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Abs.ract

Self-assembling robots b ve .. vpotential to undergo autonomous morphological
adaptation. However, due * » the sim} icity in their hardware makeup and their limited
perspective of the environme. * self-¢ sembling robots are often not able to reach their
potential and adapt the - morpho. .es to tasks or environments without external cues
or prior information. ~a thi paper, we present supervised morphogenesis — a control
methodology that ma. - ¢ tf-ass mbling robots truly flexible by enabling aerial robots
to exploit their ele ated p. “t° n and better view of the environment to initiate and
control (hence st ~vise) morphology formation on the ground. We present results of
two case studie’ m wi. © we assess the feasibility of the presented methodology using
real robotic he=7ware. In vhe case studies, we implemented supervised morphogenesis
using two di .erer. aerial platforms and up to six self-assembling autonomous robots.
We furthe: nore juantify the benefits attainable for self-assembling robots through
cooperation wi. aerial robots using simulation-based studies. The research presented
in this » aper is a siy 1ificant step towards realizing the true potential of self-assembling
robots by e ablir ; autonomous morphological adaptation to a priori unknown tasks
and env. ~ 1mer s.

Ke words — Self-assembling robots, heterogeneous multirobot teams, distributed
system . air/grc ind robot teams, robot coordination, modular robots
1 Int.oduction

Selt-..  .ibling robots have the physical features [1, 2, 3, 4] and control algorithms [5, 6,
i, < ""ot enable them to form distinctive collective robot structures (hereafter referred to




as morphologies) by physically connecting to one another. This morpholog’ :al fl xibility
inherent to self-assembling multirobot systems is the prime motivation why rc. ~a chers are
interested in studying such systems. However, existing self-assembling . “ots «. > often
pre-programmed by human operators who precisely define the scale and shape 0. ~orpholo-
gies to be formed (hereafter referred to as target morphologies) pric . to '-~loyment [9]
or rely on specific environmental cues for the robots to infer targ ¢ m' rphologies [10].
This is primarily because self-assembling robots tend to be relativelv sin. e robotic units
that lack the sensory apparatus to characterize the environmen’ with sfficient accuracy
to autonomously find a suitable target morphology for a giver situatioir . Existing self-
assembling robots therefore remain limited in exploiting their mor, “oloe* al flexibility and
fail to realize their full potential.

To overcome these limitations, we propose supervised m« »ph- jene. is —a control method-
ology in which we extend the functionality of a group of self-assemb! ag robots by an aerial
robot to which we delegate decision-making authority. Tha. = selt-assembling robots rely
on aerial robots to act as an “eye-in-the-sky” and to yrovide the zuidance required to form
new morphologies as a function of the task and/cr the ~mvir nment. Many researchers
have considered such air-ground teams [11, 12] as tu. - have the potential to solve tasks
that require capabilities that go beyond those of » <in~l~ hot type. For instance, while
aerial robots can explore large areas rapidly, gro. ~d-based robots can carry higher pay-
loads and manipulate objects on the ground In rece.. years, a surge in technology has
led to the development of aerial robots [13] ble o ._.aneuver in previously unreachable
environments such as inside buildings includi. - obstacle-filled factory halls and ware-
houses [14, 15, 16]. Innovative designs h.v. also ‘een proposed [17, 18] rendering aerial
robots resilient towards potential collisions .1 ci. tered environments.

As pointed out by Lacroix and Be. ... "~ 1. the deployment of air-ground robot teams
calls for the resolution of multiple challeng - related to perception, decision, and action. By
definition, members of such teams operate in different spaces with varying vantage points
of the environment. Reaching t- .-, el decisions based on the environment perceived in
this manner poses a crucial c} ulenge t¢ air-ground teams. This is particularly true when
such teams operate in environme. “< in * hich they are not able to share a common frame of
reference (such as GPS) or when the, execute missions that require higher precision than
that offered by civilian ¢ PS < yster s. Supervised morphogenesis proposes a solution to
each of the three challe iges | ~intr 4 out by Lacroix and Besnerais so that self-assembling
robots can operate in A priori un<nown environments and rely on an aerial robot for ad-
hoc assistance. Thr sup. ised morphogenesis control methodology that we propose in
this paper allows d~centralized air-ground robot teams to cooperate without relying on
external infrastrr cture or GPS. Potential application scenarios include collaborative mon-
itoring and sur. ‘lla- ce in large warehouses or outdoor environments, search-and-rescue
missions, and autonc. “ous exploration and mapping of unknown terrains.

In super 1sed .norphogenesis, aerial robots exploit their elevated position to character-
ize the env.. " .ent .nd its features so that they can supervise the formation of suitable
target m~-»holo. "~ . In our study, aerial robots use standard monocular cameras to ob-
serve t' e envir. 'ment. A two- or three-dimensional model of the environment is generated
from t. ese obse vations depending on the task. Subsequently, the environment model is
used to 1. o 4 on-board simulations to determine if and when self-assembly is required.
T .e simuv’ations are also used to determine the shape and size of target morphologies.
T rese simn lations allow aerial robots to assess the performance of different candidate
mo._hole es in a particular environment prior to their costly (in terms of energy and
o) realization on the ground. Spatially targeted communication [19] is then applied to




let aerial robots establish a communication link to specific robots based on neir bcation
on the ground. Morphology formation instructions [7] are then transmittea “r,ugh this
link to initiate the formation of target [20]. We present two case stua. ~ in w. ch we
assess the feasibility of the proposed control methodology using real »~botic “ardware.
Furthermore, we quantify the benefits of cooperation between an a‘.ial ~“ot and self-
assembling robots using simulation-based experiments [21]. We shc ~ th ¢ the presented
control methodology allows self-assembling robots to adapt to previous., 'nknown tasks
and environments by cooperating with an aerial robot.

2 Related Work

In this section, we review robotic systems that use technc ~=":s siv ilar to the ones pre-
sented in this paper with a focus on air-ground teams. W also p~~- _nt control frameworks
developed particularly for the control and coordination of te. ms composed of aerial and
ground-based robots. However, to the best of our ki. wledge, « operation between aerial
robots and self-assembling robots has not been pre “ousi, “* .ed.

O’Grady et al. [22] presented a robotic system compeo. ~1 of homogeneous self-assembling
robots able to cross a gap. In the study, however ... .. .pouse behavior of the robots when
encountering a gap was pre-programmed. The robou. 1id not possess the sensory apparatus
required to estimate the gap width. Therefor = ~» encountering a gap, they self-assembled
into a chain morphology of a pre-programme ' si e irrespective of the width of the gap,
and hence, decreased the efficiency of th > whol. system with respect to task completion
times. A more effective self-assembling row W . “ste.n was presented in Mathews et al. [23].
The authors proposed a novel paradigm for ~ooperation that allows robot controllers to
be merged into a single control struc. "re w..' n a heterogeneous group of robots. They
presented a form of cooperation that has t.. notential to merge sensory or guidance infor-
mation from aerial robots into the control of robots operating on the ground. Application
scenarios for such air-ground 17 vot sy. “ems have already been presented in [20].

Aerial robots equipped w “h monor 1lar vision cameras have been used to compute
height maps of ground surf ces |- * 2"|. Lacroix et al. [24] presented a pioneering work
in which a tethered blimp s flc #n at an altitude between 10 and 40 m to retrieve stereo
images used to compute “e 'eight map of an area covering several thousands of square
meters. Forster et al. 25| su. ve . how an aerial robot can use two different monocular
vision streams to con . “te height maps at 1 Hz. The robot used the height maps to detect
safe landing-spots @ad to « “tonomously land. One of the few examples of aerial robots
able to navigate ‘.. “1igh indoor environments and equipped with a Kinect sensor was
presented in [26". Th , work considered a scenario in which an air-ground robot team is
used to map a da.. ~ ed building from the inside. Note that the height maps computed by
aerial robots .n [24, 2., 26] were not included in the decision-making processes of robots
operating ¢ « the grov~d.

Kim et a.. "27] ¢ .owed how two aerial robots can provide the stereo vision to a peer
robot o .ae grow .d that then can compute height maps and use them in the robots
decisic -making processes. However, contrary to a decentralized decision-making mech-
anism | 8], the upproach presented by Kim et al. may not be scalable for systems that
cor "'er ruooes that operate in groups of rather large sizes. In such a system, vision
st -eams w uld have to be transmitted on a per robot basis and may cause bandwidth
is. les as g oup-size increases.

A .ch-and-rescue task was solved by two ground-robots cooperating with an aerial
toe 2 [29]. Dorigo et al. [30] proposed a heterogeneous robot team that includes a




climbing robot besides aerial and ground-based robots. This additional rc ot t pe was
able to climb along indoor vertical surfaces and manipulate objects unreac. ~t e by the
two other robot types. A search-and-retrieve experiment is presented in w..~h ove. “wenty
robots are able to combine their different capabilities to locate and retrie== a bo. '~ situated
on a book shelf. Langerwisch et al. [31] presented a heterogeneous ‘ ;am ~~mposed of a
car-sized robot and two quadcopter drones. Through a centralizec ~on’ .ol station that
maintains communication contact to all three vehicles at all times, a hu.. "n operator was
able to issue surveillance tasks at the team level. The system was 1emons+trated in outdoor
environments and requires GPS.

Contrary to the system presented in this paper, air-ground te. ms ar often composed
of a single terrestrial and a single aerial robot. Such syste s 1mnase lower requirements
on coordination and communication mechanisms due to the lino".ed 1 1mber of team mem-
bers. Nevertheless, they have been successfully applied to solve v# 10us tasks such as to
cooperatively map obstacles in large areas [32], to augmeny “e view of a moving ground-
based robot with aerial images [33, 34], and to cooperatively 1 ack a moving target [35].
In more recent work, Késlin et al. [36] presented a locaw. ~tion nethod based on elevation
maps for ground robots. The method is independent " sensors and allows a ground robot
to find its relative position and orientation within tho »~f~ " hce map provided by an aerial
robot without relying on GPS.

A customizable framework to enable collahoration . “ween aerial and terrestrial drones
was presented in [37]. The framework was v lida - ‘a a real-world search-and-find sce-
nario in which team members detected each o.™ :rs presence, selected leaders of a team,
and assigned tasks to particular member. .. the -am. Saska et al. [38] proposed a con-
trol scheme that allows an air-ground tean to .>ordinate and control its members in a
leader-follower scenario. The schemc -...-'~< ‘e followers of the leader to also maintain
a particular formation throughout the v "ole mission. The scheme was validated using
numerous search-and-rescue scenarios both in simulation and in the real world. Although
with a human operator in the lc Lp, . ~rik et al. [39] proposed a decentralized architecture
that enables interaction betw en an ae ial robot providing global coverage and a couple
of ground-based robots providi., 'ocal coverage of a monitored environment. The archi-
tecture was validated in ar ares-insp.ction scenario. Although these control frameworks
and schemes have been v ddat :d us ag different application scenarios, they cannot be im-
mediately applied to aj--grc ~d t ams that cooperate to form adaptive morphologies on
the ground through s f-assembi,.

3 The robs . Hlatforms

We use three din. it robot platforms in this study: two aerial robots and one self-as-
sembling rob ,t. We su. marize the main specifications of the robot types in Table 1 and
describe th m ir morr detail in the following.

The AR.. me 0] is a quadcopter (see Fig. la) with a front-facing camera and a
downwe . pointi., camera (176x144 @ 60fps). The AR.Drone has an autonomy of up
to 12 inutes . hile flying at speeds of up to 18 km/h. The robot’s processing unit is
an AR. "9 runr ag at 468 MHz with 128 MB of DDR RAM. Other features include a six
der s of w.ocdom inertial measurement unit and an ultrasound altimeter. An API pro-
v’ les acce.  to sensory information including altitude and battery level from the AR.Drone.
E. ternal d vices such as a PC can therefore retrieve these information and simultaneously
comi. _cate with the AR.Drone at 30 Hz via an ad-hoc wireless Ethernet network. Note
tue 7o images from both cameras can be retrieved from the AR.Drone at the same fre-




‘ AR.Drone ‘ eye-bot ‘ f ot-b ¢t
Dimension | 57 cm across, ht. 12 cm 50 cm @, ht. 54 cm 17cm & 'c 17 cm
Weight 380 g max. 2 kg (incl. payload) a1 kg
Processor ARM 9 (468 MHz) ARMI11 (533 MHz) AT*111 ("3 MHz)
RAM 128 MB 128 MB “2° MB
Vision 176x144 / 640x480 2 MP 360 ° pan-and-tilt ‘ 2 MP / 3 MP
Autonomy ca. 12 min ca. 20 min ‘hto7h

Table 1: Hardware specifications of the robot platforms sed in ti is study.

Figure 1: The robot platfor.s used i this work. (a) The AR.Drone. (b) The eye-
bot. (c¢) Five foot-bots capable . © self- ssembly with their LEDs illuminated in different
RGB colors. (d) A photo 7 .ontage si. wing example morphologies that can be formed by
multiple foot-bots. (e) 7 ae t’ ree-f agered connection device of the foot-bot before and
after insertion into the »ass. > do’ <ing ring of another robot.

quency. We used the softwa. development kit presented in [41] to channel video streams
from the AR.Drc « 5 a remote PC where vision algorithms were executed. Position
control data co’ ipute « on the basis of these streams were then transmitted back to the
AR.Drone in real . e via wireless Ethernet.

Figure 1' showvs the eye-bot [42] aerial robot. Its thrust and control are provided by
eight rotorr mor ated a a co-axial quadrotor configuration. The carbon fiber structure of
the eye-bot we._hs ¢ .ly 270 g and is able to lift a payload of up to 2000 g — sufficient for the
mounti- g of a range of advanced sensors. The on-board battery provides the eye-bot with
up to ! ) minute of autonomy depending on payload. The eye-bot’s most unique feature,
howeve. is a cr ling attachment system based on active magnets that allows the eye-bot
to _avend 1ts autonomy considerably [42] by attaching to metal ceilings or bars. Other
fatures in lude a downward-pointing 2 MP 360 °© pan-and-tilt camera that allows the eye-
bc  to surr 2y the ground underneath it for other robots and objects, a ring encompassing
the rovu’s chassis with 16 built-in RGB LEDs, an altitude sensor, and a magnetometer
to + cue .t its own orientation. The eye-bot is also equipped with a 3D relative positioning



and communication device [43]. This on-board device has a maximum rang’ of 1 m and
allows an eye-bot to communicate with other eye-bots in flight and to dew. ¢ valls and
other obstacles.

The foot-bot (see Fig. 1c) is a particular configuration of the grour<-basc. marXbot
platform [4]. The marXbot platform (diameter 17 cm) consists of a .erie - sensor and
actuator modules that can be combined into particular robot con! ~ure ions depending
on task requirements. In the foot-bot configuration, the robot is equipp. ! with an ARM
11 processor (i.MX31 clocked at 533 MHz and with 128 MB "\AM) ~unning a Linux-
based operating system, 12 RGB-colored LEDs, a 2D distance icanner, 4 IR proximity
sensors, a 3-axis gyroscope, one omni-directional (3 MP) and one -eilin- (3 MP) camera.
The self-assembly module includes a rotatable docking comr yonent composed of an active
docking unit with three fingers and a passive docking r 1g. A p ysical connection is
formed when a foot-bot inserts its docking unit into the aocking ring of another foot-
bot and then opens its three fingers. Figure le shows exan., 'es of different morphologies
foot-bots can form. A key novelty of the foot-bot is its range a. d bearing communication
device [44] (referred to as mxRAB device in the followin,' Th mxRAB device allows the
simultaneous estimation of relative positions (i.e., the "ange and bearing) of peer robots.

The foot-bots use the mxRAB device for commwnice+ ) with each other. The device
enables situated communication at 10 Hz and cai. ~timate the range and bearing of mes-
sage sending robots at a distance of up to 5m For cou.. wunication between the AR.Drone
and the foot-bots, we rely on standard wire »ss r ... .net broadcast. As the number of
Ethernet devices able to connect directly to th AR.Drone network is limited to one, we
route the messages through a PC connec. . “o b¢ h the AR.Drone and the foot-bots net-
work. The eye-bot, on the other hand, is ab, » t6 .ommunicate directly through broadcast
wireless Ethernet messages to the fc - *~ 1" no wireless Ethernet is available, the eye-
bot can transmit messages in the form o1 . ~lors displayed on its 16 LEDs. In this case, the
foot-bots use their upward-pointing cameras to detect the messages sent by the eye-bot
at intervals of 300 ms. Similar’y, v.. foot-bots display different colors using their LED
rings to send signals to the e rial robc s. To detect these signals, we retrieve the video
stream from the AR.Drone’s a. mwar -pointing camera using a PC and run off-board
vision algorithms at 16 Hz (i.e. new ..gnals can be detected approximately every 60 ms).
The eye-bot, on the othe har 1, re aires up to 3s to process each image captured using
its 360 °© HD pan-and-ti't ca. °ra.

4 Control methoJ ~logy

We developed or : con coller for each robot type (i.e., aerial and ground-based robots) used
in this study to e. ! e supervised morphogenesis. As shown in Fig. 2, the control of each
robot type t' ansitions “rough multiple control states (drawn in circles). In previous re-
search, we « evelr ped s2veral of these control states with the goal of facilitating supervised
morphogenes. (n t} 2 rest of this section, we describe each control state. In the following
Sections , and 6, = e present two case studies that demonstrate the control methodology
presen ad in th. section using real robot hardware.

4.”  Bunu environment model

A\ aerial 1)bot hovers above the group of foot-bots it supervises and builds an internal
mo. ! of “.1e environment in its field of view. The dimensionality of the model, i.e., 2D or
"™ depends on the considered task. For instance, certain tasks (see Sect. 5) require the
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Figure 2: An overview of supervised morphogenrsis. “=ch circle represents a control
state related to perception, decision or action taken . - the heterogeneous team. Basic
behaviors (such as phototaxis and obstacle avoid~=--" " 1d on the actual task and may
include perception and decision-related activities “at do not require aerial supervision.
The vertical arrows indicate the occurrence ~~d directicnality of interactions between the
robot types. STC: spatially targeted comm. nice 10u, EDSA: enhanced directional self-
assembly.

aerial robot to model only the relatix - ~asitic 1s of the foot-bots and other objects in the
environment, while other tasks (see Sec. 4) require a detailed three-dimensional model of
the environment. We use standard monocula. cameras, which are available on most aerial
platforms, to build the models.

4.2 Run simulations

When a model of the enr .ronr .ent has been built, the aerial robot runs simulations to
determine whether or no. *he robe s on the ground require supervision to solve the task
at hand or to maneuve throug ¢ 1environment. The on-board simulations also allow the
aerial robot to evalv .. the adequacy of candidate morphologies prior to their physical
formation on the ground, w. ~h is costly in terms of time and energy. If the outcome of the
simulations requir ., 2 action to be taken, the aerial robot continues with the modeling
of the environm at.

4.3 Spatilly targ.ted communication (STC)

The aerial . b ¢ ne ds to be able to communicate with the robots on the ground to
superviss “rmauv. ~ of an appropriate morphology. Ideally, the communication is targeted
to a pe ticular =t of robots such that (i) robots that should self-assemble can be directly
addres. °d, and i) resources are not allocated unnecessarily allowing robots not required
for e~lf-as. ' .y to pursue other tasks. For this purpose, we developed spatially targeted
cc nmunic ~tion (STC) [19]. STC allows a robot in a multirobot system deprived of GPS
a. 4 global naps to establish a dedicated communication link to another robot based on
loce, "~ Using messages exchanged via LEDs and cameras, such links can be established
_ '==en a ground-based robot group [45], as well as in an heterogeneous group composed




of both aerial and ground-based robots [19]. At the core of establishing an S C link
lies an iterative elimination process. An iterative growth process can be v. " executed
to add further co-located robots to an existing STC link. In supervisea ~orphc_-nesis,
we let the aerial robot establish an STC link to the foot-bot best locat~d to . ‘tiate the
self-assembly process of the target morphology. Ground-based robots with ~ich no links
were established resume their individual task-related behavior.

4.4 Send self-assembly instructions

The aerial robot uses an established STC link to broadcast s 'f-asser oly instructions
that lead to the formation of a target morphology. The i- .. cuctiows are described us-
ing an improved version of SWARMORPH-script [7] v dec a1 ive language that is
executed by autonomous self-assembling robots and can de.__.be ar itrary morphologies.
SWARMORPH-scripts can also be compiled into a morp. ~logy ..orary that can be pre-
loaded on the foot-bots. Depending on the task, an aerial obot can then activate a
particular morphology over an STC link by transmit.. < a sir ;le message that then can
be mapped to a target morphology using a lookup ~ble «..lable to both communicat-
ing robots. After successful transmission, the control o. “he aerial robot returns to the
component responsible for modeling the enviro.. ~ent.

SWARMORPH-script was initially developed for « ~lf-assembling robotic platform [46]
that preceded the foot-bots and was limite. v. - 7™ and camera-based communication
between robots. In this study, we extended th t chnology behind SWARMORPH-script
to take advantage of the higher commu = -~ation bandwidth and speed provided by the
mxRAB device available to the foot-bots. “he. enhancements allow foot-bots to demon-
strate behaviors that were unachiev-hle to heir predecessors such as forming multiple
connections in parallel [20] and coordina ‘g the motion in target morphologies [20, 47, 48].

4.5 Enhanced directiona’ .. %assembly (EDSA)

Larger morphologies can only he forme | by self-assembling robots if connections can be
formed between connection ‘nviti._ rc sots and connection-seeking robots. We developed
enhanced directional self-s sser’)ly (EDSA) [20] as a connection forming mechanism for
the foot-bots. The mec.. nis a tal 2s advantage of the high-speed situated communica-
tion provided by the » xRAL de ice. It is based on a recruitment and guidance-based
algorithm that enab) . “he foot-bot initiating the self-assembly process to invite suitably
located neighboring robots “o form direction specific connections at angles described in
the SWARMORP’. . ~ript being executed.

4.6 Execute . .ic behaviors

We refer to oehe iors that do not require supervision from the aerial robot as basic be-
haviors. Ba. ~1 on d- ca acquired through its sensors, robot-level decisions are made and
then trar~'ated .. * actuator commands by a robot executing basic behaviors. Examples
of basi behavi rs include obstacle avoidance and phototaxis.

5 Clase study 1: supervision based on a 2D environment
moc el

The goal of the first case study is to validate that a physical aerial robot can supervise
foc -buws according to an a priori unknown configuration of the environment, based on the




Figure 3: The experimental setup of ca -~ stua, 1. (a) The robot team is composed of
one AR.Drone and six foot-bots. A light ~o. e 1s placed on the ground. Figures (b-d)
are frames taken from the AR.Drone camera vhen executing STC. Border colors visualize
transmitted messages; the number in " = cen.. of each frame shows the size of the target
morphology resulting from the simulation. ~un by the AR.Drone. Figure (e) shows the
target morphology formed using FDSA. The times shown in Figures (b-e) correspond to
the clock time starting the exe ation « © STC. For safety reasons, a transparent plexiglass
platform is installed at 40 cr. “eight in :he area of the light source in order to shield the
foot-bots from the AR.Dror 2 exec. “iv | emergency landing behaviors.

vision and communicat’on -, tem Jdeveloped in this study. For this purpose, we designed
a task in which an A ¢.Drone s..ould first locate a light source in the environment and
then estimate the tr .al .. ber of foot-bots. The AR.Drone should then instruct a sub-
set of the foot-bots to construct a morphology at a certain distance (between 60 cm and
70 cm) from the .ght source. Since the AR.Drone has no a priori information about the
configuration o. “he avironment or the number of foot-bots, the task assesses the aerial
robot’s capac’.y to c. vectly detect and estimate relative distances between objects in the
environmen’, anc to supervise self-assembling robots on the ground.

In the .. "o ing, ve describe in detail a successful experimental run using the snap-
shots preeomtea . 7 ig 3. The foot-bots start with their LEDs illuminated in green. The
intense ambier. lighting in the environment does not permit the foot-bots to detect the
light s wrce nor an they detect neighboring robots using their cameras. The foot-bots are
initially ."~~o" facing the light source and instructed to move forward.

The AR.Drone flies ahead of the foot-bots and scans the environment for the light
scarce. On e it has detected the light source, the AR.Drone waits for the foot-bots to
ar1. ~ bv Lovering above the light source. When the first foot-bot enters its field of view,
‘~ AR.Drone starts running simulations. If the relative distance between any of the foot-




bots and the light source is between 60 cm and 70 cm, the AR.Drone broz (cast a stop
command in the form of a SWARMORPH-script. All foot-bots receive anu v cute this
command and come to a halt (see Fig. 3b). Subsequently, the AR.Dron. “cans .” = area
around the already detected foot-bots to estimate the total number of foot-. *s in the
group from which the size of the target morphology — i.e., the nu- iber ~* robots that
need to attach to each other — is computed. We designed the tas! <ucl that the aerial
robot should leave three robots unconnected and ready for other task. The AR.Drone
then initiates the protocol described in Sect. 4.3 to select the ¢ ssest feat-bot (indicated
using a straight line in Fig. 3c) to the light source. Once the »mmunic wtion link is es-
tablished (see Fig. 3d), a SWARMORPH-script containing the mstr .cions to build a
target morphology of size three is chosen from a preloaded morphology library and then
transmitted to the selected foot-bot. The foot-bot execut: s th SW ARMORPH-script it
received to form a triangle morphology of size three (ser Fig. 3e).

We carried out 10 experimental runs using one AR.Dron. ~nd six foot-bots. In seven of
the 10 runs, the aerial robot successfully completed the task. It the remaining three runs,
the AR.Drone did not detect all the foot-bots present i, e er ironment. Note that these
vision-related issues occurred because of dimmer fo. bhot LEDs caused by low battery
voltage on some of the foot-bots. The occurrence ~f e~ ulty runs could be reduced in
future experiments by only deploying foot-bots w.'h a certain battery voltage level or by
replacing the low-resolution vertical AR.Drone camer. (176x144) with a high-resolution
camera supporting the detection of foot-bots witny u... mer LEDs.

Note that the AR.Drone chose a suitable S Y ARMORPH-script describing the target
morphology from a preloaded library con. .. ‘ng 1. itiple morphologies of different shapes
and sizes. In Sect. 6, we show that task-de, enu. at morphologies can be determined and
generated by aerial robots on-the-fl, .. ~1 2 observed environmental features. Also,
note that the AR.Drone was flown manu 'y while all other control components and the
foot-bots were entirely autonomous. Video 10otage of this experiment can be found on-
line [49]. Further examples of cou, “ration between an AR.Drone and foot-bots were
presented in [48].

6 Case study 2: svpervision based on a 3D environment
model

The goal of the seco’ 4 « <e study is to validate supervised morphogenesis in a scenario in
which, to be successtul, the 1. “erogeneous robot team needs to consider also physical char-
acteristics of the avi. mment. For this purpose, we consider a more challenging hill-cross-
ing task in whis + we ieploy five foot-bots in an environment containing an elevated sur-
face, hereafter refeir. - to as hill-obstacle. For the team to be successful, the aerial robot is
required to F uaild - threc-dimensional model of the environment to detect and characterize
the obstac’ - T .e th' ze-dimensional model of the environment requires the aerial robot
to run more so_his’.cated simulations while also considering the limited computational
capabil”.ies avrilable on-board. To test the feasibility of supervised morphogenesis in
hetero, eneous t ams that are limited to a low-bandwidth communication modality, we
further . mit br .h robot types to LEDs and cameras-based communication. The task also
re-_awres the tormation of multiple target morphologies — rather than a single one as in
t e previo s case study. For the experiments carried out in this case study, we use one
ey. hot ar « a group composed of five foot-bots.
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(@5 foot-bots

(b Hill obstacle
(©) Light source

(d) Failing foot-bot
(e)Pos. 1 eye-bot
(f)Pos. 2 eye-bot

Figure 4: The experimental setup of the hill-crossing tas] . Fiv . ot-bots are shown in
the deployment area. A light source representing the des.™ .cion rea is shown on the
right. A hill obstacle that cannot be crossed by an indiv. 'al £ _-bot is shown between
the areas. Visualized are also two positions above the hill o, “acle the eye-bot considers
when using its monocular vision system.

6.1 Experimental setup

We consider a hill-crossing task that requires the foo. hots to move towards a light source
from a deployment area where they are ini «a.., '~ced (see Fig. 4a—c). They use their
light sensors to detect the light source and 1. v : towards it. As shown in Fig. 4d, we
place a steep hill in their path. The hil' -~ay bc so steep that a foot-bot topples over if
it tries to cross the hill alone. We vary ti > 1."" steepness between 0° (i.e., the obstacle
is absent) and 30°. Individual foot hots ca. withstand a maximum inclination of 25°
without toppling over. If the inclinatio. excecus 25°, the foot-bots have to self-assemble
into morphologies that can provide the phys..al stability required to cross the hill obstacle.
As the foot-bots can neither det~ ' +he presence of the hill obstacle nor know the size of
the group (required to determ’ e the s. ape and the size of target morphologies that need
to be formed), they depend on he eye-! ot to provide the guidance necessary to reach the
light source. The task is cc wsiderew. < be solved if all five foot-bots manage to reach the
light source without topp’ ng ¢ er. We assume that the eye-bot has flown in advance and
attached to the ceiling ove t'.e hil” obstacle before the foot-bots reach the obstacle.

6.2 Modeling t’.e . ~vironment using height maps

On its flight aheac _"*he foot-bots to the light source, the eye-bot continuously builds and
updates a three fime sional model of the surface underneath it by computing a height
map. We consia. ~ . two different methods: (i) compute height maps using stereo im-
ages acquirec througl — standard monocular camera, and (ii), extract height maps from a
dedicated s asor - the Microsoft Kinect. The extraction of three-dimensional information
based on ste. ~ s im- ges has been thoroughly studied by the computer vision commu-
nity [50' .he Ku. _t is a commercially available RGB-D camera. More details on the two
metho s and a ‘uantitative comparison between the two are provided in the Appendix.

6.7 On-uuard simulation-based decision-making

F om each aewly computed height map, the eye-bot first constructs a height profile by
rea. Mo o .| values along each foot-bot estimated trajectory. The estimated trajectory is
~mmed to be a straight line connecting a foot-bot’s current position to the light source
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~bou. .. foot-bot is shown
at different positions along its estimated trajectory. The s" nula’ o ‘s shown to detect at
least two areas with a too steep inclinations (marked in red) . .derin , the whole trajectory
too dangerous for the foot-bot.

Figure 5: Visualization of a simulation run executed by the

v

‘ no hill ‘ gv ‘le slope | steep hill
number of trials 10 | 10
number of successful runs 10 b 7

Table 2: Summary of the experiment results o. “ined in the second case study.

in the eye-bot’s field of view. Then, ti. - we-bc simulates a passage of each foot-bot
by moving it pixel-by-pixel along the heigl.” pi. “le while also computing the inclination
each time the foot-bot is moved. T - <imi'ations enable the eye-bot to estimate the
stability of a foot-bot on the ground on "*s way towards the light source. An example is
visualized in Fig. 5. The foot-bot is first placed at its currently detected position on the
height profile and the inclinatic . c.., erienced by the foot-bot at this particular segment
is calculated. The simulation nds whe the foot-bot’s chassis reaches the light source or
when a calculated inclination 1o 2 foo’ ‘bot exceeds 25°, the maximum inclination angle
an individual foot-bot can endure w. aout toppling over. If an inclination of more than
25° is found, the eye-bo’ takr , the necessary actions to bring the foot-bots to halt and
instructs them to self-acsen.. = int morphologies that guarantee safe passage over the hill
obstacle.

6.4 Experime~*s and results

We conducted - xper’ aents using three different scenarios: (i) no hill obstacle, (ii) one
hill obstacle with .. -entle slope safe for individual foot-bots to cross, and (iii) one steep
hill obstacle not <rossaole by individual foot-bots. As listed in Table 2, we executed
10 experin utal runs for each scenario resulting in a total of 30 experimental runs. In
scenarios (i) a.. ' (ii’, the eye-bot classified the surface to be safe for the foot-bots and did
not intr .vene in any of the 20 runs. As a result, the foot-bots reached the destination in
all rur 5. In sce ario (iii), where self-assembly is required to solve the task successfully,
the foov hots o7 1y reached their destination in 7 out of 10 runs. Two runs failed because
of . uroken physical connection (i.e., the docking mechanism) between two neighboring
fc ot-bots 1 an already formed target morphology due to too high torque causing all three
fo. “-bots t . topple over. In a further run, a foot-bot stopped functioning due to low battery
charge. 1hese failed runs thus did not result from flaws in the control methodology but
we ; w.ased by hardware-related issues.
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Figure 6: Snapshots of the hill-crossing experiment. . - better visibility, background
clutter has been edited out and the light sourc. has been visualized schematically. The
signals transmitted are indicated as follows: R=REL, *=GREEN, B=BLUE, RG=RED-
GREEN, and RB=RED-BLUE. (a) Deplo, ‘uc... _“~se. Foot-bots execute phototaxis
behavior. The eye-bot is attached to the ceilii. - - bove the hill obstacle running on-board
simulations. (b) As the foot-bots reach t1 il ob. “acle, the eye-bot issues the RED signal:
the foot-bots halt. Both robot types start . xec +ing STC. (¢) The communication link is
established to a single foot-bot and fc''~wed 1, - transmitting the RED-GREEN signal. (d)
As a result, the foot-bot executes a Sv, * RMURPH-script that leads to the formation of
a chain morphology composed of two foot-beis. (e) As the chain morphology successfully
moves over the hill-obstacle, the | bots establishes a further communication link to one
of the remaining foot-bots and r) activ. “es the execution of another SWARMORPH-script
by sending the RED-BLUE s1y 2l. (g) A chain morphology composed of three foot-bots
is formed. (h) The task i* success’ .y solved by the team as all foot-bots manage to
successfully cross the hill sbst: :le.

In the following, - present details of a successful experimental run from scenario
(iii). Snapshots frc.n the -~veriment are presented in Fig. 6. We first manually move
the eye-bot betwe = “wo positions 30 cm away from each other above the hill-obstacle.
The eye-bot the . con putes 10 height maps using the stereo images retrieved from both
positions. The si. "ation ends when all height maps have been considered or, as in this
experiment, . the eyc ~ot’s belief 8 of an hazardous environment is greater than 90%.
After the s aula’ ad rim of each foot-bot in the eye-bot’s field of view, 8 is updated using
a simple filte. = 2 me’ 10d: 8 = (1—c¢)-By—1+c-Br, where B, is a binary value representing
the outr ..e of t.. simulation (where 0=no danger and 1=danger) and ¢, 0 < ¢ < 1, is
the co fidence -=vel of the eye-bot in the precision of the underlying height map. We
empiric lly dete mined ¢ = 0.85 to be appropriate for height maps computed using stereo
im» 5 anu - — 0.9 for height maps returned by the Kinect sensor. This filtering method
m akes sin 1lations less vulnerable to extreme outliers and smooths the modeled ground
st ‘face. Fc this particular run, the average value for the maximum inclination computed
was -~ *_° with a standard deviation of 2.88°. In the experiment presented here, the
ne.  '~us environment was detected on the basis of ten simulated runs in total (i.e., two

13




runs for each foot-bot). Note, that even though in this particular case stud the 2ye-bot
control does not require such a high level of precision for decision-making, «. “o precision
available to the aerial robots may be crucial in other application scenario.

After moving the eye-bot, the foot-bot’s are deployed. They execute ~ basic , hototaxis
behavior. The foot-bots are neither aware of the hazardous situatior ahe - »f them nor
are they aware of the total number of foot-bots present in the envirc mer .. Following the
simulations, the eye-bot establishes an STC link to the foot-bot closest 1. “he hill obstacle
(see Fig. 6¢). Establishing the STC link took 16 s. This link .vas used by the eye-bot
to send target morphology related information. Given that the otal nun ber of foot-bots
within the eye-bot’s view is five, the eye-bot first sends the RED- PT.UF signal to initiate
the formation of a chain morphology of size two. This t-.get morphology was formed
within 6 s (see Fig. 6d). Once completed, the target mc -ph- .ogy >xecutes a collective
phototaxis behavior that gets them over the hill obsta~le within “ae next 12 s. In the
meantime, the eye-bot establishes another STC link to a ~cond foot-bot (see Fig. 6d
and f) and issues a RED-GREEN signal to invoke the format m of a chain morphology
of size three. The formation of this target morpholog, *ook (5 s (see Fig. 6g) and its
successful crossing took another 11 s (see Fig. 6h). 1. ~ total duration of the experiment
was 70 s. Note that in the experiments presented here +h~ ,ot-bots were preloaded with a
library composed of multiple SWARMORPH-scr,, “s describing a variety of morphologies
of different sizes. The target morphologies were auv. iomously chosen by the eye-bot.
Video footage of the experiment can be foun ' ons .o | i9].

7 Quantifying performance b meiits

In this section, we study the performe. ~e Lo its, measured in terms of task completion
time, of supervised morphogenesis over t.. > other methodologies that either require no
supervision from aerial robots or do not consider location-based selection of robots on
the ground. For the comparisc 1, we hose a task that can be solved by foot-bots with
or without the supervision o/ =an aerial robot. In order to collect a sufficient amount of
data for the analysis of the perto. ~ar :es of the different control methodologies that we
compare, we executed mo’ : the 1+ 100U experimental runs using the simulation framework
for heterogeneous robot . ~w desc 1bed in [51].

In the remainder ¢ this . *ti n, we first present the task, the three control method-
ologies we used to as' . - the pertormance benefits, and finally we present and discuss the
results.

7.1 Task ar ( ex ,erimental setup

We deploy a cobot . m composed of an eye-bot and 10 foot-bots in an environment
consisting ¢ a s art zone, a target zone, and a gap that separates the two zones (see
Fig. 7). A "~t sou ce is located in the target zone. At the start of each experiment,
10 foot-b~*s are 1 .«ced at random positions with random orientations within a square
area of 2 m x £ m — the start zone. When an experiment begins, the foot-bots use their
light sc 1sors to « etect the light source (i.e., they execute a phototaxis behavior) and move
towards .. € aultaneously, they use their ground sensors to detect the gap. The eye-
b ¢ hover above the group and uses its pan-and-tilt camera to detect potential gaps and
tc estimate their widths. Depending on the width, the foot-bots may need to physically
con. ~t t each other to form a chain morphology to cross the gap. The length in foot-bots

“ amch a chain morphology must be chosen so that it guarantees a safe crossing of the
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Figure 7: The simulated environment in which the robots perate. The gap separates the
environment into a start zone and a target zone -ith a light source. An eye-bot and ten
foot-bots are visible in the start zone.

gap and depends therefore on the width f the . "p. In this study, we use gaps of widths
of 5 cm, 10 cm, 15 cm and 25 cm. In cas> ¢ 2 b cm wide gap, individual foot-bots are
able to move over it without falling into the »ap. For all other widths, the foot-bots are
required to form a chain morphology <" 2. o «.. . 4 foot-bots, respectively, to be successful.
The task is considered to be completed w. ~n the final foot-bot of a target morphology
reaches the target zone.

7.2 Control strategies

In order to quantify the pe formrance venefits of supervised morphogenesis, we have devel-
oped three control methe tolor .es. T. the first of them — non-cooperative control or NCC
— the foot-bots do not seen e vision from the eye-bot to solve the task. In the other
two methodologies — ~amely in .ocation-based supervised morphogenesis (LSM) and su-
pervision based on » wndo.. oroups (SRG) — the foot-bots cooperate with the eye-bot by
relying on LEDs a~? camera-nased low-bandwidth communication modality.

Non-cooperat. ~ ¢ ontrol (NCC): This control methodology is the implementation of
the work pres nted . ??2]. The foot-bots are pre-loaded with a SWARMORPH-script that
they use to .orm a four foot-bot chain morphology when a gap (regardless of its actual
width) is en ~v atere .. The foot-bots do not cooperate nor do they seek for supervision
from the -e-bou. " hey initially move towards the light source until one of the foot-bots
detects the ga, using its ground sensors. The foot-bot warns neighboring foot-bots via
messag s sent v a the mxRAB device and retreats approximately 40 cm from the gap.
Subeoque,. -+ ¢ invites neighboring foot-bots to connect to its rear. The other foot-bots
st )p exec ting the phototaxis behavior and volunteer to join the ongoing self-assembly
p ocess. O ice the chain of four foot-bots is formed, the morphology moves towards the
ligli. ~~~ e to cross the gap.
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Location-based supervised morphogenesis (LSM): This is the impl .nent .tion of
the control methodology presented in this paper. The foot-bots do not . v a priori
knowledge about the environment or the target morphology to be formew. They . - pro-
grammed to execute a phototaxis behavior until messages from the eye hot a. received.
In case a gap wider than 5 cm is detected, the eye-bot starts to tr .nsn i* messages to
establish an STC link to a foot-bot that is approximately 40 cm av “v fr m the gap. All
foot-bots remain static as long as messages are received from the eve-bo. Then, the STC
link is extended by the eye-bot to include the foot-bot’s neighbore 19| recuired to form the
target morphology. The number of neighbors depends on the g » width. These foot-bots
receive a SWARMORPH-script from the eye-bot and follow the 1. ~truc* ons in the script
to self-assemble into a target morphology the size of whicl deperds on the width of the
detected gap. Once the target morphology is formed, the fc >t-F .¢s n Hve towards the light
to cross the gap.

Supervision based on random groups (SRG): This methc lology allows us to isolate
the performance benefits of selecting robots to form the -~rget norphology based on their
location in the environment. That is, we use the con 0l strategy presented in LSM but
disable the iterative growth process in control state ST stead, we repeat the iterative
elimination process to select a group of randomly ~~cated foot-bots for self-assembly. The
foot-bots do not have a priori knowledge ahout the te k or the target morphology. The
foot-bots initially move towards the light un ‘'l th <, ~bot starts transmitting messages.
In case a gap wider than 5 cm is detected. the ey = pot establishes an STC link to a random
foot-bot, i.e., without considering its loca '« = in t. 2 environment with respect to the gap.
The eye-bot repeats this process until the n. mbe  of foot-bots with established STC links
matches the size of the target mor, -.I > This group of randomly located foot-bots
receive a SWARMORPH-script from the ~e-bot containing the instructions necessary to
form a target morphology that depends on the gap width. Once the morphology is formed,
the foot-bots move towards the .gu. "o cross the gap.

7.3 Experiments and resu’*s

For each combination of < ap w dth and control methodology, we ran 100 simulation runs
(i.e., 4x3x100 = 1200 ru.. #.tots.). We first analyze the benefits of aerial supervision by
comparing LSM with ".CC. Tn. = we isolate the benefits of location-based group selection
by comparing LSM - n.. SRG. Videos of the experiments are available online [49].

7.3.1 NCCvs Lt M

We quantify the « ¥ rence in task execution times between strategies NCC and LSM. The
results are s' own in . '3 8a. We have only plotted the results of the narrowest gap of
5 cm for NO C, o the *ask completion times between the various gap widths did not prove
to be signitic. ly d derent. This is a direct consequence of the fact that the foot-bots
executir , .nis me. 0dology formed chain morphologies of the same length regardless of
the ga width v ey encountered.

In ¢ the ey periments, the foot-bots correctly performed the task. According to the
res” ', in r ... oa, the median task completion times of LSM are 51, 259 and 403 seconds for
t! e width. 5 cm, 10 cm and 15 cm, respectively. Compared to the median task completion
tive of NC C (434 seconds), the mean completion times for LSM were respectively 88%,
40% . (% lower in environments with gaps that can be crossed by an individual or
cue  ~omposed of two or three foot-bots. This is due to the fact that in LSM, the length
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Figure 8: Results confirming how supervision from the ¢, ~-bot (i.e., LSM) lowers the task
completion times of the overall system when c. .varcu w0 a control strategy (i.e., NCC)
that does not rely on aerial supervision. (a) Box-ana hisker plot showing task completion
times (in seconds) of LSM in four differen’ . -ronments. For the NCC methodology,
results of only one environment is plotted as the 7 ¢, not differ significantly from each other.
(b) Bar-plot showing a breakdown of th™ *ime s_ent by the foot-bots executing different
control states. Bars are decorated with .he¢ +“andard deviation, except for the control
state ”transmitting instructions” that is bc 'nd to constant time for each transmitted
SWARMORPH-script (i.e., the gap w. '*h).

of the chain is chosen based or .ue . » width. The supervision provided by the eye-bot
avoids the inclusion of excess f .ot-bots1 the morphology requiring additional time for the
formation of the target morpholo, - In” e case of the widest gap (i.e., 25 cm) that can only
be crossed by four or more physically connected foot-bots, NCC is, in general, faster than
LSM. Intuitively, this cc dd F ave F sen expected given that both control methodologies
(i.e., LSM and NCC) “orm:  chs n of four foot-bots close to the gap, but in the case
of LSM, self-assembl~ instructio.s need to be first transmitted from the eye-bot to the
foot-bots before the selt-. ~embly process can start. However, the NCC methodology has
several outlier runs *hat take very long to complete. This is because in NCC, the foot-bots
that become par of 1 1e target morphology are not pre-selected by the eye-bot. Hence,
non-connected 1. “t-F Ots can cause (sometimes severe) physical interference with ongoing
self-assembly srocess. ' or with moving target morphologies. Both interferences delay task
completion mes
In Fig. ¢ ~ e pre .ent a breakdown of how much time is spent by the foot-bots in each
control st~*e. A, *! e results show, spatially targeted communication (STC, used in the
LSM c ntrol n ‘thodology) is the control state that requires the least time, independent
of gap zize. Mo 2 precisely, the completion times for STC were 2.6 s, 6.2 s, 6.5 s, and
6.6 < for . '~~".ng 1, 2, 3, and 4 foot-bots, respectively. In the case of selecting a single
fc st-bot /~ap size 5 cm), the average value in simulation is higher than the average of
4 3 s from ceal robot experiments we presented separately in [19]. This is because, in
sim. '~tic | robot control loops, and therefore vision updates, are available to aerial robots
~=v 100 ms while the AR.Drone is able to retrieve and process images every 60 ms. We
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also observe similar results for the selection of 2 and 4 foot-bots with 5.7 s ar | 5.4 s,
respectively. For more details on the performance of the STC control state . - - :al robot
experiments and a theoretical model that describes the scalability proper.. . we . ‘er the
reader to [19]. The results also show that the wider the gap, the more time is s, nt by the
robots transmitting self-assembly instructions. This is due to the fac, the - *he length of
the SWARMORPH-script describing the target morphology grows li. ~arl* with the size of
the target morphology. However, this communication overhead part of L. would become
negligible if a communication modality with higher bandwidth (s «ch as vrireless Ethernet)
were used for communication. The results also show that w en a tai jet morphology
composed of four foot-bots is formed, the self-assembly process 1. FDS . (LSM) requires
on average 39% more time than that of EDSA (NCC). Thi can be explained by the fact
that in NCC all foot-bots are available for forming a con: ect’ a du -ing the morphology
growth process which increases the chances of a foot-hot peing 1 cated close to where
a connection is required causing connections to be formec faster. On the other hand,
LSM selects neighboring foot-bots relative to the initially selec ed robot. However, LSM
allocates precisely the number of resources required .. - self assembly by selecting the
required number of foot-bots needed for the target .. ~rphology and freeing up the rest
of the team for other tasks. The decision involvine +hi~ ade-off between faster target
morphology formation times and more efficient . =ource allocation may depend on the
task and mission priorities.

7.3.2 LSM vs. SRG

Here we isolate the performance gains that = <su’* immediately from the STC control state.
For this purpose, we compare the res—'ts of t. = control methodologies LSM and SRG. As
the selection of all foot-bots requirea .~ the varget morphology uses different methods
(LSM uses the iterative growth process to .elect a group of co-located foot-bots while
SRG repeats the iterative elimi~ '*~n process to establish communication links to ran-
domly located foot-bots), we nly cown ider the time the eye-bot spent on selecting the
foot-bot initiating the self-assc. “bly prc :ess in control state STC.

As the results in Fig. 9 - aow, L. " was on average faster than SRG in all cases studied
independent of the widtl of t' ¢ gan. The explanation for these results is that a target
morphology formed next . t.ie ge , by involving nearby foot-bots in most cases requires
less time to finish th: formau. ~, and then reaches and crosses the gap faster than a
morphology formed . random place with peer foot-bots joining from random places
in the environment. We ex, ct this difference in task completion time to become even
greater for larger sta - zones as the distances between randomly selected foot-bots and
the gap would t > larr or.

8 Con' fus'ons and future work

In this p~mer, we * ;roduced supervised morphogenesis — a novel approach that enables
aerial v ybots tc »rovide assistance to ground-based self-assembling robots. We showed how
this ae ial assist ince can help robots on the ground avoid costly self-assembly processes
when the, =~ .0t required. Furthermore, we showed that the presented control method-
ol .gy car be used to enable the formation of appropriate morphologies without a priori
k owledge f task and environment. A key feature of supervised morphogenesis is its high
por ~hilit to other systems because it does not depend on proprietary hardware and can
' ~ impnlemented using standard cameras, LEDs, and wireless Ethernet-based communica-
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Figure 9: Results of the experiments carried out to 1s.'~te the jenefits of group selection
based on location (LSM) vs. random group selection [SRG,. T.ie results presented are task
completion times of the two strategies for all the four eny -onments considered. Note that
the group selection and formation times have b. n omitted for LSM and SRG in order to
facilitate a meaningful comparison. Standard deviai. =s are added to the bars.

tion available to most robotic platforms. We sh. ved how input from standard monocular
cameras can be used to build two or thi. =-"‘meu ional models of the environment that
allow aerial robots to perform on-board sin. 1lat.ons. We reported on the results of two
case studies we carried out in which v, =~ ' morphogenesis was demonstrated in two
different heterogeneous teams with differe..” sets of abilities. To the best of our knowledge,
the work presented in this paper represents the first implementation of a robotic system
that enables aerial robots to sv ervi, self-assembly in ground-based robots. We showed
that the presented control me nodology for cooperation can provide performance benefits
by enabling aerial robots tc allou “e t' e precise number of resources needed for a target
morphology by recruiting - obot baseu on their location on the ground and based on their
mutual proximity.

One interesting dir ction. “r ature work would be to study how aerial robots can
provide supervision t” ~t enables the formation of different morphologies in parallel. An-
other interesting dir :ction, ould be to study how target morphologies can be determined
based on physics-F  ~d simulations for tasks that require solutions based on the physical
characteristics o” robc s and objects in the environment or for tasks that have low levels
of fault tolerance.
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Figure 10: Computing height maps using inw ~~< retrieved from a monocular camera. (a)
A 640x480 image acquired by the eye-bot. (b, A r presentation of the computed disparity
map in which brighter pixels denote gree*er mo on and lesser distance from the camera.
(c¢) A flowchart showing the computation « * .. “ehy maps based on a pair of stereo images.
The result is a two-dimensional matrix with ‘he clevation in cm for each pixel.

Appendices

A Computing heig ~t may s

A.1 Method 1: mor bcu'ar camera

We use two consecutively = «en ".nages returned by the eye-bot’s downward pointing
camera (see for an ex' mple Fig. .0a) to compute a height map of the surface and of the
objects in the eye-b t's “=ld of view. From two such images, each taken from different
positions, the eye-bot first ¢ nputes a disparity map, see Fig. 10b. For a pair of stereo
images, a dispari y m, p contains the distance (in pixel) by which each point in the first
image has movc * in ’ ae second image. For instance, the displacement of points closer to
the camera is highc. *han that of the points further away from the camera. In a second
step, the ey  -bot _alculates the height of each point in real-world distances based on the
disparity ¢. ~ac! poir , the elevation (in cm) of the eye-bot, the displacement between the
two images. anw. “he properties of the camera. We summarize the individual steps required
to com ,ute a eight map based on a pair of stereo image using the flowchart shown in
Fig. 1( .

A 2 M-thod 2: the Kinect sensor

W obtair height maps of the eye-bot’s field of view directly from a Microsoft Kinect
senso: ...ounted on the eye-bot. All necessary computations are carried out by the sensor
anc ... sht maps are available in almost real-time. The sensor does not require any prior
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Distance

Figure 11: Mean elevation of height profiles acquired by the ye-bot ™om 10 different
height maps. Graphs in red result from computation based on stereo in ages while data
retrieved from the Kinect sensor is shown in blue.

knowledge of the environment and it can be operated under 1..ust lig’ ¢ conditions. Despite
the obvious advantages Kinect offers to increase the sensing “pawuuuities of aerial robots, its
weight (ca. 1.4 kg) can be seen as a disadvantage that reduces h. *ht autonomy significantly
for most application scenarios and existing aerial robo.

A.3 Quantitative comparison

In Fig. 11, we present a quantitative analysis of the 'ata obtained with the two methods
considered to acquire height maps. For thi | ~mn<e, we compare the height profiles of
all five foot-bot’s estimated trajectory, i.e., a "tr ight line connecting its position in the
deployment area to the light source. T" ~ heigy = profile is the mean elevation along an
estimated trajectory and is computed frc m ' d.fferent height maps computed on the
basis of 10 sets of stereo images (plotted i red) or extracted from 10 different height
maps returned by the Kinect (plotte. ™ piuc,. In the latter case, we have only plotted
the height profile of the longest foot-bot tre. ~ctory along with error intervals representing
the standard deviation as the valno< of five profiles are too close to each other to be plotted
in a clearly comprehensible ms aner. _"he standard deviation for the elevation computed
using stereo images is 2.91 c.. (not sh wn in the figure) as opposed to the 2.14 c¢m for
the elevation retrieved fror = the .. "me .t indicating a slightly more reliable data source.
However, as the figure sh ws, ' oth methods deliver sufficiently precise estimates. While
we have observed that in v ,etur che absolute values of the surface elevation computed
using the stereo image: consta. ‘1" resulted in real-world values above those acquired from
the Kinect and the g .. ~d truth, the relative differences between any two points is almost
identical for the two metho.. ~ That is, we observed that the inclination computed between
any two points ir « . »ight profile resulted in almost identical values independent of the
underlying met} od. ".ote that the absolute values returned by neither method matches
the ground truth .+t shown) which remained between 3 cm and 4 cm under the values
returned by ne Kinec. This is clearly visible in Fig. 11 for the flat surface area to the
left of the ".ll ¢'sstac’:. One explanation may be the fact that the eye-bot was slightly
tilted (and he. @ nc parallel to the ground) when the data was collected.
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