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Highlgihts 
 The proposed system estimates the biomedical gait indicators and the temporal gait features with a high level of accuracy, 

outperforming the current state-of-the-art markerless vision systems 

 The system is robust to imperfections of the segmented silhouettes.  

 The results of the proposed system are validated by comparing them with the “gold standard” optoelectronic motion 

capture system.  

 The high correlation with the results of the optoelectronic motion capture system suggests that the proposed system can be 

an alternative to marker based systems in non-laboratory environments 

.
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Abstract—  

Background and Objective: Estimation of temporal gait 

features, such as stance time, swing time and gait cycle time, can 

be used for clinical evaluations of various patient groups having 

gait pathologies, such as Parkinson’s diseases, neuropathy, 

hemiplegia and diplegia. Most clinical laboratories employ an 

optoelectronic motion capture system to acquire such features. 

However, the operation of these systems requires specially 

trained operators, a controlled environment and attaching 

reflective markers to the patient’s body. To allow the estimation 

of the same features in a daily life setting, this paper presents a 

novel vision based system whose operation does not require the 

presence of skilled technicians or markers and uses a single 2D 

camera. 

Method: The proposed system takes as input a 2D video, 

computes the silhouettes of the walking person, and then 

estimates key biomedical gait indicators, such as the initial foot 

contact with the ground and the toe off instants, from which 

several other temporal gait features can be derived. 

Results: The proposed system is tested on two datasets: (i) a 

public gait dataset made available by CASIA, which contains 20 

users, with 4 sequences per user; and (ii) a dataset acquired 

simultaneously by a marker-based optoelectronic motion capture 

system and a simple 2D video camera, containing 10 users, with 5 

sequences per user. For the CASIA gait dataset A the relevant 

temporal biomedical gait indicators were manually annotated, 

and the proposed automated video analysis system achieved an 

accuracy of 99% on their identification. It was able to obtain 

accurate estimations even on segmented silhouettes where, the 

state-of-the-art markerless 2D video based systems fail. For the 

second database, the temporal features obtained by the proposed 

system achieved an average intra-class correlation coefficient of 

0.86, when compared to the "gold standard" optoelectronic 

motion capture system. 

Conclusions: The proposed markerless 2D video based system 

can be used to evaluate patients’ gait without requiring the usage 

of complex laboratory settings and without the need for physical 

attachment of sensors/markers to the patients. The good 

accuracy of the results obtained suggests that the proposed 

system can be used as an alternative to the optoelectronic motion 

capture system in non-laboratory environments, which can be 

enable more regular clinical evaluations. 

 

Index Terms—Biomedical Analysis, Biomedical Gait 

Indicators, Gait Analysis, Temporal Gait Features, Computer 

Vision, Video Processing. 

I. INTRODUCTION 

AIT analysis is widely used in the functional evaluation of 

different patient groups. These patient groups vary from 

people suffering from local lower limb injuries (e.g., knee 

injuries) to patients with severe systemic disorders [1]. To 

perform such evaluation, key instants during the user‟s gait 

cycle must be identified, which are denoted as biomedical gait 

indicators (BGIs). A gait cycle typically starts with a BGI 

called the “initial contact”, which indicates the initial contact 

of the heel of the evaluated leg with the floor. The initial 

contact also marks the end of the previous gait cycle. A gait 

cycle can be further subdivided into stance and swing phases, 

which are separated by another BGI called the “toe off” of the 

evaluated leg. The succession of recurrent left leg and right leg 

movements enables the computation of temporal gait features 

for each leg, such as stance time, swing time, cycle time and 

other gait cycle related timings. 

Clinical gait analysis using temporal gait features, such as 

those mentioned above, has gained popularity for instance for 

the evaluation of rehabilitation progression in patients after a 

surgical procedure (e.g., after a knee replacement) [2], or in 

the prediction of fall risks in the elderly population [3]. 

However, the acquisition and evaluation of the features from 

which BGIs are derived is usually performed in dedicated 

laboratories, often resulting in an expensive and a time-

consuming task. Therefore, a novel system for acquisition and 

evaluation of gait features in a daily life setting, such as a 

senior residence, hospital or home, is needed. 

A. State-of-the-art 

Devices used to acquire biomedical gait indicators of a user 

can be classified into sensor based and vision based systems 

[4]. Sensor based systems use devices that directly record 

signals representing the motion of the user. Such devices can 

be setup on the floor, such as force plates [5], or attached to 

the user for acquisition of signals. They allow the acquisition 
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of features such as velocity, cadence, step length and step 

time, to evaluate the user‟s gait. Such features can also be 

acquired using body worn sensors, as gyroscopes [6] and 

accelerometers [7]. Among them, wearable sensors have 

become popular in non-laboratory environments, due to their 

ease of usage [7]. However, signal acquisition can only be 

performed after the user is setup with the sensors, which in 

some cases are time consuming and may require operation by 

trained professionals, thus limiting their usage in daily life 

settings. 

Vision based systems on the other hand rely on the use of 

video cameras to acquire gait related features from the user. 

Such systems can be further divided into model based and 

appearance based, depending on the process of acquisition and 

the type of information used [8]. Model based systems 

typically rely on the use of multiple 2D cameras, operating in 

the visible or infra-red spectra, possibly also in combination 

with depth sensing cameras, along with additional information 

about the scene geometry to model the gait of the user. 

 

Among the model based systems, a large number rely on the 

use of depth sensing cameras to acquire the user‟s gait. Such 

systems typically compute a model of the user‟s skeletal 

structure to derive features such as leg length, normalized 

average stride length, and gait velocity [9] [10], or motion 

history [11], to classify the gait as either normal or abnormal. 

In the absence of depth information, calibrated cameras can be 

used to obtain features, such as the height of the user and the 

distance between the feet [12], or joint angles [13], to 

differentiate between normal and abnormal gait. Some 

systems use a combination of calibrated cameras and depth 

sensing cameras [14] to compute stride to stride variations and 

predict fall risks. It is worth mentioning that some depth 

sensing cameras have a limited range of operation, typically 

between 80 cm and 4 m, which can significantly restrict the 

conditions for gait acquisition. 

The gold standard for clinical evaluations in laboratories 

corresponds to a model based optoelectronic motion capture 

system [15]. The system uses at least six calibrated infra-red 

(IR) cameras in combination with forty-four reflective markers 

that need to be set on the user, to obtain kinematic features 

from the joints and thus characterize the observed gait. The 

use of such systems is limited to laboratories, due to the 

required equipment, its setup, the need for calibration before 

use and professional knowledge to operate them. 

On the other hand, appearance based systems typically rely 

on silhouettes obtained from a single 2D camera, from which 

spatiotemporal information about the user‟s gait is gathered. A 

significant amount of work using appearance based systems 

has been performed in the context of biometric recognition in 

unconstrained environments, such as those reported in [16], 

[17], as they do not require the use of reflective markers.  

According to [18], major articulations during a gait cycle 

occur in the sagittal plane. Thus, some appearance based 

systems explore the lateral view of the user for the 

identification of different gait related pathologies. These 

systems acquire features, such as stride length, leg angles, gait 

cycle time, speed [19], or the gait energy image (GEI) [20], to 

perform classification of pathologies, such as Parkinson 

disease, neuropathy, hemiplegia and diplegia. Although the 

lateral view is popular, the frontal view can also be used to 

extract features, such as stride length and leg angles [21], or 

homeomorphisms between 2D lattices and binary frontal view 

silhouettes [22] which can be used to perform abnormal gait 

detection. 

Some appearance based systems estimate BGIs, such as 

initial contact and the toe off [23], or the stance feet/flat feet 

[24], using information acquired from the feet position. These 

BGIs can then be used as a starting point to compute 

additional features, such as step and stride length, cadence, or 

the duration of single and double support phases. Features 

such as the orientation of the user‟s body along with ramp 

angle [25], axial ratio, change in velocity and distance 

between legs [26] may be used to detect posture instabilities, 

such as a hunched back. 

The detection of abnormalities in a user‟s gait in most 

appearance based systems is performed using a single 2D 

camera, making these systems easier to install and operate, 

which is an advantage that can be exploited in daily life 

settings. However, most state-of-the-art appearance based 

systems focus on classification of pathologies and not on the 

accuracy of the acquired features. For clinical evaluations, the 

accuracy of the features is extremely important. Thus, the 

results from such systems have to be validated, before 

accepting them for clinical use. 

B. Motivation and contribution 

Most medical professionals that analyze a user‟s gait 

acquire BGIs either using optoelectronic motion capture 

systems [15], or force plate based systems [5]. These systems 

are complex to handle and require trained personnel for 

operation. They are also expensive and inaccessible to most 

users. Moreover, processing data derived from such systems 

can also be a challenging and time-consuming task. In 

addition, the optoelectronic system [15] involves the 

application of reflective markers on to the skin of the user. 

This process requires an accurate application of the markers, 

as the system is very sensitive to noise and lighting conditions, 

and it can be tiring and uncomfortable for the users. 

Consequently, the use of such systems for the assessment of 

the user‟s gait on a regular basis may not be the easiest 

undertaking [6]. 

The use of inertial sensors can be used to tackle the 

identified shortcomings of the optoelectronic motion capture 

system [15], as many studies have demonstrated their validity 

in the estimation and assessment of gait features [3]. However, 

these sensors also need to be mounted on distinct and specific 

locations of the users‟ body when one wishes to monitor their 

gait. Thus, they too are limited in their usage in daily life 

settings. 

In the state-of-the-art review, many systems that use video 

from a single 2D camera, without reflective markers to 

identify abnormal gait were presented. These systems can 

possibly yield a solution to the aforementioned limitations. 
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However, most of these systems focus on classification of 

pathologies, and only a few systems among them explore 

temporal gait features. The accuracy of the temporal gait 

features acquired by such systems is affected by the 

limitations in moving silhouettes‟ segmentation. Since clinical 

evaluations require accurate estimation of gait features, a 

novel system robust to such conditions is needed. 

This paper presents a novel markerless 2D video based 

system to estimate two BGIs: initial contact and toe off. These 

estimates can be used to compute temporal gait features, such 

as the time intervals of the various phases of the user‟s gait, 

with a higher accuracy than the state-of-the-art. To validate 

the results, and emphasize the possibility to use them in 

clinical evaluations, the paper presents a comparison between 

the estimation of the gait features using the proposed system 

and the optoelectronic motion capture system [15]. That 

comparison can be made by computing the intra class 

correlation coefficient, to verify the level of agreement 

between the two systems [27]. The obtained intra class 

correlation results are in the range from „good‟ to „excellent‟, 

suggesting that the proposed system can be a valid alternative 

to the optoelectronic system [15] in non-laboratory 

environments. 

The remainder of the paper is organized as follows. Section 

II presents the proposed system, with the corresponding 

experimental results being reported in Section III. Section IV 

provides conclusions and directions for future work. 

II. METHOD 

The aim of the proposed system is to identify key BGIs, 

such as the initial contact and the toe off, by providing an 

estimate of the video frame number in which they occur. The 

state-of-the-art 2D vision based systems, such as those 

presented in [19] [23], typically perform poorly in the 

presence of imperfectly segmented silhouettes, often ignore 

the BGIs occurring at the start and end of a video. To address 

these limitations this paper presents a robust system that 

computes temporal gait features by estimating BGIs, 

following the architecture presented in Fig. 1. 

The proposed system operates on silhouettes of the walking 

user to estimate the BGIs. The preprocessing module is used 

to obtain a set of silhouettes of the moving user from the 2D 

input video. The proposed system uses the mixture of 

Gaussians (MoG) foreground detection method presented in 

[28] to separate the dynamic part of the video sequence (user) 

from the static part (background), resulting in a foreground 

mask corresponding to the user silhouette. Morphological 

operators, such as dilation and erosion, are then applied to the 

silhouettes to fill holes and remove small isolated blobs. 

Using the silhouettes obtained from the foreground 

detection, the proposed system performs BGI estimation in 

three blocks: 

• Flat feet identification – The flat feet identification 

block selects the areas in the image where the user‟s feet are in 

complete contact with the floor. These regions are highlighted 

by computing an overlap between the silhouettes obtained 

from all the video frames, as illustrated in Fig. 2 (a). The 

locations of the flat feet are then obtained by applying a 

dynamic thresholding scheme to the foot regions of the 

overlapped image. The locations thus obtained can be used by 

the following block to estimate the BGIs. 

• Selection of candidate frames for initial contact and 

toe off – The initial contact and toe off occur at specific points 

during a gait cycle. It is therefore possible to narrow down the 

search for the BGIs around these points, to prevent false 

positive detections. The selection step analyzes the width of 

the silhouettes belonging to a video sequence, selecting two 

sets of frames: (i) a set containing the candidate frames for 

initial contact, and (ii) a set containing candidate frames for 

toe off. 

• Initial contact and toe off estimation – The third block 

uses the location where flat feet were detected and the sets of 

initial contact and toe off candidate frames, to estimate the 

BGIs. Since in each candidate frame the two feet are present, 

this step selects the appropriate foot at which the BGI occurs. 

The rate of change in the overlap between each flat foot and 

the (moving) candidate foot are analyzed to estimate the two 

BGIs. Gait features can then be computed using the BGIs. 

The following subsections provide details for each of these 

blocks. 

A. Flat feet identification 

To estimate the initial contact and toe off, the proposed 

system needs to identify the locations where the feet are in 

complete contact with the floor. For this purpose, a “flat feet 

image” is created, capturing the corresponding locations in the 

video sequence.  

The first step of the proposed system is the construction of a 

gait texture image (GTI), which is obtained by averaging the 

 
 

Fig. 1. System architecture for a 2D video based biomedical gait indicators estimation. 
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user silhouette images computed for each video frame, in their 

original positions, as illustrated in Fig. 2 (a). Thus, given 

  binary silhouette images,  (     ), where   represents the 

frame number, the    (   ) can be constructed by averaging 

the silhouettes according to Equation (1), where (   ) 
represents the coordinates of a given pixel‟s position. 

 

    (   )  
 

 
∑ (     )

 

   

 (1) 

The GTI highlights the overlap between consecutive user 

silhouettes. Due to the nature of human gait, the highest 

overlap is observed at the locations that remain static for a 

longer period, i.e., where the user‟s feet are in full contact with 

the floor. These locations are represented by the highest 

intensity values in the GTI. The proposed system identifies 

these flat feet location by applying a dynamic thresholding to 

the GTI. 

The proposed thresholding scheme prevents the selection of 

other body parts by considering only the bottom 10% of the 

user‟s body in the GTI, which contains the user‟s feet 

positions, according to the human anatomy [29] – see Fig. 2 

(b). Since, the flat feet locations are represented by the highest 

intensity values in the GTI, threshold values are selected to 

highlight these locations. To select the threshold value for 

each flat foot location, the system selects the highest intensity 

values along the y-axis of the GTI (considering only the 

silhouette‟s bottom 10%) for every x-axis position– see Fig. 2 

(c). As illustrated in Fig. 2 (c), the flat feet locations at the 

start and the end of the GTI may contain significantly lower 

intensity values, as in these areas of the GTI there is less 

silhouette overlap. The variation in intensity values may also 

be caused due to asymmetric walking patterns, where one foot 

of the user stays in contact with the floor significantly longer 

than the other, thus causing more silhouette overlaps at that 

foot positions in the GTI. To overcome this variability, the 

proposed system uses the valleys in the intensity plot to 

separate two neighboring flat feet positions, followed by the 

application of Otsu's thresholding [30] to each identified flat 

foot location. The resulting image contains the flat feet 

locations for a given video sequence and is called the “flat feet 

image” – see Fig. 2 (d). 
 

  
(a) (b) 

 
 

(c) (d) 

Fig. 2. Illustration of the proposed flat feet identification step: (a) GTI,  

(b) selected feet region of the GTI, (c) dynamic thresholding scheme, (d) 
resulting “flat feet image”. 

B. Selection of candidate frames for initial contact and toe 

off 

After flat feet detection, the proposed system can analyze 

the overlap between the flat feet image and every video frame 

to estimate the BGIs. However, the resulting overlaps can 

occur for both feet of the user, possibly causing several false 

positives. The number of false positives can be reduced by 

first identifying the set of frames in which each of the BGIs 

are most likely to occur. The proposed system reduces its 

search range by selecting two sets of frames near every double 

support phase, as candidates for initial contact and toe off, 

respectively. The selection is done by analyzing the distance 

between the feet of a user for the entire video sequence. Only 

the frames with the distance greater than the mean distance are 

selected as the candidates for the two sets. The two sets are 

then created using the midpoint of the double support phase.     

The double support phase is the part of the gait cycle where 

both feet of the user are in contact with the floor. The initial 

contact BGI marks the start of double support phase, when a 

user‟s foot that is advancing, (i.e., the front foot) first touches 

the floor. The toe off BGI marks the end of the double 

support, when the user‟s standing foot, (i.e., the back foot) 

leaves the floor. In-between the two BGIs is the midpoint of 

the double support phase, corresponding to the point when the 

user‟s legs are the furthest apart from each other. 

The proposed system identifies the midpoint of the double 

support phase by analyzing the distance between the feet, 

which can be approximated as the width of the silhouette‟s 

bounding box, which increases and decreases periodically 

during a gait cycle. However, the width of the bounding box 

may vary significantly as the user walks towards or away from 

the camera. Thus, the available width values must be 

normalized by subtracting them by their mean and dividing by 

their standard deviation. The points of maximum width then 

correspond to the local peaks of the normalized width, 

representing the midpoints of the double support phase. All 

frames with a positive normalized width occurring 

immediately before the midpoints of the double support phase 

(i.e., before the peak) are considered candidate frames for the 

initial contact. Similarly, the frames with a positive 

normalized width immediately after the peak are considered 

candidate frames for the toe off. These candidate frames are 

indicated in Fig. 3 by „*‟ and „o‟, respectively. 

 

C. Initial contact and toe off estimation 

The initial contact occurs at the user‟s front foot, while the 

 
Fig. 3. Selection of candidate frames for the estimation of initial contact 

and toe off BGIs. 

 

  Width 

  Peaks 
   *  Candidate for initial contact 

   O Candidate for toe off 

Pixel´s x-axis position 
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toe off occurs at the user‟s back foot. Thus, the proposed 

system selects only the front foot from every candidate frame 

of the initial contact set as a candidate for initial contact 

(CIC), and the back foot from every candidate frame of the toe 

off set as a candidate for toe off (CTO), as illustrated in Fig. 4 

(a), (b). 

As seen in Fig. 3, for a given video sequence, multiple peaks 

can be detected. For every peak  , a set of CICs (    
 ) and 

CTOs (    
 ) can be obtained, where n, m are the number of 

candidates in each set. The estimation of the frame numbers 

where a BGI occurs can be performed by analyzing the 

overlap between a foot from the flat feet image and every foot 

from the set of CICs and CTOs, respectively. For a set     
  

there should be a toe off BGI that can be identified from the 

overlap of a CTO with the selected flat foot. Similarly, for a 

set     
  there should be an initial contact BGI that can be 

identified from the overlap of a CIC with the other selected 

flat foot – see Fig. 4 (d).  

As illustrated in Fig. 4 (a), (c) for   peaks, there exist    flat 

feet in the flat feet image. Thus, the selection of the flat foot 

and the corresponding set of CICs and CTOs, to estimate the 

BGIs can be done as follows. For     
  and 

    
  corresponding to peak  , the flat foot   from the flat feet 

image is selected for toe off, and flat foot     is selected for 

initial contact. As an example, considering Fig. 4, for     
  

and     
  corresponding to the peak  , flat foot   is selected 

for toe off and flat foot   is selected for the initial contact. The 

overlap between the flat foot   and     
 ,     

  and     
   and 

the flat foot   and     
 ,     

  and     
  are illustrated in Fig. 

4 (d), highlighting the instants where the BGIs occur. Also, in 

Fig. 4 (d) white represents the amount of overlap, while the 

gray areas represent the remaining parts of the two feet. 

 
For the selected set of CICs/CTOs and the corresponding 

flat foot, the overlap can be measured as the percentage of 

CIC/CTO foot covered by the selected flat foot. As illustrated 

in Fig. 4 (e), for the initial contact, the percentage of 

overlapped area increases rapidly at the start and then slows 

down at the end. Thus, the initial contact can be estimated as 

the point where the increase in the overlapped area slows 

down significantly. It is observed that such slow down occurs 

when almost 80% of the CIC is overlapped. Thus, the 

proposed system estimates the initial contact as the first frame 

for which the overlap of the CIC foot and the flat foot exceeds 

80%. Similarly, the toe off can be estimated by analyzing the 

overlap between the feet from the set of CTOs and the selected 

flat foot. The toe off can be estimated as the first frame for 

which the overlap between the CTO foot and the selected flat 

foot becomes zero – see Fig. 4 (f). 

D. Computation of gait features 

The result from the previous step is a sequence of frame 

numbers indicating the estimated initial contact and the toe off 

BGIs. To have a better understanding of the gait of the user, 

frame numbers can be converted into timestamps using the 

frame rate of the video sequence. The proposed system uses 

the timestamps to estimate six different gait features. The left 

and right stance times can be computed as the time from the 

initial contact to the toe off instant of the same leg, following 

Equation (2). The left and right swing times can be computed 

as the time from the toe off instant to the initial contact of the 

same leg, following Equation (3). Finally, the left and right 

 

 
(a) (b) 

 

 
(c) (d) 

  
(e) (f) 

Fig. 4.  Examples of intermediate steps in BGIs estimation: (a), (b) 

selection of candidate foot for initial contact (CIC) and candidate for toe 
off (CTO), (c) flat feet selection, (d) overlap between flat foot and 

CIC/CTO feet, estimation of: (e) Initial contact (f) toe off. 

Pixel´s x-axis position 

A
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t 
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gait cycle times can be computed as the time interval from one 

initial contact to next the initial contact of the same leg, 

following Equation (4). These features can provide an insight 

about the symmetry of the user‟s gait. 

 

                     
(2) 

 

                      
(3) 

 

                           
(4) 

 

III. RESULTS 

The proposed system is tested using the CASIA gait dataset 

A, collected by the Institute of Automation of the Chinese 

Academy of Sciences [31], and the KU Leuven (KUL) gait 

dataset collected by the Department of Rehabilitation 

Sciences, KU Leuven, Belgium. 

The CASIA dataset A consists of twenty users captured in 

three walking directions (0°, 45°, 90°) with respect to the 

camera, with each user having been recorded four times in 

each direction. 

The KUL dataset consists of ten users, each recorded five 

times, using a single Casio Exilim EX-ZR100 camera. Each 

user is recorded in a lateral walking direction with respect to 

the camera, which records with a resolution of 1920×1080 and 

a frame rate of 30 fps. Each user is simultaneously recorded 

using a camera based optoelectronic motion capture system, 

consisting of six infrared Optitrack Flex 13 cameras with a 

resolution of 1280×1024 and a maximal frame rate of 120 fps. 

The user‟s gait is captured using forty-four reflective markers 

secured at different locations of the user‟s body, according to 

the lower limb and trunk model [15]. The six synchronized 

infrared cameras are synchronized, calibrated and operated 

using Motive Tracker v.01.90 to track reflective markers in a 

predefined 3D space. A pre-trial calibration is performed using 

a standardized procedure. A calibration is considered 

acceptable if the overall reconstruction errors of the marker 

trajectories are kept below 0.1 mm. Post-processing of marker 

data was performed in a dedicated software called V3D, by C-

motion Inc [32]. Body segments are defined as rigid bodies, 

interconnected by joints with predefined degrees of freedom. 

A. BGI estimation using CASIA dataset A 

The first test is conducted using the CASIA dataset A to test 

the accuracy of the proposed system and compare it against 

the state-of-the-art. Following the setup presented in [19], the 

proposed system is tested using the 0°, lateral view sequences. 

Before the test, each frame of the dataset is checked manually 

to construct the ground truth. Considering the camera frame 

rate of 30 fps, and since normal gait cycles usually last for 1-2 

seconds, it is observed that in several cases the exact point of 

initial contact or toe off are not recorded. Thus, the ground 

truth is constructed considering the frame just before or the 

frame just after the BGI. The decision is made by visually 

observing the BGI nearby frames. Therefore, for evaluation 

purposes, systems are allowed an error margin of ±1 frame. 

To analyze the significance of the error margin, a test is 

conducted by increasing the error margin for the proposed 

system from 0 to 2 in integer steps. With an error margin of 0, 

the proposed system performs a 72% correct estimation of 

initial contact and 88% correct estimation of toe off – see Fig. 

5. In the results, the toe off estimation is significantly better 

than for initial contact, as it is very easy to detect zero overlap 

between the flat foot and the CTOs using the proposed system.  

When allowing an error margin of ±1 frame, both results 

improve significantly, to 99%. These results are significantly 

better than the state-of-the-art which adopts an error margin of 

±2 frames. Using that error margin for the proposed system, 

results are further improved to almost 100%, as shown in 

Table I. A root mean square error (RMSE) is also computed 

using the frame numbers estimated by the proposed system 

and the ground truth, with the proposed system performing 

significantly better than the state-of-the-art. It should also be 

noted that the methods presented in [19] and [23] ignore the 

BGIs occurring at the beginning and the end of the gait 

sequence due to incomplete/segmented silhouettes. The results 

presented in Table I report these ignored BGIs as a part of the 

failed detections. The proposed method, unlike the state-of-

the-art, can operate even on such silhouettes, with a fail 

detection rate of 0.005 - see Table I.   

 

 

B. BGIs estimation using KU Leuven database 

A second test is conducted to compare the performance 

of the proposed system against the gold standard 

optoelectronic motion capture system [15], using the KUL 

database. The left and right stance, swing and cycle times 

are derived for the optoelectronic system using the marker 

and coordinate based algorithm presented in [15]. The 

optoelectronic system results are considered the gold 

standard for clinical assessment of a user‟s gait. The same 

features are also acquired using the proposed system, from 

the 2D sequences included in the KUL database. It is 

observed that using the error margin of ±1 frames, the 

   
(a) (b) 

Fig. 5.  Percentage of correctly estimated BGIs w.r.t. error margin for the 

proposed system: (a) Initial contact, (b), Toe off. 

TABLE I 
BGI ESTIMATION WITH AN ERROR MARGIN OF ±2 FRAMES 

 Method [23] Method [19] Proposed System 

 
Initial 

contact 
Toe off 

Initial 

contact 
Toe off 

Initial 

contact 
Toe off 

# Correct 
Estimations 

316 315 319 305 332 330 

# False 

Estimations 
8 5 9 8 0 1 

# Failed 

Detections 
10 12 6 19 2 1 

RMSE 0.98 0.95 0.89 1.62 0.54 0.42 
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proposed system correctly estimates the BGIs with 99% 

accuracy. It should be noted that the proposed system 

attempts to perform the same type of assessment as the 

optoelectronic system [15], but without any calibrations or 

initial user setup and with a single camera. The single 

camera also operates at approximately one forth the 

framerate of the optoelectronic system [15]. 

Table II reports the obtained results, where “L” and “R” 

represent the left and right legs, respectively. The 

agreement between the two methods is calculated using 

intra class correlation coefficients (ICC), which describes 

how strongly values in the two groups of results resemble 

each other. Notice that according to Fleiss and Cohen [27] 

an ICC in the ranges 0.00 – 0.39 is considered „bad‟, 0.40 – 

0.73 „moderate‟, 0.74 – 0.90 „good‟ and 0.91 – 1.00 

„excellent‟. Statistical analysis was performed using SPSS 

[33]. 

As seen in Table II, the „good‟ to „excellent‟ ICC values 

suggest a high level of agreement between the results of the 

proposed 2D video system and the optoelectronic system 

[15]. For the left and right gait cycle times, a small 

proportional bias (the difference between the means 

obtained by the two systems) of 0.02s is observed in Table 

II. This indicates that the proposed system can estimate 

initial contact with a high level of accuracy. A slightly 

higher bias is found when evaluating the left and right 

swing and stance times. However, a good correlation can 

still be observed between the two systems. The SPSS 

system also provides a p-value to indicate the reliability of 

the observed correlation. A score of less than 0.001 for the 

p-value of every entry in Table II also suggests a very 

strong evidence for the observed correlation.  

From the obtained results it can be concluded that the 

proposed system is a viable alternative to the optoelectronic 

motion capture system [15] that can be considered for usage 

in non-laboratory environments, thus allowing a more 

frequent follow up of patients in between the more rigorous 

analysis done when coming to the laboratory where the 

optoelectronic motion capture is installed.  

 

IV. DISCUSSION 

This paper presents a novel system to estimate temporal 

gait features using biomedical gait indicators, such as 

stance, swing and cycle times. The system achieved 99% 

correct BGI estimations, when considering an error margin 

of ±1 frame. This contrasts with the currently available 

state-of-the art 2D vison-based systems [19] [23], which 

typically estimate the BGIs by performing gradient analysis 

on the difference between heel and toe positions in 

consecutive frames. To operate effectively, such systems 

require an accurate estimation of the user‟s heel and toe 

positions. Therefore, imperfectly segmented silhouettes can 

significantly hamper their performance, leading to false 

and/or missed detections. Also, these systems often ignore 

the BGIs occurring at the start and end of a video, thus 

requiring long sequences, with multiple gait cycles, to 

perform a reliable BGI estimation. 

The „good‟ to „excellent‟ ICCs found in the validation of 

the proposed markerless 2D video system in comparison to 

the gold standard optoelectronic motion capture system 

opens some new possibilities for the evaluation and 

management of different patient populations, in which the 

acquisition of spatiotemporal features of a user‟s gait play 

an important role. The proposed system identifies the 

different temporal features of the user‟s gait in a very 

reliable way using a single 2D camera, not requiring any 

special setup. This enables clinicians to acquire these 

features without the use of expensive laboratory equipment. 

The acquisition of the BGIs in a private practice or at home 

enables gait analysis in a more natural/unconstrained 

environment, which is preferred over a laboratory setting. 

The proposed system is easy to use and can be implemented 

even by professionals without technical background or 

education. 

A limitation of the proposed system is that it currently 

estimates only temporal gait features. The optoelectronic 

and other sensor based systems can compute spatial and 

spatiotemporal features, such as stride length, step length, 

joint angles, joint angle velocity and acceleration. Such 

features can provide a greater insight into the user‟s health. 

Thus, future work will include further improving the 

proposed system to also acquire spatiotemporal features. 

The proposed system is currently tested on normal gait. 

Some pathologies such as, Parkinson's disease may cause 

self-occlusions, thus affecting the performance of the 

system. Thus, future work will also include testing and 

improving the system for the analysis of pathological gait. 

The BGIs acquired by the proposed system can also be used 

to analyze the fractal properties of step-to-step fluctuations 

[34], which can be related to higher nervous centers that 

control walking rhythm [35]. Since, the system is not bound 

to a laboratory environment, it allows collection of large 

amounts of BGIs, which is necessary to perform fractal 

analysis on gait dynamics. 
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TABLE II 

COMPARISON BETWEEN THE PROPOSED AND OPTOELECTRONIC SYSTEM  

 
Proposed 

System 

Optoelectronic 

System [15] 
ICC 

Mean 

Diff 

SD 

(sec) 

RMSE 

(sec) 

 
Mean 

(sec) 

SD 

(sec) 

Mean 

(sec) 

SD 

(sec) 

 
   

Stance 

Time L 
0,77 0,08 0,72 0,07 0,85  0,05 0,06 0,06 

Stance 

Time R 
0,80 0,09 0,72 0,08 0,83  0,08 0,06 0,09 

Swing 

Time L 
0,42 0,05 0,47 0,05 0,81  -0,05 0,04 0,05 

Swing 

Time R 
0,45 0,05 0,47 0,06 0,83  -0,03 0,04 0,04 

Cycle 

Time L 
1,22 0,13 1,20 0,11 0,92  0,02 0,07 0,05 

Cycle 

Time R 
1,21 0,12 1,20 0,12 0,92  0,02 0,06 0,05 

Overall p-value <0.001 
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