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Resumo

As opções com barreira são opções exóticas cuja gestão do risco pode ser difícil de executar devido 

à possibilidade de o delta e gamma serem muito elevados nas imediações da barreira. Esta tese 

procura investigar alternativas para a gestão do risco deste tipo de opções que minimizem os ganhos 

e perdas da estratégia dinâmica conhecida por delta hedging.

Investigamos  duas  metodologias  propostas  por  Carr  (1994)  e  Derman  (1994)  que  constroiem 

portfolios  estáticos  com várias  opções  vanilla. A primeira  envolve  uma relação  designada  por 

simetria put-call e usa opções com a mesma maturidade e diferentes preços de exercício. A segunda 

divide o tempo em vários intervalos e procura replicar o valor da opção na barreira através de outras 

opções com diferentes maturidades.

As estratégias são avaliadas num ambiente de movimento Browniano geométrico e em dados reais 

do índice S&P 500.

Palavras-chave: Black-Scholes-Merton, Opções com Barreira, Delta Hedging, Static Hedging

Classificação JEL: G12, G13

I



Abstract

Barrier options are exotic options that can be difficult to hedge due to the possibility of the delta and 

gamma values being very large close to the barrier. This thesis investigates methods to hedge barrier 

options that can minimize the profits and losses that arise when using a dynamic technique known 

as delta hedging. 

We present two methods by Carr (1994) and Derman (1994) that create a static portfolio of vanilla 

options. The first method uses the put-call symmetry relationship and builds a portfolio of different 

options with the same maturity and different strikes. The second method divides time into intervals 

and tries to match the barrier option payoff at each of theses intervals with other vanilla options.

The techniques are  evaluated in  the geometric  Brownian motion environment  where they were 

deduced and in real market conditions with time series of the S&P 500 index.

Keywords: Black-Scholes-Merton, Barrier Options, Delta Hedging, Static Hedging

JEL Classification: G12, G13
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Notation

S – asset price

K – exercise price

H – barrier price

R – rebate

r – risk-free interest rate

q – asset yield

t – time instant

T – ending time
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Hedging of Barrier Options

 1 Introduction

In recent  years,  the use and importance of derivatives,  financial  instruments  whose value 

depends on the value of other underlying variables, has grown enormously as mathematical 

models to value them appear and more research is devoted to their study. Derivative contracts 

are  widely  traded  on  many  exchanges  throughout  the  world  and  in  the  over-the-counter 

market where financial institutions trade between them and some of their biggest clients.

Many of this institutions now employ mathematicians, statisticians, physics and engineers to 

handle the complex mathematics behind many derivatives. Their job is to trade, value and 

analyse the risk to the financial institution of trading derivatives.

Options are one type of derivative contract that provide their buyer a right and their seller an 

obligation. They can be categorized as non-linear derivatives, as their value is a non-linear 

function of  the underlying asset  price,  and further  divided between standard,  also termed 

vanilla, and exotic options. Exotic options appear as the development of mathematical finance 

provided financial institutions with the tools to meet different market views of clients apart 

from the typical upside and downside exposition to a financial asset provided by standard 

options. Barrier options are one type of exotic options where the payoff depends on whether 

or not the barrier was breached during the life of the option.

Financial institutions that trade options are often only interested in providing a service to their 

clients and are not expressing a particular view on some underlying asset. They are left with 

the task of hedging the risk of the positions assumed which can be a complex procedure 

because of the non-linear characteristics of options.

One of  this  procedures  follows  directly  from the  derivation  of  the  Black-Scholes-Merton 

model in Black and Scholes (1973) and Merton (1973) and builds a riskless portfolio of the 

underlying  asset  and  risk-free  securities  that  is  continuously  rebalanced.  This  dynamic 

hedging technique can be applied to barrier options but is subject to substantial error when the 

portfolio cannot be continuously rebalanced as is often the case.

To overcome the difficulties of dynamic hedging, static hedging techniques were proposed. In 

Carr (1994), Carr (1997) and Carr (1998) the authors use a relationship between options of 

different strikes to create a static portfolio that can be used to hedge barrier options. Derman 
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(1994)  took a  slightly  different  approach by constructing  a  portfolio  with many different 

maturities that replicates a target option boundary payoff.

An evaluation of this techniques is carried out in this paper. The rest of the thesis is organized 

as follows:

Chapter 2 provides the theoretical background of options and their mathematics. The Black-

Scholes-Merton  model  is  introduced  and  the  eight  barrier  options  are  valued  under  the 

assumptions of this model. We also introduce the risk measures of barrier options, or greeks, 

and compare them to the greeks of vanilla options.

Chapter 3 introduces methods to hedge barrier options. The process of dynamic hedging is 

described  and  two  techniques  for  static  hedging,  the  put-call  symmetry  and  the  option 

boundary replication, are explained.

Chapter 4 tests the hedging models under computer generated data and real market data.

Chapter 5 concludes.
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 2 Theoretical Background

 2.1 Options

Options are contracts where the holder has a right and the seller a liability. A call option gives 

its holder the right to buy an asset by a certain date at a certain price. A put option gives its 

holder the right to sell an asset by a certain date at a certain price. The price at which the 

holder of the option can buy (sell) the asset and at which the seller has to sell (buy) is called 

the exercise price or strike. The date at which the option rights expire is called the expiration 

or maturity date. If the holder can only exercise his right at the maturity of the option contract 

then the option is of the European type. If, on the contrary, the holder can exercise his right at 

any time before or at maturity, the option it of the American type.

The call option payoff is defined mathematically as

c=maxS−K ,0  (1)

where S is the asset price at expiration and K is the exercise price. Similarly, the payoff  of the 

put option is defined as

p=maxK−S ,0  (2)

 2.2 Black-Scholes-Merton Model

In 1973 a major breakthrough in  the pricing of options was achieved.  Fischer Black and 

Myron Scholes in Black and Scholes (1973) and Robert Merton in Merton (1973) were able to 

model  and develop  a  closed  pricing  formula  for  European options.  Their  work was later 

recognized with the Nobel prize for economics award.

The Black-Scholes-Merton model develops on the assumption that an asset price follows a 

geometric Brownian motion with constant drift and volatility, a continuous-time, continuous-

variable stochastic process also called a generalized Wiener process that satisfies the equation
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dS
S
=r−qdt dz  (3)

where  S is the asset price,  r is the continuously compounded risk-free interest rate,  q is the 

continuously compounded asset yield, σ is the standard deviation of the return of the asset or 

annualized  volatility  and  dz is  a  Wiener  process.  By  definition,  dz follows  a  normal 

distribution with mean zero and variance rate equal to the time instant dt

With this model for the asset price and using a well known result from stochastic calculus 

called Itô's lemma, we arrive at the stochastic process followed by a function of the asset price 

from the stochastic process followed by the asset price itself. From Itô's lemma, the process 

followed by a function G of S and t when S follows the process defined by (3) is

dG= ∂G
∂ S

r−q S∂G
∂ t

∂2G
∂ S2 

2 S 2dt∂G
∂ S

 S dz  (4)

Taking into account expression (4) it follows that the process followed by ln S is

d ln S=r−q−2

2 dt dz  (5)

Therefore,  the  change  in  ln  S between  time  zero  and  some  future  time  T is  normally 

distributed

ln
S T

S 0
~[r−q− 2

2 T , 2T ]  (6)

where ϕ(m,v) is a normal distribution with mean m and variance v.

Integrating both sides of equation (5) between t and T we have that

ST=S t exp[r−q− 2

2 T−t ∫t

T
dz ]  (7)

Knowing that ln S follows a normal distribution, the price of an asset at future time T given its 

price today follows a log-normal distribution. The only source of uncertainty is the Wiener 
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process which is the same for both S and ln S.

We now construct a portfolio of the asset and a derivative f and try to eliminate this source of 

uncertainty keeping in mind that the derivative f must satisfy equation (4). Defining Π as the 

portfolio value

=− f ∂ f
∂ S

S  (8)

And taking the discrete versions of equations (3) and (4) results in

=−∂ f
∂ t

−1
2
∂2 f
∂ S 2 

2 S 2 t  (9)

which does not involve the source of uncertainty dz. Therefore, the portfolio must be riskless 

for the period of time Δt and, according to risk neutral valuation, must earn the same as other 

short-term risk-free securities or an arbitrage opportunity would arise

= r−q t  (10)

When we substitute equations (8) and (9) into equation (10) we obtain the Black-Scholes-

Merton partial differential equation

∂ f
∂ t

 r−qS ∂ f
∂ t

1
2
 2 S 2 ∂2 f

∂ S 2=rf  (11)

This  equation  has  many  solutions  corresponding  to  the  different  derivatives  that  can  be 

defined on S. If we define the following boundary conditions

{ f S ,T =maxS−K ,0 t=T
f S ,t S t ∞
f 0, t =0 ∀ t

 (12)

and solve the Black-Scholes-Merton partial differential equation we arrive at the following 

formula for the time zero price of an European option

5



Hedging of Barrier Options

c=Se−qT N d 1−Ke−rT N d 2  (13)

where

d 1=
ln S

K r−q 2

2 T
 T

 (14)

d 2=
ln S

K r−q−2

2 T
T

=d 1− T
 (15)

and  N(x) is  the  cumulative  probability  distribution  function  of  the  standard  normal 

distribution.

From the put-call parity given by

cK e−rT= pS e−qT  (16)

we obtain the pricing formula for an European put option

p=Ke−rT N −d 2−Se−qT N −d 1  (17)

The following assumptions  apart  from the  geometric  Brownian  motion  were  made while 

deriving the pricing formulas for European call and put options:

• It is possible to short-sell the asset with full use of the proceeds;

• There are no transaction costs or taxes;

• Securities are perfectly divisible and trading is continuous;

• There are no riskless arbitrage opportunities;

• The risk-free interest rate is constant for all maturities and one can borrow and lend at 

this rate.

 2.3 Barrier Options

While the payoff of standard call and put options only depends on the price of the underlying 

at maturity, barrier options are path-dependent exotic derivatives whose value depends on the 
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underlying having breached a given level, the barrier, during a certain period of time. The 

market for barrier options has grown strongly because they are cheaper then corresponding 

standard options and provide a tool for risk managers to better express their market views 

without paying for outcomes that they may find unlikely.

We can divide barrier options into knock-in and knock-out options. An European knock-in 

option is an option whose holder is entitled to receive a standard European option if a given 

level is breached before expiration date or a rebate otherwise. An European knock-out option 

is a standard European option that ceases to exist if the barrier is touched, giving its holder the 

right to receive a rebate. In both cases the rebate can be zero.

The way in which the barrier is breached is important in the pricing of barrier options and, 

therefore, we can define down-and-in, up-and-in, down-and-out and up-and-out options for 

both calls and puts, giving us a total of eight different barrier options. There are more complex 

types of barrier options like double barrier options but we will not cover them in this text.

 2.4 Relationships

Suppose that we have a portfolio composed of a down-and-in call and a down-and-out call 

with identical characteristics and no rebate. If the barrier is never hit the down-and-out call 

provides us a standard call. If the barrier is hit then the down-and-out call expires worthless 

but the down-and-in call emerges as a standard call. Either way we end up with a vanilla call 

so the following relationship between barrier options and vanilla options must hold when the 

rebate is zero

c=cdicdo  (18)

With a similar reasoning we can reach the same relationships for the other barrier options

c=cuicuo  (19)

p= pdipdo  (20)

p= puipuo  (21)
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 2.5 Restricted Distribution

To price standard options in the Black-Scholes-Merton model we used the density function 

f x = 1
 2T

exp[−x−T 2

22 T ]  (22)

where

=r−q−2

2  (23)

which results directly from expression (7) and the probability density function of the standard 

normal distribution.  The distribution (22) is  the unrestricted distribution of the underlying 

asset return because no condition on the path of S is imposed.

On the other hand, barrier options are claims conditional on the path of S and, therefore, the 

distribution of the underlying asset return is restricted. This restriction raises the need for a 

new density function conditioned on the barrier being breached and leads us to the study of 

absorbing and reflecting barriers.

An absorbing barrier is a barrier which upon touching all particles vanish thus resembling 

knock-out barrier  options.  A reflecting barrier  is one in which,  as stated by the reflection 

principle, for every sample path that hits level  y before time  t but finishes below level  x at 

time t, there is another equally probable path that hits y before time t and then travels upwards 

at least (y-x) units to finish above level (2y-x).

The variables  y and  Y will be defined as the, respectively, minimum and maximum rate of 

return of the underlying asset from time t to time T

y=minln S

S t ∣∈[ t , T ]  (24)

Y =maxlnS 

S t ∣∈[t ,T ]  (25)

In Harrison (1985) is shown that the density function of the return of the asset conditional on 
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an upper barrier U never being touched is given by

x∣Y lnU
S ={ f x −U

S 
2
2

f  x−2lnU
S  xlnU

S 
0 x≥lnU

S 
 (26)

which is the same as the solution to a Brownian motion with an absorbing barrier. Making use 

of  the  identity  that  expresses  the  probability  that  the  barrier  is  never  touched  and  the 

probability that the barrier is indeed touched

x∣Y lnU
S x∣Y ≥lnU

S = f x   (27)

we can easily find that the density function of the return of the asset conditional on a upper 

barrier U being touched is given by

x∣Y ≥lnU
S ={U

S 
2
2

f x−2lnU
S  xlnU

S 
f  x x≥lnU

S 
 (28)

Also in Harrison (1985) the density function of the return of an asset conditional on a lower 

barrier L never being touched is shown to be given by

x∣yln L
S ={ f x − L

S 
2
2

f x−2ln L
S  xln L

S 
0 x≤ln L

S 
 (29)

and using an expression similar to (27)

 x∣yln L
S x∣y≤ln L

S = f x   (30)
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we find that the density function of the return of the asset conditional on a lower barrier  L 

being touched is given by

x∣y≤ln L
S ={ L

S 
2
2

f x−2ln L
S  xln L

S 
f x  x≤ln L

S 
 (31)

Looking closer at the density functions we see that we can replace both U and L for a general 

barrier H without changing the meaning of the formulas.

When pricing rebates for knock-in barrier options we are interested in the density function of 

the return of an asset conditional on the barrier never being hit. We can only know if this 

condition holds at the expiration of the option. Thus we can use the previously developed 

density functions to price the rebate.

In the presence of a  knock-out  barrier  option the rebate  is  priced differently because the 

barrier can be breached at any time until maturity. We need a new density function that takes 

into account the distribution of the first passage time at a particular point which can be shown 

to be given by

T∣lnU
S 0= ln U /S 

2T 3 exp[− ln U /S −T 2

22 T ]  (32)

This density function works for both up-and-out and down-and-out barrier options as long as 

we change the sign of the expression.

 2.6 Pricing formulas

Merton (1973) and Rubinstein (1991a) derived the following closed formulas for the pricing 

of European barrier options. They make use of the restricted, unrestricted and first passage 

time density functions developed in the previous section and the remaining Black-Scholes-

Merton model assumptions.

A=Se−qT N  x1− Ke−rT N  x1− T   (33)
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B=Se−qT N  x2−Ke−rT N  x2−T   (34)

C= Se−qTH
S 

22
2

N  y1− Ke−rT H
S 

2
2

N  y1−T   (35)

D=Se−qT H
S 

22
2

N  y2−Ke−rTH
S 

2
2

N  y2− T   (36)

E=R e−rT[N  x2− T −H
S 

2
2

N  y2− T ]  (37)

F=R[H
S 


2

N  z − H
S 


2−

N  z−2 T ]  (38)

x1=
ln S /K 
T

1 
 2  T  (39)

x2=
ln S /H 
T

1 
2 T  (40)

y1=
ln H 2/SK 

T
1 

2 T  (41)

y2=
ln  H /S 
T

1 
 2  T  (42)

z=ln  H /S 
T

T  (43)

=  2 
2

 2r
2  (44)

where ϕ and η are variables that can be set to 1 or -1.

Note that we can merge expressions  (13) and  (17) for the Black-Scholes-Merton price of a 

call and put option respectively to obtain a general vanilla option pricing formula. If ϕ is set to 
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1 then expression (33) becomes the call option pricing formula from (13). If ϕ is set to -1 the 

same expression is equal to the put option pricing formula (17).

 2.6.1 Down-and-in Call
The down-and-in call option gives its holder the right to receive a vanilla call option if the 

barrier H is hit or a rebate R otherwise. At inception the underlying price S is higher than the 

barrier  H and  has  to  move  down  before  the  regular  option  becomes  active.  Expressed 

mathematically, the payoff function is

cdi={ maxS−K ; 0 ∃ t≤T : S t≤H
R ∀ t≤T : S tH  (45)

When K≥H we value the option using the restricted density function in the interval [K; +∞[. If 

K≤H we need to split the integration region and use the unrestricted density function in the 

interval [K;  H] and the restricted density function in the interval [H; +∞[.  The price of a 

down-and-in call is then given by

cdi={CE K≥H ;=1 ;=1
A−BDE K≤H ;=1 ;=1  (46)

 2.6.2 Up-and-in Call
Like the down-and-in, the up-and-in call option gives its holder the right to receive a regular 

call option if the barrier  H is breached or a rebate  R otherwise, but the underlying price  S 

starts below the barrier  H and has to move up for the regular option to be activated. The 

payoff function is defined as

cui={ maxS−K ; 0 ∃t≤T : S t≥H
R ∀ t≤T : S tH  (47)

If K≥H the value of the option is simply the value of a standard call option. If, instead, K≤H 

we use  the  restricted  density  function  in  the  interval  [K;  H]  and  the  unrestricted  density 

function in the interval [H; +∞[. The price of a up-and-in call is then given by

12
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cui={AE K≥H ;=−1 ;=1
B−CDE K≤H ;=−1 ;=1  (48)

 2.6.3 Down-and-in Put
A down-and-in put option gives its holder the right to receive a standard put option if the 

barrier H is hit or a rebate R otherwise. The underlying price S starts above the barrier H and 

has  to  move  down  before  the  vanilla  put  is  born.  The  payoff  function  is  expressed 

mathematically by

pdi={ maxK−S ; 0 ∃t≤T : S t≤H
R ∀ t≤T : S tH  (49)

If  K≥H we value the option with restricted density function in the interval [H;  K] and the 

unrestricted density function in the region ]-∞; H]. When K≤H the value of the down-and-in 

put is the value of a vanilla put option. The price of a down-and-in put is given by

pdi={B−CDE K≥H ;=1 ;=−1
AE K≤H ;=1 ;=−1  (50)

 2.6.4 Up-and-in Put
The up-and-in put option gives its holder the right to receive a regular put option if the barrier 

H is hit or a rebate R otherwise. At inception the underlying price S is lower than the barrier H 

and has to move up for the regular put option to become activated. Expressed mathematically, 

the payoff function is

pui={ maxK−S ;0 ∃t≤T : S t≥H
R ∀ t≤T : S tH  (51)

When K≥H the standard option is born in the money and valued as the sum of the unrestricted 

density function in the region [H; K] and the restricted density function in the region ]-∞;H]. 

If K≤H we simply use the restricted density function in the interval ]-∞;K]. The price of a up-

and-in put is then given by
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pui={A−BDE K≥H ;=−1 ;=−1
CE K≤H ;=−1 ;=−1  (52)

 2.6.5 Down-and-out Call
A down-and-out call option is a regular call option that expires worthless or paying rebate R 

as soon as the barrier H is hit. At inception the underlying price S is higher than the barrier H. 

The payoff function is expressed as

cdo={maxS−K ;0 ∀ t≤T : S tH
R ∃ t≤T :S t≤H  (53)

It is easy to price the down-and-out call by making use of the relationship between barrier and 

standard options. Substituting expression (46) into expression (18) gives the following result:

cdo={A−CF K≥H ;=1 ;=1
B−DF K≤H ;=1 ;=1  (54)

 2.6.6 Up-and-out Call
The up-and-out call option is a regular call option that expires and pays rebate R if the barrier 

H,  above the underlying  price  S at  inception,  is  breached.  Expressed  mathematically,  the 

payoff function is

cuo={maxS−K ;0 ∀ t≤T : S tH
R ∃ t≤T : S t≥H  (55)

When  K≥H the value of the option is the rebate because the option is knocked out before 

getting in the money. Making use of relationship (19) and expression (48) the price of the up-

and-out call is given by

cuo={F K≥H ;=−1 ;=1
A−BC−DF K≤H ;=−1 ;=1  (56)
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 2.6.7 Down-and-out Put
A down-and-out put option is a regular put option while the barrier H is not hit. If the barrier 

is breached then a rebate R is payed. In the beginning the underlying price S is higher than the 

barrier. The payoff function is given by

pdo={maxK−S ;0 ∀ t≤T : S tH
R ∃ t≤T : S t≤H  (57)

When  K≤H the value of the option is the rebate because the option is knocked out before 

getting in the money. Substituting expression (50) into expression (20) gives the following 

result: for the value of the down-and-out put

pdo={A−BC−DF K≥H ;=1 ;=−1
F K≤H ;=1 ;=−1  (58)

 2.6.8 Up-and-out Put
The up-and-out put option is a vanilla put option that expires paying a rebate R as soon as the 

barrier  H, above the underlying price  S at inception, is hit.  Expressed mathematically,  the 

payoff function is

puo={maxK−S ; 0 ∀ t≤T : S tH
R ∃ t≤T : S t≥H  (59)

Again,  we make use of  the  relationship  between vanilla  and barrier  options.  Substituting 

expression (52) into (21) gives the value of the up-and-out put as

puo={B−DF K≥H ;=−1 ;=−1
A−CF K≤H ;=−1 ;=−1  (60)
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 2.7 Greeks

Options are non-linear derivatives whose value depends on the price of an underlying asset. 

The greeks measure the sensitivities of the option value to changes in the parameters that are 

used to price the option. They provide crucial information to the risk manager who wishes to 

protect his portfolio from adverse market movements.

Closed formulas for the greeks of European options are widely known. While not providing 

closed formulas for the greeks of European barrier options, we can use numeric procedures to 

study the behaviour of delta, gamma, theta, vega and rho and point out the differences relative 

to standard options that make their hedging riskier.

As an example in the study of the greeks, consider an up-and-out call and a down-and-in put 

option with the following characteristics:

Exercise price – 100

Interest rate – 5%

Asset yield – 3%

Volatility –  20%

Up-and-out call barrier – 110

Down-and-in put barrier – 90

Rebate – 0

 2.7.1 Delta
The delta of an option measures the rate of change of the option value relative to changes in 

the underlying asset price. Defined mathematically, the delta is given by

=∂ f
∂ S  (61)

where f is the price of the option and S is the asset price. This means that when the asset price 

changes one unit, the price of the option on the asset will change by Δ units. When deducing 

the Black-Scholes-Merton model, delta was used to find the quantity of the underlying that 

the portfolio should have to be riskless. It is important to keep in mind that delta changes and 

the portfolio will be riskless only for an infinitesimal period of time.
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Vanilla call options have deltas that range from 0 to 1 and standard put options have deltas 

that range from -1 to 0 but the delta of a barrier option does not behave in such a convenient 

way.

Figure 1 shows the evolution of the delta of the up-and-out call option as the expiration date 

approaches. It is interesting to note that the delta of the barrier  option can be positive or 

negative depending on the underlying price and that its absolute value grows when we are 

near the barrier  and maturity gets  closer.  An important characteristic  of knock-out barrier 

options is that if the barrier is touched the delta goes immediately to zero forcing the risk 
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Figure 1: Delta of the up-and-out call option with different times to maturity.
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Figure 2: Delta of the down-and-in put option with different times to maturity.
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Hedging of Barrier Options

manager to buyback or sell all the underlying asset in his portfolio.

In Figure 2 we see another characteristic of barrier options that is very important to the risk 

manager which is the absolute value of delta possibly being much larger than one. This can 

have a enormous impact in the trading of the underlying asset as trading costs rise and the 

market may not offer appropriate liquidity for the risk manager to correctly rebalance his 

portfolio.

 2.7.2 Gamma
The gamma of an option measures the rate of change of the delta as the underlying asset price 

changes. It is the second partial derivative of the price of the option relative to the asset price 

and is defined by

=
∂
∂ S

=
∂2 f
∂ S 2  (62)

Gamma is an important measure of risk because if gamma is small then delta changes slowly 

and keeping a delta neutral portfolio only requires small and infrequent adjustments. If, on the 

contrary, the absolute value of gamma is large then delta changes quite rapidly as well as the 

frequency and size of adjustments and, consequently, the profit or loss arising will be much 

larger. It is also important to note that when gamma is positive the adjustment needed to keep 

a delta neutral portfolio results in a profit and when gamma is negative the adjustment results 

18

Figure 3: Gamma of the up-and-out call option with different times to maturity.
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in a loss.

Looking at Figure  3 there are two key aspects of the gamma of a barrier option to keep in 

mind. First, contrary to vanilla options, the gamma can change from positive to negative and 

vice-versa without one changing from being long or short the option. Second, the absolute 

value of gamma is usually larger than the gamma of a standard option and can be extremely 

large near the barrier. The consequence of this behaviour is the enhanced difficulty the risk 

manager faces when rebalancing his portfolio to keep it delta neutral.

 2.7.3 Theta
The theta of an option measures how much the price of an option will change as time passes 

and is sometimes referred to as the time decay.

=∂ f
∂ t  (63)

While the theta of a standard option is negative except in a few special cases, the theta of a 

barrier option can be positive or negative. This means that the holder of a knock-out barrier 

option can gain value as time passes as can be seen in Figure 4. The rationale is simple: if the 

option is in-the-money, as time passes, the probability of being knocked-out diminishes and, 

consequently, its value increases.
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Figure 4: Theta of the up-and-out call option with different times to maturity.
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 2.7.4 Vega
The Black-Scholes-Merton assumes that the underlying asset volatility is constant. In practice 

this is seldom true because the implied volatility of an option will change as traders adjust 

their  expectations for future volatility.  Vega measures the change in the option price with 

changes in the implied volatility.

VEGA=∂ f
∂  (64)

Volatility is  the  single  most  important  factor  that  influences  the  price  of  an option.  Both 

vanilla  calls  and puts  rise  in value as volatility rises.  In barrier  options  this  behaviour  is 

different. Knock-in options will rise in value as volatility rises because the probability of the 

vanilla option emerging rises. Knock-out barriers  will  decrease in value as volatility rises 

because the probability of expiring worthless will rise.

 2.7.5 Rho
The rho of an option is the change in the option value when interest rates change

P=∂ f
∂ r  (65)

It is usually not looked into because the value of an option is not very sensitive to interest rate 

changes except in extreme circumstances.
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 3 Hedging

A financial institution acts as a market maker to its clients by being present in the market and 

providing liquidity by showing willingness to buy and sell at specific bid and ask prices. The 

market maker is trying to profit from the difference between the price he is willing to buy and 

sell.  When  an  options  market  maker  enters  into  a  transaction  he  is  left  with  the  task  of 

hedging his market risk.

On the other hand, the arbitrageur is trying to profit from the difference between theoretical 

and market prices of options. Volatility is one of the parameters of an option pricing model 

but we can only know the realized volatility of an asset at the expiration of the option. When 

pricing an option we need to estimate future volatility. The arbitrageur can try to profit from 

the difference between implied volatility in option market prices and the volatility that he 

believes will be realized by the underlying asset until the maturity date of the contract. He will 

then take a position in the option that he believes to be miss priced and in the underlying asset 

to hedge his exposition to market moves.

Both market  makers  and arbitrageurs  need a  framework to  hedge  their  risk.  This  section 

presents a method of dynamic hedging known as delta hedging that requires the continuously 

rebalancing of a portfolio composed by the option and the underlying asset. It is followed by 

two techniques of static hedging: the put-call symmetry and the boundary replication. Static 

hedging is an attempt to construct a fixed portfolio of vanilla options to replicate a target 

exotic option. The portfolio is built at the inception of the barrier option and is unwound when 

the barrier is breached or the option reaches maturity. The technique can be specially useful 

when  hedging  exotic  options  with  high  gamma,  like  barrier  options,  that  make  dynamic 

hedging both difficult and inaccurate.

 3.1 Delta Hedging

Recall that in the Black-Scholes-Merton model deduction we set up a portfolio of a derivative, 

an option for example, and a quantity  Δ of the underlying asset.  It was shown that for an 

infinitesimal period of time the portfolio is riskless and must earn the risk-free interest rate, 

such that the gain or loss from the asset position always offsets the gain or loss from the 
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derivative. As the asset price changes and time passes the delta of the option changes. This 

requires the quantity of the underlying asset in the portfolio to be adjusted so that the portfolio 

remains riskless. This form of dynamic hedging is called delta hedging.

Imagine that a call option is sold with the following characteristics:

Asset price – 100

Exercise price – 100

Time to maturity – 15 days

Risk-free interest rate – 5%

Asset yield – 3%

Volatility – 20%

Rebate – 0

Each call option contract is on 100 units of the underlying asset. Disregard weekends and 

assume that the portfolio rebalancing is done once a day at the close of the market. Table 1 

illustrates the delta hedging procedure for a possible sample path of the asset price.

Days to 

maturity
Asset price

Option 

delta

Quantity of 

asset 

purchased

Cost of 

asset 

purchased

Interest 

and yield
Total cost

15 100,00 0,52 52 5200,00 0,26 5034,00
14 100,83 0,60 8 806,64 0,30 5840,90
13 100,10 0,53 -7 -700,70 0,27 5140,50
12 101,07 0,63 10 1010,70 0,32 6151,47
11 99,64 0,47 -16 -1594,24 0,24 4557,55
10 99,01 0,39 -8 -792,08 0,20 3765,71
9 98,60 0,34 -5 -493,00 0,17 3272,91
8 100,59 0,59 25 2514,75 0,31 5787,83
7 101,80 0,75 16 1628,80 0,39 7416,94
6 101,54 0,73 -2 -203,08 0,38 7214,25
5 102,68 0,88 15 1540,20 0,46 8754,83
4 103,12 0,93 5 515,60 0,48 9270,89
3 102,82 0,94 1 102,82 0,49 9374,19
2 102,41 0,95 1 102,41 0,50 9477,09
1 103,20 1,00 5 516,00 0,52 9993,59
0 104,35 1,00 0 0,00 9994,11

Table 1: Simulation of the delta hedging procedure.
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The initial Black-Scholes-Merton call option price is 1,66 and the risk manager receives 1,66 

x 100 = 166 upfront. The delta of the call is initially 0,52 so the hedger buys 52 units of the 

underlying asset for 100 x 52 = 5200. Total cost for first day of hedging is 5200 minus the 

premium received from the option buyer for a total of 5034 borrowed at the risk-free interest 

rate to finance the asset purchase.

On the second day the asset price has moved to 100,83 and the new option delta is 0,60. The 

risk manager finds himself  short  of 8 underlying assets  and buys them in the market for 

100,83  x 8 = 806,64 that he borrows. At the same time, the risk manager has incurred in 

interest costs from the loan he took to buy the underlying asset in day 1 and received the 

corresponding yield from the assets in his portfolio. The result is a total cost at the end of day 

2 of 5034 + 806,64 + 0,26 = 5840,90.

Next day the asset price falls to 100,10. The risk manager has 60 underlying assets, more than 

the new call option delta of 0,53, and sells 7 in the market realizing 100,10 x 7 = 700,70 that 

he uses to payback the money he borrowed after paying interest and receiving the asset yield. 

His total cost for the hedge is now 5840,90 – 700,70 + 0,30 = 5140,50.

The  risk  manager  follows  this  procedure  every  day  to  keep  a  riskless  portfolio.  On  the 

expiration day, the asset price is 104,35. As the option is in-the-money, the risk manager sells 

all the underlying asset in his portfolio realizing 104,35 x 100 = 10435 from which he uses 

(104,35  –  100)  x 100  =  435  to  fulfil  his  obligation  to  the  buyer  of  the  option  and  the 

remainder to payback the borrowed 9994,11. His net result is a profit of 5,89.

If the risk manager followed the Black-Scholes-Merton model and rebalanced his portfolio 

continuously  as  the  underlying  asset  evolved  to  the  expiration  date,  realizing  the  same 

volatility used as input to the model, he would be guaranteed by the model that the hedging 

cost incurred in the portfolio rebalancing would be exactly the initial value of the option, no 

matter the path the asset price took, resulting in profit and loss (P&L) of zero.

In practice it  is  impossible to continuously rebalance the portfolio because markets close, 

trading has costs, liquidity is finite and buying and selling is not always done at the desired 

price.  The risk manager  will  have to  choose discrete  times to adjust  the underlying asset 

position of his portfolio. As the previous example of delta hedging shows, the risk manager 

will end up with some P&L. In Kamal (1999) is shown that the standard deviation of the 

P&L, or hedging error, is directly proportional to the frequency of rebalancing but the average 
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result will be zero as if the hedging was carried out continuously. Figure  5 shows the P&L 

distribution for 1000 simulations of the delta hedging procedure for the previous call option 

which resulted in an average P&L around zero.

As mentioned before, the gamma of an option measures the change in delta as the underlying 

asset moves. As hedging cannot be carried out continuously, the gamma of the option will 

play a crucial role in the final P&L of the delta hedging strategy. When the absolute value of 

gamma is high, the risk manager will make a higher profit if long gamma and a higher loss if 

short gamma when the portfolio is rebalanced because the delta that needs to be adjusted is 

higher.

One of the inputs of the Black-Scholes-Merton model is the volatility and the model assumes 

that  volatility is  constant.  In  practice,  volatility is  seldom constant.  Unlike  the  remaining 

parameters, with the exception of the asset yield that might be uncertain, volatility cannot be 

directly observed in the market. We can only calculate the asset return volatility realized over 

a period of time at the end of that time, therefore, volatility has to be estimated. The risk 

manager should note that the delta hedging procedure assumes that one can correctly estimate 

the underlying asset future realized volatility over the life of the option. 

In standard call and put options, if one sells an option with implied volatility lower than the 

future realized volatility, a loss will be incurred as selling the option translates into a short 

volatility position. If an option is sold with implied volatility greater than the future realized 

volatility, then a gain will be made.
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Figure 5: Profit and loss distribution of 1000 simulations of the delta hedging procedure.
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The explanation is that the premium of an option is the amount the buyer of the option pays 

the seller to cover the expected loss made in the delta hedging procedure. If an option is sold 

with greater implied volatility than the future asset return volatility, the seller of the option 

will not lose as much money as the premium received because the expected adjustments to the 

replication portfolio are smaller, resulting in an expected positive difference.

When we are dealing with barrier options this behaviour is not so simple because, as we have 

seen before, a barrier option can have positive and negative vega over its life. If we have sold 

the barrier option and at a specific time the option vega is positive, money will be made if the 

underlying  asset  volatility  rises.  On  the  contrary,  if  vega  becomes  negative,  the  rise  in 

volatility will lead to a loss.

 3.2 Put-Call Symmetry

The put-call  symmetry is  a relationship between calls  and puts with different  strikes first 

studied by Bates (1988). It can be viewed as both an extension and a restriction on the put-call 

parity relationship between calls and puts of the same strike. Under the assumptions of the 

Black-Scholes-Merton model and further enforcing the drift rate of the underlying asset to be 

zero, the following relationship holds

C K1

K1

=
P K 2

K2
 (66)

where the geometric mean of the call strike K1 and the put strike K2 is the forward price F

K1 K 2=F  (67)

The zero drift assumption implies that the forward price must be equal to the spot price thus 

requiring zero carrying cost for options written on the spot price of the underlying asset.

This relationship can be shown to hold with restrictions even if we relax the Black-Scholes-

Merton model assumption that the volatility of the asset is a known constant. Carr (1998) 

shows that if the volatility of the forward price F is a known function of time σ(Ft, t) of the 

forward asset price Ft  and time t, the put-call symmetry still holds when
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F t , t = F2/F t , t  ∀ F t≥0∧t∈[0,T ]  (68)

This means that the volatility of the forward price F at any future date is the same for any two 

levels with the same geometric mean thus providing support for a symmetric volatility smile. 

As an example consider an asset whose current forward price is 100 and the volatility is 20%. 

The value of a call option on the asset with strike price 125 and volatility 25% is the same as 

the value of 1,25 put options with strike 80 as long as the volatility at this strike is also 25%.

In Carr (1994) the authors are able to use this symmetry to create a static replication portfolio 

for barrier options. Given the previous assumptions, the sale of a down-and-in call option 

when the strike K and the barrier H are equal is hedged by buying a standard put option with 

strike K. If the barrier is touched, put-call parity implies that, when the asset drift rate is zero, 

the value of the put option is equal to the value of one call option with the same strike and 

maturity. One can then sell the put option bought and use the proceeds to buy the call option 

that knocks-in without any out of pocket expenses. If the barrier is never breached the put 

options expire worthless as does the down-and-in call.

When the barrier H is below the strike K and the barrier is breached we need to buy an out-of-

the-money call option. In this case the put in the replication portfolio is at-the-money which 

translates into very different values between this put option and the emerging call option. 

Nevertheless the same hedging strategy can be used provided that we replace the put-call 

parity with the put-call symmetry. The relationship ensures that by going long K/H puts with 

strike H2/K we will have the funds needed to buy the call option with strike K if the barrier is 

touched. On the other hand, the puts, as the down-and-in call, will expire worthless if the 

barrier is not touched.

If the barrier  H is above the strike  K the hedging strategy has to be different because the 

emerging call is in-the-money and thus has intrinsic value. Define a down-and-in bond as a 

security that pays one monetary unit if at any time until maturity the asset price is equal to or 

below the  strike  K. We can  construct  a  replication  portfolio  for  the  down-and-in  call  by 

buying (H  − K) down-and-in bonds with strike  H that  provide  the intrinsic  value of  the 

emerging call at the barrier and a standard put option with strike  K that provides the time 

value.

The down-and-in bond can be valued using European binary and vanilla put options. Binary 
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options are valued in Rubinstein (1991b).  An European binary cash-or-nothing put option 

pays one unit of cash if the spot is below the strike at maturity. Its present value is given by

BP=e−rT N −x1T   (69)

It can also be valued and statically hedged as a portfolio constructed by a large number of 

long standard put options struck just above the strike and short the same number of standard 

puts below the strike as follows

BP K = lim
n∞

n
2 [P K1

n−P K−1
n]  (70)

where P(K) is a standard put with strike K and BP(K) is an European binary cash-or-nothing 

put option with strike K.

Given  that  when  the  forward  is  at  the  barrier  each  binary  put  has  approximately  50% 

probability  to  finish  in-the-money  when  discounting  the  positive  skew  of  the  price 

distribution, it can be shown that the value of a down-and-in bond with strike K is given by

Bdi K =2BP K − 1
K

P K   (71)

The down-and-out  call  is  constructed by buying a  standard call  option with strike  K and 

selling the portfolio of the down-and-in call as stated by relationship (18).

We have seen that, when the barrier is below the strike, the value of an up-and-in call is equal 

to the value of a standard call option and, consequently, a short position in the up-and-in call 

is hedged by going long a standard call  option.  When the barrier  is  above the strike,  the 

emerging call is in-the-money and the static hedging strategy has to be split, as in the down-

an-in call, into a replication of the intrinsic value and time value.

Since we are in the presence of an up barrier, we need to introduce the up-and-in bond with 

strike K as a security that pays one monetary unit if at any time until maturity the asset price is 

equal to or above the strike K. The up-and-in bond value is given by

Bui K =2BC K  1
K

C K   (72)
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where C(K) is a standard call with strike K and BC(K) is an European binary cash-or-nothing 

call with present value given by

BC=e−rT N x1− T   (73)

As with the European binary cash-or-nothing put, the European binary cash-or-nothing call 

can be statically hedged with the following portfolio of standard calls

BC K = lim
n∞

n
2[C K−1

n−C K1
n]  (74)

The up-and-in call can be hedged with (H  −  K) up-and-in bonds that provide the intrinsic 

value of the emerging call at the barrier. One could think that a long position in put options 

would provide the time value as in the replication of the down-and-in call but this could lead 

to problems at expiration if the put finishes in-the-money instead of out-of-the-money. The 

elegant  solution  is  to  go  long  an  up-and-in  put  as  this  security  can  only  have  value  at 

expiration if the barrier is touched and, at that moment, it will be instantly sold. To hedge the 

up-and-in put we can follow the same reasoning used for the down-and-in call to see that, 

when the barrier H is higher then the strike K, the put-call symmetry guarantees that the value 

of the emerging put option is the same as the value of K/H calls struck at H2/K.

With similar reasoning we can find the replication portfolio of the remaining barrier options. 

Table  2 is a summary of the hedging strategy provided by the put-call symmetry when the 

rebate is zero, where C(X) is a call with strike X, P(X) is a put with strike X, Bui(X) is an up-

and-in bond with strike X and Bdi(X) is a down-and-in bond with strike X. When the rebate is 

not zero one can use the in bonds developed to statically hedge its risk.

As mentioned before, the put-call symmetry implies that the drift rate of the asset is zero. If 

this is not the case than the value of the replication portfolio is no longer ensured to be zero 

along the barrier,  in case of knock-out options,  or equal to the funds required to buy the 

emerging option,  in case of knock-in options. The reason is that the forward value at the 

barrier  is  different  from the  spot  which  implies  that  call  and  put  values  with  the  same 

geometric mean are no longer equal. Even so, Carr (1994) is able to deduce tight bounds for 

barrier option values with static hedges when the zero drift assumption is relaxed.
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Option Replication

Down-and-in call cdi={K
H

P H 2

K  H≤K

H−K  Bdi H P K  H≥K
 (75)

Down-and-out call cdo={C K − K
H

P H 2

K  H≤K

C K −H−K BdiH −P K  H≥K
 (76)

Up-and-in call cui={C K  H≤K
K
H

C H 2

K H−K BuiH  H≥K (77)

Up-and-out call cuo={0 H≤K

C K − K
H

C H 2

K −H−K  Bui H  H≥K (78)

Down-and-in put pdi={K
H

P H 2

K K−H Bdi H  H≤K

P K  H≥K
(79)

Down-and-out put pdo={P K − K
H

P H 2

K −K−H Bdi H  H≤K

0 H≥K
(80)

Up-and-in put pui={K−H  Bui H C K  H≤K
K
H

C H 2

K  H≥K (81)

Up-and-out put puo={P K −K−H BuiH −C K  H≤K

P K − K
H

C H 2

K  H≥K
(82)

Table 2: Put-call symmetry hedging strategy for barrier options with zero rebate.

As this technique uses options to build a replication portfolio instead of dealing directly with 

the underlying asset, the portfolio is also somewhat protected against moves in the implied 

volatility of the options used in the portfolio. As long as the volatility at two levels with the 

same geometric mean is the same, the portfolio will always match the barrier option. This 

means that positive and negative shifts in the skew and in the term structure of volatility do 
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not impact the replication portfolio value at the barrier.

 3.3 Boundary Replication

In Derman (1994) a technique of static hedging using standard options as building blocks is 

explained. Given a particular target option, the authors are able to construct a portfolio of 

vanilla options with fixed weights that will replicate the target option value for a range of 

future times and market levels  without  further  adjustments and within the Black-Scholes-

Merton framework.

In  the  model,  an  option  can  be  hedged  with  a  position  in  the  underlying  asset  and  its 

theoretical  value  is  the  discounted  expected  payoff  at  the  option  maturity.  This  payoff  is 

subject to the predefined boundary conditions of the option. If we are able to construct a 

portfolio of standard options that has the same value everywhere in the boundary and the 

same cash flows within the boundary, the model guarantees that the replication portfolio and 

the target option will have the same value everywhere inside the boundary.

The principle of static replication states that it is possible to replicate a target option for all 

future underlying asset prices and times within some boundary by constructing a portfolio of 

standard options with the same net cash flows within this boundary and the same values on 

the boundary.

To illustrate  the procedure,  Figure  6 shows an example of  a  target  option with  an upper 
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Figure 6: Boundary conditions of a general option.
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boundary,  a  lower  boundary and an expiration  boundary for  which we try to  construct  a 

replication  portfolio  with  standard  options.  The  first  step  is  to  replicate  the  expiration 

boundary t=T by matching it with a combination of options with different strikes that expire at 

this maturity. Moving back one time step to t=3, we compute the theoretical value at this time 

of  the  options  used  to  match  the  expiration  boundary  condition  in  the  upper  and  lower 

boundary,  which will probably be different than the theoretical value of the target option. 

Then we choose a  new combination of standard options that,  when added to the existing 

replication  portfolio,  will  match  the  theoretical  value  of  the  target  option.  For  the  upper 

boundary, we enter into a position on call options with expiration date on  t=T and exercise 

price Uexp or more. The new calls will expire out-of-the-money below asset price Uexp and not 

alter the payoff already achieved for that time step. The same reasoning leads to a position on 

put options with maturity t=T and exercise price Lexp or lower.

Having achieved the desired payoff for time steps t=T and t=3, we move back to t=2 and add 

more call options with expiration t=3 and strikes above U3 and put options with strike below 

L3. And so on until we reach time step t=0.

The more points in time that we match the target option, the better replication we can achieve. 

If an infinite number of matching point were used then the replication would be perfect.

It is important to note that, if the asset price hits the boundary, the replication portfolio needs 

to  be  unwound  and  replaced  with  the  security  that  produces  the  target  option  value  on 

expiration.

We can use the method to replicate barrier options. Consider the following up-and-out call 

option:

Asset price – 100

Exercise price – 100

Barrier – 120

Time to expiration – 1 year

Risk-free interest rate – 5%

Asset yield – 3%

Volatility – 20%

Rebate – 0

Theoretical value – 1,11
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The up-and-out call is a regular call option if the barrier is never breached until maturity. This 

is the expiration boundary condition and can be replicated by buying a standard call option 

with exercise price 100 and time to expiration 1 year.

Moving back 6 months the value of this option when the asset price is at the barrier is 21,29, 

much higher than the theoretical value of the up-and-out call at this boundary which is zero. 

The solution is to eliminate this value by selling 2,94235 vanilla call options with strike 120 

and one year to maturity. The quantity 2,94235 is the number of call options with strike 120 

that, when the asset price is 120 and the time remaining to maturity is 6 months are valued at 

7,24 each, are needed to eliminate the portfolio value of 21,29 created by the call option with 

strike 100. The call options sold will not alter the portfolio value already achieved for the 

expiration boundary because they will expire out-of-the-money inside the boundary. The sum 

of the values of the call options sold and the call already in the replication portfolio is now 

zero when we are 6 months away from maturity.

At the inception of the up-and-out call, the previous replication portfolio has a negative value 

of -7,51 which is lower than the up-and-out call value of zero at the barrier. To achieve the 

theoretical value of zero we buy 1,03796 call options struck at 120 and time to maturity 6 

months so that we do not alter the replication already achieved for the final 6 months of the 

option life. The value of such an option is 7,24 and thus 1,03796 options are needed to void 

the 7,51 portfolio value.

The complete replication portfolio is given in Table 3.

Quantity Option Strike Expiration Value S=100
1,00000 Call 100 1 year 8,65253
-2,94235 Call 120 1 year -7,27248
1,03796 Call 120 6 months 0,84980

Total 2,23

Table 3: Replication portfolio of the up-and-out call with matching every 6 months.

Notice  that  at  inception  the  replication  portfolio  value  is  2,23,  much  higher  than  the 

theoretical value of the up-and-out call option which is 1,11. Also, the portfolio suffers from 

substantial replication error as can be seen in Figure 7 that charts the difference between the 

replication portfolio value and the theoretical up-and-out call value along the barrier.
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We can minimize the replication error by modelling the barrier boundary at more discrete 

times. Table 4 shows the replication portfolio when the boundary condition is modelled every 

two months. The replication portfolio value at inception is now 1,49, much closer to the 1,11 

theoretical value, and the replication error is also minimized as can be seen in Figure 8.

Quantity Option Strike Expiration Value S=100
1,00000 Call 100 1 year 8,65253
-4,96280 Call 120 1 year -12,26631
2,04107 Call 120 10 months 3,90234
0,65318 Call 120 8 months 0,88475
0,30681 Call 120 6 months 0,25119
0,17626 Call 120 4 months 0,06135
0,11444 Call 120 2 months 0,00508

Total 1,49

Table 4: Replication portfolio of the up-and-out call with matching every 2 months.

If  we  model  the  barrier  boundary  every  month,  the  difference  between  the  replication 

portfolio value at inception and the theoretical up-and-out call value is even further minimized 

as shown in Table 5. At inception the value of the replication portfolio is 1,30, higher than the 

1,11 theoretical value of the up-and-out call.

33

Figure 7: Up-and-out call replication error along the barrier, in money units, with matching 
every 6 months.
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Quantity Option Strike Expiration Value S=100
1,00000 Call 100 1 year 8,65253
-7,04591 Call 120 1 year -17,41505
2,97941 Call 120 11 months 6,53146
1,00695 Call 120 10 months 1,92520
0,49120 Call 120 9 months 0,80168
0,28843 Call 120 8 months 0,39069
0,18953 Call 120 7 months 0,20508
0,13425 Call 120 6 months 0,10991
0,10030 Call 120 5 months 0,05725
0,07797 Call 120 4 months 0,02714
0,06249 Call 120 3 months 0,01034
0,05131 Call 120 2 months 0,00228
0,04296 Call 120 1 month 0,00007

Total 1,30

Table 5: Replication portfolio of the up-and-out call with matching every month.

Matching 2 months 1 month 2 weeks 1 week Theoretical

Value 1,49 1,30 1,20 1,15 1,11

Table 6: Comparison of the replication portfolio value with different matching intervals with 
the theoretical up-and-out call value.

Table  6 shows how quickly the replication portfolio value approaches the theoretical option 

value  as  the  boundary  matching  interval  is  minimized.  Using  26  options  to  match  the 
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Figure 8: Up-and-out call replication error along the barrier, in money units, with matching 
every 2 months.
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Hedging of Barrier Options

boundary the present value of the portfolio is 1,20. With 52 different options the value is 1,15.

Figure 9 shows the replication portfolio error along the barrier boundary when the up-and-out 

call  value is  matched every month and every two weeks.  It  can be seen that  the biggest 

problem is modelling the target barrier option close to expiration.

If at any time the barrier is hit, the portfolio is unwound and the theoretical value of zero 

should be realized. In practice, the value of the replication error along the barrier, which in 

this case is always positive, will be realized resulting in a profit to the risk manager.

Now consider an up-and-in call option with the same characteristics as the up-and-out. The 

up-and-in option is worth nothing at the expiration if the barrier is never breached so the 

replication of the expiration boundary is any empty portfolio. Working back one month we 

have a theoretical value of zero for the replication portfolio because there are no options in it 

while we should have the theoretical value of 20,12 that corresponds to the value of a call 

option with strike 100 and maturity in 1 month. To match the boundary value we add call 

options with time to expiration 1 year and strike 120 until their value at that time is 20,12. We 

go back another month and repeat the process until  we reach the initial  time and have a 

complete replication portfolio.

We can also recall equation (19) which states that an up-and-in call is the same as buying a 

standard call option and selling an up-and-out call to see that the replication portfolio shown 

in Table 7 is just the inverse position in the options of Table  5 without buying the call with 
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Figure 9: Up-and-out call replication error along the barrier, in money units, with matching 
every month and every two weeks.
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strike 100 used to match the expiration boundary .

Quantity Option Strike Expiration Value S=100
7,04591 Call 120 1 year 17,41505
-2,97941 Call 120 11 months -6,53146
-1,00695 Call 120 10 months -1,92520
-0,49120 Call 120 9 months -0,80168
-0,28843 Call 120 8 months -0,39069
-0,18953 Call 120 7 months -0,20508
-0,13425 Call 120 6 months -0,10991
-0,10030 Call 120 5 months -0,05725
-0,07797 Call 120 4 months -0,02714
-0,06249 Call 120 3 months -0,01034
-0,05131 Call 120 2 months 0,00228
-0,04296 Call 120 1 month -0,00007

Total 7,35

Table 7: Replication portfolio of the up-and-in call with matching every month.

If the barrier is hit at any time until expiration the portfolio is unwound and the theoretical 

value  needed to buy the call option with strike 100 is realized. In practice, the value realized 

is subject to the replication error which, in this case, is negative as shown in Figure 10. This 

means that the replication portfolio may not provide sufficient funds to buy the emerging 

option in case the barrier is breached.
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Figure 10: Up-and-in call replication error along the barrier, in money units, with modelling 
every month.
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Matching 2 months 1 month 2 weeks 1 week Theoretical

Value 7,16 7,35 7,46 7,5 7,55

Table 8: Comparison of the replication portfolio value with different matching intervals with 
the theoretical up-and-in call value.

Table 8 show the convergence of the replication portfolio to the theoretical option price as the 

number of matching times increases.

Now consider the following down-and-out call option:

Asset price – 100

Exercise price – 100

Barrier – 90

Time to expiration – 1 year

Risk-free interest rate – 5%

Asset yield – 3%

Volatility – 20%

Rebate – 0

Theoretical value – 7,08

The down-and-out call  option is a regular option while the barrier is not breached so the 

expiration boundary is a vanilla call option with exercise price 100 and expiration in one year. 

The difference in the replication portfolio relative to the up-and-out call is the presence of a 

lower boundary which will force us to use put options with exercise price 90 or lower to 

match the down-and-out on the barrier. An example of a replication portfolio is shown on 

Table 9. The theoretical value of the portfolio at inception is 7,07, only 0,01 away from the 

theoretical value of the theoretical value of the down-and-out call.  If the barrier is hit the 

portfolio is unwound for a theoretical value of zero.

Using equation (18) we can quickly find the replication portfolio for the down-and-in call by 

reversing the positions  in  the put options of  Table  9 and forgetting about  the call  option 

because the expiration boundary is zero if the barrier is never touched. If, at any time until 

expiration, the barrier  is indeed breached then the hedger ought to unwind the replication 

portfolio and use the realized value to buy a call option with strike 100 and expiration on the 
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maturity of the down-and-in call.

Quantity Option Strike Expiration Value S=100
1,00000 Call 100 1 year 8,65253
-0,03950 Put 90 1 year -0,11594
-0,14064 Put 90 11 months -0,38427
-0,12851 Put 90 10 months -0,32366
-0,10195 Put 90 9 months -0,23380
-0,08191 Put 90 8 months -0,16832
-0,06775 Put 90 7 months -0,12214
-0,05758 Put 90 6 months -0,08840
-0,05005 Put 90 5 months -0,06264
-0,04430 Put 90 4 months -0,04217
-0,03979 Put 90 3 months -0,02544
-0,03618 Put 90 2 months -0,01185
-0,03323 Put 90 1 month -0,00226

Total 7,07

Table 9: Replication portfolio for the down-and-out call option with matching every month.

For  barrier  puts  the  reasoning  is  similar.  The  down-and-out  put  replication  portfolio  is 

constructed by a put option to model the expiration boundary and put options with exercise 

prices  equal  or  lower than the barrier  and different  maturities to  match the payoff  at  the 

barrier. The down-and-in is, according to equation (20), just the opposite of the down-and-out 

portfolio without the put option corresponding to the expiration boundary. The up-and-out put 

barrier option uses a standard put to capture the expiration boundary payoff and, as it has an 

upper barrier, positions in call options with exercise prices equal to or higher then the barrier. 

Finally, according to equation (21), the replication portfolio for the up-and-in put option is 

constructed  with  the  reverse  positions  of  the  up-and-out  portfolio  without  the  put  option 

corresponding to the expiration boundary.

As in  all  barrier  options,  if  the barrier  is  hit  the  replication  portfolio  is  unwound with  a 

theoretical realization of zero for the knock-out barrier options and the value needed to buy 

the put option in case of a knock-in barrier option. In practice the risk manager will have a 

profit when replicating a knock-out and a loss when replicating a knock-in option.

In the example given the options had zero rebate. When the barrier option pays a rebate the 

hedging strategy does not change and one just needs to match the value of the rebate at the 

boundary.

38



Hedging of Barrier Options

Recall from Table 6 that the replication portfolio value for the up-and-out call option when the 

barrier boundary is matched every month is 1,30. If the barrier is not breached then the call 

option that models the expiration boundary condition can be sold at maturity to pay the buyer 

of the option and the risk manager will have a final P&L of zero. On the other hand, if the 

barrier is breached, the final P&L is given by the replication error at the barrier boundary as 

seen in Figure 9. The expected value of the replication portfolio P&L when running multiple 

asset  price  paths  simulated  by  geometric  Brownian  motion  is  equal  to  0,19,  exactly  the 

difference between the replication portfolio value and the up-and-out call theoretical value at 

inception. The conclusion is that if the risk manager had sold the up-and-out call option for its 

theoretical value of 1,11 and bought the replication portfolio of Table 5 that costs 1,30 to set 

up by borrowing the remaining funds, he should still expect to average a P&L of zero. This is 

valid for every knock-out option.

The same simulation can be made with the up-and-in replication portfolio of Table 7 that costs 

7,35 to set up while receiving 7,55 from the theoretical option value. The 0,20 difference is 

exactly  the  expected  loss  from  running  multiple  geometric  Brownian  motion  paths  that 

simulate the asset price evolution through time. The conclusion is similar to the previous: the 

risk manager will have an average P&L of zero despite not spending all the funds received 

from the buyer of the knock-in barrier option.
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 4 Experimental Results

In this  chapter  the frameworks developed to  hedge barrier  options  are  tested.  In  the first 

section they are subject to the geometric Brownian motion assumptions where the models 

were deduced, followed by results experienced in real market conditions with time series data 

of the S&P 500 index daily closing values and the corresponding exchange traded options 

settlement prices.

 4.1 Geometric Brownian Motion

The geometric Brownian motion procedure simulates the price path of an asset by sampling a 

normal distribution. It is assumed that each sample is the logarithmic change of the asset price 

in a certain day. Applying the many price changes to an initial asset price results in a time 

series.

Call
Down-and-in 

call

Down-and-out 

call
Up-and-in call Up-and-out call

4,20 0,06 4,14 3,56 0,64

Put
Down-and-in 

put

Down-and-out 

put
Up-and-in put Up-and-out put

3,71 2,89 0,82 0,10 3,60

Table 10: Vanilla and barrier option theoretical prices.

Consider  both  standard  and  barrier  options  with  the  following  characteristics  whose 

theoretical values are shown in Table 10:

Asset price – 100

Exercise price – 100

Time to maturity – 90 days

Risk-free interest rate – 5%

Asset yield – 3%

Volatility – 20%
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Up barrier – 110

Down barrier – 90

Rebate – 0

 4.1.1 Delta Hedging
Working on the Black-Scholes-Merton model assumptions, we run 1000 simulations of the 

delta hedging procedure for each of the ten options with portfolio rebalancing performed once 

a day.  Table  11 summarises the statistical  results  expressed as a percentage of the option 

premium and Table 12 as a percentage of the asset price.

Average
Standard 

Deviation
Skew Kurtosis Min Max

Call -0,48% 10,42% 0,43 0,71 -36,91% 36,93%
Put -0,21% 4,75% 0,11 3,2 -24,93% 22,80%

Up-and-in call 0,55% 22,38% -0,13 43,57 -286,47% 199,88%
Up-and-out call -2,37% 94,80% 0,07 22,36 -836,28% 935,75%

Down-and-in call 9,36% 140,31% 14,47 361,04 -960,17% 18,09%
Down-and-out call -0,04% 4,49% 0,42 2,71 -24,24% 20,83%

Up-and-in put -1,35% 76,81% -2,72 58,42 -965,03% 724,55%
Up-and-out put -0,50% 4,71% -0,31 4,24 -31,90% 18,81%

Down-and-in put 0,70% 24,41% 5,68 65,9 -135,77% 345,22%
Down-and-out put -1,00% 67,15% -1,75 20,57 -566,07% 431,61%

Table 11: Delta hedging P&L distribution as a percentage of the option premium for the 
geometric Brownian motion.

As  expected  the  average  P&L of  both  standard  and  barrier  options  is  around  zero.  The 

interesting point is the standard deviation and the kurtosis of the distribution of hedging errors 

which are much higher for barrier options than for standard options. This is explained by the 

higher  values  of  gamma  for  barrier  options  and  because  hedging  is  not  carried  out 

continuously, resulting in higher profits and losses that are evenly distributed around zero.

In this particular example, the large hedging errors of Table 11 as measured by the standard 

deviation for both the down-and-in call and the up-and-in put are explained by the fact that 

the premium of each of this options is very low and a small hedging error represents a large 

percentage of  this  small  premium.  Taking a  look at  Table  12 where  the  hedging error  is 

expressed as a percentage of the asset price we see that this two options do not show a great 
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hedging risk because the standard deviation of the error is low.

Average
Standard 

Deviation
Skew Kurtosis Min Max

Call 0,00% 0,17% 0,68 1,52 -0,59% 0,74%
Put -0,01% 0,18% 0,11 3,35 -1,00% 0,87%

Up-and-in call 0,02% 0,80% -0,13 43,57 -10,19% 7,11%
Up-and-out call -0,02% 0,61% 0,07 22,36 -5,38% 6,01%

Down-and-in call 0,00% 0,06% -1,51 38,5 -0,60% 0,64%
Down-and-out call 0,00% 0,19% 0,4 2,81 -0,98% 0,92%

Up-and-in put 0,00% 0,07% -1,7 26,29 -0,67% 0,51%
Up-and-out put -0,02% 0,17% -0,4 4,62 -1,19% 0,70%

Down-and-in put 0,02% 0,69% 5,45 64,51 -4,12% 9,65%
Down-and-out put -0,01% 0,54% -1,25 19,83 -4,08% 3,76%

Table 12: Delta hedging P&L distribution as a percentage of the asset price for the geometric 
Brownian motion.

The down call options and the up put options can be considered to be the least riskier to hedge 

because when the barrier is hit the emerging or vanishing option is out-of-the money and only 

has residual delta that changes very slowly.

The riskier barrier options to hedge are the up call options and the down put options as can be 

observed  in  both  tables.  This  options  are  in-the-money when the  barrier  is  touched and, 

consequently, can have very high absolute values of gamma. The result is a P&L distribution 

that has fat tails as explained by the high value of kurtosis and the minimum and maximum 

error. In this cases there are a lot of occurrences where a large profit or loss is experienced 

from the hedging procedure. They can be especially risky when the asset price is close to the 

barrier and maturity approaches.

The risk manager should keep in mind that while delta hedging the down calls and up puts 

does not seem to represent a greater problem than delta hedging vanilla options, one should be 

very careful when trying to use the procedure with up calls and down puts.

 4.1.2 Put-Call Symmetry
Under the assumptions of geometric Brownian motion and enforcing the drift rate of the asset 

to be zero, the put-call symmetry method guarantees that the replication is perfect. In this 

example, the drift rate of the underlying asset is positive because the risk-free rate is higher 
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than the asset yield. The result of 5000 simulations are hedging errors as shown in Table 13 

expressed in amount, in Table  14 expressed as a percentage of the option premium and in 

Table 15 expressed as a percentage of the asset price.

Average
Standard 

Deviation
Skew Kurtosis Min Max

Up-and-in call 0,02 0,03 0,84 -1,23 0 0,08
Up-and-out call -0,02 0,03 -0,92 -1,08 -0,08 0

Down-and-in call -0,01 0,02 -2,59 5,83 -0,11 0
Down-and-out call 0,01 0,02 2,41 4,95 0 0,11

Up-and-in put 0,02 0,03 2,09 3,31 0 0,15
Up-and-out put -0,02 0,03 -2,1 3,29 -0,15 0

Down-and-in put -0,02 0,03 -1,19 -0,52 -0,09 0
Down-and-out put 0,02 0,03 1,25 -0,4 0 0,09

Table 13: Put-call symmetry P&L distribution in amount for the geometric Brownian motion.

Average
Standard 

Deviation
Skew Kurtosis Min Max

Up-and-in call 0,59% 0,87% 0,84 -1,23 0,00% 2,16%
Up-and-out call -3,06% 4,69% -0,92 -1,08 -11,98% 0,00%

Down-and-in call -13,39% 32,50% -2,59 5,83 -162,23% 0,00%
Down-and-out call 0,24% 0,53% 2,41 4,95 0,00% 2,67%

Up-and-in put 15,38% 31,44% 2,09 3,31 0,00% 148,17%
Up-and-out put -0,44% 0,93% -2,1 3,29 -4,27% 0,00%

Down-and-in put -0,66% 1,14% -1,19 -0,52 -2,94% 0,00%
Down-and-out put 2,27% 4,05% 1,25 -0,4 0,00% 10,43%

Table 14: Put-call symmetry P&L distribution as a percentage of the option premium for the 
geometric Brownian motion.

It is interesting to note that hedging errors only arise in case the barrier is touched. On the 

other cases the hedging portfolio exactly matches the final payoff of the target barrier option. 

This hedging errors result from the in bond whose value at the barrier is only one at maturity.

Other interesting observation is that the average hedging error of the up-and-in call expressed 

in money units, shown in Table 13, is exactly the opposite of the average hedging error of the 

up-and-out call. This happens for all the other option pairs as expected by the relationship 

between knock-in, knock-out and vanilla options. If the drift rate were negative, the average 
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hedging error would be the opposite sign for each of the barrier options.

The risk manager  could  adjust  the  price  at  which  he  sells  or  buys  the  barrier  option  by 

discounting  the  expected  hedging  error  of  the  put-call  symmetry  strategy  of  Table  13, 

borrowing  or  lending  the  remaining  funds  necessary  to  build  the  replication  portfolio  at 

inception because, on average, he would receive or pay those funds at the end of the hedging 

strategy thus eliminating the hedging error.

Average
Standard 

Deviation
Skew Kurtosis Min Max

Up-and-in call 0,02% 0,03% 0,84 -1,23 0,00% 0,08%
Up-and-out call -0,02% 0,03% -0,92 -1,08 -0,08% 0,00%

Down-and-in call -0,01% 0,02% -2,59 5,83 -0,11% 0,00%
Down-and-out call 0,01% 0,02% 2,41 4,95 0,00% 0,11%

Up-and-in put 0,02% 0,03% 2,09 3,31 0,00% 0,15%
Up-and-out put -0,02% 0,03% -2,1 3,29 -0,15% 0,00%

Down-and-in put -0,02% 0,03% -1,19 -0,52 -0,09% 0,00%
Down-and-out put 0,02% 0,03% 1,25 -0,4 0,00% 0,09%

Table 15: Put-call symmetry P&L distribution as a percentage of the asset price in the 
geometric Brownian motion environment.

 4.1.3 Boundary Replication
To test the boundary replication method in the geometric Brownian motion environment we 

build a replication portfolio with boundary matching interval of one month and simulate 5000 

paths  for  the  underlying  asset  price.  The  theoretical  value  of  the  replication  portfolio  at 

inception and the difference to the theoretical barrier option value is shown in Table 16.

Theoretical value Portfolio value Difference
Up-and-in call 3,17 3,56 -0,39

Up-and-out call 1,03 0,64 0,39
Down-and-in call 0,08 0,06 0,02

Down-and-out call 4,12 4,14 -0,02
Up-and-in put 0,12 0,1 0,02

Up-and-out put 3,58 3,6 -0,02
Down-and-in put 2,52 2,89 -0,37

Down-and-out put 1,18 0,82 0,36

Table 16: Barrier option replication portfolio value at inception.
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Table 17 shows the results in money units of the geometric Brownian motion simulation with 

the replication portfolios created. The first important observation is that the average P&L of 

the  hedging  strategy  matches  the  difference  between  the  replication  portfolio  and  the 

theoretical option value at inception when properly discounted to the barrier hitting time or 

the option expiration.

Average
Standard 

Deviation
Skew Kurtosis Min Max

Up-and-in call -0,38 1,16 -4,68 25,24 -10 0
Up-and-out call 0,40 1,23 4,55 22,92 0 10

Down-and-in call 0,01 0,03 1,63 1,12 0 0,09
Down-and-out call -0,01 0,03 -1,68 1,35 -0,09 0

Up-and-in put 0,02 0,03 1,28 0,05 0 0,09
Up-and-out put -0,02 0,03 -1,28 0,05 -0,09 0

Down-and-in put -0,38 1,24 -4,79 25,49 -10 0
Down-and-out put 0,36 1,15 4,74 25,21 0 10

Table 17: Boundary matching P&L distribution in amount in the geometric Brownian motion 
environment.

Average
Standard 

Deviation
Skew Kurtosis Min Max

Up-and-in call -10,70% 32,54% -4,68 25,24 -281,08% 0,00%
Up-and-out call 62,75% 191,86% 4,55 22,92 0,00% 1555,70%

Down-and-in call 22,06% 41,22% 1,63 1,12 0,00% 138,51%
Down-and-out call -0,33% 0,63% -1,68 1,35 -2,17% 0,00%

Up-and-in put 15,66% 25,96% 1,28 0,05 0,00% 83,00%
Up-and-out put -0,45% 0,75% -1,28 0,05 -2,39% 0,00%

Down-and-in put -13,10% 43,07% -4,79 25,49 -346,07% 0,00%
Down-and-out put 44,30% 141,31% 4,74 25,21 0,00% 1225,63%

Table 18: Boundary matching P&L distribution as a percentage of the option premium in the 
geometric Brownian motion environment.

The results suggest that one can set up the replication portfolio using the theoretical option 

premium received and borrow or lend at the risk-free rate the remaining funds of the portfolio 

construction.  The funds  that  are  in  excess  will  cover  the  expected  loss  of  the replication 

strategy and the funds that are borrowed will be returned with the expected gain from the 
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strategy. Taking into account this effect the hedging errors of Table 18 and Table 19 would be 

around zero.

Average
Standard 

Deviation
Skew Kurtosis Min Max

Up-and-in call -0,38% 1,16% -4,68 25,24 -10,00% 0,00%
Up-and-out call 0,40% 1,23% 4,55 22,92 0,00% 10,00%

Down-and-in call 0,01% 0,03% 1,63 1,12 0,00% 0,09%
Down-and-out call -0,01% 0,03% -1,68 1,35 -0,09% 0,00%

Up-and-in put 0,02% 0,03% 1,28 0,05 0,00% 0,09%
Up-and-out put -0,02% 0,03% -1,28 0,05 -0,09% 0,00%

Down-and-in put -0,38% 1,24% -4,79 25,49 -10,00% 0,00%
Down-and-out put 0,36% 1,15% 4,74 25,21 0,00% 10,00%

Table 19: Boundary matching P&L distribution as a percentage of the asset price in the 
geometric Brownian motion environment.

 4.2 Market Data

The models are evaluated with real market data using time series of the daily returns of the 

S&P 500 index from 1990 to 2009. The S&P 500 is a market free float weighted stock index 

composed by 500 large caps trading on the United States of America. It is one of the most 

followed stock market indexes.
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Figure 11: Distribution of the S&P 500 daily returns in the range of -3.75% to +3.75%.
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We know that one of the assumptions of the Black-Scholes-Merton model is that the asset 

price  follows  a  geometric  Brownian  motion  which  means  that  the  returns  are  normally 

distributed.  The S&P 500 time series  data  shows that  the daily returns are  also normally 

distributed but slightly skewed and with a leptokurtic profile as can be seen in Figure 11.

Key statistics for the time series are shown in Table 20. The return distribution has a slightly 

positive  average  of  0,02%,  standard  deviation  of  1,17% and is  negatively skewed  which 

means that there are more days where the index falls than days where the index rises. The 

biggest difference relative to the geometric Brownian motion assumptions is the presence of 

fat tails as shown by the very large kurtosis. Most of the returns are concentrated around the 

average, more than in the standard normal distribution, but there are many days when there is 

a big drop or a big rise in the index. This can also be observed by noticing that the minimum 

and maximum values of the distribution are almost ten standard deviations.

Average Standard Deviation Skew Kurtosis Maximum Minimum

0,02% 1,17% -0,2 9,22 -9,47% 10,96%

Table 20: Statistics for the S&P 500 time series.

Option  prices  of  the  S&P 500  show  that,  contrary  to  the  geometric  Brownian  motion 

assumption of constant volatility, the volatility surface of the index is not static.

In the following section we investigate the impact of this return distribution and stochastic 

volatility on the models developed so far.

 4.2.1 Delta Hedging
The delta hedging procedure is run on the S&P 500 index closing value time series for both 

vanilla and barrier options with the following characteristics:

Strike – At-the-money

Time to maturity – 90 days

Risk-free interest rate – continuously compounded overnight risk-free interest rate

Asset yield – continuously compounded daily dividend yield

Volatility – future realized volatility

Up barrier – Strike x (1 + 50% Volatility)

Down barrier – Strike x (1 - 50% Volatility)
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Rebate – 0

The delta rebalancing is performed at the end of each day at the closing value of the index. 

The procedure is run each five days yielding approximately 1000 iterations. The options are 

born at-the-money and it is assumed that future volatility is correctly estimated. If this were 

not the case the risk manager would face gains or losses resulting from selling volatility above 

or below the realized volatility. 

Average
Standard 

Deviation
Skew Kurtosis Min Max

Call 0,81% 8,21% -0,26 3,08 -48,08% 29,05%
Put 0,90% 8,97% -0,51 4,03 -56,94% 32,44%

Up-and-in call 9,21% 29,78% 2,27 30,64 -284,77% 269,08%
Up-and-out call -44,30% 161,69% -2,88 29,85 -1550,06% 1403,53%

Down-and-in call 7,97% 227,53% 7,07 61,93 -362,77% 2483,12%
Down-and-out call 0,81% 8,12% -0,41 3,56 -49,20% 31,41%

Up-and-in put 13,47% 78,12% -6,67 95,63 -1177,89% 387,31%
Up-and-out put 0,65% 9,33% -0,67 4,55 -60,38% 33,79%

Down-and-in put -9,48% 39,29% -5,81 49,04 -477,34% 104,08%
Down-and-out put 38,14% 143,13% 5,48 43,39 -274,95% 1683,36%

Table 21: Delta hedging P&L distribution as a percentage of the option premium for the S&P 
500.

Average
Standard 

Deviation
Skew Kurtosis Min Max

Call 0,07% 0,43% 0,88 7,98 -2,96% 2,43%
Put 0,08% 0,43% 0,89 7,89 -2,95% 2,42%

Up-and-in call 0,36% 1,04% 4,17 29,61 -4,14% 11,32%
Up-and-out call -0,28% 1,02% -4,63 35,38 -11,64% 4,36%

Down-and-in call 0,01% 0,18% 7,68 71,98 -0,30% 2,18%
Down-and-out call 0,07% 0,41% 0,62 8,47 -2,99% 2,32%

Up-and-in put 0,02% 0,07% -1,5 37,27 -0,92% 0,47%
Up-and-out put 0,07% 0,42% 0,52 7,97 -3,03% 2,21%

Down-and-in put -0,27% 1,54% -4,45 57,17 -21,32% 10,70%
Down-and-out put 0,36% 1,66% 4,63 54,91 -11,19% 22,84%

Table 22: Delta hedging P&L distribution as a percentage of the index value for the S&P 500.

Table  21 summarises  the  results  of  the  hedging  procedure  as  a  percentage  of  the  option 

premium and Table 22 as a percentage of the index value at the inception of the option.
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The first thing that comes to attention is that the standard deviation and the kurtosis of the 

hedging error distribution era greater than in the geometric Brownian motion environment. 

This is explained by the leptokurtic distribution of returns of the index that causes many days 

of big profits or losses due to the difference in delta and portfolio rebalancing.

The difficulty of hedging the up calls and down puts is especially noticed in the S&P 500 

index data. The standard deviation of the hedging error distribution is high and the presence 

of fat tails is especially noticed but the most important observation is that the average hedging 

error  for  this  options  type  of  barrier  options  is  not  zero  because  of  the  different  return 

distribution profile.

 4.2.2 Put-Call Symmetry
In  real  market  conditions  volatility is  not  constant  as  in  the  geometric  Brownian  motion 

environment. Market prices for options will change as traders adjust their expectations for 

future volatility, asset returns and interest rates. The put-call symmetry method has the benefit 

that  the replication portfolio can be decomposed into a portfolio of options with different 

strikes. One does not need to trade the underlying asset and thus there is no need to estimate 

future volatility.  Nevertheless, the volatility surface may exhibit  a smile or skew that will 

change over time. While the strategy can accommodate shifts in volatility and in the skew as 

long as the volatility is the same for two points with the same geometric mean, in practice this 

is seldom the case and results in substantial hedging errors. 

Imagine a possible situation where the S&P 500 is trading at 1000 with a slight negative skew 

and the risk manager sells a down-and-out put with strike 1000 and barrier 900. The value of 

the portfolio is shown in Table 23.

The option knocks-out 29 days later and because the market is falling the skew has become 

more negative. The value of the replication portfolio should be zero at the barrier but due to 

the different skew has now a negative value and the risk manger realizes a loss. The situation 

is shown in Table 24.

We have seen before that the zero drift assumption can be relaxed and properly priced. This 

example show that while the risk manager is somewhat protected from volatility changes by 

using only one maturity in the replication portfolio he can still run into problems with the put-

call strategy if the skew changes in an asymmetric way as is often the case in real markets.
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Option Strike Maturity
Implied 

Volatility
Quantity Total Value

Put 1000 90 days 20,00% 1 5,05
Put 810 90 days 21,00% 1,11 -0,44

Down-and-in Bond 900 90 days 20,50% 10 -4,4
Total 0,21

Table 23: Replication portfolio at inception.

Option Strike Maturity
Implied 

Volatility
Quantity Total Value

Put 1000 61 days 25,00% 1 11,21
Put 810 61 days 27,00% 1,11 -2

Down-and-in Bond 900 61 days 24,00% 10 -9,49
Total -0,28

Table 24: Replication portfolio at knock-out after skew change.

 4.2.3 Boundary Replication
The  boundary  replication  method  also  has  the  benefit  of  using  a  portfolio  of  options  to 

replicate the target barrier option thus eliminating the need to estimate volatility. Despite this 

characteristic, the model cannot adapt itself to the dynamics of real markets because one often 

takes the opposite position in volatility in the replication portfolio and the volatility surface 

changes over time.

Consider the following example of real market data where the risk manager sells a down-and-

out put option:

Date – 10/12/2008

Closing value of the S&P 500 – 899,24

Exercise price – 900

Barrier – 750

Maturity date – 19/03/2009

The replication portfolio is built with exchange traded options and is shown in Table  25. A 

quick inspection into the total value of the portfolio shows a negative value. The reason is that 
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we are pricing the option with a negative skew, buying the 900 strike at a lower volatility than 

we are selling the 750 strike.

Option Strike
Maturity 

Date
Value

Implied 

Volatility
Quantity Total Value

Put 900 19-03-2009 95 52,30% 1,00000 95,00
Put 750 19-03-2009 45 61,26% -3,15036 -141,77
Put 750 19-02-2009 32,2 60,99% 1,13250 36,47
Put 750 15-01-2009 15,5 62,70% 0,22789 3,53
Put 750 18-12-2008 0,8 63,36% 0,03036 0,02

Total -6,74

Table 25: Replication portfolio at inception.

On 23/02/2009 the barrier is breached and the index closes at 743,33. The portfolio value at 

this date is shown in Table 26.

Option Strike
Maturity 

Date
Value

Implied 

Volatility
Quantity Total Value

Put 900 19-03-09 159,2 52,51% 1,00000 159,2
Put 750 19-03-09 38 45,78% -3,15036 -119,71
Put 750 19-02-09 Expired - 1,13250 0,00
Put 750 15-01-09 Expired - 0,22789 0,00
Put 750 18-12-08 Expired - 0,03036 0,00

Total 39,49

Table 26: Replication portfolio value when the barrier is breached.

On this date the portfolio has a positive value of 39,49, higher than the expected value of zero 

for a knock-out option at the barrier. One could think this was due to the date 23/02/2009 not 

being a matching date and thus subject to hedging error but the date is close to 19/02/2009 

where the boundary matching was performed. The explanation is simply that we are at that 

time short volatility at the 750 strike because we sold 3,15036 put options. As the implied 

volatility in this option fell from 61,26% to 45,78%, the risk manager realizes a gain because, 

near the barrier, the down-and-out put option is short vega. If volatility had risen the portfolio 

at the barrier would be negative instead of zero and the risk manager would realize a loss.

This  example  shows  that  the  method  has  limited  applicability  in  real  market  conditions 
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because of the effects of stochastic volatility.
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 5 Conclusions

Barrier options can be split in two different categories according to their risk profile. Down 

calls and up puts are as easy to delta hedge as vanilla options because they knock out-of-the 

money and with residual delta. The risk manager should expect to have an average P&L of 

zero when delta hedging many transactions on this options under geometric Brownian motion 

and in real market conditions despite the slightly different return distribution of the S&P 500 

index. The only condition imposed is the ability to correctly estimate future volatility. On the 

other side we have the risky up calls and the down puts that knock in-the-money. They exhibit 

high delta and gamma values near the barrier resulting in the highest hedging errors. The risk 

manager should not attempt to delta hedge this barrier options.

Static hedging techniques are proposed to enable less hedging error for barrier options. While 

this methods show promising results in the geometric Brownian motion assumptions where 

they were developed we show that they are prone to hedging errors in real market condition 

where volatility is stochastic.

The put-call symmetry strategy will degenerate in hedging errors when the drift rate of the 

asset is not zero but one can still properly price the barrier options with this factor in mind. 

One improvement that could be arranged is substituting the in bonds with American binary 

options so that the value at the barrier is guaranteed to be one. The biggest problem comes 

when the volatility surface changes in manners different than parallel shifts. Nevertheless, and 

when taken into account all this factors, seems to be a better hedging technique as it provides 

small hedging errors and some vega protection.

Boundary replication techniques prove their theoretical value but run into problems when the 

volatility surface changes and leads to situations where the replication portfolio value at the 

barrier is not what was expected.

Extending this techniques to other types of barrier options should be easy. One possibility it to 

combine the developed techniques with concepts such as gamma hedging and vega hedging. 

Further  research  into  the  hedging  of  American  binary  options  should  provide  interesting 

results as barrier options can be almost split into plain vanillas and American binaries. These 

are topics that are left for future work.
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