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José Carlos Dias

Instituto Universitário de Lisboa (ISCTE-IUL),

Business Research Unit (BRU-IUL), Lisboa, Portugal.

E-mail: jose.carlos.dias@iscte-iul.pt

João Pedro Ruas‡

Instituto Universitário de Lisboa (ISCTE-IUL),

Business Research Unit (BRU-IUL), Lisboa, Portugal,

and Sociedade Gestora dos Fundos de Pensões do Banco de Portugal,

Lisboa, Portugal.

E-mail: joao.ruas@sgfpbp.pt



The Early Exercise Boundary under the Jump to

Default Extended CEV Model

Abstract

This paper proves the existence, uniqueness, monotonicity and continuity of the early exercise

boundary attached to American-style standard options under the jump to default extended

constant elasticity of variance model of Carr and Linetsky (2006).

AMS Classification: 35R09; 60G40; 60J55; 60J60.

Keywords: American-style options; Early exercise boundary; Default; JDCEV model; Bessel

processes.

∗The authors thank the editor (Professor Huyên Pham) and an anonymous referee, whose suggestions and

corrections have significantly improved this article. We also thank the participants in the 9th World Congress

of the Bachelier Finance Society (New York) and in the Nova SBE 16/17 Economics Seminars (Lisbon) for

useful comments on an earlier draft of this paper as well as Yerkin Kitapbayev for very helpful discussions.

Financial support from Fundação para a Ciência e Tecnologia (FCT), grant number UID/GES/00315/2013,

is also gratefully acknowledged. Of course, all the remaining errors are the exclusive responsibility of the

authors.
†Corresponding author. Tel: +351 21 7650526.
‡The analysis, opinions, and findings of this paper represent the views of the authors, and they are not

necessarily those of the Sociedade Gestora dos Fundos de Pensões do Banco de Portugal, the Banco de

Portugal, or the Eurosystem.



1. Introduction

American-style standard call and put options on (defaultable) stocks were first listed in the

United States (hereafter, U.S.) by the Chicago Board Options Exchange (hereafter, CBOE)

in 1973 and 1977, respectively. Such contracts are nowadays actively traded throughout the

world on several options exchanges. For instance, the market statistics report of the CBOE

for the year 2015 documents that about 370 million equity contracts were traded on the

CBOE during that year, representing options on about 37 billion shares of underlying stock.

At year-end 2015, the open interest in equity options on the CBOE was about 192 million

contracts—107.5 million calls and 84.5 million puts.

Given that American-style options on equity are frequently traded on exchanges, the valu-

ation of such contingent claims has become prominent in the theory of modern finance and

has received much attention in the literature.1 Several alternative valuation methodologies

have been developed, ranging from numerical solution methods to analytical approxima-

tions.2

Until relatively recently, the literature on stock options and the literature on corporate

bonds and credit risk developed almost independently of each other. The vast majority of the

proposed equity options pricing models has been generally concerned with modeling implied

volatility smiles and typically ignored the possibility of default of the underlying stock. In

contrast, the credit risk literature has been essentially devoted to modeling bankruptcy and

credit spreads, ignoring the information available in the equity options market.

It has been known for a long time, however, that the possibility of default has relevance for

the pricing of equity options. Merton (1976) is the first to recognize the impact of corporate

default on the stock price process by assuming a model where the stock price of a firm follows

1The valuation of American-style contingent claims has a long history and a complete literature review

on the topic is outside the scope of the present paper. A general overview of this literature may be found,

for example, in the survey papers of Myneni (1992), Broadie and Detemple (2004) and Barone-Adesi (2005),

as well as in the monographs of Shreve (2004, Chapter 8) and Detemple (2006, Chapters 3, 4 and 8).
2A comparison of the different methods is available, for instance, in Broadie and Detemple (1996), Huang,

Subrahmanyam, and Yu (1996), Ju (1998), Nunes (2009) and Ruas, Dias, and Nunes (2013).

1



a geometric Brownian motion (hereafter, GBM) punctuated with a single jump that takes

the stock price from a positive value to zero (i.e. to the default or bankruptcy state). Such

jump to default event evolves according to a Poisson process with constant default intensity

(or arrival rate), which is independent of the firm’s stock price. However, the economic

rationale and the accumulated empirical evidence suggest that the probability of a jump

to default increases at lower stock prices and decreases at higher stock prices. Hence, the

modeling of the default intensity as a decreasing function of the stock price should clearly

be much more realistic.

This is in line with the relatively recent developments in both the credit and the equity

derivatives markets—in particular with the observed close linkages between credit default

swaps (hereafter, CDS) and stock options on the same reference company. For instance,

market participants start observing repeatedly that sharp stock price decreases coupled with

increases in implied volatilities of stock options tend to occur simultaneously with sharp

increases in market credit spreads on corporate debt and CDS spreads. The past decade

revealed also that every time the credit markets become seriously concerned about the pos-

sibility of default of a firm, the open interest, the daily volume of trading, and the implied

volatility of deep-out-of-the-money puts on the firm’s stock explode many times over their

historical average.

Perhaps the most prominent story supporting this riddle is the bankruptcy event of

Lehman Brothers, that still remains as the largest bankruptcy filing in U.S. history: Lehman

filed for Chapter 11 bankruptcy protection on September 14, 2008. In September 9, 2008,

as the beleaguered investment bank’s stock plummeted for a second session, the implied

volatility of Lehman’s put options attained stratospheric levels: September puts had implied

volatilities of about 500%. Such stock declines with accompanying increases in implied

volatilities of stock options were probably a reaction to news from Seoul that South Korea’s

government-owned Korea Development Bank had withdrawn its investment interest in the

U.S. investment bank. Trading volumes were extraordinary heavy in puts with strike prices

of $7.50, $5.00, and even $2.50. For example, trades reported through Bloomberg showed

that a total of 45,668 contracts for the deep-out-of-the-money put option with a strike price
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of $2.50 and expiring on the 19th of September were traded during the session of September

9 (even though the underlying stock was still trading at a closing price of $8.98). In light of

this, traders were essentially buying “catastrophe” puts whose value is mostly derived from

the probability of bankruptcy that will render equity worthless. This type of trading clearly

indicates that investors believed profoundly that bad news could be in store for Lehman.

To accommodate the aforementioned stylized facts, a new generation of hybrid credit-

equity models has emerged in the literature to value and hedge all securities related with a

given firm, including equity and credit derivatives, in a unified modeling framework. Linet-

sky (2006) proposes an extension of the Black and Scholes (1973) and Merton (1973) model

with bankruptcy, where the hazard rate of default is a negative power of the stock price, and

obtains closed-form solutions for both corporate bonds and European-style stock options.

This model establishes a link between the implied volatility of stock options and the prob-

ability of default, and avoids the unrealistic constant default intensity assumption of Merton

(1976). However, since the local diffusion volatility of the stock price process remains con-

stant, the probability of default in Linetsky (2006) model is assumed to explain all of the

volatility skew.

Carr and Linetsky (2006) relaxed the latter assumption by modeling the stock price

dynamics through the jump to default extended constant elasticity of variance (hereafter,

JDCEV) process, where prior to default the stock price follows a diffusion process with a

constant elasticity of variance (hereafter, CEV).3 The default event is formally defined as the

equity becoming worthless, i.e. the stock price dropping to zero. This can happen in one of

two ways. Either the stock price process hits zero via diffusion, or a jump to default occurs

that takes the stock price from a positive value to zero, whichever comes first. The default

intensity (or hazard rate) of the jump to default event is modeled as an affine function of the

local variance. This allows the linkage between the default intensity, the stock volatility and

3See, for instance, Cox (1975), Emanuel and MacBeth (1982), Schroder (1989), Davydov and Linetsky

(2001, 2003), Linetsky (2004) and Larguinho, Dias, and Braumann (2013) for background on the CEV

process.
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the stock price, since the local volatility in the CEV model is a (negative) power function of

the stock price.

We recall that the CEV volatility specification exhibits the so-called leverage effect—i.e.

the noticed tendency of a negative relationship between stock returns and equity volatility—

and leads to the implied volatility skew across different strike prices frequently revealed in

the prices of individual stock options. However, the event of default under the CEV model

can only happen via continuous diffusion of the stock price toward zero. Therefore, there is

no element of surprise, i.e. there is no possibility of a jump to the bankruptcy state from a

positive stock value. The appealing feature of the JDCEV framework is its ability to link

equity and credit markets. In summary, the JDCEV model is able to accommodate not only

the leverage effect—documented, for instance, in Black (1976), Christie (1982) and Bekaert

and Wu (2000)—and the stock option implied volatility skew—highlighted, for example, in

Dennis and Mayhew (2002) and Bakshi, Kapadia, and Madan (2003)—, but also the positive

correlation between default probabilities or CDS spreads and equity volatilities observed in

the credit markets, as empirically shown in many relatively recent works, e.g. Campbell

and Taksler (2003), Bakshi, Madan, and Zhang (2006), Cremers, Driessen, Maenhout, and

Weinbaum (2008), Zhang, Zhou, and Zhu (2009) and Carr and Wu (2010).

Carr and Linetsky (2006) obtain closed-form solutions for European-style plain-vanilla

options, survival probabilities, CDS spreads, and corporate bonds in the JDCEV model

by exploring the powerful link between CEV and Bessel processes.4 Several other recent

papers consider also the hybrid credit-equity JDCEV architecture modeling framework. For

instance, Nunes (2009) and Ruas, Dias, and Nunes (2013) value standard option contracts

possessing early exercise features through the optimal stopping and static hedging portfolio

approaches, respectively. Mendoza-Arriaga and Linetsky (2011) price equity default swaps

under a time-homogeneous version of the JDCEV model, and obtain an analytical solution

to the first passage time of the JDCEV process with killing. More recently, Dias, Nunes,

and Ruas (2015) show that the stopping time and static hedging portfolio approaches can

4See, for example, Borodin and Salminen (2002), Göing-Jaeschke and Yor (2003), Jeanblanc, Yor, and

Chesney (2009, Chapter 6) and Katori (2016) for background on Bessel processes.
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be easily extended to efficiently price and hedge European-style (single and double) barrier

option contracts under the JDCEV model, whereas Nunes, Ruas, and Dias (2015) generalize

both approaches for the valuation and hedging of American-style (single and double) knock-

in options under the same JDCEV setup and highlight that American-style down-and-in puts

with a sufficiently low knock-in barrier level may be viewed as a credit protection contract.

Notwithstanding the valuation of standard American-style options under the JDCEV

model has been already treated in Nunes (2009) and Ruas, Dias, and Nunes (2013), the lit-

erature still lacks a rigorous analytical characterization of the corresponding optimal stopping

boundary separating the so-called continuation and stopping regions of such free boundary

problem. Moreover, while Ruas, Dias, and Nunes (2013) have been able to characterize

the asymptotic behavior of the early exercise boundary near the option’s expiry date, the

existence of the early exercise boundary under the JDCEV model was never formally proved

before in the literature. This is precisely the main aim of this paper.

For this purpose, we recall that the pricing of American-style contingent claims boils

down to a boundary value problem in a domain whose boundary is not fully known and,

hence, must be also determined. The solution to such mathematical problem has been ini-

tially provided by Kolodner (1956) in the context of free boundary problems appearing in

mathematical physics. Inspired by the (discounted) warrant pricing problem of Samuelson

(1965), McKean (1965) provides the earliest rigorous mathematical analysis on the pricing

of American-style options by transforming the option pricing problem into a free boundary

problem for the heat equation. By solving the latter, McKean (1965) is able to write the

American option price V explicitly up to knowing a certain function E (the optimal stop-

ping boundary). Van Moerbeke (1976) further extended this early work by studying several

properties of the optimal stopping boundary, while Bensoussan (1984) and Karatzas (1988)

provide an economic motivation for the optimal stopping problem attached to American-style

contingent claims using hedging arguments and no-arbitrage conditions. A clear economic

insight to the American-style option pricing problem has appeared in the beginning of the

1990s when Kim (1990), Jacka (1991), Carr, Jarrow, and Myneni (1992) and Jamshidian

(1993) independently arrived at a nonlinear integral equation for the time-dependent bound-
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ary E that is closely linked to the early exercise premium representation of V . This implies

that the price of an American-style option can be written as the sum of the corresponding

European-style counterpart and a nonlinear integral term involving its early exercise bound-

ary. The decomposition offered by such integral representation method has become then

standard in the option pricing literature.

The main contribution of this paper is to prove the existence, uniqueness, monotonicity

and continuity of the early exercise boundary attached to American-style standard put op-

tions under the JDCEV setup. Even though our main focus is on the American-style put,

we start by proving—in Proposition 4.1 and through Detemple and Tian (2002, Proposition

1)—the existence and uniqueness of the early exercise boundary for call options. This is ac-

complished by: (i) Replacing the state dependent interest rate process in Detemple and Tian

(2002, Equation 1) with an adjusted interest rate process composed by a short-term risk-free

(deterministic) interest rate coupled with a state dependent default intensity possessing a

negative relationship with the stock price; and (ii) Replacing the state dependent dividend

yield process in Detemple and Tian (2002, Equation 1) with a state independent (but pos-

sibly time dependent) dividend yield. The proof of the monotonicity and right-continuity

of the early exercise boundary for call options is then straightforward as shown in Remark

4.1. We stress that, mathematically, the optimal stopping problem for put options under

the JDCEV model is significantly more difficult than the corresponding one for calls due to

the killing and recovery features associated to put option contracts. To prove the existence

and uniqueness—in Proposition 5.5—and the monotonicity and continuity—in Propositions

5.6, 5.7 and 5.8—of the early exercise boundary for put options, we follow Jacka (1991,

Proposition 2.1), Lamberton and Mikou (2008, Theorem 4.2), and Monoyios and Ng (2011,

Theorem 3.3), while using some well known properties of Bessel processes.

The remainder of this paper is organized as follows. For the sake of completeness, Section

2 summarizes the modeling assumptions of the JDCEV model. Section 3 presents the Snell

envelop for an American-style option pricing problem with killing and shows that the exercise

region is non-empty. Sections 4 and 5 prove the existence, uniqueness, monotonicity and

continuity of the early exercise boundary attached to American-style standard call and put
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options, respectively, under the JDCEV model. Section 6 numerically illustrates the behavior

of the early exercise boundary for put options on defaultable stocks, and shows that traders

may incorrectly follow a premature exercise strategy when ignoring the possibility of default

as a surprise event. Finally, Section 7 contains some concluding remarks.

2. The JDCEV model

For the analysis to remain self-contained, this section summarizes the main features of the

hybrid credit-equity pricing model proposed by Carr and Linetsky (2006). From now on, and

during the trading interval [t0, T ], for some fixed time T (> t0), uncertainty is generated by

a probability space (Ω,G,Q), where the martingale measure Q (associated to the numéraire

money-market account) is taken as given.

2.1. Predefault stock price

Before the random time of default ζ, Carr and Linetsky (2006) assume that the time-t

price St of the underlying stock is described, under the martingale measure Q, through the

following stochastic differential equation:

(2.1)
dSt

St

= [r (t)− q (t) + λ (t, St)] dt+ σ (t, St) dWt,

where r (t) (≥ 0) denotes the time-t risk-free and short-term (deterministic) interest rate,

q (t) (≥ 0) represents the time-t (deterministic) dividend yield, λ (t, St) ∈ R+ is a default

intensity, σ (t, St) ∈ R+ corresponds to the time-t instantaneous volatility of asset returns,

and {Wt, t ≥ t0} is a standard Brownian motion defined under measure Q and generating

the filtration F = {Ft, t ≥ t0}.

Note that the inclusion of the hazard rate λ(t, St) in the drift of equation (2.1) com-

pensates the stockholders for default (with zero recovery, due to the assumed absolute prior-

ity rule in the event of default) and insures, under the risk-neutral measure Q, an expected

rate of return equal to the risk-free interest rate.
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2.2. Default time

The underlying stock price can diffuse to zero at the first passage time

(2.2) τ0 := inf {t > t0 : St = 0} .

Alternatively, the stock price can also jump to zero at the first jump time ζ̃ of a doubly-

stochastic Poisson process with intensity λ (t, St). Therefore, the random time of default is

simply given by5

(2.3) ζ = τ0 ∧ ζ̃ .

2.3. Defaultable stock price

At time ζ, the stock price process is killed and sent to a coffin (i.e. bankruptcy) state

∆, where it remains forever. Hence, and following, for instance, Karlin and Taylor (1981,

Equation 12.30) or Borodin and Salminen (2002, Page 28), the defaultable stock price process

{S∆
t , t ≥ t0} can be summarized as

(2.4) S∆
t =

 St ⇐= t < ζ

0 ⇐= t ≥ ζ
.

Alternatively, and following Linetsky and Mendoza-Arriaga (2011, Page 558), the de-

faultable stock price process can be also represented as

(2.5)
dS∆

t

S∆
t−

= [r (t)− q (t)] dt+ σ
(
t, S∆

t−

)
dWt − dMt,

where

(2.6) Mt = Dt −
∫ t∧ζ

0

λ
(
u, S∆

u

)
du,

{Dt, t ≥ t0} is a default indicator process, with Dt = 11{t>ζ}, and t− := limε↓0 (t− ε). Clearly,

the defaultable stock price process {S∆
t , t ≥ t0} is adapted not to the filtration F = {Ft, t ≥

5For any two real numbers x and y, we denote by x ∨ y and x ∧ y, respectively, their maximum and

minimum.

8



t0} generated by the predefault process {St, t ≥ t0}, but rather to the enlarged filtration

G = {Gt : t ≥ t0}, obtained as Gt = Ft ∨ Dt.

In summary, the defaultable stock price process {S∆
t , t ≥ t0} is a time-inhomogeneous

and Markov diffusion process with killing at rate λ (t, St), and with the same infinitesimal

mean and variance as the predefault process {St, t ≥ t0}.

2.4. JDCEV assumptions

To accommodate the leverage effect and the implied volatility skew stylized features, Carr

and Linetsky (2006, Equation 4.1) adopt an extended CEV-type specification for the in-

stantaneous stock volatility:

(2.7) σ (t, St) = a (t)Sβ̄
t ,

where β̄ < 0 is the volatility elasticity parameter and a (t) > 0, ∀t, is a deterministic

volatility scale function. Additionally, and to be consistent with the empirical evidence of

a positive correlation between default probabilities and equity volatility, Carr and Linetsky

(2006, Equation 4.2) also assume that the default intensity is an increasing affine function

of the instantaneous stock variance (implying, therefore, a negative relation between default

intensity and stock prices):6

(2.8) λ (t, St) = b (t) + c σ2 (t, St) ,

where c ≥ 0, and b (t) ≥ 0, ∀t, is a deterministic function of time.

Since β̄ < 0 and both c and a (t) are nonnegative, equations (2.7) and (2.8) imply that

λ (t, St) → ∞ as S → 0. Therefore, and as argued by Carr and Linetsky (2006, Page 311),

zero is an unattainable boundary for S, since the defaultable stock price process would be

killed from a positive value before it could ever reach zero via diffusion. Consequently,

(2.9) ζ = ζ̃ < τ0

6The default intensity specification as the negative power of the stock price has become also popular for

pricing convertible bonds and other hybrid securities. See, for example, Das and Sundaram (2007).
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a.s., and following, for instance, Andersen and Buffum (2003, Equation 1), the stochastic

differential equation (2.5) can be restated, for t ≤ ζ̃, as

(2.10)
dS∆

t

S∆
t−

=
[
r (t)− q (t) + λ

(
t, S∆

t−

)]
dt+ σ

(
t, S∆

t−

)
dWt − dDt,

meaning that {Dt, t ≥ t0} can be taken as a Cox process and ζ̃ := inf {t > t0 : Dt = 1}.7

3. Snell envelopes

Our goal is to prove the existence, uniqueness, monotonicity and continuity of the early

exercise boundary associated to an American-style option on the stock price S∆, with strike

price K, and with maturity date T . The time-t (≤ T ) value of the American-style option

will be denoted by Vt

(
S∆, K, T ;ϕ

)
, where ϕ = −1 for a call option or ϕ = 1 for a put option.

Assuming that ζ > t0, since the defaultable stock price process {S∆
t , t ≥ t0} is a Markov

process (killed at the zero boundary), and because the American-style option can be exercised

at any time during its lifetime, it is well known—see, for example, Zhang (1994, Equation

1.2) or Pham (1997, Page 148)—that its time-t0 (≤ T ) price can be represented by the

following Snell envelope:

(3.1) Vt0

(
S∆, K, T ;ϕ

)
= ess sup

θ∈G[t0,T ]

EQ

[
e
−

∫ θ
t0

r(l)dl (
ϕK − ϕS∆

θ

)+∣∣∣Gt0

]
,

where GA denotes the set of all G-stopping times taking values in A ⊆ R, and α+ ≡ α ∨ 0

is the positive part of α ∈ R.

For American-style puts, it is easy to show that the option (if still alive) shall be exer-

cised upon default of the underlying stock. For this purpose, and following Detemple and

Kitapbayev (2017), we first note that even though the (discounted) payoff function

(3.2) Ψ
(
t0, u, S

∆;ϕ
)
:= e

−
∫ u
t0

r(l)dl (
ϕK − ϕS∆

)+
,

for u ≥ t0, is not C2 with respect to the third argument, it is still a convex function in

S∆. Therefore, the Meyer-Itô formula—see, for instance, Protter (2005, Theorem 70 and

7Intuitively, at time ζ̃, D jumps from 0 to 1, dS∆
t = −S∆

t− , and the stock price falls to 0 where it remains

forever.
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its Corollary 1, Chapter IV)—can be applied to the semimartingale S∆ defined through the

stochastic differential equation (2.10), yielding, for any G-stopping time θ, and with ϕ = 1,

Ψ
(
t0, θ, S

∆
θ ; 1

)
−Ψ

(
t0, t0, S

∆
t0
; 1
)

(3.3)

= −
∫ θ

t0

e
−

∫ u
t0

r(l)dl {
r (u)

(
K − S∆

u

)
+ S∆

u

[
r (u)− q (u) + λ

(
u, S∆

u

)]}
11{S∆

u <K}du

−
∫ θ

t0

e
−

∫ u
t0

r(l)dl
11{S∆

u <K}S
∆
u σ
(
u, S∆

u

)
dWu

+

∫ θ

t0

[
Ψ(t0, u, 0; 1)−Ψ

(
t0, u, S

∆
u ; 1

)]
dDu

+
1

2

∫ θ

t0

e
−

∫ u
t0

r(l)dl
dLK

u

(
S∆
)
,

where, following Peskir (2005, Equation 1.6),

(3.4) LK
u

(
S∆
)
:= Q− lim

ε↓0

1

2ε

∫ u

t0

11{K−ε<S∆
l <K+ε}

(
S∆
l

)2
σ2
(
l, S∆

l

)
dl

represents the local time of S∆ at levelK, and dLK
u

(
S∆
)
refers to the integration with respect

to the continuous and increasing function u → LK
u

(
S∆
)
. Applying conditional expectations

to both sides of equation (3.3), and since both the Itô’s integral—second term on the right-

hand side of equation (3.3)—and the compensator process (2.6) are Q-martingales, then

EQ

[
e
−

∫ θ
t0

r(l)dl (
K − S∆

θ

)+∣∣∣Gt0

]
(3.5)

=
(
K − S∆

t0

)+
+ EQ

[∫ θ

t0

e
−

∫ u
t0

r(l)dl
H
(
u, S∆

u

)
du

∣∣∣∣Gt0

]
+
1

2
EQ

[∫ θ

t0

e
−

∫ u
t0

r(l)dl
dLK

u

(
S∆
)∣∣∣∣Gt0

]
,

where

H
(
u, S∆

u

)
=

[
−r (u)K + q (u)S∆

u − λ
(
u, S∆

u

)
S∆
u

]
11{S∆

u <K} +
[
K −

(
K − S∆

u

)+]
λ
(
u, S∆

u

)
=

[
q (u)S∆

u − r (u)K
]
11{S∆

u <K} +Kλ
(
u, S∆

u

)
11{S∆

u ≥K}(3.6)

measures the instantaneous benefit of postponing the exercise of the put.

Upon default, S∆
u = 0 for all u ≥ ζ (since 0 is an absorbing state), and, thus, H

(
u, S∆

u

)
=

−r (u)K ≤ 0 (assuming nonnegative interest rates) while the last (local time) term on the

11



right-hand side of equation (3.5) is equal to zero (since K > 0). Hence, and as expected, it is

optimal to stop (i.e. to exercise the American-style put) at the default date. Intuitively, after

the default date, the exercise payoff generated by the American-style put is always the highest

one and the same (i.e. the strike price)—since the stock price process will remain forever at

the zero (bankruptcy) level. Consequently, postponing the exercise decision beyond time ζ

would be equivalent to losing the interest on the strike price of the put option (if interest

rates are nonzero). Note that even in the extreme case of r (u) = 0 for all u ∈ [t0, T ], ζ can

still be taken as an optimal stopping time because it would be indifferent to exercise at the

default time or later: the payoff is always the same (i.e. the strike price), and no interest

gain or loss will occur since interest rates are equal to zero.

Given that it is optimal to exercise the American-style put at the default time ζ, and

since both calls and puts can only be exercised until the expiry date T , the optimal stopping

problem (3.1) can be rewritten as

Vt0

(
S∆, K, T ;ϕ

)
= ess sup

τ∈G[t0,∞]

EQ

[
e
−

∫ T∧τ∧ζ
t0

r(l)dl (
ϕK − ϕS∆

T∧τ∧ζ
)+∣∣∣Gt0

]
= ess sup

τ∈G[t0,∞]

{
EQ

[
e
−

∫ T∧τ
t0

r(l)dl
(ϕK − ϕST∧τ )

+ 11{ζ>T∧τ}

∣∣∣Gt0

]
(3.7)

+EQ

[
e
−

∫ ζ
t0

r(l)dl
(ϕK)+ 11{ζ≤T∧τ}

∣∣∣Gt0

]}
,

where the second equality follows from identity (2.4). Equation (3.7) corresponds exactly

to Nunes (2009, Equation 53). Note also that the second term on the right-hand side of

equation (3.7) is equal to zero for ϕ = −1, meaning that the American-style call becomes

worthless upon the default event.

Even though both Snell envelopes (3.1) and (3.7) are equivalent for

(3.8) θ = T ∧ τ ∧ ζ,

the latter representation has the advantage of being easily rewritten under the restricted

filtration F, with respect to which the predefault stock price S behaves as a pure diffusion

process with continuous sample paths. Using, for instance, Øksendal (1995, Equation 8.17)

12



and Carr and Linetsky (2006, Equation 3.4), and since ζ̃ is the first jump time of a Cox

process with intensity λ (t, St), then equation (3.7) yields

(3.9) Vt0

(
S∆, K, T ;ϕ

)
= ess sup

τ∈F[t0,∞]

EQ [Y (t0, τ)| Ft0 ] ,

where

Y (t0, τ) := e
−

∫ T∧τ
t0

(r(l)+λ(l,Sl))dl (ϕK − ϕST∧τ )
+ 11{τ0>T∧τ}(3.10)

+

∫ T∧τ

t0

e
−

∫ u
t0
(r(l)+λ(l,Sl))dlλ (u, Su) 11{τ0>u}du.

Since the predefault stock price process {St, t ≥ t0} is nonnegative and possesses right-

continuous sample paths, then Karatzas and Shreve (1998, Theorem D.9) implies that the

optimal stopping time τ ∗ for the problem (3.9) is

(3.11) τ ∗ := inf
{
t ∈ [t0, T ∧ ζ[ : Vt

(
S∆, K, T ;ϕ

)
= Y (t, t) = (ϕK − ϕSt)

+} ,
with inf ∅ = ∞, and

Vt0

(
S∆, K, T ;ϕ

)
= EQ [Y (t0, τ

∗)| Ft0 ]

= EQ
[
Ψ
(
t0, T ∧ τ ∗ ∧ ζ, S∆

T∧τ∗∧ζ ;ϕ
)∣∣Gt0

]
,(3.12)

where the second equality follows again from Øksendal (1995, Equation 8.17) and Carr and

Linetsky (2006, Equation 3.4).

Using equality (3.8), the optimal stopping time for the problem (3.1) can be stated as

θ∗ = T ∧ τ ∗ ∧ ζ

= inf
{
t ∈ [t0, T ∧ ζ] : Vt

(
S∆, K, T ;ϕ

)
= Ψ

(
t, t, S∆

t ;ϕ
)
=
(
ϕK − ϕS∆

t

)+}
,(3.13)

where again the convention inf ∅ = ∞ is adopted. While τ ∗ represents the optimal time for

early exercise strictly before the default event, the hitting time θ∗ corresponds to the optimal

exercise date (through default or not). In both cases, and as usual—see, for instance, Jacka

(1991, Theorem 2.1) or Pham (1997, Equation 2.5)—the optimal stopping time is the first

time that the option price is equal to its intrinsic value.

Given equation (3.13), and since standard no-arbitrage restrictions imply that

(3.14) Vt

(
S∆, K, T ;ϕ

)
≥
(
ϕK − ϕS∆

t

)+
,
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for t ∈ [t0, T ], we can divide the set
{(

S∆, t
)
∈ [0,∞[× [t0, T ]

}
into the exercise (or stopping)

region

(3.15) E :=
{(

S∆, t
)
∈ [0,∞[× [t0, T ] : Vt

(
S∆, K, T ;ϕ

)
=
(
ϕK − ϕS∆

t

)+}
,

and the continuation (or holding) region

(3.16) C :=
{(

S∆, t
)
∈ [0,∞[× [t0, T ] : Vt

(
S∆, K, T ;ϕ

)
>
(
ϕK − ϕS∆

t

)+}
.

Note that the exercise region is non-empty because we have already shown that
(
S∆, t

)
=

(0, t) ∈ E , for all t ∈ [t0, T ].

Our main goal now is to prove that there exists—at each time t ∈ [t0, T ]—a (unique)

critical asset price

(3.17) E (t) := inf
{
S∆ ≥ 0 : Vt

(
S∆, K, T ; 1

)
>
(
K − S∆

)+}
for ϕ = 1, or E (t) := sup

{
S∆ ≥ 0 : Vt

(
S∆, K, T ;−1

)
>
(
S∆ −K

)+}
for ϕ = −1, below

(resp., above) which the American-style put (resp., call) price equals its intrinsic value and,

therefore, early exercise should occur. If this is the case, then the optimal policy should be to

exercise the American-style option when the underlying asset price first enters the exercise

region and, hence, the stopping region (3.15) can be rewritten as

(3.18) E =
{(

S∆, t
)
∈ [0,∞[× [t0, T ] : ϕS

∆
t ≤ ϕE (t)

}
,

whereas the corresponding continuation region (3.16) becomes equal to

(3.19) C :=
{(

S∆, t
)
∈ [0,∞[× [t0, T ] : ϕS

∆
t > ϕE (t)

}
.

4. American-style calls

Since there is no payoff upon default attached to the American-style call, and because S

behaves as a pure diffusion process with respect to the filtration F, the uniqueness and

existence of the early exercise boundary t → E (t) will arise easily from Detemple and Tian

(2002, Proposition 1).
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Taking ϕ = −1 and using equation (2.9), equation (3.7) yields

Vt0

(
S∆, K, T ;−1

)
= ess sup

τ∈G[t0,∞]

{
EQ

[
e
−

∫ T∧τ
t0

r(l)dl
(ST∧τ −K)+ 11{ζ̃>T∧τ}

∣∣∣Gt0

]}
= ess sup

τ∈F[t0,∞]

{
EQ

[
e
−

∫ T∧τ
t0

(r(l)+λ(l,Sl))dl (ST∧τ −K)+
∣∣∣Ft0

]}
,(4.1)

where the last line follows, for instance, from Øksendal (1995, Equation 8.17) or Bielecki and

Rutkowski (2002, Corollary 5.1.1). Equation (4.1) is exactly equivalent to Detemple and Tian

(2002, Equation 2) as long as we take r (t) + λ (t, St) as the state dependent interest rate

process in Detemple and Tian (2002, Equation 1).

Using Detemple and Tian (2002) notation, the stochastic differential equation (2.1) can

be cast into Detemple and Tian (2002, Equation 1) by taking

(4.2) r (St, t) = r (t) + λ (t, St)

as a state dependent interest rate process, and

(4.3) δ (St, t) = q (t)

as a state independent (but possibly time dependent) dividend yield. Therefore, the existence

of a unique early exercise boundary attached to the American-style contract (4.1) follows

from Detemple and Tian (2002, Proposition 1) as long as we can show that both functions

(4.2) and (4.3) satisfy the requirements enunciated by Detemple and Tian (2002, Page 920).

Proposition 4.1 Under the JDCEV model, there exists a unique function t → E (t) such

that the exercise region of the American-style call is given by equation (3.18) for ϕ = −1.

Proof. Proposition 4.1 arises after applying Detemple and Tian (2002, Proposition 1) to

the value function (4.1), which can be done because the following two conditions are met by

the JDCEV model under analysis:

1. The state dependent interest rate process (4.2) is a nonincreasing function of S. Com-

bining equations (2.7), (2.8) and (4.2), then

(4.4) r (St, t) = r (t) + b (t) + c a2 (t)S2β̄
t .
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Since β̄ < 0 and c ≥ 0, equation (4.4) yields an inverse relationship between r (St, t)

and St, as desired.

2. The process δ (S, t)S is a nondecreasing function of S. This follows immediately from

equation (4.3) because q (t) is nonnegative.

Given that the two previous conditions are met by the JDCEV model, Detemple and

Tian (2002, Lemma 1) is satisfied by the value function (4.1), and, therefore, it is easy to

show that the exercise region (3.15) is up-connected.�

Remark 4.1 Following Detemple and Tian (2002, Proposition 1), it is also possible to show

that the early exercise boundary t → E (t) is a nonincreasing and right-continuous function,

as long as the deterministic functions of time r (t), q (t), a (t), and b (t) are specified in such a

way that the predefault price process (2.1) satisfies the following time monotonicity condition:

For v ∈ [t0, T ] and h ≥ 0, S0
v ≥ Sh

v , where Sh
v is the solution of the stochastic differential

equation (2.1) with initial condition St0 = S, at time t0, and time-translated parameters

r (t+ h), q (t+ h), λ (t+ h, S), and σ (t+ h, S). Note that this monotonicity condition is

clearly satisfied by the time-homogeneous version of the JDCEV model.

5. American-style puts

For American-style puts, the proof of the existence, monotonicity, and continuity of the early

exercise boundary t → E (t) will be based on Jacka (1991, Proposition 2.1), Lamberton and

Mikou (2008, Theorem 4.2), and Monoyios and Ng (2011, Theorem 3.3). For this purpose,

some preliminary results are required and stated in the next four propositions.

5.1. Preliminary results

The first two results concern the monotonicity of the default time ζ and of the predefault

stock price S with respect to the initial value of the latter.
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Proposition 5.1 Let τ0 (x) represent the stopping time (2.2) and St (x) denote the time-t

realization of the predefault stock price process {St, t ≥ t0} when such process is initialized

at St0 = x. Under the JDCEV model and if y > x > 0, then St (y) > St (x) for all

t ∈ [t0, τ0 (x) ∧ τ0 (y)[.

Proof. Carr and Linetsky (2006, Proposition 5.1) show that the predefault stock price

process defined by equations (2.1), (2.7), and (2.8) can be stated as

(5.1) St (x) = e
∫ t
t0

α(l)dl

(∣∣β̄∣∣R(v)
γ(t0,t)

(
1∣∣β̄∣∣x|β̄|

)) 1

|β̄|
,

where {R(δ)
t (a) , t ≥ 0} represents a Bessel process of index δ and started at a,

(5.2) γ (t0, t) :=

∫ t

t0

a2 (s) e
−2|β̄| ∫ s

t0
α(l)dl

ds

is a deterministic time change,

(5.3) α (l) := r (l)− q (l) + b (l) ,

and v =
c− 1

2

|β̄| , for all t ≥ t0 if c ≥ 1
2
, or only for t ∈ [t0, τ0 (x)[ if c ∈

]
0, 1

2

[
.

Given that 1

|β̄|y
|β̄| > 1

|β̄|x
|β̄| whenever y > x, and because a Bessel process is an increasing

function of its starting value (until the first hitting time of zero),8 then

(5.4) R
(v)
γ(t0,t)

(
1∣∣β̄∣∣y|β̄|

)
> R

(v)
γ(t0,t)

(
1∣∣β̄∣∣x|β̄|

)

for all γ (t0, t) ∈
[
0, τR0

(
1

|β̄|x
|β̄|
)
∧ τR0

(
1

|β̄|y
|β̄|
)[

, i.e., and since dγ(t0,t)
dt

= a2 (t) e
−2|β̄| ∫ t

t0
α(l)dl

>

0, also for all t ∈ [t0, τ0 (x) ∧ τ0 (y)[, where

(5.5) τR0

(
1∣∣β̄∣∣x|β̄|

)
:= inf

{
γ (t0, t) > 0 : R

(v)
γ(t0,t)

(
1∣∣β̄∣∣x|β̄|

)
= 0

}
.

Since equation (5.1) expresses the predefault stock price as an increasing function of a

time-changed Bessel process, inequality (5.4) implies that St (y) > St (x) for all t < τ0 (x) ∧

τ0 (y).�
8See, for instance, Katori (2016, Page 28).

17



Proposition 5.2 Let ζ (x) represent the default time (2.3) when the predefault stock price

process {St, t ≥ t0} is initialized at St0 = x. Under the JDCEV model, ζ (x) ≤ ζ (y) for all

y > x > 0.

Proof. Based on definition (2.3), and for all y > x > 0, we will show that

(5.6) τ0 (x) ∧ ζ̃ (x) ≤ τ0 (y) ∧ ζ̃ (y) ,

where the first jump time of the Cox process is defined as

(5.7) ζ̃ (x) := inf

{
t > t0 :

1

11{τ0(x)>t}

∫ t

t0

λ (l, Sl (x)) dl ≥ Θ

}
,

with Θ representing a random variable (independent of {Wt, t ≥ t0}) following a (unit mean)

exponential distribution.

Starting with the first hitting time of zero through diffusion, and following, for instance,

Katori (2016, Theorem 1.2), it is well known that, for a Bessel process, such stopping time

is a nondecreasing function of its initial state, i.e.

(5.8) τR0

(
1∣∣β̄∣∣x|β̄|

)
≤ τR0

(
1∣∣β̄∣∣y|β̄|

)
,

for all y > x > 0. Using definition (5.5) and since the new “clock” (5.2) is an increasing

function of calendar time (i.e. dγ(t0,t)
dt

> 0), equation (5.8) implies that

(5.9) τ0 (x) = γ−1

(
t0, τ

R
0

(
1∣∣β̄∣∣x|β̄|

))
≤ τ0 (y) = γ−1

(
t0, τ

R
0

(
1∣∣β̄∣∣y|β̄|

))
,

where γ−1 (·) is the inverse function of the deterministic time change (5.2).

Concerning the intensity of the Cox process, the inverse relation between the default

intensity and stock prices—defined by equations (2.7) and (2.8)—together with Proposition

5.1 imply that

(5.10) λ (l, Sl (y)) < λ (l, Sl (x)) ,

for all l ≥ t0. Hence, inequalities (5.9) and (5.10) yield

1

11{τ0(x)>t}

∫ t

t0

λ (l, Sl (x)) dl ≥
1

11{τ0(y)>t}

∫ t

t0

λ (l, Sl (y)) dl
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a.s., and, therefore, definition (5.7) implies that

(5.11) ζ̃ (x) ≤ ζ̃ (y) ,

for all y > x > 0.

Combining inequalities (5.9) and (5.11), inequality (5.6) follows immediately.�

Remark 5.1 Combining Propositions 5.1 and 5.2, we immediately conclude that the de-

faultable stock price is also an increasing function of its initial level:

(5.12) S∆
t (y) := St (y) 11{ζ(y)>t} > S∆

t (x) := St (x) 11{ζ(x)>t},

for all y > x > 0, and where S∆
t (x) denotes the time-t realization of the defaultable stock

price process {S∆
t , t ≥ t0} when such process is initialized at S∆

t0
= x.

Next proposition simply shows that, as expected, the discounted cum-dividend default-

able stock price process is a Q-martingale.

Proposition 5.3 Under the JDCEV model, and for any stopping time τ ∈ G [t0,∞[, the

stopped process

(5.13) z∆t∧τ (x) := e
−

∫ t∧τ
t0

r(l)dl
S∆
t∧τ (x) +

∫ t∧τ

t0

e
−

∫ v
t0

r(l)dl
q (v)S∆

v (x) dv

is a Q-martingale for all t ≥ t0.

Proof. Using the stochastic differential equation (2.10), and applying Itô’s formula to the

process (5.13), it follows that, for any time t ≥ t0,

(5.14) dz∆t (x) = e
−

∫ t
t0

r(l)dl [
S∆
t−λ
(
t, S∆

t−

)
dt+ S∆

t−σ
(
t, S∆

t−

)
dWt − S∆

t−dDt

]
.

Since, besides the Brownian motion, the compensator Mt = Dt −
∫ t

0
λ
(
u, S∆

u

)
du is also a

Q-martingale, equation (5.14) can be finally written with no drift,

dz∆t (x) = e
−

∫ t
t0

r(l)dl [
S∆
t−σ
(
t, S∆

t−

)
dWt − S∆

t−dMt

]
,
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and the stopped process (5.13) inherits the same martingale property from Doob’s optional

sampling theorem.�

Our last preliminary result concerns the positiveness of the American-style put price.

Proposition 5.4 Under the JDCEV model, the American-style put price process is strictly

positive, i.e.

(5.15) Vt

(
S∆, K, T ; 1

)
> 0,

for every
(
S∆, t

)
∈ [0,∞[× [t0, T ].

Proof. A lower bound for the optimal stopping problem (3.7) with ϕ = 1 is given by

vt0
(
S∆, K, T ; 1, ζ

)
:= EQ

[
e
−

∫ T∧ζ
t0

r(l)dl (
K − S∆

T∧ζ
)+∣∣∣Gt0

]
= v0t0

(
S∆, K, T ; 1

)
+ vDt0

(
S∆, K, T ; 1, ζ

)
,(5.16)

where

(5.17) v0t
(
S∆, K, T ; 1

)
:= EQ

[
e−

∫ T
t r(l)dl (K − ST )

+ 11{ζ>T}

∣∣∣Gt

]
is the time-t value of a European-style put contract on the stock price S∆, with strike price

K, maturity date T , and whose payoff is conditional on the survival of the underlying stock

until the maturity date T , while

(5.18) vDt
(
S∆, K, T ; 1, ζ

)
:= KEQ

(
e−

∫ ζ
t r(l)dl11{ζ≤T}

∣∣∣Gt

)
is the time-t value of the “recovery” payment (equal to the strike price) that occurs at the

default time ζ.

We note that for traded European-style puts, the “recovery” payoff K is paid not at

the default time ζ but rather at the expiry date of the put contract (time T ) because the

put can only be exercised at that time. Therefore, the lower bound (5.16) is not exactly a

plain-vanilla European-style put. Nevertheless, equations (3.7) and (5.16) imply that9

(5.19) Vt

(
S∆, K, T ; 1

)
≥ v0t

(
S∆, K, T ; 1

)
+ vDt

(
S∆, K, T ; 1, ζ

)
.

9A strict inequality is not obtained because it is possible that θ∗ = T ∧ ζ.
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We further note that

(5.20) vDt
(
S∆, K, T ; 1, ζ

)
> 0,

since it is easy to show that all the terms inside the integrand function of Carr and Linetsky

(2006, Equation 5.15)—including all the arguments of the standard gamma and Kummer

confluent hypergeometric functions (of the first kind) involved—are strictly positive unless

b (u) = c = 0 for all u.

Using inequality (5.20), and since v0t
(
S∆, K, T ; 1

)
≥ 0, then inequality (5.19) yields

Vt

(
S∆, K, T ; 1

)
≥ vDt

(
S∆, K, T ; 1, ζ

)
> 0,

and inequality (5.15) arises.�

Remark 5.2 In Section 3, and using equations (3.5) and (3.6), we have shown that the

exercise region is non-empty because
(
S∆, t

)
= (0, t) ∈ E , for all t ∈ [t0, T ]. Similarly,

Proposition 5.4 and definition (3.16) imply that
{(

S∆, t
)
∈ [K,∞[× [t0, T ]

}
⊂ C, i.e. all

stock price levels above the strike price belong to the continuation set. Therefore, it follows

that the continuation region C is also non-empty.

5.2. Existence and uniqueness

Using Propositions 5.1 to 5.4, and following Jacka (1991, Proposition 2.1), we can now prove

our main result: the existence of a unique early exercise boundary for the American-style

put under the most general time-inhomogeneous version of the JDCEV model.

Proposition 5.5 Under the JDCEV model, there exists a unique function t → E (t) such

that the continuation region of the American-style put is given by equation (3.19) for ϕ = 1.

Proof. Following Jacka (1991, Equation 2.2), for each t ∈ [t0, T ], the t section of C is given

by Ct :=
{
S∆ :

(
S∆, t

)
∈ C
}
. Hence, we just need to prove that the continuation region is

up-connected, i.e. that (x ∈ Ct) =⇒ (y ∈ Ct) for any y > x > 0, and for each t ∈ [t0, T ].
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Let

(5.21) θ∗ (x) = T ∧ τ ∗ (x) ∧ ζ (x) ,

where

(5.22) τ ∗ (x) := inf
{
u ∈ [t0, T ∧ ζ[ :

(
S∆
u (x) , u

)
/∈ C
}
,

be the optimal stopping time for the optimal stopping problem (3.1), when the process

{S∆
t , t ≥ t0} is initialized at S∆

t0
= x. Since θ∗ (x) is only a feasible (but not necessarily

optimal) stopping time when the process {S∆
t , t ≥ t0} is initialized at S∆

t0
= y, equation

(3.12) yields

Vt0 (y,K, T ; 1)− Vt0 (x,K, T ; 1)

= Vt0 (y,K, T ; 1)− EQ

[
e
−

∫ T∧τ∗(x)∧ζ(x)
t0

r(l)dl (
K − S∆

T∧τ∗(x)∧ζ(x) (x)
)+∣∣∣∣Gt0

]
≥ EQ

[
e
−

∫ T∧τ∗(x)∧ζ(x)
t0

r(l)dl (
K − S∆

T∧τ∗(x)∧ζ(x) (y)
)+∣∣∣∣Gt0

]
−EQ

[
e
−

∫ T∧τ∗(x)∧ζ(x)
t0

r(l)dl (
K − S∆

T∧τ∗(x)∧ζ(x) (x)
)+∣∣∣∣Gt0

]
= EQ

[
e
−

∫ T∧τ∗(x)∧ζ(x)
t0

r(l)dl
S∆
T∧τ∗(x)∧ζ(x) (x)

∣∣∣∣Gt0

]
−EQ

[
e
−

∫ T∧τ∗(x)∧ζ(x)
t0

r(l)dl
S∆
T∧τ∗(x)∧ζ(x) (y)

∣∣∣∣Gt0

]
+EQ

[
e
−

∫ T∧τ∗(x)∧ζ(x)
t0

r(l)dl (
K ∨ S∆

T∧τ∗(x)∧ζ(x) (y)
)∣∣∣∣Gt0

]
−EQ

[
e
−

∫ T∧τ∗(x)∧ζ(x)
t0

r(l)dl (
K ∨ S∆

T∧τ∗(x)∧ζ(x) (x)
)∣∣∣∣Gt0

]
,(5.23)

where the last equality arises because (a− b)+ = a ∨ b− b, for any a, b ∈ R.

Equation (5.12) implies that the sum of the last two terms on the right-hand side of

inequality (5.23) is nonnegative for any y > x, and, therefore, we are left with

Vt0 (y,K, T ; 1)− Vt0 (x,K, T ; 1)(5.24)

≥ EQ

[
e
−

∫ T∧τ∗(x)∧ζ(x)
t0

r(l)dl
S∆
T∧τ∗(x)∧ζ(x) (x)

∣∣∣∣Gt0

]
−EQ

[
e
−

∫ T∧τ∗(x)∧ζ(x)
t0

r(l)dl
S∆
T∧τ∗(x)∧ζ(x) (y)

∣∣∣∣Gt0

]
.
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Furthermore, Proposition 5.3 allows us to rewrite each term on the right-hand side of in-

equality (5.24) in terms of the initial state of the stock price,

Vt0 (y,K, T ; 1)− Vt0 (x,K, T ; 1)

≥ x− EQ

[∫ T∧τ∗(x)∧ζ(x)

t0

e
−

∫ v
t0

r(l)dl
q (v)S∆

v (x) dv

∣∣∣∣∣Gt0

]

−y + EQ

[∫ T∧τ∗(x)∧ζ(x)

t0

e
−

∫ v
t0

r(l)dl
q (v)S∆

v (y) dv

∣∣∣∣∣Gt0

]
≥ x− y,(5.25)

and the last inequality follows again from equation (5.12) and from the assumed nonnegat-

iveness of the dividend yield.

Given that inequality (5.25) is similar to Jacka (1991, Equation 2.4), the rest of the

proof follows immediately from Jacka (1991). More specifically, and assuming that (x ∈ Ct0),

definition (3.16) implies that

(5.26) Vt0 (x,K, T ; 1) > (K − x)+ .

Hence, inequalities (5.25) and (5.26) can be combined into

Vt0 (y,K, T ; 1) > (K − x)+ + x− y

≥ K − y.(5.27)

Consequently, and since Vt0 (y,K, T ; 1) > 0 from Proposition 5.4, then Vt0 (y,K, T ; 1) >

(K − y)+, and (y ∈ Ct0) as well.�

Proposition 5.5 proves the up-connectedness of the continuation region C: (x ∈ Ct) =⇒

(y ∈ Ct) for any y > x > 0, and for all t ∈ [t0, T ]. Hence, (y /∈ Ct) =⇒ (x /∈ Ct) as well,

and since E is the complement of C, then we can also conclude that the stopping region E is

down-connected (and, thus, closed by the orthogonal lines S∆ = 0 and t = T ). Furthermore,

note that the existence and uniqueness of the early exercise boundary was proved in Pro-

position 5.5 under the most general time-inhomogeneous formulation of the JDCEV model,

i.e. without the need of imposing any parameter restrictions.
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5.3. Monotonicity and continuity

Next propositions further characterize the early exercise boundary of the American-style

put as a nondecreasing and continuous function of calendar time, as long as some parameter

restrictions are satisfied by the JDCEV process.

Proposition 5.6 Under the JDCEV model, the early exercise boundary t → E (t) of the

American-style put is a nondecreasing function of calendar time if the following four condi-

tions are met:

(5.28)
dq (t)

dt
≤ [r (t)− r (t− u)] q (t) ,

(5.29)
dr (t)

dt
≥ [r (t)− r (t− u)] r (t) ,

(5.30)
db (t)

dt
≤ [r (t)− r (t− u)] b (t) ,

and

(5.31)
da (t)

dt
≤ 1

2
[r (t)− r (t− u)] a (t) ,

for all t ∈ [t0, T ] and u ∈ ]0, t− t0].

Proof. Definition (3.17) implies that it is only necessary to show that the map t →

Vt

(
S∆, K, T ; 1

)
is nonincreasing, under conditions (5.28) to (5.31). For this purpose, equa-

tion (3.5) can be restated as

(5.32)

EQ

[
e
−

∫ θ
t0

r(l)dl (
K − S∆

θ

)+∣∣∣Gt0

]
=
(
K − S∆

t0

)+
+ EQ

[∫ θ

t0

e
−

∫ u
t0

r(l)dl
H̄
(
u, S∆

u

)
du

∣∣∣∣Gt0

]
,

with

(5.33) H̄
(
u, S∆

u

)
= H

(
u, S∆

u

)
+

1

2
δ
(
S∆
u −K

) (
S∆
u

)2
σ2
(
u, S∆

u

)
,

because the local time (3.4) can be rewritten (in the distributional sense) as10

(5.34) LK
u

(
S∆
)
=

∫ u

t0

δ
(
S∆
u −K

) (
S∆
l

)2
σ2
(
l, S∆

l

)
dl,

10See, for instance, Protter (2005, Page 220).
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where δ (·) is the Dirac’s delta (generalized) function.

Following Monoyios and Ng (2011, Theorem 3.3), let t + v∗ (x), with v∗ (x) ≥ 0, denote

the optimal stopping time (3.13) for the initial state (x, t) ∈ C, with t ∈ ]t0, T ]. Combining

equations (3.12), (3.13) and (5.32), then

0 < Vt (x,K, T ; 1)− (K − x)+ = EQ

[∫ t+v∗(x)

t

e−
∫ u
t r(l)dlH̄

(
u, S∆

u

)
du

∣∣∣∣∣Gt

]

= EQ

[∫ v∗(x)

0

e−
∫ t+w
t r(l)dlH̄

(
t+ w, S∆

t+w

)
dw

∣∣∣∣∣Gt

]
,(5.35)

where the inequality arises because x ∈ Ct. Furthermore, and since the hitting time t0+v∗ (x)

might be sub-optimal for the starting state (x, t0), equations (3.12), (3.13) and (5.32) yield

Vt0 (x,K, T ; 1) ≥ EQ
[
Ψ
(
t0, t0 + v∗ (x) , S∆

t0+v∗(x); 1
)∣∣Gt0

]
≥ (K − x)+ + EQ

[∫ t0+v∗(x)

t0

e
−

∫ u
t0

r(l)dl
H̄
(
u, S∆

u

)
du

∣∣∣∣∣Gt0

]

≥ (K − x)+ + EQ

[∫ v∗(x)

0

e−
∫ t0+w
t0

r(l)dlH̄
(
t0 + w, S∆

t0+w

)
dw

∣∣∣∣∣Gt0

]
.(5.36)

Therefore, if we can show that the integrand function

(5.37) M
(
h, u, S∆

)
:= e−

∫ h+u
h r(l)dlH̄

(
h+ u, S∆

)
is nonincreasing in h (for all u ∈ [0,∞[), then the second term on the right-hand side of

inequality (5.36) will be not smaller than the right-hand side of equation (5.35), meaning

that

(5.38) Vt0 (x,K, T ; 1)− (K − x)+ ≥ Vt (x,K, T ; 1)− (K − x)+

for t0 < t, and, hence, that the map t → Vt (S,K, T ; 1) is nonincreasing.11

From definition (5.37), and to test the monotonicity of function M
(
h, u, S∆

)
, it follows

that

(5.39)

∂M
(
h, u, S∆

)
∂h

= e−
∫ h+u
h r(l)dl

{
[−r (h+ u) + r (h)] H̄

(
h+ u, S∆

)
+

∂H̄
(
h+ u, S∆

)
∂h

}
.

11Note that, in both cases, the stock price is initialized at the same level—i.e. S∆
t = x and S∆

t0 = x—and,

therefore, the monotonicity of function (5.37) is a sufficient condition to yield the inequality (5.38).
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Furthermore, multiplying both sides of equation (5.39) by e
∫ h+u
h r(l)dl and using equations

(2.7), (2.8), (3.6) and (5.33), we obtain, after some tedious algebra,

e
∫ h+u
h r(l)dl∂M

(
h, u, S∆

)
∂h

(5.40)

=

{
S∆
h+u

[
(r (h)− r (h+ u)) q (h+ u) +

dq (h+ u)

dh

]
−K

[
(r (h)− r (h+ u)) r (h+ u) +

dr (h+ u)

dh

]}
11{S∆

h+u<K}

+K

{[
(r (h)− r (h+ u)) b (h+ u) +

db (h+ u)

dh

]
+ca (h+ u)

(
S∆
h+u

)2β̄ [
(r (h)− r (h+ u)) a (h+ u) + 2

da (h+ u)

dh

]}
11{S∆

h+u≥K}

+
1

2
δ
(
S∆
h+u −K

)
a (h+ u)

(
S∆
h+u

)2+2β̄
[
(r (h)− r (h+ u)) a (h+ u) + 2

da (h+ u)

dh

]
.

Therefore, using the change of variables t = h + u, and since S∆, K, c, and a (·) are all

nonnegative, equation (5.40) implies that
∂M(h,u,S∆)

∂h
≤ 0 if conditions (5.28) to (5.31) are all

met.�

Remark 5.3 Note that equations (5.28) to (5.31) are only sufficient (but not necessary)

conditions for the monotonicity of the early exercise boundary.

Remark 5.4 Given the deterministic interest rate setup adopted, the time-t0 discount factor

for maturity at time t (≥ t0) can be stated as P (t0, t) := exp
[
−
∫ t

t0
r (l) dl

]
. Therefore, and

since the short-term interest rate is assumed to be nonnegative, then the discount function

is surely nonincreasing: ∂P (t0,t)
∂t

= −r (t)P (t0, t) ≤ 0. Moreover, condition (5.29) allows the

discount function to be either convex or concave as ∂2P (t0,t)
∂t2

=
[
r2 (t)− dr(t)

dt

]
P (t0, t) can be

nonnegative or nonpositive.

Remark 5.5 If the convexity of the discount function is further imposed, then the short-

term interest rate function must be such that dr(t)
dt

≤ r2 (t), and condition (5.29) implies that

dr(t)
dt

can be positive, negative or zero. Therefore, and even though the functions t → b (t)

and t → a (t) are nonnegative, the right-hand side of both inequalities (5.30) and (5.31) can

be positive or negative, and, hence, equations (2.7) and (2.8) imply that the default intensity

(2.8) can be both an increasing or a decreasing function of calendar time.
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Remark 5.6 Conditions (5.28) to (5.31) are trivially satisfied for constant parameters r,

q, a, and b. Consequently, and as expected, the early exercise boundary t → E (t) of the

American-style put is surely nondecreasing under the time-homogeneous JDCEV specification

defined in Carr and Linetsky (2006, Remark 5.1).

As usual, and following, for instance, Detemple and Kitapbayev (2017, Page 12), the

nondecreasing nature of the map t → E (t) and the fact that E is closed both yield the

right-continuity of the early exercise boundary.

Proposition 5.7 Under the JDCEV model, the early exercise boundary t → E (t) of the

American-style put is a right-continuous function of calendar time if conditions (5.28) to

(5.31) are met.

Proof. We need to show that E (t+) = E (t), for any t ∈ [t0, T [, where E (t+) := limu↓tE (u)

is the right limit of E at t. For this purpose, let {tn}n≥1 be a decreasing sequence of dates such

that tn ↓ t as n → ∞. Since (E (tn) , tn) ∈ E , for all n ≥ 1, and (E (tn) , tn) → (E (t+) , t) as

n → ∞, then the closedness of E implies that (E (t+) , t) ∈ E . Therefore, E (t+) ≤ E (t) by

definition (3.18)—with ϕ = 1.

However, by Proposition 5.6, and since conditions (5.28) to (5.31) are assumed to be met,

the map t → E (t) is nondecreasing, and, hence, E (t+) ≥ E (t). Consequently, we must

have E (t+) = E (t), for all t ∈ [t0, T [.�

The proof of the left-continuity of the early exercise boundary will be based on Lamberton

and Mikou (2008, Theorem 4.2) and, therefore, will have to be restricted to a JDCEV setup

with strictly positive interest rates. This result is important because the optimal stopping

approach—followed, for instance, by Nunes (2009, Proposition 5)—assumes the continuity of

the early exercise boundary in order to recover the first passage time density of the underlying

stock price through the stopping region.

Proposition 5.8 Under the JDCEV model, the early exercise boundary t → E (t) of the

American-style put is a left-continuous function of calendar time if conditions (5.28) to

(5.31) are met and if r (u) > 0 for all u ∈ [t0, T [.
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Proof. Using the stochastic differential equation (2.5), and applying the Itô’s formula to

any function f ∈ C1,2, it follows that

(5.41) df
(
t, S∆

t

)
= Af

(
t, S∆

t

)
dt+ S∆

t σ
(
t, S∆

t

)
dWt −

[
f
(
t−, 0

)
− f

(
t−, S∆

t−

)]
dMt,

where

Af (t, x) :=
∂f (t, x)

∂t
+ [r (t)− q (t) + λ (t, x)] x

∂f (t, x)

∂x
(5.42)

+
1

2
x2σ2 (t, x)

∂2f (t, x)

∂x2
+ [f (t, 0)− f (t, x)]λ (t, x)

is the infinitesimal generator of S∆. Taking f
(
t, S∆

t

)
= Vt

(
S∆, K, T ; 1

)
and since the dis-

counted price process of an American-style option must be aQ-martingale in the continuation

region C, equations (5.41) and (5.42) yield the following partial integro-differential equation

(PIDE, hereafter):

(5.43)
∂Vt

(
S∆, K, T ; 1

)
∂t

+ LVt

(
S∆, K, T ; 1

)
+Kλ

(
t, S∆

t

)
= 0

for
(
S∆, t

)
∈ C, and where L is the differential operator

(5.44)

L :=
[
r (t)− q (t) + λ

(
t, S∆

t

)]
S∆
t

∂

∂S∆
t

+
1

2

(
S∆
t

)2
σ2
(
t, S∆

t

) ∂2

∂S∆2

t

−
[
r (t) + λ

(
t, S∆

t

)]
.

Of course, it is well known that the American put price is not smooth, and, therefore, the

PIDE (5.43) must be understood in a weaker sense—for instance, in the viscosity sense of

Pham (1998, Theorem 3.1).

We can now prove the left-continuity of the map t → E (t) by contradiction. For this

purpose, suppose that the early exercise boundary is (left) discontinuous at time u ∈ [t0, T [,

i.e.

(5.45) E (u−) < E (u) ,

where E (u−) := liml↑u E (l) is the left limit of E at u. Using definition (3.19) and Pro-

position 5.6, it follows that the set U :=
{(

S∆, t
)
∈ ]E (u−) , E (u)[× [t0, u[

}
belongs to

the continuation region, and, therefore, equation (5.43) is valid for any
(
S∆, t

)
∈ U ⊂ C.

Moreover, the nonincreasing nature of the map t → Vt

(
S∆, K, T ; 1

)
implies that

(5.46) LVt

(
S∆, K, T ; 1

)
+Kλ

(
t, S∆

t

)
= −

∂Vt

(
S∆, K, T ; 1

)
∂t

≥ 0
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for any
(
S∆, t

)
∈ U . Since both

(5.47) Vu (x,K, T ; 1) = K − x,

and inequality (5.46) hold for x ∈ ]E (u−) , E (u)[, then definition (5.44) yields

[r (u)− q (u) + λ (u, x)]x× (−1)− [r (u) + λ (u, x)] (K − x) +Kλ (u, x)

= q (u)x− r (u)K

≥ 0(5.48)

for x ∈ ]E (u−) , E (u)[.

In opposition, and given the nondecreasing nature of the map t → E (t), the set V :={(
S∆, t

)
∈ ]0, E (u)[× ]u, T [

}
belongs to the exercise region, and, hence, we must have

LVt

(
S∆, K, T ; 1

)
+Kλ

(
t, S∆

t

)
≤ −

∂Vt

(
S∆, K, T ; 1

)
∂t

≤ 0(5.49)

for any
(
S∆, t

)
∈ V ⊂ E , because, in E , the discounted price process of an American-

style option must be a supermartingale under the risk-neutral measure and the theta of the

American-style put is zero.12 Since both equations (5.47) and (5.49) hold on the set V , then

definition (5.44) yields

(5.50) q (u)x− r (u)K ≤ 0

for x ∈ ]0, E (u)[.

Combining inequalities (5.48) and (5.50), then

(5.51) q (u)x = r (u)K

for x ∈ ]E (u−) , E (u)[. Consequently, and if q (u) > 0, then function x → q (u) x is strictly

increasing in [x,E (u)[, which contradicts equation (5.51). Otherwise (i.e. if q (u) = 0), and

since r (u) > 0, then equation (5.51) can not prevail either.13�
12Again, please note that the partial integro-differential inequality (5.49) should be interpreted in a

distributional—e.g. Jaillet, Lamberton, and Lapeyre (1990)—or in a viscosity sense—see, for instance,

Pham (1998).
13Left-continuity has only been proved for strictly positive interest rates because equation (5.51) would be

trivially satisfied if r (u) = q (u) = 0.
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In both Propositions 5.7 and 5.8, the analysis was restricted to the time interval [t0, T [

but the early exercise boundary is also continuous at the maturity date because

(5.52) E (T ) = lim
u↑T

E (u) .

Moreover, next proposition shows that E (T ) possesses the usual structure obtained, for

instance, in Van Moerbeke (1976).

Proposition 5.9 Under the JDCEV model, the early exercise boundary at the maturity date

of the American-style put is equal to

(5.53) E (T ) = K ∧ r (T )

q (T )
K,

as long as t → r (t), t → q (t), t → a (t) and t → b (t) are all continuous functions of time

and if r (u) > 0 for all u ∈ [t0, T ].

Proof. This proof follows closely the proof of Lamberton and Mikou (2008, Theorem 4.4).

Since it is not rational to exercise an out-of-the-money option (that would yield a zero

payoff), then we must have

(5.54) E (T ) ≤ K.

Additionally, and following the same steps as in the proof of Proposition 5.8, it is easy to show

that inequality (5.50) is valid in the exercise region E , i.e. for u ∈ ]t0, T [ and x ∈ ]0, E (u)[.

Hence, and using the continuity of the functions t → r (t) and t → q (t), it follows that

(5.55) q (T ) x− r (T )K ≤ 0,

for all x ∈ ]0, E (T )[.

In opposition, and as also shown in the proof of Proposition 5.8, inequality (5.46) is valid

in the continuation region C, i.e. for t ∈ ]t0, T [ and x ∈ ]E (t) ,∞[. Therefore, and since

lim
t↑T

[
LVt

(
S∆, K, T ; 1

)
+Kλ

(
t, S∆

t

)]
= L

(
K − S∆

T

)+
+Kλ

(
T, S∆

T

)
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follows (in the sense of distributions) from the continuity of the functions t → a (t) and

t → b (t), we must have

(5.56) L (K − x)+ +Kλ (T, x) ≥ 0,

for x ∈ ]E (T ) ,∞[. Furthermore, for x ∈ [0, K[, and using definition (5.44), it follows that

L (K − x)+ = L (K − x)

= q (T )x− r (T )K −Kλ (T, x) ,

and, hence, inequality (5.56) yields

(5.57) q (T ) x− r (T )K ≥ 0,

for all x ∈ ]E (T ) ,∞[ ∩ [0, K[.

Hereafter, the left-hand side of inequalities (5.55) and (5.57) will be represented by the

function ηT (x) := q (T )x−r (T )K. If q (T ) ≤ r (T ) and q (T ) > 0, then ηT (K) = q (T )K−

r (T )K ≤ 0. Moreover, and since ∂ηT (x)
∂x

= q (T ) > 0, it follows that ηT (x) < 0 for all

x ∈ [0, K[. Therefore, equations (5.54) and (5.57) imply that E (T ) = K. Likewise, if

q (T ) ≤ r (T ) but q (T ) = 0, then ηT (x) = −r (T )K < 0 (as r (T ) > 0) for all x ∈ [0, K],

and again equations (5.54) and (5.57) imply that E (T ) = K. In opposition, if q (T ) > r (T ),

then ηT (K) > 0 and ηT (0) = −r (T )K < 0. Consequently, and since ∂ηT (x)
∂x

= q (T ) > 0

(as r (T ) > 0), it follows that equation ηT (x) = 0 possesses a unique solution in ]0, K[.

Moreover, equations (5.55) and (5.57) imply that such unique solution must be obtained at

x = E (T ), i.e. must be equal to E (T ) = r(T )
q(T )

K.�

6. Numerical examples

We now give numerical examples of early exercise boundaries under the simpler time-

homogeneous version of the JDCEV model that nests, as a special case, the well known

CEV specification. Similarly to Carr and Linetsky (2006), Ruas, Dias, and Nunes (2013),

Dias, Nunes, and Ruas (2015), and Nunes, Ruas, and Dias (2015), we calibrate the (con-

stant) volatility scale parameter a such that the initial instantaneous volatility is the same
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across different models. More specifically, we assume an initial stock price reference level

St0 = 100 and a volatility (at that reference level) equal to σ (t0, St0) ≡ σt0 = 0.20. Then,

the volatility scale parameter a to be used in our set of applications with different β̄ values

is adjusted to a = σt0S
−β̄
t0 . Moreover, we assume the options contracts expire in one year

(T − t0 = 1), the strike price is 100 (K = 100), the risk-free rate is 6% (r = 0.06), and the

dividend yield is 3% (q = 0.03).

Our main interest is in the dependence of the early exercise boundary on the parameters

β̄, b and c governing the local volatility function (2.7) and the default intensity (2.8). This

will allow us to shed some economic insights on the early exercise behavior of traders. To

accomplish this purpose, we deploy three values of β̄ to show its effect on the early exercise

boundary: β̄ ∈ {−0.5,−1.0,−1.5}; then, we obtain a ∈ {2, 20, 200}, respectively. Further-

more, and for each β̄ value, we consider five different combinations of the two parameters b

and c. Therefore, a constellation of fifteen option contracts is obtained. The standard CEV

model (with b = c = 0) is considered for comparative purposes. We further consider the

cases with b = 0 or b = 0.02 (adding, in the latter specification, 2% per annum to the default

intensity) and c = 0.5 or c = 1. For instance, the case with c = 1 (coupled with the initial

reference levels St0 = 100 and σt0 = 0.20) provides a contribution to the default intensity due

to the variance term c σ2 (t0, St0) of 0.04. Following this line of reasoning, we easily get the

set of five initial default intensity values for each chosen β̄: λ ∈ {0, 0.02, 0.04, 0.04, 0.06}. We

recall that as the stock price falls (resp., increases), the implied volatility increases (resp.,

decreases) and the default intensity also increases (resp., decreases). Hence, such variance

term is intended to capture the positive correlation between default probabilities (or CDS

spreads) and equity volatilities observed in the credit markets.

[Please insert Figure 1 about here.]

Figure 1 plots the early exercise boundary of standard American-style put option con-

tracts as a function of calendar time. We note that each early exercise boundary is obtained

through the static hedge portfolio procedure offered by Ruas, Dias, and Nunes (2013, Section

3.2) using 256 evenly-spaced time points. At the maturity date T = 1 the early exercise
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boundary does not depend on the parameters β̄, b and c and is simply equal to the strike

price K (given the choice made for r and q)—cf. Proposition 5.9. Moreover, near expiry

there are no markedly differences between the different early exercise boundaries. This is

consistent with the asymptotic analysis offered by Chung and Shih (2009, Section 4) and

Ruas, Dias, and Nunes (2013, Section 4) when deriving the early exercise boundary near

expiration under the standard CEV and JDCEV models, respectively. However, as we move

farther away from the maturity date T to the inception date of each contract (t0 = 0) we

observe that the choice of the parameters β̄, b and c influences significantly the level of the

early exercise boundary, thus providing important economic insights about its behavior.

Let us first analyze the impact of β̄ on the early exercise boundary (maintaining b and

c fixed). As expected, Figure 1 reveals that as the β̄ value falls the early exercise boundary

decreases. The economic rationale for this result is justified by the observation that as the

β̄ parameter departs from the limiting geometric Brownian motion process (i.e. β̄ = 0),

the probability of the predefault stock price hitting the zero default boundary—via diffusion

only under the standard CEV process or accommodating the possibility of a sudden jump

to default under the JDCEV modeling setup—becomes higher. Hence, the early exercise

boundary falls as a consequence of the increasing killing probability. We recall also that

since all the contracts were calibrated such that they possess the same initial volatility,

the differences found throughout the numerical analysis stem purely from the effect of the

relationship between volatility and price levels, which is captured by the CEV volatility

specification (2.7).

While the standard CEV model is able to address the volatility smile effect commonly

found in equity options markets, the default probability is unrealistically small for empirically

reasonable values of the parameters β̄ and a attached to the CEV stock price volatility

function. The default extended CEV stock price process provides a much more reasonable

modeling framework mainly because it endogenizes the hazard rate (2.8) by assuming that it

is affine in a negative power of the defaultable stock price and, therefore, it captures several

stylized features such as the negative relation between equity prices and equity volatility, the

negative relationship between default intensity and equity prices, and the positive correlation
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between default probability and equity volatility. Hence, it is also noteworthy to consider

the impact of the b and c parameters on the early exercise boundary (while keeping β̄ fixed).

Figure 1 highlights that the early exercise boundary under the standard CEV model

specification (i.e. with b = c = 0, and, hence, λ = 0) is clearly above the remaining early

exercise boundaries, i.e. early exercise under the CEV model occurs sooner. For any given

β̄ value, we observe that increasing b and c decreases the early exercise boundary (contracts

#3 and #4 for each β̄ parameter are almost indistinguishable since they possess the same

default intensity, i.e. λ = 0.04). We recall that even though the CEV process (with β̄ < 0)

can hit the zero default boundary with positive probability, such killing probability (via

diffusion only) is generally quite small. In contrast, this default probability is substantially

increased under the JDCEV framework, since default can also arrive as an unexpected event.

Therefore, increasing b and c augments the default probability and, as a result, the early

exercise boundary falls. This suggests that a trader may incorrectly follow a premature

exercise strategy when ignoring the possibility of default as a surprise event. Consequently,

the trader may sacrifice much of the value of the option contract by exercising the American-

style put too soon.

7. Conclusion

The valuation of American-style standard options under the JDCEV framework is already

well established in the literature, but the existence of the associated early exercise boundary

has never been proved. This paper fills this gap. For calls, the existence of the early

exercise boundary is based on Detemple and Tian (2002, Proposition 1). For put options,

the existence, uniqueness, monotonicity, and continuity of the early exercise boundary follows

from Jacka (1991, Proposition 2.1), Lamberton and Mikou (2008, Theorem 4.2), Monoyios

and Ng (2011, Theorem 3.3), and from well known properties of Bessel processes.

The numerical tests run show that ignoring the possibility of default as a surprise event

will lead to suboptimal exercise strategies.
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