False Negative: 52 True Positive: 155

Table B.16: Confusion matrix of the traditional algorithm on the dark tinted
lenses test set.

DNN
True Negative: 579 False Positive: 3
False Negative: 3 True Positive: 204

B.9 Hat/cap

Table B.17: Confusion matrix of the traditional algorithm on the hat/cap test
set.

Traditional Algorithm
True Negative: 511 False Positive: 71
False Negative: 111 True Positive: 83

Table B.18: Confusion matrix of the DNN model on the hat/cap test set.

DNN
True Negative: 578 False Positive: 4
False Negative: 2 True Positive: 192
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B.10 Mouth open

Table B.19: Confusion matrix of the traditional algorithm on the mouth open
test set.

Traditional Algorithm
True Negative: 512 False Positive: 87
False Negative: 146 True Positive: 314

Table B.20: Confusion matrix of the DNN model on the mouth open test set.

DNN
True Negative: 596 False Positive: 3
False Negative: 3 True Positive: 457

69





Bibliography

[1] FVC-onGoing: on-line evaluation of fingerprint recognition algorithms.

https://biolab.csr.unibo.it/fvcongoing/UI/Form/Home.aspx. Ac-

cessed: 2018-09-21.

[2] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jef-

frey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Is-

ard, et al. Tensorflow: a system for large-scale machine learning. In OSDI,

volume 16, pages 265–283, 2016.

[3] Georgia Albuquerque, Timo Stich, and Marcus A Magnor. Qualitative por-

trait classification. In VMV, pages 243–525, 2007.

[4] Igor LP Andrezza, Erick VCL Borges, Rajiv AT Mota, and João Janduy B

Primo. Facial compliance for travel documents. In Graphics, Patterns and

Images (SIBGRAPI), 2016 29th SIBGRAPI Conference on, pages 166–172.

IEEE, 2016.

[5] Jorge Alberto Marcial Basilio, Gualberto Aguilar Torres, Gabriel Sánchez

Pérez, L Karina Toscano Medina, and Hector M Perez Meana. Explicit image

detection using ycbcr space color model as skin detection. Applications of

Mathematics and Computer Engineering, pages 123–128, 2011.

[6] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-up

robust features (surf). Computer vision and image understanding, 110(3):346–

359, 2008.

71

https://biolab.csr.unibo.it/fvcongoing/UI/Form/Home.aspx


[7] Yoshua Bengio et al. Learning deep architectures for ai. Foundations and

trends R© in Machine Learning, 2(1):1–127, 2009.

[8] Erick VCL Borges, Igor LP Andrezza, José RT Marques, Rajiv AT Mota, and

João Janduy B Primo. Analysis of the eyes on face images for compliance

with iso/icao requirements. In Graphics, Patterns and Images (SIBGRAPI),

2016 29th SIBGRAPI Conference on, pages 173–179. IEEE, 2016.

[9] Gary Bradski and Adrian Kaehler. Learning OpenCV: Computer vision with

the OpenCV library. O’Reilly Media, Inc., 2008.

[10] John Canny. A computational approach to edge detection. IEEE Transactions

on pattern analysis and machine intelligence, (6):679–698, 1986.

[11] François Chollet et al. Keras. https://keras.io, 2015.

[12] T.F. Cootes, G.J. Edwards, and C.J. Taylor. Active appearance models. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 23(6):681–685,

2001.

[13] Timothy F Cootes, Christopher J Taylor, David H Cooper, and Jim Graham.

Active shape models-their training and application. Computer vision and

image understanding, 61(1):38–59, 1995.

[14] Lisa DeBruine and Benedict Jones. Face research lab london

set. https://figshare.com/articles/Face_Research_Lab_London_Set/

5047666/3, May 2017.

[15] Lisa DeBruine and Benedict Jones. Young adult white faces with manip-

ulated versions. https://figshare.com/articles/Young_Adult_White_

Faces_with_Manipulated_Versions/4220517/1, Mar 2017.

[16] Richard O Duda and Peter E Hart. Use of the hough transformation to detect

lines and curves in pictures. Technical report, SRI International’s Artificial

Intelligence Center, 1971.

72

https://keras.io
https://figshare.com/articles/Face_Research_Lab_London_Set/5047666/3
https://figshare.com/articles/Face_Research_Lab_London_Set/5047666/3
https://figshare.com/articles/Young_Adult_White_Faces_with_Manipulated_Versions/4220517/1
https://figshare.com/articles/Young_Adult_White_Faces_with_Manipulated_Versions/4220517/1


[17] Matteo Ferrara, Annalisa Franco, and Dario Maio. A multi-classifier ap-

proach to face image segmentation for travel documents. Expert Systems with

Applications, 39(9):8452–8466, 2012.

[18] Matteo Ferrara, Annalisa Franco, and Davide Maltoni. Estimating image

focusing in fingerprint scanners. In Automatic Identification Advanced Tech-

nologies, 2007 IEEE Workshop on, pages 30–34. IEEE, 2007.

[19] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of

on-line learning and an application to boosting. Journal of computer and

system sciences, 55(1):119–139, 1997.

[20] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier

neural networks. In Proceedings of the fourteenth international conference on

artificial intelligence and statistics, pages 315–323, 2011.

[21] R. C. Gonzalez and R. E. Woods. Digital Image Processing. MA: Addison-

Wesley Longman Publishing Co., Boston„ second edition, 1992.

[22] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT

Press, 2016. http://www.deeplearningbook.org.

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual

learning for image recognition. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 770–778, 2016.

[24] ICAO9303. Doc 9303 : Machine Readable Travel Documents. Technical

report, 2015.

[25] ISO19794. ISO/IEC 19794-5:2011 - Information technology – Biometric data

interchange formats – Part 5: Face image data.

[26] Ian Jolliffe. Principal component analysis. In International encyclopedia of

statistical science, pages 1094–1096. Springer, 2011.

[27] Andrzej Kasinski, Andrzej Florek, and Adam Schmidt. The put face database.

Image Processing and Communications, 13(3-4):59–64, 2008.

73

http://www.deeplearningbook.org


[28] Diederik P. Kingma and Jimmy Lei Ba. Adam: a Method for Stochastic

Optimization. International Conference on Learning Representations 2015,

2015.

[29] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classifica-

tion with deep convolutional neural networks. In Advances in neural infor-

mation processing systems, pages 1097–1105, 2012.

[30] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-

based learning applied to document recognition. Proceedings of the IEEE,

86(11):2278–2324, 1998.

[31] David G Lowe. Object recognition from local scale-invariant features. In

Computer vision, 1999. The proceedings of the seventh IEEE international

conference on, volume 2, pages 1150–1157. Ieee, 1999.

[32] Debbie S Ma, Joshua Correll, and Bernd Wittenbrink. The chicago face

database: A free stimulus set of faces and norming data. Behavior research

methods, 47(4):1122–1135, 2015.

[33] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlinearities

improve neural network acoustic models. In Proc. icml, volume 30, page 3,

2013.

[34] Satya Mallick. Understanding activation functions

in deep learning. https://www.learnopencv.com/

understanding-activation-functions-in-deep-learning. Accessed:

2018-10-6.

[35] PaddlePaddle. Paddlepaddle - book. http://www.paddlepaddle.org/

documentation/book/en/0.11.0/02.recognize_digits/index.html. Ac-

cessed: 2018-10-6.

[36] RL Parente, Leonardo V Batista, Igor LP Andrezza, Erick VCL Borges, and

Rajiv AT Mota. Assessing facial image accordance to iso/icao requirements.

74

https://www.learnopencv.com/understanding-activation-functions-in-deep-learning
https://www.learnopencv.com/understanding-activation-functions-in-deep-learning
http://www.paddlepaddle.org/documentation/book/en/0.11.0/02.recognize_digits/index.html
http://www.paddlepaddle.org/documentation/book/en/0.11.0/02.recognize_digits/index.html


In Graphics, Patterns and Images (SIBGRAPI), 2016 29th SIBGRAPI Con-

ference on, pages 180–187. IEEE, 2016.

[37] Massimiliano Patacchiola and Angelo Cangelosi. Head pose estimation in

the wild using convolutional neural networks and adaptive gradient methods.

Pattern Recognition, 71:132–143, 2017.

[38] José Luis Pech-Pacheco, Gabriel Cristóbal, Jesús Chamorro-Martinez, and

Joaquín Fernández-Valdivia. Diatom autofocusing in brightfield microscopy:

a comparative study. In Pattern Recognition, 2000. Proceedings. 15th Inter-

national Conference on, volume 3, pages 314–317. IEEE, 2000.

[39] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:

Machine learning in Python. Journal of Machine Learning Research, 12:2825–

2830, 2011.

[40] Sebastian Raschka. Naive bayes and text classification – introduction and

theory. http://sebastianraschka.com/Articles/2014_naive_bayes_1.

html. Accessed: 2018-10-6.

[41] David E. Rumelhart, James L. McClelland, and Corporate PDP Re-

search Group, editors. Parallel Distributed Processing: Explorations in the

Microstructure of Cognition, Vol. 1: Foundations. MIT Press, Cambridge,

MA, USA, 1986.

[42] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,

Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bern-

stein, et al. Imagenet large scale visual recognition challenge. International

Journal of Computer Vision, 115(3):211–252, 2015.

[43] Leonardo Araujo Santos. Neural networks · artificial inteligence. https:

//leonardoaraujosantos.gitbooks.io/artificial-inteligence/

content/neural_networks.html. Accessed: 2018-10-6.

75

http://sebastianraschka.com/Articles/2014_naive_bayes_1.html
http://sebastianraschka.com/Articles/2014_naive_bayes_1.html
https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/neural_networks.html
https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/neural_networks.html
https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/neural_networks.html


[44] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks

for Large-Scale Image Recognition. International Conference on Learning

Representations (ICRL), pages 1–14, 2015.

[45] Fengyi Song, Xiaoyang Tan, Xue Liu, and Songcan Chen. Eyes closeness

detection from still images with multi-scale histograms of principal oriented

gradients. Pattern Recognition, 47(9):2825–2838, sep 2014.

[46] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-

lan Salakhutdinov. Dropout: a simple way to prevent neural networks from

overfitting. The Journal of Machine Learning Research, 15(1):1929–1958,

2014.

[47] Markus Storer, Martin Urschler, and Horst Bischof. Occlusion detection for

icao compliant facial photographs. In Computer Vision and Pattern Recog-

nition Workshops (CVPRW), 2010 IEEE Computer Society Conference on,

pages 122–129. IEEE, 2010.

[48] Markus Storer, Martin Urschler, Horst Bischof, and Josef A Birchbauer. Face

image normalization and expression/pose validation for the analysis of ma-

chine readable travel documents. In Proceedings of OAGM/AAPR Confer-

ence, pages 29–39, 2008.

[49] Nina Strohminger, Kurt Gray, Vladimir Chituc, Joseph Heffner, Chelsea

Schein, and Titus Brooks Heagins. The mr2: A multi-racial, mega-resolution

database of facial stimuli. Behavior research methods, 48(3):1197–1204, 2016.

[50] Michael J. Swain and Dana H. Ballard. Color indexing. International Journal

of Computer Vision, 7(1):11–32, Nov 1991.

[51] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,

Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-

novich. Going deeper with convolutions. In Proceedings of the IEEE confer-

ence on computer vision and pattern recognition, pages 1–9, 2015.

76



[52] Nim Tottenham, James W Tanaka, Andrew C Leon, Thomas McCarry, Mar-

cella Nurse, Todd A Hare, David J Marcus, Alissa Westerlund, BJ Casey,

and Charles Nelson. The nimstim set of facial expressions: judgments from

untrained research participants. Psychiatry research, 168(3):242–249, 2009.

[53] Vincent Vanhoucke, Andrew Senior, and Mark Z Mao. Improving the speed

of neural networks on cpus. In Proc. Deep Learning and Unsupervised Feature

Learning NIPS Workshop, volume 1, page 4. Citeseer, 2011.

[54] Petar Veličković. Github - petarv-/tikz: Complete collection of my pgf/tikz

figures. https://github.com/PetarV-/TikZ. Accessed: 2018-10-6.

[55] Tiago F Vieira, Andrea Bottino, Aldo Laurentini, and Matteo De Simone.

Detecting siblings in image pairs. The Visual Computer, 30(12):1333–1345,

2014.

[56] Paul Viola and Michael Jones. Rapid object detection using a boosted cas-

cade of simple features. In Computer Vision and Pattern Recognition, 2001.

CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on,

volume 1, pages I–I. IEEE, 2001.

[57] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable

are features in deep neural networks? In Proceedings of the 27th International

Conference on Neural Information Processing Systems - Volume 2, NIPS’14,

pages 3320–3328, Cambridge, MA, USA, 2014. MIT Press.

[58] Lei Zhang, Yanfeng Sun, Mingjing Li, and Hongjiang Zhang. Automated

red-eye detection and correction in digital photographs. In ICIP, pages 2363–

2366. Citeseer, 2004.

77

https://github.com/PetarV-/TikZ

	Resumo
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Proposed work
	1.3 Dissertation structure

	2 State of the Art
	2.1 Image quality
	2.1.1 Selected image quality criteria
	Blurred
	Unnatural skin tone
	Too dark/light
	Washed out
	Pixelation
	Eyes closed
	Red eyes
	Dark tinted lenses
	Hat/cap
	Mouth open


	2.2 Artificial neural networks
	2.2.1 Shallow and deep neural networks
	2.2.1.1 Basics and key concepts
	2.2.1.2 Activation functions
	2.2.1.3 Regularization

	2.2.2 Convolutional neural networks
	2.2.2.1 The layers of a CNN
	2.2.2.2 Main CNN architectures
	2.2.2.3 Transfer learning

	2.2.3 Deep learning frameworks


	3 Implementation
	3.1 Dataset
	3.1.1 ISCTE-IUL database
	3.1.2 External datasets
	3.1.3 Datasets for the quality requirements

	3.2 Experimental setup
	3.2.1 Experiment dataset
	3.2.2 Experimental environment setup
	3.2.3 DNN model setup
	3.2.4 Metrics

	3.3 Experiments
	3.3.1 Blurred
	3.3.2 Unnatural skin tone
	3.3.3 Too dark/light
	3.3.4 Washed out
	3.3.5 Pixelation
	3.3.6 Eyes closed
	3.3.7 Red eyes
	3.3.8 Dark tinted lenses
	3.3.9 Hat/cap
	3.3.10 Mouth open

	3.4 Results
	3.4.1 Blurred
	3.4.2 Unnatural skin tone
	3.4.3 Too dark/light
	3.4.4 Washed out
	3.4.5 Pixelation
	3.4.6 Eyes closed
	3.4.7 Red eyes
	3.4.8 Dark tinted lenses
	3.4.9 Hat/cap
	3.4.10 Mouth open


	4 Discussion
	4.1 Discussion
	4.2 ISCTE-IUL case study

	5 Conclusions and future work
	5.1 Conclusions
	5.2 Future work

	Appendices
	A DNN – Validation set results
	A.1 Blurred
	A.2 Unnatural skin tone
	A.3 Too dark/light
	A.4 Washed out
	A.5 Pixelation
	A.6 Eyes closed
	A.7 Red eyes
	A.8 Dark tinted lenses
	A.9 Hat/cap
	A.10 Mouth open

	B Confusion matrixes – Test set
	B.1 Blurred
	B.2 Unnatural skin tone
	B.3 Too dark/light
	B.4 Washed out
	B.5 Pixelation
	B.6 Eyes closed
	B.7 Red eyes
	B.8 Dark tinted lenses
	B.9 Hat/cap
	B.10 Mouth open

	Bibliography

