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I 

 

Abstract 

 

This thesis empirically analyses and compares the performance of three option pricing models 

regarding their efficiency replicating market prices. The models Black and Scholes (1973) and 

Merton (1973), Constant Elasticity of Variance (1975) and Heston (1993) were applied on 

MATLAB so financial option prices could be computed based on each one of these models. 

Therefore, European-style options issued on regulated market with indexes S&P 500, EURO 

STOXX 50 and Nikkei 225 as underlying were gathered into a sample. The main goal for this 

empirical study is based on concluding about the performance of each model following 

historical market prices of the options retrieved, under different time to maturities, kind of 

option and ratio underlying price/strike price. Advantages and disadvantages applying each 

model are detailed and discussed, as well as their individual performance. Finally, the model 

which shows the best overall performance will be found. 

 

Key words: option pricing model, Black-Scholes-Merton model, Heston model, Constant 

Elasticity of Variance model. 

JEL classification: G12, G13  
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Resumo 

 

Esta tese analisa e compara empiricamente a performance de três modelos de precificação de 

opções quanto à sua eficiência em replicar preços de mercado. Os modelos Black and Scholes 

(1973) and Merton (1973), Constant Elasticity of Variance (1975) e Heston (1993) foram 

aplicados no MATLAB para que o preço de opções financeiras pudesse ser calculado com base 

em cada um destes modelos. Assim, foram recolhidas como amostra opções de estilo europeu 

emitidas em mercado regulado com os índices S&P 500, EURO STOXX 50 e Nikkei 225 como 

ativos subjacentes. O objetivo principal deste estudo empírico baseia-se em concluir quanto à 

performance de cada modelo em acompanhar os preços históricos de mercado das opções 

recolhidas, em diferentes prazos até à maturidade, tipo de opção e rácios Preço do ativo 

subjacente/Valor da opção de compra. Vantagens e desvantagens na aplicação de cada modelo 

são detalhadas e discutidas, assim como a sua performance individual. Finalmente, será 

encontrado o modelo que demonstre a melhor performance geral. 

 

Palavras-chave: modelo precificação opções, modelo Black-Scholes-Merton, modelo Heston, 

modelo Constant Elasticity of Variance. 

Classificação JEL: G12, G13 
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1. Introduction 

 

An option is a contract where a buyer has the right, but not the obligation, to buy (sell) an 

underlying asset, while the seller has the obligation to sell (buy) the same underlying asset for 

an agreed price if the buyer decides to exercise the option contract. Exemplifying, one can think 

as buying a stock in the future if the price is profitable, or on the other hand, to minimize the 

losses of buying an asset. However, the buyer has to pay a premium to hedge this risk. 

An option can have almost all type of financial assets as an underlying. A simple stock, an 

index, a future, a bond, a commodity, a forex rate, are some examples. 

There are “call options” where the buyer has the right to buy the underlying asset and “put 

options” where the buyer has the right to sell an underlying asset. The agreed price to either 

buy or sell the underlying asset is called “strike price”. 

Regarding the exercise method an option can be of European-style, when the buyer can only 

exercise his right at expiration date or American-style, if the buyer can exercise its right at any 

time during the life of the contract. There are still some other types, as for instance, Bermudan 

option, where the buyer can exercise the right on some specific dates during the option’s life, 

but this kind of options are not so common nor are traded on regulated markets. 

A financial option is a derivative. In practice, derivatives are usually used to hedge risk, as said 

before, since it guarantees a certain payoff in a specific date (futures and forwards) or, in case 

of options, limits the losses, having a payoff equal or higher than zero. For investment 

institutions, derivatives are also used to create almost all kind of investment strategies. 

Having this in mind, one can make the question: What is the fair price for an option? Or, what 

premium should I pay to hedge my risk? 

Hereafter, the focus will be on options with no early exercise features. When an option is 

exercised there is a probability to occur a payoff: 

 

Buyer 

- Call option: 𝑃𝑎𝑦𝑜𝑓𝑓 = 𝑀𝑎𝑥 (𝑆𝑇 − 𝐾, 0) 

- Put option: 𝑃𝑎𝑦𝑜𝑓𝑓 = 𝑀𝑎𝑥 (𝐾 − 𝑆𝑇 , 0) 
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Seller 

- Call option: 𝑃𝑎𝑦𝑜𝑓𝑓 = 𝑀𝑖𝑛 (𝐾 − 𝑆𝑇 , 0) 

- Put option: 𝑃𝑎𝑦𝑜𝑓𝑓 = 𝑀𝑖𝑛 (𝑆𝑇 − 𝐾, 0) 

 

where 𝑆𝑇 corresponds to the asset price at exercise time and 𝐾 to the strike price. 

When 𝑆𝑇 > 𝐾, a call option is in-the-money (ITM), when 𝑆𝑇 < 𝐾 the call option is out-the-

money (OTM) and if 𝑆𝑇 = 𝐾 the option is at-the-money (ATM). Logically, the inverse happens 

for the put options. 

Therefore, the price of an option is nothing more than its payoff discounted from the exercise 

date until today at a cost of opportunity rate (options theory assumes a risk-free interest rate). 

What all researchers try to understand is: What is the probability for the option to mature ITM, 

OTM or ATM? The key answer is probabilities. Jackwerth and Rubinstein (2012) state that one 

of the reasons which can lead to options misprice is the implicit probability contained on option 

pricing models. 

However, in the sense of answering this question, some assumptions must be made. The main 

assumption, and probably the most controversial is the volatility process followed by the asset 

price. On this thesis, three different option pricing models will be approached, each one with a 

different stock price and volatility processes assumptions. 

The Black and Scholes (1973) and Merton model (1973) (BSM), the model which triggered 

much of the research done on this subject, assumes that the asset price follows a geometric 

Brownian motion. However, this assumption has been rejected by finance literature, since the 

log-normal assumption does not fit on the negative skewness and high kurtosis of the asset 

returns observed on the market. 

Concerning the volatility, the BSM model assumes a constant volatility for the asset price. 

Bachelier (1900) supported the constant volatility theory, arguing that investing is a “fair 

game”, so there should be the same probability to have a profit or a loss, so the risk is a fixed 

parameter. 

Nevertheless, one of the arguments that flaws the constant volatility theory is the negative 

correlation between the stock prices and its volatility observed, for instance, by Black (1976). 

One of the reasons for this is the leverage effect in a company, where if the price of a stock 

drops, the company will become riskier since its debt to equity ratio will increase, leading to an 
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increase on the risk of that stock price. However, Black (1976) also stated that this comparison 

between leverage effect and constant volatility cannot be always applied, since there are 

companies with low or no debt which can still have high volatility levels. 

Another factor against the constant volatility assumption is the “volatility smile”. According to 

the BSM model, having two options on the same underlying with the same time to maturity, 

these should have the same volatility level because both have the same contractual features. If 

one plots on a graph the implied volatility taken from the BSM model using option prices from 

the market (y-axis) and the strike prices of those same options (x-axis), the result can be a curve 

similar to a smile (instead of a flat curve predicted by the BSM model), where the curve should 

have a negative slope on the ITM zone until the ATM zone, where it should turn positive when 

increasing into the OTM zone. So, the implied volatilities tend to be higher when the option is 

far away from the underlying price. This happens because the model assumes normal distributed 

returns (log-normal distribution) for the underlying asset. 

The Constant Elasticity of Variance by Cox (1975) (CEV) assumes the asset price follows a 

stochastic process and the volatility for the asset price follows a local volatility process. This 

type of volatility is known for having the volatility as a function of the stock price, so the 

volatility is locally known with certainty once the stock price is known as well. With this, the 

CEV model is in line with the inverse relation on the markets (proved on this thesis as well) 

between asset returns and volatility (leverage effect). 

Some disadvantages stated by Larguinho et al. (2013) include the expensive pricing 

computations when the elasticity parameter is close to two (if the elasticity parameter is equal 

two, the volatility is constant), the time to maturity is small or the volatility is low. Even though, 

there are some procedures to get through this issue, like the iterative procedure of Benton and 

Krishnamoorthy (2003), though, not covered here.1 

The Heston model assumes the volatility of the asset follows a stochastic volatility process. The 

principal feature of the stochastic volatility is the inclusion of a Wiener process on the volatility 

process, allowing for the volatility to have its own source of randomness, unlike other volatility 

models where only the stock price is stochastic. 

There are two main stochastic volatility processes: the Cox-Ingersoll-Ross (1985) (CIR type), 

also known as the square-root process, and the Ornstein-Uhlenbeck (1930) (OU type). As 

models following the OU type there is Stein and Stein (1991) and Schӧbel and Zhu (1999). 

                                                           
1 For more information, see Larguinho et al. (2013). 
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Christoffersen et al. (2009) (2-factor stochastic volatility) and the Heston model (1-factor 

stochastic volatility) are some examples of a CIR type. 

According to Ball and Roma (1994) empirical evidence shows that stochastic volatility tends 

to be closer from the volatility observed on the market. Besides that, it is proved by Renault 

and Touzi (1996) that implied volatilities taken from stochastic volatility models with 𝜌 = 0 

always produce a smile, which is also proved by other researches. This special case is also 

covered by Ball and Roma (1994). 

Nevertheless, several option pricing models following this kind of volatility have to be 

computed by simulation, as for instance Scott’s model (1987), since it is not always possible to 

find a closed form solution for these models. In addition, due to the randomness on this volatility 

process, the market is assumed to be incomplete, meaning one cannot perfectly hedge a position 

using options. 

The Heston model stands out because it is one of the models which has a closed form solution 

using Fourier transformations and assumes the stock price and volatility are correlated. This 

model even allows to incorporate stochastic interest rates (for empirical research on stochastic 

interest rates see for example Bakshi et al. (1997)). 

In this thesis, three option pricing models will be subjected to empirical tests: the BSM model, 

the CEV model and the Heston model. The interesting fact about choosing these three option 

pricing models is that each model assumes the asset price and volatility of the stock price to 

follow a different process. 

Similar empirical studies have been published. Bakshi et al. (1997) empirically studied options 

on the S&P 500 index, concluding that implementing stochastic volatility is an important 

process to enhance the pricing performance from the BSM model. However, they also argue 

that due to the high kurtosis and negative skewness, stochastic volatility processes require high 

levels of correlation between volatility and returns as well as volatility variation. Chen et al. 

(2009) based their empirical study on Bakshi et al. (1997) extending for the CEV model. They 

have concluded that the CEV outperforms the BSM and, in some cases, it even outperformed 

stochastic volatility processes. In addition, they discuss that, by adding just one more parameter 

to the BSM model, the complexity for stochastic volatility processes can be not worth against 

the simplicity and performance of the CEV model. 

Jackwerth and Rubinstein (2012) compared different pricing models (BSM, CEV, stochastic 

volatility and others) on periods before and after the “black Monday” crash of 1987, concluding 
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that implicit volatilities, which before were almost flat, changed after this crash. Whereas before 

the crash all models seemed to match BSM performance, the conclusion was not the same 

afterwards. They also conclude that, after the crash, the unrestricted CEV model outperforms 

the BSM model. 

European-style call and put options under three different indexes: S&P 500 (SPX), EURO 

STOXX 50 (SX5E) and Nikkei 225 (NKY) taken from May 2018 to July 2018 were gathered 

into a sample. The choice for these three different underlyings avoids market “noises” such as 

inflation rates, unemployment rates, forex rates and economic news, since these underlyings 

are issued in different currencies, countries and continents. Besides, these are the main indexes 

for each one of their continents. Most empirical studies use only one underlying (see, for 

instance, Bakshi et al. (1997)) and some of them use only call options (for instance, Chen et al. 

(2009)). 

This thesis is organized as follows: in chapter 2, a deeper look into the theory behind each 

option pricing model will be shown, as well as the procedures used to estimate their respective 

parameters. Some issues applying these models will be also covered in this chapter. Chapter 3 

presents the gathered data used for the empirical tests, the applied filters made to increase its 

efficiency and a brief resume about the latest events happening on each of these three markets. 

In chapter 4, pricing results, computed using MATLAB, will be shown, discussed and 

compared with the benchmark (the market) for the three option pricing models. Implied 

volatilities resulting from the theoretical prices will be plotted and compared with previous 

literature. Advantages and disadvantages using each model will be described after showing the 

results for the non-observable parameters estimated. Chapter 5 contains the main conclusions 

from this empirical study. The main goal for this thesis is to elaborate a conclusion regarding 

which option pricing model best follows the market and under which circumstances. 
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2. Options pricing models 

 

2.1. Black and Scholes and Merton model (1973) 

 

One of the most popular options pricing model among professionals and researchers is the Black 

and Scholes (1973) and Merton (1973) model. Based on the theoretical assumption of an 

efficient market, where should not exist arbitrage opportunities, this model, can be considered 

as the driving model for most of the options pricing models which followed. 

Black and Scholes model (BS) assume a Geometric Brownian Motion is followed by the stock 

prices, that is, 

 

 𝑑𝑆𝑡 =  𝑟𝑆𝑡𝑑𝑡 +  𝜎𝑆𝑡𝑑𝑊𝑡 (1) 

 

with 𝑟 being the risk-free rate, 𝜎 the instantaneous volatility and 𝑊𝑡 a standard Brownian 

motion. 

Assuming that stock prices follow the stochastic differential equation above and volatility is a 

constant over time, Black and Scholes started to explain the model as a simple delta hedging 

example where one has a long position on a stock and a short position on an option under the 

same underlying, obtaining the following option pricing formula: 

 

 𝑐𝑡 = 𝑆𝑁(𝑑1) − 𝐾𝑒
−𝑟𝜏𝑁(𝑑2) (2) 

with 

 

 

 

and 

𝑑1 = 
ln (

𝑆
𝐾) + (𝑟 +

1
2𝜎

2)𝜏

𝜎√𝜏
 

 

(2.1) 

 𝑑2 = 
ln (

𝑆
𝐾) + (𝑟 −

1
2𝜎

2)𝜏

𝜎√𝜏
, (2.2) 
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where 𝐾 corresponds to the strike price of the option, 𝑟 the annual risk free interest rate, 𝜏 the 

time to maturity, 𝜎 the annualized standard deviation of the return on the stock, and 𝑁(𝑑) the 

cumulative normal density function. 

Merton (1973) has improved the BS model, providing a more realistic option pricing model 

when pricing options where the underlying is a stock or an index, considering that a continuous 

dividend yield 𝑞 is paid. Merton (1973) argues that the stock price must be discounted at a rate 

representing the dividends paid over a year, getting: 

 

 𝑐𝑡 = 𝑆𝑒
−𝒒𝜏𝑁(𝑑1) − 𝐾𝑒

−𝑟𝜏𝑁(𝑑2) (3) 

with   

 

 

 

and 

𝑑1 = 
ln (

𝑆
𝐾) + [(𝒓 − 𝒒) +

1
2𝜎

2)]𝜏

𝜎√𝜏
 

 

(3.1) 

 𝑑2 = 
ln (

𝑆
𝐾) + [(𝒓 − 𝒒) −

1
2𝜎

2)]𝜏

𝜎√𝜏
. (3.2) 

 

There are several assumptions on the derivation of this model, such as a constant risk-free 

interest rate, the option type is “European-style”, there are no transaction costs, the market is 

complete and there are no costs for short-selling any asset. Some of these assumptions are not 

true on the real world perspective, but they are used for most of the options pricing models. 
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2.2. Constant elasticity of variance model (1975) 

 

The constant elasticity of variance model (CEV) proposed by Cox (1975) is another option 

pricing model which assumes that, under the risk-neutral probability, the asset price is covered 

by the following stochastic process: 

 

 𝑑𝑆𝑡 =  𝜇𝑆𝑡𝑑𝑡 +  𝜎(𝑆𝑡)𝑆𝑡𝑑𝑊𝑡, (4) 

 

where 𝜇 = 𝑟 − 𝑞 and 𝑊𝑡 is a standard Brownian motion under the risk neutral probability. 

The CEV model assumes a local volatility model, meaning the volatility is dependent on the 

asset price. This produces, according with Dennis and Mayhew (2002) a volatility smile closer 

to the reality. Therefore, the volatility model is given by: 

 

 𝜎(𝑆𝑡) =  𝛿𝑆𝑡
(
𝛽
2
)−1
, (5) 

 

where 𝛿, 𝛽 ∈  ℝ. 

The CEV model version used in this thesis is the one shown by Schroder (1989), where the 

option price for an European style call option is given by: 

 

 𝑐𝑡 =

{
 

 𝑆𝑡𝑒
−𝑞𝜏𝑄 (2𝑦; 2 +

2

2 − 𝛽
, 2𝑥) − 𝑋𝑒−𝑟𝜏 [1 − 𝑄 (2𝑥;

2

2 − 𝛽
, 2𝑦)] ⟸ 𝛽 < 2

𝑆𝑡𝑒
−𝑞𝜏𝑄 (2𝑥;

2

𝛽 − 2
, 2𝑦) − 𝑋𝑒−𝑟𝜏 [1 − 𝑄 (2𝑦; 2 +

2

𝛽 − 2
, 2𝑥)] ⟸ 𝛽 > 2

, (6) 

 

  



Empirical performance of three option pricing models 

9 

 

where 𝑄(𝑤; 𝑣, 𝜆) is the complementary distribution function of a non-central chi-square law 

with 𝑣 degrees of freedom and a non-centrality parameter 𝜆, and: 

 

 𝑘 =
2(𝑟 − 𝑞)

𝛿2(2 − 𝛽)[𝑒(𝑟−𝑞)(2−𝛽)𝜏 − 1]
, (6.1) 

   

  𝑥 = 𝑘𝑆𝑡
2−𝛽

𝑒(𝑟−𝑞)(2−𝛽)𝜏, (6.2) 

   

  𝑦 = 𝑘𝑋2−𝛽 , (6.3) 

   

  𝛿2 = 𝜎0
2𝑆0

2−𝛽
 (6.4) 

and   

  𝜏 = 𝑇 − 𝑡 (6.5) 

 

and for the put option, after using the put-call parity: 

 

 𝑝𝑡 =

{
 

 𝑋𝑒−𝑟𝜏𝑄 (2𝑥;
2

2 − 𝛽
, 2𝑦) − 𝑆𝑡𝑒

−𝑞𝜏 [1 − 𝑄 (2𝑦; 2 +
2

2 − 𝛽
, 2𝑥)] ⟸ 𝛽 < 2

𝑋𝑒−𝑟𝜏𝑄 (2𝑦; 2 +
2

𝛽 − 2
, 2𝑥) − 𝑆𝑡𝑒

−𝑞𝜏 [1 − 𝑄 (2𝑥;
2

𝛽 − 2
, 2𝑦)] ⟸ 𝛽 > 2

. (7) 

 

One of the key aspects of the CEV model is the volatility elasticity parameter 𝛽. It is important 

to note that there are some extreme cases regarding the value of this parameter: if 𝛽 = 2 we are 

under the lognormal assumption of the BSM, if 𝛽 = 0 we have an absolute diffusion and if 𝛽 =

1 the square root diffusion, these last two by Cox and Ross (1976). 

As said before, this model recognizes that the volatility is dependent from the asset price. 

Having 𝛽 > 2 we have an increasing local volatility, 𝛽 < 2 we have a decreasing local 

volatility and if 𝛽 = 2, the local volatility is independent from the asset price since the volatility 

is constant with 𝜎(𝑆𝑡) =  𝛿, getting similar to the BSM model as stated before. 
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Cox (1975) argues that 𝛽 should not be higher that 2 or lower than 0, while Jackwerth and 

Rubinstein (2012) argues that for the index S&P 500 the 𝛽 can be close to -6, considering prices 

after the 1987 crash. 

 

2.2.1. CEV parameters estimation method 

 

In order to estimate the two parameters for the CEV model, 𝛽 and 𝛿, the same method as 

Ballestra and Cecere (2015) will be applied, but instead of applying it to American-style options 

as they have done, it will be applied to European-style options. 

This method is quite intuitive and straightforward, and it only requires market data regarding 

the benchmark, in this case, option prices. The method is to minimize the root-mean-square 

relative error of all options, creating a routine which will run as many times as the number of 𝑛 

options under scope. 

The RMSRE function is given by: 

 

 𝑅𝑀𝑆𝑅𝐸(𝛽, 𝛿) = √
1

𝑛
∑(

𝑉𝑖 − 𝑉𝑖̂(𝛽, 𝛿)

𝑉𝑖
)

2

 

𝑛

𝑖=1

 (8) 

 

with 𝑉𝑖 being the price of the 𝑖 option and 𝑉𝑖̂(𝛽, 𝛿) the theoretical price given by the CEV model 

on the 𝑖 option. 

Since the MATLAB function fmincon is used for one-dimensional optimization problem, the 

same method as Ballestra and Cecere (2015) used, splitting this function into two different 

optimization problems with one parameter each, will be applied. 

Therefore, we start by finding the optimal 𝛽∗ with, 

 

 𝛽∗ = arg𝑚𝑖𝑛𝛽 𝑅𝑀𝑆𝑅𝐸(𝛽, 𝛿(𝛽)), (9) 
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where 𝛿(𝛽) is given by the equation (6.4). Once having 𝛽∗, 𝛿∗ is given by the same equation 

(6.4), using 𝛽∗. 

One of the disadvantages of this type of parameters estimation encountered on this thesis is the 

fact that the optimal value for 𝛽∗ and consequently for 𝛿∗ is dependent on the size and quality 

of the sample which is being used as a benchmark. 

 

2.3. Heston model (1993) 

 

There are some models which consider volatility as a stochastic process. Recall there are two 

types of stochastic volatility models, the CIR type and the OU type, where only the CIR type is 

going to be approached. 

Probably, the most widely known option pricing model which assumes the volatility of a stock 

price follows a stochastic process (CIR type), is the Heston model (1993) for European-style 

options. Besides the fact this model also assumes the stock prices follow a Geometric Brownian 

Motion, just like in the BSM model, the main difference relies on the volatility process: 

 

 𝑑𝑆𝑡 =  𝜇𝑆𝑡𝑑𝑡 + √𝜈𝑡𝑆𝑡𝑑𝑊1,𝑡 (10) 

and   

 𝑑𝑣𝑡 = 𝑘[𝜃 − 𝑣𝑡]𝑑𝑡 + 𝜎√𝜈𝑡𝑑𝑊2,𝑡, (11) 

 

where 𝑊1,𝑡 and 𝑊2,𝑡 have a correlation of 𝜌 ∈ [−1,1] and 𝜇 represents the drift for the stock 

process. The volatility parameters are the following: 

𝑘 > 0 the mean reversion speed for the variance; 

𝜃 > 0 the long-term mean for the variance; 

𝜎 > 0 the volatility of the variance; 

𝑣0 > 0 the initial variance; 

2𝑘𝜃 > 𝜎2 is the Feller (1951) boundary condition which guarantees that 𝑣𝑡 > 0. 
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The solution for the Heston formula uses an analogy to the BSM formula, deriving to: 

 

 𝑐𝑡 = 𝑆𝑡𝑒
−𝑞𝜏𝑃1 − 𝐾𝑒

−𝑟𝜏𝑃2, (12) 

 

where the first term corresponds to the asset present value under optimal exercise and the 

second term to the present value of the strike cost. 𝑃𝑗 is the conditional probability for the option 

to expire ITM: 

 

 𝑃𝑗 = Pr (ln 𝑆𝑇 > ln𝐾), (13) 

where 

 𝑃𝑗 = 1(𝑥𝑇>ln𝐾) (14) 

 

is a boundary condition for 𝑃𝑗, meaning every option will be exercised if it is ITM on the 

expiration time 𝑇, with 𝑥𝑇 = ln 𝑆𝑡. 

The characteristic function solution is: 

 

 𝑓𝑗(𝜙; 𝑥𝑡; 𝑣𝑡) = 𝑒𝐶𝑗(𝜏;𝜙)+𝐷𝑗(𝜏;𝜙)𝑣𝑡+𝑖𝜙𝑥𝑡 , (15) 
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where 

 
𝐶𝑗(𝜏, 𝜙) = 𝑟𝜙𝑖𝜏 +

𝑎

𝜎2
{(𝑏𝑗 − 𝜌𝜎𝜙𝑖 + 𝑑𝑗)𝜏 − 2 ln [

1 − 𝑔𝑗𝑒
𝑑𝑗𝜏

1 − 𝑔𝑗
]}, 

 

(15.1) 

 𝐷𝑗(𝜏, 𝜙) =
𝑏𝑗 − 𝜌𝜎𝜙𝑖 + 𝑑𝑗

𝜎2
[
1 − 𝑒𝑑𝑗𝜏

1 − 𝑔𝑗𝑒
𝑑𝑗𝜏
], (15.2) 

 
𝑔𝑗 =

𝑏𝑗 − 𝜌𝜎𝜙𝑖 + 𝑑𝑗

𝑏𝑗 − 𝜌𝜎𝜙𝑖 − 𝑑𝑗
, 

 

(15.3) 

 
𝑑𝑗 = √(𝜌𝜎𝜙𝑖 − 𝑏𝑗)2 − 𝜎2(2𝑢𝑗𝜙𝑖 − 𝜙2), 

 

(15.4) 

 
𝑢1 =

1

2
; 𝑢2 = −

1

2
, 

 

(15.5) 

 

and 

𝑎 = 𝑘𝜃 

 

(15.6) 

 
𝑏1 = 𝑘 + 𝜆 − 𝜌𝜎; 𝑏2 = 𝑘 + 𝜆. 

 

(15.7) 

 

Inverting the characteristic function, in order to compute the probabilities, we have: 

 

 𝑃𝑗 = Pr (ln 𝑆𝑡 > ln𝐾) =
1

2
+
1

𝜋
∫ 𝑅𝑒 [

𝑒−𝑖𝜙 ln𝐾𝑓𝑗(𝜙; 𝑥, 𝑣)

𝑖𝜙
] 𝑑𝜙.

∞

0

 (16) 

 

2.3.1. Integrand issues 

 

The main problem when applying the Heston model is the behave of the integrand on the 

function above. Rouah (2013) mentions the 3 big issues one can have when working with this 

integrand: 
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a) Discontinuities over the integration range 

 

One of the problems with the integrand is that, even if the range of 𝜙 is defined as [0,∞], 

the integrand is undefined at 𝜙 = 0, so the integration must start at a very small point 

near 0, but never 0. 

 

b) Discontinuities over the integration range 

 

Rouah (2013) shows this example: 

 

 

Figure I - Integrand discontinuities. Two integrands example for 𝑓1 in the range of 𝜙 ∈ [0; 10], 𝜅 =

10, 𝜃 = 𝜈0 = 0.05, 𝜌 = −0.9, 𝑟 = 0, 𝑆0 = 100 and 𝐾 = 100. 

 

It is straightforward to see that the integrand represented by the red line is quite smoother 

than the one represented by the black line, which shows some discontinuities around 
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𝜙 = 1.7 (where it shows very sharp drop) and 𝜙 = 5. Notice the two options on this 

example only differ on time to maturity and volatility. 

 

c) Oscillations over the integration range 

 

Another example from Rouah (2013): 

 

Figure II - Integrand oscillations. First integrand: 𝜏 = 1/52𝑦𝑒𝑎𝑟𝑠, 𝜃 = 𝜈0 = 0.01, 𝜎 = 0.175, 𝑆0 = 7; 

Second integrand:𝜏 = 1 𝑦𝑒𝑎𝑟, 𝜃 = 𝜈0 = 0.07, 𝜎 = 0.09, 𝑆0 = 10. Both integrands have an integration range 

of 𝜙 ∈ [0; 10], 𝐾 = 10, 𝜅 = 10, 𝑟 = 0 and 𝜌 = −0.9. 

 

The first integrand is still not flat even when 𝜙 = 100, while the second integrand goes 

to 0 quite quickly when 𝜙 is around 10. This means that for the first integrand, one could 

face some difficulties on its integration and it could be necessary to expand the 

integration range. Now for the second one, since it is well behaved, it should not create 

numerical issues. 
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However, Albrecher et al. (2007) provided a simple solution which can solve much of these 

integrand issues, called the “Heston Trap”. By multiplying the numerator and denominator on 

equations (15.1), (15.2) and (15.3) by 𝑒−𝑑𝑡, one obtains: 

 

 
𝐶𝑗 = 𝑟𝜙𝑖𝜏 +

𝑎

𝜎2
[(𝑏𝑗 − 𝜌𝜎𝜙𝑖 − 𝑑𝑗)τ − 2 ln (

1 − 𝑐𝑗𝑒
−𝑑𝑗τ

1 − 𝑐𝑗
)], 

 

(15.1a) 

 

 

 

with 

𝐷𝑗 =
𝑏𝑗 − 𝜌𝜎𝜙𝑖 + 𝑑𝑗

𝑔𝑗𝜎2
(
1 − 𝑒−𝑑𝑗τ

1 − 𝑒−𝑑𝑗τ/𝑔𝑗
) =

𝑏𝑗 − 𝜌𝜎𝜙𝑖 − 𝑑𝑗

𝜎2
(
1 − 𝑒−𝑑𝑗τ

1 − 𝑐𝑗𝑒
−𝑑𝑗τ

) 

 

(15.2a) 

 𝑐𝑗 =
1

𝑔𝑗
=
𝑏𝑗 − 𝜌𝜎𝜙𝑖 − 𝑑𝑗

𝑏𝑗 − 𝜌𝜎𝜙𝑖 + 𝑑𝑗
 . (15.3a) 

 

The following example was used by Rouah (2013), following Albrecher et al (2007) example, 

and it shows how this change does improve the integrand: 

 

 

Figure III – Heston vs Albrecher et al. Integrands. 𝜅 = 1.5768, 𝜃 = 0.0398, 𝜈0 = 0.0175, 𝜎 = 0.5751, 𝜌 =

−0.5711, 𝑆 = 𝐾 = 100, 𝜏 = 5 𝑦𝑒𝑎𝑟𝑠 𝑎𝑛𝑑 𝜙 = [0; 10]. 
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On the graph above we can see the Heston original integrand has a discontinuity where 𝜙 ≈

3.5, while Albrecher’s integrand does not show any numerical problem. 

Even though the “Heston Trap” has helped to make the integrand smoother, this improvement 

was surely not enough to obtain a good overall performance for the Heston model. 

The second integrand improvement applied in this thesis is the Gauss-Laguerre quadrature. The 

space for improvement comes from the fact the anti-derivative for the probabilities 𝑃𝑗 cannot 

be found and the integrals have to be numerically approximated. Hence, quadratures can be 

used to approximate an integral between [𝑎, 𝑏], where for the Heston model 𝑎 = 0, 𝑏 = ∞, 

while summing the functional values on some discrete points (𝑥1, … , 𝑥𝑁), called abscissas, 

multiplied by a weight (𝑤1, … , 𝑤𝑁): 

 

 ∫ 𝑓(𝑥)𝑑𝑥 ≈ ∑𝑤𝑘𝑓(𝑥𝑘).

𝑁

𝑘=1

𝑏

𝑎

 (17) 

 

There are two principal classes of quadratures which differ on the behavior of the abscissas. 

Newton-Cotes formulas assume equally spaced abscissas which are easy to implement, but at 

the same time less efficient to evaluate integrands since it needs more abscissas as the integrand 

shows oscillations. 

The quadrature formula approached is the Gaussian quadrature which requires very few 

abscissas, but on the other hand it is harder to compute and understand. 

On Gauss-Laguerre quadrature 𝑁 points are applied with (𝑥1, … , 𝑥𝑁) Laguerre roots for the 

polynomial 𝐿𝑁(𝑥) described as: 

 

 𝐿𝑁(𝑥) = ∑
(−1)𝑘

𝑘!
(
𝑁

𝑘
) 𝑥𝑘

𝑁

𝑘=0

, (18) 
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where (𝑁
𝑘
) is the binomial coefficient. Since Laguerre polynomial has N+1 terms and the 

integrand approximation needs N terms, the following modification is required: 

 

 𝐿𝑁
′ (𝑥) = ∑

(−1)𝑘

(𝑘 − 1)!
(
𝑁

𝑘
) 𝑥𝑗

𝑘−1

𝑁

𝑘=1

  for 𝑗 = 1, … ,𝑁. (19) 

 

Therefore, the weights are defined as per below: 

 

 𝑤𝑗 =
(𝑛!)2𝑒𝑥𝑗

𝑥𝑗[𝐿𝑁
′ (𝑥𝑗)]2

  for 𝑗 = 1,… ,𝑁. (20) 

 

Finally, with this modification, the characteristic function becomes: 

 

 𝑃𝑗 = Pr (ln 𝑆𝑡 > ln𝐾) =
1

2
+
1

𝜋
∑𝑤𝑘

𝑁

𝑘=1

𝑅𝑒 [
𝑒−𝑖𝜙 ln𝐾𝑓𝑗(𝜙; 𝑥, 𝑣)

𝑖𝜙
]. (16a) 

 

This modification made on the original Heston model characteristic functions was the most 

relevant in terms of performance when comparing the pricing result with the options market 

prices. 

The options price computation for the Heston model in this thesis was made using the “Heston 

Trap” and the Gauss Laguerre quadrature with 32 points. 
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2.3.2. Heston parameters estimation method 

 

As shown before, the Heston model has 5 variables not observable on the market: 𝜅, 𝜃, 𝜎, 𝜈0 

and 𝜌. Besides the fact there are several methods to estimate these parameters (Loss Functions, 

The Differential Evolution Algorithm, etc), this thesis covers only one model, the Maximum 

Likelihood Estimation (MLE) by Atiya and Wall (2009). 

Having the advantage of requiring market data easier to find then other methods, as for instance, 

the Loss Functions Method which requires liquidity and reliable market data regarding options 

prices, the MLE only needs a time series data of the underlying historical prices. 

Recall that, under the risk neutral assumption, the log stock prices 𝑥𝑡 = ln 𝑆𝑡 and variance 𝜈𝑡 

follows the bivariate differential equation: 

 

 

and 

𝑑𝑥𝑡 = (𝑟 − 𝑞 −
1

2
𝜈𝑡)𝑑𝑡 + √𝜈𝑡𝑑𝑊1,𝑡 (21) 

 𝑑𝑣𝑡 = 𝜅[𝜃 − 𝑣𝑡]𝑑𝑡 + 𝜎√𝜈𝑡𝑑𝑊2,𝑡 (22) 

 

where, 𝐸ℚ[𝑑𝑊1,𝑡𝑑𝑊2,𝑡] = 𝜌𝑑𝑡. 

A filtering argument is applied so that the likelihood for unobserved variances is approximated 

from the likelihood of the stock prices. The likelihood at 𝑡 + 1, given a value for 𝜐𝑡 at time 𝑡 

is: 

 

 𝐿𝑡+1(𝜐𝑡+1) ∝ 𝑑𝑡(𝑎𝑏𝑡)
−
1
4𝑒−2√𝑎𝑏𝑡𝐿𝑡 (√

𝑏𝑡
𝑎
). (23) 
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The log-likelihood is represented by: 

 

 ℓ𝑡+1(𝜐𝑡+1) ∝ ln 𝑑𝑡 −
1

4
ln(𝑎𝑏𝑡) − 2√𝑎𝑏𝑡+ℓ𝑡 (√

𝑏𝑡
𝑎
), (24) 

where 

 𝑎 =
(𝜅′) + 𝜌𝜎𝜅′𝑑𝑡 + 𝜎2

(𝑑𝑡)2

4
2𝜎2(1 − 𝜌2)𝑑𝑡

, (24.1) 

   

 𝑏𝑡 =
(𝑣𝑡+1 − 𝛼𝑑𝑡)

2 − 2𝜌𝜎(𝑣𝑡+1 − 𝛼𝑑𝑡)(∆𝑥𝑡+1 − 𝜇𝑑𝑡) + 𝜎
2(∆𝑥𝑡+1 − 𝜇𝑑𝑡)

2

2𝜎2(1 − 𝜌2)𝑑𝑡
 (24.2) 

and 

 

 

 

 

𝑑𝑡 =
1

𝐷
exp (

(2𝜅′ + 𝜌𝜎𝑑𝑡)(𝑣𝑡+1 − 𝛼𝑑𝑡) − (2𝜌𝜎𝜅
′ + 𝜎2𝑑𝑡)(∆𝑥𝑡+1 − 𝜇𝑑𝑡)

2𝜎2(1 − 𝜌2)𝑑𝑡
). (24.3) 

 

𝜇 = 𝑟 − 𝑞 is the drift, ∆𝑥𝑡+1 = 𝑥𝑡+1 − 𝑥𝑡 is the increment between two stock prices on the time 

series, 𝜅′ = 1 − 𝜅𝑑𝑡, 𝛼 = 𝜅𝜃 and 𝐷 = 2𝜋𝜎√1 − 𝜌2𝑑𝑡. 

Regarding 𝑣𝑡+1, it is shown by Atiya and Wall (2009) that 𝑣𝑡 = √𝑏𝑡/𝑎, while inverting this 

equation we get: 

 

 𝑣𝑡+1 = √𝐵2 − 𝐶 − 𝐵, (24.4) 

where 

 𝐵 = −𝛼𝑑𝑡 − 𝜌𝜎(∆𝑥𝑡+1 − 𝜇𝑑𝑡) (24.4.1) 

and 

 
𝐶 = (𝛼𝑑𝑡)2 + 2𝜌𝜎𝛼𝑑𝑡(∆𝑥𝑡+1 − 𝜇𝑑𝑡) + 𝜎

2(∆𝑥𝑡+1 − 𝜇𝑑𝑡)
2

− 2𝜐𝑡
2𝑎𝜎2(1 − 𝜌2)𝑑𝑡. 

(24.4.2) 
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Atiya and Wall (2009) suggest starting the likelihood or the log-likelihood routine with 𝐿0 =

𝑒−𝜐0 or ℓ0 = −𝜐0, respectively. Then, we obtain the value for 𝑣𝑡+1, so we can apply equations 

(23) or (24) inside the routine until 𝑇. 

Only the log-likelihood is going to be approached on this study. The log-likelihood was chosen, 

since after some tests using the likelihood, when optimizing the function on equation (23), the 

starting point for the parameters estimation was already optimal, making MATLAB to stop the 

routine in the beginning. Since there is no function in MATLAB to maximize, the negative log-

likelihood function was minimized. 
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3. Data description 

 

Options data on SPX, SX5E and NKY were collected between May and July 2018 issued only 

on organized market. 12 observation days were chosen, with 1 observation day per week (to 

minimize the impact of any possible event that might have occurred on the market), in different 

week days. From these observation days, all block trades higher than 10 on the three indexes 

under scope were gathered from Bloomberg platform, having a total of 5,191 observations 

corresponding to 2,270 options. Filters were applied to this sample in the sense of avoiding lack 

of liquidity and low trade volume impacts on the pricing. Options with a time to maturity lower 

than one week were excluded, as well as options with a moneyness lower than 85% or higher 

than 115%. The arbitrage condition 𝑐𝑚𝑎𝑟𝑘𝑒𝑡 > 𝑆𝑡 −𝐾𝑒
−𝑟𝜏,for call options, and 𝑝𝑚𝑎𝑟𝑘𝑒𝑡 >

𝐾𝑒−𝑟𝜏 − 𝑆𝑡, for put options, was also respected. 

The final sample collects 1,409 different options (661 options on SPX, 354 on SX5E and 394 

on NKY, corresponding to 47%, 25% and 28% of the sample, respectively). Some contracts are 

considered in more than one observation day, leading a total of 3,336 observations. 

  



Empirical performance of three option pricing models 

23 

 

Table 1 – Sample summary 

 
Observations % 

Maturity (days) 
  

<30 931 28% 

30-60 935 28% 

60-90 377 11% 

90-120 210 6% 

>120 883 27% 

Moneyness 
  

<90% 417 13% 

90%-93% 538 16% 

93%-96% 755 23% 

96%-99%% 904 27% 

99%-102% 613 18% 

>102% 109 3% 

Call/Put 
  

Call 1,521 46% 

Put 1,815 54% 

Underlying 
  

SPX 935 28% 

SX5E 1,138 34% 

NKY 1,263 38% 

TOTAL 3,336 100% 

 

Table 1 presents a summary for the final sample features, regarding its time to maturity, 

moneyness, option type and underlying. 

Due to the liquidity of options on indexes, the sample benefits from good moneyness levels. 

The reason for the small time to maturity on 56% of the sample happens because the majority 

indexes options are issued as short-term options. Unlike some empirical papers, this study will 

include put options. 

  



Empirical performance of three option pricing models 

24 

 

Table 2 summarizes the average quotes per underlying of the observation sample: 

 

Table 2 – Sample average quotes 

 
Time to maturity 

Index Moneyness <30 30-60 60-90 90-120 >120 

SPX (USD) <95% 2 7 12 16 34  
95% - 100% 8 16 31 42 78  
100% - 105% 35 49 70 82 130  

>105% 224 250 221 - 254 

SX5E (EUR) <95% 3 8 19 23 87  
95% - 100% 15 27 44 66 184  
100% - 105% 61 71 111 118 240  

>105% - - - - 340 

NKY (JPY) <95% 20 53 123 168 593  
95% - 100% 112 222 352 445 1,239  
100% - 105% 389 472 771 697 1,471  

>105% - 1,510 1,690 - 2,766 

 

The overnight LIBOR on each observation day was used as the risk-free rate. The USD LIBOR 

was used to price SPX options, EUR LIBOR to price SX5E options and JPY LIBOR to price 

NKY options. Using LIBOR facilitates to standardize the risk-free rate along the three indexes. 

For the SPX and the NKY, the dividend yield was computed using the respective Total Return 

indexes (TRI), since these compounds distributed dividends. Since the dividend yield used to 

price options is on a yearly basis and the TRI accumulate the dividends distributed since the 

index creation till today, the 2017 dividends had to be computed. For this, the relative difference 

between the index and its TRI per observation day in 2017 was subtracted to the relative 

difference in 2018, expelling distributed dividends as follows: 

 

 𝐷 = (
𝑇𝑅𝐼2018
𝐼2018

− 1) − (
𝑇𝑅𝐼2017
𝐼2017

− 1), (25) 

 

where 𝐼 is the spot price of the index on one observation day and 𝐷 is the annual dividend-yield. 

For SX5E, since there is no TRI, a similar procedure was used but using EURO STOXX 50 

DVP (SX5ED) instead, whose price corresponds to the amount of dividends per share 

distributed on the year. Since this index is reset around the 11th of December, the dividends 
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distributed in 2017, from each observation day respectively till the last day before the reset, 

were summed to the amount of dividends distributed in 2018 till the observation day. Then, 

having the total amount of dividends per share, this amount was divided by the index price on 

the observation day, as shown below: 

 

 𝐷 =
[(𝑆𝑋5𝐸𝐷𝑙𝑎𝑠𝑡 𝑑𝑎𝑦 2017 − 𝑆𝑋5𝐸𝐷𝑜𝑏𝑠 𝑑𝑎𝑦 2017) + 𝑆𝑋5𝐸𝐷𝑜𝑏𝑠 𝑑𝑎𝑦 2018]

𝐼2018
. (26) 

 

Table 3 details the average for the risk-free interest rates and dividend yields (both annualized) 

per month used to price the options sample. 

 

Table 3 – Average of the risk-free interest rate and dividend yields 

Index Month Risk-free 

interest rate 

Dividend yield 

SPX (USD) May 1,7060% 3,8069% 
 

June 1,8226% 3,7973% 
 

July 1,9203% 3,7944% 

SX5E (EUR) May -0,4384% 3,1632% 
 

June -0,4393% 3,5761% 
 

July -0,4427% 3,5382% 

NKY (JPY) May -0,0539% 2,9795% 
 

June -0,0694% 3,0369% 
 

July -0,0643% 2,9780% 
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3.1. Market brief 

 

3.1.1. SPX 

 

The SPX is showing a very positive performance under the period of analysis, having even 

reached maximum levels never seen before, as shown in figure IV. 

 

 

Figure IV – SPX returns 

 

The peak level was reached on the 25th of July (2,846 USD) and the lowest level was on the on 

the 3rd of May (2,630 USD). 

Even with all the “Trump noise” on recent commercial wars like NAFTA fight with Canada, 

the creation of taxes on imports coming from China, which impacts not only the US but all the 

world’s economy, as for instance the currency on emerging countries, the confidence for 

investors on the US stock markets is far away from trembling. The US Federal Reserve has 

even increased the Fed interest rate from 1,75% to 2% in June this year – where one can see a 

small decrease on SPX price – which was not enough to scare investors. 
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Moreover, this thesis witnesses the inverse correlation between volatility and asset returns 

phenomenon, meaning that, when the asset price goes down the volatility goes up and vice-

versa. Using a 30 days sample, the annualized standard deviation of this index is 15% on the 1st 

of May and 9% on the 30th of July, showing that volatility went down with the rise of the SPX 

price. 

Nevertheless, this significant variation on the index volatility is impacting this empirical work 

due to the sensitivity of the options pricing to the volatility and underlying returns. 

 

3.1.2. SX5E 

 

On the other hand, investors’ risk aversion to the Euro Zone is quite notable, as depicted by 

figure V. 

 

 

Figure V – SX5E returns 

 

The trade war Europe vs USA mentioned before, the ongoing Greece financial assistance 

program (during this thesis time period), the “not sure” Brexit, can be some of the reasons for 
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The highest peak observable is on 17th of May (3,592 EUR), while the lowest is on the 28th of 

June (3,366 EUR). 

The inverse correlation between volatility and index returns is present on SX5E, just like on 

SPX. The standard deviation floats in a range between 6% and 15% (on a 30-day time gap) 

where the volatility is higher on the days when this index reached its lowest levels and vice-

versa. 

 

3.1.3. NKY 

 

Japan’s economy is not out of this trade tension. A country like Japan, where the exports are 

one of its most important sources of income, can suffer with this pressure. A constant decrease 

in production over 2018, due to a lower worldwide demand for Japanese products, has its cost 

in the economy and NKY shows such issue, as it is possible to observe in figure VI. 

 

 

Figure VI – NKY returns 
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The lowest level observed was on the 5th of July (21,547 JPY), while the highest was on the 

21st of May (23,002 JPY). 

NKY is no exception for the inverse correlation phenomenon stated before, where the volatility 

started its hike around the 21st of May having an annual standard deviation (again, computed 

using the last 30-days returns) of 7%, ending the observation period with a volatility of 16%. 

 

3.2. Implicit volatility on the market 

 

Bates (2005) states that, after the 1978 crash, volatility patterns observed in the market do not 

match what was assumed by the BSM log-normal distribution of returns. This is confirmed on 

figures VII and VIII, which plots the implicit volatility for the three indexes. 

 

 

Figure VII – Average of implied volatilities on the three indexes for call options 
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Figure VIII – Average of implied volatilities on the three indexes for put options 
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4. Empirical results and analysis 

 

Each option pricing model was programmed in MATLAB R2017a 9.2.0.538062 64-bit using a 

CPU Intel® Quad-core i7 2.60GHz processor with 8 GB RAM. Excel was used to manage and 

organize the data, so MATLAB could retrieve it and use it on the code. MATLAB would then 

export the parameter and pricing results back into a new Excel spreadsheet. The programming 

for the Heston model was based on Rouah (2013). 

In this section, the pricing and parameters results will be first detailed and explained by model 

and secondly results will be compared between the models and a conclusion will be taken. 

For every model, parameters were estimated using market data and each parameter was 

estimated on five different ways concerning the time interval for the used data. The time 

intervals used are: two years; one year; six months; three months and one month. Having five 

different pricing results per model, only the best results were then investigated. 

The best pricing results were chosen based on the performance. Performance was measured 

using a relative price error (RPE), which is calculated as follows: 

 

 𝑅𝑃𝐸 =
𝑃𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙
𝑃𝑚𝑎𝑟𝑘𝑒𝑡

− 1, (27) 

 

where 𝑃𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 corresponds to the theoretical price computed and 𝑃𝑚𝑎𝑟𝑘𝑒𝑡 corresponds to 

the market close price. Logically, if the RPE is negative (positive), the model is underestimating 

(overestimating) the benchmark. 

After computing RPE for each of the 3,336 observations, this indicator was segmented into 

different ranges. The parameter estimation which led to the highest weight of observations to 

fit on the range of -25% to 25% RPE, was considered as the best performance. 

RPE was used to compare performances instead of, for instance, an absolute price error (APE) 

because the indexes under scope have completely different prices and currencies, hence, it 

would not make sense to compare absolute prices. Bakshi et al. (1997) and Chen et al. (2009) 

use this method as well. Average of relative pricing errors (ARPE) and absolute average pricing 
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errors (AARPE, which turns every negative error into positive, to avoid a wrong interpretation 

applying the average errors) were used in some cases to explain the results. 

Next, the results were investigated in Excel. 

Finally, results will be analyzed, compared and discussed for each pricing model, after a 

description of the parameter estimation procedure and results. 

 

4.1. The BSM model 

 

4.1.1. Parameters estimation 

 

One of the eases applying the BSM model is the fact there is only one parameter to estimate, 

the annualized volatility of the underlying returns 𝜎. The historical volatility was computed in 

5 different ways differing on the time interval of data used to compute the standard deviation 

of the index returns. The annualized standard deviation was computed on time intervals: 2-year, 

1-year, 6-month, 3-month and 1-month.  

Previous literature uses averages of implied volatilities (see for example Bakshi et al. (1997), 

Jackwerth and Rubinstein (2012) or Chen et al. (2009)) to compute the BSM volatility to apply 

on its pricing. This method is much more expensive than the historical volatility because one 

needs to use much more data to segment the options into strike prices and time to maturity due 

to the volatility smile. 
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Next, the volatility behavior analysis over the observations period on each index is shown in 

figures IX, X and XI. 

 

 

Figure IX – SPX volatility 

 

Regarding the SPX, the index with the best performance, the short-term volatilities are the 

flattest of the three indexes. With a steady curve, the 1-month and 3-month volatilities are 

decreasing as the index prices keep rising. 

 

 

Figure X – SX5E volatility 

0%

5%

10%

15%

20%

25%

2-year volatility 1-year volatility 6-month volatility

3-month volatility 1-month volatilty

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

2-year volatility 1-year volatility 6-month volatility

3-month volatility 1-month volatilty



Empirical performance of three option pricing models 

34 

 

With respect to SX5E it is possible to notice that when the index returns are positive the 

volatility reaches its minimum levels, while when the index returns start to decline, the volatility 

starts its hike. As expected, volatilities computed with larger data samples are steadier than with 

smaller data samples. 

 

 

Figure XI – NKY volatility 

 

The NKY has the particularity of having big volatility levels on the index prices during the 

observation period, but at the same time only moved 0,16% from the 1st of May to the 30th of 

July. Even though, one can see that the 1-month volatility is constantly rising up even when the 

stock returns are positive, maybe because, in this case, the index price was so volatile that 

surpassed the inverse correlation impact. 

Generally, as expected, one can conclude that with bigger time gaps the volatility tends to 

become flat, while with smaller time gaps each significant variation has a bigger impact on the 

standard deviation. Thus, the 2-year, 1-year and even 6-month volatility are quite flat, while the 

3-month and 1-month volatility have some peaks among the three indexes. One interesting fact 

is that the 3-month volatility in all indexes have the same trend, where the volatility level drops 

from the 1st of May to the 30th of July. 
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4.1.2. Pricing analysis 

 

The pricing errors were computed for each time gap and the 2-year historical volatility showed 

the best performance for the BSM. This may be due to, as seen before, the 2-year volatility 

being the most consistent. Hereafter, the presented figures respect to the computations using 2-

year volatility. 

 

Table 4 – BSM RPE segment 

Error % 

<-75% 15% 

[-75%; -50%[ 7% 

[-50%; -25%[ 11% 

[-25%; 0%[ 20% 

[0%; 25%[ 21% 

[25%; 50%[ 9% 

[50%; 75%] 4% 

>75% 13% 

TOTAL 100% 

 

Table 4 segments the RPE between the market and the theoretical price obtained with the BSM. 

As one can see, 41% of the options are on the error range of -25% to 25%. About half of the 

sample is between an error of -50% and 50%. It is also important to notice the weight of the 

tails, where 28% of the sample has a RPE higher than 75% or lower than -75%. 

 

Table 5 – BSM performance - AARPE 

Moneyness Time to maturity (days) TOTAL 
<30 30-60 60-90 90-120 120-150 >150 

<90% 96% 100% 99% 149% 52% 50% 84% 

90% - 93% 117% 141% 67% 81% 63% 26% 93% 

93% - 96% 123% 104% 60% 51% 33% 18% 84% 

96% - 99% 68% 55% 31% 16% 24% 13% 46% 

99% - 102% 30% 27% 15% 16% 19% 17% 23% 

>102% 14% 18% 16% 18% 12% 16% 16% 

TOTAL 82% 83% 50% 48% 33% 24% 61% 
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Figure XII – BSM performance - ARPE 

 

Table 5 represents the BSM performance measured on AARPE over the time to maturity and 

moneyness. It is demonstrated that BSM has a much better behavior when pricing ATM and 

ITM options, where AARPE is 23% and 16%, respectively. This is also plotted in figure XII, 

which shows the performance measured on ARPE, where the green and light blue curves are 

much more consistent (range between -11% and 22%) and closer to 0 as the time to maturity 

increases. 

On deep OTM and OTM options (dark blue and orange line, respectively) the curves reveal big 

oscillations (range between -95% and 57% for ARPE) along the maturity. Table 5 supports that 

statement, where AARPE is 84% and 93%. It also shows that when options are reaching 

maturity its performance following the market is weaker than when the time to maturity is 

larger, where on this last case even OTM options lean to a lower ARPE. This conclusion goes 

alongside with Bakshi et al. (1997) empirical results. 

Bakshi et al. (1997) also state that, generally, option pricing models overprices OTM and 

underprices ITM call options. Empirical results of this thesis confirm such observation. 
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Table 6 – BSM RPE segment for call options - Moneyness 

RPE Moneyness TOTAL 
<95% 95%-97% 97%-99% 99%-101% >101% 

<-25% 5% 1% 1% 2% 2% 12% 

[-25%; 0%[ 3% 2% 3% 3% 11% 23% 

[0%; 25%[ 3% 2% 4% 4% 4% 17% 

[25%; 50%] 3% 2% 4% 2% 1% 12% 

>50% 19% 10% 7% 1% 0% 37% 

TOTAL 33% 18% 20% 11% 18% 100% 

 

Table 7 – BSM RPE segment for call options – Time to maturity 

RPE Time to maturity (days) TOTAL 
<30 30-60 60-90 >90 

<-25% 3% 1% 1% 7% 12% 

[-25%; 0%[ 4% 4% 2% 13% 23% 

[0%; 25%[ 4% 5% 2% 7% 17% 

[25%; 50%] 3% 3% 2% 3% 12% 

>50% 11% 16% 4% 6% 37% 

TOTAL 25% 28% 11% 36% 100% 

 

Tables 6 and 7 segment the pricing errors by moneyness and time to maturity for the observed 

call options. 49% of this sample is overpriced (RPE between 25% and >50%) and around 12% 

underpriced (RPE <-25%).  

34% of call options are overpriced and OTM (moneyness <97%), whereas 2% are underpriced 

and ITM (moneyness above 101%). 

Regarding the time to maturity, BSM seems to overprice call options near the maturity (33% is 

reaching maturity in less than 60 days and has RPE above 25%) while 7% is underpriced and 

have a time to maturity higher than 90 days. 

Summarizing, BSM overprices call options when OTM or reaching maturity, while underprices 

ITM options or with a longer time to maturity. BSM shows to be very sensitive to moneyness 

and time to expiration. 
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Table 8 – BSM RPE segment for put options - Moneyness 

RPE Moneyness TOTAL 
<95% 95%-97% 97%-99% 99%-101% >101% 

<-25% 40% 8% 3% 0% 0% 51% 

[-25%; 0%[ 7% 4% 4% 1% 1% 18% 

[0%; 25%[ 4% 3% 7% 5% 4% 23% 

[25%; 50%] 0% 2% 2% 1% 1% 6% 

>50% 0% 0% 1% 0% 0% 1% 

TOTAL 51% 17% 17% 8% 7% 100% 

 

Table 9 – BSM RPE segment for put options – Time to maturity 

RPE Time to maturity (days) TOTAL 
<30 30-60 60-90 >90 

<-25% 21% 17% 6% 7% 51% 

[-25%; 0%[ 3% 4% 2% 10% 18% 

[0%; 25%[ 3% 4% 3% 13% 23% 

[25%; 50%] 2% 3% 1% 1% 6% 

>50% 1% 0% 0% 0% 1% 

TOTAL 30% 28% 12% 30% 100% 

 

Tables 8 and 9 segment the pricing errors for put options by moneyness and time to maturity, 

respectively for put options. 51% of this sample is underpriced while only 7% is overpriced. 

As one can see, the BSM tends to underprice put options reaching maturity or deep OTM 

options more often. It is not clear to see when the BSM overprices put options because the 

percentage of overpricing is very small (around 7%). 

There is a big performance gap on the BSM depending on the options moneyness and time to 

expiration, also argued by Bakshi et al. (1997). BSM shows to be very sensitive to when time 

to expiration is below 90 days, where independently from the moneyness, errors have a big 

oscillation. In addition, when options are ATM or ITM, BSM behaves reasonably well. 
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4.1.3. Implied volatility 

 

Figures XIII and XIV show the implied volatility of the computed prices using the BSM model. 

 

 

Figure XIII – Average of implied volatilities for the BSM model on the three indexes for call options 

 

 

Figure XIV – Average of implied volatilities for the BSM model on the three indexes for put options 
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It is clear to see that the implied volatilities taken from the computed prices using the BSM 

model, where the volatility used is based on historical returns, are not in line with the market. 

This supports previous researches when it is argued that the assumptions under the BSM model 

are not the most coherent with the markets. 

 

4.2. The CEV model 

 

4.2.1. Parameters estimation 

 

As mentioned in chapter 1, the RMSRE method was applied in order to estimate the two 

parameters not observable in the market for the CEV model: 𝛽 and 𝛿. The optimal 𝛽∗ is 

computed assuming equation (6.4) for 𝛿(𝛽). Afterwards, equation (6.4) is used again to retrieve 

the optimal 𝛿∗ using 𝛽∗. 

Inspection of equation (6) shows that the application of the CEV formula is dependent on 𝛽 (if 

𝛽 is lower, higher or equal 2). A disadvantage for this method is the time required to estimate 

𝛽∗. 

On MATLAB, each 𝛽∗ was estimated twice, using both formulas presented on equation (6) for 

call options and (7) for put options, to understand if this parameter should be higher or lower 

than 2. After running the routine several times assuming 𝛽 > 2, it was possible to observe that 

the function was always leaning for the lower boundary of 2.5 (the estimated 𝛽 was most of the 

times equal to 2.5), so it was easy to conclude that 𝛽 < 2 was the right path, meaning, the 

instantaneous volatility is inversely correlated with the index price2, as shown before. 

Chen et al. (2009) and Jackwerth and Rubinstein (2012) concluded that computing the 

parameter 𝛽 without restrictions would provide better results than if this parameter is restricted. 

The only restriction to compute 𝛽 on this thesis was an upper boundary of 1.5 so 𝛽 would not 

approximate 2 (BSM case). 

                                                           
2 The time to price 3,336 options observations with CEV model using β>2 was around 1 hour, due to complex 

calculation of the fmincon formula with β>2. 
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For 𝜎, the same procedure as for the BSM was applied. This means, 𝛽 and 𝛿 were estimated 5 

times for every observation using different historical volatility time gaps. The price for every 

observation was also computed 5 times, in order to compare the performances. 

 

Table 10 – Average of estimated 𝜷 

Index 
Volatility time gap 

1-month 3-month 6-month 1-year 2-year 

SPX -19,33 -17,66 -14,60 -16,11 -18,21 
 

(11,74) (7,78) (3,61) (4,92) (11,23) 

SX5E -19,46 -9,87 -10,81 -10,09 -10,14 
 

(16,49) (5,62) (3,82) (7,34) (5,45) 

NKY -11,77 -3,91 -8,40 -5,84 -7,05 
 

(18,05) (4,94) (2,38) (2,9) (3,01) 

 

Table 10 shows the average estimations and standard deviation (in parentheses) for 𝛽 per 

underlying, for each volatility time gap. 

As expected, the standard deviation for estimated 𝛽 is much higher for smaller time gaps than 

for larger time gaps. This might be, again, due to consistency on larger volatility time periods, 

even though the 2-year time gap is below expectations. 

Another point of interest is the difference between 𝛽 on the 3 indexes. Even having the SPX 

with the lowest 𝛽, this shows to be the most consistent over all the volatility time gaps used.  

In contrast with Jackwerth and Rubinstein (2012), which shows the post-crash of 1987 𝛽 should 

be around -6, the average 𝛽 estimated on this study for SPX is in between -15 and -19. This 

discrepancy can happen due to inverse correlation between asset prices and volatility, where 

SPX, as shown before, is reaching high levels (decreasing the volatility) as never seen before, 

increasing the elasticity for the volatility. 

Having such large 𝛽, the estimated values for 𝛿 are enormous (most of the times the value is 

higher than 1010). 
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4.2.2. Pricing analysis 

 

Not as expected, the CEV model shows the best performance using a volatility time gap of 1 

year, even though it did not outperform considerably comparing with 2-year time gap (4% 

difference). Hereafter, all figures respect to the 1-year volatility computations. 

 

Table 11 – CEV RPE segment 

Error % 

< -75% 11% 

[-75%; -50%[ 9% 

[-50%; -25%[ 15% 

[-25%; 0%[ 24% 

[0%; 25%[ 25% 

[25%; 50%[ 11% 

[50%; 75%] 3% 

>75% 2% 

TOTAL 100% 

 

Table 11 segments the RPE of the pricing computation under the CEV model. Almost half of 

the sample is on the RPE of -25% to 25%, which seems, at first sight, to outperform BSM. 

 

Table 12 – CEV performance - AARPE 

Moneyness Time to maturity (days) TOTAL 
<30 30-60 60-90 90-120 120-150 >150 

<90% 92% 55% 45% 44% 31% 55% 60% 

90% - 93% 81% 40% 27% 37% 35% 41% 48% 

93% - 96% 52% 27% 21% 25% 22% 25% 33% 

96% - 99% 42% 29% 21% 17% 16% 18% 29% 

99% - 102% 25% 19% 16% 18% 11% 17% 19% 

>102% 4% 6% 13% 14% 5% 17% 13% 

TOTAL 51% 32% 24% 25% 20% 29% 35% 
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Figure XV – CEV performance - ARPE 

 

Table 12 shows the CEV performance measured on AARPE over the time to maturity and 

moneyness. Similar to the BSM, the CEV model has a better performance when pricing ATM 

and ITM options, as well as options with a longer time to expiration. The AARPE for the total 

sample reaches 35%, which illustrates a very good performance. The best performance 

disregarding moneyness level is when options have a time to maturity between 60 and 120 days 

where AARPE is 24% for 60-90 days to maturity and 25% for 90-120 days to maturity. 

Figure XV illustrates it, where one can see all curves lean to 0% ARPE when time to expiration 

is around 60 and 120 days, having the 4 curves with moneyness higher than 93% very close to 

0. Even though, OTM curves still oscillate before for low maturity options. Nevertheless, every 

moneyness tends to a ARPE of 0 when maturity rises. 

Splitting this performance between call and put options, an interesting result happens. 
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options show 33%). There is no evidence to distinguish the performance between call and put 

options regarding its moneyness, since both have better performances on ITM zone, as said 

before. 
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Table 13 - CEV performance by option kind - AARPE 

Moneyness 
Call options 

TOTAL 
Put options TOTAL TOTAL 

Time to maturity (days) Time to maturity (days) 

<30 30-60 60-90 90-120 120-150 >150 <30 30-60 60-90 90-120 120-150 >150 
  

<90% 100% 76% 47% 84% 70% 77% 76% 91% 49% 44% 32% 29% 34% 54% 60% 

90%-93% 81% 45% 22% 46% 57% 60% 53% 80% 37% 30% 32% 22% 23% 45% 48% 

93%-96% 47% 29% 21% 28% 28% 46% 35% 55% 26% 20% 21% 16% 12% 32% 33% 

96%-99% 54% 34% 24% 20% 24% 33% 38% 31% 23% 17% 14% 8% 7% 21% 29% 

99%-102% 25% 19% 14% 15% 12% 25% 21% 25% 19% 18% 20% 9% 5% 17% 19% 

>102% 4% 6% 15% 15% 6% 18% 15% 4% 6% 10% 12% 5% 4% 7% 13% 

TOTAL 47% 33% 22% 27% 25% 42% 37% 54% 30% 26% 23% 16% 16% 33% 35% 
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Table 14 – CEV RPE segmentation for overpricing 

Moneyness 
Call options 

TOTAL 
Put options 

TOTAL TOTAL Time to maturity (days) Time to maturity (days) 

<30 30-60 >60 <30 30-60 >60 

<94% 0% 1% 0% 1% 0% 4% 18% 23% 23% 

94%-96% 2% 5% 1% 8% 0% 3% 1% 5% 13% 

96%-98% 7% 9% 2% 17% 4% 4% 3% 11% 28% 

98%-100% 11% 5% 0% 17% 6% 3% 4% 13% 30% 

100%-102% 1% 2% 0% 2% 1% 1% 1% 3% 5% 

TOTAL 21% 21% 3% 46% 12% 16% 27% 54% 100% 

 

Table 14 segments the RPE of the 16% (from table 11) by moneyness and time to maturity, 

where the CEV model overestimates above 25% (528 observations). The CEV overestimates 

more often call options when these are near maturity, whereas put options are overestimated 

usually with a larger time to maturity. 

While put options are overestimated OTM, there is not a clear trend regarding overestimating 

on call options concerning its moneyness. 

 

Table 15 – CEV RPE segmentation for underpricing 

Moneyness 
Call options 

TOTAL 
Put options 

TOTAL TOTAL Time to maturity (days) Time to maturity (days) 

<30 30-60 >60 <30 30-60 >60 

<94% 5% 6% 15% 26% 19% 12% 7% 37% 63% 

94%-96% 3% 1% 4% 7% 6% 2% 1% 9% 16% 

96%-98% 2% 0% 4% 6% 3% 1% 0% 4% 10% 

98%-100% 1% 1% 4% 6% 1% 0% 0% 1% 7% 

100%-102% 0% 0% 2% 2% 0% 0% 0% 0% 2% 

>102% 0% 0% 1% 1% 0% 0% 0% 0% 1% 

TOTAL 10% 8% 31% 48% 29% 14% 8% 52% 100% 

 

Table 15 represents the segmentation of the RPE by moneyness and time to expiration, where 

the CEV model underestimates below -25% of RPE, representing 35% of the observations 

sample (1.153 observations). In contrast with overestimating, the underestimation is more likely 

to happen on put options when these are reaching their maturity. On call options the 

underestimation is more often to happen when time to maturity is longer. 

Moreover, the CEV model underestimates both call and put options when these are deep OTM. 
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In summary, the CEV model seems to adapt efficiently to the market when options time to 

expiry is between 60 and 120 days, independently of the moneyness. 

OTM options are very mispriced when time to expiration is small, but the enhancement is 

obvious when time to expiration increases. 

As shown by Chen et al. (2009), the CEV model only overprices call options when time to 

maturity is lower and options are OTM. Table 14 confirms this statement, since 24% out of 

46% of the overpriced call options are between a moneyness of 94% and 96% with a time to 

maturity below 60 days. But Bakshi et al. (1997) state that options can be underpriced when 

moneyness is ≤100%. Results in this thesis are in line with Chen et al. (2009). However, the 

results do not disagree from Bakshi et al. (1997) since the weight of the observation sample 

ITM is very small, making it not possible to conclude about this subject. 

Again, as shown by Chen et al. (2009), call options are underpriced when time to maturity 

increases. The opposite happens for put options. 

Regarding parameter estimation, 𝛽 shows to be further away from 0 than the evidence shown 

by Jackwerth and Rubinstein (2012). However, the empirical performance for the CEV model 

shown in this thesis is very positive. 
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4.2.3. Implied volatility 

 

As figures XVI and XVII illustrate, the implied volatilities for the CEV model are very flattish 

independently from the maturity for both call and put options. Moreover, the curves produced 

with CEV prices are the most similar to the implied volatilities taken from the markets (call 

options show a smile, while put options have a negative slope). These two factors support the 

good performance of the CEV model. 

 

 

Figure XVI – Average of implied volatilities for the CEV model on the three indexes for call options 
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Figure XVII – Average of implied volatilities for the CEV model on the three indexes for put options 
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parameters not observable in the market for the Heston model. Recall that for this estimation 
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Atiya and Wall (2009) applied more restricted boundaries (for instance 𝜅 = 0.4). Testing for 

the same boundaries, the performance of the Heston model slightly decreased. Moreover, Atiya 

and Wall (2009) tested their method using 1-year time gap. 

The most affected parameter by the time gap is 𝑘. In most of the cases 𝑘 tends to decrease as 

the time interval is larger, meaning that the speed for the variance is faster when using more 

recent market prices. Though, the standard deviation for this parameter is substantially high. 

As expected, all estimated 𝜌 are negative due to the inverse correlation between the asset price 

and its volatility, as mentioned before. 

The value for the volatility of the variance 𝜎 is significantly high, probably due to the volatility 

peaks market is presenting between May and July 2018.  

For all cases, it was assumed 𝜆 = 0. 



Empirical performance of three option pricing models 

51 

 

 

Table 16 – Heston parameters estimation 

Parameter SPX SX5E NKY 

1-month 3-month 6-month 1-year 2-year 1-month 3-month 6-month 1-year 2-year 1-month 3-month 6-month 1-year 2-year 

𝒌 15,14 8,73 7,16 6,93 5,08 13,46 7,96 12,09 6,77 3,79 18,57 11,59 9,99 3,55 12,70 
 

(7,13) (7,19) (6,63) (7,16) (4,97) (8,17) (5,8) (7,71) (7,39) (5,31) (4,94) (7,74) (9,05) (4,25) (8,86) 

𝜽 0,01 0,02 0,02 0,03 0,03 0,02 0,01 0,01 0,03 0,05 0,02 0,02 0,03 0,05 0,04 
 

(0,01) (0,02) (0,02) (0,01) (0,05) (0,01) (0,01) (0,01) (0,02) (0,1) (0,03) (0,02) (0,04) (0,04) (0,01) 

𝝈 1,10 1,23 1,68 1,94 1,54 0,88 1,03 1,26 1,60 1,85 0,80 1,16 1,57 1,45 1,14 
 

(0,44) (0,42) (0,34) (0,13) (0,51) (0,81) (0,34) (0,42) (0,51) (0,34) (0,6) (0,44) (0,28) (0,36) (0,73) 

𝒗𝟎 0,02 0,04 0,02 0,04 0,04 0,01 0,01 0,01 0,03 0,06 0,01 0,04 0,02 0,01 0,21 
 

(0,03) (0,03) (0,02) (0,01) (0,04) (0,01) (0,01) (0,01) (0,02) (0,08) (0,01) (0,03) (0,03) (0,02) (0,14) 

𝝆 -0,72 -0,56 -0,53 -0,88 -0,70 -0,71 -0,69 -0,43 -0,64 -0,62 -0,70 -0,47 -0,39 -0,62 -0,90 
 

(0,33) (0,3) (0,41) (0,08) (0,22) (0,58) (0,36) (0,5) (0,39) (0,32) (0,49) (0,59) (0,25) (0,27) (0,1) 
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4.3.2. Pricing analysis 

 

The best time series for the asset prices was the 1-month time gap. As stated by Atiya and Wall 

(2009), the parameters should be calibrated every month, because this estimation method will 

incorporate more estimation errors using a large time interval of asset prices throughout the 

routine than if a smaller time interval is used. From now on, all figures respect to the 1-month 

computations. 

 

Table 17 – Heston RPE segment 

Error % 

< -75% 28% 

[-75%; -50%[ 13% 

[-50%; -25%[ 16% 

[-25%; 0%[ 18% 

[0%; 25%[ 10% 

[25%; 50%[ 4% 

[50%; 75%] 3% 

>75% 8% 

TOTAL 100% 

 

Table 17 shows that only 28% of the pricing results using the Heston model are between RPE 

of -25% to 25%. It also illustrates that this model is more likely to underestimate option prices 

when compared with the benchmark than to overprice. 

 

Table 18 – Heston performance - AARPE 

Moneyness Time to maturity (days) TOTAL 
<30 30-60 60-90 90-120 120-150 >150 

<90% 768% 434% 124% 258% 92% 87% 334% 

90% - 93% 545% 202% 66% 67% 54% 55% 222% 

93% - 96% 347% 84% 45% 63% 56% 43% 149% 

96% - 99% 127% 43% 44% 46% 51% 42% 71% 

99% - 102% 46% 43% 52% 39% 39% 42% 44% 

>102% 4% 10% 17% 16% 18% 37% 28% 

TOTAL 284% 126% 59% 73% 53% 52% 140% 
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Figure XVIII – Heston performance - ARPE 

 

The performance of the Heston model on this thesis is quite interesting. On one hand, when 
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This model shows to be very sensitive to moneyness and time to maturity, where the mispricing 

on options deep OTM is very significant, as well as when the time to maturity is small (mainly 

below 30 days). The Heston model shows to be more sensitive to moneyness than to time to 

maturity since ITM options with low maturity have a very good performance. 

However, one of the reasons why this model is so mispriced on OTM is the negative prices 

obtained through the Heston model3, representing the biggest issue faced on this thesis. About 

15% of the observations resulted on a negative price using this model (514 observations). 

 

                                                           
3 “Heston trap” from Albrecher et al. (2007) helped improving this flaw. The Gauss-Laguerre quadrature with 32 

degrees produced the greatest enhancement. However, this showed to be not sufficient. 
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Figure XIX – Heston negative prices behavior 

 

Figure XIX illustrates where the negative price results can be found. 44% of the total 
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Table 19 – Heston RPE segmentation for underpricing 

Moneyness Time to maturity TOTAL 
<30 30-60 60-90 90-120 >120 

<90% 0% 2% 2% 1% 5% 9% 

90%-93% 2% 5% 3% 2% 6% 18% 

93%-96% 4% 7% 3% 2% 6% 21% 

96%-99% 6% 8% 4% 2% 8% 29% 

99%-102% 4% 4% 2% 3% 7% 20% 

>102% 0% 0% 0% 0% 3% 3% 

TOTAL 16% 26% 14% 10% 34% 100% 

 

For the overpricing case, table 20 segments the results into the respective moneyness and time 

to maturity for the 15% of overpricing above 25%. The Heston model overprices more likely 

options with small time to maturity disregarding its moneyness. However, the percentage of 

overpricing is small. 

 

Table 20 – Heston RPE segmentation for overpricing 

Moneyness Time to maturity TOTAL 
<30 30-60 >60 

<90% 0% 2% 3% 6% 

90%-92% 9% 8% 3% 20% 

92%-94% 20% 12% 3% 34% 

94%-96% 20% 7% 2% 29% 

96%-98% 6% 3% 1% 10% 

TOTAL 55% 32% 13% 100% 

 

To sum up, Heston model can compute negative prices for some option deep OTM. This 

represents the biggest issue applying this model. Integrand improvements showed not to be 

sufficient to overcome this situation. Heston model tends to overprice options reaching 

maturity, although only 15% of the observation sample (RPE from 25% to >75%) highlights it. 

Nevertheless, ATM and ITM observations demonstrate good performances especially when the 

time to expiration is between 30 and 60 days, whereas most of option pricing models show bad 

performances. 
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Table 21 – Heston RPE segmentation by option kind 

Moneyness 
Call options 

TOTAL 
Put options 

TOTAL TOTAL Time to maturity (days) Time to maturity (days) 

<30 30-60 >60 <30 30-60 >60 

<95% 3% 4% 8% 15% 8% 8% 11% 28% 43% 

95%-98% 4% 4% 5% 12% 5% 4% 6% 14% 27% 

98%-101% 3% 3% 3% 10% 3% 2% 4% 9% 18% 

>101%% 2% 2% 5% 8% 1% 1% 2% 4% 12% 

TOTAL 12% 13% 21% 46% 16% 15% 23% 54% 100% 

 

Regarding the option kind, table 21 segments the RPE over moneyness and time to maturity. It 

is not clear to elaborate a conclusion regarding the option type because the RPE is spread over 

all maturities and moneyness. 

 

4.3.3. Implied volatility 

 

Figures XX and XXI illustrate the implied volatilities for the prices computed using the Heston 

model. These figures show the mispricing on this model since the curves have not a good 

behavior comparing with the benchmark. This is more evident on options with a short time to 

maturity. 

 

 

Figure XX – Average of implied volatilities for the Heston model on the three indexes for call options 
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Figure XXI – Average of implied volatilities for the Heston model on the three indexes for put options 
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The performance between indexes does not reveal anything relevant to analyze. 

Looking at the implicit volatilities, the CEV model returns the prices where the implied 

volatility is more in line with what is observed on the market. 

Finally, CEV seems to be the most well behaved and consistent option pricing model and has 

the advantage of having only one more parameter estimation than the BSM, as stated by Chen 

et al. (2009). Implied volatilities taken from this model go in line with this conclusion since 

these were the most consistent. 
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5. Conclusion 

 

The performance of three option pricing models replicating European-style call and put options 

quoted in three different organized markets was empirically tested. The SPX, the SX5E and the 

NKY indexes are the underlying for the tested options. 

Every parameter needed to price these options was estimated using only market data. Five 

inputs of market data differing on the time gap of data were used and the best performance was 

chosen. 

The BSM model was the easiest model to implement, since it only required the estimation of 

one parameter. If one believes on the assumptions supporting this model, the computation of 

the annual volatility using the standard deviation of historical returns should be enough to 

correctly price options under this model. Even though, looking at the implied volatilities 

retrieved using the BSM, the curves are not similar to the ones observed from market prices. 

Nevertheless, the BSM shows a good performance pricing options ITM or with a large time to 

maturity. 

The parameter estimation results for the CEV model was very surprising. While general 

literature agrees that the parameter 𝛽 should be around -2 and -6, on this thesis it is shown that 

𝛽 can go as further as -28. Sample size, time gap under analysis or the real market behavior can 

be some of the reasons for this unusual value, but the truth is that this model considerably 

outperformed the other two models, mainly pricing options OTM or close to maturity, where 

all models show misprice the most. Moreover, the implied volatility on this model is very flat 

along moneyness and it is the closest to the market curves. 

The Heston model was the major disappointment on this empirical study. Having computed 

negative prices for some options mainly deep OTM, the Heston model had the worst 

performance of the three models. Although, his performance pricing ATM or ITM options when 

time to maturity is between 30 and 60 days is worth of analysis. 

It was not spotted any biases on the performance among the different markets. 

For further research, one can apply this empirical performance tests using other model like, for 

instance, jump diffusion models. 
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Appendix A - MATLAB code 

 

A.1. Main 

%1=SPX 

%2=SX5E 

%3=Nikkei 

  

clc; 

clear; 

delete PricingOutput.xlsx 

  

ind=3; %number of indexes tested 

  

%Heston parameters estimation set up 

options = optimset('MaxFunEvals',1e5,'MaxIter',1e5); 

lambda=0; 

n = 32; 

[x w] = GenerateGaussLaguerre(n); 

lb = [1e-5  1e-5  1e-5  1e-5 -.999];  % Lower bound on the estimates 

ub = [20  2  2  3  .999];  % Upper bound on the estimates 

start = [3 0.05 0.3 0.05 -0.8]; 

  

%Creating time series matrix to read the daily inputs of data 

a=[2 2 2;62 97 78;146 180 174;233 281 268;305 424 390;412 534 493;481 629 

593;546 748 721;636 850 842;704 913 964;777 1008 1051;871 1080 1160;937 1140 

1265]; 

  

%Headers for the output 

headers={'Date','C/P','Ticker','Strike','t','Moneyness','Last','BS','Heston

','CEV'}; 

  

for z=3:ind 

   for m=12:length(a)-1     

        

    %Read data 

    [~,Date]=xlsread('DataMain',z,['A'num2str(a(m,z)) ':A' num2str(a(m+1,z)-

1)]); 

    [~,Ticker]=xlsread('DataMain',z,['B'num2str(a(m,z))':B'num2str 

(a(m+1,z)-1)]); 

    [~,CP]= xlsread('DataMain',z,['C' num2str(a(m,z)) ':C' num2str(a(m+1,z)-

1)]); 

    K= xlsread('DataMain',z,['D' num2str(a(m,z)) ':D' num2str(a(m+1,z)-1)]); 

    t= xlsread('DataMain',z,['E' num2str(a(m,z)) ':E' num2str(a(m+1,z)-1)]); 

    moneyness=xlsread('DataMain',z,['L'num2str(a(m,z))':L'num2str(a(m+1,z)-

1)]); 

    last= xlsread('DataMain',z,['F' num2str(a(m,z)) ':F' num2str(a(m+1,z)-

1)]); 

    S=xlsread('DataMain',z,['G' num2str(a(m,z))]); 

    SHistposition=xlsread('DataMain',z,['H' num2str(a(m,z))]); 

    vol=xlsread('DataMain',z,['I' num2str(a(m,z))]); 

    r=xlsread('DataMain',z,['J' num2str(a(m,z))]); 

    q=xlsread('DataMain',z,['K' num2str(a(m,z))]); 

  

    %Read Heston data 

    SHist=xlsread('DataMain',[num2str(z) '_IND'],['B' num2str(SHistposition) 

':B' num2str(SHistposition+252)]); 
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    SHist=flipud(SHist); 

     

    %CEV parameters estimation 

    betamenor2(m,z)=fmincon(@(parm)betaestmenor2 

(parm,CP,S,K,t,r,q,vol,last),-2,[],[],[],[],[],1.5,[],options); 

    delta(m,z)=sqrt(vol^2*S^(2-betamenor2(m,z))); 

     

    %Heston parameters estimation and variables input 

    parameter=fmincon(@(parm)Hestonparameters(parm,SHist,r,q) 

,start,[],[],[],[],lb,ub,[],options); 

    kappa(m,z) = parameter(1); 

    theta(m,z) = parameter(2); 

    sigma(m,z)= parameter(3); 

    v0(m,z)= parameter(4); 

    rho(m,z)= parameter(5); 

  

    %Computing options prices for each option model 

    for k=1:length(K) 

        BS(k)=BSprice(CP(k),S,K(k),t(k),r,q,vol); 

        Heston(k)=Hestonprice(CP(k),S,K(k),t(k),r,q,kappa(m,z), 

theta(m,z),rho(m,z),sigma(m,z),v0(m,z),lambda,x,w); 

        CEV(k)=CEVprice(CP(k),S,K(k),t(k),r,q,vol,betamaior2(m,z)); 

    end 

     

    %Create and write on an excel file, transposing the price vectors 

    xlswrite('PricingOutput.xlsx',Date,z,['A' num2str(a(m,z))]) 

    xlswrite('PricingOutput.xlsx',CP,z,['B' num2str(a(m,z))])   

    xlswrite('PricingOutput.xlsx',Ticker,z,['C' num2str(a(m,z))]) 

    xlswrite('PricingOutput.xlsx',K,z,['D' num2str(a(m,z))])     

    xlswrite('PricingOutput.xlsx',t,z,['E' num2str(a(m,z))]) 

    xlswrite('PricingOutput.xlsx',moneyness,z,['F' num2str(a(m,z))]) 

    xlswrite('PricingOutput.xlsx',last,z,['G' num2str(a(m,z))])    

    xlswrite('PricingOutput.xlsx',transpose(BS),z,['H' num2str(b(m,z))]) 

    xlswrite('PricingOutput.xlsx',transpose(Heston),z,['I'num2str(b(m,z))]) 

    xlswrite('PricingOutput.xlsx',transpose(CEV),z,['J' num2str(a(m,z))]) 

  

    %Clear variables 

    clearvars Date CP Ticker K t moneyness last BS Heston CEV; 

     

   end 

  

   %Write the headers on sheet "z" 

   xlswrite('PricingOutput.xlsx',headers,z); 

    

end 

    

   %Write the parameters estimated 

   xlswrite('PricingOutput.xlsx',kappa,'kappa'); 

   xlswrite('PricingOutput.xlsx',rho,'rho'); 

   xlswrite('PricingOutput.xlsx',sigma,'sigma'); 

   xlswrite('PricingOutput.xlsx',theta,'theta'); 

   xlswrite('PricingOutput.xlsx',v0,'v0'); 

   xlswrite('PricingOutput.xlsx',delta,'delta'); 

   xlswrite('PricingOutput.xlsx',betamaior2,'beta'); 
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A.2. BSM model 

function x = BSprice(CP,S,K,t,r,q,vol) 

  

d1=(log(S/K)+(r-q+vol^2*0.5)*t)/(vol*sqrt(t)); 

d2=d1-vol*sqrt(t); 

  

if CP == "C" 

  

    Nd2=normcdf(d2); 

    Nd1=normcdf(d1); 

    x=S*exp(-q*t)*Nd1-K*exp(-r*t)*Nd2; 

  

else 

  

    Nd2=normcdf(-d2); 

    Nd1=normcdf(-d1); 

    x=-S*exp(-q*t)*Nd1+K*exp(-r*t)*Nd2; 

  

end 

 

A.3. CEV model 

function x=CEVprice(CP,S,K,t,r,q,vol,beta) 

  

deltasqr=vol^2*S^(2-beta); 

k=(2*(r-q))/(deltasqr*(2-beta)*(exp((r-q)*(2-beta)*t)-1)); 

z=k*S^(2-beta)*exp((r-q)*(2-beta)*t); 

y=k*K^(2-beta); 

  

if CP=="C" 

    if beta<2 

        x=S*exp(-q*t)*(1-ncx2cdf(2*y,2+2/(2-beta),2*z))-K*exp(-

r*t)*ncx2cdf(2*z,2/(2-beta),2*y); 

    end 

    if beta>2 

        x=S*exp(-q*t)*(1-ncx2cdf(2*z,2/(beta-2),2*y))-K*exp(-

r*t)*ncx2cdf(2*y,2+2/(beta-2),2*z); 

    end 

    if beta==2 

        x=BSprice(CP,S,K,t,r,q,vol); 

    end 

else 

    if beta<2 

        x=-S*exp(-q*t)*ncx2cdf(2*y,2+2/(2-beta),2*z)+K*exp(-r*t)*(1-

ncx2cdf(2*z,2/(2-beta),2*y)); 

    end 

    if beta>2 

        x=-S*exp(-q*t)*ncx2cdf(2*z,2/(beta-2),2*y)+K*exp(-r*t)*(1-

ncx2cdf(2*y,2+2/(beta-2),2*z)); 

    end 

    if beta==2 

       x=BSprice(CP,S,K,t,r,q,vol); 

    end 

     

end 
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A.3.1. CEV parameters estimation 

function x = betaestmenor2(parm,CP,S,K,t,r,q,vol,last) 

  

beta=parm; 

sumRMSRE=0; 

deltasqr=vol^2*S^(2-beta); 

  

for n=1:length(K) 

  

    k=(2*(r-q))/(deltasqr*(2-beta)*(exp((r-q)*(2-beta)*t(n))-1)); 

    z=k*S^(2-beta)*exp((r-q)*(2-beta)*t(n)); 

    y=k*K(n)^(2-beta); 

  

    if CP(n)=="C" 

             CEV=S*exp(-q*t(n))*(1-ncx2cdf(2*y,2+2/(2-beta),2*z))-

K(n)*exp(-r*t(n))*ncx2cdf(2*z,2/(2-beta),2*y); 

    else 

             CEV=-S*exp(-q*t(n))*ncx2cdf(2*y,2+2/(2-beta),2*z)+K(n)*exp(-

r*t(n))*(1-ncx2cdf(2*z,2/(2-beta),2*y)); 

    end 

  

    RMSRE=((last(n)-CEV)/last(n))^2; 

    sumRMSRE=sumRMSRE+RMSRE; 

end 

x=sqrt(sumRMSRE/length(K)); 

 

A.4. Heston model 

function y = Hestonprice(CP,S,K,t,r,q,kappa,theta,rho,sigma,v0,lambda,x,w) 

  

  

for k=1:length(x) 

     

    

int1(k)=w(k)*Hestonprob(S,K,kappa,theta,rho,sigma,r,q,v0,x(k),t,lambda,1); 

    

int2(k)=w(k)*Hestonprob(S,K,kappa,theta,rho,sigma,r,q,v0,x(k),t,lambda,2); 

  

end 

     

    p1=1/2+1/pi*sum(int1); 

    p2=1/2+1/pi*sum(int2);  

         

if CP == "C" 

  

    y=S*exp(-q*t)*p1-K*exp(-r*t)*p2; 

  

else 

     

    y=S*exp(-q*t)*p1-K*exp(-r*t)*p2-S*exp(-q*t)+K*exp(-r*t); 

  

end 
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A.4.1. Heston probability functions 

function x = Hestonprob(S,K,kappa,theta,rho,sigma,r,q,v0,phi,t,lambda,Px) 

  

if Px==1 

    b=kappa+lambda-rho*sigma; 

    u=0.5; 

else 

    b=kappa+lambda; 

    u=-0.5; 

end 

  

a=kappa*theta; 

d=sqrt((rho*sigma*i*phi-b)^2-sigma^2*(2*u*i*phi-phi^2)); 

g=(b-rho*sigma*i*phi+d)/(b-rho*sigma*i*phi-d); 

  

%Heston trap 

C=(r-q)*i*phi*t+a/sigma^2*((b-rho*sigma*i*phi-d)*t-2*log((1-1/g*exp(-

d*t))/(1-1/g))); 

D=(b-rho*sigma*i*phi-d)/sigma^2*((1-exp(-d*t))/(1-1/g*exp(-d*t))); 

  

f=exp(C+D*v0+i*phi*log(S)); 

x=real(exp(-i*phi*log(K))*f/i/phi); 

 

A.4.2. Heston Gauss-Laguerre quadratures 

function [x w] = GenerateGaussLaguerre(n) 

  

for k=0:n 

    L(k+1) = (-1)^k/factorial(k)*nchoosek(n,k); 

end 

  

L = fliplr(L); 

  

x = flipud(roots(L)); 

  

w = zeros(n,1); 

for j=1:n 

    for k=1:n 

        dL(k,j) = (-1)^k/factorial(k-1)*nchoosek(n,k)*x(j)^(k-1); 

    end 

    w(j) = 1/x(j)/sum(dL(:,j))^2; 

    w(j) = w(j)*exp(x(j)); 

end 

 

A.4.3. Heston parameters estimation 

function [y,v]=Hestonparameters(parm,SHist,r,q) 

  

kappa=parm(1); 

theta=parm(2); 

sigma=parm(3); 

v0=parm(4); 

rho=parm(5); 

  

x=log(SHist); 

dt=1/252; 
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T=length(x); 

v(1)=v0; 

l(1)=-v(1); 

  

alpha=kappa*theta; 

kappaa=1-kappa*dt; 

  

D=2*pi*sigma*sqrt(1-rho^2)*dt; 

a=(kappaa^2+rho*sigma*kappaa*dt+sigma^2*dt^2/4)/(2*sigma^2*(1-rho^2)*dt); 

for t=1:T-1 

    dx=x(t+1)-x(t); 

  

    B=-alpha*dt-rho*sigma*(dx-(r-q)*dt); 

    C=alpha^2*dt^2+2*rho*sigma*alpha*dt*(dx-(r-q)*dt)+sigma^2*(dx-(r-

q)*dt)^2-2*v(t)^2*a*sigma^2*(1-rho^2)*dt; 

    

    if B^2-C>0 

        v(t+1) = sqrt(B^2 - C) - B; 

    else 

        b = ((v(t)-alpha*dt)^2 - 2*rho*sigma*(v(t)-alpha*dt)*(dx-(r-q)*dt) + 

sigma^2*(dx-(r-q)*dt)^2)  / (2*sigma^2*(1-rho^2)*dt); 

        if b/a>0 

            v(t+1) = sqrt(b/a); 

        else 

            v(t+1)=v(t); 

        end 

         

    end          

    

    b=((v(t+1)-alpha*dt)^2-2*rho*sigma*(v(t+1)-alpha*dt)*(dx-(r-q)*dt)+ 

sigma^2*(dx-(r-q)*dt)^2)/(2*sigma^2*(1-rho^2)*dt); 

    x1=((2*kappaa+rho*sigma*dt)*(v(t+1)-alpha*dt)- 

(2*rho*sigma*kappaa+sigma^2*dt)*(dx-(r-q)*dt))   / (2*sigma^2*(1-rho^2)*dt); 

    x2 = -2*sqrt(a*b); 

    l(t+1) = -1/4*log(a*b) + x1 + x2 -log(D) + l(t); 

    

end 

  

y=-real(l(T)); 

 

A.5. Implied volatility 

function y = BisecBSIV(CP,S,K,r,q,t,lvol,uvol,last,Tol,MaxIter) 

  

% Functions for the Black-Scholes call and put   

BSC=@(s,K,rf,q,v,T)(s.*exp(-q*T).*normcdf((log(s./K)+((rf-

q)+v.^2./2).*T)./v./sqrt(T))– K.*exp(-rf.*T).*normcdf((log(s./K) + ((rf-

q)+v.^2./2).*T)./v./sqrt(T) - v.*sqrt(T))); 

 

BSP = @(s,K,rf,q,v,T) (K.*exp(-rf.*T).*normcdf(-(log(s./K) + ((rf-

q)+v.^2./2).*T)./v./sqrt(T) + v.*sqrt(T)) -s.*exp(-q*T).*normcdf(-(log(s./K) 

+ ((rf-q)+v.^2./2).*T)./v./sqrt(T))); 

   

if strcmp(CP,'C') 

    lowCdif  = last - BSC(S,K,r,q,lvol,t); 

    highCdif = last - BSC(S,K,r,q,uvol,t); 

else 

    lowCdif  = last - BSP(S,K,r,q,lvol,t); 

    highCdif = last - BSP(S,K,r,q,uvol,t); 
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end 

  

if lowCdif*highCdif > 0 

    y = -1; 

else 

    for x=1:MaxIter 

        midP = (lvol+uvol)/2; 

        if strcmp(CP,'C') 

            midCdif = last - BSC(S,K,r,q,midP,t); 

        else 

            midCdif = last - BSP(S,K,r,q,midP,t); 

        end 

        if abs(midCdif)<Tol 

            break 

        else 

            if midCdif>0 

                lvol = midP; 

            else 

                uvol = midP; 

            end 

        end 

    end 

    y = midP; 

end 


