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Abstract 

 The submitted master’s thesis focuses on practical application of quantitative portfolio 

optimization in various forms. The thesis is organized in two main parts, theoretical and practical.  

 The theoretical part introduces the underpinnings of portfolio theory. It describes the 

optimization process, introduces a number of selected optimization methods, and provides an 

overview of portfolio management. As a whole, it serves as an underlying for the practical part. 

 The practical part of the thesis is based on an experiment that put multiple quantitative 

portfolio optimization methods into a contest. Different optimizers were applied to portfolios 

composed of identical assets, which were subsequently held under different portfolio management 

styles over a pre-specified period of time. The performance of each portfolio was measured ex-

post, adequately evaluated in accord with the criteria of the experiment, and confronted with the 

others.   

 The questions that this master’s thesis tried to find answers to were (1) which portfolio 

optimizer, out of the selected ones, performs the best, and (2) whether it is beneficial to conduct 

rather an active, or a passive portfolio management. 

 

Keywords: Quantitative Portfolio Management, Optimization, Asset Allocation, Diversification 

JEL Classification: C610, G110 

 

  



 

 

Resumo 

 Esta dissertação de mestrado apresenta uma aplicação prática da otimização quantitativa 

de um portfólio realizada de diversas formas. A tese está organizada em duas partes principais, 

uma teórica e uma prática. 

 A parte teórica introduz os fundamentos da teoria de portfólio. Descreve o processo de 

otimização, apresenta vários métodos de otimização selecionadas e fornece uma visão geral da 

gestão de portfólios. Como um todo, serve como base para a parte prática. 

 A parte prática da tese coloca vários métodos de otimização de portfólio quantitativos em 

competição. Diferentes optimizadores foram aplicados a carteiras compostas por ativos idênticos 

que foram subsequentemente mantidos sob diferentes estilos de gestão ao longo de um período de 

tempo pré-especificado. O desempenho de cada carteira foi medido ex-post, adequadamente 

avaliado de acordo com os critérios de otimização e comparado com as demais carteiras. 

 As perguntas para as quais esta tese de mestrado tentou encontrar respostas foram (1) qual 

é o optimizador de portfólio, dentre os selecionados, tem o melhor desempenho e (2) se é benéfico 

conduzir uma gestão de portfólio muito ativa ou passiva. 

 

Palavras-chave: Gestão Quantitativa de Portfólios, Otimização, Alocação de Ativos, 

Diversificação 

JEL Classificação: C610, G110 
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1. Introduction  

 “An investment in knowledge pays the best interest”. A famous quote pronounced by 

Benjamin Franklin, an American polymath and one of The Founding Fathers of the United States, 

is pointing clearly to where every person should invest in the first place. Learning is a never-ending 

process and shall we look at the profiles of the greatest from the greatest, regardless the field of 

interest, they have never considered their education as complete. The more we invest into our 

mind, the higher the return we may expect to come back to us in the future in various forms. Our 

knowing can be seen as a portfolio of knowledge. Portfolio, which we build in more or less 

constructive matter.  

 Our knowing deeply influences the way we approach, understand, handle, and reflect all 

of the challenges we encounter. Based on our obtained experience and our knowing, we derive 

theories and philosophies. The investment philosophy has alike origin and, as well as other 

philosophies, is a subject of evolution. Swensen (2000) describes the investment philosophy as a 

coherent approach being applied consistently to all aspects of portfolio management process. In 

his eyes, the philosophical principals represent time-tested insights into investment matters that 

eventually evolve into lasting professional convictions. The investor’s effort to find the most 

effective way to generate investment returns emanates from those convictions and fundamental 

beliefs. The investment returns are seen as a product of three tools of portfolio management: (1) 

asset allocation, (2) security allocation, and (3) market timing. Sophisticated investor then 

considers contribution of each of the portfolio management tools to costruct portfolios in a 

conscious manner.  

 The core focus of this thesis is on the problematics of the first tool of portfolio management, 

the asset allocation and the various approaches to it. Asset allocation is often understood as the 

second step of the investment process with the first one being the determination of investor’s 

investment objectives, time preferences, and risk profile. Various empirical studies over the time 

have shown that asset allocation has the biggest influence on an overall portfolio performance. 

Asset allocation represents spreading the investor’s investment capital across various asset classes 

such as stocks, bonds, derivatives, properties, commodities, funds, cash etc. in order to achieve a 

diversified portfolio. 
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 The thesis is primarily structured in two main parts, theoretical and practical. The 

theoretical part introduces the underpinnings of portfolio theory. It describes the optimization 

process, introduces a number of selected optimization methods, and provides an overview of 

portfolio management. As a whole, it serves as an underlying for the practical part. 

 The practical part of the thesis is based on an experiment that puts multiple quantitative 

portfolio optimization methods into a contest. Different optimizers are applied to portfolios 

composed of identical assets, which are subsequently held under different portfolio management 

styles over a pre-specified period of time. The performance of each portfolio is measured ex-post, 

adequately evaluated in accord with the criteria of the experiment, and confronted with the others.   

 The questions that this master’s thesis tries to find answers to are (1) which portfolio 

optimizer, out of the selected ones, performs the best, and (2) whether it is beneficial to conduct 

rather an active, or a passive portfolio management. 
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2.  Portfolio Theory  

 This chapter introduces the fundamentals of portfolio theory, and describes some of the 

essentials regarding the portfolio optimization frameworks. 

 In a wide interpretation, any portfolio can be viewed as a set of various items. Those items 

are acquired by the portfolio’s owner with accordance to his needs, wants, preferences, 

predispositions, possibilities, and/or expectations. From the financial perspective, such portfolio is 

understood as a set of financial assets1. The finance universe has two main underlying dimensions: 

the time dimension and the risk dimension.   

2.1. Time Dimension  

 The importance of time in finance is absolutely crucial and is best explained by the concept 

of the time value of money (TVM). TVM concerns equivalence between cash flows occurring at 

different times. One dollar today has a higher value than one dollar one year from now. However, 

the same dollar invested today grows in value over time. Formally, the value of one dollar invested 

today grows accordingly to its interest rate (i). An interest rate is a rate of return that reflects the 

relationship between differently dated cash flows. When considering the time dimension, we 

distinguish between the discrete and the continuous time. Consequently, when considering the 

interest rates under the time dimension framework, we distinguish between the discrete and the 

continuous interest rates. Therefore, the TVM allows us to either obtain the future value 

(compounding) or the present value (discounting). 

2.1.1. Discrete Time  

 The discrete time considers a variable to occur at distinct, separate points in time. For 

instance, monthly, quarterly, yearly. The discrete interest is then being accrued to the principal2 at 

those separate points in time. The discrete interest has characteristics of a discrete random variable.    

 Discrete compounding  

- the future value (FV) of $1 invested for n years at the interest rate I compounded 

once per annum  

                                                 
1 Financial asset – a tangible liquid asset which gets its value from a contractual claim  
2 Principal - the amount of money originally invested 
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 𝐹𝑉 = (1 + 𝑖)𝑛 (2.1) 

 

- FV of $1 compounded m-times per annum for n years 

 𝐹𝑉 =  (1 +
𝑖

𝑚
)𝑚𝑛 (2.2) 

 

 Discrete discounting  

- the present value (PV) of a future $1 discounted for n years  

 𝑃𝑉 =  
1

(1 + 𝑖)𝑛
 (2.3) 

 

- PV of a future $1 discounted m-times a year  

 𝑃𝑉 =
1

(1 +
𝑖

𝑚)𝑚𝑛
 (2.4) 

2.1.2. Continuous Time 

 The continuous time also considers the variable to occur at specific points in time. 

However, and in contrast to the discrete time, between two points in time there is an infinite 

number of other points of time and the distance between them is converging to zero. Thus, the 

continuous time sees the variable to occur continuously. The continuous interest does have 

characteristics of a continuous random variable.  

 The effect of continuous time, when m → ∞, on compounding can be expressed formally 

using limits as following:  

 lim
𝑚→ ∞

(1 +
𝑖

𝑚
)𝑚𝑛 = 𝑒𝐼𝑛 (2.5) 
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 Continuous compounding  

- FV of $1 continuously compounded for n years  

 𝐹𝑉 =  𝑒𝑖𝑛 (2.6) 

 

 Continuous discounting  

- PV of $1 discounted with continuously compounded i 

 𝑃𝑉 =  𝑒−𝑖𝑛 (2.7) 

2.2. Risk Dimension  

 The risk dimension relates closely with the time dimension. The time dimension 

distinguishes, in its fundamental property, between two points in time. For instance, between the 

presence and the future. The presence is well known. However, the future is, from its very nature, 

uncertain and thus risky. The riskiness, in such case, is the potential deviation from our expectation 

about the future. Taking the perspective of an investor, the realized return from his investment at 

the end of the period may be different from the expected one. Those deviations can be both positive 

or negative. Logically, only the negative deviations are considered undesirable. The most 

widespread used measure of riskiness in finance is the square root of variance, the standard 

deviation (SD). The use of SD is convenient under a number of simplifying assumptions, e.g. 

normal distribution of returns. Also, SD is preferred over variance due to its equality of units with 

returns as they both are expressed in percentages. Another risk measures are, for example, beta, 

semi-variance, value-at-risk (VaR), or expected shortfall (ES) 

 Having mentioned the term expectation, it is convenient to briefly introduce the concept of 

utility functions, expected utility criterion, and risk aversion. These play a crucial role in the 

investment decision making process. 

 

2.2.1. Utility Functions 

 Utility functions are mathematical representations of investor’s attitudes toward risk and 

return. It is a function that assigns a utility value to all possible investment outcomes. The utility 

value measures the degree of individual satisfaction the investor receives from any specific level 
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of wealth (W). Such satisfaction may come from several sources, typically from the additional 

consumption of goods and/or services that the investor can enjoy after selling the investment 

portfolio. Some investors, on the other hand, may enjoy the satisfaction derived from excitement 

of the investing game itself (Esch et al., 2005). 

 The utility functions in general have four important properties:  

 Utility is increasing and is always positive 

 Marginal utility is decreasing 

 𝑢′(𝑊1) < 𝑢′(𝑊0)   𝑤ℎ𝑒𝑛   𝑊1 > 𝑊0  (2.8) 

 Utility functions are strictly concave 

 𝑈′′ < 0 (2.9) 

 Different investors have different utility functions 

 A utility function, for a given investor and for a given time, is not unique 

 Examples of the most common utility functions 

 Log utility  

 𝑢(𝑊) = ln (𝑊) (2.10) 

 Exponential utility 

 𝑢(𝑊) = 1 − 𝑒−𝑣𝑊 (2.11) 

 Power utility 

 𝑢(𝑊) =
𝑊1−𝛾

1 − 𝛾
 (2.12) 

 Quadratic utility  

 𝑢 (𝑊) = 𝑊 −  
𝑏

2
𝑊2   𝑏 > 0 (2.13) 

 Where W represents the investor’s wealth.            

 Special cases of utility functions incorporating the risk aversion coefficients are introduced 

in the following Section 2.2.2. 
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2.2.1. Expected Utility Criterion 

 The expected utility (EU) criterion provides a framework for when an individual must 

make a decision under uncertainty. That being not knowing which future outcome, out of a set of 

possible outcomes, is going to result from a decision made today. In such situation, one will make 

decision that offers the highest expected utility. Each outcome is assigned a probability of 

occurrence. Thus, the EU is a probability-weighted average of utilities over all possible outcomes 

and over a specific period of time. The final decision also depends on one’s risk aversion. To 

demonstrate a general case, let’s consider a lottery L(x,y,π), where outcome x has a probability of 

occurrence π and y with (1-π). The expected utility is following:  

 𝐸[𝑈(𝐿)] = 𝜋𝑢(𝑥) + (1 − 𝜋)𝑢(𝑦) (2.14) 

  

 The above equation is referred to as the von Neumann-Morgernstern (VNM) utility 

function and represents the expected utility criterion. Let’s adjust the VNM with respect to asset 

returns. Let’s consider an asset A at time 𝑡0 with possible future returns 𝑟1, 𝑟2, … , 𝑟𝑛 and with 

probabilities of occurrence 𝜋𝑟1
, 𝜋𝑟2

, … , 𝜋𝑟𝑛
 at time 𝑡1, respectively. The expected utility can then 

be expressed as following:  

 𝐸[𝑈(𝑟𝐴)] = 𝜋𝑟1
𝑢(𝑟1) + 𝜋𝑟2

𝑢(𝑟2) + ⋯ + 𝜋𝑥𝑛
𝑢(𝑟𝑛) = ∑ 𝜋𝑥𝑖

𝑢(𝑟𝑖)

𝑛

𝑖=1

 (2.15) 

 The expected utility criterion confirms that the individual is concerned only with the final 

payoffs and the cumulative probability associated with achieving them (Levy and Post, 2005). 

2.2.2. Risk Aversion 

 An important fundamental property of the risk dimension under the portfolio theory 

framework is the investor’s relation towards risks. His risk aversion. Every investor is different 

and has a different perception of risks, or in other words, has a different degree of risk aversion. 

Naturally, the desire of every investor is the same - to avoid risks, i.e. to smooth their consumption 

across all states of nature and to avoid variations in the value of their portfolio holdings. The 

investor is considered to be weakly risk averse when  

 𝑢(𝑊) ≥ 𝐸[𝑢(𝑊)] (2.16) 
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 the utility of current wealth is higher or equal than the expected utility of potential wealth 

from a gamble. Strict risk aversion is represented by strict inequality (Beck, 2017).  

 The risk aversion is measured by the risk aversion coefficients:  

 Absolute risk aversion coefficient  

 𝛼 (𝑊) =  − 
𝑢′′(𝑊)

𝑢′(𝑊)
 (2.17) 

 

 Relative risk aversion coefficient  

 𝜌 (𝑊) = 𝑊𝛼(𝑊) =  − 
𝑊𝑢′′(𝑊)

𝑢′′(𝑊)
 (2.18) 

 

 Risk tolerance coefficient  

 𝜏 (𝑊) =  
1

𝛼 (𝑊)
=  − 

𝑢′(𝑊)

𝑢′′(𝑊)
 (2.19) 

 

 Utility functions incorporating the risk aversion coefficients:  

 Constant absolute risk aversion (CARA) 

- Absolute risk aversion is constant at every wealth level 

- CARA is a function of exponential utility function 

 𝑢 (𝑊) =  − 𝑒−𝛼𝑊 (2.20) 

 

 Constant relative risk aversion (CRRA) 

- Relative risk aversion is constant at every wealth level 

- CRRA is a function of power utility function 

 𝑢 (𝑊) =  
𝑊1−𝜌

1 − 𝜌
 (2.21) 
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2.3. Modern Portfolio Theory  

 Modern Portfolio Theory (MPT) is a financial portfolio construction theory developed by 

professor Harry Max Markowitz (1952), which first introduced in his paper “Portfolio Selection” 

published by the Journal of Science in 1952, and for which he was awarded the Nobel Memorial 

Prize in Economic Sciences in 1990.  

  In Markowitz’s paper, the portfolio selection process is divided in two stages. The first 

stage begins with observations and ends with some expectations regarding the future performance 

of observed securities. The second stage begins with those expectations and ends with the choice 

of final optimal portfolio. In this thesis, only the second stage is presented.  

 MPT, as well as any other theoretical concept, stands upon a number of underlying 

assumptions. As such, it provides the groundwork for portfolio composition under the mean-

variance framework and for an arbitrary number of risky assets, with or without a risk-free asset.  

 MPT assumptions: 

 Markets are perfectly efficient 

 No transaction costs, no taxes 

 Assets are perfectly divisible  

 Risk-free asset is available to all investors 

 Unlimited long and short positions are allowed 

 Investors are rational and risk averse 

 Utility function is quadratic 

 Investors possess homogeneous investment motivation, horizon, and expectation 

 Distribution of returns is Gaussian 

 Investors are concerned only with asset’s mean and variance 

 Investors desire to maximize their expected utility 

 Investors always seek the maximum portfolio return for varying levels of risk 
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2.3.1. Canonical Portfolio Problem 

 When an investor faces a portfolio creation decision he needs to make a choice regarding 

budgeting the asset allocation. Specifically, how much of his capital is going to be allocated to, 

and spread across, risky assets and how much to risk-free asset as an alternative to risky assets. 

The future payoff from risky assets is uncertain. However, the payoff from risk-free asset is always 

certain. The portfolio problem thus becomes the maximization of the expected payoff. That being 

done in accord with investor’s utility function. 

 Canonical portfolio problem is well described by Danthine and Donaldson (2015). Let’s 

consider a risk-free asset 𝑟𝑓 and a number of risky assets with returns 𝑟1, 𝑟2, … , 𝑟𝑖. Also, a portion 

of capital 𝑤𝑓 being invested into the risk-free asset and (1 − 𝑤𝑓) = ∑ 𝑤𝑖
𝑛
𝑖=1  among n risky assets 

with 𝑤𝑖 being the individual weight of each risky asset. 

 𝑤𝑓 + ∑ 𝑤𝑖
𝑛
𝑖=1 = 1.      

 The maximization problem becomes following:  

 
𝑚𝑎𝑥

(𝑤1, 𝑤2, … , 𝑤𝑛)
   𝐸 {𝑢 [𝑤𝑓(1 + 𝑟𝑓) + ∑ 𝑤𝑖(𝑟𝑖 −

𝑛

𝑖=1

𝑟𝑓)]} (2.22) 

  

 Where the term (𝑟𝑖 − 𝑟𝑓) represents the risk premium of each risky asset. It is intuitive to 

assume that the portion of capital invested in risky assets increases with increasing risk premium 

and decreases when opposite. This intuition can be formally described via the first-order condition 

(FOC). Under the risk aversion 𝑈′′() < 0, the FOC of the maximization problem becomes 

 𝐸 {𝑢′ [𝑤𝑓(1 + 𝑟𝑓) + ∑ 𝑤𝑖(𝑟𝑖 −

𝑛

𝑖=1

𝑟𝑓)] ∑(𝑟𝑖 − 𝑟𝑓)

𝑛

𝑖=1

} = 0 (2.23) 

 

 The FOC allows to describe the relationship between the investor’s risk aversion and his 

portfolio’s consumption via the following theorem, Equations 2.24-26, regarding the problem. 
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 For simplification, let’s substitute ∑ 𝑤𝑖
𝑛
𝑖=1 = 𝑤𝑟  where 𝑤𝑟 represents the capital allocated 

to risky assets, and 𝐸(𝑟𝑅) = ∑ 𝐸(𝑛
𝑖=1 𝑟𝑖)𝑤𝑖 where 𝐸(𝑟𝑅) is the expected payoff of the risky assets 

combined. Let’s assume 𝑈′′() < 0 and 𝑈′() > 0. 

 𝑤𝑟 > 0 ↔ 𝐸(𝑟𝑅) > 𝑟𝑓 (2.24) 

 𝑤𝑟 = 0 ↔ 𝐸(𝑟𝑅) = 𝑟𝑓 (2.25) 

 𝑤𝑟 < 0 ↔ 𝐸(𝑟𝑅) < 𝑟𝑓 (2.26) 

 

 The theorem states that a risk averse investor is willing to make a risky investment if, and 

only if, the expected payoff from the risky investment exceeds the risk-free rate. Or in other words, 

if the odds are favorable and there is a positive remuneration from the additional risk accepted.   

  

2.3.2.  Mean-Variance Criterion  

 MPT considers mean and variance as sufficient information when making a choice 

regarding the investment assets. It rests on the presumption that rational investors like the asset’s 

returns and dislikes the return variance. The mean-variance criterion allows the investor to 

compare various assets between each other while accounting the mean-variance preferences. Let’s 

assume assets A and B, with 𝜇𝐴, 𝜎𝐴 and 𝜇𝐵, 𝜎𝐵, respectively.  

 Portfolio A dominates portfolio B if, and only if, the following conditions are satisfied:  

𝜇𝐴 ≥ 𝜇𝐵  and   𝜎𝐴 < 𝜎𝐵 

 Or equivalently,  

𝜇𝐴 > 𝜇𝐵  and  𝜎𝐴 ≤ 𝜎𝐵 

 

 The mean-variance utility function describes the risk-return trade-off when reflecting the 

investor’s degree of risk aversion. The function is based on two pivotal assumptions of MPT, 

the quadratic utility function and the Gaussian distribution of returns. The quadratic utility is 

important because it implies mean-variance preferences. The Gaussian distribution is attractive 

due to its simplicity and properties. When considering only mean and variance, the expected 

utility has following form: 
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 𝐸[𝑈(𝑟)] = 𝑢[𝐸(𝑟)] +
1

2
𝑢′′[𝐸(𝑟)]𝑉𝑎𝑟(𝑟) (2.27) 

   

 To assure consistency with the risk-aversion assumption, the 𝑢′′must be < 0 and hence the 

positive sign changes to negative. Considering u to be quadratic in form described by Equation 

2.13, setting b = 1, and including the investor’s risk aversion coefficient to reflect his 

perception of risks, we arrive to the standard mean-variance utility function that can be found 

across the literature and has following form: 

 𝑈 = 𝐸(𝑟) −
1

2
𝐴𝜎2 (2.28) 

 Where E(r) is the expected return, 𝜎2 is the variance, and A is investor’s risk aversion 

coefficient.  
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2.4. Efficient Frontier  

   Prior to the introduction of the minimum-variance frontier (MVF) and the efficient frontier 

(EF), it is convenient to define the portfolio expected return and variance/SD in a matrix form, as 

they are subsequently used throughout the thesis. Let’s consider a portfolio P of n risky assets, 

with expected returns 𝑟1, 𝑟2, … , 𝑟𝑛 forming N x 1 vector of returns and portfolio’s assets weights 

𝑤1, 𝑤2, … , 𝑤𝑛 forming N x 1 vector of weights. The set of covariances between the assets form the 

variance-covariance matrix denoted Σ. 

 Vector of expected returns  

𝐸(𝑟) = 𝜇 = [

𝐸(𝑟)1

𝐸(𝑟)2

⋮
𝐸(𝑟)𝑛

] 

 Vector of portfolio weights 

𝑤 = [

𝑤1
𝑤2

⋮
𝑤𝑛

] 

 Variance-covariance matrix     

𝛴 = [
𝜎11

2 ⋯ 𝜎1𝑛

⋮ ⋱ ⋮
𝜎𝑛1 ⋯ 𝜎𝑛𝑛

2
] 

 Portfolio expected return  

 𝐸(𝑟𝑝) = 𝜇𝑝 = 𝑤𝑇𝜇 (2.29) 

 

 Portfolio variance and SD 

 𝑉𝑎𝑟(𝑃) = 𝜎𝑃
2 = 𝑤𝑇𝛴𝑤 (2.30) 

 𝑆𝐷 = 𝜎𝑃 = √𝑤𝑇𝛴𝑤 (2.31) 

 Where the subscript T stands for transposed. 

 The essential notations being introduced, it is now possible to procced to the introduction 

of both frontiers. Let’s consider a set of 𝑛 ≥ 2 assets. An infinite number of portfolios can be 

formed from such set of assets. This creates a set of feasible portfolios, the feasible set. To evaluate 

efficiency and compare the portfolios, an investor considers their expected returns and variances 
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with accordance to the mean-variance criterion. The investor will choose his or her optimal 

portfolio from the feasible set, that  

1. Offers highest expected return for varying levels of risk, and 

2. Offers lowest level of risk for varying levels of expected returns 

 The above-mentioned conditions are known as the efficient set theorem (Sharpe, 1995).  

 The set of portfolios meeting the efficient set theorem are called the efficient portfolios and 

graphically they plot the EF, which is part of the MVF. EF is the set of frontier portfolios where 

each portfolio represents the portfolio with the highest expected return for varying levels of risk. 

Both frontiers are conventionally plotted in an expected return-risk (μ-σ) space. The shape of EF 

depends whether a risk-free asset is present or not.  

 

2.4.1. Efficient Frontier for Risky Assets  

 Considering only the risky assets, the graphical representation of MVF and EF is nearly 

identical yet it is important to distinguish between them. MVF represents the entire curve, EF 

represents only the non-dominated part of MVF, originating in the global minimum-variance 

portfolio (GMV). GMV is frontier portfolio with the smallest variance. The shape of MVF is 

strongly influenced by the correlation (ρ) between the assets as it directly affects the portfolio 

standard deviation (SD) as descripted by Equation 2.32 for two risky assets A and B, with 𝜇𝐴, 𝜎𝐴 

and 𝜇𝐵, 𝜎𝐵, respectively. 

 𝜎𝑃 = √𝑤𝐴
2𝜎𝐴

2 + 𝑤𝐵
2𝜎𝐵

2 + 2𝑤𝐴𝑤𝐵𝜎𝐴𝜎𝐵𝜌𝐴,𝐵  <  𝑤𝐴𝜎𝐴 + 𝑤𝐵𝜎𝐵 (2.32) 

  

 The above-mentioned inequality descripts the gain from diversification3 coming from 

assets with imperfect correlation. Simply put, the lower the correlation between assets, the better 

the diversification effect, the more parabolic the shape of MVF. The MVF and EF are depicted on 

the following Figure 1.  

                                                 
3 Diversification is further introduced in Section 3.2.1 
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Figure 1: Efficient frontier for risky assets  

 

2.4.2. Efficient Frontier for Risk-Free and Risky Assets 

 The portfolio of assets where one is risk-free affects the shape of EF. Let’s consider two 

assets, one risky asset A and one risk-free asset, forming a portfolio P. Since the risk-free asset 

carries no risk, its SD = 0. The SD of such complete portfolio is simply a linear weighted average 

𝑆𝐷𝑃 = 𝑤𝐴𝜎𝐴 + 𝑤𝑟𝑓𝜎𝑟𝑓 = 𝑤𝐴𝜎𝐴 + 0 where 𝑤𝐴 + 𝑤𝑟𝑓 = 1. If short positions on risk-free asset are 

allowed, then 𝑤𝐴 > 1 𝑎𝑛𝑑  𝑤𝑟𝑓 < 0. The efficient frontier of such combined portfolios is a straight 

line originating in the risk-free rate on axis y.  

 The EF for a combination of n risky assets and a risk-free asset follows the above-described 

scenario. The risky assets themselves form a parabolic-shaped MVF. The combination of risky 

portfolio, originally depicted on MVF, with a risk-free asset forms a straight line, referred to as 

the capital allocation line (CAL) The only CAL that dominates the parabolic curve in all of its 

length, as well as the other CALs, is the tangent to the MVF. This tangent CAL represents the 

efficient frontier as depicted in Figure 2. The tangent point represents the only portfolio which can 

be made solely of risky assets, usually called the tangency portfolio (T). The tangency portfolio is 

important and plays a crucial role in the investor’s optimal portfolio choice decision process, 

described in Section 4.1.3. 
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Figure 2: Different CALs for portfolios composed of risk-free and risky assets  

 

3. Return Generating Models 

 Although asset pricing is not the main subject of interest of this thesis, there are two pricing 

models that can be considered as essential to the portfolio theory and thus it is convenient for these 

to be briefly introduced. These models are the capital asset pricing model and the market model. 

These models represent an alternative to the historical approach when estimating asset’s expected 

returns, variances, and covariances. 

3.1. Capital Asset Pricing Model  

 Capital asset pricing model (CAPM) is an equilibrium pricing model and it has played a 

pivotal role in the development of quantitative investment management since its introduction. 

CAPM is derived from MPT and as such shares most of the MPT’s assumptions introduced in 

Section 2.3 with few specifics. As the concept of CAPM is based on the principle of equilibrium, 

few of the assumptions are worthwhile to review.   
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 CAPM assumptions4  

 All investors have homogeneous expectations regarding returns, variances, and 

covariances for all assets  

 Risk-free asset is available for an infinite lending or borrowing  

 Markets are perfectly efficient  

 All assets are tradable and infinitely divisible  

 Unlimited short sales are allowed 

 Perfect competition, i.e. an individual alone cannot affect the price  

Few implications coming from the CAPM assumptions 

 MVF is identical for all investors 

 EF is identical for all investors as well 

 As all investors share homogeneous expectations, they all demand the same assets 

 Hence, the tangency portfolio is identical for everyone 

 Tangency portfolio becomes the market portfolio 

 According to Litterman (2003), CAPM describes the market equilibrium in a sense that, if 

the model is correct and any asset’s expected return differs from its equilibrium return, the market 

forces come into play and restore the relationship suggested by the model. However, CAPM theory 

goes bit further. As known, risk of a stock can be split between systematic and non-systematic, or 

specific, risk. If portfolio is large enough, the non-systematic risk can be diversified away5. Since 

every investor holds a combination of market portfolio and risk-free asset, which both theoretically 

carry zero of specific risk, the specific risk no longer matters. Therefore, CAPM fundamentally 

describes a relationship of any asset’s equilibrium return as a linear function of its systematic risk, 

measured by β, market risk premium and a risk-free rate. The β of market portfolio is always equal 

to 1. When an asset carries higher systematic risk than the market, i.e. 𝛽 > 1, it should be 

remunerated by higher return. If the asset carries no systematic risk, thus no specific risk as well, 

then the equilibrium return should be equal to the risk-free rate. Let’s consider an asset A with 

                                                 
4 Complete list of assumptions is in Section 2.3 
5 See Section 3.2.1. 
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return 𝑟𝐴,  a risk-free asset with return 𝑟𝑓, and a market portfolio M with return 𝑟𝑀. CAPM 

equation is following:  

 𝑟𝐴 = 𝑟𝑓 + 𝛽𝐴(𝑟𝑀 − 𝑟𝑓) (3.1) 

 Equivalently, let’s substitute the single asset A with a complete portfolio P, then the 

equation becomes 

  𝑟𝑃 = 𝑟𝑓 + 𝛽𝑃(𝑟𝑀 − 𝑟𝑓) (3.2) 

 This is the standard CAPM, where β is the systematic risk measure of an asset/portfolio, 

and the term (𝑟𝑀 − 𝑟𝑓) is the market risk premium.  

 The graphical representation of CAPM is the security market line (SML). In CAPM world, 

all portfolios should lie on SML. SML is plotted in the μ-σ space, originating at the risk-free rate 

on axis Y and going through the market portfolio M. SML is a useful tool for determining whether 

an asset is overvalued, undervalued, or correctly valued on the market. This can be done 

mathematically by comparing the equilibrium return suggested by CAPM and the actual return 

observed on the market, or graphically plotting the asset’s return together with the SML in one 

graph.  

 

3.2. Market Model  

 Market model belongs to the group of so-called factor models. Factor models represent the 

building stone of the Arbitrage Pricing Theory (APT), introduced by Ross (1976). The theory is 

based on an assumption that all asset returns can be determined by a set of factors. It believes that 

the asset returns are related to each other through their correlations with a limited set of factors. 

The simplest factor model is the market model. More advanced are, for example, the 3-factor and 

5-factor Fama-French models. 

 The market model (MM) is a one factor model. The factor is the return on market portfolio. 

MM describes a relationship between the returns on asset and the returns on market portfolio 

through a classical regression. Let’s assume an asset A with return 𝑟𝐴, and the market portfolio M 

with return 𝑟𝑀. MM regression equation is following (DeFusco et al., 2007):  
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 𝑟𝐴 = 𝛼𝐴 + 𝛽𝐴𝑟𝑀 + 𝜀𝐴 (3.3) 

 Where 𝛼𝐴 is the intercept representing an average return on asset A independent of the 

market, and 𝜀𝐴 is the error term representing the residual risk. Alternatively, the MM equation can 

be expressed in terms of excess returns as following: 

 𝑟𝐴 − 𝑟𝑓 = 𝛼𝐴 + 𝛽𝐴(𝑟𝑀 − 𝑟𝑓) + 𝜀𝐴 (3.4) 

 MM stands upon following assumptions 

 𝐸(𝜀𝐴) = 0 

 𝐶𝑜𝑣(𝑟𝑀, 𝜀𝐴) = 0 

 𝐶𝑜𝑣(𝜀𝐴, 𝜀𝐵) = 0    𝐴 ≠ 𝐵 

 These assumptions partially correspond to the OLS regression model. However, MM does 

not assume the error term to be normally distributed, as well as the variance of error term being 

identical across assets. Given these assumptions, three postulates can be made regarding the 

expected returns, variances, and covariances.  

  Expected return of asset A depends on the expected return of market M, A’s β towards M, 

and the independent part of A’s return  

 𝐸(𝑟𝐴) = 𝛼𝐴 + 𝛽𝐴𝐸(𝑟𝑀) (3.5) 

 

 Variance of asset A depends on the variance of market M, the residual variance of A, and 

A’s β towards M 

 𝑉𝑎𝑟(𝑟𝐴) = 𝛽𝐴
2𝜎𝑀

2 + 𝜎𝜀𝐴
2  (3.6) 

 

 Covariance between the returns of asset A and asset B depends on the variance of returns 

of market M, and A’s and B’s sensitivities 𝛽𝐴, 𝛽𝐵 

 𝐶𝑜𝑣(𝑟𝐴, 𝑟𝐵) = 𝛽𝐴𝛽𝐵𝜎𝑀
2  (3.7) 
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3.2.1. Diversification  

 The market model is helpful in explanation of one of the core features of large financial 

portfolios and that being the diversification effect. The positive effect of correlation on 

diversification is introduced already in Section 2.4.1. In this section, the concept of diversification 

is extended with regard to the number of assets within the portfolio.  

 Let’s assume an asset, e.g. a stock. Each stock’s total risk is primarily composed of two 

main types of risk. The systematic risk and the specific risk. 

 Systematic risk, or market risk, refers to the risks associated with the macroeconomic 

events or developments impacting the entire market. Market risk impacts all market 

participants equally and from its nature cannot be eliminated via diversification. However, 

its impacts can be eased using an appropriate hedging or asset allocation strategy. 

Systematic risk is measured by β. Beta of an asset can be interpreted as its sensitivity 

towards the market. Beta of the market is always equal to 1. Let’s assume an asset A and a 

market portfolio M, with returns 𝑟𝐴 and 𝑟𝑀, respectively. β calculation is following:  

 𝛽𝐴 =
𝑐𝑜𝑣(𝑟𝐴, 𝑟𝑀)

𝑣𝑎𝑟(𝑟𝑀)
 (3.8) 

 

 Beta of a portfolio is calculated as a weighted average of individual asset betas. Let’s 

assume a portfolio P with n assets. β calculation is following: 

 𝛽𝑃 = ∑ 𝑤𝑖𝛽𝑖

𝑛

𝑖=1

 (3.9) 

  

β < 0 Asset returns move the opposite direction compared to the market. If the 

market return is positive, the asset return is negative and vice versa. 

β = 1 Asset returns move identically with the market.  

β  > 1 Asset returns move the same direction as the market but quicker, both up 

and down. The asset is riskier than the market. 

0 < β < 1 Asset returns move the same direction as the market but slower, both up 

and down. The asset is less risky than the market. 
    Table 1: Values of β 
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 Specific risk, or idiosyncratic risk or residual risk, refers to the risks associated with an 

individual industry, firm, or product. Specific risk can be eliminated via diversification.  

  The elimination of specific risk from a portfolio is a sought-after benefit. Mathematically, 

the elimination can be explained by using the properties of the market model. Let’s consider the 

MM’s second postulate for an entire portfolio P consisting of n assets as following (Elton et al., 

2011): 

 𝑉𝑎𝑟(𝑟𝑝) = 𝛽𝑃
2𝜎𝑀

2 + 𝜎𝜀𝑃
2  (3.10) 

 Where the term 𝑉𝑎𝑟(𝑟𝑝) represents the total risk, 𝛽𝑃
2𝜎𝑀

2  the systematic risk, and 𝜎𝜀𝑃
2  the 

specific risk. In terms of n individual assets, the equation can be re-written as following: 

 𝑉𝑎𝑟(𝑟𝑝) = 𝛽𝑃
2𝜎𝑀

2 + 𝜎𝜀𝑃
2 = ∑ 𝑤𝑖

2𝛽𝑖
2𝜎𝑀

2 + ∑ 𝑤𝑖
2𝜎𝜀𝑖

2

𝑛

𝑖=1

𝑛

𝑖=1

 (3.11) 

 For evidential purposes, it is convenient to ignore the systematic risk part and focus solely 

on the specific one. Moreover, let’s assume an equally weighted portfolio where 𝑤𝑖 =
1

𝑛
 , the 

diversification effect on the specific part is following: 

 ∑ 𝑤𝑖
2𝜎𝜀𝑖

2

𝑛

𝑖=1

= ∑ (
1

𝑛
)

2

𝜎𝜀𝑖

2

𝑛

𝑖=1

=
1

𝑛2
∑ 𝜎𝜀𝑖

2

𝑛

𝑖=1

= lim
𝑛→∞

∑ 𝜎𝜀𝑖

2𝑛
𝑖=1

𝑛2
= 0 (3.12) 

 It is easy to see that with a number of assets increasing to infinity, the specific risk 

converges towards zero.  
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4. Portfolio Optimization  

 Since the introduction of MPT in 1952, a number of portfolio optimization techniques have 

been developed. All of them, however, more or less build upon the mean-variance optimization 

(MVO) model with the motivation to overcome some of its main drawbacks. The time has proven 

that the MVO developed by professor Harry Markowitz has truly become the cornerstone of the 

portfolio theory. This chapter regarding portfolio optimization introduces only the methods used 

in the practical part of this thesis.  

4.1. Mean-Variance Optimization  

 This section dedicated to the MVO is a direct continuation of Section 2.4 regarding the 

efficient frontier. As introduced there, the EF is influenced by the parameters of individual assets. 

Their means, variances, covariances, and the presence of risk-free asset.  

4.1.1. MVO for Risky Assets 

 To compute portfolios making up the EF considering only the risky assets, the following 

constrained problem must be satisfied  

𝑚𝑖𝑛      𝑤𝑇𝛴𝑤 

𝑠. 𝑡.   𝑤𝑇𝜇 = 𝑟𝑅 

𝑤𝑇𝐼 = 1 

 Where I is the N x 1 column vector of ones, and 𝑟𝑅 is the required portfolio return6 

demanded by the investor. No non-negativity constrains are present. The problem can be solved 

by minimizing the Lagrangian  

 min   ℒ =
1

2
𝑤𝑇𝛴𝑤 + 𝜆(𝑟𝑅 − 𝑤𝑇𝜇) + 𝛾(1 − 𝑤𝑇𝐼) (4.1) 

 

                                                 
6 The use of required return is convenient as the investor may desire a return different from the expected return. 

Nonetheless, the expected return may be used in the computations as well. Required return is often referred to as target 

return. 
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 Where 𝜆 and 𝛾 are the Lagrange multipliers. The first-order conditions to solve the 

Lagrangian are following:  

 
𝜕ℒ

𝜕𝑤
= 𝛴𝑤 − 𝜆𝜇 − 𝛾𝐼 = 0 (4.2) 

 
𝜕ℒ

𝜕𝜆
= 𝑟𝑅 − 𝑤𝑇𝜇 = 0 (4.3) 

 
𝜕ℒ

𝜕𝛾
= 1 − 𝑤𝑇𝐼 = 0 (4.4) 

 

 The FOCs with applied constrains can be re-written in terms of portfolio weights as 

following:  

 𝑤 = 𝑤𝑃 = 𝜆𝛴−1𝜇 + 𝛾𝛴−1𝐼 (4.5) 

 𝑟𝑅 = 𝑤𝑇𝜇 = 𝜇𝑇𝑤 =  𝜆(𝜇𝑇𝛴−1𝜇) + 𝛾(𝜇𝑇𝛴−1𝐼) (4.6) 

 1 = 𝐼𝑇𝑤𝑃 = 𝑤𝑃
𝑇𝐼 = 𝜆(𝐼𝑇𝛴−1𝜇) + 𝛾(𝐼𝑇𝛴−1𝐼) (4.7) 

 

 For simplification purposes, Danthine and Donaldson (2015) use the following constants  

 𝐴 = 𝐼𝑇𝛴−1𝜇 = 𝜇𝑇𝛴−1𝐼 (4.8) 

 𝐵 = 𝜇𝑇𝛴−1𝜇 > 0 (4.9) 

 𝐶 = 𝐼𝑇𝛴−1𝐼 > 0 (4.10) 

 𝐷 = 𝐵𝐶 − 𝐴2 > 0 (4.11) 

 

 Solving the set of FOCs, with applied substitution, for the Lagrange multipliers, we obtain: 

𝜆 =
𝐶𝑟𝑅 − 𝐴

𝐷
   𝑎𝑛𝑑   𝛾 =

𝐵 − 𝐴𝑟𝑅

𝐷
 

 Finally, substituting for the Lagrange multipliers into the Equation 4.5, the solution for 

portfolio weights is following: 

 𝑤𝑃 =
𝐶𝑟𝑅 − 𝐴

𝐷
𝛴−1𝜇 +   

𝐵 − 𝐴𝑟𝑅

𝐷
 𝛴−1𝐼 (4.12) 

 



24 

 

 Re-arranging the terms, the solution can be written in an alternative form as following: 

 𝑤𝑃 =
1

𝐷
[𝐵(𝛴−1𝐼) − 𝐴(𝛴−1𝜇)] +

1

𝐷
[𝐶(𝛴−1𝜇) − 𝐴(𝛴−1𝐼)]𝑟𝑅 (4.13) 

Or, 

  𝑤𝑃 = 𝑔 + ℎ𝑟𝑅 (4.14) 

  

 Where g represents the weight vector for portfolio with 𝑟𝑅 = 0 , and g + h represents the 

weight vector for portfolio with 𝑟𝑅 = 1 

 The FOCs are essential in defining the portfolio weights representing any frontier portfolio 

for a given level of required return. The solution for portfolio weights is highly practical as it 

delivers the weights of corresponding frontier portfolio for a chosen level of desired return.  

  

 The computation of parameters of any frontier portfolio is quite a straightforward matter.  

 Expected return  

 𝐸(𝑟𝑃) = 𝜇𝑃 = 𝑤𝑃
𝑇𝜇 (4.15) 

Where 𝑤𝑃 is the portfolio weights, and 𝜇 is vector of expected returns of assets. 

 

 Variance  

 𝑉𝑎𝑟(𝑃) = 𝜎𝑃
2 = 𝑤𝑃

𝑇𝛴𝑤𝑃 =
𝐶

𝐷
(𝜇𝑃 −

𝐴

𝐶
)

2

+
𝐴

𝐶
 (4.16) 

 

 The global minimum-variance portfolio (GMV), is the frontier portfolio with the smallest 

variance. It represents a pivotal point on the MVF, as it splits the MVF between the efficient and 

non-efficient frontier. The portfolio parameters calculated by Equations 2.29-31 apply for GMV 

as well. However, it can be calculated in a simpler way: 
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 Expected return  

 𝐸(𝑟𝑔𝑚𝑣) = 𝜇𝑔𝑚𝑣 =
𝐴

𝐶
 (4.17) 

 

 Variance  

 𝑉𝑎𝑟(𝑔𝑚𝑣) = 𝜎𝑔𝑚𝑣
2 =

1

𝐶
 (4.18) 

 

4.1.2. MVO for Risk-free and Risky Assets 

 The inclusion of a risk-free asset within a portfolio of otherwise risky assets improves the 

efficiency of the complete portfolio. Let’s assume a fraction of capital denoted w invested in a 

vector of risky assets and (1 − 𝐼𝑇𝑤) in the risk-free asset denoted 𝑤𝑓. The optimization problem 

is following:  

𝑚𝑖𝑛      𝑤𝑇𝛴𝑤 

𝑠. 𝑡.   𝑟𝑓 + (𝜇 − 𝑟𝑓𝐼)
𝑇

𝑤 = 𝑟𝑅 

 Where μ represents the vector of expected returns on risky assets, 𝑟𝑓 the return on risk-free 

asset, and I the vector of ones. 

 It is worthwhile to mention that the constrain 𝑤𝑇𝐼 = 1 is no longer present. Thus, 𝑤𝑓 +

∑ 𝑤𝑖
𝑛
𝑖=1 ≠ 1. No non-negativity constrains are present. The problem can be solved by minimizing 

the Lagrangian: 

 min   ℒ =
1

2
𝑤𝑇𝛴𝑤 + 𝜆(𝑟𝑅 − 𝑟𝑓 − (𝜇 − 𝑟𝑓𝐼)𝑇𝑤 (4.19) 

 Where 𝜆 is the Lagrange multiplier. The FOCs to solve the Lagrangian are following: 

 
𝜕ℒ

𝜕𝑤
= 𝛴𝑤 − 𝜆(𝜇 − 𝑟𝑓𝐼) = 0 (4.20) 

 
𝜕ℒ

𝜕𝜆
= 𝑟𝑅 − 𝑟𝑓 − (𝜇 − 𝑟𝑓𝐼)

𝑇
𝑤 = 0 (4.21) 
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 The FOCs can be re-written in terms of portfolio weights as following: 

 𝑤 = 𝜆𝛴−1(𝜇 − 𝑟𝑓𝐼) (4.22) 

 𝑤 =
𝑟𝑅 − 𝑟𝑓

(𝜇 − 𝑟𝑓𝐼)
𝑇 (4.23) 

 Applying the constrain and solving for the Lagrange multiplier, we obtain 

 𝜆 =
𝑟𝑅 − 𝑟𝑓

(𝜇 − 𝑟𝑓𝐼)
𝑇

𝛴−1(𝜇 − 𝑟𝑓𝐼)
 (4.24) 

 For simplification purposes, a new constant H (Danthine and Donaldson, 2015) for 

replacing the denominator may be used 

 𝐻 = (𝜇 − 𝑟𝑓𝐼)
𝑇

𝛴−1(𝜇 − 𝑟𝑓𝐼) (4.25) 

 𝐻 = 𝐵 − 2𝐴𝑟𝑓 + 𝐶𝑟𝑓
2 > 0 (4.26) 

 Where A, B, C represent the constants introduced in Section 4.1.1.  

 The solution for the optimal portfolio weights by replacing 𝜆 is following: 

 𝑤 =
𝑟𝑅 − 𝑟𝑓

(𝜇 − 𝑟𝑓𝐼)
𝑇

𝛴−1(𝜇 − 𝑟𝑓𝐼)
𝛴−1(𝜇 − 𝑟𝑓𝐼) =

𝑟𝑅 − 𝑟𝑓

𝐻
𝛴−1(𝜇 − 𝑟𝑓𝐼) (4.27) 

 Where w represents the vector of portfolio weights on risky assets. 

 This is the formula that delivers the optimal portfolio weights when considering risky assets 

in combination with a risk-free asset for any level of desired return. Since short selling is allowed, 

the sum of weights of risky assets may go above 1, implying a short-position on risk-free asset, in 

order to achieve the desired return. The sum of weights of risky assets below 1 implies a partial 

long position on risk-free asset. Formally, it can be expressed as following: ∑ 𝑤𝑖
𝑛
𝑖=1 ≠ 1, and 𝑤𝑝 =

𝑤𝑓 + ∑ 𝑤𝑖
𝑛
𝑖=1 = 1 where 𝑤𝑝 represents the weights of complete portfolio. 𝑤𝑃 ≠ 𝑤. If, and only if, 

∑ 𝑤𝑖
𝑛
𝑖=1 = 1 and thus 𝑤𝑃 = 𝑤 with no holdings of risk-free asset, we identify such portfolio as the 

tangency portfolio. All portfolios lie on the efficient frontier. Tangency portfolio lies on both 

frontiers.  

 The computation of parameters of any frontier portfolio combining risky and riskless assets 

is, again, a straightforward matter. 
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 Expected return  

 𝐸(𝑟𝑃) = 𝜇𝑃 =  𝑟𝑓 + (𝜇 − 𝑟𝑓𝐼)
𝑇

𝑤 = 𝑟𝑓 + 𝜎𝑃√𝐻 (4.28) 

Where 𝜇 is the vector of expected returns, I is the vector of ones, w is the vector of portfolio 

risky holdings, 𝜎𝑃 is the portfolio’s SD, and H is a constant.  

 

 Variance  

 𝑉𝑎𝑟(𝑃) = 𝜎𝑃
2 = 𝑤𝑇𝛴𝑤 =

(𝜇𝑃 − 𝑟𝑓)
2

𝐻
 (4.29) 

  

 The tangency portfolio (T) is a special case of frontier portfolio. It is the only portfolio 

lying on both MVF and EF and is composed entirely of risky assets. As such, it must solve for 

both of the optimization problems introduced in Sections 4.1.1 and 4.1.2. It plays an important role 

in the complete portfolio construction process as the investor first determines the tangency 

portfolio and then adjusts it accordingly to his individual preferences. The tangency portfolio is 

determined as following: 

 Tangency portfolio weights  

 𝑤𝑇 =
1

𝐴 − 𝐶𝑟𝑓
𝛴−1(𝜇 − 𝑟𝑓𝐼) (4.30) 

 Where  ∑ 𝑤𝑖
𝑛
𝑖=1 = 1 and 𝑤𝑇 = 𝑤𝑃 = 𝑤 implying no holdings of risk-free asset. 

 Expected return  

 𝐸(𝑟𝑇) = 𝜇𝑇 = 𝑤𝑇
𝑇𝜇 = 𝑟𝑓 + (𝜇 − 𝑟𝑓𝐼)

𝑇
𝑤𝑇 = 𝑟𝑓 +

𝐻

𝐴 − 𝐶𝑟𝑓
 (4.31) 

 

 Variance  

 𝑉𝑎𝑟(𝑇) = 𝜎𝑇
2 = 𝑤𝑇

𝑇𝛴𝑤𝑇 (4.32) 
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4.1.3. Portfolio Choice 

 The choice of a complete portfolio within the MPT framework is a subject matter under 

the mean-variance utility hypothesis. MPT considers all investors to be rational and naturally risk 

averse. The investor’s level of risk aversion is primarily derived from his utility function. When 

constructing a portfolio, the investor faces the canonical portfolio problem. This is a two-step 

process. The first step is an identification of optimal risky portfolio regardless the investor’s 

preferences. The second step is allocation of capital between the optimal risky portfolio and the 

risk-free asset to form the most desired portfolio. This two-step process is formally called the 

Separation theorem, or Two-fund theorem, (Sharpe, 1995). 

 The second step is fully done with accordance to investor’s utility function and his risk 

aversion. To make this simpler, MPT assumes all investors to have a quadratic utility function. 

The investor’s objective is therefore same for all and that being the maximization of his mean-

variance utility. Let’s assume a complete portfolio P with expected return 𝜇𝑃 and variance 𝜎𝑃
2. The 

maximization problem then becomes following: 

 max   𝑈 = 𝜇𝑃 −
1

2
𝐴𝜎𝑃

2 (4.33) 

  

 Where 𝐴 is the risk aversion coefficient representing the degree of investor’s risk aversion. 

It is defined as the additional marginal return the investor demands for accepting more risk. It is 

easy to see that the value of utility function rewards higher expected return and penalizes portfolio 

risk.  

Potential values of A 

Risk aversion A > 0 

Risk neutrality A = 0 

Risk seeking A < 0 

Table 2: Values of A 
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 Alternatively, let’s consider a capital allocated to portfolio of risky assets denoted as 𝑤𝑟 

and (1 − 𝑤𝑟) = 𝑤𝑓 allocated to risk-free asset, then the mean-variance utility equation can be re-

written as following: 

 max    𝑈 = 𝜇𝑃 −
1

2
𝐴𝜎𝑃

2 = 𝑤𝑟
𝑇𝜇 + (1 − 𝑤𝑟

𝑇𝐼)𝑟𝑓 −
1

2
𝐴𝑤𝑟

𝑇𝛴𝑤𝑟 (4.34) 

 

 Solving the maximization problem by setting the first derivative with respect to 𝑤𝑟 equal 

to zero, we obtain 

 
𝜕𝑈

𝜕𝑤𝑟
= 𝜇 − 𝑟𝑓𝐼 − 𝐴𝛴𝑤𝑟 = 0 (4.35) 

 

⋮ 

 𝑤𝑟 =
𝜇 − 𝑟𝑓𝐼

𝐴𝛴
=

1

𝐴
𝛴−1(𝜇 − 𝑟𝑓𝐼)   𝑜𝑟   𝑤𝑟 =

𝜇𝑃 − 𝑟𝑓

𝐴𝜎𝑃
2   (4.36) 

 

 Where 𝑤𝑟 represents the capital allocation to risky assets, 𝜇 is the vector of expected returns 

on risky assets, I is the vector of ones, rf is the risk-free rate, A is the investor’s risk aversion 

coefficient, and Σ is the covariance matrix.  

 Another method of selecting the most desirable portfolio involves the use of indifference 

curves.  

 The indifference curves are graphical representation of investor’s preferences for risk and 

return, and are conventionally plotted in two dimensional, risk and return space. Each investor 

possesses an infinite set of unique indifference curves creating so-called map of indifference 

curves. Each indifference curve represents all combinations of portfolios that provide the investor 

the desired level of satisfaction equally. All that being done with respect to investor’s utility 

function. However, and with reference to the MPT assumptions presented in Section 2.3, the MPT 

assumes all investors to have a quadratic utility function. Indifference curves under the quadratic 

utility assumption thus too have a quadratic form of convex shape in the relevant area of the μ-σ 

space. The steepness of the curve is influenced by the investor’s risk aversion coefficient. The 
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higher the coefficient, the more risk averse the investor, the steeper the curve. With accordance to 

the separation theorem, the investor first finds the tangency portfolio and then adjusts the portfolio 

with risk-free asset to meet the desired characteristics, i.e. to reach the point where the investor’s 

indifference curve meets the efficient frontier. 

 

 

Figure 3: Optimal portfolios for agents with different risk aversion  
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4.1.4. MPT Limitations  

 Although the MPT has become the cornerstone of portfolio theory and as such has its 

sovereign position within quantitative finance, it possesses a number of shortcomings which make 

the model being criticized from today’s perspective. In a theoretical world, the MPT is correct and 

performs well. However, the assumptions under which the MPT operates usually do not hold in 

reality. These matters of fact have been empirically proven by a number of studies conducted over 

the time in various fields of study, e.g. behavioral economics or applied econometrics. Alongside 

the research, some assumptions are simply not true from its very nature, e.g. no transaction costs 

or taxes. This section provides a non-exhaustive list of the most significant limitations of the mean-

variance optimization (Michaud and Michaud, 2008). 

 MVO overuses statistically estimated information resulting in a high input sensitivity. Even 

a small change of inputs delivers a major impact on the optimal portfolio holdings. 

Consequently, it tends to maximize the estimation error7. 

 MVO tends to deliver unintuitive, highly concentrated portfolios  

 Return distributions in real world are rarely normal. In fact, distributions are usually 

leptokurtic (excess kurtosis) and skewed.  

  Under non-normality, symmetric risk measures perform poorly and asymmetric risk 

measures, such as semi-deviation or value-at-risk, are more adequate 

 MVO assumes a single-period framework only, while investors usually have long term, 

multi-period investment horizons 

 Quadratic utility function exhibits increasing absolute risk aversion (IARA) which is 

unrealistic 

 Investors’ expectations are not homogenous as every investor is somehow biased 

 Investors being able to buy or sell any quantity of assets doesn’t hold as investors often 

have a credit limit. Moreover, some assets have the minimum order size and can’t be traded 

in fractions 

 Transaction costs, fees, and taxes exist in real world 

 Correlations across assets are never stable and fixed    

                                                 
7 Is the difference between the true values of parameters (mean, var, cov) and their estimated values. 
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4.2. Treynor-Black 

 The Treynor-Black model (TB) is an optimization method developed by Jack Treynor and 

Fischer Black (1973), and was originally published in Journal of Business in 1973. The model is 

based on a presumption that only securities showcasing abnormal returns are worth adding to an 

otherwise most efficient portfolio, the market portfolio. If such securities occur and are not yet 

included in the market portfolio, the market portfolio is no longer efficient. The optimal portfolio 

suggested by TB is thus a combination of the market portfolio and the active portfolio composed 

of selected securities with positive abnormal returns. Since the number of securities within the 

active portfolio is usually limited, the incorporation of the market portfolio also significantly 

improves the overall diversification. The ability to predict abnormal returns is critical within the 

TB framework, so to avoid any possible inconsistencies coming from using a variety of different 

security analyses, the TB assumes the use of the market model characterized by the Equation 3.4. 

In MM, the abnormal return is represented by non-zero alpha, i.e. 𝛼 ≠ 0. Any rational investor 

desires and seeks 𝛼 > 0, which delivers superior return to the portfolio. This inequality is 

important in order to maintain the positive risk-return trade-off as the security always increases 

the portfolio risk through its own residual variance. The ultimate goal of TB optimization is the 

maximization of the optimal portfolio’s Sharpe ratio8. The majority of MVO assumptions apply 

for the TB model as well (Kane et al., 2003). 

  Let’s assume n+1 assets, where n is the number of securities with abnormal returns 

forming an active portfolio A and +1 represents the market index as a passive portfolio M, both 

together forming an optimal portfolio P. The estimates of alpha, beta, and residual variance 

coefficients on portfolio level are following (Bodie et al., 2018): 

 𝛼𝑃 = ∑ 𝑤𝑖𝛼𝑖    ;    𝛼𝑀 = 0

𝑛+1

𝑖=1

 (4.37) 

 𝛽𝑃 = ∑ 𝑤𝑖𝛽𝑖   ;    𝛽𝑀 = 1

𝑛+1

𝑖=1

 (4.38) 

                                                 
8 𝑆𝑅 =

𝐸(𝑟𝑃)−𝑟𝑓

𝜎𝑃
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 𝜎𝜀𝑃
2 = ∑ 𝑤𝑖

2𝜎𝜀𝑖

2    ;    𝜎𝜀𝑛+1
2 = 𝜎𝜀𝑀

2 = 0

𝑛+1

𝑖=1

 (4.39) 

 The formula for optimal weight allocated to the active portfolio A is following: 

 𝑤𝐴 =
𝐸(𝑟�̅�)𝜎𝑀

2 − 𝐸(𝑟𝑀̅̅ ̅)𝜎𝐴𝑀

𝐸(𝑟�̅�)𝜎𝑀
2 + 𝐸(𝑟𝑀̅̅ ̅)𝜎𝐴

2 − [𝐸(𝑟�̅�) + 𝐸(𝑟𝑀̅̅ ̅)]𝜎𝐴𝑀

 (4.40) 

 Where �̅� stands for risk premium. Therefore, 

𝐸(𝑟�̅�) = 𝐸(𝑟𝐴) − 𝑟𝑓 = 𝛼𝐴 + 𝛽𝐴[𝐸(𝑟𝑀) − 𝑟𝑓] 

𝐸(𝑟𝑀̅̅ ̅) = 𝐸(𝑟𝑀) − 𝑟𝑓 

𝜎𝐴𝑀 = 𝛽𝐴𝜎𝑀
2  

𝜎𝐴
2 = 𝛽𝐴

2𝜎𝑀
2 + 𝜎𝜀𝐴

2  

 After plugging all together and proceeding algebraic simplifying manipulations, the 

allocation to portfolio A gets following: 

 𝑤𝐴 =
𝑤0

1 + (1 − 𝛽𝐴)𝑤0
   ;    𝑤𝑀 = 1 − 𝑤𝐴 (4.41) 

 Where 

 𝑤0 =
𝛼𝐴/𝜎𝜀𝐴

2

𝐸(𝑟𝑀̅̅ ̅)/𝜎𝑀
2  (4.42) 

 is the initial allocation to A if 𝛽𝐴 = 1. 

 The allocation to n individual securities within the portfolio A is following: 

 𝑤𝑖 = 𝑤𝐴 ∗

𝛼𝑖

𝜎𝜀𝑖
2

∑
𝛼𝑖

𝜎𝜀𝑖
2

𝑛
𝑖=1

 (4.43) 

 As mentioned, the end goal of TB optimization is maximization of the optimal portfolio’s 

Sharpe ratio (SR). Therefore, as optimal portfolio is a combination of market portfolio and a 

portfolio of securities with superior expected returns, the overall SR must exceed the one of the 

market. The exact relationship is following: 
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 𝑆𝑅𝑃 = √𝑆𝑅𝑀
2 + [

𝛼𝐴

𝜎𝜀𝐴

]

2

= √𝑆𝑅𝑀
2 + ∑ [

𝛼𝑖

𝜎𝜀𝑖

]

2𝑛

𝑖=1

 (4.44) 

 Where the ratio of alpha to its residual SD is called the information ratio.  

 Parameters of optimal portfolio  

 Risk premium  

 𝐸(𝑟�̅�) = (𝑤𝑀 + 𝑤𝐴𝛽𝐴)𝐸(𝑟𝑀̅̅ ̅) + 𝑤𝐴𝛼𝐴 (4.45) 

 Variance 

 𝜎𝑃
2 = (𝑤𝑀 + 𝑤𝐴𝛽𝐴)2𝜎𝑀

2 + (𝑤𝐴𝜎𝜀𝐴
)2 (4.46) 

 

4.3.  Black-Litterman   

 The Black-Litterman model (BL) is an optimization method developed by Fischer Black 

and Robert Litterman (1992), and was originally published in Financial Analysts Journal in 1992. 

Over the time and due to the popularity of BL approach, a number of extensions to BL have been 

developed. In this thesis, only the original BL model is introduced and used. BL is based on a 

combination of inverse optimization and Bayesian statistics. It assumes that the optimal portfolio 

asset weights are known, represented by their weighting in the market index, and then these 

weights are subjects of adjustments in accord to the investor’s unique views about the future 

performance of these assets. This is in contrast with MVO, in which the estimates of expected 

returns are used as a starting point in derivation of optimal weights. Such approach overcomes the 

major shortcomings of MVO – input sensitivity, high concentration, and estimation error 

maximization. This brief introduction of BL is based upon the works of Idzorek (2002) and Walters 

(2014). 

 The starting point of inverse optimization under BL framework is the derivation of implied 

equilibrium excess returns, denoted Π, which is a N x 1 column vector resulting from following 

expression: 

 Π = 𝜆Σ𝑤𝑚𝑘𝑡 (4.47) 
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 Where 𝜆 =
𝐸(𝑟𝑀)−𝑟𝑓

𝜎 𝑜𝑓 𝑀 𝑒𝑥𝑐𝑒𝑠𝑠 𝑟𝑒𝑡𝑢𝑟𝑛𝑠
2  is the risk-aversion coefficient of market portfolio, Σ is the 

covariance matrix of excess returns, and 𝑤𝑚𝑘𝑡 is the market capitalization weight N x 1 column 

vector of the assets. 

 As in MVO, the optimization goal of BL is the maximization of investor’s mean-variance utility 

 max    𝑈 = 𝑤𝑇𝜇 −
1

2
𝜆𝑤𝑇Σ𝑤 (4.48) 

⋮ 

 𝑤 = (𝜆Σ)−1𝜇 (4.49) 

 Where μ is any vector of excess returns. If 𝜇 = Π, then 𝑤 = 𝑤𝑚𝑘𝑡 

 If an investor possesses no specific views about the future performance of the assets, he 

should then hold the portfolio with weights derived from the vector of implied equilibrium returns, 

i.e. 𝑤𝑚𝑘𝑡 , which is the view-neutral starting point of the BL model.  

 The original BL formula is:  

 𝐸(�̅�) = [(𝜏Σ)−1 + 𝑃𝑇Ω−1𝑃]−1[(𝜏Σ)−1Π + 𝑃𝑇Ω−1𝑄] (4.50) 

Where  

𝐸(�̅�) is the posterior combined return vector (N x 1) 

𝜏 is scalar 

Σ is covariance matrix of excess returns 

P is a (K x N) matrix identifying the assets involved in the views, where K is the number 

of views and N the number of assets 

Ω is a diagonal (K x K) matrix representing the residual variance associated with the 

expressed views 

Q is a (K x 1) column vector of views 

 Idzorek (2002: 13) describes the BL model as a “complex weighted average of the implied 

equilibrium return vector Π and the view vector Q, in which the relative weightings are a function 

of the scalar τ and the uncertainty of the views Ω.” Although the BL model doesn’t require one to 

specify any views, the possible incorporation of investor’s views within the model is perhaps the 

most attractive feature of the BL model. The views can be expressed either in an absolute or 
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relative form. The absolute view expresses an idea about an absolute return on an asset, e.g. 5%. 

The relative view expresses an idea about an asset under- or outperforming relatively to some other 

asset, e.g. asset A outperforms asset B by 25 b.p. The views form Q (K x 1) matrix. The uncertainty 

about the views is expressed in the error term vector denoted ε, where each error term 

𝜀 ~ 𝑁(0, 𝜎2). 

 𝑄 + 𝜀 = [
𝑄1

⋮
𝑄𝑘

] + [

𝜀1

⋮
𝜀𝑘

] (4.51) 

 The expressed views are linked to the assets in question via the matrix P (K x N) 

 𝑃 = [

𝑝1,1 ⋯ 𝑝1,𝑛

⋮ ⋱ ⋮
𝑝𝑘,1 ⋯ 𝑝𝑘,𝑛

]  (4.52) 

 Where each row is associated with one specific view. If the view is positive, the associated 

weight has a positive sign, e.g. +1, if negative then -1. The sum of weights in each row must be 

equal to 0 in case of relative views, and equal to 1 in case of absolute views. The actual weighting 

used in practice is where multiple versions of the BL model differ. Some weighting schemes use 

equal weighting, market capitalization weighting, or confidence level based weighting expressed 

as percentage on an intuitive scale 0-1. 

 The error terms enter the BL formula in form of its variance, denoted ω, and expressed in 

the Ω matrix 

 𝛺 = [
𝜏𝜔1 0 0

0 ⋱ 0
0 0 𝜏𝜔𝑘

] (4.53) 

 Where  

 𝜔𝑘 = 𝑃𝑘Σ𝑃𝑘
𝑇 (4.54) 

 The scalar τ should be more or less inversely proportional to the relative weight given to 

Π. However, its recommended value differs across literature and its variation is one of the ways 

how to calibrate the model for specific needs. Black and Litterman recommend to use values close 

to zero, such as often recommended τ=0.0025. 

 The last step of BL optimization is to obtain the combined return vector 𝐸(�̅�), Equation 

4.50, and plug it into the Equation 4.49, which returns the optimal portfolio weights.  
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4.4. Naïve Optimization  

 Naïve portfolio optimization methods are methods that may be used when a little, or none, 

statistical information about the assets, e.g. their means, variances, and/or correlations, is available 

to the investor. When no information is available and, at the same time, the investor possesses no 

knowledge of the capital market theory, the intuitive way to create a diversified optimal portfolio 

is to spread his available wealth across chosen assets equally. With increasing awareness and 

available information, more naïve methods come into play. This thesis introduces three naïve 

optimizers, the equal weighting, the Sharpe ratio based method, and the most diversified portfolio 

method. 

 

4.4.1. Equal Weighting  

 Equal weighting is a logical starting point for any investor, who desires to allocate his 

available capital across multiple assets which he has no information about, and/or is unaware of 

the capital market theory. Without any information, all the assets should look exactly the same to 

the investor and thus he should allocate his capital across them equally. Assuming n assets, the 

individual asset weighting is following:  

 𝑤𝑖 =
1

𝑛
 (4.55) 

  

 The equal weighting approach appears to be quite popular among the investors. Potentially 

due to its simplicity, or since it requires no estimations of parameters, it does not suffer the 

estimation error. Another strong argument in favor of equal weighting is its empirical evidence, 

for instance, DeMiguel et al. (2009) and Playkha et al. (2012), showcasing that such portfolios 

usually strongly outperform portfolios build under the mean-variance framework. Thus, it raises a 

question whether practitioners using 1/N approach are unaware of the information regarding the 

assets, or are aware of the outcomes of such empirical studies and have decided to exploit them 

(Kinlaw et al., 2017). 
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4.4.2. Sharpe Ratio Model 

 Sharpe ratio based asset allocation model (SRM) is slightly more sophisticated than the 

equal weighting as it requires the parameter estimates, yet still quite naïve in its fundamental 

nature. Sharpe ratio (SR) is a simple measure providing an information about asset’s risk premium 

per one unit of total risk measured by standard deviation. Simply put, the higher the SR the better 

the investment. It is fair to note that high SR doesn’t necessarily mean the highest return or the 

lowest risk. SR and SR based allocation are calculated as following (Amenc and Le Sourd, 2003): 

 𝑆𝑅 =
𝜇 − 𝑟𝑓

𝜎
 (4.56) 

  Where the numerator represents the asset’s risk premium and the denominator its standard 

deviation. 

 Assuming n assets within a portfolio, the SR based allocation is following: 

 𝑤𝑖 =
𝑆𝑅𝑖

∑ 𝑆𝑅𝑖
𝑛
𝑖=1

 (4.57) 

  

 This naïve optimization approach based on Sharpe ratios of individual assets as a starting 

point for asset allocation is slightly different than the Sharpe ratio maximization problem for 

complete portfolios and defined as  

max     
𝑤𝑇𝜇 − 𝑟𝑓

√𝑤𝑇Σ𝑤
 

𝑤𝑇𝐼 = 1  

 Where 𝑟𝑓 is the mean risk-free rate and I is the column vector of ones. 

 This maximization problem seeks the highest SR of a complete portfolio. In theory, the 

highest SR is guaranteed for portfolios lying on the CML, i.e. the market portfolio (M) with 

possible long/short position in risk-free asset. Should one consider rather a subset of n risky assets 

instead of M, the highest SR is then guaranteed for portfolios lying on the CAL, i.e. the tangency 

portfolio (T) with possible long/short position in risk-free asset. Eventually, the CAL can be 
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steeper, and therefore have a higher SR, than CML9. The optimal weights of T can be easily 

obtained via MVO as described in Section 4.1.2. However, such MVO weights may suffer the 

shortcomings of MVO, such as extreme long/short positions or allocation only to few assets. These 

shortcomings do not apply within the SRM. On the other hand, it may suffer from the cumulative 

estimation error caused, for instance, by insufficient data sets.  

4.4.3. Most Diversified Portfolio 

 Most diversified portfolio (MDP) is a naïve optimization method focused on maximization 

of the diversification ratio (DR). The maximization problem for a portfolio of n assets is following 

(Scherer, 2015): 

 
max 𝐷𝑅 = max

∑ 𝑤𝑖𝜎𝑖
𝑛
𝑖=1

√∑ ∑ 𝑤𝑖𝑤𝑗𝜎𝑖𝜎𝑗𝜌𝑖,𝑗
𝑛
𝑗=1

𝑛
𝑖=1

= max
𝑤𝑇𝜎

√𝑤𝑇Σ𝑤
 

(4.58) 

  

 Where σ is a N x 1 column vector of asset volatilities. DR itself can be interpreted in a 

following way: the lower the correlation between the assets, the higher the ratio. If all assets were 

perfectly correlated, the ratio equals 1. 

 The solution to the maximization problem in order to obtain the optimal portfolio weights 

is following: 

 𝑤𝑚𝑑𝑝 =
Σ−1𝜎

𝐼𝑇Σ−1𝜎
 (4.59) 

 Where I is the N x 1 column vector of ones, and Σ−1 is the N x N inverse covariance matrix. 

 The MDP represents a mean-variance portfolio, where it is assumed that all asset returns 

are proportional to their standard deviations. The level of proportionality is usually defined by a 

constant SR.  

 𝜇𝑖 = 𝑆𝑅𝜎𝑖 (4.60) 

  

                                                 
9 Beating the market in terms of performance is the ultimate goal of active portfolio management  
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5. Portfolio Performance  

 Performance measurement of investments is an essential part of any investment process. 

Performance analysis can be done both ex-ante and ex-post. Ex-ante analysis may be of a help to 

an investor before making an investment. Whether conducting a scenario analysis or analysis of 

historical data, such obtained values should only be taken with reserve as they do not possess a 

real predicting value but rather only orientational. Or put differently, the historical performance 

never guarantees the future performance due to the risks associated with the investment. During 

the holding period, the value to the portfolio is being added through a variety of sources such as 

superior asset allocation, security selection, market timing, transaction executions etc. Logically, 

any investor is curious and wants to know how well his investments have been doing. Performing 

a periodical performance analysis may serve as an underlying evidence for potential changes in 

his investment strategy. After the holding period, therefore ex-post, it is possible to conduct an 

overall, exact, risk-adjusted performance assessment to see how the portfolio performed. Then, the 

answers to questions such as What is the total return? or Why the portfolio performed that way? 

can be answered. Portfolio’s risk-adjusted performance measures can also be used for comparing 

mutually exclusive portfolios between themselves. Although there are dozens of portfolio 

performance measures available, this chapter introduces only the ones that are used within its 

practical part. All presented measures can be found in Bacon (2008). 

 

5.1.1. Time-Weighted Return  

 Time-weighted rate of return (TWR) is a measure of a per-period compounded return on 

an investment where each time period is given an equal weight regardless the money invested10. It 

is calculated as a geometric mean of a series of n realized returns. TWR is useful as an average 

return in a long-term perspective.  

 𝑇𝑊𝑅 = √(1 + 𝑟1)(1 + 𝑟2) … (1 + 𝑟𝑛)
𝑛

− 1 = √∏(1 + 𝑟𝑖)

𝑛

𝑖=1

𝑛

− 1 (5.1) 

                                                 
10 Measure where each time period is weighted by the money invested is called the money-weighted return. 
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5.1.2. Effective Annual Return 

 Effective annual return (EAR) is a measure of total return over a multi-period time frame 

that reflects compounding11. Alongside the daily frequency, returns are often expressed on a 

weekly, monthly, or yearly basis. Therefore, the average per-period return requires adjustment to 

meet the criteria. EAR is calculated as following: 

 𝐸𝐴𝑅 = (1 + 𝑟)𝑛 − 1 (5.2) 

 Where r is the average per-period return, and n is the number of periods 

5.1.3. Standard Deviation  

 Variance (𝜎2) is a statistical measure of total dispersion of a random variable, such as asset 

returns, around its mean. It can be calculated both ex-ante, as expected variance, and ex-post, as 

historical variance. Its square root, the standard deviation (σ or SD) or volatility, is the most 

common measure of asset’s risk. Historical sample SD is calculated in following way: 

 𝑆𝐷 = √
1

𝑇 − 1
∑(𝑟𝑡 − �̅�)2

𝑇

𝑡=1

  (5.3) 

 Alternatively, it is possible to use the properties of the market model and obtain SD as 

 𝑆𝐷 = √𝛽2𝜎𝑀
2 + 𝜎𝜀

2 (5.4) 

 Where 𝜎𝑀
2  is the market variance and 𝜎𝜀

2 is the variance of residuals.  

 The residual Var/SD [Var(e)/SD(e)] represents the asset’s specific risk. It is introduced in 

a more detailed way in Section 3.2 regarding the market model and diversification. 

 SD can be adjusted to longer periods as 𝑆𝐷𝑇 = 𝑆𝐷√𝑇 where T represents the number of 

periods, e.g. from daily to monthly or yearly. This adjustment is, however, only an approximation.  

                                                 
11 The measure of total, multi-period return that does not reflect compounding is called Annualized Percentage Rate 

(APR) and is calculated 𝐴𝑃𝑅 = 𝑟 ∗ 𝑛 
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5.1.4. Beta 

 Beta as a measure of asset’s systematic risk is closely introduced in Chapter 3 and its 

Section 3.2.1 about diversification.  

5.1.5. Sharpe Ratio 

 Sharpe ratio (SR), or reward-to-volatility ratio, is a risk adjusted measure of portfolio 

performace. It measures the amount of portfolio’s excess return per one unit of total risk measured 

by SD. SR is the slope of the capital allocation line. The larger the SR, the better.  

 𝑆𝑅 =
𝑟𝑃 − 𝑟𝑓

𝜎𝑃
 (5.5) 

 Where 𝑟𝑝 is the return on portfolio P, 𝑟𝑓 is the risk-free rate, and 𝜎𝑃 is the SD of P. In ex-

ante calculations, mean values are used. In ex-post, the actual realized values are used.  

5.1.6. Treynor Ratio 

 Treynor ratio (TR) is a risk adjusted measure of portfolio performance. It is similar to SR, 

but with the difference that it considers systematic risk only. It assumes that all portfolios are well 

diversified, and thus the idiosyncratic risk no longer matters. It measures the amount of portfolio’s 

excess return per one unit of systematic risk measured by beta. TR is the slope of the security 

market line. The larger the TR, the better.  

 𝑇𝑅 =
𝑟𝑃 − 𝑟𝑓

𝛽𝑃
 (5.6) 

 Where 𝛽𝑃 is the systematic risk of P. In ex-ante calculations, mean values are used. In ex-

post, the actual realized values are used. 

 Few comments regarding the TR need to be mentioned. TR is a theoretical concept 

assuming that all portfolios are well diversified, thus with no idiosyncratic risk. However, real 

portfolios usually carry some idiosyncratic risk. Therefore, portfolios that have the same amount 

of systematic risk but differ in total risk, will have the same TR. 

5.1.7. Jensen’s Alpha  

 Jensen’s alpha (α) is a risk-adjusted measure of superior performace. α is the intercept of  

the standard CAPM regression equation. It compares the portfolio’s realized excess return with 
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the risk-adjusted excess return. The measure adjusts for systematic risk. The regression equation 

is following: 

 𝑟𝑃,𝑡 − 𝑟𝑓,𝑡 = 𝛼𝑃,𝑡 + 𝛽𝑃(𝑟𝑀,𝑡 − 𝑟𝑓,𝑡) + 𝜀𝑃,𝑡 (5.7) 

 Where t represents a time point within the time series.  

 In ex-post analysis, the error term can be ignored and alpha is then calculated by using the 

actual realized returns  

 𝛼𝑃 = 𝑟𝑃 − 𝑟𝑓 − 𝛽𝑃(𝑟𝑀 − 𝑟𝑓) (5.8) 

 This is called the  Jensen’s alpha, or Jensen’s measure, or Jensen’s differential return, or 

ex-post alpha.   

 Positive α indicates a superior risk-adjusted return, i.e. the portfolio’s return is higher than 

what it should be in accord to the level of undertaken risk. In CAPM universe, 𝛼 = 0. Positive α 

therefore lies above the SML and is desired. Positive α can be, for instance, due to the portfolio 

manager’s superior security selection or timing skills. Jensen’s α is a measure often used to 

evaluate portfolio managers. However, it does not evaluate the manager’s ability to diversify as it 

accounts the systematic risk only.  

5.1.8. Information Ratio   

 Information ratio (IR) is a measure of portfolio’s excess return (er) relative to market 

portfolio per one unit of tracking error, which is the standard deviation of those excess returns. 

Positive IR represents a superior performance. IR is a key statistic and is extensively used as it 

evaluates the portfolio manager’s abilities to generate excess returns. The higher the IR, the better. 

 𝐼𝑅 =
𝑟𝑃 − 𝑟𝑀

𝜎𝑒𝑟
 (5.9) 

 Where 𝑟𝑃 is the return on P, 𝑟𝑀 is the return on market index used as a benchmark, and 𝜎𝑒𝑟 

is the tracking error calculated as following: 

 𝜎𝑒𝑟 = √
1

𝑇
∑(𝑒𝑟𝑡 − 𝑒𝑟̅̅̅)2

𝑇

𝑡=1

 (5.10) 

 Where 𝑒𝑟𝑡 = 𝑟𝑃,𝑡 − 𝑟𝑀,𝑡, and 𝑒𝑟̅̅̅ is the mean excess return.  
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 The tracking error can also be seen as a function of portfolio’s SD and the correlation 

between the portfolio and the market, calculated as following: 

 𝜎𝑒𝑟 = 𝜎𝑃√(1 − 𝜌𝑃,𝑀
2 ) (5.11) 

 IR can be obtained in an alternative way by regressing the standard CAPM, Equation 3.4. 

 𝐼𝑅𝑃 =
𝛼𝑃

𝜎𝜀𝑃

 (5.12) 

 Where 𝛼𝑃 is the Jensen’s alpha, and 𝜎𝜀𝑃
 is the standard error of regression.  

 In ex-ante IR calculations, mean values are used. In ex-post, the realized values are used. 

 The IR can also be used in calculation of portfolio’s SR by using Equation 4.44. 

 Since IR is extensively used for comparing different portfolios, it is essential to maintain 

consistency of how the individual elements are calculated, e.g. the frequency of data, overall time 

period, arithmetic or geometric means and excess returns, T or T-1, ex-post or ex-ante. The IR is 

often expressed on an approximate annualized basis as 𝐼𝑅 = √𝑇𝐼𝑅𝑃.  

5.1.9. M^2 

 M^2 is a measure of risk-adjusted return relative to the market. It compares the hypothetical 

return on portfolio with adjusted SD to match the SD of market with the return on market. The 

adjusted risk of portfolio is achieved by long/short positions in the risk-free asset.  M^2 is a highly 

useful measure for comparing portfolios with different levels of risk. The higher the M^2, the 

better.  

 𝑀2 = 𝑟𝑃 + 𝑆𝑅𝑃(𝜎𝑀 − 𝜎𝑃) (5.13) 

Or, alternatively  

 𝑀2 = 𝑟𝑓 +
𝜎𝑀

𝜎𝑃
(𝑟𝑃 − 𝑟𝑓) (5.14) 

 

 

In ex-ante M^2 calculations, mean values are used. In ex-post, the actual realized 

values are used. M^2 of market is always equal to its return. 
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6. Portfolio Management  

 Portfolio management is a sophisticated discipline that can be viewed as a process 

undertaken in a consistent manner to create and maintain investment portfolios that meet the 

investor’s objectives. The objectives are defined beforehand and provide an underlying framework 

for the portfolio management. In a professional world, the investor’s objectives are stated in a 

document so-called the Investment Policy Statement (IPS). IPS contains information regarding the 

investor’s return expectations, risk profile, time horizon, along with possible constrains such as 

liquidity needs or tax concerns, among others.   

 Portfolio management consists of three main steps conducted along the way: (1) planning 

step, (2) execution step, and (3) feedback step. In the planning step, the IPC is created, market 

expectations are formed, and investment strategy is established. In the execution step, the 

investment portfolio is constructed and managed accordingly to the investment strategy. In the 

feedback step, the portfolio performance is monitored on a constant basis and compared with the 

IPC. Each of the steps deserves a closer look. This thesis, however, provides only a brief 

description. For more complex description, see Maginn et al. (2007). 

6.1.1. Planning Step 

 As stated, the planning step consists of the creation of IPC, formation of market 

expectations, and establishing an investment strategy. The investment strategy involves the 

strategic asset allocation (SAA) reflecting both IPC and market expectations. Investment strategies 

are passive, active, or semi-active 

1) Passive Strategy   

 Passive, or not reacting, strategy represents a portfolio management that doesn’t 

react anyhow to market fluctuations. Two most used forms of passive strategy management 

are indexing and buy-and-hold. 

 Indexing 

 Portfolio is designed to replicate the performance of a specific market index as accurately 

as possible. The replication can be either physical or synthetic. In physical replication, the exposure 

to assets is direct and is either full, i.e. holding all constituents with identical weighting as does the 
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market index, or sample, i.e. holding only some of the index constituents. In synthetic replication, 

the exposure to the index constituents is indirect through derivatives. 

 Buy-and-hold 

 A strategy under which the selected assets are bought and held long term in order to profit 

from the capital gains and/or additional sources of income such as dividends. 

2) Active Strategy  

 In contract to passive strategy, the active strategy does acknowledge the market 

fluctuations and tries to construct such optimal portfolio that exploits them as much as possible in 

order to achieve superior risk-adjusted portfolio performance relative to the market, i.e. to achieve 

positive alpha.  

3) Semi-Active Strategy 

 Semi-active, or risk-controlled active, or enhanced index approach, is a combination of 

active and passive approach. The strategy seeks positive alpha as well, and at the same keeps tight 

control over portfolio’s risk relative to the benchmark.  

 

6.1.2. Execution Step  

 The execution step turns plans into reality. It consists the construction of actual portfolio 

in accord to what is established in the planning step. The portfolio composition must reflect the 

investor’s objectives and risk profile. Once the optimal portfolio is established, it must be managed 

accordingly to the SAA. However, if the investment horizon is long-term, some deviations from 

SAA can be made, usually done on purpose and for limited time. These purposefully made 

deviations are called the tactical asset allocation (TAA). The prime difference between SAA and 

TAA is in the time length. While SAA involves the long-term objectives, the TAA involves short-

term adjustments to SAA in order to exploit the expected market fluctuations, and, consequently, 

realize additional superior returns. TAA is thus based on a constant monitoring of both the market 

and the portfolio. Monitoring and rebalancing belong to the third step of the portfolio management 

process, the feedback step. Therefore, the execution step and the feedback step are closely related.  
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6.1.3. Feedback Step 

 The fluctuations in market values of individual assets create deviations of the current asset 

allocation from the SAA. Although these deviations may not matter much in short term, their 

cumulative effect may significantly impact the overall portfolio performance, and may cause 

significant deviations from the investor’s long term objectives. The way how portfolio manager 

approaches these deviations is the core difference between passive and active portfolio 

management. Whilst the passive management fundamentally ignores the deviations in allocation, 

the active management reacts to them by rebalancing the current asset allocation to make the 

allocation consistent with the SAA. In order to properly rebalance, the portfolio manager must 

monitor both market and portfolio on continuous basis. Monitoring, rebalancing, and performance 

evaluation are core elements of the feedback step. 

1) Monitoring  

 Monitoring is an essential part of the feedback step. Being aware, or not, about all possible 

influences that may have an impact on the portfolio is the difference whether the investor’s 

objectives are going to be reached or not. Therefore, the portfolio manager should keep a constant 

eye over the investor’s circumstances, market and economic changes, and the portfolio itself. Any 

changes must be dealt with in an appropriate manner.  

2) Rebalancing 

 Portfolio rebalancing represents adjustments in current asset allocation as a reaction to (1) 

fluctuations in market values of assets in order to be consistent with SAA, (2) changes in investor’s 

objectives, constrains, or market expectations, and (3) tactical asset allocation. In this thesis, only 

the scenario 1 is considered and introduced bit further. In scenario 1, the portfolio manager sells 

appreciated assets and buys depreciated assets in case of long positions, or buys appreciated assets 

and sells depreciated assets in case of short positions, to make the actual composition consistent 

with SAA. In practice, two most common rebalancing practices are calendar rebalancing and 

percentage-of-portfolio rebalancing.  
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 Calendar rebalancing  

- Rebalancing happens on a periodic basis, e.g. monthly, quarterly, semi-annually, or 

annually.  

 Percentage-of-portfolio rebalancing (or percent range or interval rebalancing) 

- Rebalancing is triggered when an asset’s weight crosses a pre-specified corridor or 

tolerance band. Let’s assume three assets A, B, and C with SAA, in percentages, 

40/40/20, respectively. Assets A and B have corridor ± 5%, and asset C ± 1,5%. 

If the weighting of any asset exceeds the tolerance corridor, the rebalancing is 

triggered and the initial weighting 40/40/20 is re-established. 

 Although rebalancing does have its undoubtful benefits, e.g. it reduces the present value of 

expected utility loss coming from not tracking the optimum, it does have its shortcomings as well, 

e.g. transaction costs and/or tax costs12 applied on sale of the appreciated assets. These 

shortcomings, however, may be reduced by imposing constrains on them in the portfolio 

optimization process.  

 

3) Performance evaluation  

 Portfolio performance evaluation is described in Chapter 5. 

 

 

  

                                                 
12 Tax liability depends on a particular jurisdiction and on whether the investor is a subject to taxation or not.  
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7. Practical Experiment 

 The practical part of this master’s thesis is based on an experiment that put multiple 

quantitative portfolio optimization methods into a contest. Different optimizers were applied to 

portfolios composed of identical assets, which were subsequently held under different portfolio 

management styles over a pre-specified period of time. The performance of each portfolio was 

measured ex-post, adequately evaluated in accord with the criteria of the experiment, and 

confronted with the others.   

 The assets included in the experiment’s portfolio P (P) are 30 US blue-chip stocks, US 4-

week Treasury bill (T-bill), and S&P 500 market index. The stocks were selected intuitively 

without any equity analysis done beforehand. Nonetheless, they were picked with a sense for 

diversification and represent all leading industries. The complete list of all portfolio components 

with a brief description is presented in annex at the end of the thesis.  

 The optimization models selected for the experiment represent 3 sophisticated and 3 naïve 

models. The first group includes the Mean-variance optimization model (MVO), the Treynor-

Black model (TB), and the Black-Litterman model (BL). The latter includes the Equal-weighting 

model (1/N), the Sharpe ratio based model (SRM), and the Most diversified portfolio model 

(MDP). The models are presented and descripted in the theoretical part. The models were exercised 

on the portfolio P which resulted in 6 different suggested optimal asset allocations, thus 6 different 

portfolios. 

 Two different portfolio management styles were used in the experiment, active and passive. 

To assure fair starting point between them, each portfolio was created twice, resulting in two equal 

sets of 6 portfolios. The market portfolio included in the experiment served as a benchmark to 

these portfolios. Therefore, the total number of portfolios was 13, 6 active, 6 passive and 1 market 

portfolio. The portfolios under the active management were rebalanced on daily basis in accord to 

the asset’s daily adjusted closing prices to maintain the initial optimal allocation suggested by the 

models.  The portfolios under the passive management were untouched throughout the experiment 

in accord to the passive portfolio management strategy buy-and-hold. Both management styles are 

descripted in Chapter 6. 
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 The total time period of the experiment was from 2/1/2013 to 29/6/2018, and can be split 

into two smaller periods with 31/12/2017 being the breaking point. The period from 2/1/2013 to 

29/12/2017, ex-ante, served as an estimation period to obtain in-sample estimates of inputs for the 

models. The period from 2/1/2018 to 29/6/2018, the holding period (HLDP), is the period over 

which the portfolios were held and managed. The appropriate time series for both periods were 

collected retrospectively.  

 After the holding period, ex-post, the performance of each portfolio was measured by the 

appropriate portfolio measures presented in Chapter 5. Each measure was treated equally, and 

therefore each measure does have an equal weight within the grading system used as a final 

evaluation tool. The grading system is a simple methodology that gives points to each portfolio 

accordingly to its ranking within the chart of each measure. The higher the ranking, the more points 

the portfolio receives. The maximum number of points for each measure was 12. As 9 measures 

(EAR, SD, Residual SD, α, β, SR, TR, IR, M^2) were used, the theoretical maximum number of 

points a portfolio could have collected was 108. The portfolio that collected the most points won. 

 The stock’s and market’s daily data, i.e. the adjusted closing prices, were obtained from 

http://finance.yahoo.com. The daily rates on US 4 Week Treasury bill were obtained from 

http://www.quandl.com.  

 To assure feasibility of the experiment, the following assumptions were assumed: 

 Markets are perfectly efficient 

 Returns are Gaussian  

 No transaction costs, no taxes 

 All assets are perfectly divisible and can be bought/sold in fractions 

 Unlimited long and short positions are allowed 

 Agent is risk tolerant, therefore his risk aversion played no role in the experiment 

 Although risk tolerant, agent does have mean-variance preferences 

 Agent accepts the optimal portfolio suggested by each model 

 Agent has no specific views about the future  

 Agent’s initial capital for each portfolio was $ 1 000 000 

 S&P 500 index monetization followed 1 index point = $ 1 parity.  

http://finance.yahoo.com/
http://www.quandl.com/
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7.1. Optimal Portfolios  

 This section presents the optimal portfolios suggested by each optimization model. The 

suggested relative and absolute allocation to the assets in the portfolios is presented in tables at the 

end of this section.  

1) MVO  

 The optimal portfolio suggested by MVO is the tangency portfolio, as it is the only efficient 

portfolio composed only of risky assets. Market portfolio and risk-free asset are not included.  

2) TB 

 The optimal portfolio suggested by TB is a combination of market portfolio and portfolio 

P. The risk-free asset is not included.  

3) BL 

 In accordance with the experiment’s assumptions, the agent has no views about the future13 

and thus the matrices Q, P, and Ω are omitted. Consequently, the optimal portfolio suggested by 

BL is the portfolio derived from the vector of implied equilibrium excess returns. The suggested 

weight vector is identical to the weight vector based on market capitalizations. The market cap of 

each firm considered corresponds to its value on 29/12/2017. The market caps are presented in the 

annex within the description of each firm. Market portfolio and risk-free asset are not included.  

4) 1/N 

 The optimal portfolio suggested by 1/N model is the portfolio P with equal allocation 

across all stocks. Market portfolio and risk-free asset are not included. 

5) SRM 

 The optimal portfolio suggested by SRM is the portfolio P with allocation proportional to 

SR of each stock. Market portfolio and risk-free asset are not included. 

                                                 
13 This assumption was made to assure consistency with other models 
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6) MDP 

 The optimal portfolio suggested by MDP is the portfolio P with allocation proportional to 

the inverse of individual volatility of the stocks. Market portfolio and risk-free asset are not 

included. 

 Optimal relative asset allocation suggested by the models 

 MVO TB BL 1/N SRM MDP 

AAPL 0.06355 0.19750 0.15801 0.03333 0.04063 0.08491 

AMT 0.07397 0.12338 0.01107 0.03333 0.03270 0.00292 

AMZN 0.08082 0.22512 0.10155 0.03333 0.04755 0.04234 

APD 0.10798 0.21117 0.00646 0.03333 0.04133 -0.03210 

BA 0.40654 0.54200 0.03151 0.03333 0.06414 0.03191 

C -0.34041 0.19323 0.03665 0.03333 0.02326 -0.03834 

CAT 0.02037 0.00740 0.01683 0.03333 0.02797 0.03651 

DWDP 0.06091 0.10465 0.01575 0.03333 0.03603 -0.00708 

EA 0.16266 0.29388 0.00586 0.03333 0.05749 0.07185 

EQR -0.06446 -0.01698 0.00423 0.03333 0.01928 0.08322 

FSLR -0.05178 -0.01903 0.00127 0.03333 0.01319 0.04638 

GS -0.02297 -0.06653 0.01782 0.03333 0.03007 -0.03868 

HD 0.42196 0.63630 0.04039 0.03333 0.06276 -0.02105 

INTC 0.09178 0.17357 0.03921 0.03333 0.03915 0.01536 

JNJ 0.43291 0.59027 0.06779 0.03333 0.05354 -0.05837 

K -0.13020 -0.04688 0.00424 0.03333 0.01719 0.08613 

KIM -0.23431 -0.17522 0.00140 0.03333 0.00771 0.03471 

KO -0.22498 -0.01007 0.03537 0.03333 0.02269 0.04720 

MAR 0.21148 0.44607 0.00914 0.03333 0.05697 -0.03784 

MCD 0.25269 0.48702 0.02520 0.03333 0.05008 0.07741 

NKE 0.03792 0.22499 0.01845 0.03333 0.04151 0.06404 

NUE -0.09132 0.11537 0.00367 0.03333 0.01766 0.05203 

PFE -0.06458 0.01210 0.03894 0.03333 0.02747 0.09399 

PG 0.06074 0.07348 0.04235 0.03333 0.02799 0.04512 

REGI 0.02498 -0.00736 0.08253 0.03333 0.01190 0.07860 

T -0.01267 -0.02802 0.04315 0.03333 0.02092 0.10972 

TSLA 0.09298 0.12748 0.00939 0.03333 0.04222 0.05388 

WBA -0.05692 0.06584 0.01325 0.03333 0.02815 0.08190 

WFC 0.10855 0.01789 0.05444 0.03333 0.03357 0.00694 

XOM -0.41820 -0.48442 0.06406 0.03333 0.00483 -0.01362 

SP500 0 -2.39700 0 0 0 0 

SUM 1 1 1 1 1 1 

 

Table 3: Optimal relative asset allocation suggested by the models 
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 Optimal absolute asset allocation suggested by the models 

 MVO TB BL 1/N SRM MDP 

AAPL $      63,552.22 $      197,500.88 $    158,009.76 $      33,333.33 $      40,633.89 $      84,906.96 

AMT $      73,974.06 $      123,375.87 $      11,068.33 $      33,333.33 $      32,703.14 $         2,916.14 

AMZN $      80,821.10 $      225,116.20 $    101,552.78 $      33,333.33 $      47,550.59 $      42,341.61 

APD $    107,975.82 $      211,171.52 $         6,464.21 $      33,333.33 $      41,331.87 $     (32,098.17) 

BA $    406,543.44 $      542,003.26 $      31,511.21 $      33,333.33 $      64,142.60 $      31,914.03 

C $  (340,408.94) $    (193,230.76) $      36,646.78 $      33,333.33 $      23,263.73 $     (38,337.44) 

CAT $      20,373.73 $          7,395.06 $      16,834.78 $      33,333.33 $      27,968.58 $      36,511.34 

DWDP $      60,912.73 $      104,648.80 $      15,750.18 $      33,333.33 $      36,033.43 $       (7,077.69) 

EA $    162,661.01 $      293,879.63 $         5,862.26 $      33,333.33 $      57,486.70 $      71,846.00 

EQR $     (64,462.90) $      (16,982.91) $         4,233.55 $      33,333.33 $      19,283.46 $      83,222.26 

FSLR $     (51,776.13) $      (19,028.88) $         1,274.40 $      33,333.33 $      13,193.82 $      46,375.75 

GS $     (22,970.83) $      (66,534.09) $      17,816.34 $      33,333.33 $      30,073.55 $     (38,682.82) 

HD $    421,960.39 $      636,300.19 $      40,386.84 $      33,333.33 $      62,764.67 $     (21,050.12) 

INTC $      91,775.43 $      173,565.81 $      39,210.05 $      33,333.33 $      39,151.34 $      15,363.25 

JNJ $    432,912.35 $      590,266.44 $      67,789.23 $      33,333.33 $      53,541.59 $     (58,365.94) 

K $  (130,202.70) $      (46,882.69) $         4,240.78 $      33,333.33 $      17,192.95 $      86,129.74 

KIM $  (234,309.23) $    (175,216.01) $         1,397.32 $      33,333.33 $         7,710.40 $      34,713.33 

KO $  (224,980.81) $      (10,071.02) $      35,374.19 $      33,333.33 $      22,693.62 $      47,199.86 

MAR $    211,483.07 $      446,070.05 $         9,137.74 $      33,333.33 $      56,970.62 $     (37,844.13) 

MCD $    252,686.17 $      487,024.65 $      25,202.46 $      33,333.33 $      50,084.13 $      77,413.71 

NKE $      37,916.29 $      224,993.35 $      18,447.22 $      33,333.33 $      41,511.93 $      64,043.36 

NUE $     (91,320.34) $    (115,369.39) $         3,671.37 $      33,333.33 $      17,664.81 $      52,025.72 

PFE $     (64,576.11) $        12,102.58 $      38,938.90 $      33,333.33 $      27,467.74 $      93,990.56 

PG $      60,741.35 $        73,478.71 $      42,353.58 $      33,333.33 $      27,989.78 $      45,117.94 

REGI $      24,984.71 $        (7,355.47) $      82,527.11 $      33,333.33 $      11,896.86 $      78,601.01 

T $     (12,666.17) $      (28,022.63) $      43,152.57 $      33,333.33 $      20,923.34 $    109,717.79 

TSLA $      92,977.53 $      127,482.25 $         9,392.62 $      33,333.33 $      42,223.63 $      53,877.12 

WBA $     (56,920.79) $        65,835.33 $      13,251.99 $      33,333.33 $      28,149.87 $      81,903.29 

WFC $    108,546.43 $        17,894.67 $      54,439.62 $      33,333.33 $      33,565.07 $         6,942.76 

XOM $  (418,202.86) $    (484,416.07) $      64,061.82 $      33,333.33 $         4,832.30 $     (13,617.21) 

SP500 $                     - $ (2,396,995.32) $                     - $                     - $                     - $                     - 

SUM $ 1,000,000.00 $  1,000,000.00 $ 1,000,000.00 $ 1,000,000.00 $ 1,000,000.00 $ 1,000,000.00 

 

Table 4: Optimal absolute asset allocation suggested by the models 
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 The graphical standings of each portfolio’s expected per-period return and volatility 

before the experiment in comparison with the Markowitz’s efficient frontier: 

 

Figure 4: Ex-ante portfolio efficiency 

 

 As this was the starting point of the experiment, there is no distinguishing between actively 

and passively managed portfolios. However, from now onwards such distinguishing is necessary. 

Therefore, the actively managed portfolios have an attribute (A) to their name, e.g. MVO (A). 

Likewise, the passively managed portfolios have an attribute (P), e.g. MVO (P). 

7.2. Results 

  This chapter presents the results the portfolios achieved at the end of the holding period 

(HLDP). During the HLDP, active portfolios were daily rebalanced to maintain the initial optimal 

allocation suggested by the models, and passive portfolios were left untouched on their own 

according to the buy-and-hold strategy. After the HLDP, performance measures used within the 

evaluation system, introduced in Chapter 7, were calculated. Each measure was calculated by using 

the ‘annualized’ values. The ‘annualization’ was made to make the values consistent with the 

holding period, which was 124 trading days. The holding period return on US 4 Week Treasury 

bill, used as the risk-free rate, was 0.4611%. The holding period return on S&P 500, used as the 

market return, was 0.8368%. This chapter is organized as a presentation of the individual results 

with follow up commentary and is closed with general discussion regarding the final rankings. 
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7.2.1. Presentation  

 In this section, each measure with individual results and corresponding portfolio rankings 

is presented one by one. As risk is, generally, undesired, the charts of risk measures are sorted 

from min to max to award the less risky portfolios on account of the riskier ones. As the other 

measures are desired rather higher than lower, the corresponding charts are sorted from max to 

min. Follow up commentary regarding the individual results and the chart with final rankings are 

presented at the end.  

 

1) EAR 

 Portfolios sorted by realized EAR from max to min. Max being the best. 

EAR 

1th TB (P) 24.472% 

2nd TB (A) 19.388% 

3rd MVO (P) 16.744% 

4th MVO (A) 14.026% 

5th BL (P) 7.596% 

6th MDP (P) 7.155% 

7th BL (A) 5.749% 

8th MDP (A) 4.995% 

9th SRM (P) 3.099% 

10th 1/N (P) 1.277% 

11th SRM (A) 1.209% 

12th S&P 500 0.837% 

13th 1/N (A) -0.564% 
Table 5: EAR 
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Figure 5: EAR 
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2) Standard Deviation 

 Portfolios sorted by their SD from min to max. Min being the best.  

Standard Deviation 

1th MDP (P) 10.709% 

2nd MDP (A) 10.728% 

3rd 1/N (P) 11.331% 

4th 1/N (A) 11.381% 

5th BL (P) 11.415% 

6th BL (A) 11.462% 

7th S&P 500 11.557% 

8th SRM (P) 12.135% 

9th SRM (A) 12.188% 

10th MVO (P) 20.448% 

11th MVO (A) 20.554% 

12th TB (P) 22.685% 

13th TB (A) 22.863% 
Table 6: Standard deviation           

 

3) Residual Standard Deviation  

 Portfolios sorted by their residual SD from min to max. Min being the best.  

Residual SD 

1th S&P 500 0.000% 

2nd 1/N (A) 2.652% 

3rd 1/N (P) 2.662% 

4th SRM (A) 2.746% 

5th SRM (P) 2.759% 

6th BL (A) 2.944% 

7th BL (P) 2.971% 

8th MDP (A) 5.180% 

9th MDP (P) 5.199% 

10th MVO (P) 12.378% 

11th MVO (A) 12.426% 

12th TB (P) 16.808% 

13th TB (A) 16.975% 
Table 7: Residual SD 
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4) Jensen’s Alpha  

 Portfolios sorted by their alpha from max to min. Max being the best.  

Jensen's α 

1th TB (P) 23.516% 

2nd TB (A) 18.429% 

3rd MVO (P) 15.754% 

4th MVO (A) 13.033% 

5th BL (P) 6.777% 

6th MDP (P) 6.390% 

7th BL (A) 4.928% 

8th MDP (A) 4.228% 

9th SRM (P) 2.253% 

10th 1/N (P) 0.457% 

11th SRM (A) 0.362% 

12th S&P 500 0.000% 

13th 1/N (A) -1.385% 
Table 8: Jensen's alpha 

 

5) Beta 

 Portfolios sorted by their beta from min to max. Max being the best.  

β 

1th MDP (P) 0.810 

2nd MDP (A) 0.813 

3rd 1/N (P) 0.953 

4th BL (P) 0.954 

5th 1/N (A) 0.958 

6th BL (A) 0.958 

7th S&P 500 1.000 

8th SRM (P) 1.022 

9th SRM (A) 1.027 

10th TB (P) 1.318 

11th TB (A) 1.325 

12th MVO (P) 1.408 

13th MVO (A) 1.417 
Table 9: Beta 
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6) Sharpe Ratio  

 Portfolios sorted by their Sharpe ratio from max to min. Max being the best.  

Sharpe Ratio 

1th TB (P) 1.058 

2nd TB (A) 0.828 

3rd MVO (P) 0.796 

4th MVO (A) 0.660 

5th MDP (P) 0.625 

6th BL (P) 0.625 

7th BL (A) 0.461 

8th MDP (A) 0.423 

9th SRM (P) 0.217 

10th 1/N (P) 0.072 

11th SRM (A) 0.061 

12th S&P 500 0.033 

13th 1/N (A) -0.090 
Table 10: Sharpe ratio 

7) Treynor Ratio 

 Portfolios sorted by their Treynor ratio from max to min. Max being the best.  

Treynor Ratio 

1th TB (P) 0.182 

2nd TB (A) 0.143 

3rd MVO (P) 0.116 

4th MVO (A) 0.096 

5th MDP (P) 0.083 

6th BL (P) 0.075 

7th MDP (A) 0.056 

8th BL (A) 0.055 

9th SRM (P) 0.026 

10th 1/N (P) 0.009 

11th SRM (A) 0.007 

12th S&P 500 0.004 

13th 1/N (A) -0.011 
Table 11: Treynor ratio 
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Figure 11: Treynor ratio 



59 

 

8) Information Ratio 

 Portfolios sorted by their information ratio from max to min. Max being the best. 

Information Ratio 

1th BL (P) 2.281 

2nd BL (A) 1.674 

3rd TB (P) 1.399 

4th MVO (P) 1.273 

5th MDP (P) 1.229 

6th TB (A) 1.086 

7th MVO (A) 1.049 

8th SRM (P) 0.817 

9th MDP (A) 0.816 

10th 1/N (P) 0.172 

11th SRM (A) 0.132 

12th S&P 500 0.000 

13th 1/N (A) -0.522 
Table 12: Information ratio 

9) M^2  

 Portfolios sorted by their M^2 measure from max to min. Max being the best. 

M^2 

1th TB (P) 12.694% 

2nd TB (A) 10.029% 

3rd MVO (P) 9.665% 

4th MVO (A) 8.089% 

5th MDP (P) 7.685% 

6th BL (P) 7.685% 

7th BL (A) 5.793% 

8th MDP (A) 5.345% 

9th SRM (P) 2.973% 

10th 1/N (P) 1.293% 

11th SRM (A) 1.171% 

12th S&P 500 0.837% 

13th 1/N (A) -0.580% 

Table 13: M^2 
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7.2.2. Commentary regarding the individual results  

 In this section, a brief commentary regarding the results across the performance measures 

is provided. Assessment of overall rankings with discussion is presented in the next section.   

 It is convenient to begin with the risk measures as everything else is more or less connected 

to them. The total risk of each portfolio was measured by its standard deviation. By far the most 

volatile portfolios were the ones suggested by MVO and TB, regardless the management. Yet, the 

difference of approximately 2 percentage points (p.p.) in favor of MVO counts for good. It is 

interesting to see that this difference of ca. 2 p.p. represents an entire spread between the rest of 

portfolios. Both MDP portfolios scored the lowest volatility and lived up to their name. The 

portfolios on 3rd – 7th place manifested more or less identical volatility regardless the significant 

differences in their allocations.  

 The level of carried systematic risk was measured by each portfolio’s beta. The chart of 

individual betas corresponds, with small differences, to the one of SD. This is not surprising as 

systematic risk is part of total risk. Interesting observation, S&P 500 with β = 1 ended up exactly 

in the middle of beta chart, that is 6 portfolios with higher β and 6 with lower.  

 Specific risk was measured by each portfolio’s residual standard deviation. As any market 

portfolio is considered to be perfectly diversified and thus to carry zero specific risk, it is logical 

that S&P 500 won this category. Nonetheless, shall one compare all three risk measures, it is 

interesting to see the diversification power of 1/N model as it scores high in all of them. As for the 

residual SD, little bit disappointing are the results of MDP portfolios as they carry nearly double 

of residual risk than other naïve portfolios plus BL. Unsurprisingly, MVO and TB portfolios ended 

up dead last with residual volatility multiple times higher than its competitors. Taking a look at all 

three risk measures, it is interesting to see that different portfolio management played insignificant 

role as both (A) and (P) portfolios scored similar values per each method.   

 In the mean-variance framework, there should always be a positive trade-off between risk 

and return. More risk should provide an adequate extra return. The total return of each portfolio 

was measured by EAR. By far the highest return was achieved by the second riskiest portfolio TB 

(P), followed by the riskiest TB (A). The absolute difference of 5.084 p.p. between them is a value 
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that nearly half of all portfolios didn’t even reach at all. 1/N (A) is the only portfolio that scored a 

negative return.  

 Although measuring total return and risk is interesting, in order to be consistent with the 

portfolio theory it is necessary to include risk-adjusted measures in the performance analysis as 

they provide better informative value about how much was achieved with respect to the undertaken 

risk.  

 Both Sharpe and Treynor ratios measure amount of excess return per one unit of risk, 

differing in the risk measure used. SD and β, respectively. The winning portfolios in both measures 

are TB. Since the main purpose of TB optimization is Sharpe ratio maximization, the model lived 

up to its purpose. Winning in TR then comes hand in hand. TB portfolios are followed by MVO, 

MDP and BL portfolios. In both ratios, 1/N (A) scored negative due to its negative excess return.  

 Jensen’s Alpha is a measure of superior performance that compares realized excess returns 

with risk-adjusted excess returns. Positive α is what everybody seeks and the higher, the better. 

The highest α was achieved by TB portfolios, followed by MVO. All portfolios achieved positive 

α but one, 1/N (A). From obvious reasons, S&P 500 has α = 0. 

 Information ratio measures portfolio’s excess return relative to market per one unit of 

tracking error. Positive IR means the portfolio has beat the market. All portfolios achieved positive 

IR but one, 1/N (A). By far the winning portfolio was BL (P), followed by BL (A). TB (P) ranked 

3rd, followed by MVO portfolios. From obvious reasons, S&P 500 has IR = 0 

 M^2 is a hypothetical measure of risk-adjusted return relative to market. It says what the 

return should be if the portfolio’s SD equaled the market’s SD. Market M^2 = market return. 

Therefore, portfolio desires M^2 return  ≥ market return. The highest M^2 was achieved by TB 

(P), followed by TB (A), MVO (P), and MVO (A), which are the portfolios that achieved the 

highest EAR. The M^2 chart matches the Sharpe ratio chart. The only portfolios with M^2 below 

market return is 1/N (A). 
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Portfolios sorted by their results in individual performance measures  

 

 

max to 
min 

min to 
max 

min to 
max 

max to 
min 

min to 
max 

max to 
min 

max to 
min 

max to 
min 

max to 
min 

  EAR SD Res SD α β SR TR IR M^2 

1 
th TB (P) MDP (P) S&P 500 TB (P) MDP (P) TB (P) TB (P) BL (P) TB (P) 
2 

nd TB (A) MDP (A) 1/N (A) TB (A) MDP (A) TB (A) TB (A) BL (A) TB (A) 
3 
rd MVO (P) 1/N (P) 1/N (P) MVO (P) 1/N (P) MVO (P) MVO (P) TB (P) MVO (P) 
4 
th MVO (A) 1/N (A) SRM (A) MVO (A) BL (P) MVO (A) MVO (A) 

MVO 
(P) MVO (A) 

5 
th BL (P) BL (P) SRM (P) BL (P) 1/N (A) MDP (P) MDP (P) 

MDP 
(P) MDP (P) 

6 
th MDP (P) BL (A) BL (A) MDP (P) BL (A) BL (P) BL (P) TB (A) BL (P) 
7 
th BL (A) S&P 500 BL (P) BL (A) S&P 500 BL (A) MDP (A) 

MVO 
(A) BL (A) 

8 
th MDP (A) SRM (P) MDP (A) MDP (A) SRM (P) MDP (A) BL (A) 

SRM 
(P) MDP (A) 

9 
th SRM (P) SRM (A) MDP (P) SRM (P) SRM (A) SRM (P) SRM (P) 

MDP 
(A) SRM (P) 

10 
th 1/N (P) MVO (P) MVO (P) 1/N (P) TB (P) 1/N (P) 1/N (P) 1/N (P) 1/N (P) 
11 
th SRM (A) MVO (A) MVO (A) SRM (A) TB (A) SRM (A) SRM (A) 

SRM 
(A) SRM (A) 

12 
th S&P 500 TB (P) TB (P) S&P 500 MVO (P) S&P 500 S&P 500 

S&P 
500 S&P 500 

13 
th 1/N (A) TB (A) TB (A) 1/N (A) MVO (A) 1/N (A) 1/N (A) 1/N (A) 1/N (A) 

 

Table 14: Portfolio rankings by categories 
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Final ranking 

 EAR SD Res SD α β SR TR IR M^2 

TB (P) 12 1 1 12 3 12 12 10 12 

MDP (P) 7 12 4 7 12 8 8 8 8 

BL (P) 8 8 6 8 9 7 7 12 7 

MVO (P) 10 3 3 10 1 10 10 9 10 

TB (A) 11 0 0 11 2 11 11 7 11 

BL (A) 6 7 7 6 7 6 5 11 6 

MDP (A) 5 11 5 5 11 5 6 4 5 

MVO (A) 9 2 2 9 0 9 9 6 9 

1/N (P) 3 10 10 3 10 3 3 3 3 

SRM (P) 4 5 8 4 5 4 4 5 4 

S&P 500 1 6 12 1 6 1 1 1 1 

SRM (A) 2 4 9 2 4 2 2 2 2 

1/N (A) 0 9 11 0 8 0 0 0 0 
Table 15: Final point chart 

 

 

SUM of 
Points 

Final 
Rank 

TB (P) 75 1st 

MDP (P) 74 2nd 

BL (P) 72 3rd 

MVO (P) 66 4th 

TB (A) 64 5th 

BL (A) 61 6th 

MDP (A) 57 7th 

MVO (A) 55 8th 

1/N (P) 48 9th 

SRM (P) 43 10th 

S&P 500 30 11th 

SRM (A) 29 12th 

1/N (A) 28 13th 
Table 16: Final ranking 
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Figure 14: Final ranking 
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7.3. Discussion  

 This section provides a general discussion regarding the final results the portfolios 

achieved in the experiment. The final results are presented in Table 16 on previous page.  

 The gold medal for winning the experiment goes to TB (P) portfolio, silver medal to MDP 

(P), and bronze medal to BL (P). The imaginary ‘potato medal’ goes to MVO (P). It is pleasant to 

see that first five positions are occupied by portfolios suggested by different models. The initial 

expectation that active management leads to a superior performance has been disproved by the 

experiment as the passive portfolios occupy the first four spots. This, however, is not a big surprise 

should one take a closer look. In this experiment, the active management happened on daily basis 

which turned out to be quite cumbersome as it showcased a number of shortcomings. Firstly, 

assuming the initial optimal allocation static was wrong. The optimal allocation evolves over the 

time as much as the values of assets themselves. Therefore, the rebalancing should not be 

happening to match the initial optimal allocation, but rather the new optimum. Secondly, finding 

new optimum and rebalancing to it on continuous basis is a challenging process with no guarantee. 

Thirdly, daily rebalancing is costly. Should this experiment had considered the transaction costs, 

the actively managed portfolios would have ended up probably dead last with profits completely 

erased. These factors lead to a conviction that daily rebalancing makes no real sense. Rebalancing 

happening at longer periods, such as quarterly, semi-annually, or annually, and with respect to the 

new optimum, sounds more reasonable. Either or, the passive strategy buy-and-hold proved to be 

more efficient throughout the experiment. These findings correspond to the outcomes of similar 

studies regarding the issues of active versus passive portfolio management, for example Pace et 

al. (2016) and Cox (2017). 

 The selected optimizers provided a balanced mix of sophisticated and naïve models. The 

sum of points for sophisticated models is 393 versus 279 for naïve models. Nonetheless, this 

victory does possess no informative value and can be considered as irrelevant. Each model 

deserves an independent assessment.  

 All sophisticated models used in this thesis have few things in common, e.g. they require 

an extensive collection of historical data. Since future is, from its very nature, unknown, any 

estimation of inputs based solely on historical values is deceptive. Input estimates are therefore 

almost always a pure noise but the models accept them as true and simply deliver a solution. This 
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is misleading as one may think the delivered solution is the ‘true optimum’. With this in mind, the 

Black-Litterman model is the only model that somehow deals with it and allows the investor to 

combine the observed market information with his or hers views about the future, which makes 

the model somewhat prospective.  

 On the other hand, the issue of estimation error is well known and there are approaches for 

its minimization. These models are usually based on Bayesian shrinkage, resampling, or robust 

optimization. It would had been interesting to include these models in the experiment to see how 

they would do.  

 Although the portfolios suggested by TB did well in the experiment, their results need to 

be taken with a reserve as they are biased with the selected monetization of the index. In reality, 

index cannot be bought just like that and an index tracking mutual fund, for example, is included 

instead. Both TB and MVO optimizers suggested portfolios with quite large long/short positions. 

This may not be an issue for institutional investors, but for individuals most certainly yes.  

 The most naïve optimizer, 1/N, performed well as a diversification tool. It scored high in 

all three risk related measures. Nonetheless, both 1/N portfolios performed otherwise poorly which 

is rather disappointing. Especially should one consider its success in other studies.  

 Both SRM portfolios showcased poor performance in all categories. Both delivered low 

returns and carried considerable amount of risk, which, combined, resulted in low scores in all 

risk-adjusted measures. 

 The last naïve optimizer, MDP, happened to be a pleasant surprise. Both portfolios 

achieved solid scores in all risk-adjusted measures. In all but one categories MDP (P) was superior 

to MDP (A). MDP (P) happened to be the least risky portfolio, but still delivered a reasonable 

return of 7.155% with alpha 6.39%. Scoring relatively high in all the categories has brought the 

MDP (P) to the final second place. However, keeping in mind the biasness of TB portfolios, this 

silver medal has a golden glow.  

 The total amount of imaginary money invested into all 12 portfolios at the beginning of the 

experiment was $ 12 000 000, with $ 1 000 000 each.  How the portfolio values were developing 

during the holding period is depicted on the following Figure 15.  
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Figure 15: Portfolio value development 

 As can be deciphered from the graph, all portfolios exhibit strong co-integration. This is 

no surprise as all portfolios are composed of identical assets. The steep start of TB and MVO 

portfolios is caused by their relatively higher betas in comparison to the rest of portfolios. The 

effect of individual betas is also responsible for the spread variations throughout the entire holding 

period. All portfolios but one, 1/N (A), show increasing trend. The final value of each portfolio 

with the total return realized from the experiment is summarized in the following table. 

  Initial Value Final Value 

MVO (A)  $   1,000,000.00   $   1,140,262.18  

TB (A)  $   1,000,000.00   $   1,193,876.01  

BL (A)  $   1,000,000.00   $   1,057,493.73  

1/N (A)  $   1,000,000.00   $      994,355.69  

SRM (A)  $   1,000,000.00   $   1,012,094.80  

MDP (A)  $   1,000,000.00   $   1,049,947.67  

MVO (P)  $   1,000,000.00   $   1,167,443.93  

TB (P)  $   1,000,000.00   $   1,244,722.63  

BL (P)  $   1,000,000.00   $   1,075,961.58  

1/N (P)  $   1,000,000.00   $   1,012,766.18  

SRM (P)  $   1,000,000.00   $   1,030,987.77  

MDP (P)  $   1,000,000.00   $   1,071,553.88  

SUM  $ 12,000,000.00   $ 13,051,466.05  

Profit    $   1,051,466.05  

Return   8.762% 

Table 17: Final values 
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8. Conclusion  

 The master’s thesis with a topic ‘Portfolio Optimization Methods, Their Application and 

Evaluation’ focused on practical application of various quantitative portfolio optimization 

methods, their performance, usefulness, pros and cons. The quantitative portfolio management is 

a complete, data-driven process in which an investor builds, optimizes, holds, and adjusts 

portfolios in order to achieve superior risk-adjusted returns with respect to the applied constrains, 

such as his or her risk aversion, budget limitations, turnover constrains etc. The pivotal point of 

the thesis was to conduct an experiment in which a number of selected optimizers were put in a 

contest.  

 The underlying theory on which the experiment was built is presented in the first part of 

the thesis. It introduces the underpinnings of portfolio theory, describes the optimization process, 

introduces the selected optimization methods, and provides an overview of portfolio management. 

The experiment itself, together with the results, is presented in the second part of the thesis, called 

‘Practical Experiment’.  

  The selected optimizers represented both sophisticated and naïve models. The 

sophisticated included the classical Markowitz’s mean-variance model, the Treynor-Black model, 

and the Black-Litterman model. The naive included the 1/N model, the Sharpe ratio based model, 

and the Most diversified portoflio model. The optimizers were applied to portfolios composed of 

identical assets and held under different portfolio management styles over a pre-specified period 

of time. The performance of each portfolio was measured ex-post, adequately evaluated in accord 

with the criteria of the experiment, and confronted with the others.   

 The questions that this master’s thesis tried to find answers to were (1) which portfolio 

optimizer, out of the selected ones, performs the best, and (2) whether it is beneficial to conduct 

rather an active, or a passive portfolio management. 

 As presented in Section 7.2 devoted to the results of the experiment, the passively 

management portfolios demonstrated superiority to the actively managed ones as they occupy the 

first four spots in the final ranking. The expected superiority of sophisticated models was disproved 

as both of the portfolios suggested by MDP ranked among them. Moreover, the passively managed 

MDP portfolio left behind all portfolios but one, the Treynor-Black passive portfolio. The TB (P) 
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won the experiment with a final score of 75 points. However, the overall performance of TB 

portfolios got biased by the selected monetization of the market index, and thus their results should 

be taken with reserve. With respect to this bias, the logical move is to look at the second place 

where shines the MDP (P) portfolio with a final score of 74 points, only 1 point behind the TB (P).  

 Is therefore the MDP the best optimizer and the buy-and-hold strategy the best 

management? No and no.  

 Regarding the optimizers, the selected models created a balanced mix but represent only a 

tip of an iceberg. Due to the steep development of quantitative finance since approximately the 

1990’, the set of available optimizers has enlarged significantly. Models based on, for example, 

resampled efficiency, robust optimization, Bayesian shrinkage, or on various downside risk 

measures, have their undoubtful charm. Furthermore, should one consider the number of possible 

ways for input estimations, the set of optimizers starts to grow exponentially. To make a relevant 

statement, all the optimizers with all their possible adjustments would had needed to be included 

in the experiment as well. Nonetheless, in order to conclude the experiment the MDP (P) approach 

happened to be the most efficient one. 

 Regarding the management, the passive form has its undoubtful perks such as difficulty 

and costs. It is easy to do and it has no turnover costs coming from the rebalancing. However, the 

optimal allocation is dynamic and changes over time. Therefore, buy-and-hold strategy might 

deviate too much from the optimum in the long run and can get possibly behind its potential. 

Replicating an index may be a way, however full replication is expensive. Daily rebalancing is 

unnecessarily complicated and expensive as well, which makes such management style ineffective. 

The turnover costs can get eased by the additional income from dividends, yet way too frequent 

rebalancing almost guarantees the costs > dividends inequality. Rebalancing at longer periods, e.g. 

quarterly, semi-annualy, or annualy, and with respect to the new optimum, seems to be more 

reasonable. Either or, the used management style should be periodically evaluated and adjusted 

accordingly.  

 The world of quantitative portoflio management is evolving at a pace faster than ever. This 

thesis has only scratched the surface, and even though this final chapter is called Conclusion, it is 

rather a personal beginning.  
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Annex 

 Apple Inc. (AAPL) 

 Apple Inc. is an American multinational technology company with its main area of 

business in designing, developing, and selling of consumer electronics, computer software, and 

online services. The company was founded in 1976 and has its headquarters in Cupertino, 

California. Since its foundation, Apple has become one of the largest companies in the world. It is 

a component of S&P 100, S&P 500, DJIA, and Nasdaq 100 indices. The company is listed on 

Nasdaq and its market capitalization on December 29, 2017 was $ 874,11bn.  

 Electronic Arts Inc. (EA) 

 Electronic Arts Inc. is an American company engaged in the video gaming industry. EA 

was founded in 1982 and has its headquarters in Redwood city, California. EA is a component of 

Nasdaq 100 and S&P 500 indices, is listed on Nasdaq, and its market capitalization on December 

29, 2017 was $ 32,43bn.   

 Intel Corporation (INTC) 

 Intel Corporation is an American multinational technology company specialized in 

invention, innovation, and production of computer hardware such as processors, motherboards, 

network interface controllers and so on. Intel was founded in 1968 and has its headquarters in 

Santa Clara, California. INTC is a component of the S&P 100, S&P 500, DJIA, and Nasdaq 100 

indices, is listed on Nasdaq, and its market capitalization on December 29, 2017 was $ 216,91bn. 

 American Tower Corporation (AMT) 

 American Tower Corporation is a global provider of wireless and broadcast 

communications infrastructure. The company was founded in 1995 and has its headquarters in 

Boston, Massachusetts. AMT is a component of the S&P 500 index, is listed on NYSE, and its 

market capitalization on December 29, 2017 was $ 61,23bn. 

 Equity Residential (EQR) 

 Equity Residential is an American real estate investment company. The company’s 

investment model is focused on acquisition, development, and management of rental apartment 

buildings. The company was founded in 1969 and is headquartered in Chicago, Illinois. EQR is a 
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component of the S&P 500 index, is listed on NYSE, and its market capitalization on December 

29, 2017 was $ 23,42bn  

 Kimco Realty Corporation (KIM) 

 Kimco Realty Corporation is an American real estate investment trust with specialization 

in the segment of shopping malls. The trust was founded in 1958 and is headquartered in New 

Hyde Park, New York. KIM is a component of the S&P 500 index and is listed on NYSE. The 

market capitalization on December 29, 2017 was $ 7,73bn.  

 Johnson & Johnson (JNJ)  

 Johnson & Johnson is an American multinational company specialized in production of 

pharmaceuticals, health care products, and medical devices. The company was founded in 1886 

and is headquartered in New Brunswick, New Jersey. JNJ is a component of the S&P 100, S&P 

500, and DJIA indices. Its stock is listed on NYSE and its market capitalization on December 29, 

2017 was $ 375,01bn. 

 Pfizer Inc. (PFE) 

 Pfizer Inc. is an American multinational pharmaceutical company and one of the global 

leaders within its field. The company was founded in 1849 and has its headquarters in New York 

City, New York. PFE is a component of the S&P 100, S&P 500, and DJIA indices, is listed on 

NYSE, and its market capitalization on December 29, 2017 was $ 215,41bn.  

 Procter & Gamble Co. (PG) 

 Procter & Gamble Co. is an American multinational company with specialization in 

production of personal care products, beauty care products, health care products, cleaning agents, 

and similar. The company was founded in 1837 and has its headquarter in Cincinnati, Ohio. PG is 

a component of the S&P 100, S&P 500, and DJIA indices, is listed on NYSE, and its market 

capitalization on December 29, 2017 was $ 234,30bn. 

 Exxon Mobil Corporation (XOM) 

 Exxon Mobil Corporation is an American multinational company specialized in oil and 

natural gas industry. The company was founded in 1999 and is headquartered in Irving, Texas. 

XOM is a component of the S&P 100, S&P 500, and DJIA indices, is listed on NYSE, and its 

market capitalization on December 29, 2017 was $ 354,39bn. 
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 Renewable Energy Group Inc. (REGI) 

 Renewable Energy Group Inc. is an American multinational company focused on 

renewable energy with specialization in biofuel, biomass-based diesel, renewable chemicals, and 

carbon lowering solutions. The company was founded in 1996 and is headquartered in Ames, Iowa. 

REGI is listed on Nasdaq and its market capitalization on December 29, 2017 was $ 456,54bn. 

 First Solar Inc. (FSLR) 

 First Solar Inc. is an American multinational company involved in the photovoltaic 

industry with focus on production of solar panels, rigid thin film modules, and similar. The 

company was founded in 1999 and has its headquarters in Tempe, Arizona. FSLR is a component 

of the S&P 400 index, is listed on Nasdaq, and it market capitalization on December 29, 2017 was 

$ 7,05bn.  

 Citigroup Inc. (C)   

 Citigroup Inc. is an American multinational bank providing banking and financial services. 

It is one of the biggest banks worldwide. It was founded in 1813 and is headquartered in New York 

City, New York. C is a component of the S&P 100 and S&P 500 indices, is listed on NYSE, and 

its market capitalization on December 29, 2017 was $ 202,73bn.  

 Wells Fargo & Company (WFC) 

 Wells Fargo & Company is an American multinational company providing financial 

services of all kinds. The company was founded in 1852 and is headquartered in New York City, 

New York. WFC is a component of the S&P 100 and S&P 500 indices, is listed on NYSE, and its 

market capitalization on December 29, 2017 was $ 301,16bn. 

 The Goldman Sachs Group Inc. (GS) 

 The Goldman Sachs Group Inc. is an American multinational investment bank and 

financial services provider. The company was founded in 1869 and has its headquarters in New 

York City, New York. GS is a component of the S&P 100, S&P 500, and DJIA indices. Its stock 

is listed on NYSE and its market capitalization on December 29, 2017 was $ 98,56bn. 

 Tesla Inc. (TSLA) 

 Tesla Inc. is an American multinational company specializing in electromobility, lithium-

ion energy battery storage systems, and solar panel production. The company was founded in 2003 
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and is headquartered in Palo Alto, California. TSLA is a component of Russell 1000 and Nasdaq 

100 indices. The company is listed on Nasdaq and its market capitalization on December 29, 2018 

was $ 51,96bn.  

 The Boeing Company (BA) 

 The Boeing Company is an American multinational company that specializes in 

manufacturing of airplanes, rotorcraft, rockets, satellites, and missiles. The company was founded 

in 1916 and is headquartered in Chicago, Illinois. BA is a component of the S&P 100, S&P 500, 

and DJIA indices. Its stock is listed on NYSE and its market capitalization on December 29, 2017 

was $ 174,32bn. 

 Caterpillar Inc. (CAT) 

 Caterpillar Inc. is an American multination company specializing mainly in invention and 

production of heavy machinery and engines. However, it is also a provider of insurance and 

financial services via its global site of subsidiaries. The company was founded in 1925 and has its 

headquarter in Deerfield, Illinois. CAT is a component of the S&P 100, S&P 500, and DJIA 

indices. The company is listed on NYSE and its market capitalization on December 29, 2017 was 

$ 93,13bn.  

 The Kellogg Company (K)  

 The Kellogg Company is an American multinational company specializing in the food 

processing industry. The company was founded in 1906 and has its headquarters in Battle Creek, 

Michigan. K is a component of the S&P 500 index and is listed on NYSE. The market 

capitalization on December 29, 2017 was $ 23,46bn.  

 The Coca Cola Company (KO) 

 The Coca Cola Company is an American multinational company specializing in production 

of non-alcoholic beverages and syrups. The company was founded in 1886 and has its headquarters 

in Atlanta, Georgia. KO is a component of the S&P 100, S&P 500, and DJIA indices. The company 

is listed on NYSE and its market capitalization on December 29, 2017 was $ 195,69b. 

 McDonald’s (MCD)  

 McDonald’s is an American multinational company operating in the fast food and real 

estate industry. The company was founded in 1940 and has its headquarters in Chicago, Illinois. 
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MCD is a component of the S&P 100, S&P 500, and DJIA indices. The company is listed on 

NYSE and its market capitalization on December 29, 2017 was $ 139,42b. 

 AT&T Inc. (T)  

 AT&T Inc. is an American multinational company engaged in the telecommunications and 

mass media industry. It is the world’s largest provider of telecommunications services and world’s 

second largest provider of mobile services. The company was founded in 1983 and has its 

headquarters in Dallas, Texas. T is a component of the S&P 100 and S&P 500 indices. The 

company is listed on NYSE and its market capitalization on December 29, 2017 was $ 238,72b. 

 Amazon.com Inc. (AMZN)  

 Amazon.com Inc. is an American multinational company operating in the e-commerce and 

cloud services business. Amazon.com is the biggest internet retailer in the world. The company 

was founded in 1994 and has its headquarters in Seattle, Washington. AMZN is a component of 

the S&P 100, S&P 500, and Nasdaq 100 indices. The company is listed on Nasdaq and its market 

capitalization on December 29, 2017 was $ 561,79b. 

 Walgreens Boots Alliance Inc. (WBA)  

 Walgreens Boots Alliance Inc. is an American holding company created after a merge 

between a US based The Walgreens Company and a Switzerland based Alliance Boots. The 

company operates in the pharmaceutical industry as one of the largest drug and health care product 

retail reseller. The Walgreens Company was founded in 1901 and the merge took place in 2014. 

The company is headquartered in Deerfield, Illinois. WBA is a new ticker reflecting the merge but 

otherwise it is a continuation of The Walgreens Company’s stock. WBA is a component of the 

S&P 100, S&P 500, and DJIA indices. The company is listed on Nasdaq and its market 

capitalization on December 29, 2017 was $ 73,31b. 

 Air Products & Chemicals Inc. (APD) 

 Air Products & Chemicals Inc. is an American multinational company operating within the 

chemical and gas industry. The company sells its products primarily to other businesses. The 

business was founded in 1940 and has its headquarters in Allentown, Pennsylvania. APD is a 

component of the S&P 500 index, is listed on NYSE and its market capitalization on December 

29, 2017 was $ 35,76bn. 
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 DowDuPont Inc. (DWDP) 

 DowDuPont Inc. is an American multinational company operating in the chemical 

industry. The company is a merge product between The Dow Chemical Co. and E. I. du Pont de 

Nemours and Company and the merge took place in 2017. The original companies were founded 

in 1897 and 1802, respectively. The current DowDuPont Inc. has two headquarters in Midland, 

Michigan and Wilmington, Delaware. DWDP is a component of the S&P 100, S&P 500, and DJIA 

indices. The company is listed on NYSE and its market capitalization on December 29, 2017 was 

$ 87,13b. 

 Nucor Corporation (NUE) 

 Nucor Corporation is an American company operating within the heavy metals industry 

with specialization in production of steel and steel products. The company was founded in 1940 

and has its headquarters in Charlotte, North Carolina. NUE is a component of the S&P 500 index, 

and is listed NYSE. The market capitalization on December 29, 2017 was $ 20,31bn. 

 Nike Inc. (NKE) 

 Nike Inc. is an American multinational corporation operating within the textile industry. 

Its main area of business is in design, development, manufacture, marketing, and sales of clothes 

of all kinds including footwear, apparel, accessories etc. The company was founded in 1964 and 

has its headquarters in Washington County, Oregon. NKE is a component of the S&P 100, S&P 

500, and DJIA indices. The company is listed on NYSE and its market capitalization on December 

29, 2017 was $ 102,05b. 

 Marriott International (MAR) 

 Marriott International is an American multinational company operating within the 

hospitality industry. It is one of the world’s biggest operators of hotels and related lodging 

facilities. The company was founded in 1927 and has its headquarters in Bethesda, Maryland. 

MAR is a component of the S&P 500 and Nasdaq 100 indices. The company is listed on Nasdaq 

and its market capitalization on December 29, 2017 was $ 50,55b. 

 The Home Depot Inc. (HD) 

 The Home Depot Inc. is an American multinational retail company specialized in home 

improvement supplies, construction products, tools, and related services. The company was 
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founded in 1978 and has its headquarters in Cobb County, Georgia. HD is a component of the S&P 

100, S&P 500, and DJIA indices. The company is listed on NYSE and its market capitalization on 

December 29, 2017 was $ 223,42b. 

 Standard & Poor’s 500 (S&P500, ^GSPC)  

 Standard & Poor’s 500 is an American stock market index operated by the S&P Dow Jones 

Indices LLP. The index comprises 500 US large cap public companies across all industries. S&P 

500 is a market cap weighted, free float adjusted index. For the purposes of this thesis, the S&P 

500 serves as a market indicator.  

 US 4 Week Treasury Bill (T-bill) 

 US 4 Week Treasury Bill is an American short-term government bond with maturity of 4 

weeks. The bond has a standard denomination of $1000. The bond is rated AAA and thus is 

considered risk-free. For the purposes of this thesis, the US 4 Week Treasury Bill serves as the 

risk-free asset. 

  


