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Resumo 

 

Este trabalho apresenta um sistema automático que, a partir da especificação de uma 

linguagem arquitetural de design, gera plantas alternativas para residências de construção 

modular. 

O sistema usa Algoritmos Genéticos e é capaz de produzir várias soluções de plantas 

de modo eficiente. As regras de arquitetura são implementadas na função de fitness a partir 

de uma Gramática de Forma criada pelo arquiteto. 

São geradas diferentes soluções de plantas exequíveis, isto é, soluções que obedecem à 

Gramática de Forma e não têm sobreposições entre as suas divisões. Pode ser futuramente 

integrado com uma interface amigável para o utilizador de forma a que este personalize e 

crie a sua futura casa. Tal ferramenta pode também ser entregue às companhias de 

construção de forma a que estas gerem uma planta para uma casa modular personalizada. 

Palavras-Chave: Algoritmos genéticos, Design de layout automático, Cutting and 

Packing, Linguagem de Design 
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Abstract 

 

This work presents an automatic system that, from the specification of an architectural 

language of design, generates several alternative floor plants for the construction of 

modular homes. 

The system uses Genetic Algorithms and is capable of efficiently producing various 

plant solutions. The rules of architecture are implemented in the fitness function translating 

the rules of a Shape Grammar created by the architect. 

Different solutions of feasible plants are generated, that is, solutions that obey the rules 

of Shape Grammar and do not have overlays between the rooms. The system can be 

integrated with a user-friendly interface in the future, to allow for the house owners 

customization of their own house. Such a tool can also be delivered to construction 

companies for them to manage the design of modular houses that meet specific clients 

requirements. 

Keywords: Genetic Algorithms, Automatic Layout Design, Cutting and Packing, 

Language of Design  
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Chapter 1. Introduction 

This chapter provides an overview of the context that brought up the challenge 

addressed by this dissertation. Over the next sections, the problem will be formally 

formulated, and we will present, in sequence the following topics: motivation, research 

methodology, objectives and proposed approach. The structure of this dissertation will 

also be outlined at the end. 

1.1. Introduction 

 This dissertation addresses the problem of the automation of floor plan design in 

accordance with a given architectural language of design for modular housing mass 

production. 

 The first prefabricated houses appear during the gold rush in United States of America. 

This type of housing became popular during the Second World War, with the need to 

accommodate huge amounts of military personnel. The construction speed and the 

mobility of prefabricated houses were also a plus comparing with standard houses.  

Nevertheless, the idea of massive fabrication of houses seems to have started in mid 19th 

century and, since then, prefabricated houses have been successfully used (House, 2011). 

Modular houses should not be taken as single elements (i.e. doors, windows, walls) but as 

a composition of single elements that compose the house (rooms or divisions). The 

implementation of modular houses emerged with Fuller experimentation in 20s and 30s of 

last century and the Dymaxion House, that incorporated prefabricated bathroom modules. 

These houses embody a huge variety of construction elements, based on the climate and 

location of the house. While in standard housing construction increasing the house is not 

easy (e.g. add more rooms), with modular houses this becomes an is easy task to solve.  

 Modular construction is also used for skyscraper and commercial buildings. 

McDonald’s uses prefabricated structures, having set a world record of 13 hours since the 

beginning of construction until the opening to the public. Mass and modular construction 

is raising nowadays and has been in the highlights, like with the 461 Dean Street modular 

skyscraper in Brooklyn, NY, USA. On the other hand, the customization of a modular 

house by its future owner is very limited so far, even with the architectural progress that 

resulted mainly in the development of design processes. In Poland, the search for a 

detached or semidetached familiar house is an ingrained cultural notion, and the most 

popular construction is that of modular wooden houses. In 2014,  Kwiecinski and Slyk 
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presented a formal language of design (Kwiecinski & Slyk, 2014) to solve the 

customization problem, with the intention of calling Polish future house owners to 

participate in the design of their houses. This language is defined by using specified 

building elements (rooms or divisions), with predetermined range of individual 

dimensions (shapes) and architectural rules that restrain the possible combinations of 

housing elements’ positions (Chapter 3). This language was translated into a shape 

grammar that allows for automatization of the floor planning design (Chapter 3). However, 

a pure procedural generation of a floor plan was drawbacks. Using a backtracking 

approach can, not only be a morose process, but also be inefficient, since the dimension of 

the floor plans’ search space is combinatorial in nature. Therefore, we proposed to explore 

the development of an automated floor plan design complying with the language of design 

using an evolutionary approach. 

1.2. Problem Formulation and Motivation 

 Most of the single-family houses build in Poland are not directly designed by architects 

but are built based on the documentation presented in catalogues of typical houses. Such 

architecture gained popularity, mostly due to low prices of purchase, even though they 

often do not suit local conditions of the site or offer poor flexibility in accommodation the 

needs of their users. In order to allow for costumer participation in their houses design, 

Kwiecinski and Slyk presented an architectural interface to generate mass-customized 

modular wooden houses in Poland (Kwiecinski & Slyk, 2014). In 2016, based on 

(Kwiecinski & Slyk, 2014), a shape grammar was created to define the previous model 

(Kwiecinski, Santos, De Almeida, Taborda, & Eloy, 2016). This language specifies that 

each house, after total width and depth are given, has a customized number of rooms, each 

one with predetermined possible dimensions. The design restraints the house layout by 

defining relative positioning relations between different types of rooms (like for kitchen 

and dining room) establishing a central axis that equally divides the total width of the 

house in two, allowing for a central corridor to access all the rooms. Other concepts are 

also incorporated in the language, like the ones of public and private areas. As such, a 

house layout can be viewed as a set of positions that represent the spatial relations between 

rooms – a floor plan.  

In order to formally define the problem to be solved, one must begin by specifying the 

constraints and modeling the objectives to be met.  As already mentioned, the total layout 

area is previously fixed. Both the area and the rooms are defined by rectangular formats, 
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thus having a width and a depth as dimensions. The rooms (smaller rectangles) must be 

placed in a way that all rules of the shape grammar that implements the design (Kwiecinski 

et al., 2016) are fulfilled. The architectural rules present in the shape grammar define 

relative positioning constraints for the rooms and rotations are not allowed. An optimal 

solution, or proper layout, is one that obeys all the shape grammar rules and layout 

positioning constraints. The latter consist in obvious restraints: the rooms may not cross 

the central axis that divides the total width of the house and may not overlap. Thus, the 

problem to be solved is a two-dimensional Cutting & Packing problem. More specifically, 

this problem is considered within the Bin-Packing class of NP-hard problems (Maxence 

Delorme, Manuel Iori, 2016). In fact, and even for our particular scenario, the number of 

possible arrangements for the placement of the rooms in the given layout area is 

combinatorial. For the small example described in (Almeida, Taborda, Santos, Kwiecinski, 

& Eloy, 2016), having 8 different rooms with fixed dimensions, there are about 2 × 1012 

possible combinations for the positioning of the rooms, that is, different floorplans.  

 The problem to be solved may be looked as a two-dimensional single large object 

placement problem (2SLOPP)  (Gerhard Wäscher, Heike Haußner, 2007), where the 

overall dimensions are both fixed and there are further positioning restrictions to be 

obeyed. If variable depths are allowed in rooms, the problem formulation change and may 

be seen as a two-dimensional strip packing problem (2D-SPP) (Bortfeldt, 2006) (Thomas, 

2013) where the objects have fixed width and variable depth. 

1.3. Research Context 

1.3.1. Research Method 

 The system here proposed was developed under the vision Design Science 

Research Methodology (DSRM) principles proposed by (Hevner & Chatterjee, 2010). 

Design Science Research (DSR) paradigm is intended to guide the development of 

inventions or artifacts,  “defining ideas, practices, capabilities and products to accomplish 

effectively and efficiently the use of information systems (Hevner, March, Park, & Ram, 

2004). DSR targets the development of artifacts with the purpose of refining its functional 

performance, thus, to attain human goals (Simon, 1996) 

. The artifact is considered as a method that define a process and will lead on how to 

solve the specific problem. 
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 Peffers et al., (2007) propose seven guidelines for a design science research 

methodology (Peffers, Tuunanen, Rothenberger, & Chatterjee, 2007), which we adapt for 

our artifact (automatic floor plan design system) construction: Problem identification 

(Section 1.2), define objectives for a solution (what should be answered with the present 

approach), design and development (iterative artifact development), demonstration (use of 

a concrete shape grammar for empirical tests achieving  a valid house layout), evaluation 

and communication (final evaluation with experts and publications in peer-reviewed 

events). 

1.3.2. Research Objectives 

 This dissertation main goal is to propose an automated floor planning application for 

modular house layout user customized.  This means that feasible solutions that fulfill the 

architectural rules and typological specifications provided by the end-users must be 

generated, making the process of acquiring a modular house a participated one.  

Thus, the following artifacts are to be created: (a) A Genetic Algorithm method able to 

produce layout solutions obeying the architectural rules; and (b) An interface (model) that 

retrieves the end-user’s specification input, runs the method and creates a visualization of 

the results.   

The main research questions that guide this dissertation are: 

RQ 1. Is the Genetic Algorithm approach viable for generating effective house 

layouts, that is, obeying the architectural rules of design? 

RQ 2. Is such an approach time feasible in close to real-time? 

RQ 3. How to implement dynamic room’s dimensions?   

 

1.4. Thesis contributions 

The main contribution of this dissertation is the development of a system (method), 

Shaper-GA, that is, an artifact able to generate multiple solutions based on the design 

rules defined by the architects. This system, whose iterative design and development is 

described by Chapters 4 and Chapter 5, enables the user to participate in the design 

process of the house. 
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Other contribution is the interface artifact that enables the non-expert user to specify 

the personal requirements (number and type of rooms and room’s dimensions) into the 

design system. 

The communication of results has already begun with the publication of two papers in 

scientific related conferences, one of those being one of the most prestigious in the area 

of Evolutionary Algorithms, GECCO, and the other the IEEE International Conference 

on Systems, Man, and Cybernetics: 

 Almeida, A. De, Taborda, B., Santos, F., Kwiecinski, K., & Eloy, S. (2016). A genetic 

algorithm application for automatic layout design of modular residential homes. 

Proceedings of the 2016 IEEE International Conference on Systems, Man and 

Cybernetics (SMC), 2774–2778.  

Taborda, B., de Almeida, A., Santos, F., Eloy, S., & Kwiecinski, K. (2018). Shaper-GA: 

Automatic Shape Generation for Modular House Design. In Proceedings of the Genetic 

and Evolutionary Computation Conference on - GECCO ’18 (pp. 937–942). New York, 

New York, USA: ACM Press.  

 

1.5. Outline 

After this introductory chapter, the remainder of this dissertation is organized as 

follows: In Chapter 2, a review on the most relevant related literature is presented. Major 

preliminary concepts along with some more specific scientific references for this 

dissertation are addressed in Chapter. Chapters 4 and 5 explain in detail the system 

created, the implementation, the results and its discussion. This dissertation ends 

presenting the main conclusions and directions for future work in Chapter 6. 
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Chapter 2. Literature Review 

The following chapter shows the literature related with Shaper-GA, more specifically, 

Cutting & Packing, Automatic Layout Design and Genetic Algorithms. 

2.1. Cutting & Packing 

Cutting & Packing are problems of combinatorial optimization presenting multiple 

techniques and approaches. In the past, C&P problems were spread over the literature with 

different names (e.g. cutting stock, vehicle loading) and Dickhoff suggested a typology to 

classify such problems (Dyckhoff, 1990). This approach was very helpful to organize old 

and new literature but became insufficient for recent problems. Wäscher et al. suggested 

an improved typology to classify C&P problems (Gerhard Wäscher, Heike Haußner, 2007) 

based on Dickhoff’s approach, introducing new criteria for the categorization. C&P can 

be divided in two main problems, Two-Dimensional Bin Packing Problem (2BP) and 

Two-Dimensional Strip Packing Problem (2SP) (Lodi, Martello, & Monaci, 2002), which 

are strongly NP-hard problems, making evolutionary algorithms stand as a valid method 

to solve such problems. Due the usual multidimensionality and vasteness of the search 

space, an efficient algorithm is required. The inherent parallelism of GAs makes the choice 

of this algorithms valid for optimization, especially for multi-criteria optimization.  In 

2005, a GA approach to solve 2BP of polygonal shapes on a rectangular canvas was 

created (Ayala-ramirez et al., 2005). Hybrid methods have also been implemented and 

tested. The authors of (Gharsellaoui & Hasni, 2012) implemented a hybrid algorithm that 

combines a genetic algorithm with a tabu search method. Tabu search was introduced by 

Glover (Glover, 1989) and the main objective of this method is to optimize the algorithm 

by guiding local heuristics in the search space.  

Single Large Object Placement Problem (SLOPP) is a particularization of a Cutting & 

Packing problem where the main goal is to place small objects on a largest object 

(container), leaving as little free space as possible. SLOPP objects have fixed dimensions 

(width and depth) and the First Fit heuristic (Berkey & Wang, 1987) is one of the first 

approaches to solve it. Improved First Fit heuristic for SLOPP implemented using a genetic 

algorithm (Pál, 2006), only allows in the same row, rectangles with the same depth as the 

first one or smaller. Those rectangles have fixed orientation (length and width) and may 

have a 90º rotation. 
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Two-dimensional strip packing problem (2D-SPP) is a specific case of strip packing 

where a set of rectangles with one open dimension (the rectangles have a fixed width but 

a variable depth) should be inserted into one container without overlaps and in a way that 

the strip is minimized. Ayala-ramirez et al. (Ayala-ramirez et al., 2005) defined for each 

figure position coordinates and rotation based on XOY graph. Solving 2D-SPP with 

genetic algorithms is also feasible as shown in (Mancapa, van Niekerk, & Hua, 2009). The 

authors introduced a new encoding that uses a set of 3-tuples to represent important details 

(position, identification and orientation) of the item to be placed. A survey on the heuristics 

to solve 2D-SPP problems was presented in 2016 by Oliveira et al. (Oliveira et al., 2016). 

One of the most common positioning-based heuristics is called “Bottom-Left” heuristic 

and was proposed by Baker et al. (Baker, Coffman, Jr., & Rivest, 1980). The usage of 

hybrid meta-heuristics (genetic algorithm, simulated annealing and naïve evolution) is 

accepted to solve strip packing problems since they tend to present better results (Hopper 

& Turton, 1999). A review of the meta-heuristics algorithms to solve 2D-SPP was 

presented by Hopper et al. (Hopper & Turton, 2001). 

For the aim of this work intends to address, there are special constraints that are 

imposed by the shape grammar rules that imply relative positioning of rooms that are not 

present in the more general approaches found in the related literature. This implies that 

different methods most be devised to answer the architectural impositions. 

2.2. Automatic Layout Design 

To generate layouts using evolutionary computation is a real challenge. Multiple 

constraints and hidden rules (rules that humans apply but don’t think of usually) need to 

be placed in the algorithm. The authors of (Qian et al., 2016) demonstrate that a space 

station layout can be achieved using evolutionary algorithms. Due the huge complexity 

involved, the problem was decomposed in smaller sets using a tree structure. Each smaller 

set runs the EA separately, producing a component and merging all components at the end. 

A human interface was also built to control the layouts, avoid local optimums and 

accelerate the convergence of solutions. 

Optimize the human interaction interface with the machines is also a problem that 

industry is facing. (Chen & Deng, 2011) shows that a genetic algorithm can optimize the 

layout of an oil driller rig console. In theory, and using some examples analysis, the 

algorithm can generate layout schemes quickly.  



Shaper-GA: Automatic shape generation for modular housing 
 

- 9 - 

(Valenzuela & Wang, 2000) optimized a VLSI floorplan problem using a genetic 

algorithm, achieving important results when comparing with other approaches. 

In 21st Century, mass production trend is changing towards a customized view of the 

constructions. (Oosterhuis, 2012) shows that this change also affects the architectural area 

or, to be more precise, the design expression and architectural complexity. When an 

architect starts a new project a set of design performances are intended: spatial, structural, 

lighting, acoustic and thermal performance. Such elements are continuously interacting, 

making the design process more complex. (Fasoulaki, 2007) demonstrate that the usage of 

EA, in particular GAs, is common in architecture and looked at as a necessity due to an 

increase of human needs in today’s lifestyle. Placement of the communicating elements of 

a house (e.g. windows or doors) is also a complex task, with multiple conditions and 

possibilities. (Caldas & Norford, 2002) presents a GA that is capable of placing windows 

in a building following architectural design principles. 

(L. Li, 2012) breaks a complex architectural problem into combinatorial and numerical 

problems using GA. The GA search of the solutions space allows the architects to explore 

and select the best solutions based on different criteria. High-rise buildings structure or 

form-finding design could also be optimized using GA (Curriculum, 2012). GAs are also 

able to generate solutions for urban planning based on urban design concepts (Celani, 

Beirão, Duarte, & Vaz, 2011). 

2.3. Genetic Algorithms 

GAs have been a case of study for several years and the optimization problems based 

on layouts are not new. One of the most explored problems about layouts is the Facility 

layout problem (Drira, Pierreval, & Hajri-Gabouj, 2007) that consists in the usage of an 

available area to place facilities having constraints in the fitness function. Kar Yan Tam 

also implemented a GA to solve a Facility layout problem by taking into account two 

important components: area and shape constraints (Kar Yan Tam, 1992). Building 

temporary site-level facilities is common in construction areas during projects. To solve 

such problems, a set of facilities is allocated into a set of areas having into consideration 

the requirements and facilities constraints (H. Li & Love, 1998; Mawdesley, Al-jibouri, & 

Yang, 2002) . Manufacturing problems have been also addressed and solved with GAs 

such as crossdocking operations of manufacturing plant (Hauser & Chung, 2006), loop 



Shaper-GA: Automatic shape generation for modular housing 
 

- 10 - 

layout design in flexible manufacturing systems (Cheng & Gen, 1998) or cellular 

manufacturing design and layout (Wu, Chu, Wang, & Yan, 2007). 
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Chapter 3. Background 

 To enable construction flexibility for timely production, some European countries 

decided to use prefabrication of off-site houses. Prefabricated methods of production can 

save time, money and allow high-quality construction. This type of construction uses 

vertical and horizontal studs, which give a stable frame for the interior and exterior walls. 

Walls can be fabricated off-side and the whole building construction could be done in a 

couple of weeks. As one of those countries, Wood Mass-Customized houses can be bought 

by anyone using catalogues in countries such as Poland or Portugal. The customization of 

this type of houses is however very limited and only some details can be changed by the 

future owner. For the design of modular housing according to an architectural language of 

design a system based on shape grammars was proposed, in 2016, by Kwiecinski et al. 

(Kwiecinski et al., 2016). The authors’ main goal was that of allowing future owners to 

build houses that really meet their needs and simultaneously obey the language of design 

(Stiny, 1980). Such grammar represents the Polish understanding of family houses, which 

should be detached houses with a rectangular floor plan and with only the garage sticking 

out of the rectangular perimeter (Figure 1). A house can be positioned either parallelly or 

perpendicularly to the access route. However, for this dissertation, the positioning will be 

assumed to be perpendicular to the access route.  

 

Figure 1 – Floor plan resulting from wood frame structural guidelines 
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3.1. A grammar for Polish modular homes - KSG 

A Shape Grammar is a grammar with basic shapes as characters and where the rewriting 

rules define combination or substitution of shapes, may it be basic shapes or already 

combined ones.     

The shape grammar created by Kwiecinski et al. (Kwiecinski et al., 2016), and which 

will be hereinafter designated as KSG, presents the shape rules divided in constraints for 

different stages of design (Figure 2): generation of the initial grid, generation of rooms 

belonging to the entrance zone, generation of rooms belonging to the semi-public zone and 

generation of rooms belonging to the private zone. The whole process is completed when 

all the required rooms are present, and all the conditions are met.  

The initial process consists in collecting details from the future owner to formulate the 

house design brief.  At this stage, either users or designers are asked to select the depth of 

each room between a minimum and a maximum size. In the following description, each 

rectangular grid represents a possible floor plan composed by multiple connected squares 

and where each square area is of  60 𝑥 60 cm, which reflects the chosen sizes of the rooms.  

This grammar can be used to generate house layout solutions based in the user’s 

information and according to the architect’s set of design rules. This process enables 

costumers to participate in the process by acquiring designs that meet their goals and 

requirements. As such, the grammar must provide more than one possible layout. Multiple 

layouts allow for the costumers to choose the one that he/she most likes and that better fits 

their needs. Since costumers’ can compare the solutions, this comparison might lead to 

new input requirements due a change of mind. 
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Figure 2 – An illustration of KSG shape rules. 
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3.2. Layout typology 

At beginning, all shape rules from KSG were transformed into constraints to be 

incorporated into the fitness function of the GA, process that occurred in collaboration 

with the architect, K. Kwiecinski. This transformation was mandatory since the GA can’t 

interpret the shape rules as such. 

In the computational approach, the first step consisted in deciding which of the 

architects possible floor plans should be used as the goal. At the time, and because another 

procedural (iterative) approach was to be experimented with in parallel, it was decided that 

one store house with one master (double) bedroom and two single bedrooms was to be 

achieved.  

For implementing the correspondent architectural rules imposed by the architect, 3 

main areas were defined:  

• Entrance - that contains the vestibule, a technical room, a garage and a toilet; 

• Public area - containing the kitchen, dining room and living room; 

• Private area - containing a double bedroom, two single bedrooms and bathroom. 

The relative positioning rules for these areas and for the house rooms are the following: 

• The public area must be placed at the front end of the house while the private 

area should be placed at the back.  

• Each room must obey the following rules: 

• The vestibule must be placed next to the garage; 

• The toilet and technical room must be placed next to the garage; 

• The kitchen must be placed either at the front of the house or next to the 

living room;  

• The dining room must be placed at front or next to the kitchen; 

• The living room must be placed next to the kitchen or dining room; 

• The single bedroom must be placed next to another single bedroom or a 

bathroom; 

• The bathroom is placed next to a single bedroom; 
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• The double bedroom must be placed at the back. 

The tree in Figure 3 shows a possible sequence for a backtracking step-by-step 

procedure based on KSG (Kwiecinski et al., 2016). The tree considers a 17𝑥14 modular 

house with the following rooms and dimensions (fixed): vestibule, technical room and 

storage - 3 × 3v, garage - 9 × 6, toilet - 3 × 2, kitchen - 2 × 7, dining room - 4 × 7, double 

bedroom - 5 × 7 and single bedroom - 4 × 7, living room - 5 × 7 - and bathroom - 3 × 5.  

 

 

Figure 3 - Example of generation process of house layout design 
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3.3. Genetic Algorithms 

Evolutionary Algorithms (EA) are a subset of Evolutionary Computation (EC) and are 

inspired in biological evolutions. An EA embodies mechanisms such as reproduction, 

selection, mutation, recombination and a fitness function. The fitness function has one of 

the most important roles in an EA since it defines the problem solution as the solution for 

an optimization problem and is the key element for guiding the evolution. 

These algorithms can be used to solve either single-objective problem or multi-

objective problems (Evolutionary Algorithms for Solving Multi-Objective Problems, 

2007), but are especially renowned for its capability to solve multi-criteria hard problems. 

John Holland proposed Genetic Algorithms (GA) as a paradigmatic method to tackle 

computational complex search spaces (J.H. Holland, 1995). One of the most important 

operators in GA is the fitness function that represents how adapted an individual is to the 

environment or the quality of each individual for a given target. Godfrey concluded, in 

2014, that population size and crossover have high impacts in  the goodness of the 

solutions (solutions closer to the objective) comparing with other operators if there is a 

constrained time environment (Godfrey, 2014). 

A solution (for a given search problem) is a chromosome (or individual) – a binary or 

real valued string - and a set of chromosomes is called population.  

The classic approach for genetic algorithms (Beyer, Beyer, Schwefel, & Schwefel, 

2002) is described by Algorithm 1. 

Algorithm 1 - Classic genetic algorithm 

Randomly generate an initial population 

Select k best fitted individuals 

While stop criterion not met: 

     Select parents for reproduction 

     Crossover 

     Mutation 

     Select k individuals for a new generation 
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A large size of individuals in the population may cause large generational chromosomic 

diversity and consequently a higher rate of exploration of the search space. This in turn 

might increase the probability of finding an optimal solution.  

The “natural” process leads to a higher probability of reproduction between higher 

adapted individuals, which should be able to reproduce. Such a process is achieved by 

analogy using a fitness function and selection and crossover operators. Selection can occur 

in two distinct steps: in the selection of individuals to reproduce - parental selection - and 

for the selection of a new evolutionary population.  

As for crossover, there are several types recombination operators but the most common 

ones are: single-point, multi-point or random respectful crossover (RRC) (Goldberg & E., 

1989; Radcliffe, 1991). 

Mutation is another of the key operators in a GA scheme, since it explores the 

emergence of solutions and the exploration of the search space. The probability of an 

individual suffering a mutation has a direct impact in the performance of the GA. An 

interesting comparative study is that of (Cazacu, 2017) where three mutation operators are 

tested. The operators differ in the probability distribution being used: Uniform, Polynomial 

and Gaussian. Note that the probability of a chromosome suffering mutation should be 

independent of the probability to select a gene to be mutated. According to (Cazacu, 2017), 

when the probability of an individual being mutated is around 20%, more accurate 

solutions are found. The author concludes that the mutation operators tested have the same 

performance for structural problems. The best solution would be an evolutionary schema 

with the mutation probability going to zero at the last generations (Cazacu, 2017). 

 “Exploration and exploitation are the two cornerstones of problem solving by search.” 

(Črepinšek, Liu, & Mernik, 2013). The process of visiting a new region of the search space 

looking for new solutions is called exploration. Exploitation is the process of visiting the 

regions found by the exploration and try to optimize the solutions comparing the 

neighbors. Thus, exploration is connected with crossover and mutation operators while 

exploitation is related with selection (Eiben, Eiben, & Schippers, 1998). A good ratio 

between exploitation and exploration will make the algorithm successful in advancing 

towards the objectives (Goldberg & E., 1989; Michalewicz, 1996).  
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Chapter 4. G-Shaper: A genetic algorithm application for automatic 

layout design of modular residential homes 

The first GA attempt to produce an automatic layout based on the language of design 

defined was presented in (Almeida et al., 2016), with an approach called G-Shaper that 

implements the genetic algorithm described previously (Algorithm 1). In order to tune 

the GA approach, several operators were tested (e.g. different crossover techniques and 

selection mechanisms) to reach one optimal solution, a house layout, that not only obeys 

the design rules but also presenting the best performance possible. 

Once it was decided to have the rooms’ dimensions fixed, the problem to be solved is 

that of the placement of rectangular objects (rooms) within an overall rectangular area 

while optimizing a given function (fitness). Since the rectangles’ orientations and their  

dimensions are fixed, the formal definition of the problem to be solved is the two-

dimensional single large object placement problem (2SLOPP) (Gerhard Wäscher, Heike 

Haußner, 2007) obeying further relative positioning restrictions.  

The search space for a 𝑑 × 𝑤 rectangular house with 𝑅 rooms, each with dimensions 

𝑑𝑖 × 𝑤𝑖  (𝑖 = 1,2, … , 𝑅), is given by  

∏ (𝑤 − 𝑤𝑖)(𝑑 − 𝑑𝑖)𝑅
𝑖=1               (1) 

Thus, the search space is combinatorial in nature and, in fact, the general SLOPP is a 

Cutting and Packing NP-hard problem. 

In order to tackle this challenge, a genetic algorithm strategy to deliver feasible layout 

designs (designs that obey both the typological specification, as well as the shaper rules) 

will be next described. This chapter begins by describing the encoding used to represent 

the house’s layout, followed by a detailed overview of the operators and experiments 

performed. The chapter ends with the presentation and discussion on the results. 

4.1.  Chromosome and Gene representation 

In Cutting and Packing existing genetic algorithm approaches for placement of 

rectangular areas, we can find different proposals for chromosome encodings: 

- (Kröger, 1995) represents the layout’s guillotine cuts (i.e. cuts that are 

orthogonal to the rectangle’s sides dividing the rectangle in two smaller 

rectangles) by using a tree structure. Each tree node represents a rectangle that 
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encloses sub rectangles to be packed. The leaves represent the basic 

rectangular components (Figure 4). 

 

Figure 4 - Guillotine chromosome encoding (from Kröger, 1995) 

- A different approach is the sequential rectangle’s positioning, represented 

using the permutation of the identifiers for each of the rectangles 

(Hadjiconstantinou & Iori, 2007). The permutation represents the order in 

which the items must be packed. 

 

Figure 5 - Rectangle's positioning chromosome encoding (from Hadjiconstantinou & Iori, 2007) 

- (Michalek, Choudhary, & Papalambros, 2002) use a grid representation for the 

entire layout by defining the layout area as a set of grid squares and using an 

algorithm to allocate each square to a particular room. 

 

Figure 6 - Example of fix grid layout from (Michalek et al., 2002) 
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Based on (Michalek et al., 2002), a new encoding is proposed that, although closely 

related to the one described by Michalek et al., instead of representing the entire layout the 

grid is used to represent each the position of the chromosome gene (the respective room) 

in the layout (Figure 7). The entire layout for the house is represented by a 𝑑 ×  𝑤 

rectangular binary grid, where 𝑑 stands for the depth and 𝑤 the width of the layout. Each 

house has a predefined number of rooms, 𝑅 , and each room,  𝑟𝑖  ( 𝑖 = 1, … , 𝑅 ), has 

predefined dimensions 𝑑𝑟𝑖
 ×  𝑤𝑟𝑖.  

 

Figure 7 - Chromosome representation 

A chromosome 𝑋 is an array (Figure 7) that represents one modular house with multiple 

genes, 𝑟𝑖. Each gene is represented by a binary grid with all positions of the house, thus, 

the representation of each room is its 𝑑𝑟𝑖
 × 𝑤𝑟𝑖 number of cells in the grid layout that are 

occupied. An occupied position is marked by 1 on the binary grid (Figure 7). The first 

position assigned for each room is the top-left position. Based on that position, the 

remaining positions are filled based on the given width, 𝑤𝑟𝑖.  and depth, 𝑑𝑟𝑖
, which depend 

on the type of room. 

4.2. Initial and first evolutionary population 

Assigning the “correct” size for the evolutionary population is not easy but is somewhat 

critical: if the population is too small size it may fail to converge quickly into an optimal 

solution, increasing the number of iterations (time) needed to stop the evolution. 

An initial population with 𝑃 randomly generated chromosomes (individuals) is created 

using an Uniform distribution (Goldberg & E., 1989). The random generation means that 

only the spatial positioning of each room on the grid is randomly generated, because of 

the predefined dimensions 𝑑𝑟𝑖
 x 𝑤𝑟𝑖 are fixed. However, since every house must have its 

rooms on each side of a central axis (to allow for a central communication corridor), a 

room’s positioning is randomly generated either at left or at right of the central axis.  
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The 10%  most fitted chromosomes of the initial population go into the first 

evolutionary population, that is, the population that is actively going to evolve with the 

GA is composed by 
𝑃

10
 chromosomes.  

In the human population, a DNA combination is unique for each human on the planet. 

G-Shaper also implements a mechanism that doesn’t allow for equal chromosomes in 

either of the populations. This unicity mechanism evaluates and compares each new 

chromosome with the remaining existing population gene by gene, preventing duplicated 

chromosomes to join the population. If a chromosome is a duplicate, a new one is 

randomly generated.  

4.3. Fitness function 

The fitness function is responsible for measuring the adequacy of individuals 

(chromosomes) to reach the expected solution in optimization problems. In G-Shaper, the 

fitness function measures the adequacy of the individual to the architectural rules to define 

a desired floor plan (problem solution). This function is intended to be maximized and 

embodies the set of shaper rules defined for the layout.  

The GA needs to evolve chromosomes into, at least, one feasible layout, that is, one 

that complies with all the design rules and there is no overlap between rooms positioning, 

which will be looked at as an optimal solution, or a solution with maximum fitness value. 

As such, it was decided that the failure to obey a rule or the existence of overlaps should 

be used a penalization towards the optimal value.  

 To define a quantifiable fitness function, several tests were made using different 

penalization implemented as negative quantities in order to maximize fitness, whose 

optimal value would be zero. For that, the design rules presented in Section 3.2 were 

implemented by turning them into decision statements. As an example, take the rule: “the 

double bedroom needs to be placed at the back of the house”. If the double bedroom is not 

at the back, -x penalty points were added to the total penalization of the house 𝑖.  However, 

the approach was failing to converge into a maximum, and a new schema was 

implemented. The final fitness function is calculated by the next described process. 

 An optimal solution will have a value of one, meaning that all shaper rules are obeyed 

and there are no overlaps between rooms. Any violation of a rule 𝑗, 𝑗 = 1, … , 9, from 

(Section 3.2) incurs in a penalty weight of 100.  The other important penalization is the 
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existence of overlaps between rooms’ positioning. Since this is highly undesirable a 

penalization of 100 points per unit grid overlapped was imposed. As an example, in Figure 

8, the blue and red rooms have both 3 𝑥 3 side dimensions. The orange squares represent 

3 overlapped grid units thus adding a 300 (3 𝑥 100) points penalty.   

 

Figure 8 - Two rooms that overlap. 

Let 𝐻 = {ℎ𝑖 | 𝑖 = 1, … , 𝑁} be the evolutionary population (each ℎ𝑖  is a chromosom) 

and 𝑝𝑗(ℎ𝑖) the penalization of 𝑗𝑡ℎ shaper rule of house ℎ𝑖, and 𝑜(ℎ𝑖, ) the total of overlap 

penalties. A penalty function is defined as: 

𝑃(ℎ𝑖) = ∑ 𝑝𝑗(ℎ𝑖)𝐽
𝑗=0 +  𝑜(ℎ𝑖)             (2) 

The fitness function is defined by 𝐹: 𝐻 → ]0,1] such that, 

𝐹(ℎ𝑖) =  {

1

𝑃(ℎ𝑖)
,          𝑃(ℎ𝑖) ≠ 0

1,                 𝑃(ℎ𝑖) = 0
.  (3) 

4.4. Selection 

As previously stated, G-Shaper uses two different type of selection operators: the 

parental selection for recombination and offspring generation, and the selection of 

individuals for the new evolutionary population. 

4.4.1. Parental selection 

This step is responsible for choosing two parents from the current population for use in 

a crossover. By using a uniform distribution, every chromosome has equal probability of 

being selected – uniform selection. This is the simplest approach towards this mechanism 

and was the first one implemented in G-Shaper, mostly because it's a technique to prevent 

selection from being too much biased towards higher fitness chromosomes. 

Nevertheless, The Theory Of Evolution by Charles Darwin (Darwin, 2003) states that 

the most adapted individuals have higher probability of being selected for the crossover. 

Thus, the second choice was that of selecting individuals using ranking, that is, the 
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individuals are sorted by their fitness value. The most fitted individuals will can thus be 

chosen for reproducing – ranking selection.  

Still following the principles of Darwin’s Theory, Roulette Wheel Selection (RWS) 

(Lipowski & Lipowska, 2012) was chosen as another classic parental selection operator. 

RWS is based on the concept that the probability of an individual 𝑖 having 𝐹(𝑖) as the 

fitness function value to be selected for crossover in a population with 𝑁 individuals is 

described by: 

𝑃𝑠𝑒𝑙𝑒𝑐𝑡(𝑖) =
𝐹(𝑖)

∑ 𝐹(𝑗)𝑁
𝑗=0

, 𝑖 ∈ {1,2, . . , 𝑁}.  (4) 

4.4.2. Evolutionary selection 

The evolutionary selection is responsible to select the individuals towards the new 

evolutionary population. In the following, the individuals from the current population (that 

is, not the new offspring) will be generally called by parents. 

One possible approach is to select 𝑁 chromosomes that will survive and make part of 

the new evolutionary population can be decided by ranking, where the 𝑁  most fitted 

individuals from the set of parents plus offspring are chosen. Elitism is another mechanism 

that copies half of the most fitted parents (𝑁/2) and half of the most fitted offspring (𝑁/2) 

towards the new evolutionary population. A hybrid method (elitism&ranking) moves the 

10% most fitted parents directly into the new population. The remaining individuals are 

chosen from more fitted ones between the parents that were left and the offspring. 

Algorithm 2 - Single-point crossover generating children 𝑪[𝒄𝟏, … , 𝒄𝑹] and 𝑫[𝒅𝟏, … , 𝒅𝑹] 

1:  Select parents 𝐴[𝑎1, . . . , 𝑎𝑅] and 𝐵[𝑏1, . . . , 𝑏𝑅]; 

2:  Randomly choose 1 crossover point [𝑐𝑝1]; 

3:  for 𝑖 ←  0,   𝑖 <  𝑅,   𝑖 ←  𝑖 +  1 do 

4:       if 𝑖 <  𝑐𝑝1 then 

5:         𝑐𝑖  ←  𝑎𝑖; 

6:         𝑑𝑖  ←  𝑏𝑖; 

7:     else 

8:         𝑐𝑖  ←  𝑏𝑖; 

9:         𝑑𝑖  ←  𝑎𝑖; 

10:   end if 

11: end for  
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4.5. Crossover 

The crossover main’s objective is to generate offspring by combining genes from 

selected parents, trying to improve new individuals based on past ones. G-Shaper generates 

two offspring from two different selected parents, always making sure that the generated 

offspring is composed of unique chromosomes in the population, that is, since offspring 

can possibly end up with the same chromosome as another individual on the population, 

the mechanism to delete duplicated individuals (see 4.2) is also applied in crossover.  

Different crossover algorithms were implemented to test G-Shaper. For each one, two 

parental chromosomes are selected, 𝐴  and 𝐵 , and two children are generated by 

recombination: 𝐶 and 𝐷. 

The first recombination technique is the so-called Single-point crossover.  A one 

crossover point, 𝑐𝑝1,  is randomly chosen between {1, … , 𝑅} , where 𝑅  represents the 

number of rooms of the house.  Offspring 𝐶 receives A genes occurring before 𝑐𝑝1, and 

genes from 𝐵 from then on and vice-versa for 𝐷 (Algorithm 2). 

Algorithm 3 - Multi-point crossover generating children 𝑪[𝒄𝟏, … , 𝒄𝑹] and 𝑫[𝒅𝟏, … , 𝒅𝑹] 

1:  Select parents 𝐴[𝑎1, . . . , 𝑎𝑅] and 𝐵[𝑏1, . . . , 𝑏𝑅]; 

2:  Pick a random 𝑘 ∈  {1, 2, . . . , 𝑅 −  1}; 

3:  Randomly choose 𝑘 crossover points [𝑐𝑝1, . . . , 𝑐𝑝𝑘]; 

4:  Fix 𝑐𝑝0  ←  1 and 𝑐𝑝𝑘 + 1 ←  𝑟; 

5:  𝑎𝑙𝑡 ←  0; 

6:  𝑗 ←  1; 

7:  for 𝑖 ←  0,   𝑖 <  𝑘 +  1,   𝑖 ←  𝑖 +  1 do 

8:      while 𝑗 <  𝑐𝑝𝑖 do 

9:          if 𝑎𝑙𝑡 =  0 then 

10:            𝑐𝑗  ←  𝑎𝑗; 

11:            𝑑𝑗  ←  𝑏𝑗; 

12:        else 

13:            𝑐𝑗  ←  𝑏𝑗; 

14:            𝑑𝑗  ←  𝑎𝑗; 

15:        end if 

16:        𝑗 ←  𝑗 +  1; 



Shaper-GA: Automatic shape generation for modular housing 
 

- 26 - 

17:    end while 

18:    𝑎𝑙𝑡 ←  1 −  𝑎𝑙𝑡; 

19: end for 

 

 

The second implemented crossover is the Multi-point crossover, that randomly 

generates 𝑘 crossover points between {1, … , 𝑅 − 1} that is {𝑐𝑝1, . . . , 𝑐𝑝𝑘}. Between each 

crossover point, the parents will exchange the genes for the offspring according to 

Algorithm 3. 

Algorithm 4- RRC crossover generating children 𝑪[𝒄𝟏, … , 𝒄𝑹] and 𝑫[𝒅𝟏, … , 𝒅𝑹] 

1:  Select parents 𝐴[𝑎1, . . . , 𝑎𝑅] and 𝐵[𝑏1, . . . , 𝑏𝑅]; 

3:  for 𝑖 ←  0,   𝑖 <  𝑅,   𝑖 ←  𝑖 +  1 do 

4:       if 𝑎𝑖 == 𝑏𝑖  then 

5:         𝑐𝑖  ←  𝑎𝑖; 

6:         𝑑𝑖  ←  𝑎𝑖; 

7:     else 

8:         𝑐𝑖  ← 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑛𝑒𝑤 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛; 

9:         𝑑𝑖  ←  𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑛𝑒𝑤 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛; 

10:   end if 

11: end for 

 

Finally, a third crossover technique was implemented, the Random respectful 

crossover, RRC (Algorithm 4). While the parents have the same gene RRC replicates it 

towards the offspring but, whenever it differs, two new genes are randomly created for 

each of the offspring.  

With single-point and in multi-point crossovers, the search space is mostly exploited 

since the selected parent genes are kept, even if in different arrangements. However, RRC 

keeps most of the exploitation but allows some exploration of diversity. 

As already mentioned, after the recombination for the generation of two new 

individuals, each child is evaluated by comparing its chromosome only with the remaining 

population with the same fitness value. If there is a duplication (i.e, the two houses are 
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equal), the offspring is ignored, not being allowed to join the remaining offspring 

population. 

4.6. Mutation 

Mutation is a mechanism that induces diversity on the population by changing the 

genes, allowing for some slack of exploration of the search space. 

After crossover, offspring may suffer mutations. To establish that, a number is drawn 

using uniform probability. If it is found to be in the range [0.001, 0.02], a random gene 

𝐺 = {𝑔𝑖 | 𝑖 = 1, … , 𝑅} is selected to be mutated. This operator changes the selected gene 

(𝑔𝑖) by randomly generating a positioning of the room on the binary grid. 

4.7. Experiments and Results 

The following results were produced using a directly coded Java implementation of the 

previously defined GA and each of the operators. The results report to experiments with 

30 individual runs from start. The following tests run on a virtual machine using Windows 

Server 2016 with 8GB ram, 4 virtual CPUs and Intel Xeon E312xx processor.  

The first step to be executed on a new GA application is to select the most adequate 

operators and perform parameter tuning. G-Shaper was tested over the different 

combinations of selection and crossover operators. The evolution stops when a first 

optimal house is found.  

After exhaustive experimentations, the operators that showed better performance as 

selection operators are: 

• Roulette Wheel Selection for the parent selection operator; 

• Ranking for the new evolutionary population selection.  

4.7.1. Crossover and evolutionary population study 

The following tests were executed to test the different crossover operators and the 

influence of the size of the evolutionary population. As previously mentioned, the selection 

operators are RWS for parenthood and ranking for the selection of a new evolutionary 

population. G-Shaper stops after finding one optimal house but it takes a considerable 

number of cycles to do so. In order to understand if some chromosomic specialization 

might be occurring, it was decided to explore the population diversity using the average 

fitness and not the maximum average of the population. 
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As it can be seen on Figure 9, the average fitness for 100 and 200 individuals in all 

operators is increasing with the number of iterations. In terms of average fitness, RRC is 

always surpassed by multi-point and single-point during the iterations. Multi-point (200) 

crossover consistently achieves higher values over the remaining operators. Interesting is 

also the fact that multi-point (100) follows from very close.  

It’s possible to identify that RRC has a notorious difference in the average fitness 

compared with the remaining operators. This could be explained by the fact that RRC 

creates more diversity in the population, reducing the specialization of the individuals but 

also helping to reduce the possibility of genetic drift. Thus, these results were expected 

and, for RRC with 200 individuals in the population, the diversity is higher, making the 

average of the population fitness achieve lower values. 

 

Figure 9 - Average fitness of populations for different crossover operators and population sizes. 

 

4.7.2. Particular results for the evolutionary population size  

As previously seen, the evolutionary population dimension influences the average 

fitness values but also impacts the number of generations needed to terminate the 

evolution. Figure 10 shows the average number of generations needed to achieve the 

termination criterium, i.e. the first optimal house, while Figure 11 compares the population 

both size and the average population fitness.  
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Figure 10 - Average number of iterations per crossover operators. 

 

Regarding the average number of iterations, it’s possible to see that the change between 

100 to 200 individuals has an important effect over all crossover operators iterations. The 

crossover operator that shows more impact by changing the number of individuals is multi-

point crossover. Comparing RRC and multi-point, it’s possible to verify that RRC (100) 

was able to achieve the objective with less generations than multi-point (110), even 

consistently presenting lower average fitness values in its populations. The diversity 

present on RRC populations, while making the individuals in average lesser fitted, allows 

to reach one optimal solution much faster.  

 

 

Figure 11 - Population's sizes vs average population fitness 
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values at the final population. With the increase of the population the average fitness 

decrease, which serves to confirm that the higher population size, the wider is the diversity.  

Note that the number of maximum iterations seems to decrease polynomially ( (𝑦 ≈

 −5.31 × 106𝑥3  +  4.  84 × 107𝑥2 –  1.46 × 107𝑥 +  1.56 × 107) ) with the increase 

of population chromosomes, as shown in Figure 12. 

 

 

Figure 12 - Maximum number of iterations reduction 

4.8. Discussion 

At this point, it is possible to say that the first research question RQ 1 is positively 

answered: a GA approach is a viable approach to produce automatic layout designs for 

modular houses compliant with architectural rules of design. 
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0

100

200

300

400

500

600

evo pop 100 evo pop 200 evo pop 300 evo pop 400

N
u

m
b

er
 o

f 
ge

n
er

at
io

n
s

x 
10

00
0



Shaper-GA: Automatic shape generation for modular housing 
 

- 31 - 

Finally, from the user’s perspective, to receive only one solution is not the most user-

friendly and does not allow for an active choosing of the favorite house from a set of 

possible solutions. Thus, the layout design system should able to achieve multiple 

solutions and display them to the final users to help the decision. 
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Chapter 5. Shaper-GA: Automatic shape generation for modular 

house design 

Shaper-GA, that is described in (Taborda, de Almeida, Santos, Eloy, & Kwiecinski, 

2018), is the proposed “evolution” of G-Shaper. Shaper-GA can produce multiple optimal 

solutions based on the architectural rules of Kwiecinski et al. (Kwiecinski et al., 2016). 

The following sections describes the changes that were made to G-Shaper.  

The first change that had to be made consists in achieving different final house layouts. 

Moreover, the language of design considers the possibility of, for the same overall area of 

layout, allowing variable depths per room type. The fact that variable depths are to be 

considered, the problem formulation turns from a 2SLOPP into a two-dimensional strip 

packing problem (2D-SPP) (Bortfeldt, 2006) (Thomas, 2013) where the objects have fixed 

width and variable depth. 

The next sections describe a new gene encoding and optimization procedures that lead 

to the new GA approach, Shaper-GA. 

5.1. Chromosome and Gene representation 

The first change performed intended to optimize the time performance of G-Shaper 

(Section 4.1) and consisted in changing the gene representation.  

Similarly of the previous approach, the chromosome encoding on Shaper-GA still is 

represented by an array 𝑋 with 𝑅 genes. Each house still (ℎ𝑖) has fixed width (𝑤) and 

depth (𝑑) and can be visualized as an abstract rectangular binary grid with 𝑤 ×  𝑑 cells. 

However, for the gene representation, instead of a rectangular binary grid, in Shaper-GA 

relative positioning (coordinates) are used instead. With this representation change, the 

computation time in all genetic algorithm operators was expected to decrease. The 

encoding of one room can be described as: 

Table 1 - Room i (gene) encoding 

Parameter Description 

Name Name of room (e.g.: living room) 

x 1 or 
𝑤

2
+ 1 

y ∈ [1, d − di] 

Width wi (fixed) 

Depth di ∈ [mi, Mi] (predefined range) 
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In Table 1, 𝑥 and 𝑦 are the grid cells coordinates of the up-left vertex of the room 

(rectangular shape), representing the initial point of positioning for room 𝑖 . Since the 

rooms cannot cross the central axis (that divides the house width in two equal sub-

rectangles), rooms are always placed on the left side of each of the sub-rectangles (𝑥 =

1 𝑜𝑟 𝑥 =
𝑤

2
+ 1). The rooms’ width,  𝑤𝑖, and depth, 𝑑𝑖 , are also used to calculate the area 

(𝐴𝑖) occupied by room 𝑖: 𝐴𝑖 = 𝑤𝑖 𝑥 𝑑𝑖, i.e., to identify which grid units are used for the 

rooms positioning (important for the search of overlaps) .  

5.2. Speed-up of search space exploration 

The results of G-Shaper (Section 4.7, Figure 9) show that average fitness evolution was 

somewhat “slow” and possible tendency for genetic drift should be avoided. To improve 

that situation, an optimizer was created, based on an adjustable mutation rate and thus 

increase the diversity of the population (Thierens, 2002) . Such approach should be used 

only in specific occasions, where it is possible to perceive that the value in the average 

fitness of population has not been changing, situation that was found to happen with G-

Shaper.  

Having 𝐺 as current generation, if the average fitness of population doesn’t increase at 

least 0.5% between generations 𝐺 − 1 and 𝐺, the optimizer duplicates the mutation rate. 

Note that one must bound the maximum possible mutation rate, otherwise there is some 

probability of overdoing it and creating an all-new initial population, situation that is not 

desired. Shaper-GA maximum mutation rate was set to 20% (Cazacu, 2017). Once the 

average fitness of population increases, the mutation rate goes back to 2%. 

5.3.  Generation of several optimal solutions 

One of the most notorious differences between G-Shaper and Shaper-GA is the 

capability to produce several optimal houses, that is, different house layouts. Different 

houses mean that the internal composition of the house differs, since the layout area is 

unchangeable. The rooms can be placed in different positions (structural composition) or 

can change their depths (parametric composition).  

Structural composition is directly implemented in the fitness function by the shape rules 

to be considered. The analytic exploration of the KSG rules using fixed room’s dimensions 

only showed three different possible layouts for the implemented architectural rules 
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(Figure 3). To provide a variety of solutions to final users, each of the possible layouts can 

also be generated with different rooms’ depths (parametric composition). To implement 

the parametric composition several steps were implemented.  

Upon consulting the architect, K. Kwiecinski, possible rooms dimensions for the 

example being used were provided (Table 2) in terms of the range of possible values 

(integer number of grid units). 

Table 2 - Depth (in grid units) for each room 

Room i Minimum 

depth: mi 

Maximum 

depth: Mi 

Kitchen 2 8 

Living room 4 9 

Dining room 4 6 

Double 

bedroom 

5 7 

Single 

bedroom 

4 7 

Bathroom 3 5 

 

In order to make the rooms depth a variable dimension, that is, that evolution could 

incur in resizing some or all of the rooms, a resize function was needed. It was decided 

that, besides the obvious possibility of generating a room whose depth was also randomly 

drawn from the allowed range, resizing of a room could also occur (in probability) in two 

evolution points: in recombination or mutation operations. The resize function that was 

implemented is described by Algorithm 5, where 𝑑𝑖 stands for the depth of room i: 

Algorithm 5 - Resize function 

1. Randomly generate r ∈ [0, 1]; 

2. If r < 0,5  

3.   If 𝑑𝑖 > 𝑚𝑖 then 𝑑𝑖  ← 𝑑𝑖 –  1; 

4. Else 

5.    If 𝑑𝒊 < 𝑀𝑖 then 𝑑𝑖  ← 𝑑𝑖 + 1;  

 

Towards the goal of generating several house layouts, Algorithm 5 is used for the 

mutation of a gene. When the gene is selected for a mutation one of two things may be 
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randomly decided: either to generate a new random position for the room, or to resize it. 

In the latter case, only the depth of the room will be changed (either increasing or 

decreasing the depth). Thus, the mutation operator has now two possibilities: the resize or 

the normal mutation, as described by Algorithm . Notice that, if an optimal solution is 

selected for mutation, only the resize option will be performed; otherwise both options 

have equal probability of being selected. 

Algorithm 6 - Mutation operator for a room of house ℎ𝑖 

1.  Randomly generate a value 𝑐 ∈  [0, 1]; 

2.  If 0.001 ≤ 𝑐 ≤ 𝑃  (𝑃 ∈ [0.02, 0.2])  

3.      Pick a random room, 𝑑; 

4.     If 𝑭(𝒉𝒊) = 1.0 

5.         Resize 𝑑; 

6.      Else 

7.          Randomly generate 𝑟 ∈  [0, 1]; 

8.          If 𝑟 < 0,5 

9.              Generate new position for 𝑑; 

10.        Else: 

11.            Resize 𝑑; 

 

As previously mentioned, Shaper-GA uses RRC recombination. Thus, the resize 

function is also used in this crossover operator, namely when parents’ genes are different. 

In G-Shaper, different parental genes in RRC random generate a new room’s position for 

the offspring, whilst in Shaper-GA the rooms can be either positioned randomly or keep 

the same position and having its depth resized. 

5.4. Experiments and Results 

To explore this new approach, two different GA versions were implemented for Shaper-

GA: Standard and Resizable from beginning (RfB) version. 

For the initial population generation, the standard version generates each house 

assuming that all the rooms have predefined width and depth (standard dimensions), while 

in RfB, each room is generated by assigning a random depth in the allowed range for each 

type of room, 𝑑𝑖 ∈ {𝑚𝑖 , 𝑀𝑖} (Table 2).  
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Both Shaper-GA versions (standard and RfB) were implemented using Java. Each 

experiment consists in 30 independent runs. All the following tests run on a virtual 

machine using Windows Server 2016 with 8GB ram, 4 virtual CPUs and Intel Xeon 

E312xx processor.  

Based on the previous work (section 4.7 and 4.8) experiments and results, the following 

parameterization was used to perform all the tests: 

• Initial population: 1000 individuals 

• Parent selection operator: RWS 

• Crossover operator: RRC 

• Next evolutionary population selection: elitism, ranking and elitism&ranking 

• Stopping criterion: 5 optimal solutions 

 

 

Figure 13 - Three different solutions from Shaper-GA 

Figure 13 shows three different examples of the five optimal solutions produced by 

Shaper-GA. Each of the layouts in Figure 13 presents either different depths for the same 
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rooms or different positioning. Comparing the top-left and top-right layouts it’s possible 

to see differences on the depths of the kitchen and the living room. The top-left layout 

presents 4 × 7 grid units for the living room and 3 × 7 grid units for the kitchen. The 

second layout (top-right) has 5 × 7 grid units on the living room and 2 × 7 grid units on 

the kitchen. Comparing both layouts, it’s possible to say that they are equal on the rooms 

arrangement but not on rooms size. Note that the bottom layout of Figure 13 shows a 

different arrangement of rooms positioning comparing with the top layouts. 

Comparing the performance for both versions of Shaper-GA concerning average fitness 

of the evolutionary populations and showing only the first 1 million generations for 

different selection schemes for the next evolutionary population (ranking, elitism and 

elistism&ranking), it is possible to say that, for the standard version, the performance of 

the different schemes is very similar (Figure 14). However, for the RfB version, and for 

the first 600 000 generations, elitism and ranking show higher average fitness than 

elitism&ranking. However, the latter shows higher average fitness results after 600 000 

generations.  

An interesting analysis comes from comparing directly the average fitness values for 

the standard and RfB versions using only elitism&ranking (Figure 14). The standard 

version presents higher fitness values (0.203 approx.) than the RfB version (0.139 

approx.). Again, that difference can be explained by a wider population diversity present 

in the evolutionary population for RfB.  Thus, in standard version, the population is more 

adapted to the objective. 

To understand population’s diversity, Figure 14 uses average fitness to evaluate both 

Shaper-GA versions. Comparing the average fitness for both versions with G-Shaper 

(Section 4.7) it is possible to conclude that populations’ average fitness is considerably 

higher for Shaper-GA then for G-Shaper. Such results show that the mechanism for forcing 

higher search space exploration rates described in Section 5.2 is successful.  
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Figure 14 - Average fitness for Standard and RfB versions 

One of the problems identified in G-Shaper was the execution time needed to get one 

optimal house. Figure 15 compares the average execution time per run between G-Shaper 

and both Shaper-GA versions, standard and RfB, until reaching 1 million iterations and 

using elitism&ranking as the selection operator. G-Shaper is only evolving until it achieves 

one optimal solution, while Shaper-GA only stops at five. Even with such difference, both 

versions of Shaper-GA outperformed G-Shaper, making the new structure of 

chromosomes and optimization schemes a feasible approach to increase and expand the 

performance of computation. The best results on running time are achieved using Shaper-

GA standard version (approximately 2 minutes in average before algorithm termination).  

 

 

Figure 15 - Average execution time per run with different versions and crossovers 
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Figure 16 - Average maximum fitness - Standard version 

 Figure 16 represents the average of the maximum fitness over 30 runs for the standard 

version. It’s possible to conclude that any of the operators is capable of producing at least 

one optimal solution at 400 000 generations. Those results are also linked with those 

pictured in  Figure 14: it’s possible to see that the average fitness of the population shows 

a higher slope until it reaches 400 000 generations, after which the slope is substantially 

decreased. 

5.5. Discussion 

The new room (gene) encoding together with the adjusting optimization scheme 

developed for Shaper-GA decreased more than 85% of the running time comparing with 

G-Shaper. The fastest G-Shaper runs, in average for approximately 65 minutes before it 

finds one optimal solution in the search space. With Shaper-GA standard version, five 

optimal solutions are generated in, approximately, 2 minutes, it is possible to say that the 

second research objective (RQ2) was answered positively. 

The capability to achieve different layout solutions was also reached with both versions 

of Shaper-GA. Comparing standard and RfB versions, the former outperformed the latter 

both for running time, establishing the standard version as the best approach to produce 

several optimal solutions. 

The last versions were implemented using dynamic room’s dimensions. The third 

research question (RQ3): How to implement dynamic room’s dimensions?, can now be 

replied in a positive way, with the creation of a resizable function that were used in RRC 

crossover and mutation operators.  
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Chapter 6. Conclusions 

6.1. Main conclusions 

The fact that future owners of modular houses were not able to customize their houses 

was a gap identified by Kwiecinski and Slyk (Kwiecinski & Slyk, 2014), that gave the first 

steps towards filling this gap by proposing a shape grammar to formalize an automated 

language of design (Kwiecinski et al., 2016). G-Shaper and Shaper-GA were GA systems 

created intending to contribute to close that gap in an automated fashion. 

G-Shaper (Almeida et al., 2016), detailed in Chapter 4, was the first attempt of 

producing an automatic layout design tool for modular houses. Using a genetic algorithm, 

it was able to produce one feasible solution complying with the architectural rules of 

design suggested by the architect. G-Shaper answered positively to RQ1 (Is the Genetic 

Algorithm approach viable for generating effective house layouts, that is, obeying the 

architectural rules of design?) in a limited time (approx. 1 h). Experimentation results show 

that the usage of GA is a valid and promising approach for an automatic house layout 

design system but suffers from tendency to genetic drift. 

Shaper-GA (Taborda et al., 2018), detailed in Chapter 5, is the evolution of G-Shaper 

to optimize house layout generation in two fronts: time and several layouts deliverance. 

This tool also presents a different genetic algorithm architecture to return more than one 

optimal layout solutions complying with the design rules. Shaper-GA is able to deliver 

different layouts in a matter of a few minutes. Also, the possibility to generate several 

optimal solutions was achieved using variable depths for rooms.   

6.2. Future work 

Shaper-GA can only be considered as a complete automatic house layout design system 

when the tool is being able to place components (e.g. doors, windows) following the 

architectural language of design. The current work uses only one architectural language of 

design (Kwiecinski et al., 2016) but to have a robust solution for the enterprise market, 

multiple architectural perspectives should be tested and validated. Also, this tool can easily 

be integrated in a website using a richer interface to reach multiple users in different sides 

of the world.  

As a pervasive important objective for the future is the possibility of emergence of 

design, that can be scanned since it presents a most wanted goal search for architects. 



Shaper-GA: Automatic shape generation for modular housing 
 

- 42 - 

Multiple variables are not being taken under consideration (i.e. exposure to sun) or 

orientation towards the road access. A generic and complete framework should be created 

to accommodate all of those inputs
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