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Resumo 

A designação word embeddings refere-se a representações vetoriais das palavras que capturam 

as similaridades semânticas e sintáticas entre estas. Palavras similares tendem a ser 

representadas por vetores próximos num espaço N dimensional considerando, por exemplo, a 

distância Euclidiana entre os pontos associados a estas representações vetoriais num espaço 

vetorial contínuo. Esta propriedade, torna as word embeddings importantes em várias tarefas de 

Processamento Natural da Língua, desde avaliações de analogia e similaridade entre palavras, 

às mais complexas tarefas de categorização, sumarização e tradução automática de texto. 

Tipicamente, as word embeddings são constituídas por vetores densos, de dimensionalidade 

reduzida. São obtidas a partir de aprendizagem não supervisionada, recorrendo a consideráveis 

quantidades de dados, através da otimização de uma função objetivo de uma rede neuronal.  

Este trabalho propõe uma metodologia para obter word embeddings constituídas por vetores 

binários esparsos, ou seja, representações vetoriais das palavras simultaneamente binárias (e.g. 

compostas apenas por zeros e uns), esparsas e com elevada dimensionalidade. A metodologia 

proposta tenta superar algumas desvantagens associadas às metodologias do estado da arte, 

nomeadamente o elevado volume de dados necessário para treinar os modelos, e 

simultaneamente apresentar resultados comparáveis em várias tarefas de Processamento 

Natural da Língua. 

Os resultados deste trabalho mostram que estas representações, obtidas a partir de uma 

quantidade limitada de dados de treino, obtêm performances consideráveis em tarefas de 

similaridade e categorização de palavras. Por outro lado, em tarefas de analogia de palavras 

apenas se obtém resultados consideráveis para a categoria gramatical dos substantivos. As word 

embeddings obtidas com a metodologia proposta, e comparando com o estado da arte, 

superaram a performance de oito word embeddings em tarefas de similaridade, e de duas word 

embeddings em tarefas de categorização de palavras. 

 

Palavras-chave: Representação vetorial de palavras, Modelo Semântico Distribuído, Clustering 

de Texto, Vetores binários esparsos, Redes Neuronais  
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Abstract 

Word embeddings are vector representations of words that capture semantic and syntactic 

similarities between them. Similar words tend to have closer vector representations in a N 

dimensional space considering, for instance, Euclidean distance between the points associated 

with the word vector representations in a continuous vector space. This property, makes word 

embeddings valuable in several Natural Language Processing tasks, from word analogy and 

similarity evaluation to the more complex text categorization, summarization or translation tasks. 

Typically state of the art word embeddings are dense vector representations, with low 

dimensionality varying from tens to hundreds of floating number dimensions, usually obtained 

from unsupervised learning on considerable amounts of text data by training and optimizing an 

objective function of a neural network.  

This work presents a methodology to derive word embeddings as binary sparse vectors, or word 

vector representations with high dimensionality, sparse representation and binary features (e.g. 

composed only by ones and zeros). The proposed methodology tries to overcome some 

disadvantages associated with state of the art approaches, namely the size of corpus needed for 

training the model, while presenting comparable evaluations in several Natural Language 

Processing tasks.   

Results show that high dimensionality sparse binary vectors representations, obtained from a 

very limited amount of training data, achieve comparable performances in similarity and 

categorization intrinsic tasks, whereas in analogy tasks good results are obtained only for nouns 

categories. Our embeddings outperformed eight state of the art word embeddings in word 

similarity tasks, and two word embeddings in categorization tasks. 

 

Keywords:  Word Embedding, Distributional Semantic Model, Text Clustering, Binary Sparse 

Vectors, Neural Networks 
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1 Introduction 

The master thesis research area is on the field of distributional semantics and aims to explore an 

alternative approach for word representations in the semantic vector space. The proposed 

methodology goal is to derive sparse distributed representations (SDR) as word embeddings. The 

evaluation of the proposed methodology is made by testing the resulting word embeddings in 

several Natural Language Processing tasks, and comparing the results with state of the art dense 

vector representations, such as Word2vec [53], FastText [9] and Glove [60]. 

A methodology for obtaining a binary sparse distributed representation for each word is herein 

proposed. This representation shares the main idea of a word embedding, which was first 

formulated by Firth in 1957: "a word is characterized by the company it keeps" [24]. 

The proposed method for deriving sparse distributed representations is inspired on Francisco 

Webber’s work on the Semantic Folding Theory [81]. His work has the theoretical roots based on 

Hierarchical Temporal Memory (HTM) concepts described on the book “On Intelligence” [28], 

where is proposed a neuron model for machine intelligence inspired by real biological 

characteristics of the brain. 

The properties of the derived sparse binary representations are discussed and compared with 

state of the art dense vector representations. By applying simple evaluation metrics, is possible 

to compare the proposed methodology and resulting word vectors with state of the art word 

embeddings, in the context of intrinsic natural language processing tasks (e.g. word similarity, 

word analogy and word categorization). 
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1.1 Context and Motivation 

Typically, state of the art word embeddings are dense vector representations for each word in a 

given vocabulary. They are learned from large volumes of unstructured text data and are widely 

used in Natural Language Processing (NLP). The theory behind word embeddings is related with 

the distributional hypothesis, which states that the words that occur in the same context tend to 

have similar meanings. In practice these vector representations encode the semantic meaning of 

words, such as similar semantic words have close vector representations. Hence, word 

embeddings have a broad range of applications in Natural Language Processing, from simple 

word similarity, analogy or categorization tasks to complex document level tasks (e.g. 

classification, summarization, translation, intent detection). In the latter case, “word embeddings 

are often used as the first data processing layer in a deep learning model [82]” while in the former 

a simple distance metric (e.g. cosine distance) can be used.  

State of the art algorithms for deriving word embeddings language models are mainly based on 

artificial neural networks. These word embeddings are typically dense vector representations, 

which require very large training times and corpus size in order to produce an acceptable word 

vector representation.  

Training word embeddings on small size datasets does not produce good results, therefore 

“investigators have to use pre-trained word vectors such as Word2Vec and GloVe, which may not 

be the best fit for their data [63]”. 

Another shortcoming of most word embeddings is the fact that “they assume each word preserves 

a single vector, which is problematic due to homonymy and polysemy [44]”. In practice these 

methods do not allow the dense vector representation to capture all the contextual meaning of a 

word. 

The motivation for this work arises from the intent of proposing an alternative methodology to the 

state of the art artificial neural network word embeddings. This work proposes a new approach 

trying to reject the idea that huge volumes of data beats better algorithms. Although a difficult 

challenge, our aim is to propose an alternative methodology capable of having good performance 

in intrinsic Natural Processing Language tasks (e.g. word analogy, word similarity, word 

categorization), while overcoming the disadvantages of existing word embeddings, mentioned 

above. 
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1.2 Research Questions and Objectives 

This work tries to answer three research questions. The first one addresses the feasibility of using 

text clustering techniques and concepts brought by semantic folding theory to produce word 

embeddings. Semantic folding proposes a distinct approach to derive word embeddings, when 

compared to state of the art methodologies. In contrast with neural network approaches, it 

preconizes document clustering as the fundamental method for deriving word embeddings. 

Another important difference is that the resulting word embeddings are binary sparse vectors in 

opposition with the short and dense state of the art embeddings. We propose a methodology for 

deriving binary sparse embeddings, address the feasibility of such a process and the advantages 

of the derived word embeddings in terms of memory size needed to store these representations, 

when compared to the traditional dense vector representations. This constitutes the first 

contribution of this work. 

The second research question and contribution of this work, deals with the size of training material 

and tries to draw conclusions on the possibility of deriving word representations with less training 

material, allowing a compromise between corpora size and performance in NLP tasks. 

The third question, regards the quality of the resulting word embeddings based on binary sparse 

vector representations when compared with state of the art dense representations. Are the 

proposed vector representations capable of achieving comparable results in several Natural 

Language Processing tasks when compared with state of the art word embeddings? To answer 

this question we evaluate the proposed word vector representations in several intrinsic NLP tasks, 

comparing the performance with several state of the art word embeddings. 

Aligned with our research questions are the objectives this research work aims to achieve. We 

defined three main objectives that we consider milestones towards answering our three research 

questions.  

The first objective is to propose a methodology for representing words in the semantic vector 

space by binary sparse vectors, mapping every word to a point in a vector space. Therefore, each 

word represented in the corpus will have a corresponding vector of some predefined 

dimensionality following the idea of the distributional hypotheses. By means of the proposed 

methodology words with similar meanings will have closer vector representations.  

The second objective is to use the derived word vector representations, formed by large binary 

sparse vectors, in several Natural Language Processing tasks and compare those results with 

publicly available state of the art word embeddings. 

The third objective is to compare the resources used to produce these vector representations, in 

terms of learning material size. If vector representations can be derived with less training material, 

it could be an advantage for deriving domain specific word embeddings, or if less raw material is 

available, as is the case with languages not so disseminated across the globe or not so used in 

the digital world.  
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1.3 Research Methodology 

The methodology used in this research is based on the Design Science Research (DSR) model 

as all the work to solve the proposed research questions lies around the development and 

evaluation process of an innovative artifact. The building process of the artifact is defined in order 

to produce a rigorous, coherent, consistent and formally defined artifact. The artifact is thereafter 

properly evaluated in order to assess his utility in the context of the defined problem and research 

questions. 

Adopting the DSR model proposed by Peffers et al. [59] this work is composed by the sequential 

phases depicted in Figure 1: 

 

Figure 1 – Sequential Phases adopted 

This is a problem-centered approach where the research work is originated by the identification 

of a problem. As defined in the previous sections, this research identifies the need for an 

alternative unsupervised methodology to derive word representations with less training material 

in order to address NLP tasks in a more efficient manner and achieving comparable results with 

state of the art methods.  

The design and development phase produces four artifacts: 

1. Constructs in which problems and solutions are defined; 

2. Models to represent the real world situation; 

3. Methods for solving the problem; 

4. Instantiations of the previous three artifacts with the goal of demonstrating feasibility, 

assessment and suitability for the intended purpose. 

An agile methodology was used in the development phase with the goal to instantiate a working 

prototype earlier in time, from where further improvements, corrections and fine tuning can be 

worked out. 

The demonstration and evaluation phase were accomplished simultaneously. The main objective 

of this phase is to measure the performance of the proposed solution in several natural language 

tasks and compare it with state of the art language models. 
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1.4 Structure of the Dissertation 

This dissertation presents the research work done as part of this master thesis. The document is 

organized as follows: 

Chapter 2 provide the literature review of relevant research works, clarifying the main concepts 

and giving the theoretical background needed for contextualizing this work. 

Chapter 3 is divided in two major sections, where the first section describes the constructs in 

which problems and solutions are defined, along with the required functionality for the artifact, 

while the second section details the implementation 

Chapter 4 is dedicated to the evaluation of the word embeddings derived from the proposed 

methodology. The details and scope of the evaluation methodology are presented and the chapter 

concludes with the results of this work. 

Chapter 5 presents the conclusions of this work and points possible directions for additional 

research work in the context of this research topic. 
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2 Literature Review 

The following sections provide theoretical background obtained from other research works in the 

area of word vector representation. The foundational knowledge needed to frame the research 

questions and to understand the objectives of this work is also provided.  

This chapter proceeds with the clarification of the main theoretical concepts used throughout this 

work. Theoretical and historic background is provided, in order to address the main theories and 

works that provided the foundations for more recent approaches. Four mathematical processing 

steps for vector space model generation are described: frequencies calculation, weighting, 

dimensionality reduction and similarity calculation. 

Afterwards, we review several approaches, capable of producing state of the art results in several 

NLP tasks, having in common word embeddings has the base element of representing text.  

Finally we address the concepts, theories and past works that support the ideas put to practice in 

this thesis, namely sparse distributed representations and semantic folding theory. 

2.1 Distributional Semantic Model 

The work done in this thesis has his foundations on distributional semantics theory and follows 

the assumption that the meaning of a word can be derived by the words that appear in his 

surroundings. The main idea of the distributional hypothesis is that words with similar distributional 

properties have similar meanings. Zellig Harris (1909-1992) with his work on distributional theory 

[27] was the main advocate of this hypothesis. Throughout his work we can find a number of texts 

that emphasize the relation between the meaning of words and the contexts they appear, of which 

“Words with similar meanings will appear in similar contexts” [27] is an example. Firth in 1957, 

with his studies in Linguistic Analysis, reinforced and popularized the distributional semantics 

theory [24]. His phrase "A word is characterized by the company it keeps" emphasizes the 

theory’s general idea. 

An example that demonstrates the validity of the distributional hypothesis can be seen in the 

sentence: “…because of severe bacterial infections he took penicillin, and within days had a 

remarkable recovery”. Even if we do not know the meaning of “penicillin” we can presume with 

confidence that is a kind of drug used to treat infections, just knowing the surrounding words. 

The Vector Space Model (VSM) was introduced by Salton and colleagues in 1975 [71], and the 

novelty of VSM was to use frequencies in a corpus of text as a clue for discovering semantic 
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information [79]. According to VSM, also known as the bag of words, “The frequencies of words 

in a document tend to indicate the relevance of the document to a query.” [71]. Turney and Pantel 

[79], states that “If documents and pseudo-documents (queries) have similar column vectors in a 

term–document matrix, then they tend to have similar meanings”. 

Hinrich Schutze [74], refers the computational language model of meaning as the “word space 

model”, and defines it as “Vector similarity is the only information present in Word Space: 

semantically related words are close, unrelated words are distant”. 

Sahlgren [69], states that “The general idea behind the distributional hypothesis seems clear 

enough: there is a correlation between distributional similarity and meaning similarity, which 

allows us to utilize the former in order to estimate the latter”. This author recovers the view on 

words meaning from Swiss linguist Fernand de Sausurre (1857-1913) to specify what kind of 

distributional information we should look for and what would be the differences in meaning if we 

apply two different models of word distribution: syntagmatic and paradigmatic. A syntagmatic 

relation between two words indicates that these two words co-occur, whereas in a paradigmatic 

relation the two words share its neighbors. Hence, Sahlgren defined the Refined Distributional 

Hypothesis: 

“A distributional model accumulated from co-occurrence information contains syntagmatic 

relations between words, while a word-space model accumulated from information about shared 

neighbors contains paradigmatic relations between words” [69].  

In order to apply any computational process to language is essential to transform words, as the 

basic units of language, into its numerical vector representation. As we will describe, several 

approaches are proposed to transform words into vectors, and at the same time build such vectors 

so that words with similar meanings are closer in a N dimensional space. 

Turney and Pantel [79], with their work “From frequency to meaning: Vector space models of 

semantics”, systematize the linguistic processing for vector space models, considering three 

stages of pre-processing for transforming text into vectors. First, the raw text is tokenized, and a 

decision as to be made about what constitutes a term and how to extract terms from raw text. 

After tokenization, the raw text is normalized, converting superficially different strings of 

characters to the same form (e.g., hour, Hour, hours, and Hours could all be normalized to hour). 

Finally, raw text can be annotated, to mark identical tokens as being different (e.g., act as a verb 

could be annotated as act/VB and act as a noun could be annotated as act/NN. 

 

After pre-processing the corpus, mathematical processing is needed to generate a matrix of 

vectors, also known as context-vectors, according to the VSM. Turney and Pantel [79] referring 

to Lowe [46] enumerates the four mathematical processing steps for word–context VSMs: 

calculate the frequencies, transform the raw frequency counts, smooth the space (dimensionality 

reduction), then calculate the similarities. The following paragraphs are intended to clarify those 

steps.  

https://en.wikipedia.org/wiki/Distributional_semantics#CITEREFSahlgren2006
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The goal of calculating frequencies is to build a frequency matrix where the counts of each 

element (term, word, words pair) are determined for a given context (e.g. document). Several 

types of frequency matrix can be derived, of which two kinds are mentioned; sparse term-

document matrices represent documents in columns and terms in rows, and dense word-word 

matrices representing co-occurrences for each word pairs, with the count of each word, 

represented in the matrix diagonal (Figure 2). Term-document matrixes are implementations of 

context-vectors according to the bag of word hypothesis preconized by Salton and colleagues. 

 

Figure 2 – Examples of term-document matrix and word-word matrix (source [84]) 

As stated by Turney and Pantel [79], transforming the raw frequency counts, or weighting “is to 

give more weight to surprising events and less weight to expected events”. By other words, in 

information theory, a surprising event has higher information content than an expected event 

(Shannon [76]). According to Sahlgren [68] and Turney & Pantel [79], the most common method 

of weighting in information retrieval is TF-IDF (term frequency × inverse document frequency). 

Lunh [47], defines the term frequency (TF) as the number of times a word appears in a document, 

whereas Sparck Jones [77] defined the inverse document frequency (IDF) as a way of giving 

more weight to rare terms that are more discriminative. According to Shannon [76], those rare 

terms have higher information content in information theory. The mathematical definition of IDF 

is shown below, where N is the total number of documents in the collection and dfi is the number 

of documents in which a term occurs. The fewer documents a term occur the higher is his weight, 

or importance in terms of information gain, and vice-versa. The log function is applied to squash 

the measure, because of the usually high number of documents in many collections. 

𝑖𝑑𝑓𝑖 =  log (
𝑁

 𝑑𝑓𝑖
)  (2.1) 

 

The TF-IDF weighting scheme is the combination of term frequency with inverse document 

frequency, where the weight of word i in document j is given by wij: 

𝑤𝑖𝑗 =  𝑡𝑓𝑖𝑗   .   𝑖𝑑𝑓𝑖𝑗  (2.2) 

Pointwise Mutual Information (PMI) is an alternative to TF-IDF weighting scheme. Proposed by 

Church and Hanks [14] [15] is a measure of how often two events occur, compared with what we 

would expect if they were independent. Considering co-occurrence vectors the PMI between a 

target word w and a context word c is: 
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𝑃𝑀𝐼(𝑤, 𝑐) =  𝑙𝑜𝑔2
𝑃(𝑤,𝑐)

𝑃(𝑤)𝑃(𝑐)
  (2.3) 

The numerator is a measure of the probability that we observe two words together and the 

denominator is the probability we could expect the same two words co-occur assuming they each 

occurred independently. Thus, the higher the value of PMI the higher the probability of two words 

co-occur than we expect by chance [37]. To account for very small values of probability and the 

consequent difficulty in evaluate this levels of “unrelatedness”, PPMI replaces all negative PMI 

values with zero [14] [18] [56]. 

𝑃𝑃𝑀𝐼(𝑤, 𝑐) = max (𝑙𝑜𝑔2
𝑃(𝑤,𝑐)

𝑃(𝑤)𝑃(𝑐)
, 0)  (2.4) 

Pantel and Lin [57] [58] consider that PMI works well for both word–context matrices and for term–

document matrices. Bullinaria and Levy [11] demonstrated that PPMI performs better than a wide 

variety of other weighting approaches when measuring semantic similarity with word– context 

matrices. 

The third mathematical process step for generating vector space models, capable of representing 

terms with similar meaning closer in the vector space is dimensionality reduction also known as 

smoothing. Vector space models, due to the large number of document collections involved in 

building such models, tend to have a very high dimensionality, as a consequence of the number 

of different terms used in the process. This high dimensionality hinders scalability and efficiency 

of the algorithms that will process those matrices models. Sahlgren [68], states that “This presents 

us with the following delicate dilemma: on the one hand, we need as much data as we can get 

our hands on in order to build a truthful model of language use; on the other hand, we want to 

use as little data as possible because our algorithms will become computationally prohibitive 

otherwise”. Sahlgren [68], also draws attention for the problem of data sparseness. Only a small 

fraction of the co-occurrence matrix will have non-zero values, because “the vast majority of words 

only occur in a very limited number of contexts”. The general Zipf’s law [84] represents the 

generalization of this specific phenomenon. 

Jurafsky and Martin [37] also write about the advantages of short and dense vectors, like being 

easier to include as features in machine learning systems, may generalize better and help avoid 

overfitting, and they may do a better job of capturing synonym than sparse vectors, because 

synonym words in sparse vectors tend to be represented by distinct dimensions. Nonetheless, for 

the same authors, the use of dense vectors is not always the right approach, depending on the 

applications. The mentioned advantages will have their contradictory counterpart when we 

approach the semantic folding theory, in which our work is based. 

In view of the fact that dimensionality reduction techniques play an important role in improving 

either the running time of the algorithms and the quality of the context vectors, in the context of 

vector space models, we dedicate the following paragraphs to mention the main algorithms for 

co-occurrence matrix smoothing.  
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The simplest forms of dimensionality reduction involve operations like filtering out words in the 

co-occurrence matrix and documents based on either linguistic or statistical criteria [68]. Lin [42] 

applied this technique by keeping only the context-word dimensions with a PMI above a 

conservative threshold and setting the others to zero, and showed that the number of 

comparisons needed to compare vectors greatly decreases while losing little precision in the 

similarity score between the top-200 most similar words of every word [79].  

Deerwester and colleagues [19], used a method called Singular Value Decomposition (SVD) for 

generating dense vectors. SVD belongs to a family of methods that can approximate an N-

dimensional dataset using fewer dimensions, including Principal Component Analysis (PCA) and 

Factor Analysis [37]. The general idea is to find the most important dimensions of the data, being 

those dimensions along which the data varies the most [37]. SVD applied to document similarity 

is called Latent Semantic Indexing (LSI), but it is called Latent Semantic Analysis (LSA) when 

applied to word similarity [79].  

A textual explanation of the technique is given by Sahlgren [68] when he says that “SVD is a 

matrix factorization technique that decomposes, or factorizes, the original matrix into several 

(three when using SVD) smaller matrices, which can be multiplied to reproduce the original one. 

These smaller matrices contain the linearly independent factors of the original matrix (in the case 

of SVD, they are called “singular vectors” and “singular values”). If the smallest factors are 

disregarded when multiplying the smaller matrices, the result will be an approximation of the 

original co-occurrence matrix”. 

For a better understanding, Jurafsky and Martin [37] give a more formal definition of the method 

and of the linear algebra involved. SVD factorizes any such rectangular term-document matrix X 

X = |𝑉| .  𝑐   (2.5) 

, into the product of three matrices W, Σ, and CT (Figure 3). In the |V|×m matrix W, each of the w 

rows still represents a word, but the columns do not; each column now represents one of m 

dimensions in a latent space, such that the m column vectors are orthogonal to each other and 

the columns are ordered by the amount of variance in the original dataset each accounts for. The 

number of such dimensions m is the rank of X (the rank of a matrix is the number of linearly 

independent rows). Σ is a diagonal m × m matrix, with singular values along the diagonal, 

expressing the importance of each dimension. The m × c matrix CT still represents documents or 

contexts, but each row now represents one of the new latent dimensions and the m row vectors 

are orthogonal to each other. By using only the first k dimensions, of W, Σ, and C instead of all m 

dimensions, the product of these three matrices becomes a least-squares approximation to the 

original X. Since the first dimensions encode the most variance, one way to view the 

reconstruction is thus as modeling the most important information in the original dataset [37]. 



11 

 

 

Figure 3 - SVD factors a matrix X into a product of three matrices, W, Σ, and C (source [5]) 

 

Figure 4 – Truncated SVD using just the k top dimensions of the product matrices (source [37]) 

The preferred weighting scheme for LSA applies the multiplication of two weights called the local 

and global weights for each cell (i, j), considering term i in document j.  

The local weight of each term i is its log frequency:  

log 𝑓(𝑖, 𝑗) + 1  (2.6) 

The global weight of term i is a version of its entropy. The whole formula for weighting the co-

occurrences according to Dumais [21] is: 

𝑓𝑖𝑗 = (log(𝑇𝐹𝑖𝑗) + 1)  .   (1 − (∑
𝑝𝑖𝑗 log 𝑝𝑖𝑗

log 𝐷𝑗 ))  (2.7) 

, where D is the total number of documents in the collection, 𝑝
𝑖𝑗=

𝑡𝑓𝑖𝑗
𝑓𝑖

⁄
 and fi is the frequency of 

term i in the whole document collection. 

As mentioned above, SVD can be applied to term-document matrices (as in the LSA algorithm) 

or to word-word or word-context matrix, an idea proposed by Schutze [75]. Hinrich Schütze 

models based on word co-occurrences, highly influenced a different implementation of the word 

space named Hyperspace Analogue to Language (HAL) proposed by Lund and colleagues [48]. 

HAL idea is to build distributional profiles based on which other words surround them [69]. HAL 

uses a words-by-words co-occurrence matrix, which is populated by counting word co-

occurrences within a directional context window of 10 words wide. The co-occurrences are 

weighted with the distance between the words, so that words that occur next to each other get 

the highest weight, and words that occur on opposite sides of the context window get the lowest 

weight. The result of this operation is a directional co-occurrence matrix in which the rows and 

https://en.wikipedia.org/wiki/Hyperspace_Analogue_to_Language
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the columns represent co-occurrence counts in different directions [68]. Then each row-column 

pair is concatenated to produce a very high dimensional context matrix, which is subsequently 

reduced, in their dimensionality, by computing the variances of the row and column vectors for 

each word, and discarding the elements with lowest variance, leaving only the 100 to 200 most 

variant vector elements [68]. 

Since the work of Deerwester and colleagues [20], subsequent research has discovered many 

alternative matrix smoothing processes, such as Nonnegative Matrix Factorization (NMF) [41], 

Probabilistic Latent Semantic Indexing (PLSI) [32], Iterative Scaling (IS) [3], Kernel Principal 

Components Analysis (KPCA) [73], Latent Dirichlet Allocation (LDA) [8], and Discrete Component 

Analysis (DCA) [13]. 

Regarding comparing the vectors (the fourth and final step for building vector space models) 

Turney and Pantel [79], state that “The most popular way to measure the similarity of two 

frequency vectors (raw or weighted) is to take their cosine”. Let x and y be two vectors, each with 

n elements. The cosine of the angle θ between x and y is given by the following formula: 

cos(𝑥, 𝑦) =
∑ 𝑥𝑖.𝑦𝑖

𝑛
𝑖=1

√∑ 𝑥𝑖
2𝑛

𝑖=1    .   √∑ 𝑦𝑖
2𝑛

𝑖=1

  (2.8) 

 

=  
𝑥 .𝑦

√𝑥.𝑥 .√𝑦.𝑦
  (2.9) 

 

=  
𝑥  .  𝑦

‖𝑥‖ ‖𝑦‖
   (2.10) 

 

 

Cosine captures the idea that the length of the vectors is irrelevant; the important thing is the 

angle between the vectors [79]. The cosine ranges from −1 when the vectors point in opposite 

directions (θ is 180 degrees) to +1 when they point in the same direction (θ is 0 degrees). When 

the vectors are orthogonal (θ is 90 degrees), the cosine is zero [79]. A measure of distance 

between two vectors can be converted to a measure of similarity by inversion or subtraction [79], 

assuming the following formulas: 

 

𝑠𝑖𝑚(𝑥, 𝑦) =  1 𝑑𝑖𝑠𝑡(𝑥, 𝑦)⁄   (2.11) 

 

𝑠𝑖𝑚(𝑥, 𝑦) =  1 − 𝑑𝑖𝑠𝑡(𝑥, 𝑦)  (2.12) 

 

Several other similarity measures have been proposed: Euclidean distance, Manhattan distance, 

Jaccard Coefficient, Pearson Correlation Coefficient, Kullback-Leibler Divergenge and Similarity 

Measure for Text Processing (SMTP) [43] to name a few. Several studies [12][33] compared the 

effectiveness of these measures. 



13 

 

The word vector space semantic model is completely derived in an unsupervised manner, trying 

to capture the words meanings by looking to the distributional patterns in text. Sahlgren [68], 

underlines this idea: 

“What makes the word-space model unique in comparison with other geometrical models of 

meaning is that the space is constructed with no human intervention, and with no a priori 

knowledge or constraints about meaning similarities. In the word-space model, the similarities 

between words are automatically extracted from language data by looking at empirical evidence 

of real language use”. 

 

2.2 Neural Networks-Based Semantic Models 

Neural networks can be used for learning the representations of words as vectors, also known as 

“word embeddings”. A word embedding method discovers distributed representations of words; 

these representations capture the semantic similarity between the words and reflect a variety of 

other linguistic regularities [67][7][55]. The main idea behind a word embedding is aligned with 

the distributional hypothesis theory and concepts previously described, of representing words with 

similar meaning with similar vector representations. The main difference in that the learned 

vectors derived from word embedding techniques are dense representations in contrast with the 

vectors representations based on counting words occurrences. Adopting the explanation given 

by Jurafsky and Martin [37]: 

 

“The intuition is that words with similar meanings often occur near each other in texts. The neural 

models therefore learn an embedding by starting with a random vector and then iteratively shifting 

a word’s embeddings to be more like the embeddings of neighboring words, and less like the 

embeddings of words that don’t occur nearby”. 

Several authors state that word embeddings have been successfully used for analyzing language 

[7][53][54][60]. Given the importance of word embeddings for many NLP downstream tasks, we 

proceed with a historical review and clarification of the main models involved in learning word 

embeddings.  

Bengio and colleagues in 2003 [6] pioneered the use of artificial neural networks for learning 

distributed representations of words. Their idea was to fight the “curse of dimensionality” through 

the following approach: 

1. associate with each word in the vocabulary a distributed word feature vector (a real- 

valued vector in Rm), 
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2. express the joint probability function of word sequences in terms of the feature vectors of 

these words in the sequence, and 

3. learn simultaneously the word feature vectors and the parameters of that probability 

function. 

The classic neural language model proposed by Bengio et al. [6] in 2003 consists of a one-hidden 

layer feed-forward neural network that predicts the next word in a sequence as shown in Figure 

5.  

 

Figure 5 – One-hidden layer feed-forward neural network (source [6]) 

The objective is to learn a good model that maximizes an objective function that yields the 

probability of a word given the previous one: 

𝑓(𝑤𝑡 , … , 𝑤𝑡−𝑛+1) =  𝑃̂(𝑤𝑡|𝑤1
𝑡−1)  (2.13) 

 

The training of the model is achieved by looking for θ that maximizes the training corpus penalized 

log-likelihood L, where 𝑅(𝜃) is a regularization term [6]: 

𝐿 =  
1

𝑇
 ∑ 𝑙𝑜𝑔𝑓(𝑤𝑡 , 𝑤𝑡−1, … , 𝑤𝑡−𝑛+1; 𝜃) + 𝑅(𝜃)𝑡   (2.14) 

 

In practice, the neural network computes the following function, with a softmax output layer, which 

guarantees positive probabilities summing to 1. 

𝑃̂(𝑤𝑡|𝑤𝑡−1, … , 𝑤𝑡−𝑛−1) =  
𝑒

𝑦𝑤𝑡

∑ 𝑒𝑦𝑖𝑖
  (2.15) 

 

, where yi are the un-normalized log-probabilities for each output word i [6]. 

http://blog.aylien.com/overview-word-embeddings-history-word2vec-cbow-glove/#reference1
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The bottleneck of this model is the softmax computation, as it is proportional to the number of 

words in the corpus which is typically on the order of hundreds of thousands.  

In 2008 Collobert and Weston, with their work “A unified architecture for natural language 

processing” [16], demonstrated the power of using pre-trained word embeddings in many well-

known NLP tasks including part-of-speech tagging, chunking, named-entity recognition, learning 

a language model and the task of semantic role-labeling. The method proposed by Collobert and 

Weston employs an alternative objective function to avoid computing the expensive softmax. 

Rather than the cross-entropy criterion of Bengio et al. [6], which maximizes the probability of the 

next word given the previous words, Collobert and Weston train a network to output a higher 

score 𝑓𝜃 for a correct word sequence than for an incorrect one.  

They consider a window approach network, with parameter θ, which outputs a score 𝑓𝜃(𝑥) given 

a window of text 𝑥 = [𝑤]1
𝑑𝑤𝑖𝑛 [17]. Then they minimize the pairwise ranking criterion with respect 

to θ: 

𝐽𝜃 =  ∑ ∑ 𝑚𝑎𝑥𝑤∈𝑉 {0, 1 − 𝑓𝜃(𝑥) +  𝑓𝜃(𝑥(𝑤))}𝑥∈𝑋   (2.16) 

 

In 2013 Mikolov et al. [53], proposed two learning methods for generating dense word 

embeddings models: skip-gram and continuous bag of words. These two methods along with the 

Word2Vec software gained a lot of traction, and provide state of the art word embeddings [25]. 

Word2Vec is an implementation of the two proposed methods that learns word embeddings by 

training a shallow neural network to predict neighboring words. These word embeddings are, 

simultaneously, good at predicting neighboring words and at representing similarity [37]. The main 

benefits of these two architectures for learning word embeddings when compared to Bengio’s and 

Collobert and Weston approaches are: they do not consider a computationally expensive hidden 

layer and they allow the language model to take additional context into account.  

The skip-gram model, depicted in Figure 6, predicts each neighboring word in a context window 

of 4 words from the current center word. In this case the context is  [𝑤𝑡−2, 𝑤𝑡−1, 𝑤𝑡+1, 𝑤𝑡+2] and 

we are predicting each of these words from word wj [37].  

 

Figure 6 - Skip-gram (source [53]) 
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In practice the skip-gram model learns two separate embeddings, encoded in two matrices, for 

each word w: the word embedding v, represented by matrix W and the context embedding c, 

represented by the context matrix C (Figure 7).  

The skip-gram computes the probability 𝑝(𝑤𝑘| 𝑤𝑗) by taking the dot product between the word 

vector for 𝑗(𝑣𝑗) and the context vector for 𝑘(𝑐𝑘), and turning this dot product 𝑣𝑗 . 𝑐𝑘 into a probability 

by passing it through a softmax function [37].  

 

Figure 7 – Similarity function for selecting out a target vector vj from W, and a context vector ck from C 
(source [37]) 

The mathematical formulation for the skip-gram model is thus: considering a given corpus of 

words w, their contexts c, and the conditional probabilities 𝑝(𝑐|𝑤) on a given a corpus 𝑇, the goal 

is to set the parameters θ of 𝑝(𝑐|𝑤 ;  𝜃) so as to maximize the corpus probability [25]: 

arg max
𝜃

∏ [∏ 𝑝(𝑐|𝑤; 𝜃)𝑐 𝜖 𝐶 (𝑤) ]𝑤 𝜖 𝑇   (2.17) 

 

Following neural-network language models literature, we can use soft-max function to model the 

conditional probability: 

𝑝(𝑐|𝑤; 𝜃) =  
𝑒𝑣𝑐.𝑣𝑤

∑ 𝑐´∈𝐶𝑒𝑣𝑐´.𝑣𝑤
  (2.18) 

 

, where vc and vw ∈ Rd are vector representations for c and w respectively, and C is the set of all 

available contexts [25]. 

In summary, the skip-gram model learns two word embedding by iteratively making the 

embeddings for a word more like the embeddings of its neighbors (maximizing the numerator) 

and less like the embeddings of other words (minimizing the denominator) [37].  

As we saw with the method proposed by Bengio et al [6], this version of the algorithm has the 

same problem with the softmax computation, as the time to compute the denominator can be very 

expensive. For each word wt, the denominator requires computing the dot product with all other 

words [37]. 

To overcome this limitation, Mikolov et al. [54] present the negative-sampling approach as a more 

efficient way of deriving word embeddings [25]. The main idea is that, in the training phase, the 
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algorithm walks through the corpus, at each target word choosing the surrounding context words 

as positive examples, and for each positive example also choosing k noise samples or negative 

samples: non-neighbor words [37]. The goal will be to move the embeddings toward the neighbor 

words and away from the noise words. The learning objective for one word/context pair (𝑤, 𝑐) is:  

𝑙𝑜𝑔𝜎 (𝑐. 𝑤) +  ∑ 𝐸𝑤𝑖~𝑝(𝑤)[𝑙𝑜𝑔𝜎(−𝑤𝑖 . 𝑤)]𝑘
𝑖=1   (2.19) 

 

, and can be expressed as a way to maximize the dot product of the word with the actual context 

words, and minimize the dot products of the word with the k negative sampled non-neighbor 

words. The learning algorithm starts with randomly initialized W and C matrices, and then walks 

through the training corpus moving W and C so as to maximize the objective. An algorithm like 

stochastic gradient descent is used to iteratively shift each value so as to maximize the objective, 

using error backpropagation to propagate the gradient back through the network [37]. 

The Continuous Bag of Words (CBOW) model (Figure 8) is also based on a predictive model, but 

this time predicting the current word wt from the context window of n words around it, e.g. for n=2 

the context is [𝑤𝑡−2, 𝑤𝑡−1, 𝑤𝑡+1, 𝑤𝑡+2]. While CBOW and skip-gram are similar algorithms and 

produce similar embeddings, they do have slightly different behavior, and often one of them will 

turn out to be the better choice for any particular NLP task [37]. 

 

Figure 8 - Continuous bag-of-words (source [53]) 

 

Another advantage of the methods proposed by Mikolov et al. [55], is that it introduced a new 

evaluation scheme based on word analogies that probes the finer structure of the word vector 

space by examining not the scalar distance between word vectors, but rather their various 

dimensions of difference. As a consequence it allows to derive analogies encoded in the word 

vectors that make the vector space, simply by doing arithmetic operations on the vectors itself. 

For example vec(“king”) – vec(“man”) + vec(“woman”) =~ vec(“queen”). 
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Piotr Bojanowski et al [9] proposed an extension to Mikolov’s work by considering sub word 

information for deriving word vectors. The approach is based on the skip-gram model but the 

vector representations are associated to each character n-grams and the words vector 

representations are the sum of these representations [9]. This method besides being faster to 

train, outperformed state-of-the-art methods in analogy and similarity tasks. The original 

implementation of this method is named FastText and is publicly available. 

Pennington et al. [60] proposes a model called GloVe that combines the advantages of statistical 

(e.g. LSA) and neural network (e.g. skip-gram) methods. Pennington et al. argues that: 

“While methods like LSA efficiently leverage statistical information, they do relatively poorly on 

the word analogy task, indicating a sub-optimal vector space structure. Methods like skip-gram 

may do better on the analogy task, but they poorly utilize the statistics of the corpus since they 

train on separate local context windows instead of on global co-occurrence counts.” 

GloVe model benefits from counting data while simultaneously capturing the meaningful linear 

substructures prevalent in recent log-bilinear prediction-based methods like Word2Vec” [60]. In 

practice, GloVe starts by a very sparse word-word co-occurrence matrix, then transforms the raw 

integer counts into a matrix where the co-occurrences are weighted based on the distance 

between the word co-occurrence, a log is applied to the weighted co-occurrences  and finally the 

matrix is factorized to produce the final word vector representations. This final matrix when 

factorized using the particular stochastic gradient descent algorithm of Word2Vec, yields out the 

target and context matrices derived by this model. 

Although GloVe model does not belong to the group of shallow neural networks, it is an important 

contribution to the semantic vector space research field, moreover the resulting matrix is closely 

related to the target and context embeddings produced by Mikolov’s [53] model. 

Word vector representations derived from neural networks-based semantic models have been 

used to initialize the word vectors input layer for deep learning models with gains in performance 

over random word vector initialization in several downstream tasks [52]. 

Alternatively, deep learning architectures with very different objective functions are by itself 

capable of deriving word embeddings with good results in several NLP tasks. Hill et al. [31], 

showed that Neural Machine Translation (NMT) models “… are not only a potential new direction 

for machine translation, but are also an effective means of learning word embeddings”. Hill and 

colleagues trained two different NMT models based on recurrent neural networks (RNN) and 

concluded that word embeddings derived for both languages used for training the model may 

have particularly desirable properties and appear to be  “more orientated towards conceptual 

similarity than those of monolingual models”. 

Luong et al. [49], applied a RNN architecture to derive word embeddings representations by using 

morphological sub word information. This method outperformed publicly available embeddings 

on word similarity tasks across many datasets, and proved to be more effective specially on 

modeling rare and complex words. 
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2.3 Semantic Folding Theory 

All the theoretical framework used in this work is based on the work done by Francisco de Sousa 

Webber, and his Semantic Folding Theory (SFT) [81]. This theory offers an alternative approach 

for the representation of language semantics and in contrast with the methods mentioned thus 

far, it is not based on any statistical methods. In particular, Webber mentions that: 

“Semantic Folding Theory (SFT) is an attempt to develop an alternative computational theory for 

the processing of language data. While nearly all current methods of processing natural language 

based on its meaning use word statistics, in some form or other, Semantic Folding uses a 

neuroscience-rooted mechanism of distributional semantics”. [81] 

SFT is built around a theoretical computational model, inspired by the biological characteristics of 

the human cortex, developed by Jeff Hawkins, and known as Hierarquical Temporal Memory 

(HTM). HTM defines a deep learning model which attempts to be comparable with the higher level 

structures and functionality of the brain [45]. One of the premises of HTM is that the fundamental 

form of information representation in the brain is by means of sparse distributed representations 

(SDR) [29]. Hence, according to SFT words and text are represented by very large sparsely filled 

binary vectors and every bit of information in this SDR encodes a specific semantic feature, 

meaning that each SDR is therefore a vector in the semantic space [81].  

According to Webber using SDR’s for encoding word and text semantics has the main advantage 

that “it allows any data-items to be directly compared” just by using boolean operators and 

similarity functions. Several other advantages of SDR, when compared with dense vectors 

representations, are highlighted by Webber [81]:  

• Ability to store semantic meaning in every bit of the SDR; 

• Very high compression rate by storing only the positions of the set bits; 

• Fault tolerance when several bits are discarded or shifted, the overall semantics are 

preserved; 

• Union of several SDRs preserves the information of each original constituent allowing for 

comparison with a new unseen SDR. 

SFT proposes a novel approach to the representational problem, where each word or sentence 

is represented by a 2-dimensional sparse binary vector, allowing to solve several NLP problems 

by applying Boolean operators and a similarity function (e.g. Euclidean distance). Simultaneously, 

“Many practical problems of statistical NLP systems, like the high cost of computation, the 

fundamental incongruity of precision and recall, the complex tuning procedures etc., can be 

elegantly overcome by applying Semantic Folding” [81].   

The mechanism for producing 2-dimensional word SDRs is in accordance with the distributional 

hypothesis. Every word is represented by all the contexts (or special case scenarios in SFT 

nomenclature) that it appears. The novelty of this approach is in a mechanism denominated 
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Semantic Folding where each context (text snippet) is positioned within a 2D-area in a way that 

semantically close contexts are placed near each other and dissimilar contexts are placed far 

apart in the 2D area. The topological 2D layer built from all the contexts extracted from the training 

corpus is the distributional reference for encoding word SDR (or semantic fingerprint) and 

associates a coordinate pair to every context.   

 

Figure 9 – Semantic folding (source [81]) 

This 2D map is then used to produce a binary representation for every word by assigning “1” to 

all coordinates (contexts) in which the word appears and “0” for all other positons on the map.   

According to Webber [81], the steps for the Semantic Folding process are: 

1. Definition of a reference text corpus of documents that represents the Semantic Universe 

the system is supposed to work in. The system will know all vocabulary and its practical 

use as it occurs in this Language Definition Corpus (LDC). 

2. Every document from the LDC is cut into text snippets with each snippet representing a 

single context. 

3. The reference collection snippets are distributed over a 2D matrix (e.g. 128x128 bits) in 

a way that snippets with similar topics (that share many common words) are placed closer 

to each other on the map, and snippets with different topics (few common words) are 

placed more distantly to each other on the map. This produces a 2D semantic map; 

4. In the next step, a list of every word contained in the reference corpus is created; 

5. By going down this list word by word, all the contexts a word occurs in are set to “1” in 

the corresponding bit-position of a 2D mapped vector. This produces a large, binary, very 

sparsely filled vector for each word. This vector is called the Semantic Fingerprint of the 

word. The structure of the 2D map (the Semantic Universe) is therefore folded into each 

representation of a word (Semantic Fingerprint). The list of words with their fingerprints 

is stored in a database that is indexed to allow for fast matching. 

This method results in similar word SDRs for similar words that appear in the same contexts. The 

level of similarity can be measured by similarity/distance metrics (e.g. overlap between SDRs, 

Euclidean distance, cosine similarity, Jaccard similarity). 
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It is important to note that the size of the generated text snippets determines the extent that each 

word is associated with other concepts [81].   

By aggregating each atomic word SDR that are part of a document, a text SDR (document 

fingerprints) can be created. Then the aggregated fingerprint is sparsified by maintaining only the 

“1” bits in the 2D map coordinates where the matching between word SDRs is over a given 

threshold (Figure 10). 

 

Figure 10 – Aggregation and sparsification resulting in a Text SDR (source [81]) 

In his paper [81], Webber refers that all semantic fingerprints are homologous (same size and 

feature space), hence they can be used directly in boolean expressions.  Figure 11 shows an 

example of an arithmetic operations with SDR’s that demonstrates the semantic associations 

between words.   

 

Figure 11 – Computing with word meanings (source [81]) 

Webber refers that by applying simple and efficient similarity measures, like number of bits that 

overlap between SDRs, several NLP tasks can be accomplished, namely document classification, 

searching documents, keyword extraction and semantic slicing. 

Another benefit from the SFT approach is, according to Webber, similarity of fingerprints across 

different languages if aligned semantic spaces are used. 
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3 Towards Word Sparse Distributed Representations 

The motivation of this chapter is to detail the conception and implementation of an artifact able to 

produce word sparse vector representations, aligned with the objectives defined for this work. 

The main contributions are a methodology capable of producing word embeddings, in an 

unsupervised manner, with comparable performance in several NLP tasks to state of the art word 

embeddings. In the process, other contributions are given such as a systematic analysis on the 

influence that input parameters have over the efficiency and performance of the resulting model.    

The first section of this chapter describe the constructs in which problems and solutions are 

defined, along with the required functionality for the artifact. The second section explains the 

proposed methodology for solving the research questions, including the artifact architecture and 

the way the resources communicate and integrate with each other.  
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3.1 Theoretical Framework 

The aim of this section is to build the theoretical background from where the technical solutions 

to achieve this work’s objectives were derived. For a given practical problem one or more 

approaches were chosen, and here we justify those options based on constructs. 

At this moment, it is important to remember the objectives and research questions of this work. 

Regarding the objectives we seek an alternative methodology to derive word embeddings capable 

of achieving good results in downstream NLP task. Besides a new methodology we aim to 

produced and explore word embeddings with binary sparse vector representations in contrast 

with the dense vector representations obtained from state of the art methodologies. In terms of 

research questions we intend to answer questions regarding the feasibility of obtain good 

performant binary sparse vector representations with less training material when compared with 

state of the art methodologies.  

As we recall from previous chapters word embeddings are word vector representations in which 

words with similar meanings are closer in a N dimensional vector space. With this goal in mind 

we built a model for transforming text into word embeddings, with different vector properties from 

the traditional and state-of-the-art word embeddings, namely higher dimensionality and sparsity. 

The following sections of this chapter conceptually describe each step of the proposed model 

towards the unsupervised generation of word embeddings as sparse distributed representations, 

from a given corpus. Thus, the theoretical approach can be applied in practice to any corpus, 

ensuring at the end of the process the generation of sparse vector distributional representations 

of words – word embeddings. 

3.1.1 Model Conception 

Before the detailed description of all components of our work, a higher level model conception for 

the proposed artifact and implementation is given. The higher level model conception purpose is 

to give an idea of the main components and steps involved in our methodology. All the 

components of the model are then further described in the next sections. 

As depicted in Figure 12 the main components, inputs and outputs from each module of our 

method are the following: 

1. Pre-processing:  Corpus -> Clean raw text; 

2. Document definition: Clean raw text -> Clean documents; 

3. Document representation: Clean documents -> Document vectors; 

4. Document clustering: Document vectors -> Clustered documents; 
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5. Word representation: Clustered documents -> Raw word embeddings; 

6. Binary sparse representation: Raw word embeddings -> Binary sparse distributed 

representations. 

 

Figure 12 – Model Conception 

3.1.2 Word Tokens 

Given a textual dataset from which the unsupervised learning of the word embeddings will be 

performed, the first step of the proposed process is to obtain word tokens from the corpus dataset. 

Following the orientations from Turney and Pantel [79], that systematize the linguistic processing 

for transforming text into vectors, we start by defining what should constitute an appropriate word 

token suitable for word embedding generation. 

We consider a word token any atomic unit of text that possesses an intrinsic meaning, typically 

any individual word, except stop words.  

A data cleaning step allows the removal of all unmeaningful tokens like stop words, punctuation 

and numeric tokens.   

3.1.3 From Word Tokens to Documents 

Considering the distributional semantic model, words only have meaning in a particular given 

context, which is provided by the surrounding words. Thus an important step towards our goal is 

the definition of what constitutes a context. In that sense our proposal is to consider a context, 

any number of sentences enclosed in a given paragraph of text. This way we hope to achieve a 

reasonable balance between the number of words of a given piece of text and the specific 

meaning it encloses, while not generalizing too much the overall meaning or have many possible 

meanings. If we have considered a chapter or even an entire book as the context of a given word, 

too many concepts and meanings would be taken into account for word context definition, while 
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if considering a sentence or even a part of a sentence (e.g. between two commas) the information 

for encapsulating a meaning or an idea would not be enough. 

This approach allows to separate homonyms into different contexts as the same word applied 

with a different meaning tends to be present in different paragraphs. 

Considering only one meaningful topic context is key for capturing the semantics of a given word 

present in it. In our nomenclature those context text paragraphs are denominated “documents”. 

3.1.4 Document Vector Representation 

Documents, as the atomic units of text used for defining the meaning of a word must be 

mathematically processed in order to transform documents into a matrix of vectors. These are the 

context vectors according to the Vector Space Model which are ready to undergone a series of 

mathematical processing steps. The proposed approach was inspired in the methodology defined 

by Lowe [46] that defines four mathematical processing steps for word–context VSMs, namely: 

calculate frequencies, transform the raw frequency counts, dimensionality reduction, and 

calculate similarities. 

First, a sparse term-document matrix was derived by counting the occurrences of each word token 

in a document. Then, we transform the raw frequency counts in order to, and paraphrasing Turney 

and Pantel [79], “… give more weight to surprising events and less weight to expected events”. 

Words that are rare across all documents, are more discriminative and have higher information 

content [76] than frequent words. Obvious examples are stop words (e.g. “the”, “a”, “or”, “and”) 

which are very frequent and to not carry any specific information, and on the other side of the 

spectrum a rare word like “bacillus” encloses much more information about the topic being 

covered.  

By applying the method TF-IDF to the term-document frequency matrix yields another matrix 

weighted by the informational content of each word. A more discriminative word (with a high TF-

IDF) is represented in a N dimensional space context vector with a higher value in the 

corresponding dimension and vice-versa. The main idea is to valorize words that have 

considerable informative content, so that in another downstream step, where document clustering 

is performed, a good performance can be achieved.  

Then, dimensionality reduction is applied to the weighted term-document matrix as a way to 

improve algorithm performance and scalability in downstream processing tasks. Another benefits 

of dimensionality reduction, and thus working with short dense vectors, as seen in the literature 

review chapter, is that they may generalize better, avoiding overfitting. 

From the available dimensionality reduction technics Singular Value Decomposition (SVD) was 

chosen. This method, as previously seen, decomposes the original matrix into three smaller 
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matrices, which contain the linearly independent factors of the original matrix. Disregarding the 

smallest factors when multiplying the smaller matrices the result will be a least-squares 

approximation of the original matrix with fewer dimensions. The idea is to consider only the latent 

dimensions present in the three smaller matrices that encode the most variance and thus 

represent the most important information in the original dataset. For a deeper explanation of SVD 

please refer to literature review. 

3.1.5 Document Clustering 

An important component of the proposed methodology is the clustering of text documents, in 

order to group similar texts based on a predefined distance metric (e.g. cosine distance). Our 

intent is to arrange our documents, so that documents with similar semantic meanings are 

grouped in the same cluster. According to [51], clustering algorithms “create clusters that are 

coherent internally, but clearly different from each other.” In other words, clustering algorithms 

take the vector representation of each text document considering the vector space model and 

create coherent groups of documents in the sense that document vectors put in the same cluster 

should be closer, probably having more common words than documents put on another cluster. 

Hence, the distance measure applied on a given cluster algorithm greatly influences the result of 

the clustering.   

Clustering algorithms, as a form of unsupervised learning can be distinct based on the type of 

clusters produced. As stated in [51], flat clustering creates clusters without any explicit structure 

that relate clusters to each other. Hard and soft clustering algorithms make another distinction, 

where the former assign only one cluster to each sample, whereas in the later each sample is 

assigned to a distribution over all clusters. 

One of the difficulties when applying cluster algorithms is that the number of clusters must be 

known in advance, as this is an input parameter to this type of algorithms.   

Two clustering algorithms were used in our methodology and compared, namely K-Means and 

Self Organizing Map. The main idea, is to apply a form of quantization to the input documents 

represented in the vector space, allowing similar documents to be assigned to the same 

discretized vector representation, in this case the vector representation’s specific cluster. The two 

studied algorithms produce flat or disjoint clusters, meaning that by using distance 

measurements, each document is assigned to only one cluster. 

3.1.5.1 K-Means 

K-means algorithm divides the input documents into k clusters, by iteratively updating the k 

reference centroids. The k reference centroids position is calculated in each iteration as being the 
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mean of the vectors that are closer to each k centroid. This algorithm has the advantage of quickly 

converging to a local optimum but has the downside of being very much dependent on the initial 

choice of the k reference centroids. 

The computation complexity of K-Means is 𝑂(𝑛 .  𝑘 .  𝑙) where n is the number of samples, k is the 

number of clusters and l is the number of iterations. 

According to [51], K-Means is a flat clustering algorithm whose objective is to minimize the 

average squared Euclidean distance of documents to their cluster centers where a cluster center 

is defined as the mean of all documents in a cluster. 

𝜇(𝑤) =
1

|𝜔|
∑ 𝑥⃗𝑥∈𝜔   (3.1) 

 

 

Figure 13 – Ilustration of K-Means algorithm (source [35]) 

 

3.1.5.2 Self-Organizing Maps 

The other clustering approach used by this work is the Self-Organizing Map (SOM) algorithm. 

According to [65], the computation complexity of SOM algorithm is 𝑂 (𝑛 .  𝑐) where n is the input 

vector size and c is the number of document presentation cycles.  

SOM algorithm was introduced by Teuvo Kohonen in 1982 [40]. Dino Isa et al [34] refer many 

applications of the SOM algorithm including “data mining, visualization of complex data, image 

processing, speech recognition, process control, diagnostics in industry and medicine and natural 

language processing”. 

SOM is a type of artificial neural network but instead of an error correction approach as the 

method for learning the features of input data they apply competitive learning by using a 

neighborhood function to preserve the topological properties of the input space. The algorithm 

https://en.wikipedia.org/wiki/Teuvo_Kohonen
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Topology
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produces a low-dimensional (typically two dimensions) discretized representation of the input 

space called a map that preserves the topological relation between the input data, simplifying 

visualization and interpretation. 

 

Figure 14 – SOM model (source: Sachin Joglekar’s blog1]) 

Adopting the description from [34], the SOM algorithm can be described in the following manner:  

• The weight vectors of the SOM are initialized randomly or by principal component 

initialization; 

• The SOM is trained iteratively. In each training step, a sample vector from the input data 

set is chosen randomly and the distance between this vector and all the weight vectors 

of the SOM, is calculated by using a Euclidean distance measure; 

• The neuron with the weight vector which is closest to the input vector is called the Best 

Matching Unit (BMU). The distance between that vector and weight vectors, is computed 

using a distance measure, typically Euclidean distance; 

• After the BMU is found, the weight vectors of the SOM are updated so that the BMU is 

moved closer to the input vector in the input space; 

• The topological neighbors of the BMU are treated similarly. The update rule for the weight 

vector of i is: 

 

𝑥𝑖(𝑡 + 1) =  𝑚𝑖(𝑡) + 𝛼(𝑡)ℎ𝑐𝑖(𝑡)[𝑥(𝑡) − 𝑚𝑖(𝑡)]  (3.2) 

 

o where x(t) is a vector which is randomly drawn from the input data set, and 

function a(t) is the learning rate and t denotes time. The function hci(t) is the 

neighborhood kernel around the winner unit c. 

o Learning parameter is selected between 0.0 and 0.9 

• The training steps will be in the range of 100 000 epochs in order to obtain a trained map. 

Several research studies have shown that SOM are an effective approach for organizing text 

data, by considering the semantic similarities between text fragments. Samuel Kaski et al 

proposed the creation of word category maps for organizing vast collections of text documents. 

                                                      

1 https://codesachin.wordpress.com 

https://codesachin.wordpress.com/
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Their method proved to be effective in organizing documents on a map produced by a SOM 

approach [39]. 

H. Ritter and T. Kohonen [64] demonstrated the formation of semantic topographic word maps 

(Figure 15) where the semantic relationships in the data are reflected by their relative distances 

in the map. They hypothesized that SOM are effective not only on clustering and visualization of 

high dimensional data, but “they are also directly able to create in an unsupervised process 

topographical representations of semantic, nonmetric relationships implicit in linguistic data”.    

 

Figure 15 - Self-organizing semantic maps (source [64]) 

 

As previously mentioned, the Self-Organizing Map algorithm produces a 2-dimensional 

discretized representation of the input documents preserving the topological relations between 

the documents, meaning that the level of semantic similarity between documents is proportional 

to the closeness of the documents position in the 2- dimensional grid. This topological preserving 

property distinguishes this approach from K-Means and enables the use of distance measures 

based on the probability distribution over a 2-dimensional region, which is a measure that 

considers the topological properties in a 2-dimensional space.   

Figure 16 shows the clustering of a dataset of text poems where the color represents the author. 

Each poem is associated with a cell in the 2 dimensional grid, and is possible to see that poems 

from the same author, possibly with similar words and semantics, are closer in the 2-dimensional 

space. 
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Figure 16 – Self-Organizing Map of Poems, adapted from [80] 
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3.1.6 From Document Clusters to Word Embeddings 

At this point we have all the documents divided into similar groups. Based on distributional 

concepts theory, that considers that a correlation exists between words distribution and words 

meaning (similar words tend to appear next to each other), we assume that after documents are 

clustered into similar groups we are in conditions to derive a first raw word vector representation 

that encapsulates the concepts of the vector space model.  

Inspired by semantic folding theory methodology for deriving binary sparse distributed word 

representations from clusters of document vectors, we developed an algorithm capable of 

producing a first word vector raw representation.  

The dimensionality of the word vector representation is the same as the number of clusters n 

obtained in the previous clustering step. In the studied clustering methods this value is a 

predefined entry variable for the cluster algorithm. If n clusters were defined the word vector space 

would be in Rn. Assuming that the documents were clustered in k clusters, the pseudo algorithm 

for generating the vector representation of word w is as follows: 

1. Identify all documents where the w is present; 

2. Create an all zeros base vector (V0) representation of dimensionality k; 

3. For each document d identified in step 1: 

a. Calculate the number of occurrences of w in d; 

b. Find the cluster kn closer in Euclidean distance to d; 

c. Increment V0 dimension value corresponding to the cluster position by the value 

obtained in step 3a; 

The described algorithm creates a k dimensional word vector representation that depending on 

the number of predefined cluster will be more or less sparse. For the same set of documents, 

increasing the number of clusters will generate sparser vectors, as the documents in which that 

word appears will be clustered in a higher dimensionality space.  

3.1.7 Binary Sparse Vectors  

Our initial goal is to represent words as binary and sparse vector representations in the vector 

space. Two factors have direct influence in the level of sparseness of the raw word vector: the 

first is the number of clusters defined in the document clustering phase and the second is the 
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number of occurrences of each word across all documents. As the level of sparseness in the 

vector can dramatically influence the experiment results, we assess the influence of this two 

variables in the quality of the sparse embeddings and try to reach the optimum value for them. 

The results obtained for similarity and analogy tasks, while varying these two variables are 

reported in the “Experiments and Results” section. 

The raw vector representation obtained until this phase of the process is composed by a vector 

of integer values where each vector dimension value equals the sum of occurrences of a word in 

all documents grouped in a given cluster, considering that the number of clusters equals the 

dimensionality of the raw word vector. 

For transforming this raw representation into a binary sparse representation we implemented an 

algorithm that takes as inputs the raw vector representation and the desired level of sparseness. 

The algorithm is as follows: 

1. Considering vector space dimensionality n and percentage of sparseness s, obtain the 

maximum number of dimensions with 1 values:  𝑆 =  (𝑛 .  𝑠); 

2. Compute the histogram of the input vector representation; 

3. Starting from the histogram bin with the higher range of values, calculate the  histogram 

bins whose accumulated number of elements, do not exceed the assigned sparseness 

S; 

4. Create a new vector with the same dimensionality of the input vector and all dimension 

values equal to 0; assign number 1 to all vector dimensions whose values are within the 

bins found in 3. 

  



33 

 

3.2 Implementation 

The motivation of this section is to expose the implementation details of the proposed 

methodology. Supported in the conceptual model described above we propose a methodology 

for deriving word embeddings in an unsupervised way. All aspects concerning the practical 

implementation are explained in order to demonstrate feasibility, assessment and suitability for 

the intended purpose. 

Given the proposed model, an important effort of our work was to optimize as many input variables 

as possible, in order to obtain good results. Our approach was to understand how each input 

model variable impacts the quality of the resulting word embeddings. Hence, throughout this 

chapter we assess the influence of input variables such as the size of corpus data, the type of 

word tokens, the vectorization algorithms, the cluster algorithms and the level of sparseness in 

the word vector representations. 

We defined an assessment methodology that can be described as follows: 

• For each assessed input variable: 

o Experiment several values between a given predefined range; 

o Maintain unchanged all other input variables, where each value is the mean of 

the given predefined range (except for corpus size where the lower limit range 

of 2 Wikipedia dump files were used). 

Table 1 shows the summary of all the performed assessments, while each one of these are 

discussed in the sections below. 

Table 1 – Quality assesements experiments 

Variable Range Fixed value 

Minimum document length 100; 200; 300; 400;  500 300 

Number of Wikipedia dump files  2 ,3 ,4 ,5 2 

Type of tokens STEMM; WORDS WORDS 

Number of tokens in TF-IDF 1000, 3000, 5000, 7000, 9000 5000 

Dimensionality after SVD 100, 200, 300, 400, 500, 600, 700 400 

Clustering algorithm KMEANS, SOM KMEANS 

Number of clusters 49, 100, 625, 4096, 16384 625 

Vector Sparsity 0.01, 0.02, 0.03, 0.04 0.02 

 

Our final goal is to produce sparse word embeddings with good performance across a variety of 

tasks, however for this kind of assessment we only tested against a small word similarity dataset, 



34 

 

namely RG-652 [66]. RG-65 dataset, besides the fact that it has been used extensively by the 

research community, is a small dataset composed of only 65 pairs of words, which is a great 

advantage as it allows expedite evaluation of word embeddings. For this reason we used this 

similarity dataset as a quality indicator, and assumed that the word embeddings tested against 

this specific task and dataset could have similar performances in other NLP tasks.  

Thus, all variable assessments described in the following sections use, as quality indicator score, 

the Spearman correlation between cosine similarity of our derived word vector representations 

and the human labeled similarity of word pairs, considering RG-65 dataset. 

3.2.1 Corpus 

A large corpus or body of texts is the building block for the unsupervised generation of word 

embeddings. In this work we used Wikipedia as the source of our corpus. As our evaluation 

methodology considers generic benchmark datasets, in the sense that they are composed by 

words not belonging to a specific domain, we chose a generic corpus as well. Another important 

aspects for selecting Wikipedia were dimension and ease of obtaining the data.  

The corpus was downloaded using https://dumps.wikimedia.org/enwiki/, specifically the snapshot 

copy of the English Wikipedia for January 2018. This Wikipedia snapshot size is about 14 GB, 

comprising 54 compressed xml dump files.  

Next we transformed the information present in the Wikipedia compressed dump files from xml to 

json format. The result is a series of files, each containing a list of records in json format. Each 

json record is relative to one Wikipedia article and contains the following keys: id, url, title and 

text. An example of such a json record is: 

“{"id": "239448", "url": "https://en.wikipedia.org/wiki?curid=239448", "title": "Eulipotyphla", "text": 

"Eulipotyphla\n\nEulipotyphla (\"truly fat and blind\") is an order of mammals suggested by 

molecular methods of phylogenetic reconstruction, and includes the laurasiatherian members of 

the now-invalid polyphyletic order Lipotyphla, but not the afrotherian members (tenrecs and 

golden moles, now in their own order Afrosoricida). Lipotyphla in turn had been derived by 

removing a number of groups from Insectivora, the previously used wastebasket taxon.\n\nThus, 

Eulipotyphla comprises the hedgehogs and gymnures (family Erinaceidae, formerly also the order 

Erinaceomorpha), solenodons (family Solenodontidae), the desmans, moles, and shrew-like 

moles (family Talpidae) and true shrews (family Soricidae). True shrews, talpids and solenodons 

were formerly grouped in the clade Soricomorpha; however, Soricomorpha has been found to be 

                                                      

2 https://aclweb.org/aclwiki/RG-65_Test_Collection_(State_of_the_art) 



35 

 

paraphyletic, since erinaceids are the sister group of shrews.\n\nFamily-level cladogram of extant 

eulipotyphlan relationships, following Roca et al. and Brace et al.:\n"}” 

The raw text used in our work is the part under the “text” json key and a simple comparison 

between this data and the actual Wikipedia page data shows that we are only considering text 

present in complete and regular sentences, meaning we are not considering text present in the 

Wikipedia page in the form of text structures like lists, sub-list, image captions or references. As 

we want to capture the meaning of words in a given sentence or group of sentences, the fact that 

these kind of text structures are not taken into account benefits our intent. 

Another adopted definition in our work was the concept of document and the strategy to switch 

from Wikipedia Corpus to individual documents. We considered a document a peace of text 

limited by two or more line breaks. Considering the article above it will result in three individual 

documents.  

According to Wikipedia official statistics3, as of 12 October 2018, there are 5 730 629 articles in 

the English Wikipedia, with over 3.6 billion words (14.1 GB in compressed form). Given the large 

volume of data, our approach was to process and test our methodology with several and 

increasing sizes of corpus data. Simultaneously, this approach allows a better understanding on 

the impact of the corpus size on the final quality of the word embeddings, as one of the defined 

objectives of this work is to produce good quality embeddings with less training data. 

The first assessment for optimizing the performance of the proposed model targeted the size of 

the corpus used as input. A priori the amount of text necessary for capturing word meanings 

should be a crucial factor in the outcome of our model, thereafter we assessed the influence of 

the number of Wikipedia page articles on the quality of the vector representations. Table 2 shows 

the number of Wikipedia file dumps, the cumulative number of Wikipedia articles and the number 

of words used for assessing the effect of corpus size in the quality of the embeddings. Last column 

indicates the number of words effectively supplied to our model, as pre-processing substantially 

reduces the total number of words, by removing stop words and other non-informative tokens. 

 

 

 

 

 

 

 

 

                                                      

3 https://en.wikipedia.org/wiki/Wikipedia:Statistics 
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Table 2 – Wikipedia dump files used in assessment methodology 

Number of Wikipedia  

file dumps 

Number of Wikipedia 

articles 

Number of words in 

source articles  

Number of words 

after pre-

processing 

2 56 916 127 946 312 33 688 669 

3 122 466 197 004 766 54 256 685 

4 171 600 255 799 658 76 309 169 

5 236 631 317 690 816 99 030 129 

 

As expected Figure 17 depicts an increase in the quality indicator score for both clustering 

algorithms. As the number of Wikipedia articles increase, so the frequency of any word in the 

corpus increases, which enhances the proposed model, as it considers more semantic contexts 

(documents) for defining the word vector representation. 

 

Figure 17 - Quality indicator score for increasing number of Wikipedia dump files 

One of the objectives of this work is to produce word vector representations with less training 

material, with comparable performance in natural language processing intrinsic tasks. Hence, our 

implementation tries to encounter a good balance between corpus size and quality of the resulting 

representations.   

Another potentially important variable in the proposed model is document length, in terms of 

number of words present in each document, as it directly influences vector representation and 

document clustering algorithms.  

Considering the word similarity score for RG-65 dataset as an indicator of word embedding 

quality, Figure 18 shows the relation between this indicator with different lower limit document 

lengths (from 100 to 700 characters). It is possible to observe a decrease in the quality indicator 

with the increase of minimum document length. Considering all documents with more than 200 
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characters yield the best results with both K-Means and SOM cluster algorithms. This analysis 

should be considered with caution, as our test assessments considers a very limited size of 

Wikipedia articles (56 916), and if we further reduce this small corpus by considering only 

documents above 600 or 700 characters we end up with a very small corpus that should be 

insufficient for deriving good word embeddings.  

 

Figure 18 – Quality indicator score for increasing document lengths 

3.2.2 Pre-processing 

The intent of the preprocessing step is to achieve clean and normalized documents able to be 

transformed in a N dimensional vector representation. We compared two distinct document vector 

representations, resulting from different pre-processing methods.  

The first approach considers all distinct words as they appear in the raw text, while the second 

includes a normalization step and takes into consideration only the stemming form of the words. 

Stemming is the process of reducing a word to his stem form, transforming several lexemes with 

the same root to only one token. For instance, the words “work, works, working, worked” will be 

represented by the same token “work”. 

In order to obtain the two distinct document versions, different pre-processing steps were applied. 

Documents composed of raw word tokens results from document cleaning only, while documents 

composed of word stem tokens results from document cleaning followed by document 

normalization, as is described: 

1. Cleaning: 

a. Removal of all unmeaningful tokens: stop words, punctuation and numeric 

tokens.  
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2. Normalization: 

a. Obtaining the stem form of each word (e.g. worked -> work; bigger -> big) 

Given the distinct nature of the two document representations we assessed which one could 

obtain better results. Therefore, following our input variable assessment methodology, we 

measured our word embedding quality indicator while varying the type of document tokens: word 

tokens and stem tokens. The results of this assessment are represented in Figure 19, indicating 

better results when stem tokens are used, in accordance with the assumption that word stems 

improve document representation in vectorization step. 

 

Figure 19 - Quality indicator score for different document tokens versions 

At the final of this step, two distinct document versions containing two different types of tokens 

are ready for being transformed into document-term sparse matrices. 

3.2.3 Vectorization 

Vectorization allows the representation of each pre-processed document in a N dimensional 

space, so that it can be further processed by computing algorithms. As previously stated, our 

methodology involves three mathematical processing steps: calculate the frequencies, transform 

the raw frequency counts and reduce the dimensionality of the vector representations.  

The first two steps were implemented by using TF-IDF vectorizer algorithm, which in practice 

applies a simple word count vectorizer followed by a transformation based on TF-IDF weighting. 

This weighting method allows more distinctive words (less common words) to express a higher 

value in the resulting document term matrix.  

Recalling the previous step, two different versions of each document were presented to TF-IDF 

algorithm: documents with cleaned raw words and documents with clean word stems. 
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By default the algorithm yields a document term matrix (n x m) where typically both n and m are 

very large numbers. As all word tokens (raw word or stem word) are considered, each document 

will be represented by a vector of dimensionality equal to the number of distinct tokens present in 

the corpus. Working with very large matrices where the vector representations for documents and 

words have very large dimensionality is not practical for operational purposes, as most algorithms 

needs to load matrix data in memory.  

In order to reduce the number of dimensions for document vectors representations we first set 

the maximum number of features (tokens) considered for building the vocabulary in the TF-IDF 

vectorizer algorithm. If specified, this parameter defines the number of tokens considered for 

document representation as the top tokens ordered by term frequency across the corpus. Another 

approach is to set another pair of input parameters to the TF-IDF vectorizer algorithm that sets 

the percentage of ignored tokens above and below a defined threshold in terms of frequency (e.g. 

neglect all tokens present in more than 80% of documents and in less than 2% of documents). In 

this way it is possible to eliminate simultaneously rare and very common words. 

We applied our assessing methodology in order to understand the effect of the number of 

considered features on the quality of the resulting embeddings. Figure 20 shows the results, 

where we varied the number of features (and consequently the dimensionality of the document 

representation) between 1000 and 9000 and registered our embedding quality indicator. As 

expected, the results shows a tendency for better results with higher number of features. The 

document vector representation benefits when more features (tokens) are represented. At the 

limit, if we have considered all distinct tokens/features present in the corpus we would have 

obtained a document vector  representation with dimensionality equal to the vocabulary size (in 

the order of hundreds of thousands). In this case, the document representation would be 

impractical to work in view of computing memory constraints. Our approach was to select a 

reasonable number of features considering these two competing variables: dimensionality and 

reliable document vector representation. 

 

Figure 20 - Quality indicator score for different document vector dimensionalities 
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Following TF-IDF vectorization we further applied dimensionality reduction to the document vector 

representations, namely Singular Value Decomposition (SVD). Basically, it allows to represent a 

dataset using fewer dimensions by finding the most important dimensions of the data. In theory, 

finding the latent dimensions can benefit the document vector representation, as by encoding 

some information about other words (covariant dimensions) present in the same document it 

considers not only a count based model but a sense of the accompanying words in the document. 

It is important to note that, at this phase, applying SVD to our document term matrix is possible 

in computational terms because we considered a document vector representation with a limited 

dimensionality representation, otherwise it would be unfeasible considering computing memory 

and time constraints. Further reducing the document dimensionality allows for considerable 

improvements in clustering algorithm performance in following step of the methodology.  

To understand the effect of singular value decomposition components on the quality indicator 

score, we varied this model parameter between 100 and 700 and registered the results present 

in Figure 21. The effect of different SVD components on quality score is not conclusive, however 

a value close to 400 seems to benefit the quality of the word representation on both clustering 

algorithms.    

 

Figure 21 - Quality indicator score for different SVD components 

3.2.4 Clustering 

A crucial step on our methodology is being able to cluster the vector document representations 

in a way that semantic similar documents are clustered together. The clustering documents 

codebook, in which each document is assigned a specific cluster, will serve as basis for our first 

sparse vector representation, as will be detailed in the next section. 
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Considering that our document vectors are obtained via algorithms that allow dimensionality 

reduction, namely TF-IDF followed by SVD, the clustering algorithm is able to efficiently process 

a large number of document representations. Given the potential very large number of documents 

we needed to cluster, the clustering algorithms evaluated in this work should be efficient regarding 

memory and computer processing constraints. Another important criteria for cluster algorithm 

selection were the properties of the resulting clusters. Regarding this particular aspect, selected 

algorithms produce distinct cluster representation, as with K-Means clusters is not possible to 

establish any topological or closeness relation between clusters, whereas  Self-Organizing maps 

produces clusters that have topological relations, meaning that documents assigned to clusters 

closer in the 2-dimensional SOM grid are more similar than documents assigned to clusters far 

apart. 

Clustering algorithms are unsupervised technics that need to know, in advance, the number of 

clusters in which the samples will be organized. This input parameter is determinant for the final 

outcome of our model and will define the dimensionality of our word embeddings. As will be 

explained in the next section, a very large number of clusters will produce word embeddings with 

a very high dimensionality, and vice versa. As our model proposes to use binary sparse vector 

representations, the well-known disadvantages of working with high dimensionality vectors can 

be mitigated by using compressed sparse row matrices (CSR). This type of data structure allows 

efficient arithmetic operations and vector products, besides the important fact that serializing CSR 

to disk results in orders of magnitude lower file sizes. 

The assessing methodology of the number of predefined clusters is represented in Figure 22. A 

different behavior is observed for K-Means and SOM clustering algorithms; SOM algorithm 

exhibits a more stable response to changing number of clusters, whereas K-Means shows a 

bigger variation on the quality indicator for different number of clusters. Less than 10 000 clusters 

seem to benefit quality when using K-Means algorithm, whereas for SOM when using a number 

of clusters around 15 000 better results are obtained.  

 

Figure 22 - Quality indicator score for different predefined clusters 
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3.2.5 Raw Word Vectors 

At this phase of our work we are able to produce the first word vector representation. The output 

of the previous step is a clustering codebook where each pre-processed document is assigned 

to a specific cluster, accordingly to a given clustering algorithm. In other words, all the documents 

are distributed across a given number of clusters. As will be explained, the number of clusters 

defines the dimensionality of our word embeddings. 

To shift from document clusters to word representations, firstly we implemented an algorithm that, 

for each word in the vocabulary, computes: 

1. All the documents where that word occurs; 

2. For each document identified in 1, identify the assigned cluster.  

With this information we produced the word vector representation considering each cluster 

position as a single dimension of the word vector, where the value of each dimension is obtained 

counting the number of occurrences that word occurs in the documents assigned to that specific 

dimension/cluster. Figure 23 depicts the algorithm used for obtaining the word vector 

representations from document clusters. It shows how the word “apple” appearing in 4 hypothetic 

documents is transformed in a vector representation in space R4. In this example, the final vector 

for word apple would be: 𝑣⃗ = [2,0,1,1]. 

 

Figure 23 – From clusters to word vector representations  

In order to implement the described method we calculated a large dictionary where for each key, 

word token in this case, we have a list of all document indexes and respective number of 

occurrences of that key in each document. An example for the word “car”, of the truncated 

dictionary representation would be: 

car: [{'idx': 7, 'counts': 2}, {'idx': 91, 'counts': 1}, {'idx': 531, 'counts': 1}, {'idx': 680, 'counts': 1}, {'idx': 

1075, 'counts': 1}, {'idx': 2158, 'counts': 1}, {'idx': 2622, 'counts': 1}, {'idx': 2868, 'counts': 1}, {'idx': 

3100, 'counts': 3}, {'idx': 3148, 'counts': 1}, {'idx': 3326, 'counts': 1}, {'idx': 3432, 'counts': 2}, {'idx': 

4197, 'counts': 1}, {'idx': 4812, 'counts': 1}, {'idx': 5083, 'counts': 2}, {'idx': 5134, 'counts': 1}, {'idx': 
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5800, 'counts': 1}, {'idx': 5817, 'counts': 1}, {'idx': 5961, 'counts': 1}, {'idx': 6020, 'counts': 1}, {'idx': 

6026, 'counts': 1}, {'idx': 6040, 'counts': 1}, {'idx': 6164, 'counts': 1}, {'idx': 6287, 'counts': 1}, {'idx': 

6574, 'counts': 1}, {'idx': 6742, 'counts' … 

, where “idx” represents the index/reference of a given document. 

This constitutes the database where for every word present in the corpus the documents and 

number of occurrences in each document, where the word is present, are given. As the size of 

the used Corpus grows, this database can easily grow to values that are difficult to manage, 

especially if all data needs to be serialized, deserialized and finally loaded into memory. As an 

example, a database dictionary of only five Wikipedia dump files, equivalent to about 8% of all 

Wikipedia, has a python pickle4 serialized file size of 1.8 GB. For increasing performance, we 

divided the database file in several python pickle serialized files. Before dictionary database 

creation, another auxiliary data structure was produced in order to facilitate the process, 

essentially a list with the individual counts of every word for each document. An example for 

document with index 200 is shown: 

Counter({'idx': 200, 'the': 14, 'and': 2, 'routes': 2, 'century': 2, 'with': 2, 'trade': 2, 'emergence': 1, 

'key': 1, 'nile': 1, 'end': 1, 'these': 1, 'inhabitants': 1, 'west': 1, 'africa': 1, 'portions': 1, 'were': 1, 

'nigeria': 1, 'remained': 1, 'its': 1, 'influence': 1, 'communities': 1, 'organized': 1, 'after': 1, 'scattered': 

1, 'western': 1, 'sudan': 1, 'sahara': 1, 'communication': 1, 'linked': 1, 'way': 1, 'earlier': 1, 

'encroaching': 1, 'that': 1, 'millennium': 1, 'made': 1, 'adjusting': 1, 'date': 1, 'trans': 1, 'third': 1, 

'began': 1, 'widely': 1, 'time': 1, 'upper': 1, 'sahelian': 1, 'when': 1, 'south': 1, 'desert': 1, 

'mediterranean': 1, 'avenues': 1, 'carthage': 1, 'much': 1, 'until': 1, 'since': 1, 'open': 1, 'prehistoric': 

1, 'saharan': 1, 'establishing': 1, 'from': 1, 'islam': 1, 'desiccation': 1, 'same': 1, 'into': 1, 'cultural': 

1}) 

3.2.6 Sparse Binary Vectors 

The initial goal is to produce a sparse binary word vectors representations. This section explains 

the transformation from the word vector obtained in the previous step to a sparse binary vector 

representation.  

The word vector obtained previously is of dimensionality N, equal to the number of predefined 

clusters in which all the pre-processed documents were clustered. The value of each dimension 

is obtained by counting the number of occurrences a specific token occurs in all documents 

assigned to that specific dimension/cluster. Figure 24 depicts an example of a word vector 

representation with 625 dimensions. 

                                                      

4 https://docs.python.org/3/library/pickle.html 
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Figure 24 – Raw word vector representation with dimensionality 625 

A python algorithm was developed to transform this vector representation into a sparse binary 

representation composed only by values 0 and 1, where the number of dimensions with 1’s values 

is a small fraction of the vector dimensionality. The transformation of the vector shown in Figure 

24 into a sparse binary vector representation is presented in Figure 25. As can be seen by 

comparing the two pictures only the higher values in the raw vector representation V  in R625 

produced 1 values in the sparse binary representation (e.g. V6 = 796, V620 = 553). 

 

Figure 25 –Sparse binary word vector representation with 625 dimensions 

The lower the percentage of 1 values in the binary vector the higher is the level of sparsity. The 

level of vector sparsity has a direct impact on the quality of the word embedding, thus we 

examined how the quality indicator is influenced by this parameter. Figure 26 suggests that the 

quality of word embeddings increases when that level of vector sparsity increases. The best 

results are obtained within the range of 98% to 99% of sparsity level, which means that only 1 to 

2% of vector dimensions have values equal to 1.   
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Figure 26 - Quality indicator score for different levels of vector sparsity 

3.2.7 Word Embeddings Generation 

The final step generates a reasonable number of word embeddings, one for each word present 

in the training corpus vocabulary. We built 100 000 word embeddings for the most frequents 

words in the corpus, reducing the probability of out of vocabulary words (OOV) in the following 

evaluation phase.  

3.2.8 Instantiation 

Considering the implementation steps described above and the performed assessments for 

optimizing the model parameters we proceed with the instantiation of our methodology. Two 

different instantiations, resulting from parameter optimization and knowledge from our 

assessment methodology were considered. Table 3 shows the details of the generated word 

embeddings, identified henceforward by the following designation: We-KM-8464, reflecting the K-

Means clustering algorithm used in the process and 8464 as the final vector dimensionality. 

Important to note that Self-Organizing Map clustering approach is absent for our chosen final 

instantiations. The reason lies in the experiments performed during our parameter assessment 

and optimization. We found that K-Means clustering achieves better or similar results than SOM 

for 10 000 or less number of clusters, with one considerable advantage, namely performance. In 

fact, the labels property of the K-Means algorithm implementation allows the expedite retrieval of 

the clusters assigned to all documents, when performing the raw word vectors generation. With 
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K-Means, all the clusters assignments for the documents are stored in a dictionary-like structure 

at the same time the clustering is performed, whereas SOM algorithm does not store this 

information and needs to find each assigned cluster to every document after the clustering 

process, on a computational time expensive process. 

Table 3 –Word Embeddings variations 

 

The word embeddings exhibits the properties presented in Table 4. The reduced file size of the 

embeddings, when compared with state of the art embeddings (Table 5), is due to the sparse 

binary vector structure of the embedding. Sparse binary vectors only need to store the position of 

the vector dimensions where the value is 1 (all other dimensions will be 0), strongly reducing the 

amount of memory needed for storing the vector information. In this work we used scipy sparse 

csr_matrix5 class to store the vector information. 

The training corpus used for deriving our word embeddings is composed of 100 million words, 

much less that the training corpus used for deriving the state of the art embeddings, as we 

describe later on this work. In fact, this value is 2.7% the number of words used for training publicly 

available FastText word embeddings, which uses the all Wikipedia composed of 3.6 billion words. 

Using such a small training corpus is aligned with our research objectives, as we want to obtain 

good quality word embeddings with considerable less training material.  

 

Table 4 – Generated word embeddings properties 

Word 

Embeddings 

Vector 

Dimension 
Vocabulary 

Number words 

(millions) 

Corpus Size 

we-km-8464 8464 100 000 100 Wikipedia 10 MB 

                                                      

5 https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html 

Parameter name Parameter value Word Embedding 

Minimum Document length 300 

We-KM-8464 

Number Wikipedia articles dumps  5 

Type of tokens Raw words 

Number of tokens in TF-IDF 10000 

Dimensionality in SVD 200 

Clustering Algorithm K-Means 

Number of clusters 8464 

Sparsity 1% 
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Considering the described methodology, Figure 27 summarizes on a single picture the 

implemented artifact. It considers a series of sequential steps that constitute a data pipeline, 

assuring the unsupervised transformation of text data from Wikipedia dump files to word 

embeddings. In practice it can be applied to other corpus, such as twitter data, or other domain 

specific corpus. 

 

Figure 27 – Data pipeline implementation  

In the scope of this work, sparse-nlp6 library was developed and made publicly available as the 

result of the implementation effort done in the scope of this research work. The library is written 

in python version 3.6 programming language and is built on top of several other python libraries. 

The main modules and dependencies are: 

1. Wikipedia dump files processing: wikiextractor7 

2. Data pre-processing: pandas8, nltk9 , regular expressions 

3. Document vectorization: scikit-learn10 

4. Document clustering: scikit-learn, minisom11 [80] 

                                                      

6 https://github.com/avsilva/sparse-nlp 

7 http://attardi.github.io/wikiextractor/ 

8 https://pandas.pydata.org/ 

9 https://www.nltk.org/ 

10 http://scikit-learn.org/ 

11 https://github.com/JustGlowing/minisom 
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5. Word embeddings formation: numpy12, nltk 

6. Evaluation: word-embeddings-benchmarks13, scipy14 

The evaluation methodology, along with the software libraries used in that particular phase of this 

work is described in the next chapter.   

                                                      

12 http://www.numpy.org/ 

13 https://github.com/kudkudak/word-embeddings-benchmarks/wiki 

14 https://www.scipy.org/ 
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4 Demonstration and Evaluation 

The evaluation applied in this work is based on the methodology proposed by Stanisław 

Jastrzebski et al. [36] in their work “How to evaluate word embeddings? On importance of data 

efficiency and simple supervised tasks”.  

The main criteria for selecting this evaluation methodology are expressed in four items present in 

the referred benchmark framework:  

• Comparison with a considerable range of state of the art word embeddings, considering 

representatives of several architectures (e.g. deep learning, shallow neural networks)    

• Evaluation of simple NLP intrinsic unsupervised tasks focused on word embeddings (e.g. 

word analogy, word similarity, word categorization); 

• Evaluation on different dataset sizes; 

• Possibility to reproduce and verify all the benchmark evaluation results. 

The availability of all benchmark evaluation code, allowing the expedite verification, in situ, of all 

evaluation results, including the download of state of the art word embeddings and benchmark 

datasets, was a strong factor that favor the selection of this methodology. 

Hence, from the base methodology, referred above, a subset of evaluation items were selected 

following the objectives proposed for this work.  

4.1 Word Embeddings 

The adapted evaluation methodology compares the sparse distributed vector representations 

derived by this work with 20 state of the art word embeddings. Table 5 describes their main 

properties considering vector dimension, number of words present in the derived embedding 

(vocabulary), number of tokens in the training corpus and corpus. 
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Table 5 – Word Embeddings properties 

Word 

Embeddings 

Vector 

Dimension 

Number tokens 

(billions) 
Corpus Size 

GloVe-6B-300D 300 

6 

Wikipedia 

+ 

GigaWord 

 

989 MB 

GloVe-6B-200D 200 661 MB 

GloVe-6B-100D 100 331 MB 

GloVe-6B-50D 50 163 MB 

GloVe-42B-300D 300 42 Common Crawl 4.67 GB 

GloVe-27B-200 200 

27 Twitter 

1.91 GB 

GloVe-27B-100 100 974 MB 

GloVe-27B-50 50 487 MB 

GloVe-27B-25 25 245 MB 

FastText 300 3.6 Wikipedia 6.44 GB 

LexVec 300 58 Common Crawl 2.1 GB 

SG Google News 

(word2vec) 

300 100 Google News 3.64 GB 

NMT EN->FR15 -- -- -- -- 

NMT EN->DE16 -- -- -- -- 

HDC 300D 300 

3.6 Wikipedia 

1.04 GB 

HDC 100D 100 363 MB 

HDC 50D 50 180 MB 

PDC 300D 300 1.03 GB 

PDC 100D 100 353 MB 

PDC 50D 50 175 MB 

 

GloVe embeddings [60] combine the advantages of count-based matrix factorization and window 

predict neural network methods and are represented by nine versions of different dimensions and 

training corpus. 

Word2Vec [53] learns word embeddings by training a shallow neural network to predict 

neighboring words, without considering a computationally expensive hidden layer and allowing 

the language model to take additional context into account. 

FastText [9] is an extension of Word2Vec that considers sub word information for deriving word 

vectors. Based on the skip gram model, the vector representations are associated to each 

character n-grams and the words vector representations are the sum of these representations. 

                                                      

15 It was not possible to obtain the word embeddings and verify their properties 

16 It was not possible to obtain the word embeddings and verify their properties 
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LexVec [70] is a method for factorizing PPMI matrices that uses skip-gram with negative sampling 

and stochastic gradient descent to minimize a loss function that weights frequent co-occurrences 

heavily but also takes into account negative co-occurrence. 

Neural Translation Machine (NMT) [31] learns word embeddings by training a model, based on 

recurrent neural networks (RNN) that aims to translate a sequence of words from one language 

to another. 

Hierarchical Document Context (HDC) and Parallel Document Context (PDC) [78] methods obtain 

word embeddings by jointly modeling syntagmatic and paradigmatic relations, augmenting the 

representation of words due to the mutual enhancement between these two types of relations. 

PDC is an extension of CBOW model whereas HDC explores the skip-gram model. 

4.2 Evaluation Tasks and Datasets 

Regarding NLP tasks, Schnabel and Labutov [72] divides the evaluation methods of word 

embeddings into two groups: extrinsic evaluation methods (e.g. part-of-speech tagging) and 

intrinsic evaluation methods that directly test embeddings for preserving syntactic of semantic 

relations, like word similarity (WS) or word analogy (WA).  

The evaluation methodology applied in this work targets three intrinsic evaluation tasks: 

• Word Similarity - given a pair of words estimate the similarity score between 

them; 

• Word Analogy - given one pair of words with a semantic relation and a third word, 

predict the fourth word, such as the semantic relation between third and fourth 

words is equivalent to the semantic relation between first and second words; 

• Word Categorization - given a dataset of words group similar semantic words. 

For each kind of NLP intrinsic task used for word embeddings evaluation, one or more publicly 

available benchmark datasets were used.  

Analogy datasets are composed of quadruples (two pairs of words in a specific relation, e.g. king 

- queen, man - woman). Similarity datasets are composed of pairs of words that are assigned a 

rank similarity value by human annotators. Categorization datasets are composed of several text 

files, where the content of each file is a set of words related to the same subject or category (e.g. 

trees, animals, cities, crimes). 

All the datasets used in the evaluation methodology, considering the three different types of NLP 

task are present in Table 6. 
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Table 6 – Datasets for word vector evaluation 

Dataset NLP Task 

MEN 

Word Similarity 

MTurk 

RG65 

RW 

SimLex999 

WS353 

WS353R 

WS353S 

Google 
Word Analogy 

MSR 

AP 

Word categorization 

BLESS 

Battig 

ESSLI_1a 

ESSLI_2b 

ESSLI_2c 

 

These datasets define a benchmark baseline suitable for comparing results obtained by the 

proposed methodology. Another benefit of this approach is that it allows the evaluation of word 

similarity and word analogy tasks using an unsupervised approach, where target word will be 

predicted by a simple distance measure calculation (e.g. cosine similarity). 

4.2.1 Similarity 

The MEN Test Collection [10] contains two sets of English word pairs (one for training and one 

for testing) together with human-assigned similarity judgments, obtained by crowdsourcing using 

Amazon Mechanical Turk via the CrowdFlower interface. The collection can be used to train 

and/or test computer algorithms implementing semantic similarity and relatedness measures. 

The MTurk dataset [62] is composed by Human labeled examples of word semantic relatedness 

that considers patterns of word usage over time. Each pair of words was evaluated by 10 people 

on a scale of 1-5. 
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RG-65 or Rubenstein & Goodenough dataset [66] is composed by 65 word pairs where similarity 

of each pair is scored according to a scale from 0 to 4. The similarity values in the dataset are the 

means of judgments made by 51 subjects. 

RW or rare words dataset [49] is composed of 2034 word pairs that are relatively rare where 

similarity score of each pair is given by humans. The dataset construction methodology first 

selects a list of rare words, then for each of the rare words, finds another word (not necessarily 

rare) to form a pair and finally collect human judgments on how similar each pair is. 

SimLex999 [30] is a gold standard resource for the evaluation of models that learn the meaning 

of words and concepts. It provides a way of measuring how well models capture similarity, rather 

than relatedness or association. Experiments made by the authors of this dataset indicate that 

this is a challenging dataset for language models that infer connections between words from their 

co-occurrence in corpora, which essentially reflects relatedness not similarity. 

WordSim353 (WS353) [23] [1] is a test collection composed by 353 word pairs that can be divided 

in two subsets: WS353S for measuring word similarity and WS353R for measuring relatedness. 

For each word pair a human-assigned similarity score is given.  

4.2.2 Analogy 

Google word analogy dataset [53] tests both semantic and syntactic analogies. It is composed by 

19 544 analogy pairs (8 869 semantic and 10 675 syntactic) corresponding to 14 types of 

relations.  

MSR [55] is composed of 8 000 analogy pairs of words for testing morphological questions in the 

form of "a is to b as c is to", testing:  

• Base/comparative/superlative forms of adjectives; 

• Singular/plural forms of common nouns; 

• Possessive/non-possessive forms of common nouns; 

• Base, past and 3rd person present tense forms of verbs. 

4.2.3 Categorization 

AP dataset [2] is, according to its authors, a balanced dataset with respect to three factors: class 

type, frequency, and ambiguity. It aims to be a balanced dataset as to ambiguity, estimated on 

the basis of the number of senses in WordNet. 
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BLESS dataset [4] includes 200 concrete nouns (100 animate and 100 inanimate nouns) from 

different classes (e.g. tools, clothing, vehicles, animals, etc.) designed for the evaluation of 

distributional semantic models. 

Battig dataset [5] comprises a ranked list of 5 231 words listed in 56 taxonomic categories. People 

were asked to list as many exemplars of a given category in 30 seconds after which time the next 

category name was presented. Examples of taxonomic categories are: bird, color, country, 

disease, fish and fruit. 

ESSLI dataset is divided in three sub-datasets. The ESSLI_2c consists of 45 verbs,    belonging 

to nine semantic classes. The ESSLI_2b is formed by 40 abstract nouns extracted from the MRC 

Psycholinguistic Database and classified into three classes: highly, low and medium abstract 

nouns. The third sub-dataset, ESSLI_1a, consists of 44 concrete nouns, belonging to six semantic 

categories. The goal of the three sub-datasets is to group words into semantic categories. 

 

 

4.3 Evaluation Metrics 

Depending on the type of NLP task being evaluated, one of three different evaluation methods is 

applied.  

For word similarity tasks, cosine similarity is used, where similarity between two vectors is 

calculated by their cosine similarity: 

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =  (cos (𝑣1⃗⃗⃗⃗⃗, 𝑣2⃗⃗⃗⃗⃗))  (4.1) 

 

Then, Spearman correlation between cosine similarity of the word embeddings and human rated 

similarity of word pairs is calculated to score the similarity task. 

In word analogy tasks, an embedding is evaluated for its ability to infer the fourth word out from 

the first three.  3COSADD is the method used for solving these type of word analogies: 

3COSADD =  (𝑎𝑟𝑔 max 𝑣⃗  ∈ 𝑉 𝑐𝑜𝑠 (𝑣 ⃗⃗⃗ ⃗ , 𝑣2⃗⃗ ⃗⃗⃗ −  𝑣1⃗⃗⃗⃗⃗ +  𝑣⃗3)  (4.2) 

For word categorization tasks, purity evaluation measure is used. Briefly, purity assigns each 

cluster to the class which is most frequent in the cluster; then the accuracy of the clustering 

process is calculated by counting the number of correctly assigned samples and dividing by the 

total number of samples. From [51], the equation is shown below  



55 

 

𝑝𝑢𝑟𝑖𝑡𝑦 (𝛺, ∁) =  
1

𝑁
 ∑ max

𝑗
|𝜔𝑘 ∩ 𝑐𝑗|𝑘   (4.3) 

, where 𝛺 =  {𝜔1, 𝜔2, … 𝜔𝑘} is the set of clusters and ∁=  {𝑐1, 𝑐2, … 𝑐𝑗} is the set of classes. A perfect 

clustering has a purity value of 1, and a value close to 0 when clustering is poor. 

4.4 Experiments and Results 

As described, the evaluation methodology considers datasets and word embeddings that are 

publicly available. All the results presented in this work are reproducible by running a python script 

adapted from the public code repository17 provided by Stanisław Jastrzebski. For the three 

evaluation tasks we compared the results obtained by our word embeddings (We-KM-8464) with 

20 state of the art word embeddings. Considering that these 20 word embeddings are obtained 

with a training corpus of several orders of magnitude bigger than the corpus used on our 

methodology, we derived Word2Vec embeddings considering the same training corpus (five 

Wikipedia dump files composed of 100 million words) used for deriving our word embeddings. 

Thus, we obtained 100 dimensions word embeddings trained using gensim18 with skip-gram 

algorithm with negative sampling. Thereafter, in all the evaluation tasks performed, we include 

these word embeddings, identified by Word2vec-100-wiki5. Our results can be better evaluated 

when analyzed with Word2vec-100-wiki5, because both are trained on the same training corpus. 

4.4.1 Word Similarity 

The results for the word similarity evaluation task are presented in Table 7.  

Table 7 – Word Similarity evaluation results 

 MEN MTurk RG65 RW 

SimLex 

999 

WS353 WS353R WS353S 

Average 

results 

PDC dim=300 0.773 0.672 0.790 0.455 0.427 0.721 0.641 0.789 0.659 

FastText 0.763 0.679 0.799 0.479 0.380 0.705 0.655 0.753 0.651 

                                                      

17 https://github.com/kudkudak/word-embeddings-benchmarks 

18 https://radimrehurek.com/gensim/ 
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SG GoogleNews 

(word2vec) 
0.741 0.670 0.761 0.471 0.442 0.700 0.635 0.772 0.649 

HDC dim=300 0.760 0.655 0.806 0.438 0.407 0.677 0.581 0.787 0.639 

PDC dim=100 0.755 0.710 0.774 0.421 0.361 0.690 0.606 0.779 0.637 

LexVec 

which="commoncraw

l-W+C" 

0.809 0.712 0.765 0.478 0.419 0.647 0.571 0.756 0.631 

PDC dim=50 0.720 0.700 0.763 0.390 0.309 0.637 0.543 0.741 0.600 

HDC dim=100 0.738 0.648 0.804 0.388 0.324 0.617 0.523 0.753 0.599 

Word2vec-100-wiki5 0.697 0.669 0.756 0.332 0.340 0.617 0.518 0.737 0.583 

GloVe dim=300 

corpus=common-

crawl-42B 

0.736 0.645 0.817 0.376 0.374 0.553 0.473 0.669 0.580 

GloVe dim=300 

corpus=wiki-6B 
0.737 0.633 0.77 0.359 0.371 0.522 0.446 0.653 0.561 

HDC dim=50 0.708 0.649 0.723 0.361 0.281 0.575 0.472 0.713 0.560 

GloVe dim=200 

corpus=wiki-6B 
0.710 0.620 0.713 0.331 0.340 0.489 0.418 0.615 0.530 

GloVe dim=100 

corpus=wiki-6B 
0.681 0.619 0.676 0.310 0.298 0.451 0.380 0.587 0.500 

We-KM-8464 0.618 0.548 0.638 0.117 0.160 0.578 0.595 0.583 0.480 

NMT which=FR 0.492 0.464 0.590 0.301 0.460 0.488 0.444 0.572 0.476 

NMT which=DE 0.492 0.464 0.590 0.301 0.460 0.488 0.444 0.572 0.476 

GloVe dim=50 

corpus=wiki-6B 
0.652 0.619 0.595 0.285 0.265 0.419 0.348 0.554 0.467 

GloVe dim=200 

corpus=twitter-27B 
0.594 0.555 0.698 0.197 0.130 0.451 0.373 0.59 0.449 

GloVe dim=100 

corpus=twitter-27B 
0.577 0.559 0.677 0.21 0.122 0.442 0.364 0.592 0.443 
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GloVe dim=50 

corpus=twitter-27B 
0.531 0.515 0.574 0.196 0.098 0.392 0.325 0.54 0.396 

GloVe dim=25 

corpus=twitter-27B 
0.444 0.481 0.503 0.173 0.073 0.307 0.235 0.458 0.334 

 

Word embeddings are ordered by the average result considering all similarity datasets, value that 

is shown on the last column of Table 7. Our embeddings present comparable results with state 

of the art word embeddings and occupy the 15º position considering the average results across 

all datasets.  

Comparing with Word2vec-100-wiki5, the obtained results are 10 points below that specific word 

embedding. Even though the results are similar our methodology did not outperform Word2Vec 

algorithm using the same training corpus. Only with WS353R dataset our results outperformed 

Word2vec-100-wiki5. In fact, considering WS353R relatedness dataset only four state of the art 

embeddings achieved better results. 

The worst results were obtained with RW and SimLex999, positioning our word embeddings in 

the bottom of the rank considering these datasets. 

Nevertheless, taking into account our experiments with Word2vec-100-wiki5, and comparing the 

results with word2vec-SG GoogleNews, if state of the art word embeddings were trained with 100 

million words, as done on our work, the rank position of We-KM-8464 would be considerably 

higher. 

4.4.2 Word Analogy 

Word analogy evaluation results are presented in Table 8. 

Table 8 – Word Analogy evaluation results 

 Google MSR 
Average 

Results 

GloVe dim=300 corpus=common-

crawl-42B 
0.750 0.702 0.726 

PDC dim=300 0.748 0.596 0.672 

GloVe dim=300 corpus=wiki-6B 0.718 0.616 0.667 
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LexVec which="commoncrawl-W+C" 0.710 0.601 0.656 

HDC dim=300 0.731 0.564 0.648 

GloVe dim=200 corpus=wiki-6B 0.698 0.596 0.647 

PDC dim=100 0.704 0.543 0.624 

GloVe dim=100 corpus=wiki-6B 0.632 0.551 0.592 

FastText 0.655 0.521 0.588 

HDC dim=100 0.667 0.497 0.582 

SG GoogleNews (word2vec) 0.402 0.712 0.557 

GloVe dim=200 corpus=twitter-27B 0.534 0.503 0.519 

Word2vec-100-wiki5 0.524 0.439 0.481 

PDC dim=50 0.579 0.369 0.474 

HDC dim=50 0.534 0.347 0.441 

GloVe dim=100 corpus=twitter-27B 0.429 0.428 0.429 

GloVe dim=50 corpus=twitter-27B 0.260 0.271 0.409 

NMT which=FR 0.212 0.434 0.323 

NMT which=DE 0.212 0.434 0.323 

GloVe dim=50 corpus=wiki-6B 0.462 0.356 0.266 

We-KM-8464 0.176 0.180 0.178 

GloVe dim=25 corpus=twitter-27B 0.111 0.116 0.114 

 

Word embeddings are ordered by the average result considering all analogy datasets.  The results 

shows that for analogy tasks our methodology does not achieve comparable results, even though 

they are better than GloVe dim=25 embeddings trained on twitter corpus. 

Word2vec-100-wiki5 achieves 0.481 points whereas our embeddings only achieve an average 

result of 0.178. A closer look on the analogy results by category helps to explain the not so good 

performance results. We observe very unbalanced results by category for both Google (Table 9) 

and MSR (Table 10) datasets. For Google dataset, whereas reasonable scores where obtained 
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for categories like capital-common-countries and gram6-nationality-adjective, the majority of the 

classes performed poorly. The same is true for MSR dataset, where we can distinct good results 

for nouns categories and poor results for adjectives and verbs. 

Table 9 – Scores by category for Google analogy dataset 

Analogy Category Score for We-KM-8464 

capital-common-countries 0.227 

capital-world 0.154 

city-in-state 0.074 

currency 0.009 

family 0.138 

gram1-adjective-to-adverb 0.021 

gram2-opposite 0.000 

gram3-comparative 0.180 

gram4-superlative 0.004 

gram5-present-participle 0.167 

gram6-nationality-adjective 0.443 

gram7-past-tense 0.260 

gram8-plural 0.515 

gram9-plural-verbs 0.160 

 

Table 10 - Scores by category for MSR analogy dataset 

Analogy Category Score for We-KM-8464 

Adjective -> Adjective,comparative 0.058 

Adjective -> Adjective,superlative 0.004 

Adjective, comparative -> Adjective 0.072 

Adjective, comparative -> Adjective, superlative 0.018 

Adjective, superlative -> Adjective 0.020 

Adjective, superlative ->Adjective, comparative 0.032 

Noun, singular -> nnpos 0.354 

Noun, singular -> Noun, plural 0.586 

Noun Possessive ending -> Noun, singular 0.422 

Noun, plural -> Noun, singular 0.540 

Verb, base form -> Verb, past tense 0.132 

Verb, base form ->_vbz 0.168 

Verb, past tense -> Verb, base form 0.168 



60 

 

Verb, past tense -> Verb, 3rd person singular present 0.006 

Verb, 3rd person singular presente-> Verb, base form 0.284 

Verb, 3rd person singular presente -> Verb, past tense 0.018 

4.4.3 Word Categorization 

Word categorization evaluation results are presented in Table 11. 

Table 11 – Word Categorization evaluation results 

 AP BLESS Battig 
ESSLI_1

a 

ESSLI_2

b 

ESSLI_2

c 

Average 

Results 

FastText 0.654 0.845 0.438 0.772 0.75 0.666 0.687 

GloVe dim=300 

corpus=wiki-6B 
0.637 0.820 0.41 0.773 0.825 0.644 0.685 

LexVec 

which="commoncrawl-

W+C" 

0.612 0.795 0.438 0.818 0.750 0.667 0.680 

HDC dim=300 0.632 0.815 0.432 0.773 0.750 0.644 0.674 

SG GoogleNews 

(word2vec) 
0.649 0.795 0.406 0.750 0.800 0.644 0.674 

HDC dim=100 0.619 0.825 0.432 0.773 0.750 0.622 0.670 

PDC dim=300 0.639 0.805 0.431 0.773 0.725 0.644 0.670 

GloVe dim=200 

corpus=wiki-6B 
0.634 0.810 0.423 0.773 0.725 0.622 0.665 

GloVe dim=300 

corpus=common-crawl-

42B 

0.622 0.785 0.451 0.795 0.75 0.578 0.664 

GloVe dim=100 

corpus=wiki-6B 
0.644 0.780 0.435 0.705 0.750 0.644 0.660 

PDC dim=100 0.632 0.760 0.431 0.727 0.750 0.622 0.654 
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GloVe dim=50 

corpus=wiki-6B 
0.634 0.725 0.391 0.773 0.750 0.600 0.646 

Word2vec-100-wiki5 0.644 0.710 0.422 0.704 0.775 0.60 0.642 

PDC dim=50 0.617 0.760 0.426 0.682 0.750 0.556 0.632 

HDC dim=50 0.555 0.730 0.429 0.705 0.775 0.578 0.629 

GloVe dim=200 

corpus=twitter-27B 
0.515 0.690 0.326 0.773 0.700 0.578 0.597 

GloVe dim=100 

corpus=twitter-27B 
0.500 0.675 0.315 0.727 0.675 0.60 0.582 

GloVe dim=50 

corpus=twitter-27B 
0.458 0.665 0.308 0.705 0.675 0.511 0.554 

GloVe dim=25 

corpus=twitter-27B 
0.453 0.545 0.267 0.659 0.700 0.489 0.519 

We-KM-8464 0.440 0.550 0.275 0.680 0.525 0.489 0.493 

NMT which=FR 0.420 0.445 0.165 0.568 0.700 0.644 0.490 

NMT which=DE 0.415 0.445 0.165 0.568 0.700 0.622 0.486 

 

Word embeddings in Table 11 are ordered by the average result considering all categorization 

datasets. Our embeddings present comparable results with state of the art word embeddings, 

nevertheless they only achieved better results than NMT approaches, considering the average 

results across all datasets.  

Considering average results, Word2vec-100-wiki5 achieved a score of 0.642 which is 

considerable better than 0.493 achieved by our word embeddings, repeating the results obtained 

for similarity and analogy.  
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5 Conclusions and Future Work 

Our first research question addressed the feasibility of using text clustering techniques and 

concepts brought by semantic folding theory to produce word embeddings. Our work shows that 

our methodology based on document clustering and semantic folding theory achieves 

comparable results in intrinsic Natural Language Processing tasks with state of the art word 

embeddings. The results obtained in similarity and categorization word evaluation tasks are 

comparable with 20 state of the art word embeddings outperforming some of them. Our 

embeddings outperformed eight state of the art word embeddings in word similarity tasks, and 

two word embeddings in categorization tasks. Regarding analogy tasks our methodology does 

not achieve good results for the majority of the analogy categories, even though they outperform 

one state of the art word embedding. Interestingly, we can observe that good results were 

obtained for nouns categories and poor results for adjectives and verbs. 

These results should be analyzed considering that our word embeddings were obtained using 2% 

or less training material than all other embeddings. To address this important factor we compared 

the results with Word2Vec embeddings trained with the same corpus used on our work (100 

million words). Even though Word2Vec performed better, the results are considerable closer to 

the ones achieved by our word embeddings. Thus, we can extrapolate with a reasonable amount 

of confidence that the classification obtained by our approach would be better if we compared 

with the same 20 state of the art word embeddings trained with 100 million words. 

With the above consideration in mind, our second research question addresses the size of the 

training material, as our proposal is to derive acceptable word vector representations with less 

training material. We conclude that our methodology is able to achieve comparable results with 

20 state of the art word embeddings trained with considerable bigger volumes of training material. 

Word vector representations resulting from our methodology are sparse binary vectors in contrast 

with state of the art dense vector representations with dimensionality varying from 25 to 300. Even 

though our word vector representations have 8464 dimensions, they have a much smaller 

memory size. Our word embeddings contains 100 000 word vectors and need 10 MB of 

computing memory, in contrast with hundreds of MB needed to store state of the art dense vector 

representations. 

This work, while trying to provide an alternative methodology to produce word embeddings, 

suggests further research directions for future works. 

One research possibility is the study of other types of clustering algorithms that could improve the 

performance obtained by K-Means or Self-Organizing Map. The success of our methodology 
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strongly depends on an effective way of clustering documents based on their semantic similarity. 

Agglomerative clustering and spectral clustering technics, or algorithms like Birch [83] or 

DBSCAN [22] have been applied to text documents and can be a valid substitute for the clustering 

algorithms used in this work.  

Another research idea is applying other forms of dimensionality reduction techniques to the 

document-term matrix in order to improve the clustering process. A possibility is using T-SNE [50] 

as a method to project all documents to a 2-dimensional space, before applying a clustering 

algorithm. This approach has the advantage of enabling visual inspection of the documents in a 

2 dimensional space. 

Further enhancements can be applied to our methodology if documents are already labeled 

according to their category. In this case, human assignment of documents to a predefined set of 

cluster would improve clustering performance. Even if the number of human assigned labels is 

much less than the number of clusters applied in the methodology, it enables a top down 

agglomerative clustering, where the top clusters are the human assigned labels. 

Another area of research that would extend our work is a methodology for deriving binary sparse 

document representations from our binary sparse word representations embeddings. A simple 

approach would be composing the document vector by adding all word vectors that compose the 

document and applying a transformation to the final vector for keeping the same level of sparsity 

on the resulting document vector. 

The obtained document vector would allow to broaden the range of Natural Language Processing 

tasks that could be evaluated. Supervised text categorization with model fitting using different 

classifiers is an example of such kind of NLP tasks. 

Finally, experimentation with larger sizes of training corpus would allow comparison with state of 

the art word embeddings based on the same premises and assess the performance of our model 

with larger training corpus.    
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