
University Institute of Lisbon

Department of Information Science and Technology

Quality Control in Clothing
Manufacturing with Machine

Learning

Gonçalo Laginha Serafim San-Payo

Dissertation submitted as partial fulfillment of the requirements for
the degree of

Master in Computer Engineering

Supervisor

PhD João Carlos Amaro Ferreira, Assistant Professor
ISCTE-IUL

Co-Supervisor

PhD João Pedro Afonso Oliveira da Silva, Assistant Professor
ISCTE-IUL

October 2018

Resumo

O controlo de qualidade é vital para um negócio e a aprendizagem automática
tem provado ser bem-sucedida neste tipo de área. Neste trabalho propomos e
desenvolvemos um sistema de controlo de qualidade para o fabrico de roupas uti-
lizando aprendizagem automática. O sistema consiste em usar fotografias, tiradas
através de dispositivos móveis, para detetar defeitos em peças de roupa. Um de-
feito pode ser a falta de um componente ou um componente errado numa peça de
roupa. A função do sistema é, portanto, classificar os objetos que compõem uma
peça de roupa através do uso de um modelo de classificação. À medida que um
negócio fabril progride, novos objetos são criados, assim, o modelo de classificação
deve ser capaz de aprender as novas classes sem perder conhecimento prévio. No
entanto, a maioria dos algoritmos de classificação não suporta um aumento de
classes, estes precisam ser treinados a partir do zero com todas as classes. Neste
trabalho, utilizamos um algoritmo que suporta aprendizagem incremental para re-
solver este problema. Este algoritmo classifica características extraídas de imagens
das peças de roupa usando uma rede neural convolucional, que tem provado ser
uma técnica muito bem sucedida no que toca a resolver problemas de classificação
de imagem. Como resultado deste trabalho, desenvolvemos um sistema de controlo
de qualidade que combina uma aplicação móvel para tirar fotografias de peças de
roupa e um servidor que executa os processos de deteção de defeitos usando um
modelo de classificação de imagens preciso, capaz de aumentar o seu conhecimento
a partir de novos dados nunca antes vistos. Este sistema pode ajudar as fábricas
a melhorar seus processos de controlo de qualidade.

Palavras-chave: Controlo de qualidade, aprendizagem incremental, classi-
cação de imagem.

iii

Abstract

Quality control is vital for business and machine learning has proven to be
successful in this type of area. In this work we propose and develop a classifica-
tion model to be used in a quality control system for clothing manufacturing using
machine learning. The system consists of using pictures taken through mobile
devices to detect defects on clothing items. A defect can be a missing component
or a wrong component in a clothing item. Therefore, the function of system is to
classify the objects that compose a clothing item through the use of a classification
model. As a manufacturing business progresses, new objects are created, thus, the
classification model must be able to learn the new classes without losing previous
knowledge. However, most classification algorithms do not support an increase
of classes, these need to be trained from scratch with all classes. In this work,
we make use of an incremental learning algorithm to tackle this problem. This
algorithm classifies features extracted from pictures of the clothing items using a
convolutional neural network (CNN), which have proven to be very successfully
in image classification problems. As the result of this work, we have developed a
quality control system that combines a mobile application to take pictures of cloth-
ing items and a server that performs defect detection processes using an accurate
image classification model capable of increasing its knowledge from new unseen
data. This system can help factories improve their quality control processes.

Keywords: Quality control, incremental learning, image classification.

v

Acknowledgements

I would like to acknowledge my supervisors, Professors João Ferreira and João
Oliveira, for their guidance and support. To all the people at INOV INESC Ino-
vação for providing me a great work environment as well as the tools to develop
this work.

A special thanks to my parents, Margarida and Miguel, for motivating me to
achieved greater goals.

And last, but not least, to my closest friends that shared long nights of writing
with me. Without them this thesis would not be finished on time.

vii

Contents

Resumo iii

Abstract v

Acknowledgements vii

List of Figures xi

Abbreviations xiv

1 Introduction 1
1.1 Overview . 1
1.2 Motivation . 2
1.3 Objectives . 3
1.4 Document Structure . 4

2 Literature Review 7
2.1 Image Classification . 7

2.1.1 Deep Learning . 8
2.1.1.1 Transfer Learning 12
2.1.1.2 Libraries . 14

2.1.2 Data Augmentation . 14
2.2 Incremental Learning . 15
2.3 Quality Control . 18

3 Quality Control System for Clothing Manufacturing 21
3.1 Defect Detection Server . 25

3.1.1 Image Database . 26
3.1.2 Defect Registration . 26

3.2 Mobile Application . 27
3.3 Classification Model . 29

3.3.1 Feature extraction model . 31
3.3.2 Classifier . 31

4 Development of QCSCM 33
4.1 Classification Model . 33

ix

Contents

4.1.1 Feature Extraction Model 34
4.1.1.1 Why extract features? 34
4.1.1.2 CNN Architectures 36

4.1.2 Classifier . 37
4.1.2.1 Incremental Learning 38
4.1.2.2 Mondrian Forest Settings 39

4.2 Defect Detection Server . 41
4.2.1 Data Pre-processing . 42
4.2.2 Defect Detection Process . 42
4.2.3 Training Process . 43

5 Classification Model and QCSCM Evaluation 47
5.1 Classification Model Speed . 48

5.1.1 Training time . 48
5.1.2 Classification time . 53

5.2 Classification Model Performance 55
5.2.1 Incremental Learning . 55
5.2.2 Classification Performance 58

5.3 QCSCM Simulation . 61

6 Conclusion and Future Work 65
6.1 Conclusion . 65
6.2 Future Work . 67

Bibliography 69

Bibliography 69

x

List of Figures

2.1 Neural network . 9
2.2 Convolutional layer filter example 9
2.3 Residual learning . 12
2.4 Fabric defect types . 19

3.1 Examples of the types of defect . 22
3.2 QCSCM general architecture . 23
3.3 Use case diagram of the quality control officer 24
3.4 Bounding boxes example . 28
3.5 Quality control officer process of defect detection using mobile ap-

plication . 30
3.6 Classification model architecture . 30
3.7 CNN architecture and feature extraction 31
3.8 Incremental learning . 32

4.1 Feature extraction representation 35
4.2 Comparison of CNNs features classified with Mondrian forest - Graph 37
4.3 Full training vs Incremental training - Graph 39
4.4 Number of trees in Mondrian forest comparison - Graph 40
4.5 Data pre-processing . 42
4.6 Defect detection process . 43
4.7 Training process . 44
4.8 Data augmentation . 44
4.9 Bad image augmentation techniques 45

5.1 Training times with increase of classes - Graph 50
5.2 Training sub-processes times with increase of classes - Graph 50
5.3 Training times comparison - Graph 51
5.4 Training sub-processes times comparison - Graph 52
5.5 Classification times - Graph . 55
5.6 Incremental training with new classes - Graph 56
5.7 Incremental training with new data - Graph 58
5.8 Examples of correct classifications 62
5.9 Examples of incorrect classifications 63

xi

List of Tables

4.1 Raw images classification vs CNN features classification 35

4.2 Comparison of CNNs features classified with Mondrian forest 36

4.3 Full training vs Incremental training 38

4.4 Number of trees in Mondrian forest comparison 40

4.5 Data augmentation accuracies comparison 46

5.1 Training times with increase of classes 49

5.2 Training times with increase of number of images 51

5.3 Classification times . 54

5.4 Incremental training with new classes 56

5.5 Incremental training with new data 57

5.6 Confusion matrix . 59

5.7 Precision, recall and F1-score . 60

5.8 Evaluation metrics . 61

xiii

Abbreviations

AI Artificial Intelligence (see page 1)
CNN Convolutional Neural Network (see page 2)
PCA Principal Component Analysis (see page 19)
SVM Support Vector Machine (see page 7)
k-NN k-Nearest Neighbors (see page 7)
ReLUs Rectified Linear Units (see page 10)
EWC Elastic Weight Consolidation (see page 16)
QCSCM Quality Control System for Clothing Manufacturing (see page 21)
DD Server Defect Detection Server (see page 22)
TP True Positive (see page 58)
FP False Positive (see page 58)
FN False Negative (see page 58)

xv

Chapter 1

Introduction

In this chapter, we introduce the scope of this work by presenting the overview, the
motivation and the objectives we proposed to achieve. The document structure is
also presented in this chapter.

1.1 Overview

Machine learning has been a hot topic in recent times. Although it is an old
concept, the computational improvements of the last decade made it become one
of the most trending areas of research in artificial intelligence (AI), as well as
one of the fields most used by business companies to solve real world problems.
Financial trading, health-care, recommendations systems, anomaly detection are
some of the business and problems that use machine learning applications (Marr,
2016).

One of the machine learning areas that is drawing a lot of interest nowadays
is deep learning, due to its state-of-the-art results when solving computer vision
related problems. Computer vision is used to process, analyze and understand
digital images, and is aimed to solve problems like object detection, image classi-
fication and video tracking (Szeliski, 2010).

Computer vision problems can be applied to quality control tasks, more pre-
cisely in defect detection and classification. There are many quality control systems
of manufacturing processes that can be improved with the right use of machine

1

Chapter 1. Introduction

learning algorithms, such as mobile phone cover glass production (Li, Liang, &
Zhang, 2014), fabric production (Chan & Pang, 2000), etc.

Many machine learning algorithms can be used for image classification prob-
lems, as shown in the next chapter, but most of them have a fixed number of
classes and the algorithms cannot learn new classes incrementally. This can be a
problem for applications and processes where new data and classes are created,
because it would require training the algorithm again from scratch with the old
and new data together. The present work addresses this issue as it plays a major
part in the proposed system.

1.2 Motivation

Quality control is a key factor in all major manufacturing businesses, as costumers
and investors are increasingly demanding for higher quality. It is vital for a com-
pany to ensure that the number of defective products is kept to a minimum,
otherwise it can have a big impact on the company’s sales and business.

Most of the quality control processes are still made by humans and although
these processes have improved over the years, human based processes can lead to
a few disadvantages. For example, a human usually works approximately 8 hours
a day, along which its focus level varies significantly. These levels of concentration
may vary due to fatigue, lack of motivation and other factors that can lead to
unnoticed defects and, therefore, hurt the business. A computer, however, can
keep the same levels of "concentration" throughout the day.

In the textile industry, where humans are responsible for the quality control
processes, only 70% of the defects are detected (Kumar, 2003). Therefore, there
is still room from improvement.

Training an image classification model such as a convolutional neural network
(CNN) from scratch is time consuming and resource intensive. The CNN proposed
in (Krizhevsky, Sutskever, & Hinton, 2012) took five or six days to train on two
GTX 580 GPUs using the ImageNet dataset (Krizhevsky & Hinton, 2009). In
quality control realities new types of defects can appear and in an ordinary classi-
fication model this would require training it again from scratch with data from all

2

Chapter 1. Introduction

classes. Therefore, it would be tremendously helpful to have a classification model
that can learn new classes without having to be trained from scratch.

Taking these facts into account, an application or system capable of helping
factory workers improve the quality control processes can be very useful for man-
ufacturing factories.

In this work, we propose and develop a system for defect detection, to improve
the quality control processes of a clothing factory. This system makes use of
machine learning algorithms capable of gaining knowledge over time and it was
made possible by the collaboration ISCTE-IUL/INOV INESC Inovação.

1.3 Objectives

The goal of this work is to develop a collaborative system capable of identifying
defects on clothing products and improving the efficiency of the quality control
process of a clothing factory. This system must contain an image classification
model capable of learning new classes incrementally and increase its knowledge.

To better understand the purpose of the proposed system, the classification
model and the objectives of the present work, is important to define which are the
types of defect this system is capable of detecting. A defect can be one of two
types, the lack of one or more components used to produce a clothing item leading
to an incomplete clothing item, or a wrong choice of components, which leads to
an incorrect clothing item. For example, for the first type, a defect could be a
shirt that should have fives buttons only having four buttons, as for the second
type, a defect could be the choice of a black zipper in a jacket that only has white
zippers.

In order to detect the defects of a clothing item, the system, given an image or
a set of images, must be able to identify its components and check if the identified
components correspond to the ones present on the product data sheet. These
identifications correspond to the classifications made by the classification model.

From time to time, new components are made to create new products. There-
fore, the classification model must also have the ability to learn new classes from

3

Chapter 1. Introduction

new data without losing the knowledge learned from previous training and previ-
ous data. The creation of data is made by the workers responsible for the quality
control in a collaborative way.

The present work can be divided in two sub-problems, the task of correctly
classifying the components of the clothing items (image classification) and the task
of the classification model increase its knowledge over time (incremental learning).

By the end of the present work it must be possible to answer the following
question:

• How to develop a system capable of identifying defects and gain more knowl-
edge over time in a robust and efficient way using machine learning algo-
rithms to improve the quality control process of a factory?

To answer this question, due to its complexity, the best approach is to divide
it into smaller and simpler questions that can be answer more easily, based on the
scope of the present work:

• Which are the best algorithms to classify objects in an image? To
detect the defects on a clothing item, the system must classify its compo-
nents, thus the need of image classification algorithms.

• Can algorithms capable of incremental learning be adapted to a

quality control reality maintaining previous knowledge? Since the
factory can produce new clothing items with new and different components,
the system must be able to learn new classes maintain its knowledge over
the previous ones.

• Can the incremental learning algorithms to be used in the qual-

ity control system be applied to an image classification problem?

The algorithms capable of incremental learning must be applied to image
classification.

1.4 Document Structure

The present work consists of 6 chapters, structured as follows:

4

Chapter 1. Introduction

• In Chapter 2 a literature review of works made in the same research areas
of the present work is presented. The research areas include, quality control,
image classification and incremental learning.

• Chapter 3 describes the proposed quality control system and classification
model, where a high-level view of context of the system is presented.

• In Chapter 4 the development of the quality control system and classifica-
tion model is detailed. The tools, techniques and libraries that were used
are presented as well as results of the experiments made to determine the
path to follow.

• In Chapter 5 the proposed classification model is evaluated, and the results
of experiments are presented.

• Finally, Chapter 6 presents the conclusions of this work as well as some
considerations of what can be done to improve the development of quality
control system and classification model in future work.

5

Chapter 2

Literature Review

In this chapter, we provide an analysis of the work previously performed in the
areas of study of the present work, to better understand the algorithms and tools
that were used to develop the proposed quality control system. The review is
divided in three main topics, quality control, image classification, incremental
learning.

2.1 Image Classification

Our objective is to develop a quality control system that detects defects in clothes.
This system classifies the components of a clothing item and checks if they are
correct, therefore our problem can be considered as an image classification prob-
lem.

Image classification can be described as the process of taking an image as input
to predict a class from a set of classes. It is an old research topic, with work dating
back to 1973 (Haralick, Shanmugam, & Dinstein, 1973).

Before deep learning techniques started to be used for image classification tasks,
many works used other algorithms to perform the classification of images, such as,
support vector machines (SVM)((Chapelle, Haffner, & Vapnik, 1999; Anthony,
Greg, & Tshilidzi, 2007) or k-nearest neighbors (k-NN) (Kim, Kim, & Savarese,
2012).

7

Chapter 2. Literature Review

For example, in (Chapelle et al., 1999) SVM were used to perform image
classification on color histograms of the images. They tested their approach on
two different datasets, one contained 14 classes and the other 7 classes. The results
then achieved, although satisfactory at the time, cannot be compared to the more
recent results achieve with deep learning.

More detailed information about image classification techniques and approaches,
before the use of deep learning, can be found in (Lu & Weng, 2007).

2.1.1 Deep Learning

In more recent years, deep learning techniques have achieved state-of-the-art re-
sults in image classification problems with the development of a handful of neural
network architectures.

Neural networks are algorithms inspired in biological nervous systems like the
brain. They consist in input, hidden and output layers that are connected through
sets of neurons, each neuron has a weight, a bias and an activation function associ-
ated with it. A neuron when receiving an input performs some calculations using
its activation function and outputs the result, which will serve as input to next
neuron. deep learning consists in neural networks with multiple hidden layers.
Figure 2.1 shows a representation of a neural network with an input layer, two
hidden layers and an output layer.

Nowadays, the neural networks architectures used in image classification prob-
lems consist in a series of convolutional, pooling and fully-connected layers, used to
extract relevant features from the images, followed by one or more fully-connected
layers used to perform the classification task. This type of neural networks is
called convolutional neural networks (CNN) (Wu, 2017).

Convolutional layers apply convolutions to the input matrix by sliding a filter
over it. This filter consists of a kernel, which the width and height are usually
the same, a stride and a padding. The stride determines how the filter convolves
over the input, for example, if the stride is set as 1, the filter will shift around
the input one unit at a time. The padding adds zeros to the input in cases where
the filter exceeds the input size, this only happens when the stride is greater than
1. In Figure 2.2 is possible to see a filter with a kernel of size 3x3 and a stride

8

Chapter 2. Literature Review

Figure 2.1: Neural network representation. Source: (Nielsen, 2015)

of 2 convolving over an input matrix of size 4x4, in this case a padding of 1 is
necessary.

Figure 2.2: Convolutional layer filter example.

Pooling layers are used to reduce the size of the image representation and
therefore reduce the number of parameters and the computational time in the
network. Like the convolutional layers, a pooling layer also uses a kernel and
stride, normally with the stride being set to match the width or height of the
kernel. The most common type of pooling is the max pooling, this way it keeps
the maximum value of the values being process by the kernel.

9

Chapter 2. Literature Review

Finally, the fully connected layers are normal neural networks layers where all
the neurons of the layer are connected to the previous layer. They are commonly
the last layers used in a CNN and perform the classification task, where the final
layer, the output layer, has one neuron per class.

One of the first CNNs was introduced in (LeCun, Bottou, Bengio, & Haffner,
1998) and it was called LeNet5. The architecture of the LeNet5 consists of seven
layers, not counting the input. Three of those layers are convolutional layers use
to extract features and the first two convolutional layers are each followed by
a subsampling layer (pooling). The third convolutional layer extracted features
that are then processed by two fully-connected layers where the classification is
performed. The LeNet5 was a pioneer in the deep learning field and the works
that followed were based in this work.

In (Krizhevsky et al., 2012) AlexNet was introduced with an architecture that
use the principles of the LeNet5 to create a larger neural network. AlexNet is
composed by five convolutional layers, which some are followed by max-pooling
layers and three fully-connected. The three convolutional layers used filters of
size 11x11, 5x5 and 3x3 respectively. The authors of this work performed some
introductions like the use of Rectified Linear Units (ReLUs) for the activation
functions, which improved the training time, the use of dropout layers and data
augmentation to reduce overfitting.

The authors in (Simonyan & Zisserman, 2014) continue the exploration of using
CNN for image classification by proposing two new architectures, the VGG16 and
the VGG19. Both architectures consist of five convolutional blocks, each block
composed by a set of convolutional layers followed by a max-pooling layer, rather
than having a pooling layer after each convolution. Instead of using 11x11 filter
like the AlexNet, the VGG networks use 3x3 filters. By doing these alterations
the authors showed that doing smaller consecutive convolutions have equivalent
results to a single convolution with a bigger filter, but with the benefits of using a
smaller filter.

Seeking to improve the computational cost of CNNs, the authors in (Szegedy
et al., 2015) presented GoogLeNet or Inception. The Inception model contains 22
blocks of layers, that when summed up result in more than one hundred layers,
and rather than having the layers stack sequentially, parallel convolutional layers

10

Chapter 2. Literature Review

compose these blocks. The authors called these blocks with parallel layers Incep-
tion module. Each Inception module consist of 1x1, 3x3 and 5x5 convolutions,
this way the model can decide which is the best convolution operation for each
layer. The authors also proposed the use of 1x1 convolutional layer, before each
3x3 and 5x5 convolutions, in order to reduce the number of features and therefore
reducing computations.

Continuing from the previous work, some alterations to the Inception network
were proposed in (Ioffe & Szegedy, 2015). Batch-normalization was introduced,
by normalizing the output of some layers for each mini-batch the model was able
to use higher learning rates and consequently reduce training time.

Two new CNN architectures driven from the first Inception network, Incep-
tionV2 and InceptionV3, were introduced in (Szegedy, Vanhoucke, Ioffe, Shlens,
& Wojna, 2016). The authors propose factorizing large convolutions into smaller
ones, showing that a 5x5 convolution is 2.78 times more expensive than a 3x3
convolution, therefore, replacing a 5x5 convolution by two 3x3 convolutions in-
creases the performance. Additionally, the authors found that nxn convolutions
are equivalent to combination of 1xn and nx1 convolutions, and by doing this
factorization the computational cost is reduced. A label smoothing technique is
also presented, this technique helps prevent overfitting by preventing the model
from becoming too confident about a class.

Around the same time InceptionV2 and InceptionV3 were introduced a new
CNN called ResNet was introduced in (He, Zhang, Ren, & Sun, 2016). ResNet
consists of a neural network substantially deeper than the previous ones and intro-
duced residual learning. Residual learning consists of blocks of layers and shortcut
connection where the input of these layers is added to the output. This allows
information to be more easily propagated through the network and contributes to
a reduction of overfitting. A representation of a residual learning block is showed
in Figure 2.3

Inspired by the Inception and ResNet architectures, a hybrid version CNN
combining the first two was proposed in (Szegedy, Ioffe, Vanhoucke, & Alemi,
2017) called InceptionResNet. This combination is achieved by adding a shortcut
connection, like in the ResNet, to each Inception module. By doing this, although
the accuracy did not have significant improvements, the training time was reduced.

11

Chapter 2. Literature Review

Figure 2.3: Residual learning. Source: (He et al., 2016)

In the same work the authors also present a new version of the Inception network,
InceptionV4, which is a simplified version of InceptionV3.

Mobile phones are now more than ever part of our lives, therefore efforts to
make these deep learning models able to be used on mobile phones, which have
smaller process capabilities and less memory than a normal computer, have been
performed. In (Howard et al., 2017), a smaller CNN optimized for mobile applica-
tion, called MobileNet, is proposed. MobileNet consists of depthwise convolutions
and a 1x1 convolution the authors call pointwise. This pointwise convolution is ap-
plied to combine the outputs of the depthwise convolution. Two hyper-parameters
that help reduce the model, are proposed as well. The first hyper-parameter,
the width multiplier, reduces the number of channels of each layer. The second
hyper-parameter, the resolution multiplier, reduces the input image of the model.

Most of these CNN architectures were evaluated in the ImageNet Large Scale
Visual Recognition Challange (ILSVRC), where as of 2017, the InceptionResNet
architecture achieved the best results.

2.1.1.1 Transfer Learning

Most of the CNNs reviewed take a long time to train even on last generation GPUs.
However, there is a way to use the knowledge of a CNN gained when trained in a
large dataset, like the ImageNet, and adapt it to a similar classification problem.
This is called transfer learning.

Transfer learning consists of using a CNN with the parameters, weights and
biases obtained when trained in a large dataset, use the first layers for feature
extraction and replace the last layers (fully-connected layers) use for classification

12

Chapter 2. Literature Review

with new layers adapted to the desire classification task. This way there is only
need to train the new layers, which will save time and resources (Pratt, Mostow,
Kamm, & Kamm, 1991; Pratt, 1993).

In (Yosinski, Clune, Bengio, & Lipson, 2014) the author aims to answer the
question "how transferable are features in deep neural networks?". Two problems
that affect transfer learning, depending on the layers where features are transferred
from, are presented in this work.

The first problem addressed by the authors is "optimization difficulties related
to splitting networks between co-adapted neurons", this problem is more accentu-
ated when splitting the network in the middle layers then on the bottom or top
layers. The second problem is "the specialization of higher layer neurons to their
original task at the expense of performance on the target task", this means that
the higher layers (i.e. final layers) are more adapted to the original task than the
bottom layers, which generalize more easily to new datasets, therefore there are
cases where retraining these last layers can be efficient. The authors also confirm
that transfer learning is more effective when the base network is trained on a more
similar task.

In (Oquab, Bottou, Laptev, & Sivic, 2014) an AlexNet from (Krizhevsky et
al., 2012), trained on the ImageNet dataset, is used as the base model for the
transfer learning task. The authors propose replacing the last fully-connected
layer by two new fully-connected layers that receive as input the output of the
penultimate layer of the AlexNet. The first layer of the new layers has size of 2048
and the second layer has a size equal to the number of classes of the new target
classification, which in this case are 20 classes. The results show that a transfer
learning procedure is effective when using knowledge obtained from a large dataset
in a smaller dataset.

A technique to accelerate the transfer of knowledge of one neural network to
another was proposed in (Chen, Goodfellow, & Shlens, 2015). This technique it
is based on "function-preserving transformations of neural networks" and allows
a newer model to contain all the knowledge of an older model and be trained to
improve its performance.

13

Chapter 2. Literature Review

2.1.1.2 Libraries

There are many deep learning libraries that provide an easier implementation,
training and use of CNNs. In this section, we review some of these libraries.

A review of several deep learning toolkits and libraries was performed by
(Erickson, Korfiatis, Akkus, Kline, & Philbrick, 2017). The first reviewed library
is Caffe, developed by Berkeley Vision and Learning Center. It is modular and fast
and supports multiple GPUs. There is also a website where Caffe models can be
download as well as network weights. One of the disadvantages that the authors
of this review point out is that tuning the hyperparameters is a tedious process.

Another library reviewed is TensorFlow, developed by Google. Like Caffe, Ten-
sorFlow also supports multiple GPUs. It provides tools for tuning and monitoring
performance like TensorBoard.

Theano is another deep learning library, written in python, which has improved
performance because of the efficient code base of numpy. It is good to build
networks but challenging to create complete solutions.

Keras is a deep learning library written in python that can use either Theano
or TensorFlow as backend. It is easier to build and read complete solutions. It is
well documented and pre-trained models of common architectures are provided.
According to the Keras website (Why use Keras? , 2018), Keras is the second most
used deep learning libraries behind TensorFlow. A speed and accuracy comparison
between Theano with Keras, Torch, Caffe, TensorFlow and Deeplearning4J was
performed by (Kovalev, Kalinovsky, & Kovalev, 2016). The data used in this
comparison was from the MNIST database, which is a large dataset of handwritten
digits used for training various image classification approaches. The results show
that, when increasing the number of neurons, Caffe and Deeplearning4J drop in
the accuracy, TensorFlow and Torch increase the accuracy, and Theano with Keras
is stable with different number of neurons. In terms of speed, the libraries can be
ranked as follows: Theano with Keras, TensorFlow, Caffe, Torch, Deeplearning4J.

2.1.2 Data Augmentation

It is a common mistake to think that a good model equals good results and if
you are aiming to improve the results you should consider improving the model.

14

Chapter 2. Literature Review

Sometimes this can be true, but most times improving the data is better than
improving the model. In this section, we provide a view to some of the techniques
used to improve the data.

Two of the major problems with low quality data are: not enough data and
unbalanced data. Both problems can cause overfitting of the model, but both can
be fixed via data augmentation.

A description of the best practices when using CNNs is provided in (Simard,
Steinkraus, & Platt, 2003) and the authors conclude that the most important
practice is to have a dataset as large as possible. By doing augmentations based
on distortions of an original image, the model can achieve better results.

The most common type of data augmentations in image classification problems,
and proven to be successful, are techniques such as cropping, rotating and flipping
the images. In (Perez & Wang, 2017) show this to be true and propose a method
that allows the model to learn which are the best augmentations to perform and
achieve better results. This method consists of two networks, one for augmentation
and another for classification. The augmentation network creates an augmentation
image from two input images of the same class and a loss is calculated to check
how similar the image should be to the original images. The classification network
is a simple CNN. The authors were not aiming for the best classifier, the goal was
to see how data augmentation affects the results of the model.

2.2 Incremental Learning

Many processes and applications need to gain knowledge over new information
over time, more specifically, some classification problems require learning new
classes progressively. The problem is that most of the classification algorithms
cannot perform this task. In this section we take a look at the work performed in
incremental learning.

Incremental learning it is not a recent research topic, some of the work per-
formed in this area can date back to the end of the eighties. In (Utgoff, 1989), an
algorithm is proposed for training decision trees incrementally. The proposed al-
gorithm is capable to build a decision tree identical to the one present in (Quinlan,
1986), which is non-incremental, but built in an incremental fashion.

15

Chapter 2. Literature Review

Neural networks have proven to be an efficient machine learning classifica-
tion algorithm. Taking this into account many researchers have tried to imple-
ment incremental learning on this type of algorithms. In (Carpenter, Grossberg,
Markuzon, Reynolds, & Rosen, 1992), a neural network for incremental learning
of analog multidimensional maps is introduced, later in (Polikar, Upda, Upda, &
Honavar, 2001), a neural network called Learn++ is introduced. This neural net-
work is capable of learning from new data, including examples of previously unseen
classes. Like the neural network proposed in (Carpenter et al., 1992), Learn++
does not need to access data used in previous training session, it can learn using
only new data. It does this and, simultaneously, does not forget previously gained
knowledge.

In (Fuangkhon & Tanprasert, 2009) an "alternative algorithm for integrat-
ing the existing knowledge of a supervised learning neural network with the new
training data" is presented. The algorithm uses a counter preserving algorithm to
increase the classification accuracy, while maintaining old knowledge as the neu-
ral network is retrained with new data. Unlike the previous reviewed works, this
approach uses some data used in previous training sessions to help maintain the
older knowledge.

One of the reasons incremental learning is a challenging task for neural net-
works is their tendency to suffer significant loss of prior knowledge as the network
tries to learn from new data. This is called catastrophic forgetting.

Trying to solve the catastrophic forgetting problem, the authors in (Kirkpatrick
et al., 2017) present an approach that uses an algorithm called elastic weight con-
solidation (EWC) and show that is possible to overcome the catastrophic forgetting
problem. EWC allows learning to slow down on weights based on how important
they are to previous tasks.

In (Rebuffi, Kolesnikov, Sperl, & Lampert, 2017) the authors showed a new
training strategy, that allows incremental learning, called iCaRL. It does not re-
quire much data as new classes are added incrementally to the model. ICaRL is
made up by three components, a nearest-mean-of-exemplars classifier, a herding-
based step for prioritized exemplar selection and a representation learning step
that uses distillation to avoid catastrophic forgetting. This method achieved sat-
isfactory results, compared to other techniques, when a significantly large number
of classes is added to the original model.

16

Chapter 2. Literature Review

A new training methodology that allows CNNs to learn new classes from new
unseen data is proposed in (Sarwar, Ankit, & Roy, 2017). This methodology uses
principals of transfer learning by updating a network for a set of new classes using
the initial part of the base network. It consists of a mechanism able to identify
how many of the base network layers weights and parameters can be shared when
adding new classes. When training the model for new classes, new layers are
created which become a branch of the existing network.

Mondrian forests are a type of random forests that can be used both for classifi-
cation (Lakshminarayanan, Roy, & Teh, 2014) and regression (Lakshminarayanan,
Roy, & Teh, 2016). They consist of an ensemble of decision trees based on Mon-
drian processes that can be trained incrementally, called Mondrian trees.

Most of the decision trees, that also support incremental learning, usually
perform splits on the leaf nodes when being trained incrementally. Mondrian trees
also perform splits on leaf nodes when updating their knowledge with new data,
however, Mondrian trees also perform two more operations. Therefore, there are
three different ways to update Mondrian trees:

• A new split "above" an existing slip.

• Extension of an existing split.

• Split of a leaf node into two new nodes.

In a training session with new data the Mondrian tree is updated, and an
algorithm decides which operation of three mention above is used for each node.
This decision is made considering the split cost of each node.

To perform a prediction of a certain data input, each Mondrian tree contained
in the forest determines the probability of the input belonging to every one of the
existing classes. After the average of the trees predictions is calculate and the
class with the highest probability corresponds to the predicting class.

Although Mondrian forests can learn from new unseen data the authors of
(Lakshminarayanan et al., 2014) do not experiment adding new classes to the
model. In (Narr, Triebel, & Cremers, 2016) an extension of the Mondrian forest
algorithm for classification of images is presented. This approach can learn new
unseen classes. Some alterations to the original implementation were performed.

17

Chapter 2. Literature Review

In the original implementation of the Mondrian forest when all the labels of
a certain node are the same, no split is performed for that node. This "pause"
operation, as the authors call it in their work, allows the comparison between
Mondrian and other random forest implementations. However, in (Narr et al.,
2016), the authors chose to remove this operation and instead define a threshold
to limit the maximum number of samples with the same label that a leaf node can
have.

2.3 Quality Control

Quality control using machine learning techniques has been a hot research topic for
a few years. Earlier work performed in this area used Fourier analysis to detect
defects in fabric (Chan & Pang, 2000). Using white fabric for the experiences,
the system was able to detect four different types of defect by applying Fourier
transforms to the images and analyzing the frequency spectrum.

In (Kumar & Pang, 2002) the frequency spectrum is also analyzed to de-
tect defects but instead of using Fourier analysis, the authors used Gabor filters.
Two approaches are presented, a supervised and an unsupervised defect detection.
The difference between the two is that in the supervised approach, information
about the orientation and the size of the defects is given. This information makes
spectrum-sampling of the spatial-frequency plane unnecessary, allowing the sys-
tem to work with just one Gabor filter. As for the unsupervised approach there
is a need to use multiple filters so that the system can get information about the
orientation and size of the defects.

The same authors then proposed a different approach for this problem using
a feed forward neural network. This neural network was used to classify feature
vectors of pixels extracted from images (Kumar, 2003). Despite proposing a feed
forward neural network for defect detection, due to the computational cost of this
type of networks at the time of the work, the authors also propose a linear neural
network with a lower computational cost and instead of classifying 2-D images the
input was reduce to 1-D vectors.

Another approach of detecting defects is to calculate and evaluate the degree
of similarity between an image with defect and an image with no defect. In (Tsai
& Lin, 2003) this approach, a normalized cross correlation to calculate the degree

18

Chapter 2. Literature Review

of similarity is utilized. A sliding window is used to process the image, but it
size affects the computational efficiency and the effectiveness of the detection.
Taking this into account the authors proposed a sum-table scheme that allows the
calculation of the normalized cross correlation to be invariant to the window size.

More recently in (Çelik, Dülger, & Topalbekiroğlu, 2014) it is proposed a
method for defect detection as well as defect classification. For the defect de-
tection it was used a wavelet transform, as for the classification task it was used a
feed forward neural network. The system was able to detect effectively five types
of defect: warp lacking, weft lacking, soiled yarn, hole and yarn flow. Figure 2.4
shows examples of these types of defect.

Figure 2.4: Fabric defect types. Source: (Çelik et al., 2014)

In (Li et al., 2014) a mobile phone cover glass defect detection is presented,
and even though it is for glass defects and not fabric defects like the previous
reviewed works, the principles are the same. The propose system consists in a
defect inspection system based on the Principal Component Analysis (PCA) and
is capable of identify five cover glass defects.

Works such as (Weimer, Scholz-Reiter, & Shpitalni, 2016) and (Wang, Chen,
Qiao, & Snoussi, 2018) have used CNN to perform quality control and defect
detection tasks. In the first work, four different CNN architectures are proposed
and trained to identify six types of defects. Each architecture had a different
number of convolutional layers with the results showing that, in this case, adding
layers increases the detection accuracy. In the second work a CNN able to detect

19

Chapter 2. Literature Review

six types of defects is also proposed. The architecture of this CNN consists of 11
layers, five of which are convolutional layers and two pooling layers.

Additional work regarding the topic of quality control and defect detection can
be found in (Kumar, 2008) and (Ngan, Pang, & Yung, 2011).

20

Chapter 3

Quality Control System for Clothing

Manufacturing

In this chapter, we describe the quality control system for clothing manufacturing
(QCSCM) proposed in the first chapter as the objective of the present work. The
purpose of the QCSCM is to detect defects on clothing items. This is achieved by
using a classification model supporting incremental learning. This classifi-
cation model can, however, be easily adapted to other contexts.

The present work was developed to be used by a real clothing factory and was
made under the collaboration ISCTE-IUL/INOV INESC Inovação. INOV wants
to create a commercial system to help manufacturing companies in their quality
control processes, in this case oriented to clothes. Based on a defined client, INOV
defined a set of requirements that the system should fulfill based on training sets
and a machine learning approach. These requirements are as follows:

• A system capable of detecting defects on clothing items using pic-

tures. The system outputs a binary classification, defect or no defect,
based on the classification of the clothing items components.

• A mobile application to take the pictures of the clothing items

and be used by the quality control officers to perform their quality

control tasks. The system is fed by the quality control officer using the
mobile application.

21

Chapter 3. Quality Control System for Clothing Manufacturing

• Increase the speed of the quality control processes and the percent-

age of detected defects. For the system to be useful, it should improve
the performance of the quality control processes.

• The ability of the system to learn from new data, as new compo-

nents of clothing items are created. The system must learn new classes
maintaining its previous knowledge. The quality control officer creates the
new data using the mobile application and feed the system in a collaborative
way.

INOV also defined the types of defect this system aims to detect on a clothing
item. A clothing item is made up by a set of components, such as buttons, pockets,
stamps, etc. Therefore, a defect can be one of two types:

• Wrong component.

• Missing component.

Figure 3.1 shows an example for each type of defect. The one on the left
corresponds to a shirt with a missing button (missing component) and the one
on the right shows a t-shirt with a yellow pocket instead of a pink pocket (wrong
component).

Figure 3.1: Examples of the two types of defects. Missing component on the
left, wrong components on the right.

Considering the requirements and the types of defect, the QCSCM architecture
was defined in Figure 3.2. Using a client-server model approach, the QCSCM
consists of amobile application and a server, we called Defect Detection Server
(DD Server). The mobile application is used to take pictures of the clothing items
and the DD Server is responsible for processing and storing the pictures, detect

22

Chapter 3. Quality Control System for Clothing Manufacturing

the defects making use of the classification model and finally, register the defects.
To improve the QCSCM performance a user feedback approach was also defined.

Figure 3.2: QCSCM general architecture

The responsibility of the quality control in the factory lies with a group of
factory workers called quality control officers. The function of the quality
control officers is to detect defects on the clothing items, register them and decide
whether to send the clothing item back to the manufacturing process, remove the
clothing item from production, or continue to the next production step. A clothing
item is sent back to the manufacturing process if a repairable defect is detected
and is removed from production if an unrepairable defect is detected.

To execute their function, the quality control officers use the mobile applica-
tion to take pictures of the clothing items and create bounding boxes around
the components that compose a clothing item. This information is sent to the DD
Server that crops the content of the bounding boxes to create the images

of the components. These images of the components are classified by the clas-
sification model and the results are compared with the product data sheet to
see if there is a defect or not. Finally, the classifications of components are sent
back to the mobile application being used by the quality control officer.

A product data sheet is information associated to each model produced by
the clothing factory. The product data sheets are defined by the clothing factory
every time a new clothing item model is created. The information present in the
product data sheet information consists of a list of specifications and components
that compose a clothing item. Its structure is as follows:

• Model.

23

Chapter 3. Quality Control System for Clothing Manufacturing

• Size.

• Color.

• Fabric.

• List of components.

The QCSCM focuses on the list of components specification. All the clothing
items have an identifier corresponding to a product data sheet, so when a cloth-
ing item is going through a quality control process the system can know which
components it has to identify.

As in any other manufacturing business, in a clothing manufacturing business
new products and components can be created. Therefore, the QCSCM uses a
classification model which has the ability of learning new classes incrementally.
The responsibility of creating images of the components to train the classification
model also relies on the quality control officers. To create images of the new classes
or even more images of old classes, the quality control officer can choose an option
in the mobile application to use the pictures it took to train the classification model
instead of using the pictures for the defect detection process. The quality control
officer can also create more images by confirming or correcting the classifications
it received from the DD Server, this is the user feedback feature. In Figure 3.3
we defined a use case diagram that explains the actions the quality control officer
performs using the mobile application.

Figure 3.3: Use case diagram of the quality control officer actions using the
mobile application

24

Chapter 3. Quality Control System for Clothing Manufacturing

3.1 Defect Detection Server

The first main component of the QCSCM is the DD Server responsible for feeding
the classification model with images of the clothing items components. The DD
Server must perform the following tasks:

1. Pre-process the images of the components it receives from the mo-

bile application used by the quality control officers. This task of
pre-processing the images consists of cropping the bounding boxes of the
pictures taken by the quality control officers creating images of the com-
ponents. These images of the components are then resized and, in case of
training, new images are created using data augmentation techniques. The
pre-processing task is necessary so that the classification model can perform
its tasks.

2. Predict the classes of these components. In this second task, the
classification model present in the DD server predicts the classes of the com-
ponents it received from the quality control officers.

3. Compare the results with the product data sheet and save the

results. After the classifications are made the DD server performs the third
task of comparing the results with the product data sheet. If the identified
components match with the ones present on the product data sheet it means
no defect was detected and nothing needs to be registered. If they do not
match, it means a defect has been detected and the DD Server performs the
defect registration.

4. Store pictures of the components and train the classification model

with new data. This fourth and final task is only performed if a quality
control officer selected the option of using the pictures to train the clas-
sification model. The DD Server after cropping the bounding boxes of the
pictures taken by the quality control officers, saves the content of the bound-
ing boxes (images of the components) along with the corresponding labels in
a database. If enough images of the components are stored in the database,
the training of the classification model is performed.

25

Chapter 3. Quality Control System for Clothing Manufacturing

3.1.1 Image Database

When a quality control officer sends pictures of clothing items with bounding boxes
around the components it has to select the option of the task to execute. If the
selected option is to use the pictures to train the classification model, the images of
the components of the clothing items need to be stored. In this section we describe
the image database represented in Figure 3.2 as a module of the DD Server.

After the pictures of the clothing items are processed and the images of the
components are created, the DD Server saves the images according to their classes.
Each class has an associated directory where all images corresponding to that class
are stored. The names of the directories serve as labels for the images when the
classification model is trained.

This image database allows the creation of the dataset that is used to train the
classification model. Every time the classification model needs to be trained, the
DD Server loads the images and labels from the image database and feeds them
to the classification model.

The image database also contains a list of the classes and the number of new
images available from each class. This list is used to check if there are enough
images to train the classification model and it is also sent to the quality control
officers when they want to label the components of the clothing items using the
mobile application.

3.1.2 Defect Registration

The defect registration is represented in Figure 3.2 as a module of the DD
Server. It is performed after the classification model classifies the components that
are sent to the DD Server and after the results of the classification are compared
with the product data sheet to check if there are defects. In case of a positive
defect detection, the type of the defect, missing component or wrong component,
also needs to be registered. For example, let’s assume we have a clothing item that
is supposed to have three black buttons and one silver zipper, but the classification
model returns two black buttons and one silver zipper. In this case the DD Server
would register the defect asmissing component along with the components that
are missing, in this case a black button.

26

Chapter 3. Quality Control System for Clothing Manufacturing

Another example using the same clothing item, the classification model returns
three black buttons and a golden zipper. In this case the DD Server would register
the defect as wrong component and register the misplaced component, in this
case a golden zipper instead of a silver zipper.

Apart from the image database and the defect registration the other main
module of the DD Server is the classification model. However, due to its im-
portance we decided to describe the classification model in a separated section.

3.2 Mobile Application

The second main component of the QCSCM is the mobile application, developed
using Android Studio. It is supported by the Android versions 4.1. and above.
The quality control officers use this mobile application to take pictures and create
bounding boxes around the components that make up the clothing items. The
mobile application consists of a simple user interface, that displays the pictures
taken by the quality control officer using the mobile phone camera. It allows the
quality control officers to choose whether to use the pictures to detect defects
or to use them to train the classification model. The reason of using a mobile
application to take pictures instead of a fixed camera is because this way allows
the quality control officers to walk around the factory and take pictures of the
clothing items in different production steps.

To create the bounding boxes all the quality control officer must do, is drag a
finger over the picture and surround the component. By doing this the application
stores four coordinates of the image per bounding box. This set of four coordi-
nates consists of two x coordinates (width) and two y coordinates (height). When
creating the bounding box, the quality control officer can choose, through a check
box, if he wants to classify the component or if he wants to create new data for
training. This check box will determinate which process will be executed by the
DD Server, the defect detection process or the training process.

For the mobile application to send the pictures to the DD Server, the pictures
need to be converted to bytes as well as information about the bounding boxes.
After receiving the bytes from the mobile application, the DD Server converts
them back to the original format.

27

Chapter 3. Quality Control System for Clothing Manufacturing

Regardless of whether the quality control officer chooses to use the pictures it
took to train the classification model or to perform defect detection, they must
always create bounding boxes around the relevant components present in the pic-
tures. Figure 3.4 shows an example of a picture of a shirt and the bounding boxes
around the components that will be classified.

Figure 3.4: Bounding boxes example

During the creation of new data to train the classification model, after drawing
bounding boxes around the relevant components in the picture, the quality control
officers must label each component with the corresponding classes. The classes can
be chosen from a list of existing classes or, if the object consists of class not present
in the classification model, the quality control officers can create a new class that
will be added to the list of existing classes.

During the defect detection process, after receiving the pictures taken by the
quality control officers, the DD server sends back the results of the classification
model – classified components – so that the quality control officers can give feed-
back on the classifications made. This interaction between the DD Server and the
mobile application – user feedback – allows the quality control officer to cor-
rect wrong classifications made by the classification model of the DD Server and
confirm the correct ones.

The user feedback feature is easy to execute, after performing a defect de-
tection process using the mobile application and receiving the results from the
DD Server, the quality control officers can perform the necessary corrections by

28

Chapter 3. Quality Control System for Clothing Manufacturing

clicking on the bounding boxes with the wrong predictions and select the correct
label from a list of the existing classes.

After the corrections are made, the quality control officer sends the information
again to the DD Server and new images are created to train the classification
model. Although in an initial stage of the QCSCM life-cycle it is useful that the
quality control officer performs this feature, it is not mandatory.

Using the feedback from the quality control officers, the DD Server corrects
the registered defect and creates new training data that will be used in future
training sessions. So, basically the user Feedback feature is mainly another way
to trigger the training process of the DD Server. Its implementation consists of
allowing the quality control officers to change the wrong labels of the bounding
boxes by clicking on them via the mobile application or confirming the results
using an application button that will send a Boolean value set to true back to the
server and initializes a new training process.

This user feature contributes to better training and subsequently better perfor-
mance of the classification model present in the DD Server. This is only possible
thanks to the ability of the classification model to learn incrementally.

Figure 3.5 shows all the steps a quality control officer goes through during the
defect detection process using the mobile application, with a last step being the
execution of the user feedback.

3.3 Classification Model

In this section, we propose a classification model for images that can learn incre-
mentally as new classes are created and be used in a quality control system to
perform defect detection.

The proposed classification model is divided in a feature extraction model and
classifier with incremental learning abilities, as seen in Figure 3.6. Although in
this work we used the classification model to classify components of clothing items,
it can be adapted to other quality control environments.

The feature extraction model consists of a pre-trained CNN that extracts
important features from the content of the images. After the extraction, the

29

Chapter 3. Quality Control System for Clothing Manufacturing

Figure 3.5: Quality control officer process of defect detection using mobile
application

Figure 3.6: Classification model architecture

images are classified by the classifier using the extracted features and modi-
fied version of the Mondrian forest algorithm that supports incremental learning
(Lakshminarayanan et al., 2014). We chose this architecture for the classification
model, because by using the principles of transfer learning, we can combine the
benefits of using a CNN to extract relevant information from an image with the
ability of Mondrian forest to learn incrementally.

30

Chapter 3. Quality Control System for Clothing Manufacturing

3.3.1 Feature extraction model

The idea of using a feature extraction model in the classification model was to make
sure that the classifier only needs to process and classify relevant information and
to reshape the input of the classification model from a three-dimensional array
(an image) to a one-dimensional array that can be fed to the classifier. We chose
to use a CNN as the feature extraction model because of the recent state-of-the-
art results of this type of neural networks when it comes to image classification
problems. Figure 3.7 shows a simple CNN architecture and how it extracts relevant
features from an input image and converts them into a feature array.

Figure 3.7: CNN architecture and feature extraction. Adapted from: (Britz,
2015)

As we seen in chapter 2, there are many CNN architectures and these architec-
tures can be trained in very large datasets to create knowledge and know which
are the relevant features that can be extracted from an image. This knowledge
consists of using the best weights and biases for each layer of a CNN and it can
be adapted to similar image classification problems using transfer learning.

3.3.2 Classifier

The function of the classifier is to classify the images of the clotting items using the
features extracted from the feature extraction model. As any other classification
algorithm, the classifier present in the classification model needs to be trained with
data relative to the classes it wants to classify. However, our classifier must be
able to learn incrementally new classes and gain knowledge from unseen data.

Incremental learning is the ability of an algorithm to gain knowledge from
new data without losing previous knowledge from old data. It can lead to an

31

Chapter 3. Quality Control System for Clothing Manufacturing

increase of classes by training the model with data of new unseen classes, or an
increase of knowledge of the old classes by training the model with new data
from old classes. Figure 3.8 shows a representation of how a model can learn
incrementally.

Figure 3.8: Incremental learning.

As said before, the classifier present in the classification model consists of
a Mondrian forest presented in (Lakshminarayanan et al., 2014). A Mondrian
forest is a type of random forest that can learn incrementally. The input of the
Mondrian forest is a one-dimensional array, therefore, it is able to train with the
feature arrays extracted using the feature extraction model. In the next chapter we
detail how we developed the classification model and how our classifier (Mondrian
forest) behaves when classifying the feature arrays extracted using different CNN
architectures.

32

Chapter 4

Development of QCSCM

In this chapter, we present the tools and techniques used to develop the classifica-
tion model and the QCSCM as well as detailed information on the steps we took
during the development.

4.1 Classification Model

As seen in Figure 3.2, the classification model, described in section 3.3, is a com-
ponent of the DD Server of the QCSCM. However, due to its importance and the
work we had to develop it, we describe its development in a separated section
first. This classification model was developed to classify objects that correspond
to the components of the clothing items and would then be implemented in the
DD Server of the QCSCM.

As shown in Figure 3.6 in the previous chapter, the classification model is made
up by a feature extraction model and a classifier. The feature extraction model
consists of a pre-trained CNN without the last layers (fully-connected layers),
which are normally use for the classification task. As for the classifier it consists
of a modified version of the Mondrian forest algorithm. By doing this, we follow
the principle of transfer learning, but instead of adding new layers and trained
them with new data, we use the Mondrian forest algorithm which is capable of
learning incrementally.

33

Chapter 4. Development of QCSCM

4.1.1 Feature Extraction Model

As defined in the previous chapter, to extract relevant features from the input
images we use a pre-trained CNN. The Keras Library provides many CNN archi-
tectures already pre-trained on the ImageNet dataset that can be adapted to this
problem.

The ImageNet Dataset (Deng et al., 2009) is a very large image database
containing more than one million images of objects divided in 1000 classes. The
knowledge gained by a CNN when trained with this dataset can be easily adapted
to similar image classification problems.

In order to set some baseline results and due to the lack of real images of
components of clothing items, we used the Cifar-10 dataset (Krizhevsky & Hin-
ton, 2009) to perform some experiments and check if the classification model can
perform well in an image classification problem. The Cifar-10 dataset consists of
60000 images in 10 classes, with 6000 per class. Of these images, 50000 are used
for training and 10000 are used for test. Each image consists in a 32x32 color
image. The 10 classes are the following: airplane, automobile, bird, cat, deer, dog,
frog, horse, ship, truck.

To use one of the CNN architectures in Keras as a feature extractor, all we have
to do is load the desired CNN architecture with the weights obtained during the
ImageNet training, remove the last fully connected layers used for classification
and process the input images through the network to extract the features. Finally,
we save these features in arrays that will serve as the input of the classifier.

4.1.1.1 Why extract features?

Why should we use a CNN to extract features of the images of the components of
the clothing items and then classify these features instead of classifying directly
the images? In this section, we answer this question and show the importance of
feature extraction.

If we did not used a CNN as features extractor, the classifier would use the
raw images as input instead of a feature array. For us as humans it is easy to look
at an image and understand what it represents, the same cannot be said when we
look at a feature array extracted from a CNN.

34

Chapter 4. Development of QCSCM

Figure 4.1 shows a raw image of a clothing item component on the right and
its corresponding feature array on the left extracted using InceptionResnet. We
converted the 1536 size array to an 32x48 matrix for easier interpretation.

Figure 4.1: Representation of feature extracted using InceptionResnet

If we look at the representation of the extracted features in Figure 4.1 it is
hard to understand what it represents and difficult to extract some useful infor-
mation, just by looking at it. To compare how the classifier, Mondrian forest,
performed on classifying the raw images versus classifying the features extracted
from the feature’s extractor, we performed an experiment using python to calcu-
late the classification test accuracy of the two methods. The accuracy is a metric
for evaluating classification models and measures the fraction of the number of
correct predictions (Nc) over the total number of predictions (Np) (Classification:
Accuracy , 2018):

accuracy =
Nc

Np
. (4.1)

Table 4.1 shows the results of this experiment on the Cifar-10 dataset and, as
we can see, the classification of CNN features is much better than the classification
images. This can be explained for two reasons, the first one being the fact that our
classifier receives as input a one-dimensional array, therefore, to feed the images
to the classifier they had to be converted from a three-dimensional array to a
one-dimensional array. This is not efficient because this way the image loses the
relationships between pixels. On the other hand, a feature array extracted from a
CNN is already a one-dimensional array.

Raw images classification vs CNN features classification
Number of classes Raw images InceptionResnet features

10 0.38 0.85

Table 4.1: Raw images classification vs CNN features classification

35

Chapter 4. Development of QCSCM

The second reason for the classifier performing better when classifying features
is because the layers of the CNN are trained to extract relevant information from
the images and pass this information through the network. This results in a feature
array containing mainly useful information, allowing a better classification.

4.1.1.2 CNN Architectures

To choose which CNN to use in the final version of the classification model, we
performed some experiments on some of the architectures provided by the Keras
library. The chosen architectures were: VGG16, MobileNet-V1, Inception-V3,
ResNet50 and InceptionResnet-V2.

The VGG16 and the MobileNet architectures were chosen because the feature
arrays they output are of size 512 and 1024, respectively. Therefore, the com-
putational cost and time of training our classifier with these features is smaller
when compared to the feature arrays of size 2048 of the ResNet and the Inception
architectures, and the feature array of size 1536 of the InceptionResNet. These
last three architectures were chosen because of their state-of-the-art results.

We created a python script to train the classifier on features extracted from the
Cifar-10 dataset using each of the selected CNN architectures in an incremental
fashion, first we trained it with 5 classes and the we added classes progressively
until the classifier was trained for all 10 classes of the dataset. The number of
Mondrian trees of Mondrian forest was set to 100. We used this number of trees
because it is a common value used in decision forests (Lakshminarayanan et al.,
2014). Table 4.2 shows a comparison of the classification accuracies for each set
of features using our classifier.

Comparison of CNNs
Number of classes Inception Resnet InceptionResnet MobileNet VGG16

5 0.85 0.86 0.91 0.79 0.77
6 0.80 0.81 0.87 0.71 0.69
7 0.77 0.79 0.85 0.68 0.67
8 0.75 0.77 0.84 0.67 0.64
9 0.74 0.76 0.83 0.65 0.62
10 0.72 0.76 0.83 0.63 0.60

Table 4.2: Comparison of CNNs features classified with Mondrian forest

As the Table 4.2 and Figure 4.2 show, for all CNN architectures, the accuracy
decreases when new classes are added. The InceptionResnet shows the best results,

36

Chapter 4. Development of QCSCM

followed by the Resnet and the Inception. Furthermore, the classifier trains faster
on the InceptionResnet features than on the Resnet or Inception features, this is
because the InceptionResnet returns a feature array of size 1536, which is smaller
than the 2048 size array of both the Resnet and Inception.

Although the training of the classifier with the features of the VGG16 and
MobileNet was significantly faster than the training with the InceptionResNet
features, the accuracies were much worse. Taking these results into account we
chose to use the InceptionResnet CNN as our feature extraction model in the
following experiments.

Figure 4.2: Comparison of CNNs features classified with Mondrian forest -
Graph

4.1.2 Classifier

For the classifier that classifies the images using the features extracted from the
feature extraction model, we used the Mondrian forest algorithm presented in
(Lakshminarayanan et al., 2014). Although the original implementation of the
Mondrian forest1can train with new data maintaining the previous knowledge,
it does not support the capability of updating the number of classes, thus some
modifications had to be implemented.

1https://github.com/balajiln/mondrianforest

37

https://github.com/balajiln/mondrianforest

Chapter 4. Development of QCSCM

In the original implementation of the Mondrian forest when initializing the
model, a series of data related parameters must be defined, such as, the number of
classes of the data, the training and test data and its corresponding labels. In the
implementation developed in the present work, these parameters are also defined,
but after each training session, the number of classes used in that session is saved
in the model.

When new data arrives for a new training session the number of classes of the
data is compared to the number of classes in the model and if the number differs,
the number of classes in the model is updated. By updating the number of classes,
it is possible to update each node information of each Mondrian tree on the new
data, which consists mostly of arrays of size equal to the number of total classes.
This way, every time the model is trained on new classes it can easily update the
total number of classes.

4.1.2.1 Incremental Learning

To see how the classifier performed after the modifications we made to the origi-
nal implementation of the Mondrian forest, we experimented training the classifier
incrementally with new classes and training the classifier with new classes from
scratch. After the experiments we compared the accuracies of both training meth-
ods in Table 4.3.

Full training vs Incremental training
Number of classes Full training Incremental training

5 0.91 0.91
6 0.88 0.87
7 0.86 0.85
8 0.86 0.84
9 0.86 0.83
10 0.85 0.83

Table 4.3: Comparison of classification model accuracies trained from scratch
and trained incrementally

To perform the experiments that resulted in Table 4.3, we created two python
scripts. The first one, Full training, the classifier was first trained from scratch
with five classes, then trained from scratch with six classes and then again until
was trained with all ten classes. No incremental learning was used. In the second
script, Incremental training, the classifier was first trained with five classes from

38

Chapter 4. Development of QCSCM

scratch and then one class was added incrementally to the classifier using only data
from the new class, until all ten classes were learned. In both python scripts we
used the features extracted from the Cifar-10 dataset using the feature extractor.

As we can see in Figure 4.3 , the difference between the two training methods
is not big, with just a small drop, of around 1% to 2%, in accuracy when trained
incrementally compared to training with all classes from scratch. These results
show that the classifier can be trained incrementally in a satisfactory way, which
is important for the QCSCM.

Figure 4.3: Full training vs Incremental training - Graph

4.1.2.2 Mondrian Forest Settings

The Mondrian forest algorithm developed in (Lakshminarayanan et al., 2014) has
a series of parameters that can be adjusted. In this section, we present results
produced using different configurations of these parameters.

A random forest is basically a set of decision trees and, in the case of the
Mondrian forest, a set of Mondrian trees. Therefore, one of the main parameters
of this algorithm is the number of trees use to make up the forest.

39

Chapter 4. Development of QCSCM

We experimented the number of trees of the Mondrian forest by creating a
python script to train the Mondrian forest with a different number of trees. We
used 10, 25, 50, 100, and 150 trees to create six different size Mondrian forest
and trained these forests with all ten classes of the Cifar-10 dataset. The original
implementation of the Mondrian forest allows the calculation of different forest
related metrics, such as, the number of leaves, the number of non-leaves and the
trees depth. In Table 4.4, we show the different accuracies of the different size
forests, as well as the forest related metrics.

Number of trees in Mondrian forest Comparison
Number of trees Accuracy Number of leaves Number of non-leaves Tree depth

10 0.61 215 214 13
25 0.80 1741 1740 21
50 0.84 1705 1704 22
100 0.85 1724 1723 21
150 0.85 1741 1740 22

Table 4.4: Number of trees in Mondrian forest comparison

In Figure 4.4, we can see that the Mondrian forest increases the accuracy
significantly with the increase of number of trees from 10 trees to 25 trees, but then,
with more than 50 trees, the increase of accuracy starts to stagnate. A Mondrian
forest with 100 Mondrian trees achieves the same accuracy of a Mondrian forest
with 150 Mondrian trees.

Figure 4.4: Number of trees in Mondrian forest comparison - Graph

40

Chapter 4. Development of QCSCM

As for the average number of leaves, non-leaves nodes and tree depth the results
do not vary much with the increase of number of trees, except for a Mondrian forest
with 10 trees where these metrics are smaller.

The other parameters that can be set for the Mondrian forest did not show
significant changes in the results, therefore, we have decided to use the default
ones. These parameters included the budget for the Mondrian tree, the discount
factor and the bagging (Lakshminarayanan et al., 2014).

4.2 Defect Detection Server

To develop the DD Server, described in section 3.1, we chose to use python pro-
gramming language, because it is one of the most used languages in machine
learning and due to the fact, it supports many machine learning and deep learning
libraries, like the ones we used to develop our classification model.

The DD Server consists of a socket with an IP address and a port and handles
multiple clients with the use of threads, one for each client. In this case a client
consists of the mobile application used by a quality control officer. When a quality
control officer connects to the DD Server, the DD Server sends back to the quality
control officer the classification of one or multiple components or the confirmation
that the images it received were saved for future training sessions, depending on
the process the quality control officer triggers.

During the development of the DD Server we defined two main processes that
it must execute, the defect detection process and the training process. The
defect detection process is where the server classifies the images of the compo-
nents of the clothing items, compares the predictions with the product data sheet
and registers the defects. The training process consists of saving images of the
components in the image database and train the model when enough images are
available. However, before any of these processes is executed, the DD Server must
perform data pre-processing on the pictures it receives, we describe this data
pre-processing step in the next section.

41

Chapter 4. Development of QCSCM

4.2.1 Data Pre-processing

To feed the classification model present in the DD Server, some data pre-processing
must be done regardless of whether the quality control officer has started the
training process or the process of defect detection. The content of the bounding
boxes, which represents an image of a component of a clothing item, is cropped
from the clothing item picture and resized to a certain width and height using
OpenCV library for python. This width and height depend on the CNN archi-
tecture used for the feature extraction model, the image must be resized to fit
the input layer of the CNN. In Figure 4.5 we can see a representation of this
process. https://www.overleaf.com/project/5bd8785305a9f82109075d29 We used
the OpenCV library because it can be used in python, which is the programming
language we used to develop the DD Server, but also because it is an open source
library the simplifies the processing of images and it was design for real-time ap-
plications 2.

Figure 4.5: Data pre-processing - Crop and resize

After data pre-processing, what happens to the images depends on the process
that is being executed, as we can see in the next sections.

4.2.2 Defect Detection Process

In the defect detection process, after the pre-processing of images is completed,
these images are sent to the classification model. In the classification model the
features are extracted from the images and then classified. We called the time it

2https://opencv.org/

42

https://opencv.org/

Chapter 4. Development of QCSCM

takes to read the images, extract the features and predict a class, classification
time. This classification time is evaluated in the next chapter.

After the classification is completed, the DD Server accesses the database con-
taining the product data sheets, selects the one corresponding to the clothing item
that is going through the process and compares the predicted classes to the ones
present in the list of components of the product data sheet, if a defect is detected
it is registered by the DD Server. Finally, the results are sent to the quality control
officer. Figure 4.6 shows a representation of the defect detection process.

Figure 4.6: Defect detection process

4.2.3 Training Process

In the training process, after the pre-processing of images is completed, the images
of the components are saved in a directory and augmentations of these images are
made to create more data. If there are enough new images and the number of
images per class is about the same, these images are loaded, the features are
extracted and the classifier within the classification model is trained, if not the
DD Server waits for more images.

To train the classifier, the DD Server needs to load it, train it and then save
it. We call the time it takes to load the images, extract the features, load the
classifier, train the classifier and save the classifier, training time. This training
time is also evaluated in the next chapter.

To determine if the number of new images is enough to train the classification
model, the DD Server uses a threshold. This threshold is defined by the quality
control officer responsible for the supervision of the QCSCM training and perfor-
mance. Every time the DD Server saves new images it also saves the number new
images per class. If the sum of these numbers is higher than the threshold the

43

Chapter 4. Development of QCSCM

classifier is trained, and the number of new images is set to zero. Figure 4.7 shows
a representation of the training process.

Figure 4.7: Training process

As we said, in order to create more data, we perform some data augmen-

tation to the images the DD Server saves for training. This data augmentation
process includes augmentations such as, vertical flip, horizontal flip, rotations,
noise, blur, etc. In Figure 4.8, we can see some of the augmentations made to an
image received by the server.

Figure 4.8: Image augmentations performed

Using the developed mobile application, we describe in the next section, we
took pictures of clothing items and draw bounding boxes of the components that
compose the clothing item. The images of the components were stored in the
image database of the DD Server creating a custom dataset with a total of 18
classes. These classes are the following: zipper-white, zipper-silver, zipper-black,

44

Chapter 4. Development of QCSCM

button-grey, button-black, button-bronze, button-white, button-yellow, button-
blue, button-red, belt buckle-gold, belt buckle-silver, belt buckle-black, pocket-
yellow, pocket-red, stamp1, stamp2, stamp3. Notice that for example, a black
button does not belong to the same class as a blue button. Only components with
the same exact characteristics belong to the same class.

Some experiments were made to see how the classification model performed on
this dataset as well as which were the best augmentations to perform. First, we
trained and tested our classification model on the custom dataset without perform
any single augmentation and achieved an accuracy of 74%.

Trying to improve these first results, 11 augmentations were made to each
image of the dataset. These augmentations were as follows: add, blur, dropout,
lateral flip, up flip, perspective, 45º rotation, 90º rotation, shear, shift up and left,
shift down and right. After this process each class contained 144 images.

We trained and tested the classification model using the now augmented dataset
and achieved an accuracy of 74% as well. This means the augmentations that were
used did not improved the training of the classification model.

After some digging of the results we achieved in the previous experiment, we
noticed that the wrong predicted images were the ones where the augmentation
created black borders our dots in the images, such as, dropout, shear, shift and
45º rotation. Figure 4.9 shows these augmentations.

Figure 4.9: Bad image augmentation techniques

45

Chapter 4. Development of QCSCM

Taking this into account, these augmentations were removed, and new ones
were added, such as, -90º rotation, 180º rotation and subtraction. Then, we
trained and tested the classification model on the newly augmented dataset and
the accuracy improved from 74% to 86%. After this process each class contained
around 108 images. In both experiments the augmentations were performed using
imgaug library for python. In Table 4.5 a comparison between the augmentations
used is presented.

Data augmentation accuracies comparison (%)
No augmentations First augmentations Second augmentations

0.74 0.74 0.86

Table 4.5: Data augmentation accuracies comparison(%)

46

Chapter 5

Classification Model and QCSCM

Evaluation

In this chapter we evaluate our proposed classification model used in the QCSCM,
ensuring that it fulfills the propose of the present work. The two main topics of
the evaluation are as follows:

• Speed. This evaluation topic focuses on the time the classification model
takes to predict a class of a component and consequently the time the QC-
SCM takes to detect a defect. It also focuses on the time it takes for the
classification model to train with need data. The shorter the time, the higher
the speed.

• Performance. The second topic evaluates the performance of the classi-
fication model when classifying the images of the clothing items. In other
words, we measured some classification metrics to evaluate the classifications
made by the classification model.

At the time of the writing of this work, the QCSCM was not yet implemented
in the real clothing factory environment. That is why, in this section we focus
on evaluating the classification model of the QCSCM and in a simulated envi-

ronment. The evaluation of the system as a whole will be made as soon as the
implementation is completed, which was set to be made by INOV INESC Inovação
at its clothing manufacturing client in January of 2019. This evaluation includes
a satisfaction survey of the quality control officers to understand if the mobile
application is user-friendly and if the QCSCM can indeed be useful in their jobs.

47

Chapter 5. Classification Model and QCSCM Evaluation

In following evaluation and experiments we put ourselves in the position of
the quality control officers and used the developed system, more precisely the
mobile application to take pictures of clothing items and create bounding boxes
of the components. The pictures were sent to the DD Server that stored the
images of the components along with the labels in the image database creating

a custom dataset. This dataset consists of around 2100 images divided in 18
classes listed in the previous chapter. These images include images generated with
data augmentation techniques.

To evaluate the classification model, the dataset had to be divided in a training
set and a test set. The training set is about 80% of the total dataset and the test
set is the remaining 20%. This is a common split for datasets in machine learning
problems.

5.1 Classification Model Speed

In this section we focus on how fast the classification model is. The following
experiments were performed using a Nvidia GeForce GTX 1080 Ti GPU, 16GB of
RAM and an Intel Core i5-7600K CPU.

5.1.1 Training time

The training time is, as the name suggests, the time it takes to train the classifi-
cation model. Evaluating this time is important because the QCSCM needs to be
quickly updated as new classes of components are created. If it takes too much
time to train the classification model, the quality control officers will not be able
to use the QCSCM for the new components.

The training process of the classification model can be divided in the following
sub-processes, as shown in section 4.2.3:

• Load images.

• Extract features.

• Load classifier.

48

Chapter 5. Classification Model and QCSCM Evaluation

• Train classifier.

• Save classifier.

Each of these sub-processes has an associated time and the sum of these times
represents the total training time. Table 5.1 shows these training times measured
in seconds (s).

Training times with increase of classes
Number of classes Number of images Load images Extract features Load classifier Train classifier Save classifier Total training

3 250 0.94s 13.39s - 2.99s 8.72s 26.04s
6 496 1.77s 21.44s 6.45s 5.36s 14.91s 49.93s
9 750 2.7s 32.28s 7.34s 6.89s 17.19s 66.41s
12 996 3.79s 43.18s 8.49s 8.02s 17.33s 80.81s
15 1246 5.09s 53.87s 8.6s 9.42s 17.24s 94.24s
18 1500 6.41s 65.24s 8.35s 10.66s 19.01s 109.68s

Table 5.1: Training times with increase of classes.

To measure the training times presented in Table 5.1 we created a python
script that performed six training sessions and calculated the time of each sub-
process of training using the time package. For each of the six training sessions we
added three new classes, training the classification model incrementally. The first
training session used three classes and the sixth and last training session used all
18 classes of the created dataset.

As expected, with the increase of the number of classes, and therefore an
increase of the number of images, the training times increase as well. The increase
of number of classes and number of images is linear, with the classes increasing in
three at each training and the number of images increasing in around 250 images.
Figure 5.1 show us that the total training time also increases in a linear way. Time
increases between 14 to 16 seconds after each increase in the number of classes,
except for the first increase, where the time increased about 24 seconds. This is
related to the fact that in the first training a new classifier is created from scratch
and no time is spent on loading the classifier since there are no older classes.

If we take a closer look to the time of each sub-process, we can see that the sub-
process of extracting features is the one with the biggest increases in time when
new classes are added, and more images are loaded. The other sub-processes also
increase in time but in a much softer way. Figure 5.2 presents the time increase
for each training sub-process after each increase in the number of classes.

After testing the training of the classification model with an increase of classes,
we decided to test classification model with all the classes trained from scratch,

49

Chapter 5. Classification Model and QCSCM Evaluation

Figure 5.1: Training times with increase of classes - Graph.

Figure 5.2: Training sub-processes times with increase of classes - Graph.

just increasing the number of images, and see if the training times differ. In other
words, see if the number of classes influences the training time or if it is just the
number of images.

To perform this experiment, we created another python script that also perform
five training sessions and measured the training times using the time package. For

50

Chapter 5. Classification Model and QCSCM Evaluation

each training session the classification model was trained with all 18 classes of
the created dataset using around 250 new images per training session. Table 5.2
presents the results of this experiment.

Training times with increase of number of images
Number of images Load images Extract features Load classifier Train classifier Save classifier Total training

243 3.94s 13.09s - 3.13s 10.34s 30.51s
495 4.35s 21.07s 7.58s 6.79s 22.08s 61.86s
740 4.91s 31.58s 9.01s 8.22s 23.48s 77.18s
991 5.38s 42.3s 8.76s 9.31s 23.83s 89.58s
1243 5.88s 53.48s 9.08s 10.7s 23.63s 102.77s
1500 6.43s 64.91s 8.82s 12.08s 23.36s 115.61s

Table 5.2: Training times with increase of number of images.

As the table shows, it is possible to see that the training times are slightly
bigger when training with all classes. In Figure 5.3 is possible to compare the
results of both experiments.

Figure 5.3: Training times comparison - Graph.

In Figure 5.4, we can see a more detailed view of the two experiments. By
comparing the sub-processes times, it is possible to see that the times are similar
in the extract features and load classifier sub-processes, but differ in the remaining
ones.

51

Chapter 5. Classification Model and QCSCM Evaluation

Figure 5.4: Training sub-processes times comparison - Graph (Row 1 - Load
images, Extract features; Row 2 - Load classifier, Train classifier; Row 3 - Save

classifier.

The difference of the load images sub-process times can be explained by the fact
that the images are stored in a directory for each class. Therefore, as the number
of classes increases, the number of directories that need to be access increases as
well. In the final training instance of each experiment, the number of images and
classes are the same for both experiments, thus the time it takes to execute this
sub-process is the same.

In the train classifier and save classifier sub-processes the times of the second
experiment, the one on which the classifier was trained in every training instance

52

Chapter 5. Classification Model and QCSCM Evaluation

with all the 18 classes, are bigger than the times of the first experiment. This is
related to the size of the classifier, as the number of classes increases the number,
the classifier size increases as well.

After these experiments we can conclude that the number of classes does not
have a significant impact in the training times of the classification model. Although
every time we added classes the training time increased, it was not due to the fact
the number of classes increased, but due to the increase of the number of images.

In both cases the training time in the final training instances was bellow two
minutes, which is a satisfactory result. Most of the images classification algorithms
take much more time to training.

By having a classification model able learn new information fast, the quality
control officers and the quality control processes can adapt rapidly to new com-
ponents of clothing items and detect new defects. On top of that, the training of
the classification model can be performed outside of working hours, in such a way
it does not interfere with the clothing manufacturing works.

5.1.2 Classification time

The classification time corresponds to the time during which a quality control
officer sends a picture with components of clothing items that need to be classified
and the server outputs the results. This classification process be divided in sub-
processes as follows, as shown in section 4.2.2:

• Read image.

• Extract features.

• Predict classes.

The read image sub-process consists of receiving the image from the mobile
application and convert it to the correct format, then the bounding boxes contain
within the image are cropped and resized creating new images that will be send to
the classification model for the extract features and predict classes sub-processes.

With the classification model trained with all 18 classes, we as quality control
officers took some pictures with the mobile application, created bounding boxes

53

Chapter 5. Classification Model and QCSCM Evaluation

around the components we wanted to classify and sent the information to the server
in order to calculate the time of the classification and its sub-processes. Table 5.3
presents the times calculated during these experiments, where we created one up to
five bounding boxes per picture. Each time was calculated after each sub-process
of classification was completed using the time python package.

Classification Times
Bounding boxes Read image Extract features Predict classes Total time

1 0.186s 0.04s 0.103s 0.329s
2 0.181s 0.08s 0.217s 0.479s
3 0.205s 0.121s 0.299s 0.624s
4 0.205s 0.156s 0.379s 0.74s
5 0.182s 0.196s 0.454s 0.832s

Table 5.3: Classification times.

In information retrieved from the clothing factory for which the classification
model and the QCSCM were developed, we know that it takes on average around
18 seconds for a quality control officer to detect a defect. Therefore, for the
QCSCM to be useful for the factory it must perform at least within the same
values of time.

As we can see in Figure 5.5, in all cases of the experiment, it takes less than
a second for the QCSCM to read the picture and identify the classes of the com-
ponents. As expected, it takes longer to predict five classes than one class, but
except for the read image time, which is similar in all cases, the increase of the
extract features time and the predict classes time is linear. This makes it easier to
estimate the time it takes to identify n components.

Although the results of this experiment seem promising, it is hard to tell if
the defect detection process speed is improved with the use of the classification
model and QCSCM. The time it takes for a quality control officer to take a picture
or more of the clothing item was not considered, because the system was not yet
implemented in the factory. Therefore, it is not possible to compare these results
with the time it takes a quality control officer to detect a defect.

54

Chapter 5. Classification Model and QCSCM Evaluation

Figure 5.5: Classification Times - Graph (Row 1 - Read images, Extract fea-
tures; Row 2 - Predict classes, Total time).

5.2 Classification Model Performance

The classification model must be an efficient tool in order to be a valid option for
the QCSCM and for the quality control officers in their quality control processes.
To measure how efficient the classification model is, we calculated some classifi-
cation metrics using the custom dataset. We evaluated the incremental learning
performance of the classification model and its overall performance when trained
with all classes of the dataset.

5.2.1 Incremental Learning

To evaluate the incremental learning capability of the classification model two
experiments were performed, the metric used to evaluate these experiments was
the accuracy. To calculate the accuracy, we used the equation 4.1 described in the
previous chapter.

55

Chapter 5. Classification Model and QCSCM Evaluation

The first experiment aimed to evaluate how the classification model performed
when new classes were added to the system. In Table 5.4 is possible to see the
results of this first experiment.

Incremental training with new classes
Number of classes Accuracy

3 0.91
6 0.95
9 0.92
12 0.91
15 0.91
18 0.95

Table 5.4: Incremental training with new classes.

We created a python script that trained the classification model using the
training set of the dataset created. First, the classification model was trained
with three classes and then three classes were added incrementally until it was
trained with all the 18 classes. To measure the accuracy, we used the test set
of the dataset. As we can see in Table 5.4 and more easily in Figure 5.6, the
increasing number of classes does not have a significant effect on the accuracy of
the classification model, averaging between 91% and 95%. Taking these results in
to account we can conclude that the classification model was capable of learn new
classes of the created dataset without significant drops of accuracy.

Figure 5.6: Incremental training with new classes - Graph.

56

Chapter 5. Classification Model and QCSCM Evaluation

Contrary to what one would expect, the accuracy did not decrease with the
increase of the number of classes. This can be explained by the differences and
similarities of the classes used in each training session. The first classes used
were more similar between each other, therefore, the classification model found it
more difficult to distinguish the classes. The last classes to be used to train the
classification model were more different, thus, not decreasing the accuracy.

In the second experiment aimed to check if the classification model can improve
its knowledge in existing classes. We created another python script to train the
classification model with a fixed number of classes, then it was retrained using
new and more data of the same classes, in a total of five training sessions. The
experiment was performed using three, ten and 18 classes. Table 5.5 shows the
results of this experiment. The column Number of Images represents the number
of images that were used to train the classification model at each training step.

Incremental training with new data
3 classes 10 classes 18 classes

Number of images Accuracy Number of images Accuracy Number of images Accuracy
50 0.67 167 0.79 300 0.88
50 0.78 167 0.88 300 0.91
50 0.81 167 0.91 300 0.94
50 0.84 167 0.94 300 0.95
50 0.91 164 0.96 300 0.96

Table 5.5: Incremental training with new data.

As we can see in Figure 5.7, in all cases the classification model improves its
accuracy when trained with new unseen data. We can conclude that the classi-
fication model is capable of improve its knowledge when trained with new data
of old classes. Therefore, the user feedback feature of the QCSCM is important,
as it helps the quality control officers create new data that will be used in future
training sessions and, consequently, improve the classification model performance.

Again, the higher accuracy of the classification model on the higher number
of classes can be explained by the differences and similarities of the classes used
in the train with three classes, ten classes and 18 classes. When we trained the
model with 3 classes those classes were all zippers, zipper-white, zipper-silver and
zipper-black, which are more similar then the rest of the 18 classes, thus the
lower accuracy. Another factor can be associated to the number of images used
in the different training sessions. The model when trained with 18 classes used
more images then when trained with three classes. However, what is important to

57

Chapter 5. Classification Model and QCSCM Evaluation

Figure 5.7: Incremental training with new data - Graph.

conclude is that, no matter the number of classes, the classification model increase
its accuracy when trained with new data from old classes.

5.2.2 Classification Performance

In the previous section, we used accuracy as the metric to evaluate the incremental
learning abilities of the classification model. The results were promising, but the
use of this metric can be misleading sometimes. In this section, we evaluate the
performance of the classification model using more metrics. The classification
model was trained with all 18 classes of the dataset we created.

Using the training set of the dataset and all 18 classes we created a python
script to train the classification model and then evaluated the model using the test
set. In Table 5.6 we can see a confusion matrix describing the performance of the
classification model on the test set.

The diagonal elements of the confusion matrix show the correct classifications
(true positives (TP)), the columns excluding the diagonal elements show the false
positives (FP) and the rows excluding the diagonal elements show the false nega-
tives (FN). This confusion matrix was created using the scikit-learn library.

58

Chapter 5. Classification Model and QCSCM Evaluation

Confusion matrix
Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 19 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 2 18 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 14 0 0 5 1 1 0 0 0 0 0 0 0 0 0
5 0 0 0 0 20 0 0 0 1 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 21 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 22 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 1 0 0 0 20 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 22 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 21 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 21 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 21 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 1 21 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 21 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22

Table 5.6: Confusion matrix - Class legend: 1. zipper-white; 2. zipper-silver;
3. zipper-black; 4. button-grey; 5. button-black; 6. button-bronze; 7. button-
white; 8. button-yellow; 9. button-blue, 10. button-red; 11. belt buckle-gold;
12. belt buckle-silver; 13. belt buckle-black; 14. pocket-yellow; 15. pocket-red;

16. stamp1; 17. stamp2; 18. stamp3

With the help of the confusion matrix it is possible to calculate the precision,
the recall and the F1-score. The precision evaluates how accurate are the predic-
tions, in other words it calculates proportion of positive classification that were
correct using the following equation:

precision =
TP

TP + FP
. (5.1)

The recall measures how good the model finds all the positives. It calculates
the proportion of positives correctly classified using the following equation:

recall =
TP

TP + FN
. (5.2)

Finally, the F1-score is the harmonic mean of the precision and the recall. It
is calculated using the following equation:

F1 = 2 ∗ precision ∗ recall
precision+ recall

. (5.3)

59

Chapter 5. Classification Model and QCSCM Evaluation

These metrics allow a better interpretation of the classification model perfor-
mance. To calculate these metrics, we use the scikit-learn library and the informa-
tion shown in the confusion matrix. The results of these calculations are present
in Table 5.7. As shown in this table, the metrics are high across all classes except
for class number four, which has a lower recall, and class number seven, which has
a lower precision.

Class Precision Recall F1-Score
1 0.90 0.90 0.90
2 0.90 0.86 0.88
3 0.96 1.00 0.98
4 0.93 0.67 0.78
5 1.00 0.95 0.98
6 1.00 1.00 1.00
7 0.81 1.00 0.90
8 0.95 0.95 0.95
9 0.92 1.00 0.96
10 1.00 1.00 1.00
11 1.00 1.00 1.00
12 0.95 1.00 0.98
13 1.00 0.95 0.98
14 1.00 1.00 1.00
15 1.00 1.00 1.00
16 1.00 1.00 1.00
17 1.00 1.00 1.00
18 1.00 1.00 1.00

Table 5.7: Precision, recall and F1-score

In the case of class number four, which is button-grey, the high precision and
low recall implies that the classification model does not classifies many things
as button-grey, missing a lot of them. However, when it classifies an object as
button-grey it is very precise.

As for the case of class number seven, button-white, the high recall but lower
precision implies that the classification model correctly classifies a significant pro-
portion or even all the white buttons as button-white. However, it also incorrectly
classifies other classes as button-white.

These results also confirm our explanation for the classification model having
a higher accuracy when trained with all 18 classes then when trained with just
the first three classes of the dataset. The first three classes have a lower precision
compared to the final classes.

60

Chapter 5. Classification Model and QCSCM Evaluation

The confusion between the white button and the grey button classes, can also
be explain by the light conditions. If the light condition are not consistent a white
button can indeed look very similar to a grey button.

Since the number images per class is quite balanced, we can average the results
of each class and get the overall precision, recall and F1-score. This is called macro-
averaging. The overall metrics, converted to percentages, along with the accuracy
of the classification model is presented in Table 5.8.

Evaluation metrics
Accuracy Precision Recall F1-Score
96.09% 96.29% 96.04% 95.96%

Table 5.8: Evaluation metrics

The results achieved on the evaluation metrics show us that the classifica-
tion model performs well on the dataset we created in a simulated environment.
However, this dataset and environment represent just a fraction of the larger real
environment of the clothing factory.

5.3 QCSCM Simulation

To further evaluate the classification model and to test the QCSCM, we exper-
imented the QCSCM by taking some pictures of clothing items. Some of these
pictures are presented here, where we can see how the QCSCM performed on them.

To take these pictures, we installed the developed mobile application in three
mobile devices from INOV collaborators and created a simulated environment

over a period of one week. The three installed mobile applications allowed us to
put ourselves in the role of quality control officers.

By installing the mobile applications in multiple devices in the simulated en-
vironment we created, we were capable creating more images to be used by the
QCSCM in a collaborative way. All of the installed mobile applications were
capable of connecting to the DD Server allowing a faster creation of images and
subsequently a better training of the classification model.

In Figure 5.8 it is possible to see some examples of correct classifications. On
the left, a picture of a shirt sleeve with a bounding box around a component

61

Chapter 5. Classification Model and QCSCM Evaluation

correctly labeled as button-white. On the middle, a picture of part of a belt with
its buckle surrounded with a bounding box correctly classified as silver belt buckle.
On the right, a picture of a polo shirt with two bounding boxes correctly classified
as white buttons.

Figure 5.8: Examples of correct classifications

As the Figure 5.8 also shows, the QCSCM can use the classification model to
classify more than one component at a time. The picture on the right has two
bounding boxes correctly classified.

In the real quality control environment, the quality control officers when re-
ceiving results such as the ones present in the figures above, could confirm the
results and create new images for training with them. As for the DD Server, it
would register a defect in case of one being detected.

As seen in previously the classification model is not 100% accurate, sometimes
it makes wrong classifications of clothing items components. Figure 5.9 shows
some of these cases. On the left, we can see a silver zipper mistakenly classified
as a white zipper. On the right, it is possible to see four bronze buttons, three of
them correctly classified but one incorrectly classified as a black button.

Some important information can be retrieved from these examples of incor-
rect classifications. In these examples the classification incorrectly classified the
components, however the main characteristic of the components was correctly clas-
sified. In the case of the silver zipper, the component was correctly classified as
a zipper, but the color was incorrect. The same for the buttons example, all of
them were classified as buttons, but in one of them the color was incorrect. This
suggests that some class hierarchy and multi-label classification could improve

62

Chapter 5. Classification Model and QCSCM Evaluation

Figure 5.9: Examples of incorrect classifications

the performance of the classification model, since the are many components that
shared some characteristics.

As said before, when the quality control officer receives incorrect results, he
should make use of the user feedback feature of the QCSCM and correct wrong
predictions made by the classification model. This will help the classification
model improve its accuracy, as we saw in the previous section.

The pictures and results presented here, represent a simulated environment
similar to the one present on the clothing factory. In terms of the QCSCM us-
ability, we were able to take pictures using the developed mobile application in
multiple mobile devices and send the information to the DD Server. Then, the DD
Server used the classification model to classify the components present in these
pictures and send back the results to the mobile application. Using also the de-
veloped mobile application, we created the dataset used to train the classification
model. As for the classifications made by the classification model, it is hard to tell
if the results would be similar in the real environment because of multiple factors,
such as, light conditions, mobile phone camera specifications and configurations,
etc. However, it was possible to verify that the classification model can correctly
classify the components we created and can improve its knowledge as more images
are created for training.

63

Chapter 6

Conclusion and Future Work

6.1 Conclusion

The goal of the present work was to develop a system, that makes use of an image
classification model capable of learning new classes incrementally and increase
its knowledge, to help the quality control officers of a clothing factory in their
quality control processes. Using a mobile application used by the factory workers
combined with a server containing a classification model created using machine
learning algorithms, we proposed the QCSCM. This system can classify objects
that compose clothing items, checking if the identified objects correspond to the
ones used to produce a certain clothing item.

The main topics that the present work addresses are image classification and
incremental learning. Therefore, we focused our literature review in these two
topics. This review revealed that deep learning achieves the best results in the
field of image classification and that incremental learning is an area still in need
of further research. To combine these two topics of research in our final system,
we also looked for transfer learning techniques. This way we could create a classi-
fication model using a deep learning neural network that could extract important
features from the images and a classifier with incremental learning capabilities,
where new classes can be added over time.

After completing the research and defining the classification model and the
QCSCM architecture, we decided to use a CNN as feature extractor of the clas-
sification model and Mondrian forest as the classifier. During the development

65

Chapter 6. Conclusion

of the classification model some experiments were perform using different CNN
architectures, to check which of these produced the better results and therefore,
be used in the final version of the QCSCM. The results of these experiments have
shown that the InceptionResnet architecture was the one to use in the classifica-
tion model. The Mondrian forest algorithm implementation was slightly modified
so that new classes could be added over time.

A mobile application was created, with the propose of being used by the qual-
ity control officers to take pictures of the clothing items and then draw bounding
boxes around the relevant components of the clothing items creating images of the
components. These images could be used to train the classification model or to
perform the defect detection. Using the mobile application and the incremental
learning capabilities of the classification model, an important feature of the QC-
SCM, the User Feedback, was developed. This feature allows the quality control
officer to correct and confirm the results of the classification model and create new
data that will be use in future training sessions.

To evaluate the classification model, we focused on two topics, the speed of the
model and the performance of the model. The classification model was created to
be used in a quality control system to improve a quality control process. In this
type of processes time resources are important, therefore, the classification model
should perform close to real-time. The training times and the classification times
were the metrics we used to evaluate the speed. For the performance evaluation we
focused on classification metrics of the classification model and how it performed
when trained in an incremental fashion.

In both evaluation topics, the experiments were made using a custom dataset
in a simulated environment, where we put ourselves in the role of a quality control
officer to create data and classify some clothing item components. The results
achieved although promising, where difficult to compare to the real-life environ-
ment of the factory, due to different conditions, lack of data of real clothing items
and feedback of the quality control officers.

In the first chapter of the present work we asked the following question:

• How to develop a system capable of identifying defects and gain more knowl-
edge over time in a robust and efficient way using machine learning algo-
rithms to improve the quality control process of a clothing?

66

Chapter 6. Conclusion

The system we developed, the QCSCM, makes use of machine learning al-
gorithms, is capable of identifying defects and its classification model can gain
knowledge over time as new data is created. However, the system can still be im-
proved, the identification part of the problem (creation of bounding boxes of the
components) needs a big input from the quality control officers, it is not completely
automated. In the next section we discuss how can this be improved.

6.2 Future Work

As said before, although we achieved some satisfactory results in the experiments
we have made, it is hard to tell if the QCSCM would perform well in a real-life
environment. Therefore, one of the next steps to make is to implement the system
in the factory so that some quality control officers can evaluate it and so that
pictures of real clothing items and its components can be created.

In terms of improving the QCSCM functionality, we will focus of implementing
object detection in the system. The quality control officers must create bounding
boxes of the components they want to identify. This process can be slow if there
are several components on a clothing item. By implementing object detection this
process can be automated, simplifying the job of the quality control officers to just
taking pictures.

In the current architecture of the classification model, each different component
of a clothing item corresponds to a different class. If the number of classes increases
exponentially this can lead to some drops in accuracy. Also, some classes of object
can be more difficult to classify then others. Taking this into account, a focus to
create a class hierarchy and multi-label classification will be made. For example,
the current classification model classifies a black button and a blue button as
two different classes. In the future we will develop a classification model that first
classifies the more generic class, such as button, zipper, pockets, and then classifies
its characteristics, for example, color, size, etc.

67

Bibliography

Anthony, G., Greg, H., & Tshilidzi, M. (2007). Classification of images using
support vector machines. arXiv preprint arXiv:0709.3967 .

Britz, D. (2015). The top 10 ai and machine learning use cases everyone
should know about. Retrieved from http://www.wildml.com/2015/11/

understanding-convolutional-neural-networks-for-nlp/ (Accessed:
2018-10-07)

Carpenter, G. A., Grossberg, S., Markuzon, N., Reynolds, J. H., & Rosen, D. B.
(1992). Fuzzy artmap: A neural network architecture for incremental su-
pervised learning of analog multidimensional maps. IEEE Transactions on
neural networks , 3 (5), 698–713.

Çelik, H., Dülger, L., & Topalbekiroğlu, M. (2014). Development of a machine
vision system: real-time fabric defect detection and classification with neural
networks. The Journal of The Textile Institute, 105 (6), 575–585.

Chan, C.-h., & Pang, G. K. (2000). Fabric defect detection by fourier analysis.
IEEE transactions on Industry Applications , 36 (5), 1267–1276.

Chapelle, O., Haffner, P., & Vapnik, V. N. (1999). Support vector machines
for histogram-based image classification. IEEE transactions on Neural Net-
works , 10 (5), 1055–1064.

Chen, T., Goodfellow, I., & Shlens, J. (2015). Net2net: Accelerating learning via
knowledge transfer. arXiv preprint arXiv:1511.05641 .

Classification: Accuracy. (2018). Retrieved from https://developers.google

.com/machine-learning/crash-course/classification/accuracy (Ac-
cessed: 2018-10-04)

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). Imagenet:
A large-scale hierarchical image database. In Computer vision and pattern
recognition, 2009. cvpr 2009. ieee conference on (pp. 248–255).

69

http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/
http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/
https://developers.google.com/machine-learning/crash-course/classification/accuracy
https://developers.google.com/machine-learning/crash-course/classification/accuracy

Bibliography

Erickson, B. J., Korfiatis, P., Akkus, Z., Kline, T., & Philbrick, K. (2017). Toolkits
and libraries for deep learning. Journal of digital imaging , 30 (4), 400–405.

Fuangkhon, P., & Tanprasert, T. (2009). An adaptive learning algorithm for
supervised neural network with contour preserving classification. In Inter-
national conference on artificial intelligence and computational intelligence
(pp. 389–398).

Haralick, R. M., Shanmugam, K., & Dinstein, I. (1973). Textural features for
image classification. IEEE Transactions on systems, man, and cybernetics ,
3 (6), 610–621.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image
recognition. In Proceedings of the ieee conference on computer vision and
pattern recognition (pp. 770–778).

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., . . .
Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861 .

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep
network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167 .

Kim, J., Kim, B.-S., & Savarese, S. (2012). Comparing image classification meth-
ods: K-nearest-neighbor and support-vector-machines. Ann Arbor , 1001 ,
48109–2122.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu,
A. A., . . . Hadsell, R. (2017). Overcoming catastrophic forgetting in neural
networks. Proceedings of the national academy of sciences , 201611835.

Kovalev, V., Kalinovsky, A., & Kovalev, S. (2016). Deep learning with theano,
torch, caffe, tensorflow, and deeplearning4j: Which one is the best in speed
and accuracy?

Krizhevsky, A., & Hinton, G. (2009). Learning multiple layers of features from
tiny images (Tech. Rep.). University of Toronto.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems (pp. 1097–1105).

Kumar, A. (2003). Neural network based detection of local textile defects. Pattern
Recognition, 36 (7), 1645–1659.

Kumar, A. (2008). Computer-vision-based fabric defect detection: A survey. IEEE
transactions on industrial electronics , 55 (1), 348–363.

70

Bibliography

Kumar, A., & Pang, G. K. (2002). Defect detection in textured materials using
gabor filters. IEEE Transactions on industry applications , 38 (2), 425–440.

Lakshminarayanan, B., Roy, D. M., & Teh, Y. W. (2014). Mondrian forests:
Efficient online random forests. In Advances in neural information processing
systems (pp. 3140–3148).

Lakshminarayanan, B., Roy, D. M., & Teh, Y. W. (2016). Mondrian forests for
large-scale regression when uncertainty matters. In Artificial intelligence and
statistics (pp. 1478–1487).

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proceedings of the IEEE , 86 (11), 2278–
2324.

Li, D., Liang, L.-Q., & Zhang, W.-J. (2014). Defect inspection and extraction
of the mobile phone cover glass based on the principal components analysis.
The International Journal of Advanced Manufacturing Technology , 73 (9-12),
1605–1614.

Lu, D., & Weng, Q. (2007). A survey of image classification methods and tech-
niques for improving classification performance. International journal of
Remote sensing , 28 (5), 823–870.

Marr, B. (2016). The top 10 ai and machine learning use cases every-
one should know about. Retrieved from https://www.forbes.com/

sites/bernardmarr/2016/09/30/what-are-the-top-10-use-cases-for

-machine-learning-and-ai/#57cf2eb794c9 (Accessed: 2018-01-29)
Narr, A., Triebel, R., & Cremers, D. (2016). Stream-based active learning for

efficient and adaptive classification of 3d objects. In Robotics and automation
(icra), 2016 ieee international conference on (pp. 227–233).

Ngan, H. Y., Pang, G. K., & Yung, N. H. (2011). Automated fabric defect
detection—a review. Image and Vision Computing , 29 (7), 442–458.

Nielsen, M. A. (2015). Neural networks and deep learning. Determination Press.
Oquab, M., Bottou, L., Laptev, I., & Sivic, J. (2014). Learning and transfer-

ring mid-level image representations using convolutional neural networks. In
Proceedings of the ieee conference on computer vision and pattern recognition
(pp. 1717–1724).

Perez, L., & Wang, J. (2017). The effectiveness of data augmentation in image
classification using deep learning. arXiv preprint arXiv:1712.04621 .

Polikar, R., Upda, L., Upda, S. S., & Honavar, V. (2001). Learn++: An incre-
mental learning algorithm for supervised neural networks. IEEE transactions

71

https://www.forbes.com/sites/bernardmarr/2016/09/30/what-are-the-top-10-use-cases-for-machine-learning-and-ai/#57cf2eb794c9
https://www.forbes.com/sites/bernardmarr/2016/09/30/what-are-the-top-10-use-cases-for-machine-learning-and-ai/#57cf2eb794c9
https://www.forbes.com/sites/bernardmarr/2016/09/30/what-are-the-top-10-use-cases-for-machine-learning-and-ai/#57cf2eb794c9

Bibliography

on systems, man, and cybernetics, part C (applications and reviews), 31 (4),
497–508.

Pratt, L. Y. (1993). Discriminability-based transfer between neural networks. In
Advances in neural information processing systems (pp. 204–211).

Pratt, L. Y., Mostow, J., Kamm, C. A., & Kamm, A. A. (1991). Direct transfer of
learned information among neural networks. In Aaai (Vol. 91, pp. 584–589).

Quinlan, J. R. (1986). Induction of decision trees. Machine learning , 1 (1), 81–106.
Rebuffi, S.-A., Kolesnikov, A., Sperl, G., & Lampert, C. H. (2017). icarl: Incre-

mental classifier and representation learning. In Proc. cvpr.
Sarwar, S. S., Ankit, A., & Roy, K. (2017). Incremental learning in deep con-

volutional neural networks using partial network sharing. arXiv preprint
arXiv:1712.02719 .

Simard, P. Y., Steinkraus, D., & Platt, J. C. (2003). Best practices for convolu-
tional neural networks applied to visual document analysis. In null (p. 958).

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556 .

Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. A. (2017). Inception-v4,
inception-resnet and the impact of residual connections on learning. In Aaai
(Vol. 4, p. 12).

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., . . . Rabi-
novich, A. (2015). Going deeper with convolutions. In Proceedings of the
ieee conference on computer vision and pattern recognition (pp. 1–9).

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking
the inception architecture for computer vision. In Proceedings of the ieee
conference on computer vision and pattern recognition (pp. 2818–2826).

Szeliski, R. (2010). Computer vision: algorithms and applications. Springer Science
& Business Media.

Tsai, D.-M., & Lin, C.-T. (2003). Fast normalized cross correlation for defect
detection. Pattern Recognition Letters , 24 (15), 2625–2631.

Utgoff, P. E. (1989). Incremental induction of decision trees. Machine learning ,
4 (2), 161–186.

Wang, T., Chen, Y., Qiao, M., & Snoussi, H. (2018). A fast and robust con-
volutional neural network-based defect detection model in product quality
control. International Journal of Advanced Manufacturing Technology , 94 (9-
12), 3465–3471.

72

Bibliography

Weimer, D., Scholz-Reiter, B., & Shpitalni, M. (2016). Design of deep convo-
lutional neural network architectures for automated feature extraction in
industrial inspection. CIRP Annals , 65 (1), 417–420.

Why use keras? (2018). Retrieved from https://keras.io/why-use-keras/

(Accessed: 2018-10-06)
Wu, J. (2017). Introduction to convolutional neural networks. National Key Lab

for Novel Software Technology. Nanjing University. China.
Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. (2014). How transferable are fea-

tures in deep neural networks? In Advances in neural information processing
systems (pp. 3320–3328).

73

https://keras.io/why-use-keras/

	Resumo
	Abstract
	Acknowledgements
	List of Figures
	Abbreviations
	1 Introduction
	1.1 Overview
	1.2 Motivation
	1.3 Objectives
	1.4 Document Structure

	2 Literature Review
	2.1 Image Classification
	2.1.1 Deep Learning
	2.1.1.1 Transfer Learning
	2.1.1.2 Libraries

	2.1.2 Data Augmentation

	2.2 Incremental Learning
	2.3 Quality Control

	3 Quality Control System for Clothing Manufacturing
	3.1 Defect Detection Server
	3.1.1 Image Database
	3.1.2 Defect Registration

	3.2 Mobile Application
	3.3 Classification Model
	3.3.1 Feature extraction model
	3.3.2 Classifier

	4 Development of QCSCM
	4.1 Classification Model
	4.1.1 Feature Extraction Model
	4.1.1.1 Why extract features?
	4.1.1.2 CNN Architectures

	4.1.2 Classifier
	4.1.2.1 Incremental Learning
	4.1.2.2 Mondrian Forest Settings

	4.2 Defect Detection Server
	4.2.1 Data Pre-processing
	4.2.2 Defect Detection Process
	4.2.3 Training Process

	5 Classification Model and QCSCM Evaluation
	5.1 Classification Model Speed
	5.1.1 Training time
	5.1.2 Classification time

	5.2 Classification Model Performance
	5.2.1 Incremental Learning
	5.2.2 Classification Performance

	5.3 QCSCM Simulation

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work

	Bibliography
	Bibliography

