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1049-001 Lisboa, Portugal

5DCTI/ISCTE Instituto Universitário de Lisboa, 1649-026 Lisbon, Portugal

(Received 21 February 2019; published 19 March 2019)

In this work we provide an in-depth analysis of mechanisms which mitigate the hose instability in the
blowout regime in plasma-wakefield accelerators. We show by means of theory and three-dimensional
particle-in-cell simulations that the mitigation mechanisms related to a beam energy spread are effective for
parameters as used in major plasma-wakefield accelerator experiments and for various beam energies,
beam current profiles, and types of hosing seed. In addition, we establish the theoretical principles for the
reduction of the initial hosing seed in tapered vacuum-to-plasma transitions and derive respective analytic
predictions which are successfully benchmarked against particle-in-cell simulations. We also investigate
the possibility to facilitate efficient and stable acceleration of witness beams in the blowout regime. This
work therefore provides a deepened understanding for the methods that allow for the mitigation of hosing, a
crucial prerequisite to facilitate stable acceleration of high quality beams in plasma-wakefield accelerators.
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I. INTRODUCTION

Plasma-based accelerators can potentially leverage a
dramatic miniaturization of future accelerators and pro-
vide improvements in terms of provided beam energy,
versatility, and availability of accelerator facilities. In
plasma-wakefield accelerators (PWFAs) [1,2], short and
high-current particle beams excite plasma waves which
carry extreme accelerating fields in excess of 10 GV=m [3].
Drive beams with a charge density much greater than the
ambient plasma density expel all plasma electrons near the
propagation axis, such that an ion cavity (plasma channel)
is formed which copropagates behind the drive beam.
This excitation regime, the blowout regime, features an
enhanced accelerating field and transverse linearly focusing
forces for trailing relativistic electron beams [4].
Trailing electron beams can be injected into the plasma

wave externally [5], through controlled wave-breaking
from the plasma [6] or via ionization from a dopand gas
[7–9]. These techniques promise the generation of beams

with a sufficient quality to drive pivotal applications such
as free-electron lasers. However, in addition to the demand
of high beam quality, these applications require a high
stability of the beam parameters.
In this context, the hose instability (or beam-breakup

instability) is since long predicted to be a major impedi-
ment for the applicability of PWFAs [10]. The hose
instability, which is seeded by initial transverse beam
and/or plasma phase space asymmetries, is growing rapidly
due to the extreme transverse fields, which can be on the
same order of magnitude as the longitudinal fields in the
blowout regime. According to current models, the beam
centroid displacement is amplified exponentially during the
beam propagation in the plasma, resulting in an unstable
acceleration process or in beam-breakup [10–14].
It was recently shown that these models overestimate the

hosing growth rates as soon as the intrinsic drive-beam
energy change becomes significant [15], suggesting that the
blowout regime in PWFAs can provide intrinsic saturation
mechanisms for the hose instability. These effects are
similar to Balakin-Novokhatsky-Smirnov damping [16]
in conventional accelerators and similar to the mitigation
of hosing through a change of the betatron frequency for
self-modulated long beams in PWFAs [17], beams in the
linear regime [18] or wide drive beams in PWFAs [19]. The
mechanisms associated to an energy spread of drive beams,
leading to the mitigation of hosing in the blowout regime in
PWFAs were outlined in Ref. [15] and their capability to
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substantially mitigate the beam centroid oscillations during
propagation in the plasma was shown. These results
indicated for the first time the possibility of stable accel-
eration of beams over long distances in PWFAs.
In Sec. II of this work, we review the state of the art

description of the hose instability. We then present a
detailed derivation of the new beam centroid equation in
Sec. III. The implications of this equation are investigated
in Sec. IV, and it is shown analytically that the intrinsic
beam energy change and an energy spread provide effective
mitigation mechanisms for a wide range of PWFA scenar-
ios. In Sec. V, particle-in-cell (PIC) simulation results with
the quasistatic code HIPACE [20] are presented which
demonstrate the mitigation of hosing for setups similar to
those used in existing facilities or as anticipated for future
facilities and which provide new insights into the under-
lying physics. Additionally, in Sec. VI, we explicate how
tapered vacuum-to-plasma transitions reduce initial seeds
for hosing and/or witness-drive misalignments. We provide
successful comparisons between our model and simulation
results using the PIC framework OSIRIS [21]. We also
investigate the possibility to mitigate the hosing of the
witness beam in a PWFA-driven collider scheme in
Sec. VII. The summary and conclusion in Sec. VIII finalize
this paper.

II. REVIEW OF THE HOSE INSTABILITY

The hose instability is seeded by transverse asymmetries
of the beam or plasma phase space distributions. For
example, an asymmetry of the transverse plasma density
distribution leads to a deviation of the ion-channel, or
plasma centroid Xp along the beam. This results in a
respective temporal evolution of the beam centroid
deviation Xb, which in turn drives a displacement of the
ion-channel centroid Xp along the beam, and so on. The
current mathematical description of this coupled evolution
of the ion-channel centroid Xpðξ; tÞ and the beam centroid
Xbðξ; tÞ is [22]

∂2Xp

∂ξ2 þ CdðξÞ
∂Xp

∂ξ þ CpðξÞ
2

Xp ¼ CbðξÞ
2

Xb; ð1Þ

∂2Xb

∂t2 þ ω2
βXb ¼ ω2

βXp; ð2Þ

where t is the time and ξ ¼ ct − z the comoving coordinate,
and where z is the propagation axis and c the speed of light.
The plasma wave number is denoted by kp ¼ ωp=c and the
betatron frequency by ωβ ¼ ωp=

ffiffiffiffiffi
2γ

p
, with the Lorentz

factor γ of beam electrons, and where ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πn0e2=m

p
is

the plasma frequency with the ambient plasma density n0,
the elementary charge e and the electron rest mass m.
According to Eq. (1), the beam centroid displacement Xb

drives a plasma centroid displacement Xp proportionally to

CbðξÞ. The coefficient CpðξÞ accounts for the restoring force
exerted by the wakefields onto the plasma sheath electrons
to a perturbation Xp. Sheath electrons undergo dynamics
which cause a relativistic mass gain or loss. The associated
damping or amplifying effect is reproduced by the coef-
ficient CdðξÞ [22]. The case with Cp ¼ Cb ¼ 1 and Cd ¼ 0

recovers the original hosing model [10]. This limit assumes
an adiabatically generated, nonrelativistic ion channel
with a ξ-independent response of sheath electrons. In is
limit, Xb and Xp grow exponentially along ξ owing to
hosing [10–12]. In addition, since the above models assume
a monoenergetic beam with constant energy, the growth of
Xb and Xp is exponential in time [11,12,14].
The hose instability is a result of a coherent coupling of

transverse phase space asymmetries of beam particles and
plasma electrons. Hence, the hose instability is mitigated if
the coupling between beam and plasma is reduced, if initial
beam or plasma phase space asymmetries are reduced,
and/or if the coherence of beam or plasma oscillations is
disrupted. It was recently shown that the relativistic motion
of electrons in the plasma electron sheath and the channel
radius greater than the charge-neutralization radius in the
non-adiabatic, relativistic ion-channel (i.e., blowout)
regime can reduce the coupling, and thereby decrease
the growth rate of the hose instability if Cb < 1 [14,22].
While this indicates a reduction of the hosing growth rate in
the blowout regime, the growth is predicted to be expo-
nential in time. Hence, small asymmetries eventually lead
to beam breakup during propagation in the plasma accord-
ing to models which do not incorporate beam energy spread
or energy change.
Here, we incorporate the beam energy loss into the

model, which, in agreement with energy conservation,
intrinsically occurs as the drive beam excites the plasma
wave, and show how it results in a decoherence of the
betatron oscillation phases along the beam. It is also
shown that an initial correlated energy spread leads to a
decoherence of the betatron oscillations between various
slices. Both latter effects imply a saturation of the hose
instability. In addition, we explicate how a finite uncor-
related energy spread results in a decoherence of the
electron oscillations within individual slices and thereby
damps hosing. Finally, a technique for the reduction of
initial beam asymmetries which seed hosing is proposed
and described.

III. DERIVATION OF THE BEAM-CENTROID
EQUATION WITH ENERGY EFFECTS

A. Dynamics of single beam electrons

We generalize the beam centroid equation (2) in order to
establish a model that incorporates the effects of beam
energy spread and energy change. We do so by starting
from the single-electron motion which is then averaged
over the initial beam phase space distribution.
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The transverse position x of a single beam electron
relative to the axis in a homogeneous ion-channel is
described by the differential equation [23,24]

d2x
dt2

þ _γ

γ

dx
dt

þ ω2
βx ¼ ω2

βXp; ð3Þ

where the dot above the Lorentz factor γ refers to the
time derivative, i.e., _γ ¼ dγ=dt. The beam electrons have a
great longitudinal momentum pz ≫ mc, such that γ ≃
pz=mc ≫ 1 is decoupled from the transverse motion, since
the transverse motion is nonrelativistic dx=dt ≪ c. The
restoring force is directed toward the instantaneous position
of the channel centroid Xp. Radiation effects are neglected,
which, otherwise, can result in a growth of the energy
spread of the beam [25]. According to Eq. (3), the
oscillation amplitude of an electron which gains energy
(_γ > 0) is damped while the amplitude of an electron losing
energy (_γ < 0) is amplified.
The electron energy change occurs on a timescale much

greater than the oscillation period. Taking this fact into
account, one finds for the solution of Eq. (3)

xðtÞ ≃ x0AðtÞ cos ½φðtÞ� þ
px;0

mγ0ωβ;0
AðtÞ sin ½φðtÞ�

þ ωβ;0

Z
t

0

AðtÞAðt0Þ sin ½φðtÞ − φðt0Þ�Xpðt0Þdt0:

ð4Þ

Here, ωβ;0 ¼ ωp=
ffiffiffiffiffiffiffi
2γ0

p
denotes the initial betatron fre-

quency and AðtÞ ¼ ½γ0=γðtÞ�1=4 the oscillation amplitude,
and where γ0 ¼ γðt ¼ 0Þ and px;0 ¼ pxðt ¼ 0Þ refer to the
initial Lorentz factor and transverse momentum, respec-
tively. The individual phase-advance of electrons is φðtÞ ¼R
ωβdt. We neglected the terms O½_γ _A=ð _φ2γAÞ� ≪ 1,

O½Ä=ð _φ2AÞ� ≪ 1, andO½_γ=ð4γ0ωβ;0Þ� ≪ 1which are small
since the relative energy and amplitude variations occur on
timescales longer than the betatron period.
The energy of a beam electron may have an initial

deviation δγ with respect to the initial mean energy of a
beam slice γ̄0 and be temporally evolving with an accel-
eration rate E. Hence, the electron energy is represented by
γðtÞ ¼ γ̄0 þ Etþ δγ. Note that the beammay have an initial
energy chirp and hence, the initial mean slice energy,
generally, is a function of the comoving coordinate
γ̄0 ¼ γ̄0ðξÞ. The same is true for the rate of energy change
E ¼ −eEz=mc, which changes along the beam as the
longitudinal electric field Ez ¼ EzðξÞ changes with comov-
ing position.
The betatron frequency of an electron may be expanded

for small relative energy deviations with respect to the
mean slice energy jδγ=γ̄j ≪ 1 (overlined quantities refer to
slice-averaged quantities), such that ωβ ≃ ω̄βð1 − δγ=2γ̄Þ,
where ω̄β is the mean slice betatron frequency. Hence,

expressing the phase advance of an individual electron in
terms of the mean slice phase advance,

φðtÞ ¼ φ̄ðtÞ
�
1 −

δγ

2γ̄0

ωβðtÞ
ωβ;0

�
; ð5Þ

where φ̄ ¼ 2ðωβ;0=ωβ − 1Þ=ϵ is the mean slice phase
advance, ωβ;0 ¼ ωp=

ffiffiffiffiffiffiffi
2γ̄0

p
the initial betatron frequency

and ωβ ¼ ωβ;0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϵωβ;0t

p
the mean slice betatron fre-

quency. It should be noted that the mean slice betatron
frequency is time-dependent owing to a finite relative
energy change per betatron cycle ϵ ¼ Eðγ̄0ωβ;0Þ−1 ¼
−

ffiffiffiffiffiffiffiffiffi
2=γ̄0

p
Ez=E0, with E0 ¼ ωpmc=e. Equation (5) implies

that electrons with differing energy within a slice acquire a
differing phase advance, which leads to the phase-mixing
of the electron betatron oscillations. This is illustrated in
Fig. 1, in which the mean slice phase advance φ̄ is depicted
in gray. The deviated phase advance φ� according to
Eq. (5) for electrons with an energy deviation of �δγ is
shown in orange. For this illustration, the parameters are
chosen as ϵ ¼ 0.3 and δγ ¼ 0.3γ̄0. Here, the nonlinearity of
the lines for φ̄ and φ� is owing to a finite energy change
ϵ ≠ 0 and the difference between φ̄ and φ� is resulting from
a finite energy deviation δγ ≠ 0. The difference between the
phase advance of electrons with differing energy grows as
the mean slice phase advance φ̄ evolves, and as the ratio
ωβðtÞ=ωβ;0 increases [compare Eq. (5)]. If the phase-
advance difference is comparable to π, the betatron
oscillations of the electrons are at opposite phase. For a
large set of electrons with a finite energy distribution, the
betatron phases become completely mixed. As shown
within this work, this phase mixing damps the hose
instability.

FIG. 1. Illustration of the phase advance of electrons within a
beam slice. The gray curve depicts the mean slice phase advance
φ̄ and the orange curves illustrate the phase advance φ�
according to Eq. (5) for electrons with an energy deviation of
�δγ (for this illustration, ϵ ¼ 0.3 and δγ ¼ 0.3γ̄0).
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B. Beam-centroid equation

The beam centroid Xb at a given comoving position ξ is
computed from Eq. (4). This is done by averaging the
transverse position of electrons within each beam slice with
respect to an initial phase-space distribution f0ðx0; px;0; γ0Þ,
that is Xbðξ; tÞ ¼

R
xf0dx0dpx;0dγ0, where the distribution

function is normalized,
R
f0dx0dpx;0dγ0 ¼ 1. The initial

transverse offset and momentum in a slice are hereby
assumed to not to be correlated with energy, such that f0

is separable f0 ¼ f⊥ðx0; px;0Þfγðγ0Þ. The distribution
f⊥ðx0; px;0Þ is arbitrary, with the assumption that f⊥ ¼ 0

outside the channel, and the mean values are given by
x̄0 ¼ Xb;0 and px;0 ¼ mcUb;0 (i.e., Ub;0 ¼ px;0=mc). We
consider a Gaussian distributed energy, i.e., fγ ¼
ð ffiffiffiffiffiffi

2π
p

σγÞ−1 exp ð−δγ2=2σ2γÞ. The average with respect to
the initial transverse phase space distribution and the
Gaussian energy distribution, neglecting the variation of A
owing to δγ, yields

Xbðξ; tÞ ≃
�
Xb;0ðξÞ cos ½φ̄ðξ; tÞ� þ

cUb;0ðξÞ
γ̄0ðξÞωβ;0ðξÞ

sin ½φ̄ðξ; tÞ�
�
Āðξ; tÞ exp

�
−
Δγ2ᾱðξ; tÞ2

2

�

þ ωβ;0ðξÞ
Z

t

0

Āðξ; tÞĀðξ; t0Þ exp
�
−
Δγ2½ᾱðξ; tÞ2 − ᾱðξ; t0Þ2�

2

�
sin ½φ̄ðξ; tÞ − φ̄ðξ; t0Þ�Xpðξ; t0Þdt0; ð6Þ

where Δγ ¼ σγ=γ̄0 is the initial relative energy spread,
Āðξ; tÞ ¼ ½γ̄0ðξÞ=γ̄ðξ; tÞ�1=4 the betatron amplitude and
where ᾱðξ; tÞ ¼ φ̄ðξ; tÞωβðξ; tÞ=2ωβ;0ðξÞ. A term resulting
from the δγ-dependence of the amplitude of the second
term in equation (4) scales as ᾱΔγ2 expð−ᾱ2Δγ2=2Þ, and
was neglected since Δγ ≪ 1.
Equation (6) describes the centroid of a beam which is

subject to hosing. The homogeneous part corresponds to a
harmonic beam centroid oscillation with an amplitude
which is modulated by the beam energy change and by
an exponential damping owing to a finite uncorrelated
energy spread. In the inhomogeneous part, the beam
centroid is driven by the channel centroid Xp, which,
through Eq. (1), couples the oscillation of individual beam
slices with one another and thereby leads to hosing. The
ξ-dependence of the Green’s function in Eq. (6) implies that
the coupling between individual slices is disrupted if their
phase advance differs from the resonant coupling mediated
via the plasma channel. For early times, Eqs. (1) and (6)
recover known results for hosing in the blowout regime
[14]. However, for greater times, Eq. (6) shows that the
energy evolution, the energy chirp and the uncorrelated
energy spread can have a substantial impact onto the hose
instability, suggesting that hosing can be mitigated.
The differential form of Eq. (6) is given by

∂2Xb

∂t2 þ Λðξ; tÞ ∂Xb

∂t þ Ωðξ; tÞ2ðXb − XpÞ ¼ 0; ð7Þ

where

Λðξ; tÞ ¼ ωβðξ; tÞ2
ωβ;0ðξÞ

ðϵðξÞ þ κ1ðξ; tÞΔγ2Þ; ð8Þ

Ωðξ; tÞ2 ¼ ωβðξ; tÞ2ð1þ κ2ðξ; tÞΔγ2Þ; ð9Þ

and where κ1 ¼ ðωβ=ωβ;0 − ðωβ=ωβ;0Þ2Þ=ϵ, and κ2 ¼
ðωβ=ωβ;0Þ4=2 − ðωβ=ωβ;0Þ3=4. Terms scaling as OðΔγ4Þ
and Oðϵ2Þ were hereby neglected. Equations (6) and (7)
hold for any relativistic beam within a blowout with small
jϵj ¼ ffiffiffiffiffiffiffiffiffi

2=γ̄0
p jEz=E0j ≪ 1 and Δγ ≪ 1.

C. Qualitative analysis of the beam-centroid equation

The coefficients Λ and Ω can have multiple effects.
A finite friction term Λ results in a damping of the beam
centroid oscillation if Λ > 0 or an amplification if Λ < 0. If
Ω is time-independent but ξ-dependent, the betatron
oscillations of various slices are developing a decoherence
with respect to each other. Equivalently, for an Ω which is
initially not ξ-dependent but features a varying time-
dependence along ξ, a detuning of the oscillation phases
of various slices develops over time.
A linear expansion of (8) and (9) yields Λ ≃ ωβ;0ðϵþ

Δγ2ωβ;0t=2Þ and Ω2 ≃ ωβ;0
2ð1þ Δγ2=4 − ϵωβ;0tÞ, allow-

ing for a qualitative assessment of the implications of
Eq. (7) onto the hose instability. For no energy change and
no uncorrelated and correlated energy spread, i.e., for
ϵ ¼ 0, Δγ ¼ 0 and ωβ;0ðξÞ ¼ ωβ, respectively, Eq. (7)
recovers the original monoenergetic beam-centroid equa-
tion (2) used in previous studies [10–14]. For a finite energy
gain/loss (ϵ ≠ 0), a finite uncorrelated energy spread
(Δγ ≠ 0) and/or an initial chirp (∂ξωβ;0 ≠ 0), the following
conclusions can be drawn.
The centroid amplitude of a beam with a finite uncorre-

lated energy spread (Δγ ≠ 0), is damped over time, since
Λ ∼ Δγ2ωβ;0t > 0. For slices within the beam with ϵ > 0,
i.e., in regions in which electrons are being accelerated,
the term Λ implies an increased damping of the beam
centroid for all times. In slices for which ϵ < 0, the centroid
is initially slightly amplified before it is progressively
damped. The initial amplification of the oscillation
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amplitude is a result of the relativistic mass loss of electrons
which are being decelerated [compare with Eq. (3)]. At
greater times, the damping from the finite energy spread
dominates. Additionally, it can be seen that for an initial
chirp (∂ξωβ;0 ≠ 0), and/or for ξ-dependence of the energy
change (∂ξϵ ≠ 0), the centroid oscillation frequency Ω
initially features, or develops a ξ-dependence, respectively.
As shown in the following more quantitatively, this ξ-
dependence leads to a decoherence of the individual slice-
oscillations which disrupts the resonant coupling via the
plasma and thereby results in a saturation of hosing.
In the following, we use a two-particle model to allow for

a more quantitative interpretation of the new beam centroid
equation in terms of the mitigation times from the above
described effects.

IV. INTERPRETATION USING A
TWO-PARTICLE BEAM

We use a two-particle (i.e., a two-slice) model to
analytically investigate the physical predictions of
Eqs. (1) and (6) in terms of the timescales for the hosing
mitigation. In the two particle model, the beam consists
of two slices with centroids Xb;1ðtÞ at ξ1 and Xb;2ðtÞ at ξ2.
The two slices are initially at the same oscillation phase
φ̄ðξ1; t ¼ 0Þ ¼ φ̄ðξ2; t ¼ 0Þ ¼ 0.
The first slice is unaffected by the hose instability, i.e.,

Xpðξ ≤ ξ1Þ ¼ 0, and the general equation for the beam

centroid evolution, Eq. (6), therefore yields for the centroid
of the first slice

Xb;1ðtÞ ¼ X̂b;1Āðξ1; tÞ exp
�
−
Δγ2ᾱðξ1; tÞ2

2

�
cos ½φ̄ðξ1; tÞ�;

ð10Þ

where X̂b;1 is the initial oscillation amplitude. The centroid
of the slice at ξ1 therefore oscillates with an amplitude
which is time-dependent according to Āðξ1; tÞ and accord-
ing to the exponential damping from the finite energy
spread. The oscillation frequency is time-dependent as a
result of the nonlinear time dependence of φ̄.
As implied by Eq. (1), the oscillation of the first slice

induces a deviation of the blowout channel centroid. At the
comoving position of the trailing slice the channel centroid
deviation is

Xpðξ2; tÞ ¼ Iξ2ξ1Xb;1ðtÞ; ð11Þ

where Iξ2ξ1 is a blowout-geometry-dependent constant. The
channel centroid deviation along ξ feeds back into the time-
evolution of the centroid oscillation of the second slice at ξ2
according to Eq. (6), such that

Xb;2ðtÞ ¼ Āðξ2; tÞ exp
�
−
Δγ2ᾱðξ2; tÞ2

2

��
X̂b;2 cos ½φ̄ðξ2; tÞ�

þ ωβ;0ðξ2Þ
Z

t

0

Āðξ2; t0Þ exp
�
Δγ2ᾱðξ2; t0Þ2

2

�
sin ½φ̄ðξ2; tÞ − φ̄ðξ2; t0Þ�Xpðξ2; t0Þdt0

�
: ð12Þ

The oscillation of the trailing slice is driven by the
oscillation of first slice through the coupling by the plasma
channel centroid. Equations (10), (11), and (12) in combi-
nation serve as a basis for the derivations of the
decoherence times from a differential energy change, from
an initial chirp and from an uncorrelated energy spread,
detailed below.

A. Decoherence time from a differential
energy change

We start by determining the timescale for the hosing
saturation by virtue of a finite differential energy change
along the beam (∂ξϵ ≠ 0). To isolate this effect, we assume
no initial chirp, no uncorrelated energy spread (Δγ ¼ 0),
and that the particles have an energy on the order of the
initial energy, i.e., γ ∼ γ0, such that Āðξ; tÞ ≈ 1. These
assumptions, together with Eqs. (10), (11), and (12), yield
for the centroid of the second slice

Xb;2ðtÞ ≃ X̂b;2 cos ½φ̄ðξ2; tÞ� þ X̂b;1I
ξ2
ξ1
IϵðtÞ; ð13Þ

with the time-dependent amplitude integral

IϵðtÞ ¼ ωβ;0

Z
t

0

sin ½φ̄ðξ2; tÞ − φ̄ðξ2; t0Þ� cos ½φ̄ðξ1; t0Þ�dt0:

ð14Þ

It should be noted that IϵðtÞ is the only term in Eq. (13) with
time-dependent amplitude. We use jϵj¼j ffiffiffiffiffiffiffiffiffi

2=γ̄0
p

Ez=E0j≪1

to expand the phase advance

φ̄ðξ; tÞ ¼ 2½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϵðξÞωβ;0t

p
− 1�

ϵðξÞ

≃ ωβ;0t −
ωβ;0

2t2ϵðξÞ
4

: ð15Þ
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By use of this expansion, the integral (14) yields

IϵðtÞ ≃
ffiffiffiffiffiffiffiffi
π

2Δϵ

r �
sin ½φ̄ðξ2; tÞ�Fc

� ffiffiffiffiffiffi
Δϵ
2π

r
ωβ;0t

�

− cos ½φ̄ðξ2; tÞ�Fs

� ffiffiffiffiffiffi
Δϵ
2π

r
ωβ;0t

��
; ð16Þ

where jϵj ≪ 1 was exploited in order to simplify the
expression. Here Fs and Fc are the Fresnel integrals and
Δϵ ¼ jϵðξ1Þ − ϵðξ2Þj is the difference of the normalized
rates of energy change between the slices. The oscillations
of the sine and cosine functions occur on timescales much
shorter than the variations of the Fresnel integrals for
Δϵ ≪ 1. Averaging Iϵ2 over one period in a slowly varying
amplitude approximation yields the time-dependence

hIϵðtÞ2i ∼ Fc
2

� ffiffiffiffiffiffi
Δϵ
2π

r
ωβ;0t

�
þ Fs

2

� ffiffiffiffiffiffi
Δϵ
2π

r
ωβ;0t

�
:

In Fig. 2, the temporal evolution of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hIϵðtÞ2i

p
is plotted

in arbitrary units so as to visualize that the centroid
oscillation amplitude of the second slice initially increases
due to a resonant coupling of the two slices. However,
when the phase difference between the two slices becomes
significant, Xbðξ2Þ reaches a global maximum at

ωβ;0td;ϵ ≃
ffiffiffiffiffiffi
3π

Δϵ

r
; ð17Þ

and subsequently saturates at a smaller amplitude.
Equation (17) therefore specifies a measure for the hos-
ing-mitigation time from a differential energy change along
the beam. This result is valid for arbitrary coefficients
CpðξÞ, CdðξÞ, and CbðξÞ in Eq. (1) and is in fundamental
contrast with previous models for the hose instability,
which predict steadily growing amplitudes until beam
breakup.
We compare the hosing mitigation time from differential

energy change td;ϵ with the drive beam energy depletion
time. The energy of the drive beam is depleted at tdp ¼
1=ðωβ;0 ϵ̂Þ, where ϵ̂ ¼ −

ffiffiffiffiffiffiffiffiffi
2=γ̄0

p
Êd=E0 and Êd denotes the

maximum longitudinal field in the drive beam region.
Hence, decoupling between the two slices occurs before
pump depletion if Δϵ=ϵ̂ > 3πϵ̂. Because jϵ̂j ≪ 1, and since
Δϵ=ϵ̂ ranges from zero to unity along any drive beam, the
two particle model suggests that slices within the beam in
PWFAs are decoupled significantly before depletion.
The normalized relative acceleration rate ϵ is related to

key experimental PWFA parameters, such as the beam peak
current and the beam energy as follows. The longitudinal
field within the beam region can be approximated by
EzðξÞ=E0 ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IbðξÞ=IA

p
, where IbðξÞ is the beam current

and IA ≃ 17 kA is the Alfvén current [26,27]. Hence,
ϵðξÞ ≃ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2IbðξÞ=ðIAγ̄0Þ

p
, and for experimental parameters

which resemble those in the Facility for Advanced
Accelerator Experimental Tests (FACET) [28,29], for
instance, yield ϵ̂ ≈ 0.007. This, together with the argumen-
tation above indicates that the growth of the hose instability
stops well before energy depletion in typical PWFA
scenarios and possibly justifies why hosing was not
detected in previous experiments [3,5]. For completeness,
it should be noted that the drive beams in FACET had a
transverse extent comparable to the blowout radius and
therefore, in addition to the above elaborated decoherence
effect, were undergoing a head-to-tail decoherence owing
to a variation of the focusing fields in the partial blowout
along the beam [19].

B. Decoherence time from an initial chirp

We investigate the decoherence time owing to an initial
linear energy chirp of a beam,

χ ¼ 1

γbkp

∂ γ̄
∂ξ ; ð18Þ

where γb is the beam-averaged energy. To do so, we isolate
this effect by regarding particles with an energy comparable
to the initial energy i.e., γ ∼ γ0, such that Āðξ; tÞ ≈ 1, and
by assuming no uncorrelated energy spread (Δγ ¼ 0) and
no energy change (ϵ ¼ 0). Using these assumptions,
Eqs. (10), (11), and (12) yield

Xb;2ðtÞ ≃ X̂b;2 cos ½ωβ;0ðξ2Þt� þ X̂b;1I
ξ2
ξ1
IχðtÞ; ð19Þ

with the time-dependent amplitude term

IχðtÞ ¼ ωβ;0ðξ2Þ
Z

t

0

sin ½ωβ;0ðξ2Þðt − t0Þ� cos ½ωβ;0ðξ1Þt0�dt0:

Evaluation of this integral yields

IχðtÞ ¼
ωβ;0ðξ2Þ2fcos ½ωβ;0ðξ2Þt� − cos ½ωβ;0ðξ1Þt�g
½ωβ;0ðξ1Þ − ωβ;0ðξ2Þ�½ωβ;0ðξ1Þ þ ωβ;0ðξ2Þ�

: ð20Þ

Hence, the second slice is driven antiresonantly at
FIG. 2. Depiction of time-dependent amplitude of the second
slice according to Eq. (17).
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td;χ ¼
π

jΔωβ;0j
; ð21Þ

where Δωβ;0 ¼ ωβ;0ðξ1Þ − ωβ;0ðξ2Þ. The integral IχðtÞ
shows a beating since, after time 3=2 × td;χ , the second
slice is driven resonantly again, and so forth. This is in
contrast to a continuous beam with an infinite number of
slices, for which the amplitude of IχðtÞ decays. For the
situation with no chirp,Δωβ;0 → 0, implies td;χ → ∞ for the
decoherence time and implies that IχðtÞ is growing linearly.
The following considerations connect the decoherence

time of the two-particle model with the decoherence time of
a continuous beam with a linear energy chirp. Expanding
the frequency difference of the slice betatron oscillations at
the mean beam energy γb for small Δγ̄ with γ0ðξ1Þ ¼
γb þ Δγ̄=2 and γ̄0ðξ2Þ ¼ γb − Δγ̄=2 yields

Δωβ;0 ≃ −
ωβ;b

2γb
Δγ̄; ð22Þ

where ωβ;b ¼ ωp=
ffiffiffiffiffiffiffi
2γb

p
is the mean beam betatron

frequency.
Combining Eqs. (18), (21), and (22) then yields

ωβ;btd;χ ≃
2π

jχjkpΔξ
ð23Þ

where Δξ is the spacing between the two slices.
Equation (23) provides an estimate of the timescale for
the mitigation of the hose instability owing to an initial
linear energy chirp χ. However, it should be noted that the
mitigation time owing to an energy chirp of a continuous
beam generally cannot be accurately described by a two-
particle model [30] and rigorously also depends on the
wake response, here, on the blowout geometry. The miti-
gation of hosing owing to energy chirps is analogous
to Balakin-Novokhatsky-Smirnov damping [16] in conven-
tional accelerators.

C. Decoherence time from an uncorrelated
energy spread

Additionally, Eq. (6) implies that the amplitude of the
Xb oscillations are damped exponentially for a finite
uncorrelated energy spread Δγ. Assuming no initial corre-
lated energy spread (χ ¼ 0) and that slices are not close
to depletion [Āðξ; tÞ ≈ 1], the centroid amplitude of
individual slices, according to Eq. (6), is reduced by half
an e-folding if Δγ2ᾱðξ; tÞ2 ¼ 1. Since ᾱ ¼ φ̄ ω̄β =2ωβ;0 ¼
½1 − ð1þ ϵωβ;0tÞ−1=2Þ=ϵ, this is the case at the decoherence
time

ωβ;0td;Δγ ¼
2Δγ − ϵ

ðΔγ − ϵÞ2 : ð24Þ

The damping of the hose instability is significant, if the
decoherence time is on the order of (or smaller than) the

depletion time td;Δγ ≲ tdp ¼ 1=ϵ̂ ωβ;0. This is generally true
near to the peak electric field, where jϵj ≈ ϵ̂.
In the conservative limit of no change of the mean slice

energy, ϵ → 0, the decoherence time simplifies to

ωβ;0td;Δγ ≃
2

Δγ
: ð25Þ

Equation (25) specifies a timescale for the damping of the
amplitude of the centroid oscillations owing to a finite
energy spread in the conservative scenario of no energy
change. Therefore, td;Δγ ≲ tdp if Δγ ≳ 2ϵ̂.
For the typical parameters of FACET, where ϵ̂ ≈ 0.007, a

subpercent-level energy spread already significantly con-
tributes to the mitigation of hosing. Moreover, it should be
noted that if td;ϵ ≲ td;Δγ, the exponential damping of Xb due
to the uncorrelated energy spread becomes substantial since
Xb stops growing owing to finite ∂ξϵ.

V. COMPARISON TO PARTICLE-IN-CELL
SIMULATIONS

We present simulation results obtained with the three-
dimensional (3D) quasistatic PIC code HIPACE [20] which
demonstrate the effectiveness of the mitigation mechanisms
for beam parameters close to those used in current PWFA
experiments and to those foreseen in future PWFA experi-
ments at major facilities.
In the first set of simulations we investigate hosing for

Gaussian beams with varying beam energy and peak
current. The second simulation study investigates the effect
of a varying uncorrelated energy spread of a beam with a
triangular current profile. These setups feature greater beam
energies than in the example presented in Ref. [15] and
differing beam peak currents, current profiles, hosing seeds,
and initial energy spreads.

A. Hosing mitigation for varying beam energies

We consider tilted Gaussian electron beams with a
varying initial beam energy and differing beam peak
currents. The beam in case C1a has an energy of 5 GeV
and 5 kA peak current, beam C1b has an energy of 10 GeV
and 10 kA peak current (corresponding to FACET II
parameters [31]) and case C1c features 25 GeV and
23 kA (corresponding to FACET parameters [28]), respec-
tively (see Table I). The dimensions of the Gaussian beams
are identical to the ones used for the simulations in [15]
with a transverse size of kpσx ¼ kpσy ¼ 0.1, and length of
kpσz ¼ 1.0. The beams with the peak current located at
kpξ ¼ 0.0 drive a plasma wave in the blowout regime in a
homogeneous plasma target with density n0. The initial
centroid along the beam is given by kpXb;0ðξÞ ¼ 0.001×
½kpðξ − ξ0Þ�Θ½kpðξ − ξ0Þ�, where ΘðxÞ is the Heaviside-
step function. Hence, the beam tilt is introduced from
kpξ0 ¼ −1.0, close to the beam heads. We investigate the
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effect from the intrinsic beam energy change and isolate
this effect by using beams with no initial correlated
(χ ¼ 0) or uncorrelated energy spread (Δγ ¼ 0). The
parameters used here are close to the experimental param-
eters of current facilities [28,31] or of concepts for future
facilities [29].
The simulations are performed with the 3D quasistatic

PIC code HIPACE [20] using an updated field solver which
computes all electromagnetic field components. The
dimensions of the simulation boxes for the different cases
vary due to a different blowout radius and were chosen as
9 × 10 × 10k−3p for cases C1a and C1b, and 9 × 12 × 12k−3p
for case C1c. The number of cells is 512 × 384 × 384 for
cases C1a and C1b and 512 × 448 × 448 for case C1c.
The time step is adjusted dynamically during the simulation
and spans from ωpΔtinit ¼ 9.0 at the beginning of the
simulation to ωpΔtfin ¼ 3.6 at the end of the simulation
(ωptmax ¼ 2.3 × 104) for case C1a. For case C1b, the time
step ranged from ωpΔtinit ¼ 13.0, ωpΔtfin ¼ 6.3, with
ωptmax ¼ 2.7 × 104. For case C1c, the time step ranged
from ωpΔtinit ¼ 20.0 to ωpΔtfin ¼ 7.3 with ωptmax ¼
4.5 × 104. In all the simulations, the plasma is modelled
with 4 particles per cell and the beams with 18 particles per
cell using a quadratic charge interpolation.
The results for the beam centroid evolution at the tail of

the beams at kpξ ¼ 4.0 are depicted in Fig. 3(a) for the
three cases. It can be seen that the beam centroid oscillation
amplitude for all three cases initially increases exponen-
tially as predicted by previous models [14]. However, the
growth of the hose instability stops after some oscillation
periods and the beam centroid amplitudes subsequently
reach amaximum.This is owing to the evolving decoherence
of the oscillations of individual beam slices, which lead to a
saturation of the hose instability.
The longitudinal field can be approximated by Ez=E0 ≃ffiffiffiffiffiffiffiffiffiffiffi
Ib=IA

p
within the beam region [26,27], such that the

normalized rate of energy change per betatron cycle, ϵ ¼
−

ffiffiffiffiffiffiffiffiffi
2=γ̄0

p
Ez=E0, can be estimated by ϵ ≃ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ib=ðIAγ̄0Þ

p
.

This implies that ϵðξÞ is comparable for all beams. Hence,
the mitigation of the hose instability is expected to occur on
the same time scale (when normalized to the individual
initial beam betatron frequencies) for all three cases.
Assuming for simplicity that the difference of the accel-
eration rates Δϵ for a slice at the tail and a driving slice

closer to the beam head scales as Δϵ ∼ ϵ̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Îb=ðIAγ̄0Þ

q
,

where Îb is the beam peak current, we obtain Δϵ ∼ 0.007

for all three cases (compare Fig. 4). This yields ωβ;0td;ϵ ∼
37 for all cases [damping time given by Eq. (17)]. This
simple estimate qualitatively agrees with the results shown
in 3(a). The beam centroid oscillations stop growing on the
same timescale (ωβ;0t ∼ 40) and saturate at comparable
values for t > td;ϵ.
The subtle differences of the mitigation times for the

different cases, shown in Fig. 3, come from the fact that
ϵðξÞ does not have precisely the same ξ-dependence along
the beams for all the cases. The above used approximation
Ez=E0 ≃

ffiffiffiffiffiffiffiffiffiffiffi
Ib=IA

p
, which led to the assumption of an equal

ϵðξÞ for all cases, is strictly valid only for beams with a
peak current exceeding IA [26,27]. However, as shown in
Fig. 4, the length of the blowout structure increases with
increasing peak current and ϵðξÞ features an enhanced slope
towards the beam tail for lower beam currents when
compared to cases with higher peak currents in the PIC
simulations. Hence, the beam centroid amplitude the tails

FIG. 3. (a) Evolution of beam centroid at the beam tails (at
kpξ ¼ 4.0) for a beam with 5 GeVand 5 kA, case C1a (blue), for a
beam with 10 GeV and 10 kA, case C1b (green) and for a beam
with 25 GeV and 23 kA, case C1c (red), obtained from PIC
simulations. (b) Centroid evolution in t and along ξ for case C1b
as retrieved from a PIC simulation.

FIG. 4. The relative energy change per betatron cycle ϵ ¼
−

ffiffiffiffiffiffiffiffiffi
2=γ̄0

p
Ez=E0 as a function of the comoving coordinate ξ for

cases C1a (blue), C1b (green), and C1c (red) obtained from PIC
simulations.

TABLE I. Beam parameters for the considered cases.

Case C1a Case C1b Case C1c

Beam energy γ̄0 9785 19569 48923
Beam peak current Îb=IA 0.29 0.58 1.35
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reaches a maximum for C1a earlier than for C1b, and earlier
for C1b than for C1c, respectively.
The evolution of Xb for the complete beam is depicted in

Fig. 3(b) for case C1b. The beam centroid initially grows in
t and along ξ. However, as soon as the oscillations of beam
slices start to decohere with respect to each other, owing to
a differing energy change (∂ξϵ ≠ 0), the beam centroid
stops growing along ξ. At the tail, Xb reaches a maximum
after about six oscillation periods [see Fig. 3(a), green
curve] and saturates for greater t. This is in fundamental
contrast to previous models which predict Xb to grow
steadily for increasing ξ. The decoherence time and
connected hosing saturation time is different for different
slices along the beam. This is owing to a variation of
∂ξϵðξÞ, CpðξÞ, CbðξÞ, and Cd along the beam. Saturation of
hosing takes place latest slightly behind the comoving
position of maximum Ez (e.g., at kpξ ¼ −0.20 for C1b),
where ∂ξϵ ≈ 0 (compare Fig. 4). This is due to the fact that
slices behind the Ez peak are driven coherently by slices
ahead of the peak location for a greater amount of time
than, e.g., slices at the tail. Yet, as the differential phase
difference of centroid oscillations along the beam increases,
Eq. (1) implies that the channel centroid is stopped being
amplified and the beam centroid amplitude saturates also
close to the Ez peak. Hence, for times comparable to td;ϵ or
greater, the beam centroid oscillation amplitude does not
grow steadily with increasing ξ, as predicted in current
models. Instead, Xb increases toward the region with
minimum ϵ, where decoherence takes place later and
decreases for greater ξ.
In conclusion, the here presented simulations show that

the intrinsic drive-beam energy evolution in PWFA leads to
a mitigation of the hose instability independent of the initial
beam energy and for other types of hosing seed than the
ones regarded in Ref. [15]. Different to what is expected
from previous models, we find that hosing does not grow
steadily along ξ but for t≳ td;ϵ increases towards the
region with maximum Ez and decreases for greater ξ.
This observation is consistent with the predictions from the
two particle model.

B. Hosing mitigation for varying degrees of beam
energy spread

In this section we present results from 3D PIC simu-
lations investigating the hosing of a drive beam with
triangular current profile. This is in distinction to the
previous examples of beams with Gaussian current profiles
presented in [15] and above. We regard a beam with the
parameters used in Ref. [14]. The beam has an energy of
γ̄0 ¼ 55773, and a transverse Gaussian density distribution
with transverse dimensions kpσx ¼ kpσy ¼ 13.0 × 10−3.
The current profile is triangular with the current rising
from zero at kpξ ¼ −0.8 to the peak value of Îb ¼ 6.65 kA
at kpξ ¼ −0.53. From this position, the current decreases

linearly to zero at kpξ ¼ 3.19. The initial beam centroid is
given by Xb;0ðξÞ ¼ 4.17 × 10−3 × ξΘðkpξÞ, hence, a tilt is
introduced from position kpξ ¼ 0. The beam propagates
through a flat-top plasma target with density n0 and drives a
plasma wave in the blowout regime. We investigate the
hose instability for the case of no beam energy spread as in
Ref. [14], and study how the degree of the initial relative
uncorrelated energy spread Δγ ¼ σγ=γ̄0 affects the hose
instability. Case C2a is without energy spread, Δγ ¼ 0.0,
case C2b has a relative energy spread of Δγ ¼ 0.005, case
C2c has Δγ ¼ 0.01 and case C2d features Δγ ¼ 0.02.
The simulations are performed using the 3D quasistatic

PIC code HIPACE [20]. The dimensions of the simulation
box are 5 × 9 × 9k−3p and the number of cells 512 × 512×
512. The time step is adjusted dynamically during the
simulation and spans from ωpΔtinit ¼ 20.0 at the beginning
of the simulation to ωpΔtfin ¼ 6.0 at the end of the
simulation (ωptmax ¼ 1.0 × 105). Four particles per cell
are used to model the plasma and 72 beam particles per cell
are used for case C2a and 16384 beam particles per cell for
cases C2b, C2c, and C2d, using a quadratic charge inter-
polation scheme.
Figure 5(a) depicts the temporal evolution of the beam

centroid at the tail of the beam (kpξ ¼ 3.15) for all four
cases. The beam centroid amplitude grows exponentially
until ωβ;0t ∼ 35, in agreement with the result provided in
Ref. [14]. However, we find that the growth rate for greater
propagation distances is not exponential. Instead, the beam
centroid reaches a maximum at ωβ;0t ∼ 70 for case C2a, and
then saturates at an amplitude smaller than the maximum

amplitude. The simple estimate Δϵ ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Îb=ðIAγ̄0Þ

q
yields

for the decoherence time from a differential energy change
ωβ;0td;ϵ ∼ 50 [compare Eq. (17)], in good qualitative agree-
ment with the simulation results.

FIG. 5. (a) Evolution of beam centroid at the beam-tails (at
kpξ ¼ 4.0) for cases C2a (blue), C2b (green), C2c (yellow), and
C2d (red) obtained from PIC simulations. (b) Centroid evolution
along z and ξ for case C2a, from a PIC simulation.
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It can also be seen that a subpercent relative energy spread
(0.5% in case C2b) already significantly reduces the beam
centroid. An energy spread of 1.0% in case C2c damps the
centroid amplitude to about half the value near depletion as
compared to case C2a. An energy spread of 2.0% in case C2d
even reduces the centroid oscillation amplitude to a value
lower than the initial beam centroid deviation.
In the limit of no energy change, the beam centroid is

expected to be reduced by half an e-folding, compared to
the case with no energy spread, at the decoherence time
ωβ;0td;Δγ ≃ 2=Δγ [see Eq. (25)]. This yields ωβ;0td;Δγ ≃ 400

for case C2b, ωβ;0td;Δγ ≃ 200 for case C2c and ωβ;0td;Δγ ≃
100 for case C2d. These numbers are in good agreement
with the result shown in Fig. 5(a) (for case C2b the
decoherence time is not reached).
The beam centroid evolution along the propagation

distance and along the beam is depicted in Fig. 5(b) for
case C2a. A similar behavior as in Fig. 3(b) is observed.
Initially, Xb grows for increasing ξ and z, then Xbðξ; zÞ has
a maximum at a propagation distance z which depends on
the comoving position ξ along the beam. Hence, in contrast
to the current conception, Xbðξ; zÞ does not grow steadily
for greater propagation distances and positions along the
beam. The propagation distance for which the growth
of the hose instability is suppressed is greatest near to
the maximum of Ez, as predicted by the two-particle model.
In summary, the simulation results presented in this

section show that the presented hosing mitigation mech-
anisms are effective for a triangular beam-current profile
and a beam energy of 28.5 GeV. Instead of an exponential
amplification, as predicted by previous models, we observe
a saturation of the hose instability. Moreover can a
subpercent energy spread already significantly contribute
to the mitigation of hosing and a percent-level energy
spread can even reduce the beam centroid amplitude to a
value smaller than the initial hosing seed. The observed
hosing mitigation effects are in good agreement with the
presented two-particle model.
Effective damping of the hose instability can only occur

as long as the hosing seed is sufficiently small not to lead to
beam breakup before the mitigation takes place. Reducing
the initial hose seed is therefore crucial to fully stabilize the
beam propagation. For this purpose we propose a concept
in the following which employs plasma density tapers to
mitigate initial drive-beam centroid offsets or misalign-
ments between driver and witness beam that seed hosing.

VI. REDUCTION OF CENTROID OFFSETS
AND MISALIGNMENTS WITH TAPERED

PLASMA-DENSITY PROFILES

A. Theoretical model

We consider a longitudinal plasma profile with a
transition from the vacuum-plasma interface at zv to the
flat-top region of the plasma at z0. The beam centroid

during the propagation in this vacuum-to-plasma transition
can be described by

d2Xb

dz2
þ kβðzÞ2Xb ¼ 0; ð26Þ

when neglecting the channel centroid displacement, the
beam-energy change and effects from energy spread, where
kβ ¼ ωβ=c is the betatron wave number which depends on
the z-coordinate through the dependency on the local plasma
density k2β=k

2
β;0¼n=n0, where kβ;0¼kβðz0Þ and nðz0Þ ¼ n0.

Equation (26) corresponds to the system of a nonconserva-
tive harmonic oscillator with z-dependent frequency. The
corresponding normalized Hamiltonian is given by

HðzÞ ¼ X0
bðzÞ2
2

þ kβðzÞ2XbðzÞ2
2

; ð27Þ

where X0
b ¼ dXb=dz. Hence, the energy of the oscillator at

the vacuum-plasma interface is given by Hv ¼ X02
b;v=2þ

k2β;vX
2
b;v=2, where Xb;v ¼ XbðzvÞ and X0

b;v ¼ X0
bðzvÞ are the

initial beam centroid and change of centroid, respectively,
and where kβ;v ¼ kβðzvÞ. By combining Eqs. (26) and (27)
one finds that the energy changes according to dH=dz ¼
kβk0βX

2
b.

In short transitions with L ¼ z0 − zv ≪ k−1β;0 and kβ;v ≤
kβ;0, Xb and X0

b do not significantly evolve, and the energy
of the oscillator at the beginning of the flat-top plasma
profile at z0 is essentially given by Hshort;0 ¼ X02

b;v=2þ
k2β;0X

2
b;v=2. However, for longer transitions with kβ;0L ≫ 1,

the oscillator energy at the beginning of the flat-top profile
Hðz0Þ can significantly differ from Hshort;0. This is impor-
tant for the mitigation of hosing because the hosing seed is
proportional to the square root of the oscillator energy.
We consider the case for which the spatial hosing seed

dominates over the velocity hosing seed, i.e., X02
b;v ≪

k2β;0X
2
b;v, such that Hshort;0 ≃ k2β;0X

2
b;v=2. In this case, Hv ≤

Hshort;0 if kβ;v ≤ kβ;0. Furthermore, if the vacuum-to-plasma
taper is long kβ;0L ≫ 1 with a small relative local change
k−2β k0β ≪ 1 for all z ∈ ½zv; z0�, the evolution of Xb and X0

b

occurs almost adiabatically. Hence, if kβ;v ≪ kβ;0 in such a
scenario, the oscillator energy and therefore the hosing seed
can significantly be reduced if a long taper is used compared
to the case if no taper is used, i.e., Hlong;0 ≪ Hshort;0.

B. Tapered profile

As an example, we consider the functional dependence

kβðzÞ ¼

8>><
>>:

0 if z ≤ zv;

kβ;0½1 − ðz − z0Þ=λ�−2 if zv < z ≤ z0;

kβ;0 if z > z0;

ð28Þ
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where λ is the characteristic scale length of the taper
(compare Refs. [32,33], in which this functional depend-
ence was used for the matching of the beam betatron
function). Such density profiles (n ¼ n0k2β=k

2
β;0) can be

experimentally realized in appropriate gas capillaries
[34,35]. Using the assumption that the initial centroid
potential energy dominates over the initial centroid kinetic
energy, the solution for this differential equation is (com-
pare, e.g., [32])

XbðzÞ ¼ Xb;v

�
1 −

z − z0
λ

��
λ cosðφÞ
Lþ λ

þ sinðφÞ
kβ;0λ

�
;

with the phase advance φðzÞ ¼ R
z
zv
kβðz0Þdz0. In order to

determine the optimal taper scale length λ which minimizes
the initial hose seed, we minimize the hosing seed at z0
obtained with a tapered profile relative to the hosing seed
obtained with a pure flat-top profile

η0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hðz0Þ
Hshort;0

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2β;0Xbðz0Þ2 þ X0

bðz0Þ2
q

kβ;0Xb;v
; ð29Þ

for a given Xb;v and for varying λ. This minimization yields
the optimum parameter λopt ≃ L=

ffiffiffiffiffiffiffiffiffiffiffi
kβ;0L

p
for long taper

lengths compared to a betatron length, kβ;0L ≫ 1. When
presuming this optimized taper parameter, the asymptotic
expression for η0 in the limit kβ;0L ≫ 1 is given by

η0;asympt ≃
ffiffiffi
2

p
=ð1þ ffiffiffiffiffiffiffiffiffiffiffi

kβ;0L
p Þ. The hosing seed reduction

η0 and the asymptotic solution η0;asympt are depicted in
Fig. 6(a) for varying taper lengths kβ;0L. The graph predicts
a reduction of the hosing seed to η0 ∼ 0.5 for a taper length
on the order of kβ;0L ∼ 10 and η0 ∼ 0.2 for a taper length on
the order of kβ;0L ∼ 100.
It should be noted that k−1β;0 scales with the square root of

the beam energy, and that tapers kβ;0L ≫ 1 are feasible
even for energies in the TeV-range. The scaling of the
taper length with the square root of the beam energy also
has the beneficial implication that relative beam energy
modulations within the taper can be neglected for great
beam energies, as shown in the following. Considering
that for the chosen density profile with λ ¼ λopt the relative

energy change scales as ðγ0 − γvÞ=γ0 ∼
ffiffiffiffiffiffiffiffiffi
2=γ0

p
kβ;0L=

ð1þ ffiffiffiffiffiffiffiffiffiffiffi
kβ;0L

p Þ, the energy modulation can be neglected

for long tapers, if
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kβ;0L=γ0

p
≪ 1. Hence, for taper lengths

kβ;0L ∼ 100, and highly relativistic beams, γ0 ≫ 1000, the
relative energy modulation within the tapered vacuum-to-
plasma transition and associated effects are insignificant.

C. Comparison to PIC simulations

This analytical prediction is benchmarked against results
from PIC simulations using OSIRIS [21]. We consider a

Gaussian electron beam with γ̄0 ¼ 1956.95, no initial
energy spread, a peak current of Ib ¼ 0.25 × IA, transverse
dimensions of kpσx ¼ kpσy ¼ 0.1, and longitudinal
dimension of kpσz ¼ 1.0 traversing a plasma target with
a density profile that corresponds through n ¼ n0k2β=k

2
β;0 to

the above defined profile kβðzÞ [see Fig. 6(b), top]. The
initial centroid along the beam is given by kpXb;0ðξÞ ¼
0.01 × ΘðξÞ. The centroid offset is introduced from the
peak current location at ξ ¼ 0. The dimensions of the
simulation box are 9 × 9 × 9k−3p and the number of cells
512 × 320 × 320. The chosen time step is ωpΔt ¼ 0.0169
using a numerical Cherenkov-radiation suppressing field
solver [36]. The plasma is modeled with 4 particles per cell
and the beam with 18 particles per cell using quadratic
charge interpolation.
The PIC results in Fig. 6(a) are in good agreement with

the analytical prediction for η0 for kβ;0L≲ 1. For
kβ;0L ≫ 1, the PIC results and analytical model deviate
owing to the occurrence of hosing in the tapered profile.
Corresponding centroids, obtained from PIC simulations
are depicted in Fig. 6(b), illustrating the substantial
mitigation of the hose instability as a result of the plasma
density tapering. The amplitude of the centroid oscillations
is considerably reduced if density tapers with lengths
of kβ;0L≳ 1 are employed, compared to the case with no
taper.
We would like to note that the above investigated

mitigation of centroid offsets in tapered vacuum-to-
plasma transitions analogously applies to the reduction

(a)

(b)

FIG. 6. Reduction of the hosing seeds in plasma density tapers
with λ ¼ λopt at the tail of the beam kpξ ¼ 4.0. (a) Relative hosing
seed η0 according to Eq. (29) (black), respective asymptotic
solution η0;asympt (gray) and results from PIC simulations
(circles). (b) Density profiles for different taper lengths (top)
and respective beam centroid amplitudes from PIC simulations
(bottom) for kβ;0L ¼ 0 (blue), kβ;0L ¼ 5 (green), kβ;0L ¼ 10
(orange), and kβ;0L ¼ 20 (red).
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of alignment offsets of witness beams with respect to the
propagation axis of drive beams.

VII. MITIGATION OF WITNESS BEAM HOSING
WITH ENERGY CHIRPS

A. Hosing of witness beams

For the sake of energy conversion efficiency and for the
reduction of accumulated correlated energy spread [37],
witness beams with a sufficient current are required in
PWFAs to (optimally) load the wake. According to Eq. (1),
a witness-beam current, sufficiently high to cause beam
loading inherently implies a strong coupling of the witness
beam centroid to the plasma centroid (also confer
Refs. [14,22]), and hence, implies that the witness beam
itself drives hosing. The associated challenge of stable
acceleration in the high-efficiency (beam-loaded) regime of
plasma-based accelerators was also addressed in [38].
In contrast to the linear regime, in which the variation

of the transverse wakefield along the witness beam enables
a mitigation of hosing [17,18], the transverse wakefield is
constant along the beam in the blowout regime. As
discussed in Sec. IV, an initial correlated energy spread
can also mitigate hosing. We here investigate which degree
of witness-beam energy chirp is required to mitigate
hosing, and to allow for an emittance preservation to a
few percent-level in the highly efficient beam-loaded
regime.

B. Head-to-tail decoherence

We consider a witness beam with a flattop current profile
which loads the plasma wake with high beam-loading
efficiency [37], modifying the wakefield such that it varies
approximately linearly along its axis (see Fig. 7). The
witness beam therefore accumulates a linear chirp during
the acceleration process which remains proportional to the
mean beam energy.
We analyze the head-to-tail decoherence length in such a

setup by means of the relations derived in Sec. IV. The
head-to-tail variation of the longitudinal field along the
witness beam ΔEw implies a constant chirp according to
χw ¼ ðkpγwÞ−1∂ γ̄=∂ξ ¼ −ΔEw=ðĒwkplwÞ, where Ēw is the
mean accelerating field along the beam, γw is the mean
energy of the witness beam and lw is the length of the
witness beam (compare Fig. 7). We use this expression for
the chirp together with Eq. (23) to obtain the head-to-tail
decoherence length of a beam with no uncorrelated energy
spread

kβ;wzd;χ ≃
2π

jχwjkplw
: ð30Þ

Considering a beam with a length of kplw ¼ 2, this implies
that a full head-to-tail decoherence is obtained after a
distance kβ;wzad;χ ∼ 157, kβ;wzbd;χ ∼ 79, and kβ;wzcd;χ ∼ 39 for

relative chirps of χaw ¼ 0.02, χbw ¼ 0.04, and χcw ¼ 0.08,
respectively. It should be noted that the head-to-tail
decoherence length is not necessarily an accurate measure
for the hosing mitigation length of a continuous beam [30],
which rigorously also depends on the structure of the
blowout wake. We therefore compare this scaling for the
head-to-tail decoherence length results from 3D PIC
simulations.

C. Comparison to PIC simulations

We compare the above estimates to 3D PIC simulations
with the quasistatic code HIPACE [20]. The considered
configuration is as follows. The drive beam is Gaussian
with dimensions kpσx;d ¼ kpσy;d ¼ 0.8, kpσz;d ¼

ffiffiffi
2

p
, with

the center of the current profile at kpξ ¼ −5 and with a
peak density of ndb=n0 ¼ 4. The witness beam has a
trapezoidal current profile with a current of 1.6 × IA at
the head, located at kpξ ¼ 0, and 1 × IA at the tail and has a
length of kplw ¼ 2. This current profile flattens the plasma
wake and, regarding its impact on the hose instability, is
equivalent to current profiles with a small slope of Ez along
the beam, i.e., for jχwj ¼ ΔEw=ðĒwkplwÞ ≪ 1. The beam
has an initial transverse rms size of kpσx;0 ¼ kpσy;0 ¼ 0.01,
is matched to the wakefield, and has no uncorrelated energy
spread. We investigate how the hosing of the beam with an
initial offset of Xb;0 ¼ σx;0 with respect to the propagation
axis of the drive beam evolves for differing constant chirps
χw. To guarantee the constancy of the chirp during the
propagation in the plasma, and to isolate the effect of the
chirp onto hosing, we disabled the energy gain of the beam
in the simulations. The beam energy corresponds to γw ¼
49000 (i.e., 25 GeV), but the results presented here are

FIG. 7. Illustration of the current profiles of a drive and a
witness beam pair (top) and resulting longitudinal wakefield
structure in a PWFA (bottom). The peak decelerating field within
the drive beam region is denoted by Êd and the average
accelerating field within the witness beam by Ēw. The witness
beam with flattop current profile and length lw loads the wake in
such a way that the longitudinal field varies by ΔEw from head-
to-tail.
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independent of the beam energy (as long as highly
relativistic).
The numerical parameters of the simulations are as

follows: the computational simulation box has dimensions
of 16k−1p × 16k−1p × 11.5k−1p with 512 × 512 × 600 grid
points. The witness beam consists of 107 macroparticles
and the plasma is modeled with 4 particles per cell within
the interaction region and 1 particle per cell close to the
computational box boundaries.
We study the beam dynamics for relative chirps χ0w ¼ 0

(no chirp), χaw ¼ −0.02, χbw ¼ −0.04, and χcw ¼ −0.08, i.e.,
with the slice energy decreasing from head to tail, as
suggested by Fig. 7. The evolution of the beam centroids at
the tail of the beams and the projected emittance are
depicted in Fig. 8 top and bottom, respectively. For the
beam without chirp, we observe an exponential growth of
the centroid deviation at the tail. As seen in Fig. 8 (top), the
introduction of an energy chirp leads to a reduction of the
centroid growth rate and eventually to a disruption of
hosing, i.e., to a saturation of the beam centroid offsets. For
chirps χbw ¼ −0.04 and χcw ¼ −0.08 the head-to-tail
decoherence owing to the chirp leads to a saturation of
the centroid oscillations after the distances kβ;wzb ≈ 110

and kβ;wzc ≈ 45, respectively. This is compatible with the
above head-to-tail decoherence estimates. For a relative
chirp of χaw ¼ −0.02 the growth is reduced. However,
the beam centroid does not saturate at the head-to-tail
decoherence length kβ;wzad;χ ∼ 160. This is owing to the

fact that slices along the continuous beam are coherently
driving the tail slice beyond the two-particle head-to-tail
decoherence length.
As shown in Fig. 8 (bottom), the projected transverse

rms emittance grows approximately exponentially for
the case with no energy chirp as the various beam slices
start to be more and more misaligned with respect to each
other owing to hosing. However, for the case with an
energy chirp of χaw ¼ −0.02, the emittance growth rate is
significantly reduced, but the emittance after 28 betatron
cycles still grows by one order of magnitude. For
χbw ¼ −0.04, the emittance growth after 28 betatron
cycles is still ϵbxðz ¼ 175k−1β;0Þ=ϵx;0 ≈ 3.2. With an energy
chirp of χcw ¼ −0.08, the emittance grows by 8%, i.e.,
ϵcxðz ¼ 175k−1β;0Þ=ϵx;0 ≈ 1.08. It should be noted that, since
the hosing gain length is proportional to the betatron
wavelength 2πk−1β ∝ ffiffiffiffiffi

γw
p

, and since the number of beta-
tron oscillations per stage decreases with increasing energy,
the effects of hosing become less severe for higher beam
energies in a plasma-based collider design.
In conclusion, relative energy chirps on the ∼10% level

are required to allow for a reduction of the emittance
growth to a sub-10% level per stage in the regarded setup
with a witness beam optimally loading the plasma wave
and being initially misaligned by one rms width. The
scheme is feasible, if matching sections enable the transport
of beams with a 10%-level energy chirp without significant
quality deterioration (e.g., by use of optics with reduced
chromatic dependence [39,40] or with apochromatic
matching sections [41]). An additional requirement for
the viability of this scheme is that the chirp can be removed
to a sufficient degree, e.g., with a plasma-dechirper [42],
such that the energy spread is comparable to (or smaller
than) the energy spread introduced at the interaction point
owing to beam-beam effects in typical collider designs.
For the realization of stable and quality-preserving high-
efficiency plasma-based accelerators, additional methods
for the mitigation of hosing, such as the reduction of the
initial misalignment by means of the method presented
in VI, and the exploitation of ion-motion induced head-to-
tail decoherence [43].

VIII. SUMMARY AND CONCLUSION

In this work, we explore mechanisms which lead to a
mitigation of the hose instability of the drive beams and
witness beams in PWFAs. The mitigating mechanisms
from the intrinsic beam energy change, from an initially
applied energy chirp or from an uncorrelated energy spread
are discussed qualitatively and quantitatively by using a
two-particle model.
We demonstrate with 3D particle-in-cell simulations that

these mitigation mechanisms are effective for varying beam
energies, differing types of hosing seed, and changing beam
current profiles. We also investigate the spatiotemporal

FIG. 8. PIC simulation results for beams with differing values
of the relative chirp. The beams are initially misaligned with
respect to the propagation axis of the drive beam and are subject
to hosing. Centroid deviations at the tail of beams (top) and
respective projected rms emittance (bottom).
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evolution of the beam centroids under the influence of the
above effects and report the phenomenon that the beam
centroid deviation develops a maximum close to the
maximum decelerating field during propagation, which
is contrasting to expectations from previous models. This
phenomenon, as well as the mitigation times observed in
PIC simulations, is in agreement with our models.
In addition, we discuss a method for the reduction of the

initial spatial hosing seed in tapered vacuum-to-plasma
profiles. It is shown analytically, and in agreement with 3D
PIC simulations, that experimentally realizable profiles
allow for a significant reduction of the hosing seed. It
should be noted that this method and the respective scaling
is also applicable for the reduction of misalignments
between drive and witness beams in external injection of
plasma-based accelerators.
Furthermore, we investigate the energy chirp required to

sufficiently mitigate hosing of a witness beam in the high-
efficiency (beam-loaded) regime. As shown by use of
particle-in-cell simulations and the derived scalings, a chirp
on the ∼10%-level, is required to sufficiently mitigate
hosing of a beam misaligned by one rms width in the high-
efficiency regime, indicating the requirement for apochro-
matic matching sections [39–41] and dechirping methods
[42], and/or additional hosing mitigation mechanisms, such
as ion-motion [43].
In conclusion, this work discusses and establishes mech-

anisms for the mitigation of hosing of the drive beam in
detail, and investigates possibilities to mitigate the hosing of
witness beams in the high-efficiency regime of PWFAs.
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