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Resumo 

Fotogrametria em câmera única é um procedimento bem estabelecido para recolher 
dados quantitativos de objectos através de fotografias. Em biologia, fotogrametria é 
frequentemente aplicada no contexto de estudos morfométricos, focando-se no estudo 
comparativo de formas e organismos. Nos estudos morfométricos são utilizados dois tipos 
de aplicação fotogramétrica: fotogrametria 2D, onde são utilizadas medidas de distância 
e ângulo para quantitativamente descrever atributos de um objecto, e fotogrametria 3D, 
onde são utilizadas coordenadas de referência de forma a reconstruir a verdadeira forma 
de um objeto. Apesar da existência de uma elevada variedade de software no contexto de 
fotogrametria 3D, a variedade de software concebida especificamente para a a aplicação 
de fotogrametria 2D é ainda muito reduzida. Consequentemente, é comum observar 
estudos onde fotogrametria 2D é utilizada através da aquisição manual de medidas a partir 
de imagens, que posteriormente necessitam de ser escaladas para um sistema apropriado 
de medida. Este processo de várias etapas é frequentemente moroso e requer a aplicação 
de diferentes programas de software. Além de ser moroso, é também susceptível a erros, 
dada a natureza manual na aquisição de dados. O presente trabalho visou abordar os 
problemas descritos através da implementação de um novo software multiplataforma 
capaz de integrar e agilizar o processo de fotogrametria presentes em estudos que 
requerem fotogrametria 2D. Resultados preliminares demonstram um decréscimo de 45% 
em tempo de processamento na utilização do software desenvolvido no âmbito deste 
trabalho quando comparado a uma metodologia concorrente. Limitações existentes e 
trabalho futuro são discutidos. 

Palavras-Chave: Fotogrametria, Morfometria, Software, Biologia, Medição, Fotografia, 
Aplicação. 
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Abstract 

Single-camera photogrammetry is a well-established procedure to retrieve quantitative 
information from objects using photography. In biological sciences, photogrammetry is 
often applied to aid in morphometry studies, focusing on the comparative study of shapes 
and organisms. Two types of photogrammetry are used in morphometric studies: 2D 
photogrammetry, where distance and angle measurements are used to quantitatively 
describe attributes of an object, and 3D photogrammetry, where data on landmark 
coordinates are used to reconstruct an object true shape. Although there are excellent 
software tools for 3D photogrammetry available, software specifically designed to aid in 
the somewhat simpler 2D photogrammetry are lacking. Therefore, most studies applying 
2D photogrammetry, still rely on manual acquisition of measurements from pictures, that 
must then be scaled to an appropriate measuring system. This is often a laborious multi-
step process, on most cases utilizing diverse software to complete different tasks. In 
addition to being time-consuming, it is also error-prone since measurement recording is 
often made manually. The present work aimed at tackling those issues by implementing 
a new cross-platform software able to integrate and streamline the photogrammetry 
workflow usually applied in 2D photogrammetry studies. Results from a preliminary 
study show a decrease of 45% in processing time when using the software developed in 
the scope of this work in comparison with a competing methodology. Existing limitations 
and future work towards improved versions of the software are discussed. 

Keywords: Photogrammetry, Morphometry, Software, Biology, Measurement, 
Photography, Application. 

  



   
Application for Photogrammetry of Organisms 

 

vi 
 

  



   
Application for Photogrammetry of Organisms 

 

vii 
 

Table of contents 

Acknowledgments ............................................................................................................ i 
Resumo ........................................................................................................................... iii 
Abstract ........................................................................................................................... v 

Table of contents ........................................................................................................... vii 
List of tables ................................................................................................................... xi 
List of figures ............................................................................................................... xiii 
List of abbreviations and acronyms ............................................................................ xv 

Chapter 1 – Introduction ............................................................................................... 1 

1.1. Context ............................................................................................................... 1 

1.2. Motivation and relevance ................................................................................... 2 

1.3. Investigation objectives ..................................................................................... 4 

1.4. Methodology ...................................................................................................... 4 

1.5. Dissertation structure and organization ............................................................. 5 

Chapter 2 – Photogrammetry theoretical framework ................................................ 7 

2.1. Introduction ........................................................................................................ 7 

2.2. Computer-aided photogrammetry ...................................................................... 7 

2.2.1. Relevance and current solutions ................................................................. 7 

2.2.2. Azores Whale Lab photogrammetry process .............................................. 8 

2.2.3. Photogrammetry software review ............................................................. 10 

2.3. Camera calibration ........................................................................................... 11 

2.3.1. Relevance and current solutions ............................................................... 11 

2.3.2. Camera calibration principles ................................................................... 12 

2.3.3. Point extraction – Chessboard pattern ...................................................... 14 

2.3.4. Point extraction – Circle grid pattern ....................................................... 16 

2.3.5. Point extraction – Other calibration points methods ................................ 17 

2.3.6. Calibration – Pinhole model ..................................................................... 17 

2.3.7. Calibration – Fisheye model ..................................................................... 20 

2.3.8. Lens distortion correction ......................................................................... 21 

2.4. Image metadata ................................................................................................ 22 

2.4.1 Relevance and current solutions ............................................................... 22 

2.4.2 Exif ........................................................................................................... 23 

2.4.3 XMP .......................................................................................................... 24 

2.5. Measuring and unit conversion ........................................................................ 25 

Chapter 3 – Integrated photogrammetry system proposal ...................................... 27 

3.1. Introduction ...................................................................................................... 27 

  



   
Application for Photogrammetry of Organisms 

 

viii 
 

3.2. Architecture ...................................................................................................... 27 

3.2.1 Module architecture .................................................................................. 27 

3.2.2 Presentation software architecture ............................................................ 29 

3.3. General user interface ...................................................................................... 30 

3.4. Image I/O module ............................................................................................ 32 

3.5. Camera calibration module .............................................................................. 32 

3.5.1. Architecture .............................................................................................. 32 

3.5.2. Associated views ...................................................................................... 33 

3.5.3. OpenCV Calib3d – Implementation and limitations ................................ 35 

3.5.4. Calibration file specification (.acalib) ...................................................... 36 

3.6. Lens distortion correction module ................................................................... 37 

3.7. Measuring module ........................................................................................... 38 

3.8. Unit conversion module ................................................................................... 39 

3.9. Mathematical expressions module ................................................................... 41 

3.9.1 Description and associated views ............................................................. 41 

3.9.2 Expression file specification (.xml) .......................................................... 43 

3.10. Session module ............................................................................................. 43 

3.10.1 Description ................................................................................................ 43 

3.10.2 Program-specific session file specification (.axml) .................................. 44 

3.10.3 User-specific session file specification (.CSV) ........................................ 45 

Chapter 4 – Results analysis and discussion .............................................................. 47 

4.1. Introduction ...................................................................................................... 47 

4.2. Data collection ................................................................................................. 47 

4.3. Overall results .................................................................................................. 49 

4.3.1 Quantitative time results ........................................................................... 49 

4.3.2 Qualitative interview results ..................................................................... 50 

4.4. Camera calibration ........................................................................................... 51 

Chapter 5 – Conclusions and recommendations ....................................................... 53 

5.1. Introduction ...................................................................................................... 53 

5.2. Main conclusions ............................................................................................. 53 

5.3. Contributions to the scientific community ....................................................... 54 

5.4. Study limitations .............................................................................................. 55 

5.5. Future work ...................................................................................................... 56 

Bibliography .................................................................................................................. 57 

Annexes and Appendices .............................................................................................. 63 

Annex A ...................................................................................................................... 65 

Annex B ...................................................................................................................... 67 

  



   
Application for Photogrammetry of Organisms 

 

ix 
 

Appendix A ................................................................................................................. 69 

Appendix B ................................................................................................................. 71 

Appendix C ................................................................................................................. 73 

Appendix D ................................................................................................................. 75 

Appendix E ................................................................................................................. 77 

 

  



   
Application for Photogrammetry of Organisms 

 

x 
 

  



   
Application for Photogrammetry of Organisms 

 

xi 
 

List of tables 

Table 1 - Quantitative results of time taken to perform two different steps of the 
photogrammetry process. ................................................................................................ 50 

 

  



   
Application for Photogrammetry of Organisms 

 

xii 
 

  



   
Application for Photogrammetry of Organisms 

 

xiii 
 

List of figures 

Figure 1 – An aerial photograph of a full whale’s body (left) and a photograph taken 
from a boat photoshoot (right) (Azores Whale Lab, n.d.). ............................................. 10 
Figure 2 - Types of typical radial distortions. Barrel distortion (left), pincushion 
distortion (middle) and mustache distortion (right) (WolfWings, 2010). ...................... 12 
Figure 3 – A set of photographs of a planar calibration pattern at different angles to be 
used for camera calibration. ............................................................................................ 13 
Figure 4 – Representation of detected corners on a chessboard pattern. ........................ 15 
Figure 5 – Representation of found circle centers on a circle grid pattern. .................... 16 
Figure 6 – Representation of found corners on a deltille grid pattern (Ha et al., 2017). 17 
Figure 7 – Original image (left) and the “undistorted” image using the regular Pinhole 
model (right). .................................................................................................................. 21 
Figure 8 – Original image (left) and the corrected image using the Kannala model 
(right). ............................................................................................................................. 21 
Figure 9 – Basic structure of a JPEG compressed file (JEITA, 2002). .......................... 24 
Figure 10 – Overview of module interaction. ................................................................. 29 
Figure 11 - Overview of the adopted MVC related architecture. ................................... 30 
Figure 12 – The different components of the main screen represented by different 
colors. ............................................................................................................................. 31 
Figure 13 – Overview of the calibration module architecture. ....................................... 33 
Figure 14 – The different delimited components of the calibration screen. ................... 34 
Figure 15 – Calibration configuration dialog. ................................................................ 35 
Figure 16 - Undistort dialog. .......................................................................................... 38 
Figure 17 – Example of two perpendicular measuring lines. ......................................... 39 
Figure 18 – Reference scaling dialog example. .............................................................. 40 
Figure 19 – Distance scaling dialog example. ................................................................ 41 
Figure 20 – Example of resulting centimeter conversion. .............................................. 41 
Figure 21 – Example of setting mathematical expression and attributing variable value.
 ........................................................................................................................................ 42 
Figure 22 – Example of a resulting expression value in the layer list. ........................... 43 
Figure 23 – Setting a metadata tag to be exported. If set to export, the tag will have a 
blue ‘e’ preceding it. Whole metadata directories, such as Exif can be set to export. ... 46 
Figure 24 – Experiment extracted measurements: one for animal length, three for width.
 ........................................................................................................................................ 49 

 

 

  



   
Application for Photogrammetry of Organisms 

 

xiv 
 

 

  



   
Application for Photogrammetry of Organisms 

 

xv 
 

List of abbreviations and acronyms 

APP – Application 

BMP – Bitmap (image file) 

Exif – Exchangeable Image File Format 

GC – Garbage Collector 

GIF – Graphics Interchange Format 

GIMP - GNU Image Manipulation Program 

IFD – Image File Directories 

I/O – Input/Output 

ISO – International Organization for Standardization 

JEIDA – Japan Electronic Industries Development Association 

JFIF – JPEG File Interchange Format 

JPEG – Joint Photographic Experts Group 

MARE – Marine and Environmental Sciences Centre 

MVC – Model-view-controller 

MVP – Model-view-presenter 

MVVM – Model-view-viewmodel 

PC – Personal Computer 

PNG – Portable Network Graphics 

RDF – Resource Description Framework 

TIFF – Tagged Image File Format 

XMP – Extensible Metadata Platform 

XML – Extensible Markup Language 

  



   
Application for Photogrammetry of Organisms 

 

xvi 
 

 



   
Introduction 

 

1 
 

Chapter 1 – Introduction 

1.1. Context 

The quantitative analysis of size and shape is essential for several branches of science, 
and comprises a set of measuring and analytical methods, collectively grouped in a field 
referred as Morphometrics (Elewa, 2010; Reyment, 1996, 2010; Rohlf, 1990). The origin 
of the term Morphometrics is attributed to Blackith (1957), however the field started 
being developed much earlier, with pioneering works being published by the end of the 
19th century (e.g., Weldon, 1890). Morphometrics is deeply intertwined with biological 
studies on phylogeny, ecology, and physiology, but it also progressively found 
applications in geomorphology, medicine, anthropology, behavioral sciences and 
forensics (Elewa, 2010). Morphometric methods allow the description and comparison of 
shapes of organisms or objects in a standardized manner, allowing for investigations on 
variability due to distribution, development stage, gender, genetic and environmental 
effects, among others. 

Traditional morphometrics has made use of (and in fact was partially on the basis for 
the development of) multivariate statistical methods, such as principal component 
analysis (PCA), cluster analysis, and similar methods, over data in the form of matrices 
of distance and angle measurements (Jensen, 2003; Rohlf & Marcus, 1993). This 
approach is still very useful for a plethora of applications; however, it has the drawback 
of not allowing the reconstruction of the original form from the measurements that are 
usually taken. Beginning in the mid-1980’s, in part because of growing scientific needs, 
but also due to the unprecedented progress of computational power, a ‘revolution’ in 
Morphometrics took place, through new methods that enabled defining shape as a set of 
distances among landmark coordinates and the geometric information about their relative 
positions (Jensen, 2003; Rohlf & Marcus, 1993). These new methods utilizing landmark 
and outline analyses have been termed Geometric Morphometrics to differentiate from 
the traditional Morphometrics methods that were already well established (Adams, Rohlf, 
& Slice, 2004). The present work focuses in techniques related to the former case and, as 
such, hereon all mentions to Morphometrics and morphometry methods relate to 
traditional Morphometrics, unless otherwise stated. 
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1.2. Motivation and relevance 

Despite the dramatic evolution seen in the field of Morphometrics, the process of 
recording morphometric data is often resource- and labor-intensive and can also be time-
consuming when no appropriate tools are available (Adams, Rohlf, & Slice, 2013). 
Morphometry studies often involve the collection of multiple measurements from a 
representative sample of individuals in a population, which normally translates in at least 
few, to tens or even hundred thousands measurements taken in the course of a single study 
(Kocovsky, Adams, & Bronte, 2009; Rising & Somers, 1989). 

Semi-automatic measuring equipment, linked to a computer, handheld PC, or with 
inboard processing capability, started being introduced in the early 1980’s to side-step 
the laborious and error-prone process of transcribing measurement hand notes to a digital 
database (e.g., Morizur, Ogor, & Lespagnol, 1994; Sprules, Holtby, & Griggs, 1981). 
However, these equipments rely in the manipulation of the object or organism being 
measured, which is not always practical, or overall feasible. For example, capturing and 
measuring many marine organisms is often impossible due to logistical constraints related 
to the environment in which they live or to the sheer size of the animals (large whales 
being a paradigmatic example). Similarly, very small (microscopic) organisms and 
objects cannot be easily manipulated in order to obtain measurements. For those cases, 
other methods of measurement must be employed, one of the most prominent being 
photogrammetry. 

Photogrammetry is a technique that makes use of photography to obtain measurements 
of physical objects, by scaling measurements taken directly on the photographic 
reproduction of an object, using basic geometric principles. Using the information stored 
in a photography to obtain measurements of objects was first proposed by François Arago, 
when discussing the applications of the (then) new daguerreotype technology (an early 
photographic process), during an address to the French Academy of Sciences (Arago, 
1839). Since then, photogrammetry has become a well-established measuring procedure, 
being widely used in geodesy, but also in other fields ranging from cell biology to 
astrophysics (Kraus, 2011; Luhmann, Robson, Kyle, & Harley, 2006). 

Photogrammetry techniques are diverse but the most common fall in two broad 
categories, aerial and terrestrial, which in turn can be either, close- (when camera to object 
distance is less than around 300 meters) or long-range (when camera to object distance is 
more than around 300 meters) (Luhmann et al., 2006). Micro photogrammetry 
(sometimes also termed ‘macro photogrammetry’ due to the type of lenses used) is a 
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special case of close-range photogrammetry, when the image scale >1 (Luhmann et al., 
2006). 

In the context of biological research, when photogrammetric techniques are used they 
tend to belong overwhelmingly to close-range photogrammetry and the basic procedure 
can be broken down in to three generalized steps: 

1. Gathering proper and relevant photographs of the body structures meant to be 
measured; 

2. Measuring the relevant body structures on the photographs, using either 
analogic or digital tools with appropriate resolution; 

3. Scaling from image units to a relevant measuring system, such as metric or 
imperial, from known scaling equations. 

As with direct morphometry, where measurements are taken directly from the 
specimens, in photogrammetry-aided studies making and recording measurements is 
usually also labor-intensive when done manually. Unfortunately, despite advances in 
automation of measurement acquisition in close-range photogrammetry, there is a number 
of situations where such automation is not possible, and the use of manual measurement 
is needed. 

As mentioned earlier for direct morphometry, not only taking thousands of manual 
measurements from pictures can become one of the most time-consuming parts of any 
morphometry study, it also usually implies transcribing those measurements to a digital 
database, which adds to the lengthy process of data acquisition and preparation prior to 
analysis. Additionally, data errors from transcription to database can compromise data 
quality (W. Kim, Choi, Hong, Kim, & Lee, 2003). In fact, data is usually corrupted during 
data entry by humans, either due to typographical errors or erroneous interpretation of 
written notes, and is still one of the most common sources of data-quality issues in 
databases (Hellerstein, 2008). 

It becomes clear that photogrammetry-aided morphometry studies can benefit from 
software that aid in capturing and transcribing data in an automatic or semi-automatic 
way. However, it is often the case that existing software solutions are either too expensive 
or are not appropriate for having been designed for a totally different application and/or 
not contemplating all steps in a workflow. Well designed software should aid during 
several stages of the workflow, decreasing both processing time and human error by 
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reducing complexity and automating data transcription (Gentleman et al., 2004; 
Hellerstein, 2008). 

The present work aimed at creating a software package to tackle those goals while 
ensuring enough flexibility to be useful in a wide-range of morphometric studies. 
Researchers from the Azores Whale Lab, associated with the Marine and Environmental 
Sciences Centre (MARE), helped with the development of the software by iteratively 
testing it and by providing feedback about the user experience. 

Morphometric data from whales is essential for several lines of research developed at 
the Azores Whale Lab. Nevertheless, due to their size, capturing whales is unfeasible and, 
consequently, photogrammetry is a preferred way to obtain relevant morphological data 
from different individuals. Photogrammetry provides additional benefits, such as larger 
sample sizes due to cost-effectiveness, increasement of safety to the researchers, and less 
disturbance to the whales (J. W. Durban, Fearnbach, Barrett-Lennard, Perryman, & Leroi, 
2015).  

 

1.3.Investigation objectives 

The general objective is to explore, formulate and implement a solution to simplify 
and expedite the retrieval of morphometric data of animals from photographs with results 
comparable to current solutions. The proposed and implemented solution, therefore, must 
be an easier and faster way to retrieve morphometric data than current procedures. It will 
be compared with the current photogrammetry procedure employed by the researchers at 
Azores Whale Lab. 

It is important to note that although direct comparisons will be made against the Azores 
Whale Lab photogrammetry procedure, the solution should still be general enough to be 
used in different photogrammetry contexts and applications. It would also be ideal if the 
solution is cross-platform, or at least capable of easily being ported into other platforms. 

 

1.4.Methodology 

As mentioned above, the solution proposed in the scope of this work was developed 
with the cooperation of researchers at Azores Whale Lab and direct contact with them 
was crucial, namely in gathering feedback about design choices, usability and bugs. For 
development, a Kanban based agile methodology was used (Sugimori, Kusunoki, Cho, & 
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Uchikawa, 1977), where continuous releases and adjustments were made based on 
feedback. Ideally, this would span a one- or two-week cycle of development to testing, 
but in reality, it was not as regular and it varied from one week to one month. 

The development releases of the program were published on the GitHub platform. 
There were several reasons for this, namely: 

- It allows public discussion and feedback through the use of the issues feature; 

- It provides a way to label each issue which provides additional organization. 
Labels such as ‘bug’, ‘duplicate’, ‘enhancement’ and priority related labels were 
created and used to help organize and prioritize the development work; 

- It provides an easy and intuitive way to track the progress of each issue, through 
the use of a Kanban board, where each issue can be seen akin to a ticket; 

- It provides a wiki platform, where it is possible to explain and detail how the 
program works and how it can best be used; 

- It provides a way to publish and track different releases of the program. 

Final analysis and comparison in usability and usage time between current solutions 
and the new solution was also done with the cooperation of researchers at the Azores 
Whale Lab. The comparison details, including the data collection process, results and 
limitations is further discussed in Chapter 4. 

 

1.5. Dissertation structure and organization 

This document is organized in five different chapters describing the different phases 
until its conclusion. 

The first chapter introduces the dissertation theme, the motivation, its objectives and 
the document structure. 

The second chapter expands the relevance, current solutions and theoretical framework 
of the photogrammetry procedure and each of its steps. 

The third chapter describes in detail the proposal and implementation of an integrated 
system capable of solving the presented challenges that were identified in previous 
chapters.  

The fourth chapter presents a comparison between previous solutions and the proposed 
system through the analysis of quantitative and qualitative results. 
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The fifth and last chapter presents the study conclusions, recommendations, 
limitations, possible contributions to the scientific community and future research. 
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Chapter 2 – Photogrammetry theoretical framework 

2.1. Introduction 

This chapter is composed of five Sections and describes the theoretical framework 
behind the photogrammetry process and its steps. The first Section introduces and 
describes the chapter structure. 

The second Section explores the different applications of photogrammetry, as well as 
its relevance to biological sciences. It further delineates the general process of 
photogrammetry and describes a specific example within the field that will be used as 
reference throughout this work. Finally, relevant software and existing solutions are 
presented. 

The third, fourth and fifth Sections describe the relevance and theoretical framework 
of relevant steps in the photogrammetry process noted in the second Section. The third 
Section relates to the specific step of camera calibration and image distortion correction. 
The fourth Section relates to image metadata extraction. Finally, the fifth Section relates 
to measurement acquisition and unit conversion, also referred as scaling. 

 

2.2. Computer-aided photogrammetry 

2.2.1. Relevance and current solutions 

As has already been pointed in Chapter 1, photogrammetry has a wide range of 
applications, with examples in many fields, including microscopy (e.g., Boyde & Ross, 
1975), archaeology and paleontology (e.g., Fussell, 1982; Mallison & Wings, 2014), 
anthropology and forensics (e.g., Grip, Grip, & Morrison, 2000; Milliet, Delémont, & 
Margot, 2014), astronomy (e.g., Googe, Eichhorn, & Luckac, 1970), industry (e.g., Fraser 
& Brown, 1986), geodesy (e.g., Kraus, 2011), among many others. 

The use of  photogrammetry is also widespread in biological and ecological studies 
and can be motivated by conservation and ethical concerns (e.g., Whitehead & Gordon, 
1986; Whitehead & Payne, 1981), to speed-up obtaining and processing data on studies 
involving a large number of individuals or over large areas such as in forestry (e.g., 
Ivosevic, Han, & Kwon, 2017; Zou et al., 2014), or to obtain data on organisms that are 
difficult to locate, manipulate, or inaccessible in other ways (e.g., Breuer, Robbins, & 
Boesch, 2007; Deakos, 2010; John W. Durban et al., 2016; Letessier, Juhel, Vigliola, & 
Meeuwig, 2015). Another incentive for using photogrammetry is its relative low cost 
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compared with direct measurement in many situations, which is often made clear in the 
titles of resulting publications, by the use of terms such as ‘Inexpensive’ and ‘Low-cost’ 
(e.g., Stephen M Dawson, Bowman, Leunissen, & Sirguey, 2017; S. M. Dawson, 
Chessum, Hunt, & Slooten, 1995; Letessier et al., 2015; McFall, Shepard, Donaldson, & 
Hulbert, 1992). 

Apart from small variations in the way pictures are obtained, the workflow for 
photogrammetry studies in natural sciences (e.g., Stephen M Dawson et al., 2017; 
Deakos, 2010; Galbany et al., 2016; Jadejaroen, Hamada, Kawamoto, & Malaivijitnond, 
2015; Meise, Mueller, Zein, & Trillmich, 2014; Rothman et al., 2008; Shrader, Ferreira, 
& Van Aarde, 2006) is very similar, normally involving several steps, namely: 

1. Correction of distortion within the taken photographs, using camera calibration; 
2. Obtaining data to enable scaling pictures either by: 

a. Placing a scale in the same plane as the specimens (which can be achieved 
by the projection of parallel laser beams, placing a scale bar or using 
another object of known size), or 

b. Measuring the distance from the camera focal plane to the specimen 
plane. 

3. Measuring the relevant structures in the photographs, usually by utilizing image 
editing software; 

4. Exporting measurements to a digital database; 
5. Making calculations and statistical analyses using spreadsheets and statistical 

analysis software. 

The exact number of steps may vary depending on the nature of the study and the 
methodologies utilized. 

 

2.2.2. Azores Whale Lab photogrammetry process 

An example of a photogrammetry workflow is the protocol used by researchers at 
Azores Whale Lab at the beginning of this project, which involved the following specific 
steps (R. Prieto, personal communication, 2017): 

1. Photograph acquisition of relevant body structure(s) of whale individual(s) 
through two methods (see Figure 1): 
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a. Aerial photoshoots, which makes use of unmanned aerial vehicles (hereby 
termed ‘drones’) to photograph the full whale’s body while the animal is 
at the surface; 

b. Boat photoshoots, which means that only part of the whale can be 
photographed. In the case of sperm whales, for example, the whale fluke 
is normally picked to be photographed as empirical allometric expressions 
that relate the fluke with the rest of the whale’s body exist (Jaquet, 2006).  

2. View, selection and organization of acquired photographs using Irfanview 
(Skiljan, 2003); 

3. Extraction of relevant metadata from the acquired image files using ExifTool 
(Harvey, 2013); 

4. Correction of the camera’s lens distortion in the photographs for accurate 
measurements. This can be divided in two steps: 

a. Camera calibration, where different camera parameters are estimated to 
model the lens appropriately; 

b. Undistorting the photographs according to the model obtained in step 4a. 

5. Measurement of the relevant anatomical structures in pixels using ImageJ 
(Abràmoff, Magalhães, & Ram, 2004; Schneider, Rasband, & Eliceiri, 2012); or 
GIMP (Anonymous, 2015); 

6. Conversion of measurements from pixels to a conventional measuring system 
using a custom Microsoft Excel spreadsheet; 

7. Solving allometric expressions, if applicable, using the same custom Excel 
spreadsheet. 

Relevant data extracted from this process are saved to a spreadsheet, which is also 
why, for convenience, the same spreadsheet is used in step 6 and 7. 
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Figure 1 – An aerial photograph of a full whale’s body (left) and a photograph taken from a 
boat photoshoot (right) (Azores Whale Lab, n.d.). 

 
One aspect that is immediately apparent from the description of the process above is 

that there is a strong reliance on different types of software to perform diverse but 
interlinked tasks. Consequently, information must be passed through each software tool 
manually. As mentioned, this increases processing and data analysis time, as well as 
increasing the chances of human error. 

 

2.2.3. Photogrammetry software review 

Although some software tools specifically designed for photogrammetry do exist, the 
available solutions are usually proprietary, with expensive licensing fees. Additionally, 
the development of photogrammetric software, independently of type of license 
(commercial or free), has focused mainly on multi-image 3D reconstruction of objects. 
Currently, there are not many publicly available solutions focused on single-camera 
photogrammetry, although there are some software packages that can perform some of 
the tasks listed above. 

Quite recently, a study on the accuracy of whale morphometry data obtained using 
drone images, resulted in the creation of a toolset constituted by two programs written in 
MATLAB and a script in the statistical programming language R to aid in single-camera 
morphometry of whales, that can be useful also to photogrammetry studies on other 
similar organisms (Burnett et al., 2018). Notwithstanding, although aimed specifically for 
single-camera photogrammetry studies, the programs created by Burnett et al. (2018) are 
specifically designed for aerial photogrammetry using drones and constrain the 
measurements to a set of pre-defined metrics that were specifically designed for whale 
morphometry, severely restricting its applicability. 
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Consequently, there is clearly a need for a software tool that enables performing part 
or all the steps detailed above and is flexible enough to be useful for studies with different 
methodologies and objectives. The present work aims to tackle those objectives by 
designing a cross-platform software, implemented in Java, specifically aimed at single-
camera, close-range photogrammetry, with a simple interface and a set of tools that cover 
most needs in this type of studies.  

In the following Sections, the main different challenges and requirements in the 
photogrammetry workflow are described and explored in detail. 

 
2.3. Camera calibration 

2.3.1. Relevance and current solutions 

In theory, if cameras were to be manufactured perfectly (i.e., fully described by the 
classic pinhole model), then all it would be needed to start measuring objects from 
photographs would be the focal length, pixel size and the distance from the object. 
However, real world cameras are not perfect. Some may contain non-square pixels, some 
amount of skew and all will contain varying degrees of lens distortion. As such, it is 
important to account for these variables to retrieve accurate and meaningful 
measurements. This is also the reason why camera calibration receives special attention 
throughout this work. 

Some types of lenses have very distinct and noticeable radial distortions (Jedlička & 
Potůčková, 2007) as can be seen in Figure 2. Fisheye lenses, for example, are normally 
associated with barrel distortion, referred as negative displacement, which has the effect 
of the image appearing to be mapped around a sphere. This is because the field of view 
of these lenses is wider than the sensor size. There is also pincushion distortion, referred 
as positive displacement, which is often associated with telephoto lenses and narrower 
lenses. Finally, a mix of both can also occur and is termed mustache distortion. 
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Figure 2 - Types of typical radial distortions. Barrel distortion (left), pincushion distortion 
(middle) and mustache distortion (right) (WolfWings, 2010). 

 
There are several solutions available for calibration purposes, namely Camera 

Calibration Toolbox for Matlab (Bouguet, 2000), DLR CalLab (Strobl, Sepp, Fuchs, 
Paredes, & Arbter, 2010) and Calib3V (Balletti, Guerra, Tsioukas, & Vernier, 2014). 
Calib3V is the solution used in the Azores Whale Lab procedure with satisfactory results. 
It is able to obtain camera calibration parameters and produce new undistorted images 
from those same parameters. 

For developers, there are two prominent libraries that allow implementing calibration 
into their own software, namely OpenCV (Bradski & Kaehler, 2000) and BoofCV 
(Abeles, 2012). OpenCV is a very well-known and mature open source computer vision 
library implemented in C++, while BoofCV is a more recent and not as mature contender 
implemented in Java. 

OpenCV was picked to be used in the current project for its maturity and almost 
complete calibration functionalities, able to calibrate both low and high distortion lenses. 
Despite being implemented in C++, it also provides a Java wrapper that normally provides 
sufficient compatibility in most use cases. 

 

2.3.2. Camera calibration principles 

Camera calibration consists in estimating the camera’s intrinsic and extrinsic 
parameters. Intrinsic parameters characterize the camera and lens, remaining unchanged 
if camera/lens setup is unchanged, while the extrinsic parameters are transformations that 
map world coordinates to camera coordinates, changing for each image. Camera 
calibration has several applications, such as estimating 3D structures based on camera 
motion, measuring, estimating depth and position of objects. 

There are different techniques to calibrate a camera (Qi, Li, & Zhenzhong, 2010). 
Traditional camera calibration techniques involve using known calibration points. Some 
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of those techniques use a pattern within a 3D object (e.g., a cube), others a pattern within 
a planar object. There are also auto-calibration techniques, where no known calibration 
points are needed, and instead use a sequence of images to track points of interest 
(Faugeras, Luong, & Maybank, 1992).  

There are also different mathematical models used in calibration to describe mono and 
stereo lens cameras, as well as different models to describe normal lenses (i.e., typical 
lenses that reproduces a field of view natural to the human eye), and wide-angle lenses 
(e.g., fisheye lenses often present in action cameras). 

Every solution presented in Section 2.2.1 has as their main focus planar based camera 
calibration, although some provide support for other calibration techniques. Planar based 
camera calibration was introduced in Zhang (2000) and consists on estimating the 
camera’s parameters by analyzing photographs of a planar calibration pattern at different 
random angles, as can be seen in Figure 3. Because of its simplicity to the user, it is also 
the technique that was chosen to be implemented in the proposed solution. 

 

 

Figure 3 – A set of photographs of a planar calibration pattern at different angles to be used for 
camera calibration1. 

Planar based camera calibration techniques can be broken down into three steps: 

1. Calibration image acquisition: Printing and placing a pattern on a rigid planar 
surface, and consequently taking different photographs of the pattern at different 
angles; 

2. Point detection/extraction: Extracting point coordinates from the calibration 
images, be it corners from the chessboard pattern, centers from the circle grid 
pattern, or other. This step is further discussed in Sections 2.3.3, 2.3.4 and 2.3.5; 

                                                
1 Retrieved from 
https://github.com/opencv/opencv/tree/master/samples/data (left01.jpg to left14.jpg) 
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3. Camera parameter estimation: Based on extracted point coordinates, estimate 
the camera intrinsic, extrinsic and other related parameters, such as distortion 
coefficients. This step is further discussed in Sections 2.3.6 and 2.3.7; 

 

2.3.3. Point extraction – Chessboard pattern 

One very popular way to derive known calibration points to be used for calibration is 
to use a chessboard pattern. OpenCV implements the chessboard pattern finding 
algorithm in a function called findChessboardCorners(), and is based on the work of 
Vladimir Vezhnevets, Philip Gruebele, Oliver Schreer and Stefano Masneri2. An example 
of a detected chessboard pattern can be seen in Figure 4. It uses a graph of connected 
quadrilaterals (quads) to detect calibration points, i.e., corners on the chessboard, and, 
according to the source code1, implements the following simplified steps: 

1. Converting the original image to a binary image, where the threshold is decided 
based on an analysis of the image histogram (pixel intensity); 

2. If the CALIB_CB_FAST_CHECK flag is set, it attempts to solve the degenerate 
case where no pattern exists in the image, saving computation time. It does this 
by: 

a. Applying the opening morphological operation (erosion followed by 
dilation), to help split the chessboard squares so they can be properly 
recognized as quadrilaterals; 

b. Retrieving every quadrilateral in the image using a combination of a 
threshold function and findContours function, which uses the algorithm 
described in (Suzuki, 1985); 

c. Using a flood fill style algorithm, it checks if there are many quadrilaterals 
with similar sizes. If there are, continues to step 3. If there are not, the 
function finishes. 

3. Dilation morphological operation on the binary image calculated on step 1 to 
separate quadrilaterals; 

4. Applying a border around the image to detect possible clipped quadrilaterals; 

5. Using findContours() function described in step 2.band applying the Ramer-
Douglas-Peucker algorithm to simplify identified contours and find quadrilaterals 
(Douglas & Peucker, 1973; Ramer, 1972); 

                                                
2 Source code available in 
https://github.com/opencv/opencv/blob/master/modules/calib3d/src/calibinit.cpp 
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6. Filter any identified contours that do not represent connected quadrilaterals with 
acceptable size until the proposed number of input corners are found; 

7. It calls cornerSubPix() function to further refine the corner locations with sub-
pixel accuracy, using a gradient-based optimization. 

 

 
Figure 4 – Representation of detected corners on a chessboard pattern3. 

 
The function works sufficiently well but it has a few constraints. The authors note the 

following constraints: the chessboard has to have odd x even (or vice-versa) number of 
squares (e.g., 9x6), and the board itself should have at least a square sized white border. 
Additionally, the user must input the number of squares (rows and columns) of the 
chessboard for the algorithm to work. 

The function also has some issues, namely related to the corner detection rate and 
corner position accuracy. For the corner detection rate, if the projection angle is too large 
or if the area of the square is too small, then sometimes the function fails. For the corner 
position accuracy, as noted in Datta, Kim, and Kanade (2009), the refinement step 
assumes that square gradients will be orthogonal to the edges. This is seldom the case, 
since usually the calibration pattern will be distorted, and not in the fronto-parallel pose. 
This causes accuracy issues with the detected corners which directly affects calibration 
results. 

This function employed by OpenCV relies on the geometry of the chessboard itself. 
However, throughout literature, there are several other suggestions to deal with detecting 
chessboard corners. From the traditional Harris corner detector (Harris & Stephens, 
1988), smallest univalue segment assimilating nucleus (SUSAN) (Smith & Brady, 1997)  

                                                
3 Retrieved from 
https://docs.opencv.org/ref/master/d9/dab/tutorial_homography.html  
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to Hessian matrix-based methods (Chen & Zhang, 2005; Liu, Liu, Cao, & Wang, 2016)  
with comparable results. There are also solutions that eliminate the need for the user to 
input the chessboard rows and columns number (De la Escalera & Armingol, 2010). There 
are even proposals to directly improve the OpenCV algorithm in the cases of images with 
low resolution, high distortion (as is the case of wide-angle lenses) and blurriness (Rufli, 
Scaramuzza, & Siegwart, 2008). 

 

2.3.4. Point extraction – Circle grid pattern 

The OpenCV function for the circle pattern finding algorithm called findCirclesGrid() 
can, depending on the parameters, detect either symmetric or asymmetric circle grid 
patterns. Like the chessboard corner detector, the user needs to input the number of rows 
and columns. The algorithm makes use of a simple blob detector to extract the center of 
dark circular blobs (using the findContours function) and creating a neighboring graph to 
find the pattern, filtering outliers. An example of a detected circle grid pattern can be seen 
in Figure 5. 

The use of a circle grid pattern has been argued that it may yield better precision than 
the chessboard pattern (Xiao & Fisher, 2010). Furthermore, it was also noted in Balletti 
et al. (2014) that the circle grid pattern was more resistant to defocus effects than the 
chessboard. 

 

 
Figure 5 – Representation of found circle centers on a circle grid pattern4. 

 

                                                
4 Retrieved from 
https://docs.opencv.org/2.4/doc/tutorials/calib3d/camera_calibration/camera_calibration.html  
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2.3.5. Point extraction – Other calibration points methods 

There are other patterns/techniques that deserve attention. The use of concentric circles 
has been shown to potentially yield even better point accuracy and consequent calibration 
results (Datta et al., 2009; J.-S. Kim, Gurdjos, & Kweon, 2005; J.-S. Kim, Kim, & Kweon, 
2002; Vo, Wang, Luu, & Ma, 2011). Very recently, the use of deltille grids (see Figure 
6) with monkey saddle fitting has also been shown to surpass significantly both the 
detection rate and corner accuracy of the chessboard pattern, even in highly distorted 
images (Ha, Perdoch, Alismail, Kweon, & Sheikh, 2017). Machine learning may also 
have an impact in this field: the use of convolutional neural network (CNN) is shown to 
potentially be able to generalize point extraction under several degrees of image 
degradation (Donné, De Vylder, Goossens, & Philips, 2016). OpenCV calibration 
solution was still the chosen to be implemented as it has been proven, in terms of 
accuracy, sufficient in most use cases (Balletti et al., 2014), and because integration is 
significantly simpler, since the code is freely available and compatible with Java projects. 

 

 
Figure 6 – Representation of found corners on a deltille grid pattern (Ha et al., 2017). 

 

2.3.6. Calibration – Pinhole model 

To calibrate a camera after extracting the pattern points, OpenCV provides a function 
called calibrateCamera(). Most of OpenCV calibration routines are directly ported from 
Camera Calibration Toolbox for MATLAB (Bouguet, 2000) with some added 
functionalities, which are heavily inspired by the procedures and models of Zhang (2000) 
and Heikkila and Silven (1997). Those are explained below, with notation matching a 
combination of Zhang’s paper, Bouguet implementation and Hartley and Zisserman’s 
book (Hartley & Zisserman, 2003). 

For the pinhole model, let a 2D point be defined as 𝑝 = [𝑢, 𝑣]( and a 3D point defined 

as 𝑃 = [𝑋, 𝑌, 𝑍](. Further, let 𝑝- and 𝑃. be augmented vectors of 𝑝 and 𝑃 respectively, by 
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adding 1 as the last element (the so called homogeneous coordinates). The relation of a 

3D point 𝑃 and its image projection 𝑝 is given as: 

𝑐𝑝0 = 𝐾[𝑅		𝑡]𝑃5, with	𝐾 = :	
𝐹𝑥 𝑠 𝑢0
0 𝐹𝑦 𝑣0	
0 0 1

A , 	(1) 

  

where 𝑐 is an arbitrary scale factor; 𝑅 and 𝑡 are defined as a 3×3 rotation matrix and a 

3×1 translation column-vector respectively, and relate the world coordinates to the 

camera coordinates; 𝐹E and 𝐹F denote focal length in both 𝑥 and 𝑦 axes, but can abstractly 

be referred as scale factors; (𝑢G, 𝑣G) are the coordinates of the principal point, which is 

the point from where the focal length is measured, relative to the image plane origin and 

𝑠 is the skew between both images axes. (𝑅, 𝑡) are also referred as the extrinsic parameters 

and 𝐾 is referred as the camera intrinsic matrix. 𝑃, in this case, will signify the calibration 

points detected previously in 3D space. 

In a true pinhole model, 𝐹E and 𝐹F  are equal, which would result in the expected square 

pixels. However, in practice they may differ for different reasons, such as calibration 
errors, manufacturing flaws (e.g., in the camera sensor), non-uniform post-process 

scaling, and others (Simek, 2013). The principal coordinates (𝑢G, 𝑣G) are normally the 

center coordinates of the image but may also fluctuate for similar reasons presented 
before. However, because of modern-day cameras manufacturing quality, sometimes the 
focal length, the skew and/or the principal point can be constrained when calibrating. 

The model plane can also be assumed to lie on 𝑍 = 0 of the world coordinate system 

without loss of generality. Each column of the rotation matrix 𝑅 can also be notated by 𝑟I 

where 𝑖 is ith column. Equation (1) can now be rearranged as follows: 

𝑐 K	
𝑢
𝑣
1
	L = 𝐾	[𝑟M		𝑟N		𝑟O		𝑡] P	

𝑋
𝑌
0
1

	Q = 𝐾	[𝑟M		𝑟N		𝑡] R	
𝑋
𝑌
1
	S 

Note now that 𝑝- = [𝑢, 𝑣, 1]( and 𝑃. = [𝑋, 𝑌, 1]( are now related by an homography 𝐻: 

𝑐𝑝- = 𝐻𝑃. with 𝐻 = 𝐾	[𝑟M		𝑟N		𝑡] 

Further, 𝐻 can be denoted as 𝐻 = [ℎM		ℎN		ℎO]. With this we now have: 

[ℎM		ℎN		ℎO] = 𝜆𝐾[𝑟M		𝑟N		𝑡], 
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where 𝜆 denotes an arbitrary scalar. We can now constrain the intrinsic parameters, since 

we know that 𝑟M and 𝑟N are orthonormal. Consequently, it is known that the dot product 
of these two vectors will be zero and that both are of the same length. As such, we have: 

ℎM(𝐾W(𝐾WMℎN = 0 

ℎM(𝐾W(𝐾WMℎM = ℎN(𝐾W(𝐾WMℎN 

The next two steps, described in Zhang (2000), involve calculating the homography 
and consequently estimate both the intrinsic and extrinsic parameters using every input 
image. OpenCV/Bouguet’s Toolbox implementation derive from Zhang’s method here, 
but use vanishing points to estimate the focal length. Their initial estimation also ignores 
any lens distortion coefficients but it is considered in the next steps. 

Before continuing, it is relevant to note that OpenCV/Bouguet internally uses a 
different intrinsic model than the one presented in (1). To the user, however, the intrinsic 
matrix is still represented for both input and output of their functions as (1). Internally, 
OpenCV model follows the one used in Heikkila and Silven (1997) very closely and is 
represented as follows. 

By abuse of notation, consider that 𝑃 = [𝑋, 𝑌, 𝑍](, but now that 𝑃 already represents 

a point in the camera coordinates, after being transformed from world coordinates through 
the extrinsic parameters (rotation and translation). The corresponding image 

coordinates	(𝑢, 𝑣) are now given as: 

X	𝑢-𝑣-	Y =
1
𝑍 Z	

𝑓E𝑋
𝑓F𝑌

	\ 

X	𝑢𝑣	Y = X	𝑠𝑢-𝑣- 	Y + X	
𝑢G
𝑣G	Y , 	(2) 

Real world cameras are not true pinhole models, as they always exhibit distortion (even 
if very minor). Radial distortion is the most predominant and, in fact, Zhang’s model only 
considers it. Heikkilä’s, however, also considers tangential distortion. There are other 
types of distortions considered throughout literature, such as linear distortion (Melen, 
1996) and prism distortion (Weng, Cohen, & Herniou, 1992), but these are not considered 
in OpenCV/Bouguet’s implementation as they are not as relevant. The models can now 
be reformulated to account for both radial and tangential distortions. 

Radial distortion is normally represented in the following form: 

Z	𝛿𝑢
(`)

𝛿𝑣(`)
	\ = K	

𝑢-(𝑘M𝑟IN + 𝑘N𝑟Ib+. . . )
𝑣-(𝑘M𝑟IN + 𝑘N𝑟Ib+. . . )

	L, 

where 𝑘M, 𝑘N, … , 𝑘I are coefficients for the radial distortion, and 𝑟I = 	√𝑢-N + 𝑣-N. In the 

OpenCV implementation, generally only two or three radial distortion coefficients are 
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considered, but it has the possibility to go up to six using a rational model for wide-angle 
lenses (refer to Section 2.3.7). 

In the case of tangential distortion, it is normally represented as follows: 

Z	𝛿𝑢
(f)

𝛿𝑣(f)
	\ = K	

2𝑝M𝑢-𝑣- + 𝑝N(𝑟IN + 2𝑢-N)
2𝑝N𝑢-𝑣- + 𝑝M(𝑟IN + 2𝑣-N)

	L, 

where 𝑝M and 𝑝N are coefficients for the tangential distortion. Both distortions can now be 

combined with the model in (2) to describe a projected point in the image plane as follows: 

X	𝑢𝑣	Y = K	𝑠g𝑢- + 𝛿𝑢
(`) + 𝛿𝑢(f)h

𝑣 + 𝛿𝑣(`) + 𝛿𝑣(f)
	L + X	

𝑢G
𝑣G	Y 	(3) 

The last steps of calibration involve refining the estimated parameters through the use 
of maximum likelihood estimation. This step minimizes the reprojection error using the 
Levenberg-Marquardt algorithm (Levenberg, 1944; Marquardt, 1963). Bouguet only 
includes the distortion coefficients in this refining stage. 

The reprojection error is the Euclidean distance between a feature point (i.e., a point 

extracted in the original image) and the projected point. For a single image with 𝑛 

calibration points, it is calculated as follows. 

k∑ 𝑑g𝑝-I, 	𝑃.Ih
Nn

IoG
𝑛 (4)	 

The reprojection error, therefore, can also be interpreted as to how well the calibration 
model fits the given calibration images. 

 

2.3.7. Calibration – Fisheye model 

The mathematical camera model that OpenCV uses in all their main calibration 
functions does not generalize well enough for all types of camera lenses. If image 
correction with said model is attempted on photographs obtained with camera lenses that 
have a high level of distortion, e.g., wide angle fisheye lenses, results similar to what can 
be observed in Figure 7 are obtained. While the pixels close to the principal point can be 
considered corrected, a high level of distortion on the outer edges is observed. 
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Figure 7 – Original image (left) and the “undistorted” image using the regular Pinhole model 

(right). 

 
OpenCV, however, does provide two ways to handle this degree of distortion. The first 

is by using a rational model detailed in Claus and Fitzgibbon (2005). This model explores 

the mapping of image coordinates to appear in quadratic polynomials, mapping 𝑃. to a 

six-dimensional space in a 6-vector of monomials. 
The other way that OpenCV provides to handle this degree of distortion is by using 

the model described in Kannala and Brandt (2006). This approach tries to accurately 
model the geometry of real camera lenses and abandons the pinhole model, generalizing 
a camera model that is argued to be suitable for both omnidirectional and conventional 
cameras. Correcting an image using this latter model results in a more accurate result, as 
can be seen in Figure 8. 
 

    
Figure 8 – Original image (left) and the corrected image using the Kannala model (right). 

 
2.3.8. Lens distortion correction 

After the calibration process is finished and the camera matrix is calculated, correcting 
an image is then trivial. Each pixel coordinates in the target undistorted image is mapped 
to the corresponding pixel coordinates in the original input image and the corresponding 
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value for each pixel is then interpolated, providing results similar to what can be observed 
in Figure 8. 

In detail, consider that (𝑢, 𝑣)  now represents each pixel coordinates of the target 

undistorted image. The corresponding pixel coordinates in the original input image, 

(𝑋, 𝑌), can be found by inverting the mapping defined in equation (3), i.e., given (𝑢, 𝑣), 

𝑃 = (𝑋, 𝑌, 1) is calculated. This yields non-integer coordinates, so typically the four 

neighboring pixel values are bi-linearly interpolated. If there is no correspondence, the 
pixel is set to a black color. 

 
2.4. Image metadata 

2.4.1 Relevance and current solutions 

Many types of files contain metadata information that provide information about the 
file itself, which is also true with image files. Many image file formats have metadata 
information that encode data such as image size, pixel information, etc. In modern day 
digital cameras, they also provide additional information about the images taken, such as 
camera model, ISO, aperture, exposure time, geolocation information and so on. 

In this context, extracting metadata from images serves three different purposes: 

1. Record purposes: It is useful to store basic information about the image, lens, 
camera, or location where the photograph was taken alongside with the 
measurements; 

2. Calculation purposes: Some information is useful to perform the 
photogrammetry process. For example, in the case of a drone photoshoot, the 
distance between the camera and the object in the ground, i.e., altitude, is usually 
found in the metadata. 

Additionally, it is also a good idea to maintain metadata integrity when modifying an 
image in any way. For example, in the case of lens distortion correction, the metadata 
information must be kept when saving the corrected image. 

Exiftool (Harvey, 2013) is one of the most popular and mature metadata extraction 
software available. It exists both as a Perl library and a command-line tool. It supports a 
large amount of file types and formats, it is able to read, write and copy metadata 
information between files and also has a large list of features. 
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In the Java environment, the most stable and complete image metadata extraction 
library is the metadata-extractor developed by Drew Noakes (Noakes, 2002). It is able to 
extract all the different required formats of metadata, such as Exif, XMP and JFIF. It is 
also able to process a long list of image types, such as JPEG, PNG, BMP, GIF, and 
different camera raw formats. However, it is not able to write metadata to a file, which 
means it does not help with retaining metadata integrity. 

Metadata integrity is fulfilled by the Apache Commons Imaging library ("Commons 
Imaging: a Pure-Java Image Library," 2017), which although does not support the same 
long list of formats and image types as metadata-extractor, is able to write metadata into 
a file. Unfortunately, it is not very mature, and it does not seem like there are any current 
developments. 

 

2.4.2 Exif 

For the recording and calculation purposes, we are mostly concerned with metadata 
information contained within the Exif and XMP standards. Details about the location, 
date, camera, its settings and distance indicators are especially relevant.  

Exchangeable image file format, or Exif, is a popular standard that specifies image and 
audio files formats used by digital cameras and was developed by the Japan Electronic 
Industries Development Association (JEITA, 2002). It covers most of the relevant 
information, such as GPS information, date and time, camera settings, thumbnail, 
descriptions and copyright information. 

Exif, in the context of image files, was originally designed to support the JPEG 
standard for compressed images, and TIFF for uncompressed images. Some raw formats 
can also include Exif metadata, such as CR2 (Canon Raw version 2). JPEG/Exif is a very 
common image format for digital cameras, while JPEG/JFIF (JPEG File Interchange 
Format) is common for storing and transmitting photographs over the World Wide Web.  

In the case of a JPEG/Exif image, the structure is well defined. A JPEG file is split 
into a sequence of segments. One of those segments, called application marker (APP), 
contains application specific information and is where Exif metadata information resides 
(specifically in APP1). Exif follows a similar structure to the TIFF tag scheme and its size 
cannot exceed 64 Kbytes specified in the JPEG standard. It uses two file directories, 
called Image File Directories (IFD). The first IFD (0th IFD) contains information, i.e., 
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attributes, about the image and the second (1st IFD) is normally used for the thumbnail 
image. A representation of this structure can be seen in Figure 9.  

 

 

Figure 9 – Basic structure of a JPEG compressed file (JEITA, 2002).  

 
Each metadata attribute is composed of four elements: tag, type, count and value offset. 

The element tag is a 2-byte identifier of the attribute; the type identifies the value type, 
e.g., short, long, etc.; the count is the number of values (and not of the bytes) and value 
offset is the offset from the TIFF header to the position where the value is stored. 

 

2.4.3 XMP 

Extensible Metadata Platform, or XMP, is an ISO standard developed by Adobe (2012) 
used for standardized and custom metadata in digital documents. In this context, it is 
especially relevant because it is able to store custom metadata information in images, that 
will not be stored in Exif. It is common to see external sensor information stored with 
XMP, e.g., distance, altitude, etc.  

XMP normally uses Resource Description Framework (RDF) syntax (Adobe, 2012), 
which is written in Extensible Markup Language (XML), and the data model is also 
referred as a XMP packet. XML is a markup language that was designed to be both 
interpreted by machines and humans and examples of this language can be seen in 
Appendix B, C and D. RDF simply defines a vocabulary, so metadata can be encoded in 
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the XML language. Since it is based on XML, it does not allow binary data types. For 
JPEG files, it is also stored in the APP1 segment. 

 

2.5. Measuring and unit conversion 

Most general-purpose image editors are able to measure finite straight lines (i.e., 
distance between two points) in pixels, as is the case of GIMP and ImageJ, used by the 
Azores Whale Lab. Additionally, they are capable of measuring straight lines constrained 
by an angle. For example, when measuring the full body of a sperm whale, it is useful to 
first measure the length of the whale and then the width of the whale, where the width 
lines should be perpendicular to the length. 

ImageJ (Abràmoff et al., 2004; Schneider et al., 2012) is, in fact, very often used in 
photogrammetry studies. It is a powerful, flexible and cross-platform software for image 
analysis, that admits user-written macros and plugins. It has gained wide acceptance in 
the scientific community, especially, but not restricted to, in microscopy and medical 
imaging (Schneider et al., 2012). In fact, ImageJ is often the program of choice to obtain 
and scale measurements in photogrammetry studies (e. g. Jadejaroen et al., 2015; Sadou, 
Beltran, & Reichmuth, 2014). Despite having extensive support and plugins aimed at a 
variety of research fields, its focus remains on image processing, and despite a large 
database of plugins (https://imagej.nih.gov/ij/plugins), currently there are no ImageJ 
plugin devoted to tackle the single-camera photogrammetry workflow outlined in Section 
2.2. 

Converting the measured lines lengths from pixels to a conventional unit, has two 
general techniques associated that are employed by the Azores Whale Lab: 

1. Reference based conversion, where an object with known dimensions is present 
in the photograph and pixel size in the desired unit is consequently calculated. 
This is used in boat photoshoots, where a scale can be projected using parallel 
lasers over the animal’s body; 

2. Distance based conversion, where the ratio between focal length and pixel size 
of the sensor is related to the ratio between the distance to the object and the pixel 
size of the object. This is used in drone photoshoots, where the distance to the 
object is normally the altitude of the drone. 
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ImageJ accommodates unit conversion with the “Set scale” feature, where the user is 
able to set the ratio between the pixel distance and the desired unit of distance, however 
that ratio must be calculated by the user beforehand.
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Chapter 3 – Integrated photogrammetry system proposal 

3.1. Introduction 

This chapter is composed of ten Sections and describes the proposal and 
implementation of the solution to the previously mentioned challenges in the 
photogrammetry process. The first Section introduces and describes the chapter structure. 

The second Section defines the solution as an integrated system, composed by 
subsystems, or modules, and defines the architecture that will consequently be used as 
reference for implementation. 

The third Section describes the proposal and implementation of the general user 
interface for the system, specifically describing the main screen. 

The fourth, fifth, sixth, seventh, eighth, ninth and tenth Sections describe in detail the 
proposal and implementation of each subsystem defined in the second Section, as well as 
the corresponding user interfaces. 

 
3.2. Architecture 

3.2.1 Module architecture 

As can be perceived by the use of different programs, the core functionality of many 
steps in the photogrammetry process is self-contained. As such, it is natural for the 
proposed system to be decomposed to smaller subsystems, or modules, that will then 
interact with each other. Because the exact photogrammetry process may slightly differ 
according to the context and purpose, it is best for these modules to be as independent 
and modular as possible. Thus, seven different modules were identified and are listed 
below: 

- Image Input/Output (I/O) module, which can be further decomposed to the 
following sub-modules: 

o Metadata module, responsible for extracting metadata information from 
an input image and also copy metadata to an output image; 

o Image reader/writer module, responsible for reading the image file and 
map it to an object with the pixel information to display it. It is also 
responsible for writing the image to a file; 
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- Camera calibration module, responsible for generating a calibration model of a 
camera based on photographs of calibrating points; 

- Lens distortion correction module, responsible for correcting lens distortion 
present in photographs, using the model resulting from the calibration process; 

- Measuring module, responsible for providing the different ways a user can 
measure and handling relevant measuring calculations, such as line length and 
angles between lines; 

- Unit conversion module, responsible for handling unit conversion calculations; 

- Mathematical expressions module, responsible for interpreting input 
expressions, variables and given values to output a value. Used, for example, in 
the context of allometric expressions; 

- Session module, responsible for handling the different ways the user can save 
session information within the software to a file. 

 

The different modules and the way they interact to fully realize the photogrammetry 
process is represented in Figure 10 and is described as follows (optional relationships 
between modules are represented with a dotted line): 

1. User provided images are read by the Image I/O module. The image is both 
displayed, and its metadata information is extracted; 

2. If relevant for the user, distortion present in input images is corrected by the Lens 
distortion correction module. This module uses a camera matrix model generated 
by the Camera Calibration Module to create new undistorted images, while 
preserving the original images; 

3. Relevant measurements based on user input are made with the Measuring module, 
along with relevant results of mathematical expressions (e.g., allometric 
expressions) with the Mathematical expressions module. Mathematical 
expressions may optionally use measurements for its calculations; 

4. If relevant for the user, measurements may be converted from pixel units to another 
unit system, such as metric. This conversion may optionally use metadata 
information for its calculations; 
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5. Measurements and mathematical expressions, denominated as layers, as well as 
optional metadata information for each input image are outputted into a file, called 
a session file. 

 
Figure 10 – Overview of module interaction. 

 

3.2.2 Presentation software architecture 

In practice, when implementing those modules, they should only contain logic 
respective to them, as to maintain their independence and modularity. Views that the user 
will see and interact should be implemented separately, allowing easy changes to the 
interface and decoupling responsibilities. This idea of separation of concerns in user 
interfaces are the basis of several software architectural patterns (Maxwell, 2017), hereon 
referred as ‘presentation software architectures’. 

MVC (Model-View-Controller) is a typical example of a presentation software 
architecture that was chosen to be implemented.  More recently, it has been argued that 
this architecture is not modular and flexible enough, with other popular architectures 
being preferred, such as MVP (Model-View-Presenter) or MVVM (Model-View-
ViewModel) (Maxwell, 2017). However, MVC is still generally easier to adopt, without 
as much overhead in implementation and was deemed sufficient for this use-case. 
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An overview of MVC architecture applied to this case can be seen in Figure 11. The 
view is responsible solely for displaying information and recording user input.  The model 
defines the view data structure to be displayed. A controller class is used to handle user 
input, handle the model, delegate work to a relevant module and sometimes update the 
view directly. In a typical scenario, the controller would offload relevant work to a 
module and attribute the returning data to a view model. The model, consequently, has 
data binding capabilities that would trigger the view to be updated. 

 

 

Figure 11 - Overview of the adopted MVC related architecture. 

 
3.3. General user interface 

The proposed architecture was implemented in Java for its cross-platform capabilities, 
and the user interface was implemented with the JavaFX framework, instead of the older 
Swing toolkit, along with the JFoenix library ("JFoenix," 2015) for an up-to-date Material 
design look and feel. The main objective in respect to user interface was to provide the 
maximum amount of information at a time, while retaining familiarity and simplicity to 
the user. As such, the main screen was divided into three main resizable panels along with 
a menu bar (as seen in Figure 12), described as follows: 

- The menu bar, which is composed of several utilities, namely: 

o Opening and saving user sessions; 

o Importing images; 

o Exporting the session data as CSV (comma-separated values) file (refer to 
Section 3.10.3); 

o Camera calibration access and image distortion correction; 
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o Unit conversion options; 

o View options, such as line display preferences; 

- The navigation panel, where all the images imported in to a work session are 
listed. A thumbnail is shown beside the image name and image location; 

- The work panel, which is the main work area, where most measuring operations 
over the image will be conducted. It has a tool bar on top, where the different 
available operations can be accessed, as well as image zoom and pan. In order to 
be intuitive, the layout and icons are similar to those in other image editor software; 

- The info panel, where information about the image and the result of measuring 
operations can be observed and managed. It also is comprised of two tabs: 

o The metadata tab, where all metadata contained within the selected image 
is presented; 

o The layers tab, where information about the measurements and the result 
of mathematical expressions are presented. It has a tool bar at the bottom 
to create and delete layers. 

 
Figure 12 – The different components of the main screen represented by different colors. 

 

Some modules described in the following Sections have specific views associated with 
it even though they are architecturally separated in terms of presentation, such as the 
calibration module. For context, these views are described in the respective module 
Section. 
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3.4. Image I/O module 

The Image I/O module is responsible for reading and writing images, including pixel 
and metadata information.  

The metadata submodule uses two different libraries: metadata-extractor (Noakes, 
2002), to extract metadata information and present it to the user and Apache Commons 
Imaging library ("Commons Imaging: a Pure-Java Image Library," 2017) to copy 
metadata from one image to another, which is needed if an image is altered and metadata 
needs to be maintained when saving into an image file. 

The image reader/writer submodule uses native Java and JavaFX functions to both 
read image files to display them, as well as write altered images back to files. Currently, 
the only format that is truly supported is JPEG, since it is the only format that is supported 
across all the functions and libraries used. It would be ideal, however, to further support 
TIFF and raw formats (or the standardized DNG). 

 

3.5. Camera calibration module 

3.5.1. Architecture 
Even though there is separation of concerns throughout the program architecture in 

presentation logic, particular attention was paid to the calibration module. The program 
uses planar based calibration techniques provided by the Calib3d module from OpenCV. 
Throughout literature, it is clear that OpenCV is generally used as a benchmark for novel 
calibration techniques, and so the program should be flexible enough to allow the use of 
different techniques and algorithms without making many changes to the code. This 
flexibility relies on a layer of abstraction in order to generalize the calibration process and 
the overview of the architecture can be seen in Figure 13. 

The calibration module is responsible for executing the calibration algorithms. The 
only public entry point to the module is the CalibrationManager class. This class is 
responsible for starting and stopping the process asynchronously, managing/executing the 
different algorithms and calling progress callbacks through the provided 
CalibrationRunListener. Depending on user configuration, the CalibrationManager can 
use different algorithms on different steps. The different algorithms are also generalized 
by the Calibrator and PointFinder interfaces. 
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Figure 13 – Overview of the calibration module architecture. 

 

3.5.2. Associated views 
The calibration module, due to its complexity, has an entire screen and related dialogs 

dedicated to it. It shares a similar structure to the main screen described in Section 3.3. It 
is composed of the following components: 

- The menu bar, which is composed of several utilities, namely: 

o Saving and exporting the calibration model. Saving and exporting are 
equivalent, but when exporting the user can choose where to export. If the 
user chooses to save, it saves automatically to a local directory for reasons 
described in Section 3.6; 

o Import calibration images; 

o Run calibration process; 

o Configure calibration process 

- The navigation panel, where all the imported calibration images are listed. A 
thumbnail is shown beside the image name and image location. After calibrating, 
a status bar next to the thumbnail will appear either green if a calibration pattern 
was found for that image or red otherwise; 
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- The image viewer panel, which is similar to the work panel described in Section 
3.3. It has a top toolbar where the user is able to zoom and pan the selected image 
as well as run and configure the calibration. It also displays the current 
configuration on the right. After calibrating, the calibration pattern is overlaid in 
each of the images that was used in the calibration, but not on those for which the 
pattern was not found. 

- The calibration output panel, where information about the results of the 
calibration process is shown, including elapsed time, extracted camera model 
name, number of images with pattern detected and overall reprojection error, 
which is the arithmetic mean of each image reprojection error, see equation (4). 

 

The delimited calibration screen before running the calibration process can be seen in 
Figure 14. The calibration progress and result views can be seen in Appendix A.  

 

Figure 14 – The different delimited components of the calibration screen. 

The calibration configuration view can be seen in Figure 15 and each option is 
explained in Section 3.5.3. 



   
Integrated photogrammetry system proposal 

 

35 
 

 

Figure 15 – Calibration configuration dialog. 

 

3.5.3. OpenCV Calib3d – Implementation and limitations 
As mentioned, OpenCV functions (specifically from Calib3d module) were used for 

both pattern detection and calibration. Calib3d allows a large amount of configuration 
when generating a calibration model. The most relevant variables were picked to be 
configurable by the user, as seen in Figure 15, and are listed as follows: 

- Pattern: The calibration pattern that is present in the calibration images. It can 
either be a chessboard or a circle grid pattern; 

- Horizontal Points: The amount of calibration points in the x axis. In the case of 
chessboard, it is the number of chessboard corners in a row. In the case of a circle grid it 
is the number of circles in a row; 

- Vertical Points: The amount of calibration points in the y axis. In the case of 
chessboard, it is the number of chessboard corners in a column. In the case of a circle grid 
it is the number of circles in a column; 

- Point size: Only applies to the circle grid pattern and is the rough size of the circles 
in millimeters. It relates to the way the blob detector, used to detect circles, works; 

- Lens: The type of lens, either rectilinear or fisheye, which is associated with 
different calibration models. 

OpenCV is written in C++ while the software developed in the scope of this work is 
written in Java. As such, to use OpenCV, a wrapper had to be used. The wrapper creates 
bindings so that it is possible to call C++ functions within Java. For this, there are two 
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components: a Java wrapper that defines the function interfaces that can be called, and a 
native library (for Windows a .dll file, OSX a .dylib file, Linux a .so file) that contains 
the C++ implementation of those functions. These two components communicate through 
Java Native Interface (JNI). 

OpenCV does provide their own Java wrapper, however it has some shortcomings. As 
of version 3.4.0, their Java distribution has around 43.8 MB for x64 platforms and 27.4 
MB for x86 platforms. This size is significant and hinders the distribution of the software, 
which by its own rounds to about 6 MB of size. Additionally, the wrapper is incomplete. 
For example, for the circle grid calibration pattern, it lacks support of blob detector which 
is crucial to identify the circle grid in different image resolutions 

As such, a custom Java wrapper for OpenCV was created. It allowed to not only reduce 
size (~7 MB of size for x64, about ~84% size reduction) and access previously unported 
classes, but to also create custom routines/algorithms and facilitate the process of 
improving existing algorithms in the future. 

 

3.5.4. Calibration file specification (.acalib) 
In the program, a file extension, ‘.acalib’, is used to distinguish files that contain the 

calibration model outputted from our program. It is a simple XML plain-text file that 
contains specific tag names related to relevant calibration information. 

As per the XML specification, the file includes a prolog, declaring the XML version, 
encoding and standalone declaration although this is not necessarily needed. Every tag 
name is lowercase and uses underscores to separate words. The root element must be 
named ‘calibration’. Every other element is a child to the root element and is defined 
below: 

- <name>: Describes the name of the calibration model. This will be the name used 
throughout the program to reference the model and not the file name. 

- <lens>: Describes the type of lens that this model describes. Currently only 
supports either “Rectilinear” or “Fisheye” values. These values directly affect how 
the <distortion_coefficients> element will be interpreted. 

- <intrinsic>: Describes the 3×3 intrinsic matrix. Every value is formatted using the 
default Java double value notation, which uses standard scientific notation (with 



   
Integrated photogrammetry system proposal 

 

37 
 

E-notation) and a dot as decimal separator. Values are separated by spaces. When 

mapping to a 3×3 matrix, the values mapped from left to right, top to bottom. 

- <distortion_coefficients>: Describes the distortion coefficients row vector with N 
elements. Every value is also formatted with the default Java double value notation. 
Values are separated by spaces. The number of elements is directly influenced by 
the lens type. For rectilinear it is 5 values (k1, k2, p1, p2, k3, in that order), for 
fisheye it is 4 values (k1, k2, k3, k4, in that order). See used equations in (4) for 
reference. 

A full example of the file structure describing the calibration model of a fisheye lens 
can be seen in Appendix B. 

 

3.6. Lens distortion correction module 

The lens distortion correction module is responsible for correcting lens distortion using 
a provided calibration model. The module also uses OpenCV functions, namely 
undistort() from the Imgproc module and undistortImage() from the fisheye namespace. 
The first function is used in the case of rectilinear lenses and the second in the case of 
fisheye lenses, which has the target image and the calibration model as inputs, and the 
corrected image as output. 

The dialog associated with the module can be seen in Figure 16. As it launches, it 
automatically checks a relative directory to the program location called ‘calibs’ for any 
‘.acalib’ files and automatically imports them. The user can also manually locate and 
import them if the calibration model files are in other locations. The ‘Apply to all’ 
checkbox simply applies the undistortion to every image in the session if checked, or to 
only the selected image if unchecked. Undistorted images are saved with a suffix (‘_u’) 
relative to the original files’ name, and the original images are preserved. 



   
Integrated photogrammetry system proposal 

 

38 
 

 

Figure 16 - Undistort dialog. 

 
3.7. Measuring module 

The measuring module is responsible for measuring distance between two points 
(lines) and angles between lines. It is associated with two main features: 

- Line measurement, where the user is able to overlay a line defined by two 
adjustable points and adjustable line color. The line is remeasured every time any 
of the two points are adjusted. This is easily done applying the distance formula; 

- Angled line constraint, where the user is able to overlay a line in an angle relative 
to an existing line. The constraint is applied in two general steps: 

1. Calculate the length and direction of the line between the anchor point, 

𝐴, and the cursor point, to define the vector 𝑣; 

2. Given that 𝜃 is the input angle, the cursor point 𝑥 and 𝑦 coordinates are 

remapped to x’ and y’ respectively, using the following functions. 

𝑥′ = 𝐴𝑥 + 𝑣 ∗ cos 𝜃 

𝑦′ = 𝐴𝑦 + 𝑣 ∗ sin 𝜃 

The resulting lines information are displayed in the layers section as can be seen in 
Figure 17. 
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Figure 17 – Example of two perpendicular measuring lines. 

 
3.8. Unit conversion module 

The unit conversion module is responsible for converting pixel measurements to 
another desired unit. It handles both reference-based conversion and distance-based 
conversion, as explained in Section 2.5. 

Reference based conversion is associated with the dialog represented in Figure 18. It 

is based on a known reference measurement, 𝑆, on the photograph and can be very easily 

calculated using (6), for example, in the case of centimeter conversion. 𝑀  is the 

measurement taken by the user, the “Length in pixels” field corresponds to 𝑆{E and the 

“True length” to 𝑆|}. The scaling ratio is simply 𝑆|}	divided by 𝑆{E and it is multiplied 

by every relevant pixel measurement. “Apply to all” simply refers if the conversion is to 
be applied to every session image measurements or only the current one. 

𝑀|} = ~
𝑀{E𝑆|}
𝑆{E

� 	(6) 
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Figure 18 – Reference scaling dialog example. 

 
Distance-based conversion is associated with the dialog represented in Figure 19. It 

uses the pixel dimension, the focal length and the distance from the focal plane to the 
object to apply the conversion as described in (7). For simplicity, the process is done 
using the standardized metric system explicit in the dialog, but can later be converted to 
other units. Preset refers to existing information about some cameras sensor size in a local 
database. 

The first step in the calculation is finding the pixel dimension. Pixel dimension is 
sometimes given by the manufacturer, but more often the camera sensor dimensions are 
more easily found. As such, the real pixel size can be found by dividing the camera sensor 

width,	𝑆𝑤, and height by the image pixel width, 𝑖𝑚𝑊, and height respectively. Since the 

pixels are generally square, only the width or the height scaling ratio is needed. If the 

pixel size at the focal length, 𝐹𝑙, is known, extrapolating to the object distance is now 

trivial. The object distance is represented in (7) by (𝐻 + 𝛽) because it is often used in the 

context of drones. Using drones, the distance is the altitude of the drone, 𝐻, which can be 

extracted via image metadata, with an added correction factor, 𝛽. If the context is, for 

example, at sea level, the correction factor corresponds to the boat height above sea level, 
since the drone is initially calibrated at the boat height and not sea level. If no correction 

is necessary, the user can either leave the field empty or set 𝛽 to zero. 

𝑀|} = 𝑀{E ~
𝑆𝑤 ∗ (𝐻 + 𝛽) ∗ 100

𝐹𝑙 ∗ 𝑖𝑚𝑊 � 	(7) 
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Figure 19 – Distance scaling dialog example. 

 
After the conversion/scaling is applied, the target unit length is presented next to the 

pixel length as shown in Figure 20. 

 
Figure 20 – Example of resulting centimeter conversion. 

 
3.9. Mathematical expressions module 

3.9.1 Description and associated views 
The mathematical expressions module is responsible for handling input mathematical 

expressions with variables and computing the value of the expression given the variables 
values. It is also responsible for storing expressions into files and loading expressions 
from files. This is a generalized solution to the problem of allometric expressions and is 
suited for any use-case that requires reusable mathematical expressions. 
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The module is associated with the dialog represented in Figure 21. The user is able to 
create and remove mathematical expressions, as well as name them. Mathematical 
expressions are strings inputted by the user and a library named mXparser (Gromada, M., 
n.d.), which is used to validate and interpret the string automatically after the user stops 
writing in the expression field. The library is also able to detect possible variables within 
the expression which are automatically added to a table below, where the user is then able 
to set its value. The value can be set to any numerical value, and a convenient drop-down 
list is also present to easily access the layers’ values in both the pixel and the scaling unit. 
Finally, as the user presses the OK button, the resulting value is added to the layer list, as 
can be seen in Figure 22. 

 
Figure 21 – Example of setting mathematical expression and attributing variable value. 
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Figure 22 – Example of a resulting expression value in the layer list. 

. 

3.9.2 Expression file specification (.xml) 
As the user continuously fills the name and expression fields, it automatically saves it 

to a file, called ‘expressions.xml’ under a directory in the root executable location called 
‘data’. This file and the containing expressions are loaded when the dialog represented in 
Figure 21 is shown.  It follows the same XML standard as the ‘.acalib’ file but has no 
custom file extension name as it is used and managed internally by the program. 

The root element is named ‘expressions’. For each mathematical expression, a parent 
element named ‘item’ is created containing two child elements: 

- <name>: Describes the name of the mathematical expression; 

- <expression>: Expression string to be interpreted by the program. 

Note that variable values are not stored, as only the expressions are meant to be 
reusable. An example of the file structure describing one mathematical expression can be 
seen in Appendix C. 

 
3.10.  Session module 

3.10.1 Description 

The session module is responsible for handling the input and output of sessions from 
files, as well as manage sessions throughout the lifecycle of the application. A session is 
akin to a project in many other image editing software (e.g., .PSD file for Adobe 
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PhotoShop), and in this context refers to all related work done by the user that can be 
saved to a file. This module specifically handles two use-cases: 

1. Opening and saving session information through a ‘.axml’ file. This file only 
encodes necessary information to be readable by the program and is not meant to 
be read by the user. It is henceforth referred as ‘program-specific session file’; 

2. Exporting session information to a .CSV file. This file is meant to be directly read, 
analyzed and used by the user. It is henceforth referred as ‘user-specific session 
file’. 

 

3.10.2 Program-specific session file specification (.axml) 

A program-specific session holds information about each imported image, such as file 
path, zoom information and layer information. It follows the same XML standard as 
previous file specifications but has ‘.axml’ as the file extension name for easily locating 
and opening sessions. 

The root element is named ‘session’. For each imported image, a parent element named 
‘image’ is created containing three child elements: 

- <layers>: Contains information about the created images’ layers; 

- <sourceImagePath>: The absolute image path; 

- <zoom>: Describes information about the zoom settings that the user set when 
working in the image. 

In the <layers> tag, for each layer there’s a child element describing the type of layer, 
either ‘line’ if it is a measuring line or ‘expression’ if it is a mathematical expression. The 
line layer contains the following child elements: 

- <name>: Name of the layer; 

- <startPointX>: The X axis coordinates of the line’s starting point; 

- <startPointY>: The Y axis coordinates of the line’s starting point; 

- <endPointX>: The X axis coordinates of the line’s ending point; 

- <endPointY>: The Y axis coordinates of the line’s ending point; 

- <color>: The color of the line. 

The expression layer contains the following child elements: 
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- <name>: Name of the mathematical expression; 

- <expression>: Expression string to be interpreted by the program; 

- <variable> (for each variable): Contains two child elements describing 
information about a variable, namely: 

o <name>: Name of the variable; 

o <value>: Value of the variable. 

In the <zoom> tag, there are three additional child elements, namely: 

- <scale>: The scale ratio of the image as observed in the work panel; 

- <hValue>: The horizontal scrolling location of the zoomed in image; 

- <vValue>: The vertical scrolling location of the zoomed in image. 

An example of the file structure describing a program-specific session with all these 
described attributes can be seen in Appendix D. 

 
3.10.3 User-specific session file specification (.CSV) 

A user-specific session holds information about each image source path, selected 
metadata information and layer information, where the values are delimited by commas 
(comma-separated values, or CSV). CSV was chosen not only because it is easy to write 
to, but because it is also easy for the user to interpret and analyze. It is structured as 
follows. 

1. The first line is the headers line. It describes each column value and is comma-
separated. Naming is structured as follows: 

a. First value is always “Source” and refers to the absolute image path; 

b. The following values are selected image metadata tag names by the user, 
but are not required. Metadata selection for exporting is done as seen in 
Figure 23; 

c. After the optional metadata tag names, the layers names are inserted 
followed by the unit name in parentheses (e.g., ‘Layer1 (px)’). Layers 
names cannot be repeated, except for different unit names. If two different 
images contain a layer with the same name, their corresponding values will 
be placed in the same column; 
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2. For each image, a line is inserted with the corresponding values of the columns 
defined in the first line. 

An example of the file structure describing a user-specific session with all these 
described attributes can be seen in Appendix E. 

 

Figure 23 – Setting a metadata tag to be exported. If set to export, the tag will have a blue ‘e’ 
preceding it. Whole metadata directories, such as Exif can be set to export.

 

 

  



   
Results analysis and discussion 

 

47 
 

Chapter 4 – Results analysis and discussion 

4.1. Introduction 

This chapter is composed of four Sections and analyzes the usability and processing 
time of the proposed solution compared with the solution described in Section 2.2.2. The 
first Section introduces and describes the chapter structure. 

The second Section defines the specific questions that will be analyzed and studied, as 
well as details about the experiment and about how data was collected to answer them.  

The third Section explores the quantitative and qualitative results of the experiment 
defined in the second Section and analyzes it critically 

The fourth Section analyzes the camera calibration module independently, which was 
not evaluated in the previous Sections, by comparing user interfaces with a competing 
software. 

 
4.2. Data collection 

In this chapter, two main questions are studied through an empirical study, namely: 

1. Does the use of the proposed software generate faster, and equivalent or better 
results than previous solutions? 

2. Is the proposed software more intuitive, easier and convenient to operate, 
compared to previous solutions? 

To answer these questions, a qualitative and a limited quantitative approach was used. 
A quantitative approach was limited by only one participant for two main related reasons: 

1. Outside specific research groups, the number of people that understand the basic 
underlying concept and have a use for the full proposed solution are somewhat 
limited, and hard to reach; 

2. As with any other program, the proficiency in the use of the program developed in 
the scope of this work can only be attained through a learning curve. At the time 
of the completion of this work only one person was considered proficient in the 
use of the program and thus the only who could give unbiased results when 
comparing with other solutions. 

To answer the first question, “Does the use of the proposed software generate faster, 
and equivalent or better results than previous solutions?”, an experiment was conducted 
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where the researcher was asked to complete the photogrammetry process detailed in 
Section 2.2.2, and then the equivalent process with the software developed in the scope 
of this work. To answer the second question, “Is the proposed software more intuitive, 
easier and convenient to operate, compared to previous solutions?”, an informal 
interview was conducted afterwards asking to compare both processes qualitatively. 
Camera calibration was the only step evaluated separately and differently, as will be 
described in Section 4.4. 

A set of ten aerial pictures of sperm whales (Physeter macrocephalus) was used for 
the experiment. All pictures were obtained during fieldwork by marine mammal 
researchers of the Institute of Marine Research at Azores, under permit from the Azores 
Regional Government. The pictures were captured using a DJI Phantom 3 Standard 
quadcopter, hereby referred as ‘drone’. 

Height above sea-level was estimated by the absolute air pressure readings from the 
drone’s inbuilt barometer (Durban et al. 2015), using a correction factor of 0.4 meters due 
to the height above sea-level of the take-off platform on the boat used to deploy the drone. 
Barometric readings, along with other relevant information such as the drone geographic 
location from an inbuilt GPS, camera orientation, among other, are written as Exif and 
XMP metadata. 

The experiment involved extracting four measurements of the animal body from each 
picture, in pixel units, merging those measurements with relevant extracted metadata in 
the respective picture and converting measurements to metric units. The measurements 
taken consisted in the animal length and three animal widths at different points along the 
animal length, perpendicular to the length axis (Figure 24). For the solution referenced in 
Section 2.2.2, GIMP was used to retrieve measurements.  
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Figure 24 – Experiment extracted measurements: one for animal length, three for width. 

 
As mentioned above, the participant is an experienced user and is familiar with both 

protocols (the current and the new proposed solution). Processing time for both solutions 
was recorded using a digital chronometer and two main tasks were considered: 

1. Time for acquiring measurements; 
2. Time to scale and export results; 

The experiment was repeated three times for each protocol and resulting times were 
averaged. 

 

4.3. Overall results 

4.3.1 Quantitative time results 

The results for processing time are presented in Table 1. Time for acquiring 

measurements decreased by ≈40%, from 31 minutes and 43 seconds to 19 minutes and 1 

second. Processing time for conversion/scaling and exporting results also decreased from 

3 minutes and 25 seconds to 9 seconds (≈95% decrease). Overall the total time decreased 

from 35 minutes and 8 seconds to 19 minutes and 10 seconds, a decrease of ≈45,4%. 

The biggest factor in decreasing the total time is the time for acquiring measurements. 
While the method for measuring lines is similar in both solutions, there is a key 
difference: in the current solution, measurements are taken and annotated externally one 
at a time, while the proposed solution allows the management of multiple measurements. 
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The processing time for conversion and exporting is also significantly faster since the 
proposed solution natively handles this problem, while with the current solution the 
document structure and input values (and headers) for each image need to be inserted 
manually. This also includes relevant metadata information and conversion ratios. 

 

Table 1 - Quantitative results of time taken to perform two different steps of the 
photogrammetry process. 

 Time for acquiring 
measurements 

(minutes:seconds) 

Time to scale 
measurements and 

export results 
(minutes:seconds) 

Total time 
(minutes:seconds) 

Using non-
dedicated software 

31:43 03:25 35:08 

Using proposed 
software 

19:01 00:09 19:10 

 

 

4.3.2 Qualitative interview results 

The most noted difference between both solutions was the ease of use and the 
workflow itself. Being able to complete the whole photogrammetry process in one 
program and not having to switch between programs also avoids possible data corruption 
and overall streamlines the process. The three resizable view panels were also noted ideal 
in visualizing all the necessary information simultaneously. 

A few quality of life details in the proposed solution were also noted, such as 
remembering the last directory used when saving/opening files, having the option to apply 
the same scaling to every image, having suggested values when performing unit 
conversion, having a thumbnail and source path for each image on the navigation panel 
and being able to set entire metadata groups, such as Exif, to be exported. 

However, there were also a few notes and suggestions to improve in some regards, 
namely: 

- When creating a line, the zoom does not scale towards the mouse pointer location 
which results in the line having to be readjusted later; 
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- When setting scale/unit conversion using distance conversion for each image, 
some fields needs to be inputted repeatedly, such as camera sensor width and focal 
length, where they could be pre-filled; 

- If the image size is big enough, when zooming out the image, sometimes the 
measurements can be almost impossible to visualize because the measurement 
lines have a fixed thickness. 

Further discussions and suggestions can be accessed in the Github platform 
(https://github.com/franciscoaleixo/AragoJ/issues). Notice, however, that overall, the 
proposed solution was recognized as a significantly better solution in terms of experience, 
usability and productivity. 

 
4.4. Camera calibration 

Since the proposed solution uses OpenCV for camera calibration without any inner 
code changes, it also means that it performs similarly to other software that also uses 
OpenCV, including Calib3V (Balletti et al., 2014). As such, user experience is the biggest 
difference and most relevant point to compare. 

To compare both solutions, each step in the calibration process was analyzed, namely: 

1. Importing images: The proposed solution uses a native dialog for finding images 
and importing them, which makes finding the correct files very easy while Calib3V 
does not. Furthermore, imported images can be seen in the navigation panel in the 
proposed solution, while there is no indication of what the imported images on the 
Calib3V are; 

2. Configuring the calibration process: Calib3V only allows the calibration of 
circle grid patterns (Annex A), while the proposed solution also allows, 
additionally, the chessboard pattern. Horizontal and vertical point number must be 
defined in both, but in Calib3V width and height of circles as well as target distance 
must also be defined by the user, while the proposed solution does not require it. 
Calib3V also features, for each image, a region selection ability, where the pattern 
detector can be tweaked; 

3. Calibration execution and results: In Calib3V there is not much feedback to the 
user about the calibration execution and results, apart from the resulting camera 
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matrix, if it succeeds (Annex B). In the proposed solution, both the execution status 
and results are reported. 

It is important to note that Calib3V is primarily a prototype, which means that many 
reported usability issues are to be expected. Further, additional configuration required in 
Calib3V might lead to better detection rates. In fact, OpenCV allows a vast amount of 
configuration, including allowing manual input for focal length, if known, for possibly 
better calibration models. While none of this is present in both solutions, it is interesting 
to further explore it in the future. Finally, Calib3V is also focused on action camera’s 
calibration, while the proposed solution attempts to generalize the application scenarios, 
which does lead to the expected differences in configuration.
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Chapter 5 – Conclusions and recommendations 

5.1. Introduction 

This chapter is composed of five Sections and derives conclusions from the present 
work. The first Section introduces and describes the chapter structure. 

The second Section explores the main key points from the present work, including 
methodology, implementation and results. 

The third Section describes possible contributions to the scientific community as a 
result of this work, and specifically as a result of the developed solution. 

The fourth Section analyzes the key limitations in the study and results of the solution 
explored in Chapter 4. 

The fifth Section suggests future improvements to both the solution and the analytical 
study and evaluation of the solution. 

 
5.2. Main conclusions 

The investigation objectives of formulating and implementing an easier, faster and free 
method of executing the photogrammetry process in the biological context were generally 
achieved. The module architecture and presentation architecture proved to simplify 
implementation and allowed better maintenance of the software. Additionally, it allowed 
to easily make changes that originated from the received feedback. By using Java in 
implementation, cross-platform was also made possible. 

The agile Kanban-based methodology also worked very well, although it proved 
difficult to maintain a strict schedule for development and testing due to extraneous 
circumstances. Despite this, it led to constructive public discussions, that can be accessed 
on the Github platform (https://github.com/franciscoaleixo/AragoJ), on how the software 
behaved, and what could be improved, which also proved helpful in writing the present 
text. 

However, there are also some open issues to improve in the proposed solution, 
including extending image file support beyond JPEG files, improving user experience in 
some edge cases, reducing dependency from third-party software libraries, improving and 
rethinking camera calibration configuration options, among others. There are also some 
additional features that would be interesting to be implemented, such as angle and area 
measuring tools that are further discussed in Section 5.5. 
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The quantitative and qualitative results gathered were also encouraging, where 
processing time was reduced approximately by 45%, and usability feedback was positive. 
However, the results were also somehow limited in number and further tests are necessary 
to reach sound conclusions. Since the solution is also proposed to be general, different 
processes and use-cases comparisons would also provide useful information and would 
probably lead to further suggestions for improvement. 

Overall, the present work achieves at building a starting point in the unification and 
simplification of the different photogrammetry steps in a biological context in a single 
free software program. It consequently replaced the previous photogrammetry solution in 
use by the researchers at Azores Whale Lab (R. Prieto, personal communication, 2017). 
The developed software is named AragoJ and the releases are openly available in the 
Github platform (https://github.com/franciscoaleixo/AragoJ/releases). Currently, the 
source code is not openly available but there are plans in the future to make it available 
to the public in the same platform. 

 

5.3. Contributions to the scientific community 

As mentioned, the present work main focus was the integration and simplification of 
the different photogrammetry steps when measurements cannot be automatically taken. 
This manual process can be a very laborious process, especially if there are a large amount 
of measurements to be recorded, which the proposed solution has shown to alleviate. 

As such, the present work contributions are mainly related with productivity and 
quality of life improvements over previous solutions in the context of photogrammetry. 
Fields in the area of biological research, which, in diverse cases, require manual close-
range photogrammetry techniques directly benefit from the present work. A shown and 
proven example is the adoption of the proposed photogrammetry solution in the current 
and future studies of sperm whales by researchers at Azores Whale Lab (R. Prieto, 
personal communication, 2017), where the benefits of the proposed solution were well 
noted.  

In a more general sense, the present work contributes to any field that makes use of 
photogrammetry techniques and require manual recording of measurements. Further, 
because the presented solution still respects the modularity of the different components 
within the photogrammetry process, it can also be used partially in other contexts. For 
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example, it can be used independently as a camera calibration tool, a measuring tool, or 
an image metadata viewer tool. 

Finally, an important and differentiating aspect of the presented solution is that it is 
portable, free and supports cross-platform, which further means that it can be universally 
used by anyone with a desktop with virtually no further restriction. 

 

5.4. Study limitations 

Although the results presented in Chapter 4 were encouraging and help confirm the 
initial objective of increasing productiveness and intuitiveness, there were clear 
limitations present within the study.  

The reduced sample size is a big limiting factor in accurately estimating how much 
faster the proposed solution is compared to other solutions. Additionally, the present work 
was only compared to the Azores Whale Lab photogrammetry solution, and even then, 
the use case of boat photoshoots was not compared, thus not every module was compared. 
Only the most common use case, with aerial photoshoots, was compared. Other 
photogrammetry processes, albeit generally similar, were not tested or compared. 

Similarly, learning curve for both solutions was not explored/tested, which could also 
lead to interesting results. Since the presented solution is an integrated system capable of 
performing the whole photogrammetry process, it is assumed that it would be easier, in 
principle, to operate and learn, whereas the previous Azores Whale Lab solution relied 
on the user having to learn to operate different software tools. However, further tests with 
inexperienced users are needed in order to confirm that assumption. 

Another present limiting factor is possible bias in the qualitative results. Researchers 
at Azores Whale Lab were involved over the course of the solution development, namely 
in providing feedback. As such, the solution was, to a certain extent, tailored according 
to their feedback. It is then natural that the final evaluated solution received positive 
feedback throughout. While it is certainly reasonable to conclude that the solution is 
appropriate for their use cases, and better in terms of productiveness than their previous 
solution, there is not enough data to generalize and assume the same for other possible 
use cases. 
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5.5. Future work 

Due to time constraints, many useful features, tweaks and experiments were not done. 
Future work concerns two main areas: 

1. Improvements to the solution: While the present solution has already been shown 
to meet the original requirements and have considerable advantages to previous 
solutions, there are still areas for improvement, namely: 

a. Implementation of additional measuring tools to measure areas, angles and 
curved features (with segmented lines); 

b. Implementation of image processing tools to aid the measuring process, 
such as edge detection, greyscale filtering, and so on; 

c. Research and implementation of automatic or semi-automatic measuring 
tools to further improve productivity; 

d. Experimenting and reviewing novel camera calibration techniques to 
further improve the calibration parameters accuracy. Also tweaking the 
calibration configuration process and ideally simplify it while retaining 
good results; 

e. Implementing support for other image formats other than JPEG related 
formats.  

2. Further quantitative and qualitative analysis: As noted in Section 5.4, there 
were notable limitations in the quantitative and qualitative results. Some 
suggestions for improvement in this regard include: 

a. Increasing the number of interviews for both quantitative and qualitative 
analysis; 

b. Usability and learning curve testing with individuals that were not involved 
in the process of the solution proposal and development; 

c. Increasing the number of use cases and contexts studied to fully evaluate 
the solution under different application scenarios. 
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Annex A 

 

 
 

 
Calib3V (Balletti et al., 2014) calibration settings dialog (top image) region selection for each 

image (bottom image) 
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Annex B 

 

Calib3V (Balletti et al., 2014) results of the calibration process, i.e., calibration model 
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Appendix A 

 

 
Calibration progress (top image) and results of calibration with calibration output, image 

status and drawn pattern (bottom image) 
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Appendix B 

 
Example of a calibration file structure (.acalib) 
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Appendix C 

 

Example of expressions file structure containing one mathematical expression (.xml) 
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Appendix D 

 

 
Example of a program-specific session file structure (.axml) 
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Appendix E 

 
Source,Modified date,Size,Make,Model,Latitude,Longitude,Altitude 
Ref,Altitude,RelativeAltitude,Eixo Primário (px),Eixo Primário 
(cm),Eixo Secundário (px),Eixo Secundário (cm),Fluke allometric 
equation 
C:\Users\...\Desktop\Tese\DJI_0002.JPG,2018/02/15 23:45:27,4.41 
MB,DJI,FC300C,38.64998166666667,-28.411974999999998,Below sea 
level,132 metres,+25.20,844.29,791.18,121.02,113.41,2076.215633913852 

 
Example of a user-specific session file structure with one image (.CSV) 

 
 
 
 
 
 

 
 
 


