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We solve the dilaton field equation in the background of a spherically symmetric black hole in type II
superstring theory with α03 corrections in arbitrary d spacetime dimensions. We then apply this result to
obtain a spherically symmetric black hole solution with α03 corrections, in superstring theory compactified
on a torus, coupled to such dilaton. For this black hole we obtain its mass, entropy, temperature, specific
heat, and free energy.
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I. INTRODUCTION

A frequently considered effect of string theory is the
result of corrections in the inverse string tension α0 in the
form of higher derivative terms in the effective action.
Naturally, such corrections are also manifest in solutions to
the field equations from such actions.
String α0 corrections to black hole solutions has been a

very active topic of research, in different dimensions and
for many kinds of black holes. Concerning spherically
symmetric d-dimensional black holes, curvature–squared
corrections (first order in α0) were first obtained in [1];
those were the leading corrections in bosonic and heterotic
string theories. Higher order corrections, quartic in the
Riemann tensor (third order in α0) to the same black holes
were obtained in [2]; these are the leading corrections in
type II superstring theories.
In article [3] we studied the effects of string compacti-

fication on a torus from 10 (or 26) to arbitrary d dimensions
on spherically symmetric black holes with corrections of
order α0, as those considered in [1]. In this article, we
extend such study to black holes of the same type but with
α03 corrections, as those considered in [2].
These solutions may be written both in the string and

Einstein frames. In order to pass from one frame to another,
one must perform a conformal transformation involving the
dilaton field. Therefore in our case we should determine the
solution to the dilaton in the background of an α03-corrected
spherically symmetric black hole.

The article is organized as follows: in Sec. II, we will
solve the dilaton field equation in d dimensions, in the
background of a spherically symmetric black hole, in the
presence of curvature corrections of order α03. In Sec. III
we revise the α03-corrected noncompactified solution of [2]:
we obtain some of its thermodynamical properties (mass,
entropy, temperature, specific heat, and free energy); a few
of which had never been previously computed. In Sec. IV
we present the calculations leading to the α03-corrected
d-dimensional solution compactified on a torus. Finally, in
Sec. V we rederive the same thermodynamical properties
for the black hole solution obtained in Sec. IV, and we
compare with the results of Sec. III, evaluating the effects of
the compactification.

II. THE DILATON IN THE BACKGROUND
OF A d-DIMENSIONAL BLACK HOLE

WITH α03 CORRECTIONS

The most general static, spherically symmetric metric in
d spacetime dimensions can be written in spherical coor-
dinates as

ds2 ¼ −fðrÞdt2 þ g−1ðrÞdr2 þ r2dΩ2
d−2: ð1Þ

f, g are arbitrary functions of the radius r; dΩ2
d−2 ¼P

d−1
i¼2

Q
i−1
j¼2 sin

2θjdθ2i is the element of solid angle in
the (d − 2)-sphere. For pure Einstein-Hilbert gravity in
vacuum, the solution to the Einstein equations is [4]

fðrÞ ¼ gðrÞ ¼ 1 −
�
RH

r

�
d−3

; ð2Þ

RH being the horizon radius. This is the d-dimensional
extension of Schwarzschild’s solution.
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We are interested in extending this solution in the presence of a dilaton, but considering string-theoretical α0 corrections.
The effective action we are thus considering, in the Einstein frame, is given by

1

16πG

Z ffiffiffiffiffiffi
−g

p �
R −

4

d − 2
ð∂μϕÞ∂μϕþ λ0e 4

d−2ð1þwÞϕYðRÞ þ Lmatter

�
ddx: ð3Þ

Here, YðRÞ is a scalar polynomial in the Riemann tensor
representing the leading higher derivative string corrections
to the metric tensor field, and w is its conformal weight,
with the convention that wðgμνÞ ¼ þ1 and wðgμνÞ ¼ −1. ϕ
is the dilaton field, and λ0 is, up to a numerical factor, the
suitable power of the inverse string tension α0 for YðRÞ.
Lmatter contains terms, up to the same order in α0, including
other fields than the metric and the dilaton, depending on
the type of superstring theory we are considering. In this
article we are only considering gravitational α0 corrections:
therefore we can consistently settle Lmatter to zero.

Defining Tμν ¼ δYðRÞ
δgμν , the equations of motion for the

dilaton and metric obtained from (3) are

∇2ϕ −
λ0

2
YðRÞ ¼ 0; ð4Þ

Rμν −
1

2
gμνR ¼ λ0Tμν þ

1

2
λ0YðRÞgμν: ð5Þ

In both equations abovewe have eliminated certain terms
involving powers of ϕ (namely, we have omitted the factor

e
4

d−2ð1þwÞϕ, taking it equal to 1), since those terms would
only contribute at higher orders in our perturbative para-
meter λ0.
In this article we are focusing in particular on curvature

corrections of order α03, which are present in general in
string theories, and in particular are the leading corrections
in type II superstring effective actions [5]. In this case,

λ0 ¼ ζð3Þ
16

α03, ζðsÞ being the Riemann zeta function, and

YðRÞ¼ 2RμνρσRλ
νρ

τRμηθλRτ
ηθ

σ þRμνρσRλτ
ρσRμηθλRτ

ηθ
ν:

ð6Þ

We are interested in computing the first λ0 corrections to
ϕ and gμν, using (4) and (5), taking (1) with fðrÞ ¼ gðrÞ as
the λ0 ¼ 0 metric and working perturbatively in λ0. In
particular we take the λ0 ¼ 0 metric in order to compute
YðRÞ, since this term is already multiplied by λ0, obtaining

YðRÞ ¼ 6ðd − 4Þðd − 3Þðd − 2Þ ð1 − fÞ4
r8

þ 4ðd − 3Þðd − 2Þ ð1 − fÞ2f02
r6

− 2ðd − 3Þðd − 2Þ ð1 − fÞf03
r5

þ ðd − 2Þ2
4

f04

r4
þ ðd − 2Þ f

03f00

r3
þ ðd − 2Þ f

02f002

r2
: ð7Þ

One also has ∇μ∇μϕðrÞ ¼ ðfϕ0Þ0 þ d−2
r fϕ0, from which

we get rd−2∇μ∇μϕðrÞ ¼ ðrd−2fϕ0Þ0. Putting everything
together, replacing fðrÞ by (2) and defining

Bd≡ 2ðd− 3Þðd− 2Þð4d4− 51d3þ 242d2− 489dþ 330Þ;
ð8Þ

we write (4) as

ððrd−2 − Rd−3
H rÞϕ0Þ0 ¼ ζð3Þ

16
α03

ðd − 1ÞBd

8

R4d−12
H

r3d−2
: ð9Þ

We simply integrate this equation, obtaining

ðrd−2 − Rd−3
H rÞϕ0 ¼ −

ζð3Þ
16

α03
Bd

24

R4d−12
H

r3d−3
− ðd − 3ÞΣ: ð10Þ

The integration constant Σ, as will become clear below,
is the dilatonic charge. Integrating again, defining the
incomplete Euler beta function as Bðx; a; bÞ ¼R
x
0 t

a−1ð1 − tÞb−1dt, and further defining from now on

z ¼ ζð3Þ
16

α03
R6
H
, we find1

ϕðrÞ ¼ −
Σ

Rd−3
H

ln

�
1 −

�
RH

r

�
d−3

�
− z

Bd

24

�
1

6

�
RH

r

�
6

þ 1

dþ 3

�
RH

r

�
dþ3

þ 1

2d

�
RH

r

�
2d
þ 1

3d − 3

�
RH

r

�
3d−3

−
1

d − 3
B

��
RH

r

�
d−3

;
6

d − 3
; 0

��
: ð11Þ

1This solution may also be expressed in terms of the hypergeometric function 2F1, since the relation 6
d−3BððRH

r Þd−3; 6
d−3 ; 0Þ ¼

ðRH
r Þ

6
d−3

2F1ð 6
d−3 ; 1; 1þ 6

d−3 ; ðRH
r Þd−3Þ is valid.
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At the horizon one only has a coordinate (but not curvature)
singularity. From (4), this means that also ϕðrÞ and ϕ0ðrÞ
must be nonsingular at RH. From (10) we see that, in order
to avoid ϕ0 becoming infinite at r ¼ RH, Σ must take a
precise value, given by

Σ ¼ −
Bd

24ðd − 3Þ zR
d−3
H : ð12Þ

Equation (11) with Σ given by (12) is the solution for the
dilaton in the background of a spherically symmetric black
hole with α03 corrections in d dimensions. This dilaton
solution acts as secondary hair, since it does not introduce
any new physical parameter besides the ones of the
black hole.
While integrating (10), we chose the integration constant

so that, at asymptotic infinity, the dilaton vanishes. For
large r, ϕ is approximately given by

ϕðrÞ ≈ Σ
Rd−3
H

Xþ∞

n¼1

�
RH

r

�ðd−3Þn
þ z

Bd

48

�
1

2d − 3

�
RH

r

�
2d−3

þ 2

5d − 9

�
RH

r

�
5d−9

þ…

�
: ð13Þ

Taking the first term in the series from the logarithm in (13), ϕðrÞ ≈ Σ
rd−3

, one can verify that Σ has the meaning of a dilatonic
charge.
At the horizon, ϕ is indeed regular and given by2

ϕðRHÞ ¼ −
Bd

24ðd − 3Þ z
��

ψ ð0Þ
�

6

d − 3

�
þ γ

�
þ ðd − 3Þðdþ 1Þðd2 þ 12d − 9Þ

6dðdþ 3Þðd − 1Þ
�
: ð14Þ

From (10) and (12), the derivative of the dilaton field is
given by

ϕ0ðrÞ ¼ Bd

24
z
Rd−3
H

rd−2
1 − ðRH

r Þ3d−3
1 − ðRH

r Þd−3
:

Since Bd > 0 for d ≥ 4, we see by inspection that ϕ0ðrÞ is a
strictly positive function for r > RH; we conclude that,
outside the horizon, ϕ grows between ϕðRHÞ given by (14)
and 0, its value at infinity.
Comparing to the result for the dilaton in the same

background but with α0 corrections obtained in [3], one can
find the same leading term − Σ

Rd−3
H

ln ð1 − ðRH
r Þd−3Þ, obtained

in the same way [an integration constant after the first
integration of (4)], but with a different value of the dilaton
charge Σ. It was also found a dependence on the incomp-
lete beta function, but with a different argument:
BððRH

r Þd−3; 2
d−3 ; 0Þ. The α0 corrections considered in [3]

were of the same form as (3), but with YðRÞ quadratic in
the Riemann tensor, verifying YðRÞ ∝ ðRH

r Þ2d−2. In our case
with α03 corrections we got YðRÞ ∝ ðRH

r Þ4d−4 and a depend-
ence on BððRH

r Þd−3; 6
d−3 ; 0Þ. It is logical to conjecture that,

with ðα0Þn corrections and in the same background, one

should get YðRÞ ∝ ðRH
r Þðn−1Þðd−1Þ and a dependence on

BððRH
r Þd−3; 2n

d−3 ; 0Þ by the dilaton. The fraction 2n
d−3 is an

integer for d ¼ 4, 5 and a half-integer for d ¼ 7; for these
values of d the function BððRH

r Þd−3; 2n
d−3 ; 0Þ can always be

written in terms of elementary functions of calculus. For
other values of d that may be possible, depending on n. In
the case n ¼ 3 we are considering, that is possible for
d ¼ 4, 5, 6, 7, 9, and 15. For the case d ¼ 15, the system
cannot result from a compactification of a superstring
theory, formulated originally in 10 spacetime dimensions.
It may result from a compactification of bosonic
string theory, although in this case the leading corrections
are not of order α03, but of order α0, like those considered
in [3].

III. THE α03-CORRECTED SPHERICALLY
SYMMETRIC BLACK HOLE

After having obtained the α03-corrected dilaton, it would
be interesting to obtain the α03 corrections to the black hole
solution to which it couples; those would be the leading α0
corrections in type II superstring theory for arbitrary d.
As we mentioned, α0 corrections have first been obtained

to first order for generic d in [1], but these corrections
happen to vanish (in the Einstein frame) precisely for
d ¼ 4. This vanishing can be understood from the fact that
such α0 corrections are given by the Gauss-Bonnet combi-
nation R2

GB ≔ RμνρσRμνρσ − 4RμνRμν þR2. In d ¼ 4

(and in the Einstein frame) this term is topological and
therefore it does not contribute to the metric field equations.
Therefore, for d ¼ 4 the α03 corrections we are considering

2The digamma function is given by ψðzÞ ¼ Γ0ðzÞ=ΓðzÞ, ΓðzÞ
being the usual Γ function. For positive n, one defines
ψ ðnÞðzÞ ¼ dnψðzÞ=dzn. This definition can be extended for other
values of n by fractional calculus analytic continuation. These are
meromorphic functions of z with no branch cut discontinuities.
γ is Euler’s constant, defined by γ ¼ limn→∞ð

P
n
k¼1

1
k − ln nÞ,

with numerical value γ ≈ 0.577 216.
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are the leading corrections to a spherically symmetric black
hole even in bosonic and heterotic string theories.
As we saw, a metric including such corrections would be

of the form (1), with

fðrÞ ¼
�
1 −

�
RH

r

�
d−3

�
ð1þ 2zμðrÞÞ;

gðrÞ ¼
�
1 −

�
RH

r

�
d−3

�
ð1 − 2zεðrÞÞ: ð15Þ

The factor 1 − ðRH
r Þd−3 represents the α0 ¼ 0 Tangherlini

solution (2); the functions μðrÞ, εðrÞ, to be determined,
encode the z corrections.
That solution for the Lagrangian we are considering was

obtained in [2], in a system of coordinates such that the
horizon radius RH is fixed and has no α0 corrections. The
result is of the form (15), with

εðrÞ ¼ Dd

�
RH

r

�
3d−3

þ Ed

�
RH

r

�
d−3 1 − ðRH

r Þ2d
1 − ðRH

r Þd−3
; ð16Þ

μðrÞ ¼ −εðrÞ − Cd

�
RH

r

�
3d−3

; ð17Þ

and having defined

Cd ¼
32

3
ðd − 3Þðd − 1Þð2d3 − 10d2 þ 6dþ 15Þ;

Dd ¼ −
2

3
ðd − 3Þð52d4 − 375d3 þ 758d2 − 117d − 570Þ;

Ed ¼
2

3
ðd − 3Þð72d5 − 652d4 þ 2079d3

− 2654d2 þ 837dþ 570Þ: ð18Þ
In the same article, the α03-corrected black hole mass was
obtained as

M ¼ ½1 − 2zEd�
ðd − 2ÞΩd−2

16πG
Rd−3
H : ð19Þ

The temperature of a black hole of the form (15) is
obtained, to first order in z, from

T ¼ lim
r→RH

ffiffiffi
g

p
2π

d
ffiffiffi
f

p
dr

¼ d − 3

4πRH
½1þ zðμðRHÞ − εðRHÞÞ�: ð20Þ

In our case, the result is given by

T ¼ d − 3

4πRH
½1 − zFd�;

Fd ¼ Cd þ 2Dd þ
4d

d − 3
Ed: ð21Þ

The black hole entropy for this solution was not studied
in [2], but it can be obtained using Wald’s formula [6]

S ¼ −2π
Z
H

∂L
∂Rμνρσ ε

μνερσ
ffiffiffi
h

p
dΩd−2; ð22Þ

where H is the black hole horizon, with area AH ¼
Rd−2
H Ωd−2 and metric hij induced by the spacetime metric

gμν. For the metric (1), the nonzero components of the

binormal εμν to H are εtr ¼ −εrt ¼ −
ffiffi
g
f

q
. From the λ0-

corrected effective action (3) one also needs

8πG
∂L

∂Rμνρσ ¼
1

4
ðgμρgσν − gμσgρνÞ þ e

4
d−2ð1þwÞϕλ0

∂YðRÞ
∂Rμνρσ :

Taking only nonvanishing components from the equation
above and considering now the α03 correction (6) with
conformal weight w ¼ −4, one gets

8πG
∂L

∂Rμνρσ ε
μνερσ ¼ 4 × 8πG

∂L
∂Rtrtr ε

trεtr ¼
�
−
f
g
þ e−

12
d−2ϕλ0

2ðd − 2Þðf0Þ2ðf0 þ 2rf00Þ
r3

�
g
f
:

The λ0-corrected term must be evaluated at order λ0 ¼ 0. At this order ϕ ¼ 0, f ¼ g (given by (2)) and

2ðd − 2Þðf0Þ2ðf0 þ 2rf00Þ ¼ − 2ðd−2Þðd−3Þ2ð2d−5Þ
R3
H

ðRH
r Þ3d−6. Taking this term evaluated at the horizon and replacing λ0 by z,

one therefore gets for the α03-corrected entropy

S ¼ 1

4G

Z
H
ð1þ 2ðd − 2Þðd − 3Þ2ð2d − 5ÞzÞ

ffiffiffi
h

p
dΩd−2 ¼

AH

4G
ð1þ 2ðd − 2Þðd − 3Þ2ð2d − 5ÞzÞ: ð23Þ

One can obtain the black hole free energy through the relation F ¼ M − TS:

F ¼ ½1þ zGd�
Ωd−2

16πG
Rd−3
H ;

Gd ¼
2

3
ðd − 3Þð144d6 − 1232d5 þ 3622d4 − 4021d3 þ 278d2 þ 3003d − 1830Þ: ð24Þ

The black hole specific heat is given by C ¼ T ∂S
∂T. Since for the expressions we obtained only the horizon radius is a

variable, we may fully express T and S as functions of RH and vice versa (including the contribution from z ¼ λ0
R6
H
). We then

have
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C ¼ T
dS
dRH

dT
dRH

: ð25Þ

In our case, we get

C ¼ −ðd − 2ÞAH

4G
½1þ zHd�;

Hd ¼ 2ð2d − 5Þðd − 3Þ2ðd − 8Þ þ 6Fd: ð26Þ

It is useful to express the physical quantities we have
been computing in a covariant way, in terms of global
charges of the black hole, and not in terms of quantities that
may depend on the system of coordinates. For the solution
we are considering, the most obvious choice is to express
those quantities in terms of the black hole mass M. In
order to do this, we invert (19), obtaining to first order in
the perturbative parameter z (which we also express in
terms of M)

RH ¼
�

16πGM
ðd − 2ÞΩd−2

� 1
d−3
�
1þ 2

d − 3
Edz

�
; ð27Þ

z ¼ ζð3Þ
16

�ðd − 2ÞΩd−2

16πGM

� 6
d−3
α03: ð28Þ

Expression (27) must be interpreted with care. While
solving the α03-corrected field equations, we took a system
of coordinates such that the horizon radius RH had no α03

corrections. This way, we obtained α03 corrections for the
mass, given (in such system of coordinates) by (19). Now,
we are choosing the black hole mass M as the parameter
having no α03 corrections. This is equivalent to RH having
such corrections, given in leading order by (27). Those
corrections are given as a perturbative series in the
parameter z, expressed now in terms of M by (28). To
obtain the α03 corrections in terms of the mass to the
thermodynamical quantities we previously considered, we
simply replace (27) in the expressions (21), (23), (24), and
(26), respectively, and expand each expression to order z,
obtaining

T ¼ d − 3

4π

�ðd − 2ÞΩd−2

16πGM

� 1
d−3
�
1 −

�
Fd þ

2

d − 3
Ed

�
z

�
; ð29Þ

S ¼ 1

4GΩ
1

d−3
d−2

�
16πGM
d − 2

�d−2
d−3
�
1þ

�
2ðd − 2Þðd − 3Þ2ð2d − 5Þ þ 2

d − 2

d − 3
Ed

�
z
�
; ð30Þ

F ¼ M
d − 2

½1þ ðGd þ 2EdÞz�; ð31Þ

C ¼ −
1

4G
ð16πGMÞd−2d−3

ððd − 2ÞΩd−2Þ 1
d−3

�
1þ

�
Hd þ 2

d − 2

d − 3
Ed

�
z

�
: ð32Þ

These α03 corrections are the leading α0 corrections to these
quantities in type II superstring theory (and, for d ¼ 4, also
in heterotic and bosonic string theory), expressed cova-
riantly in terms of the black hole mass.
We have checked that, for every relevant value of d,

Ed > 0, Fd > 0, and Gd > 0. Therefore, we conclude that
the α03 corrections to the black hole entropy and free energy
are positive. We have also checked that, for every relevant
value of d, Hd þ 2 d−2

d−3Ed > 0, from which we conclude
that in the presence of α03 corrections this black hole keeps
being thermodynamically unstable, with a negative spe-
cific heat.
We can also conclude from this analysis that the α03

corrections to the black hole temperature are negative. One
expects the α0 corrections (specially of order α03, as we are
considering) to be smaller in magnitude than the α0 ¼ 0

terms, as it is usual in perturbation theory. Nonetheless, one
should check if, just considering the leading α03 correction,
one does not get a negative temperature. From (29), this
means having 1 − ðFd þ 2

d−3EdÞz > 0, or

α0

ðGMÞ 2
d−3

<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16

ζð3ÞðFdþ 2
d−3EdÞ

3

s �
16π

ðd−2ÞΩd−2

� 2
d−3
: ð33Þ

The power of the black hole massM in (33) decreases with
the spacetime dimension d but, because of the expected
large values of this mass, we do not expect this condition to
be very restrictive, even for the largest values of d: for
d ¼ 10, condition (33) implies α0 < 0.00377426ðGMÞ2=7.
But (29) is only a first-order perturbative approximation; a
complete analysis would require a full knowledge of T to
all orders in α0. Nonetheless, the leading string correction
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being negative suggests that there may exist a value
of M for which the temperature reaches a maximum.
For each particular given value of d, the α03 corrected temp-

erature (29) has a maximum for M ¼ ðd−2ÞΩd−2
16πG ð7 ζð3Þ

16
ðFdþ

2
d−3EdÞα03Þd−36 , given by

Tmax ¼
3

14π

d − 3

ð7 ζð3Þ
16

ðFd þ 2
d−3EdÞα03Þ

1
6

: ð34Þ

The numerical values one gets vary between Tmax ≈ 0.0155ffiffiffi
α0

p

(for d ¼ 4) and Tmax ≈ 0.0265ffiffiffi
α0

p (for d ¼ 10). These values are

smaller than the critical Hagedorn temperature obtained
from the free spectrum of the superstring, given by Tcrit ¼

1

π
ffiffiffiffiffi
8α0

p ≈ 0.11ffiffiffi
α0

p [2,7,8].

IV. THE α03-CORRECTED BLACK HOLE WITH A
TOROIDAL COMPACTIFICATION

Article [2] considers black holes on arbitrary d spacetime
dimensions in the presence of a dilaton and string α03
corrections. Since string theories are formulated in D
spacetime dimensions (D ¼ 26 for bosonic strings and
D ¼ 10 for superstrings), one should consider the effects of
compactification from 10 or 26 to d dimensions.
When one talks about a black hole in string theory in d

dimensions, the original D–dimensional spacetime must
have been compactified on some (D − d)-dimensional
manifold, with internal coordinates ym and internal metric
gmnðyÞ. When passing from the string to the Einstein frame,
one needs a transformation under which

gμν → exp

�
4

d − 2
Φ
�
gμν;

Rμν
ρσ → R̃μν

ρσ ¼ Rμν
ρσ − δ½μ½ρ∇ν�∇σ�Φ: ð35Þ

If one takes this as a conformal transformation of the entire
D-dimensional metric (rather than just on the d-dimen-
sional black hole part, as it was done in [2]), it involves the
total dilaton field Φ, including the Kaluza-Klein part
depending on the internal coordinates ym (rather than just
the d-dimensional part ϕ as we have been considering).
This way the size of the compact space becomes spatially
varying, being governed by a function h. Since, for the
cases we have been considering, the dilaton field depends
only on the radial coordinate r, the same is to be expected
for the function h. The complete line element is then the
sum of the d-dimensional black hole (1) and the compact
space:

ds2¼−fðrÞdt2þg−1ðrÞdr2þ r2dΩ2
d−2þhgmnðyÞdymdyn:

ð36Þ
This metric is a solution of the metric field equation (5) for
the whole spacetime, in D dimensions, which we write as

Rμν þ λ0
�

1

D − 2
YðRÞgμν þ

1

D − 2
gμνTρ

ρ − Tμν

�
¼ 0:

ð37Þ

From (37), the compact space and the black hole cannot be
decoupled in general: the respective curvatures appear
combined on the terms depending on YðRÞ and Tμν. In
order to avoid this problem, we take the internal space to be
a flat torus, with vanishing internal curvature. Also since,
for the cases we have been considering, the dilaton field
depends only on the radial coordinate r, the same is to be
expected for the function h. At order λ0 ¼ 0, ϕ ¼ 0 and the
conformal transformation (35) is just the identity. This
means one should then have

gmnðyÞ ¼ δmn; hðrÞ ¼ 1þ 2λ0ρðrÞ: ð38Þ

One must now determine the function ρðrÞ. By contracting
(37) with the D-dimensional metric, one finds the D-
dimensional Ricci scalar RD ¼ P

D
μ;ν¼1Rμνgμν:

RD þ λ0

D − 2
ðDYðRÞ þ 2Tρ

ρÞ ¼ 0: ð39Þ

But if one rather contracts (37) with just the d-dimensional
part of the metric (36), i.e., the black hole metric (1), one
obtains Rd ¼ P

d
μ;ν¼1 Rμνgμν:

Rd þ λ0

D − 2
ðdYðRÞ − ðD − 2 − dÞTρ

ρÞ ¼ 0: ð40Þ

Equations (39) and (40) were obtained from the field
equation (37). But one can take directly the D-dimensional
metric (36), with the specifications (38), and compute its
corresponding Ricci tensor Rμν. One can then contract it
with the whole metric, obtaining the Ricci scalarRD, or just
with the d-dimensional black hole part, obtaining Rd.
Proceeding this way, one verifies that

RD −Rd ¼ −ðD − dÞλ0∇2ρ: ð41Þ

Combining (39)–(41), we conclude that ρ must satisfy the
equation

λ0∇2ρ ¼ λ0

D − 2
ðYðRÞ þ Tρ

ρÞ: ð42Þ

YðRÞ and Tρ
ρ should be evaluated with the λ0 ¼ 0 metric

(1), with f ¼ g given by (2).
For the case of α03 corrections we are dealing with, YðRÞ

is given by (6) or (7), before or after replacing the metric.
The explicit expression for Tμν can be found in article [9];
we choose not to repeat it here, since it is very long and all
that we need is the result for Tρ

ρ.
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After integrating (42) and requiring ρ to be finite at the
horizon [a similar procedure to the one taken to obtain
(10)], we are left with

ðrd−2 − Rd−3
H rÞρ0 ¼ −

2Rd−9
H

D − 2

�
ðAd − BdÞ

�
RH

r

�
2d

− Ad

�
RH

r

�
3d−3

þ Bd

�
; ð43Þ

Ad ¼ 2ðd − 3Þðd − 2Þ2ð8d4 − 80d3 þ 233d2 − 152d − 45Þ:
ð44Þ

Equation (43) can be integrated and conveniently multi-
plied by z, in order to finally obtain

zρðrÞ ¼ 2

D − 2

�
z
Ad − Bd

3ðd − 1Þ
�
RH

r

�
3d−3

− 24ϕðrÞ
�
; ð45Þ

with ϕðrÞ given by (11).
We now proceed to determine the influence of the

internal compact space (the torus) on the d-dimensional
black hole geometry. There are two nontrivial components
of the field equation (37), corresponding to Rtt and Rrr
[1,2]. We use these two equations in order to obtain the two
unknown functions μðrÞ, εðrÞ in (15). For εðrÞ we obtain
the same result as (16), while μðrÞ is now given by

μðrÞ ¼ −εðrÞ − Cd

�
RH

r

�
3d−3

− Δðd; rÞ; ð46Þ

Δðd; rÞ ¼ D − d
D − 2

½ρðrÞ − rρ0ðrÞ�: ð47Þ

Metric (1), with fðrÞ, gðrÞ of the form (15), εðrÞ given by
(16) and μðrÞ given by (46), corresponds to the d-dimen-
sional black hole solution in the presence of a ðD − dÞ-
dimensional compact torus we have been looking for.
Although in most cases we will have D ¼ 10 as the

dimension of the original spacetime (the critical dimension
of superstring theory), as we discussed in the previous
section, for a spherically symmetric metric in d ¼ 4 and in
the Einstein frame α03 corrections are in general the leading
corrections, like we are considering. This is true also in
bosonic string theory, whose critical dimension is D ¼ 26.
Because of this possibility we chose to leave the value ofD
unspecified in our solution.

V. THERMODYNAMICAL PROPERTIES OF THE
COMPACTIFIED BLACK HOLE

In this section, we compute several thermodynamical
quantities for the black hole solution we have just found. In
each case we compare the result to the corresponding one of
the noncompactified solution from [2] obtained in Sec. III,
since the parameters are the same. This way we can

evaluate the effects on the physical quantities introduced
by the toroidal compactification. These effects, as we will
see, are all expressed in terms of the function Δðd; rÞ given
by (47). This function vanishes equally for d ¼ D, when no
compactification is present. Every result that is obtained in
this section matches the corresponding one obtained in
Sec. III if one sets Δðd; rÞ≡ 0.
The entropy of this black hole solution can be obtained

byWald’s formula (22). It is clear from this formula that the
λ0-correction to the entropy depends only on the λ0 ¼ 0 part
of the metric. Since this part of the metric is the same for the
cases we considered, the result for the entropy does not
change: it is given by (23).
The free energy of a black hole solution is obtained from

the Euclideanized action (3), to which one adds a surface
term consisting of an integral (on the boundary) of the trace
of the second fundamental form, subtracted by the same
trace for the boundary embedded on flat space, to render the
total surface contribution finite [10]. This surface term also
includes contributions for the higher-derivative terms, but
these contributions do not affect this calculation [1].
Because we chose a system of coordinates such that RH
does not get α0 corrections, there are no implicit α0
corrections: all the λ0-correction terms in the Euclidean
action are explicit and should be evaluated using the λ0 ¼ 0
part of the metric. This means that, just as it happened for
the entropy, in the system of coordinates where RH does not
get α0 corrections (and just in this system of coordinates)
the result for the free energy for our solution is the same as
that for the noncompactified solution obtained in [2], given
by (24).
The black hole temperature is given by (20). Using (16)

and (46), but also (14), (43), (45), we obtain

T ¼ d − 3

4πRH
½1 − zðFd þ Δðd; RHÞÞ�: ð48Þ

Δðd; RHÞ is the function (47) evaluated at the horizon,
given by

Δðd;RHÞ ¼
D−d

3ðD− 2Þ2
��

6

d− 3

�
ψ ð0Þ

�
6

d− 3

�
þ γ

�

þd2þ 12dþ 9

dðdþ 3Þ þ 12d
d− 3

�
Bdþ

�
6þ 2

d− 1

�
Ad

�
:

The black hole inertial mass is given by MI ¼
ðd−2ÞΩd−2

16πG limr→∞rd−3ð1 − gðrÞÞ, while the gravitational

mass is given by MG ¼ ðd−2ÞΩd−2
16πG limr→∞rd−3ð1 − fðrÞÞ.

Since from (15), (46), (47), and also (45) fðrÞ − gðrÞ is
of order 1

rd−3
, one finds indeed MG ≠ MI . This situation is

usual when one is dealing with compactifications and
originates from the integration of Kaluza-Klein modes in
the full D-dimensional action, resulting in a d-dimensional
action with nondiagonal kinetic terms.
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The actual physical mass can be obtained from the
relation M ¼ ST þ F. From (23), (24), (48),

M ¼
�
1 − z

�
2Ed þ

d − 3

d − 2
Δðd; RHÞ

�� ðd − 2ÞΩd−2

16πG
Rd−3
H :

ð49Þ

The black hole specific heat is given by (25). In our case,
we get

C ¼ −ðd − 2ÞAH

4G
½1þ zðHd þ 6Δðd; RHÞÞ�: ð50Þ

By inverting (49), like we did in Sec. III with (19), we
can now express these thermodynamical quantities for this
solution in terms of the black hole mass M:

T ¼ d − 3

4π

�ðd − 2ÞΩd−2

16πGM

� 1
d−3
�
1 −

�
Fd þ

2

d − 3
Ed þ

d − 1

d − 2
Δðd; RHÞ

�
z

�
; ð51Þ

S ¼ 1

4GΩ
1

d−3
d−2

�
16πGM
d − 2

�d−2
d−3
�
1þ

�
2ðd − 2Þðd − 3Þ2ð2d − 5Þ þ 2

d − 2

d − 3
Ed þ Δðd; RHÞ

�
z

�
; ð52Þ

F ¼ M
d − 2

�
1þ

�
Gd þ 2Ed þ

d − 3

d − 2
Δðd; RHÞ

�
z

�
; ð53Þ

C ¼ −
1

4G
ð16πGMÞd−2d−3

ððd − 2ÞΩd−2Þ 1
d−3

�
1þ

�
Hd þ 2

d − 2

d − 3
Ed þ 7Δðd; RHÞ

�
z

�
: ð54Þ

We have checked that, for every relevant value of d,
Δðd; RHÞ > 0. Therefore, we conclude that also for this
solution the α03 corrections to the black hole temperature
are negative, while those corrections to the black hole
entropy and free energy are positive. Also the α03 correc-
tions to the specific heat are such that this black hole keeps
being thermodynamically unstable, with C < 0. The effect
of the compactification [and of the presence of Δðd; RHÞ]

on these quantities is to increase the magnitude of their α03
corrections as compared to those of the noncompactified
solution of [2].
An analysis similar to the one made at the end of Sec. III

tells us that, in order for the temperature to remain positive
in the presence of the leading α03 correction, (33) must be
changed to

α0

ðGMÞ 2
d−3

<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16

ζð3ÞðFd þ 2
d−3Ed þ d−1

d−2Δðd; RHÞÞ
3

s �
16π

ðd − 2ÞΩd−2

� 2
d−3
: ð55Þ

Once again, the leading string correction being negative
suggests that there exists a value of M for which the
temperature reaches a maximum, given by an analogous
change in (34):

Tmax ¼
3

14π

d−3

ð7 ζð3Þ
16

ðFdþ 2
d−3Edþ d−1

d−2Δðd;RHÞÞα03Þ
1
6

: ð56Þ

We considered the numerical values of these expressions
for every relevant value of d, like we did at the end of
Sec. III, taking D ¼ 10 when evaluating Δðd; RHÞ (i.e.,
considering now specifically type II superstring compacti-
fications, having (7) as leading α03 curvature corrections).
The only difference between these expressions and (33) and

(34) is the inclusion of Δðd; RHÞ. We verified that the
numerical effects of the inclusion of such term on (55) and
(56) are very small, affecting typically only the fourth
nonzero decimal digits when compared to the results using
(33) and (34) obtained at the end of Sec. III. The
conclusions obtained there on the bounds for α0

ðGMÞ 2
d−3

and

for Tmax, and its comparison to the superstring Hagedorn
temperature, remain valid for the solution we obtained in
Sec. IV.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this work, we derived the solution to a dilaton in the
presence of a spherically symmetric black hole in string

FILIPE MOURA PHYS. REV. D 99, 086008 (2019)

086008-8



theory with α03 gravitational corrections in d spacetime
dimensions. We then obtained a spherically symmetric
black hole solution with α03 corrections from toroidally
compactified superstring theory in the same d dimensions.
This is a modification to the solution from article [2], which
has the same type of α03 corrections but was obtained
directly in d dimensions, ignoring the effects of superstring
compactification.
For the solutionwe obtained,we computed its free energy,

entropy, temperature, specific heat, and mass. We compared
the magnitude of the α0 corrections to these thermodynam-
ical quantities to the ones corresponding to the noncom-
pactified solution obtained in [2], in order to estimate the
effects of string compactification. For both solutions, when
these quantities are expressed in terms of the black hole
mass, the α03 corrections to the free energy and entropy are
positive; the α03 corrections to the temperature, on the other
hand, are negative. For all such quantities, the magnitude of
these α03 corrections is in general larger for the compactified
solution we obtained, when compared to those of the
noncompactified one. Both solutions are thermodynami-
cally unstable, like the classical Tangherlini black hole.
Understanding the black hole temperature as a function of
the mass, for both solutions we estimated its maximum and
we verified that such maximum value is smaller than the
superstring Hagedorn temperature.
Overall we conclude that neither the α03 corrections nor

the effects of toroidal compactification do qualitatively
change the thermodynamical properties of these black holes.
In future works we plan to study some other features of

these α03-corrected black holes, like its stability under
perturbations of the metric and quasinormal modes. In a
previous work we have made such studies for a similar

black hole solution with α0 corrections, considering ten-
sorial perturbations of the metric [11]. This work can be
extended to these α03-corrected black hole solutions we
considered and obtained in this article. One can also
consider for these studies other kinds of metric perturba-
tions (vector and scalar).
The usual Tolman-Oppenheimer-Volkoff (TOV) equa-

tions, describing the hydrostatic equilibrium of compact
objects, are obtained in Einstein gravity. Modified TOV
equations have been obtained in the literature for theories
including higher derivative corrections in the form of
powers of the Ricci scalar [12] and of the Gauss-Bonnet
combination [13]. None of these approaches considers the
effect of the dilaton field; furthermore, the higher derivative
corrections that have been considered are not in the form
suggested by string theories. The string corrections to the
TOV equations may therefore be regarded as an open
problem.
The α03-corrected field equations and the solutions that

we considered in this article can be applied to obtain the
string corrected TOV equations, also working perturba-
tively in α03 as we did, since as we saw they represent the
leading string gravitational corrections to spherically sym-
metric solutions in d ¼ 4 and in the Einstein frame. The
knowledge of these corrections might be very relevant in
the strong gravity regime.
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