

Department of Information Science and Technology

From Native to Cross-platform Hybrid Development:

CodeGT - Design and development of a mobile app for an ERP

Carlos Manuel Manso Pinto

Dissertation submitted as partial fulfilment of the requirements for the degree of

Master in Computer Engineering

Supervisor:

Professor Carlos Eduardo Dias Coutinho, Assistant Professor, ISCTE-IUL

October 2018

From Native to Cross-platform Hybrid Development

i

Acknowledgements

I would like to thank my supervisor, Professor Carlos Eduardo Dias Coutinho, thank

you for your guidance, knowledge, availability and time.

Many thanks to my family, the lack in the retreat periods and to understanding the goal

to be achieved.

To my ISCTE-IUL Teachers, for the learning skills.

To Sigescom – IT Solutions Lda, my company for the support and time for the

preparation of the thesis.

To all that I have listed my sincere "Thank you".

From Native to Cross-platform Hybrid Development

ii

Resumo

As tendências atuais em direção à grande mobilidade dos indivíduos, juntamente com

o crescimento exponencial do número de dispositivos móveis, levaram ao enorme

crescimento na procura do desenvolvimento de aplicações móveis. Além disso, com a

expansão e heterogeneidade dos dispositivos e das plataformas móveis, as empresas de

desenvolvimento de software necessitam de encontrar formas mais rápidas e baratas de

desenvolver aplicações capazes de abranger o maior número de dispositivos para ir ao

encontro da elevada procura do mercado. Atualmente, os sistemas operativos Android e

iOS dividem e dominam o mercado de dispositivos móveis com expressões tímidas de

outros concorrentes. Cada um desses sistemas operativos móveis foi desenvolvido

especificamente para linguagens de programação e estratégias próprias e oferecem um

conjunto de ferramentas de desenvolvimento com as suas bibliotecas, para a criação de

aplicações nativas. Por outro lado, a evolução do HTML5, CSS e do JavaScript criaram

oportunidades para o surgimento de alternativas genéricas para criação de aplicações

multiplataforma que correm em todos os dispositivos e em todos os sistemas operativos,

mas sem a capacidade de aceder todo o potencial nativo do dispositivo. Paralelamente

surgiram as novas plataformas de desenvolvimento híbridas, que tentam tirar o melhor

partido dos dois mundos.

Esta dissertação descreve a evolução das diferentes abordagens no desenvolvimento

de aplicações móveis mais concretamente na utilização de ferramentas multiplataformas

para a criação de aplicações móveis híbridas e as suas vantagens. A pesquisa incluiu ainda

o desenvolvimento de uma aplicação móvel, CodeGT, desenvolvido numa plataforma

híbrida para interagir com um software ERP, acedendo aos Documentos de Transporte

registados nesse ERP, assim como ao código transmitido pela Autoridade Tributária

(AT), que assim dispensa a impressão de documentos e indo ao encontro de uma

necessidade do mercado. Esta aplicação já tem empresas clientes interessadas nela.

Palavras-Chave: desenvolvimento de aplicações; aplicação móvel; aplicações móveis;

Ionic; plataforma Ionic; plataformas desenvolvimento híbrido; desenvolvimento de

aplicações multiplataforma; desenvolvimento de aplicações híbridas; plataformas

desenvolvimento móveis; aplicações híbridas; Enterprise Resource Planning; softwrare

ERP; multi-plataforma; Angular.

From Native to Cross-platform Hybrid Development

iii

Abstract

The current trend towards mobility of individuals, together with the exponential

growth of the number of mobile devices led the market to a boom in the demand for the

development of mobile applications. Moreover, with the expansion and heterogeneity of

the mobile devices and platforms, software companies need to search for faster and

cheaper ways to develop applications that can span as many devices as possible to capture

the market. Currently, the Android and iOS Operating Systems roughly share and

dominate the mobile market, with timid expressions of other competitors. Each of these

mobile operating systems were developed using their own languages, strategy and SDKs

for development of applications using their libraries – known as Native apps. On the other

hand, the evolution of HTML5, CSS and JavaScript created generic alternatives to create

mobile apps that run on devices on all operating systems, although lacking the capability

to access the device’s full potential. Alongside came the new Hybrid cross-platform

development frameworks, which try to take the best of both worlds.

This dissertation describes the evolution of the different mobile app development

approaches and the state-of-the-art in their development techniques, and compares them

with the Hybrid app approach, then highlighting the trends in mobile app development

using Hybrid platforms and their advantages. This research includes the development of

a mobile Hybrid application, CodeGT, which interacts with an Enterprise Resource

Planning (ERP) to access the Transport Documents registered in this ERP and access to

the code transmitted by the Portuguese Tax Authority (AT), therefore not requiring the

printing of documents and meeting a need of the business market. This application does

already have customer industry companies interested in it.

Keywords: app development; mobile; Ionic; cross-platform; mobile app; Native

development; Hybrid development; Native Hybrid app; Enterprise Resource Planning;

ERP; multi-platform development; cross-platform development; Hybrid app; Angular;

Firebase.

From Native to Cross-platform Hybrid Development

iv

Index

Acknowledgements .. i

Resumo .. ii

Abstract .. iii

Index ... iv

List of Tables .. vi

List of Figures ... vii

Abbreviations ... ix

Chapter 1 – Introduction ... 1

1.1. Motivation .. 2

1.2. Research objectives .. 2

1.3. Research questions ... 3

1.4. Methodology .. 4

1.5. Structure and organization of the dissertation ... 4

Chapter 2 – Literature Review .. 6

2.1. Information Systems .. 6

2.2. Enterprise Resource Planning (ERP) ... 7

2.2.1. Processes of the business areas ... 10

2.2.2. ERP Architectures and Technologies ... 11

2.2.3. Advantages and disadvantages of an ERP .. 12

2.2.4. Implementing an ERP ... 14

2.2.5. Critical Success Factors .. 15

2.2.6. Maturity and future of ERP systems .. 15

2.3. Mobile .. 16

2.4. Mobile Applications .. 19

2.5. Mobile Application Development Tools ... 21

2.6. The Native Approach ... 22

2.7. The Web Approach .. 23

2.8. The Hybrid Approach .. 27

2.9. Mobile App Comparison Table: Native vs Web vs Hybrid 28

2.10. Mobile Hybrid development .. 31

2.10.1 Adobe PhoneGap .. 31

2.10.2 Apache Cordova ... 31

2.10.3 Xamarin Platform ... 32

2.10.4 Firebase Mobile Platform ... 33

2.10.5 React ... 34

From Native to Cross-platform Hybrid Development

v

2.10.6 Meteor ... 35

2.10.7 Ionic Platform ... 35

Chapter 3 – Application Concept and Application Development 40

3.1. Development of the mobile application CodeGT .. 40

3.1.1. Transport Documents ... 41

3.1.2. Legal Transport Document Requirement ... 42

3.2.1. Architecture of Mobile Application ... 44

3.2.2. Database ... 44

3.2.3. Server Side ... 45

3.2.4. Application mockup ... 48

3.3. Mobile development .. 50

Chapter 4 – Results \ Evaluation ... 69

4.1. Qualitative results of the prototype .. 69

4.2. Quantitative Evaluation ... 72

4.2.1 Cost for developing a mobile app ... 72

4.2.1 App Complexity .. 76

4.2.2 Mobile Hybrid Development Risks ... 80

4.3. Analysis and discussion of results ... 81

Chapter 5 – Conclusions .. 82

5.1 Main conclusions ... 82

5.2 Main Scientific and Business Community Contributions 84

5.2.1 Contributions at the academic level .. 84

5.2.2 Contributions at the industry and business level 84

5.3 Future work .. 85

Bibliography .. 86

From Native to Cross-platform Hybrid Development

vi

List of Tables

Table 1 - Native Development Environment per OS ... 22
Table 2 - Programming languages vs platforms ... 27

Table 3 - Comparison Native vs web vs Hybrid .. 30
Table 4 - Evaluation mobile Hybrid app CodeGT ... 69
Table 5 - SWOT Analysis .. 70

From Native to Cross-platform Hybrid Development

vii

List of Figures

Figure 1 - Design science research cycles ((Barafort et al., 2018) 4
Figure 2 - The scope of an ERP (Davenport, 1998) ... 7

Figure 3 - ERP Evolution ... 10
Figure 4 - Purchase Process .. 11
Figure 5 - ERP Architecture ... 12
Figure 6 - Nº Subscribers of mobile land service in Portugal (Portdata, 2018) 16
Figure 7 – Number of Global Computing Users (in millions) Source: comScore, Morgan

Stanley 2012 ... 16
Figure 8 - Desktop vs Mobile market share since 2014(in %) (“Mobile Operating

System Market Share Worldwide | StatCounter Global Stats,” 2018) 17

Figure 9 - Estimate on number of downloaded mobile apps Source: (Statista, 2018b) . 17
Figure 10 - Market share of operating systems in smartphones (in %) (Statista, 2018b)

 .. 18
Figure 11 - Mobile Operating System Market Share (in %) (“Mobile Operating System

Market Share Worldwide | StatCounter Global Stats,” 2018) .. 19
Figure 12 - Bootstrap Responsive Web Layout.. 24
Figure 13 - Application architecture for a modern web application Source: (Shahzad,

2017) ... 26
Figure 14 - Visual Studio tools for Apache Cordova ... 32

Figure 15 - C# cross-platform with Xamarin and .Net [Source: (Xamarin, 2018)] 33
Figure 16 - TypeScript is a superset of JavaScript ... 37

Figure 17 - Hybrid applications architecture and usage of Apache Cordova tools

(Bosniac et al., 2017) .. 38

Figure 18 - Example of a Transport Document with AT code from ERP PHC 42
Figure 19 - CodeGT Architecture ... 44

Figure 20 - UML from table cl and ft ... 45
Figure 21 - The MVC pattern ... 45
Figure 22 - part of Code for GuiasController in C# ... 48

Figure 23 - Application Mockup .. 49
Figure 24 - Node.js site .. 50

Figure 25 - Ionic CLI .. 50
Figure 26 - CLI command to create CodeGT app .. 51

Figure 27 - Ionic CLI command to start app .. 51

Figure 28 - Ionic side menu app created... 51

Figure 29 - Ionic, files structure ... 52
Figure 30 - src directory ... 53
Figure 31 - app.html ... 53
Figure 32 - CLI command to generated page about ... 54
Figure 33 - New page on Ionic ... 54

Figure 34 - Html page of Login Page ... 55
Figure 35 – TypeScript file of Login page ... 55
Figure 36 - Ionic Stack of Pages ... 56
Figure 37 - Ionic Component - Button ... 56
Figure 38 - Data model on CodeGT ... 57

Figure 39 - Firebase Install ... 58

Figure 40 - Firebase Console .. 59

Figure 41 - Provider in Ionic .. 60
Figure 42 - CLI to build apk .. 60

From Native to Cross-platform Hybrid Development

viii

Figure 43 – CLI to build ipa on a MAC computer ... 61
Figure 44- Splash screen on iOS, Android and Windows Phone 61
Figure 45 – The Welcome and Login Screen ... 62

Figure 46 - Customers List on iOS, Android and Windows Phone 62
Figure 47 - Layout view from a tablet .. 63
Figure 48 - Customer detail .. 63
Figure 49 - The Menu screen .. 64
Figure 50 - Pending documents .. 64

Figure 51 - Detail document ... 65
Figure 52 - Map route to destination .. 66
Figure 53 - Receiver signature.. 67
Figure 54 - Document delivery and sign .. 67

Figure 55 - About us screen .. 68
Figure 56 - ERP PHC desktop UI for a specific customer ... 71
Figure 57 - ERP PHC Web UI for a specific customer .. 71

Figure 58 - CodeGT UI for a specific customer ... 72
Figure 59 - Costs on App Development Life Cycle for Single Platform 74
Figure 60 - Costs on App Development Life Cycle for Multi-Platform 75
Figure 61 - Costs on App Development Life Cycle Project for Single Platform 75

Figure 62 - Costs on App Development Life Cycle Project for Multi-Platform 76
Figure 63 - Apps Complexity Scale ... 77

Figure 64 - Number of apps available in leading app stores as 1st quarter 2018(Statista,

2018) ... 77
Figure 65 - Free vs. Paid Apps (Statista, 2018) .. 78

Figure 66 - Share of Global Mobile App Revenue By Type (Appsflyer, 2016) 79
Figure 67 - Number of SMEs in Portugal in 2016 (Pordata, 2016b) 79

Figure 68 – Percentage of SMEs in Portugal in 2016 (Pordata, 2016a) 79
Figure 69 - Most pressing long-running challenges facing software developers

worldwide as of 2015(Statista, 2015) ... 80
Figure 70 - Hybrid platforms solution to build mobile apps to interact ERP 83

From Native to Cross-platform Hybrid Development

ix

Abbreviations

AJAX - Asynchronous JavaScript and XML

API – Application Programming Interface

APK – Android Package

AT – Autoridade Tributária (Portuguese Government Tax Authority)

BPM – Business Process Management

CLI – Command-Line Interface

CRM – Customer Relationship Management

CRUD - Create, Read, Update, and Delete

CSS – Cascade Style Sheets

DBMS - Data Base Management System

DSR - Design Science Research

EDI – Electronic Data Interchange

ERP – Enterprise Resource Planning

ES - ECMAScript

ESS - Enterprise System Software

GPS – Global Positioning System

HCI - Human-Computer Interaction

HR – Human Resources

HTML – Hypertext Markup Language

IAP – In-App Purchase

ICS - Invent Control Systems

ICT – Information Communication Technologies

IIS – Internet Information Services

IOT – Internet of Things

IPA – iOS App Store Package

From Native to Cross-platform Hybrid Development

x

IS – Information System

JS – JavaScript

JSON – JavaScript Object Notation

MRP – Material Resource Planning

MVC – Model View Controller

NoSQL – Not Only Structured Query Language

OS – Operating System

PWA – Progressive Web Apps

REST – Representational State Transfer

SASS - Syntactically awesome style sheets

SCM - Supply Chain Management

SDK – Software Development Kit

SMEs – Small and Medium Enterprises

SOAP – Simple Object Access Protocol

SPA – Single Page Application

SQL – Structured Query Language

TCO – Total Cost of Ownership

TTM – Time to Market

UI – User Interface

UML – Unified Modelling Language

UX – User Experience

WCF – Windows Communication Foundation

From Native to Cross-platform Hybrid Development

1

Chapter 1 – Introduction

The growth of the mobile world has long surpassed the market share of desktop

development. The technology innovation in mobile computing, along with the increased

capabilities of the mobile devices, the dramatic improvement of the usability and look &

feel of portable devices, together with their increasingly cheaper prices has resulted in a

massive number of mobile devices in the market. The easy access to this technology and

the rapid growth in the numbers of purchased mobile devices resulted in a high demand

for mobile applications.

This dissertation describes a brief evolution of the different mobile app development

approaches and their state of the art development, and compares them with the Hybrid

app development approach, then highlighting the trends in mobile app development using

Hybrid platforms and their advantage.

The mobility of individuals and the high growth in the number of mobile devices in

recent years has led to the growing need for development of mobile applications. To cover

the entire universe of devices, the same application must be developed in several

programming languages, consuming a lot of time and money.

Organizations are facing growing competition and market dynamics. Access to

information is essential to the efficiency of organization operations. Given the mobility

of employees, access to the organization information systems from mobile devices inside

and outside the premises is crucial.

Developing mobile applications is currently one of the most important skills a

programmer must have. Over the past decade there has been a burst of mobile devices;

smartphones, tablets and wearables, which gave rise to a full suite of mobile applications.

In a time of mobile applications, how to create them is a difficult challenge for any

programmer who needs to know various programming languages to develop for the

devices. Languages such as Objective-C, Swift, for the development of iOS devices, Java

for Android devices and C# for Windows devices, among others. The emergence of

Hybrid development platforms using web development language and technologies, can

take advantage of Native device functionality and are interpreted by any mobile device,

or operating system emerge as an opportunity for the entire developer community.

From Native to Cross-platform Hybrid Development

2

Information systems such as Enterprise Resource Planning tools (ERPs) are currently

an essential tool in any organization for both legal issues and the need to manage the

amount of data organizations have at their disposal. The number of mobile devices has

increased year after year and its use has led to the creation of mobile applications to meet

the needs of companies in accessing the information available in their ERP and beyond.

The mobility of employees and the use of these devices, implies the creation of new

architectures of software development appropriate to their screens.

Native versus Hybrid platforms the trend in mobile app development using Hybrid

platforms and their advantage. In this dissertation, this approach will be analysed and

used a Hybrid development platform to create a mobile application to interact to an ERP.

The mobile Hybrid application developed already has final customers interested in its

implementation in their organizations.

1.1. Motivation

Today if companies develop mobile Native apps for all the platforms they need to

create several code-base to reach all the device mobile market.

The total time to develop a mobile application is very important, not only for a question

of costs, but the need for a quick response to an opportunity or to get an idea on market

before the competition, a metric called Time To Market (TTM). Mobile cross-platforms

can create mobile apps for several platforms and devices.

There is then a motivation to analyse this cross-platform alternative rather than the

Native development.

From a personal point of view, it is a subject that is inextricably linked to my

professional experience.

1.2. Research objectives

The purpose of this study is to investigate which platforms and development tools are

available in the market to create mobile applications, specifically from the point of view

of cross-platforms development.

From Native to Cross-platform Hybrid Development

3

Development languages of mobile applications are different, and the tendency is for

them to continue to diverge. The strategy of the market leaders is different and not going

in the sense of a standardization.

1.3. Research questions

To this purpose, the following research questions were raised:

• RQ1: Considering the currently large demand for mobile apps, can the

development of Hybrid mobile applications be considered an added-value as

opposed to developing Native mobile applications?

• RQ2: ERPs are complex and heavy software applications, difficult to be

accessed from mobile devices, can the development of Hybrid mobile

applications be interesting to build interact apps to interface with an ERP?

These research questions will be solved by the confirmation of the following

hypotheses, a task which shall be done in the remainder of this document:

• HYPOTHESIS 1: The current state is for the existence of multiple and

heterogeneous approaches towards the development of mobile applications.

These approaches are not converging, they are instead diverging more and

more. The approach of develop of Hybrid mobile applications is an added value

compared with the Native development from the point of view of cost and

effort.

• HYPOTHESIS 2: The Hybrid mobile development could be an added value

to develop mobile apps to interact, for example, as add-ins to an ERP.

From Native to Cross-platform Hybrid Development

4

1.4. Methodology

The investigation and research process of this dissertation approaches the Design

Science Research (DSR). DSR is inherently a problem-solving process. The DSR

methodology focuses on the development of a new artefact (Alan R. Hevner, Salvatore

T. March, 2004) (Barafort et al., 2018). An artefact can be represented as a practical

solution so that its contribution to the body of knowledge can be supported (Barafort et

al., 2018).

The reported research on Process Assessment draws on the DSR methodology for

information systems research suggested by Hevner (Hevner, 2007). The DSR

methodology, which combines both behavioural and design science paradigms,

comprises three interlinked research cycles, relevance, rigour and the central design cycle

on Figure 1.

Figure 1 - Design science research cycles ((Barafort et al., 2018)

1.5. Structure and organization of the dissertation

The present study is organized in five chapters that intend to reflect the distinct phases

of this dissertation:

• The first chapter introduces the research theme and objectives, research

questions and hypothesis, methodology as well as a brief description of the

work structure.

• The second chapter represents the theoretical framework, called Literature

Review.

From Native to Cross-platform Hybrid Development

5

• The third chapter is the application of the concept and development of the

application.

• The fourth chapter presents the analysis of the results obtained, qualitative

and quantitative.

• The fifth and closing chapter presents the conclusions of this study and future

work.

From Native to Cross-platform Hybrid Development

6

Chapter 2 – Literature Review

2.1. Information Systems

The world today lives in the information age. Information is Knowledge and

Knowledge is Power. Frequently, businesses mix the concept of information with the

concept of storing data. Having a massive load of unstructured and raw data is not

sufficient. Information and knowledge only exist upon interpretation of the meaning

given to that data. Information management is an essential factor in organizations, in the

development of business strategies, in innovation and knowledge, in customer

satisfaction, in the improvement of organizational processes (Elbashir, Collier, & Davern,

2008) and in performance measurement.

Information sharing is fundamental in any organization, but some managers remain

resistant to giving up their knowledge within organizations, as they still have a vision that

only in this way can they maintain a prominent position.

Information systems have emerged in the need to share and access information.

Information systems allow the registration and quick access to information in the

company.

An information system (IS) registers, stores, processes, analyses and distributes

information for a specific purpose (Turban & Volonino, 2011).

Converting the amount of data into information and knowledge is crucial to good

decision-making and the success of organizations. Whether for regulatory, legal, market

or other reasons, organizations are increasingly confronted with the need to register,

obtain, manage and process data generated by organizational processes, thus, the need to

use systems of efficient information, thus becoming fundamental.

Globalization, the opening of markets and technological development, imply a great

dynamic in the companies. The enormous competitiveness of markets leads to the need

to analyse relevant information to decision making as a fundamental success factor in

organizations. The access of this information is not only in the workplace but anywhere

with mobile devices.

From Native to Cross-platform Hybrid Development

7

2.2. Enterprise Resource Planning (ERP)

Information systems such as Enterprise Resource Planning (ERP) are currently an

essential tool in any organization. ERP is a software used by companies to coordinate all

business areas (Koupaei, Mohammadi, & Naderi, 2016). ERP is a solution whose main

function is to record the maximum transaction data in different business areas in a single

system and in a single relational database (Tomišová & Hudec, 2017) and is a tool that

takes part of most companies every day.

The ERP as a computer information system is an application used by companies to

coordinate all business areas (Monk & Wagner, 2009), which allows the company to

integrate the data of the entire organization (Davenport, 1998), (Chou, Bindu

Tripuramallu, & Chou, 2005), into a single central database (Emam, 2013), in a single

system (Ganesh, K. , Sivakumar, 2014). The ERP application accesses an application

database in a unified interface across the enterprise (Tadjer, 1998).

ERP enables companies to have a single integrated and modular software instead of

multiple applications that do not communicate with each other. The ERP also avoids the

redundancy of records between different databases and allows the efficiency in the

processes and the operational analysis of the company. It is thus beyond the difficulty of

having in the company, several applications that do not communicate with each other and

with duplicate records in different databases. Figure 2 shows the large scope of an ERP

(Davenport, 1998).

Figure 2 - The scope of an ERP (Davenport, 1998)

From Native to Cross-platform Hybrid Development

8

The current strategy of software companies that develop and sell ERPs is to make the

application available through various modules (Ganesh, K. , Sivakumar, 2014) (Emam,

2013), such as Management, Human Resources, Accounting, CRM, Logistics,

Production, Project, Support among others. Organizations can acquire more modules and

integrate them throughout the life of the company, according to their financial resources

and needs, arising from the development of the company, thus adapting to lower initial

investments that can be complemented when there are budgets for more licensing,

implementations and process integrations.

These software solutions consist of integrated modules (Ganesh, K. , Sivakumar, 2014)

that can be added at any time. ERP enables companies to have a single integrated, modular

software instead of multiple applications. When referring to ERP the most important

element are the existing processes in organizations. Processes that must be mirrored in

the integrated application and which are recorded in a relational database, Data Base

Management System (DBMS).

Until 2000 it was common for organizations to develop, internally or externally,

applications that tried to mirror their business processes, achieving an application that

responded exactly to the company's processes, but with high development costs and high

dependency to the entities or programmers who developed these custom applications.

Applications developed internally by organizations are less flexible and more expensive

to maintain and operate. With the year 2000 bug and the successive legal impositions that

have been demanded year after year, companies have chosen to purchase ERP software

externally.

One of the reasons is the excessive cost associated with the constant development of

internally produced software. Another reason is based on the incompatibility or difficulty

of these applications connected to other software. Even by imposing customers \

suppliers, who demanded the connection to their software, for example Electronic Data

Interchange (EDI) and even because these applications are developed with technologies

already outdated and with limitations.

There are authors who mention the term Enterprise System Software (ESS), such as

Enterprise Resource Planning (ERP), Customer Relationship Management (CRM) and

Supply Chain Management (SCM) (Graeme Shanks,Peter B. Seddon, 2003), but in

practice the companies that are currently developing ERP include all these applications

as part of their ERP modules.

From Native to Cross-platform Hybrid Development

9

ERP systems have the following characteristics:

• Software with own development frameworks;

• Complex applications (Chou et al., 2005) and with modular design comprising

the maximum of the company's processes, such as financial, logistics,

production, etc.;

• Database management system (DBMS);

• An ERP is a generalist software that is quite customizable, flexible and

expresses the best practices in the market;

• Systems that require large investments, both from the point of view of their

licensing and in the consulting processes in the survey of the processes of the

organizations, their implementation in the ERP framework and follow-up after

implementation.

An ERP is a generic software that organizations should configure to their needs. ERP

applications are rapidly replacing custom-built, in-house software. ERP systems have a

significant impact on the organization of companies as well as on their strategy. Based on

the structure that is based on ERP software, there is a direct and indirect standardization

of the main processes, which allows a better communication experience between

organizations. ERP systems and the Internet were probably the two most important

information technologies that emerged in the 1990s (Graeme Shanks,Peter B. Seddon,

2003).

Researchers typically attribute the start of ERPs in the late 1960s. Companies felt the

need to develop their own applications to control their inventory, resulting in Invent

Control Systems (ICS).

Material Requirements Planning (MRP) followed. The term MRP was developed by

IBM at the time (Robert Jacobs & “Ted” Weston, 2007), which were systems developed

in the 1960s and 1970s by manufacturing companies, with the purpose of planning the

necessary resources, specifically in production and production planning of manufactured

products, management of raw material inventories and of the components necessary for

the manufacture, as well as the management of the inventories of the final products.

Manufacturing Resources Planning (MRP II) emerged in the 1980s, with the evolution

of MRPs, with the optimization of production processes, material planning requirements

in production, and production planning itself, and already addressed the financial area.

From Native to Cross-platform Hybrid Development

10

In the early 1990s came a new concept of integrated software, Enterprise Resource

Planning (ERP). The ERP allows companies to integrate the data of the entire

organization (Davenport, 1998) and the fundamental of the ERP is to record the data of

the transactions that are processed and registered in a database (Hawking & Sellitto,

2010).

Extended ERP (ERP II) comes about 2000 with the availability of ERP systems

through Web services such as E-commerce and the integration of modules such as

production, sales, design, logistics services, maintenance, Customer Relationship

Management (CRM), accounting, Human Resources (HR) among others. Figure 3 shows

the evolution of the ERP software.

Figure 3 - ERP Evolution

2.2.1. Processes of the business areas

The ERP must record all data of the different phases of all processes of business areas

of the organization. The need for automation of business processes is achieved in ERPs

(Ganesh, K. , Sivakumar, 2014), especially using Business Process Management (BPM),

an ERP module that, through operational workflows implemented in the applications,

optimizes tasks and phases throughout each process. To achieve this, it is necessary to

survey the processes, responsibilities and users that will be responsible during the phases

of the company's processes. While workflows are essentially automation tools for the

1960s -
Invent

Control
Systems

(ICS)

1970s -
Material

Requirements
Planning

(MRP)

1980s -
Manufacturing

Resources
Planning (MRP

II)

1990s -
Enterprise
Resource

Planning (ERP)

2000 -
Extentend ERP

(ERP II)

From Native to Cross-platform Hybrid Development

11

different phases that documents should go through organizational processes, BPMs add

greater integration with applications and tasks within the enterprise. The creation of

flowcharts with the processes is essential for the implementation of BPM, with the

decision maker's discrimination, responsible functions and the steps of the activities

throughout the organizational processes of the companies. Figure 4 shows an example of

a purchasing process. All processes of the organization must be registered in diagrams,

to be clear to all employees.

Figure 4 - Purchase Process

2.2.2. ERP Architectures and Technologies

Enterprise Resource Planning typically has a framework of its own. Figure 5 presents

a case-by-case approach to the application of the ERP algorithm (Chou et al., 2005), using

a variety of devices, such as computers or mobile devices, to data from a database of a

database server.

From Native to Cross-platform Hybrid Development

12

Figure 5 - ERP Architecture

ERP register transactions in a central and single database, with the advantage of only

registering data once without redundancy or registering at different locations and in

different databases. The most commonly used database engines are Microsoft SQL

Server, IBM DB2, Oracle, and MySQL.

Mobility is now a reality and a necessity in organizations. ERP software developer

companies are developing Web application accessing ERP data via Webservices and

APIs in mobile applications or Web applications on any mobile device independent of

the operating system. Considering the need to make the applications available in real time

and in various locations and devices, the ERPs now have additional modules that make

the software available through a web interface.

2.2.3. Advantages and disadvantages of an ERP

ERPs are integrated applications that enable you to enter data once in a process system

and track it throughout the enterprise. That allows one to obtain information from

customers, suppliers, production (Koupaei et al., 2016), purchasing, sales, human

resources, accounting and management analysis.

An ERP system imposes its logic on company strategy, culture and organization

(Davenport, 1998). What Davenport means is that ERPs are the result of the best

From Native to Cross-platform Hybrid Development

13

implementation practices over the years by companies that develop ERPs and thus

attempt to standardize processes regardless of company organization and culture, as

opposed to custom software. Also, (Graeme Shanks,Peter B. Seddon, 2003) stated that

while ERPs are quite configurable, they can impose behaviour patterns on organizational

processes.

ERPs now reflect the enormous experience gained over time in implementing the most

varied processes in diverse types of organizations. Adapting ERPs to enterprises using

parameter definitions is often called configuration (Davenport, Thomas H., Prusak,

1998). The customization of ERP by adding functionalities (usually through code

development) to the software is called customization.

In the ERP customization there is, for example, the creation of new tables and new

fields in the database, or the development of print reports or analysis of operational

management, or creation of automatism in the processes. One way for organizations to

avoid customization is to change their process to match the ERP. There is another risk

here, the process changes are difficult, and the processes embedded in the software may

not be appropriate for the organization's needs. The decision is in the customizations,

configurations and process changes that will be best for the company.

ERPs are complex applications and their implementation requires large financial

investments, time to implement and experience of use. The major implementation

problems are the reconciliation of ERP technical requirements with the business needs of

enterprises (Davenport, 1998). The costs of implementing an ERP are not only the costs

of licensing the software, but also the cost of the services (consultant service hours)

required for implementation, and the latter figure is usually quite high.

The cost of implementing an ERP can reach investment values, five to 10 times the

cost of the application licensing involved (Davenport, Thomas H., Prusak, 1998).

The risk associated with the implementation of an ERP is great if there is not an

involvement and commitment of the decision makers as well as the external team that is

normally responsible for its implementation. The greatest risk is in surveying the

company's processes to be implemented in the application. Experienced consultants

should correctly interpret the processes and objectives to be implemented. ERP software

is so complex that by even having an initial good implementation it is unlikely that there

is a correct fit for the organization (Graeme Shanks,Peter B. Seddon, 2003). ERP software

From Native to Cross-platform Hybrid Development

14

not only has to mirror business processes, it also must fulfil legal obligations imposed by

different countries.

2.2.4. Implementing an ERP

A problem in many organizations is that there are no well-defined organizational

processes and are difficult to express through formal schematics either at high level or

detail, i.e. knowledge of processes is being transmitted from collaborator to collaborator

or from manager to manager and not are mirrored in formal registers.

The challenge of both the company and the ERP side is the survey of the company's

business processes and which processes to transpose into the software. Organizations

invest ERPs to access powerful information systems less costly than proprietary software

development.

The biggest difficulty in implementing an ERP is the survey of company processes for

software. Many companies have their businesses flowing according to history and in

processes that are in the managers' minds, which are not documented. Often the processes

are passed from people to people. Managers know how to proceed, but have difficulty

translating what they know into paper. So, the consultants who do the survey are usually

responsible for this translation. Process collection should be done across the enterprise,

but it is the decision maker or decision makers involved who should validate.

 Organizational processes often have to be changed to fit the ERP processes

(Davenport, 1998). ERP are generic systems, standard processes implemented in most

organizations. Software houses develop the structure of their software according to best

practices, in their perspective and implementation experiences. In many cases the

software allows greater efficiency, but in others this may not happen due to problems in

its implementation. ERPs today are very flexible, allowing in their implementation a

customization according to the company's processes, but there are always additional costs

of this implementation, which often does not happen, and it will be the pre-established

processes in the software that determine the new company processes. Many small

companies take advantage of the ERP implementation to optimize their processes and

leverage the knowledge and experience of the consultants in defining the new processes.

If an implementation is planned someone must decide which applications (modules) will

be implemented in each phase.

From Native to Cross-platform Hybrid Development

15

2.2.5. Critical Success Factors

The implementation of an ERP project is a case of project management and as such,

much of the critical factors in its implementation have to do with project management.

Funding for a project by the sponsor, good project management, communication

throughout the company about what is being done and goals to be achieved, a medium-

term perspective not only of the company's current processes but also processes that can

be implemented in the future in the company and in the software. Thus, it is possible to

know whether the software responds not only to the current requirements of the company

but also to the additional processes that may be implemented in the future. The typical

critical success factors of an ERP implementation project, second (Davenport, Thomas

H., Prusak, 1998):

• Clear understanding of business needs;

• Top management support;

• Good project management;

• Experience, power and commitment of the responsible team (internal and

external);

• Organizational preparation;

• Sufficient technical architecture.

2.2.6. Maturity and future of ERP systems

ERPs today have a very complex, comprehensive and deep development. Applications

over the years have developed many features and respond well to most market needs.

The current challenge of ERP is user mobility. Business users today need to access the

application not only in various locations but also access the ERP through various mobile

devices such as tablets or mobile phones.

Through the implementations of webservices and APIs, ERP systems today have

modules that respond to these needs, with mobile applications or Web applications.

From Native to Cross-platform Hybrid Development

16

2.3. Mobile

The use of mobile devices (smartphones and tablets) has had a generalized growth

globally and Portugal is no exception, by analysing the graph in Figure 6, there is a great

increase in recent years. as in the world in general Figure 7, where it is highlighted that

the number of mobile users grows to the detriment of desktop PC users, either because of

the mobility of people in their day to day, and due to the great technological development,

that these equipment have undergone in recent years.

Figure 6 - Nº Subscribers of mobile land service in Portugal (Portdata, 2018)

Figure 7 – Number of Global Computing Users (in millions) Source: comScore, Morgan Stanley 2012

No. Subscribers (until 2009)

No. Equipment (after 2009)

From Native to Cross-platform Hybrid Development

17

The chart presented in Figure 8 shows how the computing market share evolved in the

last years worldwide, where one can see that the market share for Desktop applications

was initially far larger than the Mobile one, but decreasing until 2016 when there was a

shift between the demand for Desktop and Mobile application development, following

the growth on the number of devices owned by people of all socioeconomic levels.

Figure 8 - Desktop vs Mobile market share since 2014(in %) (“Mobile Operating System Market Share Worldwide |

StatCounter Global Stats,” 2018)

The growth of the mobile world globally has long surpassed the market share of

desktop development. The technology innovation in mobile computing, along with the

increased capabilities of the mobile devices, the dramatic improvement of the usability

and look & feel of portable devices, together with their increasingly cheaper prices has

resulted in a massive number of mobile devices in the market. The easy access to this

technology and the rapid growth in the numbers of purchased mobile devices resulted in

a high demand for mobile applications. The generalized growth of this type of devices

was accompanied by the development of applications Figure 9.

Figure 9 - Estimate on number of downloaded mobile apps Source: (Statista, 2018b)

From Native to Cross-platform Hybrid Development

18

The market for mobile devices is divided into two categories: hardware builders and

software companies that develop operating systems and apps. Builders build,

manufacture, assemble the various electronic components and configure an Operating

System (OS) in their equipment to take full advantage of the various components such as

the Wi-Fi camera, 4G, accelerometer, etc. of their devices. Companies that develop

operating system software produce systems to meet the needs of the functionalities that

hardware manufacturers and end-users seek (Perchat, Desertot, & Lecomte, 2013).

On the OS side there is the Apple iOS, Google's Android, Microsoft's Windows,

Blackberry's RIM among others, where Android and iOS dominate the market Figure 10

according to (Statista, 2018b) and Figure 11 (“Mobile Operating System Market Share

Worldwide | StatCounter Global Stats,” 2018). Each development platform uses different

programming languages and interfaces, and, in the developments, it is necessary to have

PC and MAC computers, as well as access to at least one mobile phone for each type of

OS.

Thus, the development of applications for mobile devices is difficult due to the

specifics of each platform and devices.

Figure 10 - Market share of operating systems in smartphones (in %) (Statista, 2018b)

From Native to Cross-platform Hybrid Development

19

Figure 11 - Mobile Operating System Market Share (in %) (“Mobile Operating System Market Share Worldwide |

StatCounter Global Stats,” 2018)

The proliferation of mobile devices, the constant advances in mobile computing, and

the huge leaps in mobile Human-Computer Interaction (HCI) increased the desired

demands to access ERP systems via mobile devices (mobile ERP) such as smartphones,

tablet computers, and mobile handheld computers. Mobile ERP research is considered

the latest research trend of ERP systems.

The usability of mobile ERP’s user interfaces (UIs) can be considered one of those

research areas. Mobile computing has improved the way of doing today’s businesses. The

ERP system is the core component of the mobile ERP. Mobile ERP system consists of

three main components namely: the mobile application (mobile app) that access the back-

end ERP system and was deployed on the mobile device; the mobile net communication;

and the backend ERP system (Omar & Gómez, 2016).

2.4.Mobile Applications

Mobile application development is currently one of the most important skills a

programmer can possess. Over the past decade there has been a burst of mobile devices;

like smartphones, tablets and wearables, which gave rise to a full suite of mobile

applications. In a time of mobile applications its creation is a difficult challenge for any

programmer who needs to know various programming languages to develop for the

devices. Languages such as Objective-C and Swift, for the development of iOS devices,

From Native to Cross-platform Hybrid Development

20

Java for Android devices and C# for Windows devices, among others. The emergence of

Hybrid development platforms that use web development languages that take advantage

of Native device functionality and are interpreted by any mobile device comes as an

opportunity for the entire developer community.

The dynamics of the business market, whether because of globalization, the opening

of markets, enormous competition or high technological development, mean that

companies must have an efficient information system that can record operational data and

transform them into information and knowledge to make business decisions.

Information systems technologies are a set of processes and tools (Bahrami, Arabzad,

& Ghorbani, 2012) that help to achieve greater competitiveness in companies, risk

perception and decision making. One of the characteristics of the information age is that

there is excessive focus on mastering transaction data and not enough on turning it into

information and knowledge that can lead to business results. Information systems in

organizations register trillions of bytes of business transaction data to meet operational

needs. Access to the information available in the ERP through mobile devices is a market

need, considering the mobility of human resources.

The unprecedented growth and development of information and communication

technologies (ICT) has influenced organizations. The business environment is

increasingly complex, with functional units that require more and more data flow for

decision making, timely and efficient procurement of goods, stock management,

accounting, human resources and distribution of goods and services. In this context, the

management of organizations needs efficient information systems to improve their

competitiveness. Also, the high competition in the markets lead to the need to decide

based on important information and quickly.

In today's dynamic and challenging business environment, access to ERP with mobile

application solutions helps organizations in their operations and processes.

In ERP architectures, the most commonly used databases are Microsoft SQL Server,

which is a scalable database engine that runs on Microsoft's Windows system. SQL Server

is a database platform with enterprise-class data management with integrated business

intelligence tools and provides the highest levels of security, reliability and scalability for

applications. IBM DB2 is a database management system and provides a flexible and

cost-effective platform to build robust solutions for enterprise applications. MySQL is

From Native to Cross-platform Hybrid Development

21

another widely used multithreaded, multiuser database engine such as SQL Database

Management System (DBMS).

Enterprise expectations continue to increase around mobility. It’s a cornerstone for

many digital projects, journey to cloud and even analytics and digital marketing.

Customers’ mobile phones are a key data point for companies to track their interests,

location, purchases etc, as well as offer user’s real-time interactions. In the enterprise, the

mobile is becoming the dominant computing device (Accenture, 2018).

2.5.Mobile Application Development Tools

The development of mobile applications led to the emergence of platforms and tools

to take advantage of the Native features of the devices and the intrinsic particularity of

their screens. The diversity of operating systems on mobile devices leads to the problem

that programmers must grasp various programming languages and develop the same

application for various systems and interfaces (Perchat et al., 2013), due to the

incompatibility of systems, with the disadvantage of higher costs and longer development

time. (Smutný, 2012) in 2012 categorized mobile applications into four different types;

Native applications, Hybrid applications, dedicated web-specific applications for a

specific platform and generic web mobile applications, which are mobile web pages that

run on any platform.

Mobile devices have different screen sizes, resolutions and different aspect ratios,

making application development difficult, (Holzinger & Slany, 2012) encourages

programmers to clearly separate the User Interface (UI) definitions from the rest of the

development code, in the sense of a cross-platform approach (El-Kassas, Abdullah,

Yousef, & Wahba, 2017).

The development of mobile applications is a special case of software development

because programmers must consider different aspects such as short development cycle,

device capabilities, their specificities, such as screen size, UI design, security navigation

and privacy (El-Kassas et al., 2017).

The development cycle consists of the following:

• Analysis of the idea or market requirement;

• The graphic interface design;

From Native to Cross-platform Hybrid Development

22

• The application development using tools and programming languages;

• Tests on different devices;

• The publication of the application in the devices or application store;

• Updates or new features are considered in new versions of the application.

2.6. The Native Approach

Native applications are developed using the specific operating system programming

languages for which they are implemented. The development of mobile applications for

various devices with different operating systems (OS) implies an additional cost in

resources and greater difficulty in their development because there is a need for raising

skills in different programming languages. There are many operating systems currently

in the mobile device market, but the big players are the Android and iOS.

There are different SDKs for each platform and different tools and devices with

different functionalities on each platform (El-Kassas et al., 2017), (Latif, Lakhrissi,

Nfaoui, & Es-Sbai, 2016), as can be seen in Table 1. In fact, the only thing these operating

devices have in common is that they all have a mobile browser that is programmatically

accessible from the Native code (Charland & Leroux, 2011). The difficulty to develop

mobile applications forcing the use of many different SDKs and frameworks motivate the

implementation of cross-platform software development environments (Latif et al.,

2016).

Table 1 - Native Development Environment per OS

 iOS Android Windows

Development Tool X-code Android Studio Visual Studio

Programming

Language

Objective-C/Swift Java Code-Base C#, C++

The Native code is usually compiled which makes it faster than languages like

JavaScript that are interpreted. Native code is faster than JavaScript and HTML. The costs

involved in this type of development for multi-platform are offset by better application

performance and lower resource consumption (e.g., CPU, GPU, battery) by the devices

that run, achieving a better end user experience.

Using Native SDKs, the programmer can access all the full features of the mobile

device, without dealing with plugins and third-party dependencies. Native apps have

From Native to Cross-platform Hybrid Development

23

better user experience and performance but are not able to cross platforms (Que, Guo, &

Zhu, 2017).

Native mobile applications are applications developed using the SDK and

programming language specific to the mobile platform. The key limitation of these

mobile applications is the inability to transfer applications to another platform, without

writing the application from scratch (Bosnic, Papp, & Novak, 2017).

2.7.The Web Approach

The development of mobile web applications has arisen in the great development of

technologies such as HTML5 and CSS using JavaScript language and leveraging the

skills of programmers in web development. Web technologies are well suited to cross-

platform application development because they are popular, standardized, relatively

simple but powerful (Adinugroho, Reina, & Gautama, 2015).

The content of a web page is described by Hypertext Markup Language (HTML).

HTML5 evolved from HTML and includes new attributes and behaviours. Apart from

HTML5, the building blocks for most of the modern browser-based applications include

JavaScript (JS) and Cascading Style Sheets (CSS) (Shahzad, 2017).

For mobile web development several sets of tools, platforms and libraries can be used.

2.7.1. jQuery mobile

jQuery mobile (“jQuery Mobile,” 2018) is a jQuery foundation project that is one of

the most used open source JavaScript libraries in web development. JavaScript is a most

popular programming language in the world (Bera, Mine, & Lopes, 2015).

With the development of JavaScript, CSS and HTML5 technologies, web sites have

become more responsive to adapt to mobile devices and their different resolutions and

sizes. jQuery Mobile is fast, small and feature-rich JavaScript library. It makes things like

HTML document traversal and manipulation, event handling, animation, and Ajax much

simpler with an easy-to-use API that works across a multitude of browsers. With a

combination of versatility and extensibility, jQuery has changed the way that millions of

people write JavaScript (“jQuery Mobile,” 2018).

In modern web development AJAX, a short name for Asynchronous JavaScript and

XML, is a natural mixture of several technologies and is commonly applied for

From Native to Cross-platform Hybrid Development

24

asynchronous communications with web server (Paulson, 2005). jQuery is a fast, library

that simplifies the development of dynamic HTML web pages and uses AJAX capable of

exchanging data with a server, and update parts of a web page, without reloading the

whole page. jQuery is very light-weight, easy to use and flexible as compared to other

JavaScript frameworks (Wajid, Junjun, Akbar, & Mughal, 2018) . jQuery Mobile is a

user interface (UI) framework geared to mobile applications that is built on jQuery and is

a cross-platform to design to multiple devices. jQuery Mobile is a HTML5-based user

interface system designed to make responsive web sites and apps that are accessible on

all smartphone, tablet and desktop devices (He, Zhang, & Fang, 2017), (Latif et al., 2016).

2.7.2. Bootstrap

Bootstrap is an open source toolkit for developing with HTML, CSS, and JS. Providing

a responsive grid system, extensive prebuilt components, and powerful plugins built on

jQuery (Shahzad, Sheltami, Shakshuki, & Shaikh, 2016).

Also, the evolution of the browsers in the last years in the sense of better use of these

technologies, have increased the potential of the development of web applications. The

web approach is based on web browsers for mobile devices (Latif et al., 2016). These web

applications are accessed on mobile devices through the device browser. The emergence

of open source libraries of responsive front-end development, i.e., the graphical interface

adapts to the different screen sizes in the different devices contributed to the expansion

of this type of applications. An example is the Bootstrap platform with its responsive grid

system through component libraries. The Bootstrap grid system creates a responsive

layout that fits to every type of device, as can be seen in Figure 12.

Figure 12 - Bootstrap Responsive Web Layout

Bootstrap includes CSS and JavaScript code that provide baseline style and layout

rules for common web page elements such as grids, navigation bars, buttons, and dialog

boxes (Walker & Chapra, 2014). Bootstrap also incorporates the normalize CSS style

From Native to Cross-platform Hybrid Development

25

sheet to eliminate many common cross browser compatibility issues associated with

webpage styling and formatting rules. Currently Bootstrap is in its version 4 with a major

rewrite of almost the entire project, with some big disruptive changes in relation to version

3. The Bootstrap grid system creates a responsive layout that fits and adapts to every type

of device.

2.7.3. Angular Framework

Angular is an advanced front-end framework released by the team at https://angular.io/

(“Angular - One framework. Mobile & desktop,” 2018). Is a client-side technology,

written entirely in JavaScript. JavaScript is a fundamental piece of modern Web

applications. Angular works with the long-established technologies of the web (HTML,

CSS, and JavaScript) to make the development of web apps easier and faster than ever

before. Angular is a popular JavaScript MVC-based framework to construct single-page

web applications (Ramos, Valente, & Terra, 2017). Angular is a platform that makes it

easy to build applications in the web. Angular combines declarative templates,

dependency injection, end to end tooling, and integrated best practices to solve

development challenges. Angular empowers developers to build applications that live on

the web, mobile, or the desktop (https://angular.io/). It enables you to build a rich front-

end experience, quickly and easily. The browser fetches the web pages and display them

to the user browser, gets the HTML text of the page, parses it into a structure that is

internally meaningful to the browser, lays out the content of the page, and styles the

content before displaying it to you (Bott, 2014).

With Angular, one is not just building the structure, but also constructing the

interaction between the user and our app as a web application. Angular takes care of

advanced features that users have become accustomed to in modern web applications,

such as:

• Separation of application logic, data models, and views;

• Ajax services;

• Dependency injection.

It also augments HTML to give it Native Model-View-Controller (MVC) capabilities.

MVC is a software architecture pattern that separates representation from user interaction.

This choice, as it turns out, makes building impressive and expressive client-side

applications quick and enjoyable.

From Native to Cross-platform Hybrid Development

26

The Angular source code is made freely available on GitHub under the MIT license.

Instead of merging data into a template and replacing a DOM element, Angular creates

live templates as a view. Individual components of the views are dynamically interpolated

live. Generally, the model consists of application data and functions that interact with it,

while the view presents this data to the user.

In the modern web applications architecture like AngularJS, the software developer

moves its focus from traditional programming patterns and structures to focus on the

actual business logic and user interface design, as seen in Figure 13.

Angular was built by a team of engineers at Google, is a JavaScript-based open-source

front-end web application framework, adding new features and syntax, that compiles to

plain JavaScript and run on all browsers. Angular it is a TypeScript-based front-end web

application platform that makes it easy to build applications with the web. TypeScript is

fundamental for the development on Ionic and others Hybrid platforms like Meteor.

Angular combines declarative templates, dependency injection, end to end tooling, and

integrated best practices to solve development challenges. Angular empowers developers

to build applications that live on the web, mobile, or the desktop.

Figure 13 - Application architecture for a modern web application Source: (Shahzad, 2017)

Modern web applications architecture like Angular, the software developer stay

focuses on the actual business logic and user interface design.

In the sense of greater usability and faster web applications, a new concept of Single-

Page Application (SPA) emerged. SPAs are web-based applications which load a single

HTML page and dynamically update the page content as the user interacts with the

From Native to Cross-platform Hybrid Development

27

application through menus and side bars (Shahzad, 2017). These applications offer a

more-Native-app-like experience to the user.

These applications have a lower development cost than Native applications, but they

have a limitation because they do not have access to the Native features of the devices,

such as the phone, the camera and the contacts. Another limitation is that they cannot be

marketed in distribution stores, such as the Apple App Store or the Google Play Store.

2.8.The Hybrid Approach

Although it’s possible to develop a Native app for each platform individually (such as

developing with Objective-C/Swift for iOS and/or Java for Android) and to deliver a great

UX, when targeting several platforms, the costs of such approach can be prohibitive, both

in terms of time to market (TTM) and total cost of ownership (TCO) across the app’s

lifetime. To help control and lower these costs, different cross-platform development

technologies have evolved to produce platform-specific app packages from a shared code

base (Torre & Calvert, 2016).

For the development of mobile applications for the broad spectrum of mobile devices

on the market programmers had the need to learn various programming languages like

Objective-C and Swift for iOS devices, Java for Android devices and C # for Windows

devices, among many other languages and devices. These development languages were

designed for applications taking advantage of Native features such as GPS, camera,

phone, etc. There is thus a need to rewrite the entire application for devices with different

operating systems. The disadvantage is undoubtedly the increased time, the associated

cost and the difficulty in finding resources with experience in the different platforms of

development. Developing applications that can be used across platforms is extremely

difficult. All development platforms have different software development kits (SDK)

with different programming languages, as can be seen in Table 2.

Table 2 - Programming languages vs platforms

Platform Programming Languages

iOS Objective-C, Swift

Android Java

Windows Phone C#, C++

From Native to Cross-platform Hybrid Development

28

With the development of HTML5, JavaScript and Apache Cordova, and the need for

a solution that allows a shared language to develop applications for a wide range of

devices, Hybrid applications emerged, combining web technologies HTML, CSS and

JavaScript language accessing Native capabilities of the devices.

Hybrid apps use web technologies such as HTML5, CSS3, JavaScript language and

Cordova plugins to access API platform of the device, to provide a Native wrapper for

containing the web-based code, and a generic JavaScript API to bridge all the service

requests from the web-based code to the corresponding platform API. It is the Native

wrapper that enables Hybrid mobile apps to be packaged, deployed, and distributed across

platform (Malavolta, 2016), (Wargo, 2012), (Huynh & Truong, 2017). Hybrid mobile app

development require frameworks, like Apache Cordova, Ionic among others to create

cross platforms Hybrid apps with Native looks and feel.

Hybrid application development platforms are increasingly popular in device-

independent application development (Kudo, Yamauchi, & Austin, 2017). Single-Page

Applications (SPAs) are web-based applications which load a single HTML page and

dynamically update the page content as the user interacts with the application through

menus and side bars (Shahzad, 2017). Hybrid apps can run anywhere the web runs - on a

desktop (Windows, Linux, Mac OS, or other) or mobile browser, as a mobile app, or

Progressive Web Apps (PWA).

2.9.Mobile App Comparison Table: Native vs Web vs Hybrid

Native, mobile Web, or Hybrid? Which one to choose? The right choice depends on

variety of factors, like;

• Which skills do you have in the team?

• What features, and Native functionalities do you need?

• When do you need it?

• How much is your investment?

• Which platforms and stores will be your target?

 Native application provides best performance and user experience, but Native

applications are very expensive, in most cases a business will not need a Native app. If

From Native to Cross-platform Hybrid Development

29

you don’t need Native features of the devices a web approach could be the cheapest way.

If the target will be a multiple platform then Hybrid app could be a good possibility. On

Table 3 shows a comparison table that will help the reader to understand.

From Native to Cross-platform Hybrid Development

30

Table 3 - Comparison Native vs web vs Hybrid

 Native Web Hybrid

Speed Since they are developing trough Native SDK and

specific language system, they are faster. Take less

CPU and GPU, of the device

Since they need to be compiled, take more

time, slowest

Since they need to be compiled, take

more time than Native

Functionalities All, full functionality of mobile device Only Web browser,

does not access device features like phone,

gps, accelerometer, etc.

Almost all functionalities of the device

through Cordova plug-in.

Time cycle More time to develop then web or Hybrid.

Need to develop in several languages and SDK to

achieve different platforms

Expensive in development, more time consuming,

development more 2 times for other platforms

Faster to deploy Faster to deploy than Native and

developing to all platforms

Team work Need to have team with skills for each SDK

platforms

Web skills are easier, easier to get

developers

Need to have team with skills for

Hybrid platforms

Difficulty Difficulty to get developers of each SDK easier Easier than Native

Platforms Only one platform for each SDK all all

Cost More expensive, More time consuming,

developers costlier

Cheapest,

Less time and cheaper developers

Cheaper than Native

Stores Deploy in each platform store no Yes, can be deploy to all platforms

stores

From Native to Cross-platform Hybrid Development

31

2.10. Mobile Hybrid development

The high demand for creating mobile Hybrid applications, caused the emergence of

several development platforms over time.

2.10.1 Adobe PhoneGap

PhoneGap is an open source platform for creating cross-platform Native applications.

PhoneGap started in 2008 at iPhone DevCamp by the company Nitobi who started the

project to simplify multiplatform development (Wargo, 2012). The PhoneGap

development platform (https://phonegap.com/) can reconcile web development and its

associated technologies like HTML5, CSS and JavaScript with access to the Native

functionality of mobile devices (Charland & Leroux, 2011). The PhoneGap platform

contains code for interacting with the underlying operating system and passing

information back to the JavaScript application that runs on the web view, such as

geolocation, accelerometer, and more. Apache PhoneGap is the commercial version of

Apache Cordova.

2.10.2 Apache Cordova

Apache Cordova, is an open-source mobile development framework, created by

Nitobi, and purchased by Adobe in 2011. The PhoneGap code was contributed to the

Apache Software Foundation (ASF) under the name Apache Cordova (“PhoneGap,”

2018). So, Apache Cordova is the open source version of PhoneGap. Apache Cordova

enables software developers to create applications for mobile devices using HTML5, CSS

and JavaScript (Huynh & Truong, 2017). The UI of a Cordova Application is a WebView

which occupies the complete screen of the device, and it will run in the Native container.

The WebView will remain the same in all operating systems, only the Native container

will change according to the mobile platform (Novac, Marczin, & NOVAC, 2016), (Torre

& Calvert, 2016). Hybrid applications can access the mobile device resources through

JavaScript using a bridge that communicates between the JavaScript code and the source

code of the device (Kudo et al., 2017). Cordova accesses the resources of devices from

different mobile platforms through a JavaScript plug-in. Cordova, there is no compile

process. Apache Cordova supports a set of default plugins called core plugins. These

plugins allow us to access device capabilities such as the battery, camera, contacts,

storage, etc. (Bosnic et al., 2017).

From Native to Cross-platform Hybrid Development

32

2.10.3 Xamarin Platform

Xamarin Platform was founded in May 2011, by the engineers who developed Mono,

Mono for Android, and MonoTouch which are cross-platform implementations of the

Common Language Infrastructure and Common Language Specifications. Common

Language Infrastructure is an open specification developed by Microsoft that describes

executable code and a runtime environment (Novac et al., 2016). Xamarin was purchased

by Microsoft on February 2016.

Developers can use client-side technologies to build client apps themselves, using

specific frameworks and patterns for a cross-platform approach. With Microsoft

technologies, developers can build Native (Native-single-platform using languages like

Objective-C and Java with Microsoft Azure SDKs, Native and cross-platform apps using

Xamarin, .NET and C#), Hybrid (using Cordova and its variants, see Figure 14, or

websites (ASP.NET), depending upon their decision factors (Torre & Calvert, 2016).

Figure 14 - Visual Studio tools for Apache Cordova

Using HTML, CSS, and JavaScript, developers can take advantage of the skills they

developed while building websites and apps to create mobile apps for iOS, Android, and

Windows with Apache Cordova. Most developers achieve nearly 100 percent code reuse

while using the Cordova shared JavaScript API to access Native device options such as

cameras, calendars, and other hardware capabilities. A Cordova app is composed of the

From Native to Cross-platform Hybrid Development

33

same HTML/JavaScript/TypeScript code that you can compile for each platform (iOS,

Android, and Windows) (Torre & Calvert, 2016).

Xamarin is a cross-platform mobile application development platform, which uses C#

language in development and .NET. With Xamarin is possible to develop mobile

applications in C#, as shown in Figure 15 for iOS, Android and Windows.

Figure 15 - C# cross-platform with Xamarin and .Net [Source: (Xamarin, 2018)]

According to (Xamarin, 2018), it is possible to use 75% of code development on

average on all mobile development platforms. It is currently the Microsoft platform for

the development of cross-platform applications. For cross-platform development with

Xamarin one can use several IDE like Visual Studio on PCs or Visual Studio Code and

Xamarin Studio on a Mac.

2.10.4 Firebase Mobile Platform

As a client-side framework, Angular alone is not enough to build a full back-end web

app. It’s often difficult to know when to sync our data with the back end and how to

handle the changes and potential conflicts of data between versions of modified content.

Let us imagine two instances of our application running at the same time. What if both

instances are trying to edit the same data? Without handling this case, one can get into

trouble, especially when building the front end for a complex web application.

From Native to Cross-platform Hybrid Development

34

Using Firebase, it is easily possible to add a back end to our Angular App. Featured

on the Angular.js home page, Firebase is quickly becoming the standard for Angular

persistence.

Firebase is a real-time back end for building collaborative, modern applications.

Instead of requiring one to focus on building custom request-response models with a

server-side component where it is possible to manually worry about data synchronization,

Firebase allows one to get the app up and running in minutes.

It is possible to build a data-backed web app entirely in Angular that can scale out of

the box and update all clients in real time. Data that is stored in Firebase is standard

schema-less JSON, which makes it incredibly easy to save data models of any type into

Firebase. If a device loses network connection, Firebase continues to allow access to

locally cached data and seamlessly synchronizes changes with the cloud when the device

comes back online.

The Firebase client libraries and REST API provide easy access to that data from any

platform. Although focusing specifically on Angular, this fact means that Native apps or

other server-side apps can reach the data that Angular has saved. By default, the firebase

service returns a simple JavaScript object.

Firebase platform is a mobile and web application development platform developed

by Firebase, Inc. in 2011, then acquired by Google in 2014. Firebase is part of Google

Cloud platform solutions (“Firebase,” 2018). Modern tools require special consideration

for the challenges developers face on mobile: server less capabilities, a cloud-first data

model capable of persisting data even when the device is offline, low-latency access to

media anywhere in the world, and real-time data synchronization across all mobile

platforms (“Mobile Solutions | Google Cloud Platform,” 2018). Angular and Firebase

are complementary tools for server less development for web and mobile apps.

2.10.5 React

ReactJS is a JavaScript framework for writing real, natively rendering mobile

applications for iOS and Android. It’s based on React, Facebook’s JavaScript library for

building user interfaces, but instead of targeting the browser, it targets mobile platforms.

In other words, it enables web developers to write mobile applications that look and feel

truly “Native,” all from the comfort of a familiar JavaScript library (Eisenman, 2015).

React is a JavaScript framework that allows us to develop Native mobile applications for

From Native to Cross-platform Hybrid Development

35

both iOS and Android, without having to write code in either Swift or Java. React is a

declarative, efficient, and flexible JavaScript library for building user interfaces (“React

- A JavaScript library for building user interfaces,” 2018). React provides an excellent

developer experience over normal mobile applications. This is mostly because of the great

set of developer tools that comes built in with the framework. Since it's just JavaScript,

all those tools will feel familiar to the web developer.

2.10.6 Meteor

Meteor is a full-stack JavaScript platform for developing modern web and mobile

applications (“Build Apps with JavaScript | Meteor,” 2018). Meteor is an open-source

technology that relies on the Model-View View-Model (MVVM) software design pattern

to address the stateless (volatile data), unidirectional (communication overhead), and

unreliability (network bottlenecks) concerns of the Internet. The framework uses

JavaScript on the client, server, and data modelling sides, enabling developers to quickly

produce more features in a shorter amount of time by collaborating on a single

programming language (Adams, Persaud, Acworth, Adams, & Hamadeh, 2013).

MongoDB as its primary database, which is a popular NoSQL (Not Only Structured

Query Language) that is not dependent upon relationships between entities, and instead

focuses on managing unstructured data.

Meteor, a rapid prototyping framework for JavaScript, is one of the go to frameworks

for creating a cross-platform app that works on iOS, Android, and the web.

2.10.7 Ionic Platform

The Ionic platform was founded in 2012 by Drifty Co, to facilitate the development of

mobile applications for web developers. The development framework allows developers

to use web technologies to create Hybrid mobile applications (“Build Amazing Native

Apps and Progressive Web Apps with Ionic Framework and Angular,” 2018), (Apps,

Justin, & Jude, 2017). The Ionic platform is today one of the most popular mobile

development technology platforms in the world with over 32,990 stars on GitHub a source

code hosting platform. The Ionic framework is an open source Framework built with

HTML, CSS and JavaScript for the development of Hybrid mobile applications. It is the

most popular and the top pick by many developers (Huynh & Truong, 2017). Apps can

be built with these web technologies and then distributed through Native app stores to be

installed on devices by leveraging Cordova.

From Native to Cross-platform Hybrid Development

36

jQuery mobile and Bootstrap were by 2013 two of the most popular tools at the time

for web development and mobile applications (Griffith, 2017). With the evolution in

performance and new browsers functionality in mobile devices, they have brought

advantages to the development of Native-like apps for web developers in mobile

development.

At the same time, AngularJS appeared as an open source JavaScript platform and a

TypeScript-based front-end by the Google team that further enhanced web development.

AngularJS was very popular with programmers and seemed to provide a seamless

response to reusable JavaScript and HTML 5 components for the web.

JavaScript was originally created by Brendan Ike at Netscape and then was adopted by

Microsoft as Jscript. With different versions of a language for different browsers, there

were soon an urgent need to standardize the language. The European Computer

Manufacturer Association (ECMA), is the governing body that provides the ECMAScript

specifications for JavaScript browser implementations. ECMAScript 1 specification was

release in 1997, followed by ECMA 2, ECMA 3, ECMA 4 and ECAM 5in 2009. In 2015

ECMA 6 came out.

ECMAScript is a scripting language standard and specification, JavaScript, Jscript and

ActionScript are languages that are based on ECMAScript standard. ES6 or ES2015 is

the most recent version of ECMAScript / JavaScript and have major updates since ES5

in 2009. ES6 has backward compatibility, has a modern syntax and new features. Some

browsers required transpilers to compile ES6 to ES5. New features like, let and const

declarations (to declare variables), classes, template string, promises, arrow functions

among others. With the new ECMAScript 6 companies that make web browsers had new

guidelines for use JavaScript. The latest versions of browsers like Chrome, Firefox and

IE are compatible with the most part of ES6 (https://kangax.github.io/compat-table/es6/),

but if one wishes to assure that our app runs in all browsers our ES6 code needs to be

transpiled in to ES5 before. Transpiled is the process of taking ES6 code and converting

it into ES5, so it can be read by browsers.

TypeScript programming language is a superset of JavaScript, that is an extension of

JavaScript Figure 16, adding new features and syntax, that compiles to plain JavaScript

and run on all browsers. In 2015 JavaScript evolves from ES5 to ES6 the new generation

of JavaScript with new features for object-oriented development.

From Native to Cross-platform Hybrid Development

37

Figure 16 - TypeScript is a superset of JavaScript

There was a need to create transpilers to translate the new JavaScript syntax for ES5

syntax for the browsers to understand. Transpilers, or source-to-source compilers, are

tools that read source code written in one programming language and produce the

equivalent code in another language with the evolution of JavaScript, the Angular team

saw an opportunity to create a structure that suits the future development of the web as

mobile with the Angular 2 taking advantage of the new ES6. As expected the Ionic team

emerged with the Ionic 2 platform taking advantage of the Angular 2 in 2015.

Angular 2 was rebuilt with the goal of running better on mobile devices. Therefore,

Ionic 2 applications are faster and can handle more complexity than Ionic 1 apps (Griffith,

2017).

The year 2017 was a year of great change and development, for the Ionic platform and

for the technologies that are associated with it. AngularJS went from version 2 to Angular

and then to version 4 and Ionic accompanied its platform to the Angular version 4 with

the output of the version Ionic version 3, all these evolutions aimed at the best

performance of the mobile applications created. Ionic uses the Angular in its development

and platform structure and is essential for the development of the application.

The Ionic framework is the platform for building Hybrid mobile applications for iOS,

Android, Windows Phone, and other mobile platforms. Hybrid applications are built for

cross-platform use, using web tools. This means you can develop the application once

and deploy it to multiple platforms without having to change the code base. Benefits of

this are a shorter development time and less complexity. Hybrid apps run within a

browser-based web view, which impacts their performance. Ionic has been optimized to

the point where a speed difference is very small. Another downside is that Ionic requires

From Native to Cross-platform Hybrid Development

38

plug-ins to access some Native components and the components you may need may not

yet exist. Ionic has near Native performance, one code base and near Native functionality.

To develop with Ionic Framework, one should understand and be familiar using

HTML5, CSS3, Sass, Angular and JavaScript. It is necessary to understand the concept

object-oriented programming (OOP) concept, such as classes, inherence. It is possible

create a project in any editor like Microsoft Visual Studio Core, Atom, Sublime and

others. Ionic has a command line interface (CLI).

In the development in Ionic on debugging, Google Chrome browser, as it provides a

great development environment using the developer tools. web browsers; the most

common browsers today include Chrome, Safari, Mozilla Firefox, and Internet Explorer.

At their core, they all basically do the same thing: fetch web pages and display them to

the user, the browser gets the HTML text of the page, parses it into a structure that is

internally meaningful to the browser, lays out the content of the page, and styles the

content before displaying it to you (Bott, 2014). On Figure 17, the Hybrid applications

architecture and usage of Apache Cordova tools is displayed.

Figure 17 - Hybrid applications architecture and usage of Apache Cordova tools (Bosniac et al., 2017)

From Native to Cross-platform Hybrid Development

39

Ionic uses the Angular and Cordova, in its development and platform structure and

they are essential for the development of the application. Built on Apache Cordova and

Angular, Ionic brings the features and functionality of those frameworks while providing

a generous library of pre-built components and device plugins to choose from (Griffiths,

2016). Cordova acts as a container for running a web application written in HTML, CSS,

and JavaScript. Typically, Web applications cannot use the Native device functionality

like Camera, GPS, Accelerometer, Contacts, etc. With Cordova, developers can access

the Native device functionality and can package the web application in the device installer

format (Huynh & Truong, 2017).

With Hybrid framework like Ionic, apps can run on any platform or device from a

single codebase. They can also run in a regular browser as a Progressive Web App

(PWA), what is a major advantage over Native development.

The Ionic Framework is one cross-platform development framework with more than

five million developers in over 200 countries, with 4 million apps built.

The development of mobile app with Ionic has dependency of plugins like Apache

Cordova if it is needing to access features of mobile device. Cordova project is a layer

that sits in-between Ionic and the mobile operating system. It wraps up our JavaScript,

HTML, and CSS and provides API-specific bindings for the operating system. This is

really the communication layer between our application and the mobile OS beneath it.

From Native to Cross-platform Hybrid Development

40

Chapter 3 – Application Concept and Application Development

3.1. Development of the mobile application CodeGT

An ERP software is currently a set of essential strategic tools that have a direct impact

on the success of any organization, from collecting, registering and accessing information

to decision making within the organization. Considering employee mobility, access to

organization’s information systems from mobile devices inside and outside the premises

is fundamental, for operational, legal and analytical reasons.

The purpose of the mobile application CodeGT is to allow the access by mobile

devices to the company ERP, in particular the elements of the Transport Documents. The

application will not require the printing of these documents, which is of great interest to

achieve a dematerialized management. This is complemented by additional features that

will be provided by the developed mobile application, namely delivery registration

(digital signature of the recipient), access to local (by geolocation) and the consultation

of the elements (customer card, materials and equipment involved). This app will be

developed in an enterprise context for use in real customers.

The interest in organizations in this development in understanding these processes

from several points of view:

• For business is a market need, considering not only the legal impositions, but

also as access to information from a mobile device.

• It will allow to take advantage of the Native functionalities of the mobile

devices, namely the phone, the global positioning system (GPS) and the camera

between others.

• Considering Portuguese legal obligations, about Transport Documents in the

sense of accessibility of information registered in the ERP.

An ERP software is a complex application, with lots of information and difficult to

interpret in the user interface. Mobile application designers should evaluate how users

perform each task and remove non-essential functionality that hinders the user experience

(Newhook, Jaramillo, Temple, & Duke, 2015).

The application developed has the purpose of meeting the creation of a market need to

obtain specific information regarding the consultation of legal elements required in the

transportation of goods in Portugal. So, this application will only be an add-on that will

From Native to Cross-platform Hybrid Development

41

make this information available to the user by limiting the amount of information needed

to present on the mobile device to the location of the delivery of the goods, such as the

company name of destination, address, postal code, Portuguese Government Tax

Authority (AT) code. As extra features there are the GPS location of the recipient's

address and the drive-to function, from where one can find a final address destination.

The application also records the delivery receipt with the signature of the recipient as

proof of delivery made.

3.1.1. Transport Documents

The shipment and transport of any cargo in Portugal has a set of mandatory legal

obligations that are required to be followed. Namely, any transport requires being

accompanied by a document that clearly describes the cargo contents, its source and

destination among other information. Additionally, this information needs also to be

reported to the Portuguese Tax Authority (AT) for taxation purposes. The AT institution

then acknowledges having received this information by issuing a unique code, named

“AT code”, which is required to be included in the Transport Document.

Documents are corporate processes that are registered in the ERP. The Transport

Document is a document that must accompany the movement of goods in Portugal, in

operations carried out by taxable persons, or companies. The Transport Documents are

processed by taxable companies who are the consignors of the goods and by the holders

of the goods before the start of transport. All taxable persons with a turnover exceeding

EUR 100 000\year are obliged to communicate the Transport Documents by electronic

data transmission or on AT web site or by telephone to AT. It is always necessary to

communicate the Transport Document with a certified software or by telephone before

starting the transport. According to Article 4 of the Outstanding Goods Regime, in

Portugal, the Transport Document must contain:

• Corporate name, address and tax identification number of the sender of the

goods;

• name, firm or company name, address and tax identification number of

purchaser of the goods;

• commercial description of the goods and quantities;

• loading and unloading sites;

• the date and time when the transport begins.

From Native to Cross-platform Hybrid Development

42

The information regarding Transport Documents are registered in the ERP software

which, through webservices, communicates with the Portuguese Tax Authority (AT),

which provides the application a validation code, designated by “AT code” (legal

obligation in Portugal). Any transport must always be accompanied by this “AT code”

for validation by the authorities. An example of a Portuguese Transport Document can be

seen in Figure 18.

Figure 18 - Example of a Transport Document with AT code from ERP PHC

3.1.2. Legal Transport Document Requirement

The fulfilment of the legal obligations for the communication of the elements in the

Transport Documents, of goods in circulation in Portugal by the companies, obliges that

the organizations register and communicate in advance the materials in circulation. This

legal obligation began in 2012 with Ordinance No. 363/2010 of June 23, which has,

however, undergone several changes by Decrees No. 22-A / 2012, dated January 24, and

with Ordinance No. 198/2012 (Autoridade Tributaria, 2012).

3.2. Development Requirements

For the development of the mobile application, some requirements were needed. On the

server side a computer with Microsoft Windows server is required for its development

From Native to Cross-platform Hybrid Development

43

and hosting web server IIS. A database server on Microsoft SQL Server, and an

Application Server with the ERP software installed. The list of requirements;

• Microsoft Windows Server 2016 Standard, with IIS (Internet Information

Services) web server for the API.

• Microsoft SQL Server 2016, database server that provides ERP database, on

Windows server machine. The ERP PHC software only works with Microsoft

SQL database.

• ERP PHC (PHC, 2018), ERP software system.

• Node.js (https://nodejs.org/en/) (“NodeJS,” 2018).

• Ionic (https://ionicframework.com/) (Ionic, 2018), Hybrid platform used on

development of mobile app.

• Apache Cordova (https://cordova.apache.org/) (“Apache Cordova,” 2018).

• Firebase (https://firebase.google.com/) (“Firebase,” 2018).

• Visual Studio (https://www.visualstudio.com/)

 (https://visualstudio.microsoft.com/vs/) (Microsoft, 2018b).

• Visual Studio Code (https://code.visualstudio.com/) (Microsoft, 2018a).

• Java JDK and Android Studio for create and build Android PacKage (apk).

APK is the package file format used by the Android operating system for

distribution and installation of mobile apps.

• A MAC computer and Xcode software, for create and build iOS App Store

Package (ipa). IPA file is an iOS application archive file which stores an iOS

app.

• DevApp Ionic mobile app for testing the app in a mobile device without

installing it.

Development of mobile application steps;

• A RESTful Web API development in C# on Visual Studio 2017 was created.

• Mobile application development CodeGT on Ionic platform.

• Mobile app Ionic DevApp app for testing.

https://nodejs.org/en/
https://ionicframework.com/
https://cordova.apache.org/
https://firebase.google.com/
https://www.visualstudio.com/
https://visualstudio.microsoft.com/vs/
https://code.visualstudio.com/

From Native to Cross-platform Hybrid Development

44

3.2.1. Architecture of Mobile Application

 The Architecture of the Hybrid mobile application CodeGT is on Figure 19, that

shows the Microsoft SQL Database that registers all data from ERP. The webservice was

created to support the communication to the mobile app, and the authentication through

the Firebase API OAuth validation of the user to access information. Firebase Cloud

Storage is used to store all signatures of receivers of the goods, and Firebase Hosting to

host the application.

Figure 19 - CodeGT Architecture

3.2.2. Database

The development uses a Microsoft SQL relational database on a Windows database

server. For the implementation, some dummy data was created. The starting point was a

demonstration database. Some data was created for testing and implementing the mobile

application. The ERP software has hundreds of tables on database but only two tables

were used from that database. One to get the records from all the customers (customer

table) and the other one to get information from the documents (Transport Documents)

table.

From Native to Cross-platform Hybrid Development

45

The PHC Software has a complex database structure (with hundreds of tables and

thousands of fields) on Figure 20. There, one can see only the UML from the two tables

and only the fields that where object of this application on the table cl (customers) and ft

table (documents). The relationship between tables is one to many, i.e. one customer to

several documents.

Figure 20 - UML from table cl and ft

3.2.3. Server Side

On server side was created a Visual Studio project ASP.NET MVC Web API in C#

language. There was a server-side web service running and providing RESTful API to

clients (mobile devices), in the various mobile devices through a Hybrid application

developed on the Ionic platform. The term API stands for Application Programming

Interface (API), the ASP.NET Web API is a framework that allow to build HTTP web

services on the ASP.NET framework. On Figure 21 one can see the MVC pattern.

Figure 21 - The MVC pattern

From Native to Cross-platform Hybrid Development

46

For this project Representational State Transfer REST (REST) services were created

with the SQL (Structured Query Language), Entity Framework, MVC, ASP.NET web

API technologies. These services can be consumed by a wide variety of clients such as:

browsers; mobile applications; desktop applications and Internet of things (IOTs); devices

or objects that have an IP address and can communicate over the Internet with other

devices and objects. REST is an architectural pattern for creating services. REST

architectural pattern specifies a set of constraints that a system should adhere to.

REST constrains:

• Client Server, client sends a request and the server sends a response;

• Stateless, the communication between the client and the server must be

stateless, which means that the server should not retain customer related

information. The client request must contain all the information necessary for

the server to respond to the request;

• Cacheable, requests that are repeated relative to the same information can be

cached for better performance and faster response;

• Uniform Interface, defines the required interface between the server and the

client;

• Layered System;

• Code on Demand(optional).

Windows Communication Foundation (WCF) is also a form of web services, in which

it uses Simple Object Access Control (SOAP) but its structure is more complex than the

REST web service.

Restful APIs use http methods, and can return JSON, and can model Create, Read,

Update and Delete (CRUD) operations. But that's not specifically what makes an API

restful. What REST is, is all about modelling your API around resources. And allowing

clients to perform operations on those resources. In the context of REST, a resource is

any object in your APIs design domain. In many cases, a resource will correlate exactly

with a row in a table or an object in the data base. But that's not always the case. So

instead of having API endpoints that are verbs, or represent actions you can take in the

system, the endpoints in a restful API represent resources or collections of those

From Native to Cross-platform Hybrid Development

47

resources. HTTP Methods are the verbs that act on resources in a RESTful API. The

HTTP methods for RESTful are GET, PUT, POST and DELETE.

Security is a major concern for any API or application today, and it's crucial to consider

security early in the development of your project. It's much easier to design security from

the beginning rather than trying to bolt it on at the end. There are two major types of

security that need to be considered for an API built on asp.net core. The first is transport

security, which means keeping the connection between the client and the server secure.

Secondly, application security, which covers things like authentication and making sure

users are authorized to perform actions in your system. The first and most important is

HTTPS. By enabling HTTPS or SSL support, clients will be able to connect to the API

with an encrypted connection. Once it's turned on, Once it's turned on, the next step is to

force all clients to use HTTPS by redirecting any HTTP requests to HTTPS. The biggest

component of transport security is enabling HTTPS, also called SSL or TLS. On Project

proprieties enable SSL support. If a client accesses our API over regular HTTP, they're

redirected automatically to HTTPS. On controllers, you can use the require HTTPS

attribute. For example, I can open the root controller and add require HTTPS. However,

this only enforces HTTPs for this one controller. It is possible to apply the attribute to the

entire application at once by adding it as a filter in the start-up class. In the startup class,

within the configure services method and the AddMvc section, it is advisable to require

HTTPS for all controllers and add this to the filters collection.

Secondly, add some additional security headers to all API responses, such as the HTTP

strict transport security or HSTS header. This will guaranty even greater security for

clients that support those headers.

For the development of the API, was installed Microsoft Visual Studio Professional

2017, downloaded in https://visualstudio.microsoft.com.

In the development in Visual Studio (Microsoft, 2018b) was used the MVC

technology, C# language, to make available a web service API RESTFUL, in format

JavaScript Object Notation (JSON) to the requests of the mobile devices querying the

database information. After creating the Data Model and Controllers, Figure 22 shows

part of the developed code. Only the Transport Documents were selected, i.e., documents

of type 2 and 33.

From Native to Cross-platform Hybrid Development

48

Figure 22 - part of Code for GuiasController in C#

3.2.4. Application mockup

The mobile application starts with a splash screen, then comes up a login screen for

user validation. After that the app opens with a list of customers, where the user can select

and see important information regarding each customer, inclusive the address, phone

number and the location on google maps.

On the next page on Figure 23, one can see a User Interface (UI) mockup of the mobile

application.

On the hamburger menu it is possible to choose other functionalities like the Transport

Documents available to delivery. Here, after selecting it becomes possible to see

information regarding the document and then to see the driving plan from specific initial

location to the destination of delivery. Following that, and on the screen then becomes

possible to register the signature of the receiver of the goods.

From Native to Cross-platform Hybrid Development

49

Figure 23 - Application Mockup

From Native to Cross-platform Hybrid Development

50

3.3. Mobile development

 The development of the CodeGT mobile application requires a Windows, Mac or

Linux computer. In this case a computer with a Windows 10 Pro operating system and a

Mac with High Sierra macOS system were used, most recent systems in 2018. A Mac

was needed it for building the iOS app.

The first requirement was to install Node.js through the executable downloaded from

https://nodejs.org/en/ (“NodeJS,” 2018) version 8.9.4 page for the respective operating

system Figure 24.

Figure 24 - Node.js site

Then through the command line interface (CLI) on Figure 25, the Ionic v3.19.1 and

the Cordova v.8.0.0 were installed through the command;

Figure 25 - Ionic CLI

Ionic provides several templates, to start:

• tabs: a three-tab layout.

• side menu: a swipeable menu on the side.

• blank: a bare starter with a single page.

https://nodejs.org/en/

From Native to Cross-platform Hybrid Development

51

To create the Ionic CodeGT app, a side menu was chosen Figure 26;

Figure 26 - CLI command to create CodeGT app

To run the app, it is necessary to change to the directory create, CodeGT and run ionic

serve command to start the app Figure 27 and view app in the browser Figure 28. A web

server runs locally and a very interesting functionality from Ionic platform is live code,

meaning that by changing the code automatically it becomes possible to view the result

on the browser immediately.

Figure 27 - Ionic CLI command to start app

Figure 28 - Ionic side menu app created

The Ionic platform creates automatically a file structure for us Figure 29. The file

structure is similar to Angular.

From Native to Cross-platform Hybrid Development

52

Figure 29 - Ionic, files structure

The source code editor used for the development of the Hybrid mobile application was

Microsoft Visual Studio Code downloaded at (Microsoft, 2018a)

https://code.visualstudio.com/.

The src directory is where most of the development takes place Figure 30. The

src/app/app.module.ts is the entry point of our app. The root component of our app has

control essential of the rest of the application, in src/app/app.component.ts. This is the

first component that loads in our app.

https://code.visualstudio.com/

From Native to Cross-platform Hybrid Development

53

Figure 30 - src directory

The src/app/app.html is the main template Figure 31.

Figure 31 - app.html

From Native to Cross-platform Hybrid Development

54

To create a new page, one just needs to write on command prompt, as shown on

Figure 32.

Figure 32 - CLI command to generated page about

Ionic CLI will generate the HTML, TypeScript and SCSS files for our new page in a

directory under app\pages, Figure 33. The g is for generate, page is for the type of

component and about is the name of our new page. With one simple command, a new

component was generated for our app (which as the name suggests will be the about page)

which contains the following files:

• about.html (the template for our page)

• about. scss (the style rules for our page)

• about.ts (the logic for our page)

Each time you generate a component using the Ionic CLI you will end up with a named

directory which contains Sass, TypeScript and HTML files.

Figure 33 - New page on Ionic

One can see the code for the login Html page Figure 34 and part of the Typescript

login page Figure 35.

From Native to Cross-platform Hybrid Development

55

Figure 34 - Html page of Login Page

Figure 35 – TypeScript file of Login page

Navigation in Ionic works like a stack of pages, one pushes new pages onto the top

of the stack to present to user, or one pops off a page to go backwards Figure 36.

From Native to Cross-platform Hybrid Development

56

Figure 36 - Ionic Stack of Pages

Ionic framework has building blocks called components. Components allow to

quickly construct an interface for our app, and Ionic comes with many components, like

buttons, cards, grid, modals, and many more to facilitate our development. To use one

component, for example, a button Figure 37;

Figure 37 - Ionic Component - Button

and the result is a blue button with a mobile style.

From Native to Cross-platform Hybrid Development

57

A three data Model has been created on Ionic platform, one for customers, one for

documents (guias) and another one for users. On Figure 38, the guias model is

displayed.

Figure 38 - Data model on CodeGT

The application uses Authentication, Hosting and Cloud Storage on Firebase

services.

a) Firebase

Firebase is comprehensive mobile development platform. Firebase is built on Google

infrastructure and scales automatically, for even the largest apps

https://firebase.google.com/. Firebase platform is a set of products on the cloud for the

development of web apps and mobile apps. Google released Firebase in the summer of

2016. Its goal is to provide the tools and infrastructure that you need to build great apps.

A set of tools like authentication, database, storage, hosting, analytics and others,

everything on cloud services. It’s not a replacement for your existing APIs for building

Android, iOS, or Web apps. It’s an enhancement, giving you common services that you

might need – such as a database back end, secure authentication, messaging, and more

(Moroney, 2017).

https://firebase.google.com/

From Native to Cross-platform Hybrid Development

58

The services are paid, but there is a Spark Plan that is free, that will be used for the

development of the mobile application. A Firebase account was created at

https://firebase.google.com and get a API key for the development. The Authentication

API was used for the secure sign-in in the application, the Database, a cloud-based, real

time data storage platform and the Storage to register the signatures of the receiver of the

goods, in the app. Also, the Firebase Hosting was used to host the mobile application. On

reality the users can use the mobile application as an app in the mobile device or can

access the application on any device through a web browser.

The Firebase Realtime Database is a cloud-hosted database. Data is stored as JSON

and synchronized in realtime to every connected client. It provides syncing across

connected devices and is available when there is no network connectivity through a local

cache. It is an event-driven database that works very differently from traditional SQL

databases. There’s no server-side code and database access tiers; all coding is done in the

client. Whenever data changes in the database, events are fired in the client code

(Moroney, 2017).

Enter the Firebase JS library which consists of the following key services:

• firebase-app - The core firebase client

• firebase-auth - Firebase Authentication

• firebase-database - The Firebase Realtime Database

• firebase-storage - Firebase Storage

• firebase-messaging - Firebase Cloud Messaging

To install the Firebase JS library, one would simply run the following command at the

root of our Ionic project on command line utility Figure 39 (I.e. Terminal in Mac OS X

or Command Prompt in Windows, the platform create automatically the necessary

changes in files for us.

Figure 39 - Firebase Install

https://firebase.google.com/

From Native to Cross-platform Hybrid Development

59

To access the app the user should login. The validation is made by the Firebase API

Authentication. After verifying the login, the user can proceed to enter and access the

application. To access to the API the user must have a valid login. The application

accesses the API from HTTPS to a more secure layer.

One must create a user to login to firebase and then create a project. On Figure 40 it is

possible to see the Firebase console and all the functionalities available, like

Authentication, Real Time Database, Storage, Hosting and others. For the CodeGT was

necessary to create the user’s authentications for the login validation of the app, the

storage for save the receive signature of the destination customer and finally the Hosting

service for host the application.

Figure 40 - Firebase Console

The Firebase API Authentication was used for security reasons. So, there is no need to

handle the security issues of the users and passwords, delegating this issues to Firebase

API. The Ionic platform allows PWA, so the users can not only access the app from the

Android Package (APK) and iOS App Store Package (IPA) install to the device but can

also access the app through any browser on any equipment desktop or mobile. Accessing

the app this way loses the smartphone Native functionalities like phone and GPS.

b) Data Access in the application

Services or Providers can be used by components inside Ionic for providing data or

any type of service like;

• HTTP requests;

• Interacting with databases.

From Native to Cross-platform Hybrid Development

60

In the development of CodeGT app a provider was created to access the API to entities

customers and documents of the ERP Figure 41.

Figure 41 - Provider in Ionic

To create and deploy ipa and apk a MAC computer was needed and run the commands

on Ionic CLI:

• ionic cordova build android --prod –release, for build apk for Android devices

Figure 42.

or

• ionic cordova build ios –prod, for build ipa, for iOS devices Figure 43.

The platform creates on platforms folder each file.

Figure 42 - CLI to build apk

From Native to Cross-platform Hybrid Development

61

Figure 43 – CLI to build ipa on a MAC computer

c) User Interface

The UI was designed to simplicity, speed, ease of use and fast access to the

information, considering that, the access will preferably be through a mobile device. The

application starts with a splash screen Figure 44, focusing on the theme of the application.

Ionic platform uses components and styling each component to each OS.

Figure 44- Splash screen on iOS, Android and Windows Phone

To access the app, the user should login (Figure 45). The validation is made by the

Firebase API Authentication. After verifying the login, the user can proceed to enter and

access the application. The application accesses the API from HTTPS to a more secure

layer and only if the user validation is valid.

From Native to Cross-platform Hybrid Development

62

Figure 45 – The Welcome and Login Screen

Access to customer information is very important. The application shows the list of

customers (Figure 46 and Figure 47). There is a search field where the user can search for

a specific customer by entering at least 3 characters. Services or Providers can be used by

components inside Ionic to provide data or any type of service like;

Figure 46 - Customers List on iOS, Android and Windows Phone

From Native to Cross-platform Hybrid Development

63

Figure 47 - Layout view from a tablet

After customer selection, a detailed customer account screen appears. You can view

the location of the customer's address when selecting a map or call the customer's phone

contact by pressing the phone icon in the right corner of the screen Figure 48.

Figure 48 - Customer detail

From Native to Cross-platform Hybrid Development

64

The menu screen in the upper left corner of the screen shows us other application

features, such as, access to documents issued and not yet delivered Figure 49.

Figure 49 - The Menu screen

Once the function “Documents” is selected, a list of Transport Documents issued and

not yet delivered is displayed, through the API Figure 50.

Figure 50 - Pending documents

From Native to Cross-platform Hybrid Development

65

When the document is selected, the detailed information about the document appears

on the screen, with the information about the customer, delivery place and mandatory AT

Code Figure 51. This screen is the core screen, with the main information, because here

there is the customer's name, the address, the phone number, and the AT code. Thus, one

can request the signature of the person who received the goods in the delivery act or call

it if there is any need to contact the receiver.

Figure 51 - Detail document

From Native to Cross-platform Hybrid Development

66

On the map button the user can view the route to destination Figure 52.

Figure 52 - Map route to destination

On the receiver signature button, the person is requested to sign directly on the app.

This process not only registers that this individual received the good and the application

will trigger the information that this merchandise has already been delivered, being

registered as delivered. The signature is saved in Firebase Realtime Database Figure 53.

From Native to Cross-platform Hybrid Development

67

Figure 53 - Receiver signature

When the customer's signature is registered the app returns to the document’s screen

with the document information and the signature of the receiver Figure 54.

Figure 54 - Document delivery and sign

From Native to Cross-platform Hybrid Development

68

The about page, shows information about the app and version number Figure 55.

Figure 55 - About us screen

From Native to Cross-platform Hybrid Development

69

Chapter 4 – Results \ Evaluation

4.1. Qualitative results of the prototype

A prototype implementation of the mobile app in organizations for testing and

evaluation was conducted, as CodeGT got the interest from real market industry

companies. For that purpose, the mobile app CodeGT was tested on a real environment,

on two real companies. For confidentiality reasons the companies’ name were omitted.

Company A is an industrial company that delivers its products to final customers and

transports material from the factory to a company delegation on a different place.

Company B is a group of electronics retail stores with two technicians that transport and

install equipment at customer’s home. The app was tested by two of each companies’

employees.

The sets of tests were carried out through the qualitative evaluation of the solution and

a survey of improvements. The app was evaluated on a scale 1 to 5 regarding, the

usability, functionalities and performance.

The evaluation on Table 4 was very positive, enhancing ease of use and performance.

There is an agreement on the added value that the proposed solution would bring to the

current process. Regarding the functionalities, some improvement could be done.

Table 4 - Evaluation mobile Hybrid app CodeGT

Company User Usability Functionalities Performance

A JC 5 4 5

A JB 5 4 5

B LH 5 4 5

B RM 5 4 5

The matrix of strengths, weaknesses, opportunities and threats (SWOT) Table 5, shows

that the integration with the existing ERP software is a must and ease of use suitable to

mobile device with basic information and practical. Thus, it was concluded that the use

of mobile devices in the mobility of business systems, like smartphones or tablets, shows

great potential for evolution. Through this solution the process was simply digitized and

quite practical and productive.

From Native to Cross-platform Hybrid Development

70

Table 5 - SWOT Analysis

Strengths Weakness

• Low cost

• Ease of use

• ERP integration

• Native device functionalities

• Internet dependency

Opportunities Threats

• Integrated more information

from ERP on mobile devices

• PHC ERP launch an app

similar or better

Some improvements are necessary and should be complemented on a new version of

the app, regarding more functionalities. Suggestions such as the use of the camera in the

act of delivery to register and prove how it was delivered without any defect and the use

of bar code to read labels on the packages.

Comparing actual process Figure 56 shows the access of ERP from a desktop, or

accessing the ERP from a web page Figure 57 and from the mobile app. The CodeGT app

was well accepted, practical

Figure 58, clean and well suitable to mobile devices.

From Native to Cross-platform Hybrid Development

71

Figure 56 - ERP PHC desktop UI for a specific customer

Figure 57 - ERP PHC Web UI for a specific customer

From Native to Cross-platform Hybrid Development

72

Figure 58 - CodeGT UI for a specific customer

4.2. Quantitative Evaluation

4.2.1 Cost for developing a mobile app

The average cost for developing a mobile app depends on several factors, some

considerations were made regarding the costs involved on mobile software development:

• App functionality and purpose;

• Visual design UX and UI;

• Customization;

• Mobile platforms and devices supported;

• Use of Native features of the devices;

• Backend infrastructure, Server-side, hosting if needed;

• App administration;

• Geographical location;

• Maintenance.

From Native to Cross-platform Hybrid Development

73

 All these factors influence the cost of mobile application development. If the

target is a basic app with few functionalities the cost will be lower, but if a complex app

is needed, more hours will be necessary to all the life cycle of the development of the app.

The User Experience (UX) and User Interface Design (UI) are important, User

Experience Design, refers to the design of an application’s usability, accessibility, and

interactions, to enhance users’ satisfaction when they operate a system, while UI is the

design focus on maximizing the usability and the UX. Ionic components maximize visual

design for multi-platform since Ionic components are automatically styling for each

platform so has a best UX across platforms.

More customization means more time and less code reuse, implying more costs. On

mobile app development some UI is needed for each device and platform, so more time

is spent to style the app for more devices. If the target is a multi-platform app, more

development hours are needed on a Native approach. Backend infrastructure, servers, API

access, cloud storage or hosting will make the app development costs rise. If the app needs

an administration page, more development time is needed. It is known that a developer

hourly cost is different from country to country, so the cost also depends on where the

app is developed. If maintenance or upgrades are needed, it obviously involves more

costs.

Considering one mobile app project with a single platform target, on Figure 59 one

can see higher costs on Hybrid development through development life cycle because

Native device functionalities are intrinsic on Native OS, while the Hybrid platforms must

work around to get it. Also, the rewrite code on Native OS are more common. Usually,

for creating apps with the access to mobile devices new release features, platform-specific

APIs are used. With the emergence of new features, there is a need of introducing new

APIs, against which the developers haven't yet developed. Thus, developing time

increases, which affects the total cost.

From Native to Cross-platform Hybrid Development

74

Figure 59 - Costs on App Development Life Cycle for Single Platform

For one project with a multi-platform targeting the Hybrid cost becomes less expensive

since one does not need to develop several code-base to reach several platforms Figure

60.

From Native to Cross-platform Hybrid Development

75

Figure 60 - Costs on App Development Life Cycle for Multi-Platform

On the projects perspective Figure 61, the costs involved on single project for one

platform development, the Hybrid development is high due to the long-time need it to

learn all the programming language, technologies and platforms involved.

Figure 61 - Costs on App Development Life Cycle Project for Single Platform

The costs involved on several projects targeting multi-platform, the Hybrid

development is cheaper due to the initial cost because the learning curve will be diluted

on the several projects Figure 62,. If the target is to develop a mobile app, targeting multi-

platform for iOS and Android apps, a Hybrid app development is a good choice in terms

of cost. The Native problem is that usually you need to have a separate team for each

platform and the app creation cost is almost doubled. If an app is Hybrid, you have only

one team working on it.

From Native to Cross-platform Hybrid Development

76

Figure 62 - Costs on App Development Life Cycle Project for Multi-Platform

It must be assumed that app life cycle could start as a Hybrid app, because of lower

costs and faster development time and if it will become a successful app, then there will

be financial resources to invest more to a multi-platform Native app approach, increasing

complexity and performance, or continue on Hybrid development increasing app

complexity. So, the risk of investment will be lower to the beginning until it reaches the

return of investment point.

4.2.1 App Complexity

An app complexity scale classification has been created based on moderate time needs

to develop on Figure 63.

• Basic app - an application with simple functionality that requires

approximately 300-700 hours on development.

• Medium complexity app takes from 700 to 800 hours.

• Complex time-consuming app in most cases exceeds 1200 hours on

development.

Giving a rough estimate of application development cost (taking the rate of 35€-50€

an hour on average based on past experience): a basic application will cost around 7 500

From Native to Cross-platform Hybrid Development

77

€ - 20 000 €; medium complexity apps will start from 20 000 € to 75 000 €; the cost of

complex apps usually goes beyond 75 000€.

Figure 63 - Apps Complexity Scale

The Hybrid development approach is used more on a basic or medium app and Native

for more complex apps. If a more complex and demanding application is the focus,

usually a Native development is used. The benefits for choosing a Native mobile app,

includes the assurance of performance, precision, and perfection. As a developer, there is

no concern about any bugs or lags that might arise due to an unforeseen incompatibility

with the operating system. Consistency is guaranteed as the functioning of the application

is in sync with the other primary applications hosted by the OS.

The number of apps in the app store reaches more than 5 Million apps. Where Google

Play Store has almost double the number of apps of the Apple App Store Figure 64.

Figure 64 - Number of apps available in leading app stores as 1st quarter 2018(Statista, 2018)

From Native to Cross-platform Hybrid Development

78

A huge gap exists between free apps and paid apps. Although the Google Play Store

has more apps the Apple Store has a bigger percentage of paid apps because of the iOS

customers profile who are more likely to spend more money Figure 65.

Figure 65 - Free vs. Paid Apps (Statista, 2018)

The revenue of a mobile app Figure 66 comes especially from;

• Paid value on client app acquisition

• Advertising on the app

• In-App Purchase (IAP). In-app purchases includes any transactions performed

in-app (a virtual goods purchase where the app store takes a cut, example,

booking a hotel in a travel app, etc.).

From Native to Cross-platform Hybrid Development

79

This means that even basic or medium apps can have revenue from advertising and in-

app purchases. On a point of view from software company developers, an initial lower

investment in the development of mobile apps with Hybrid platforms and still get good

revenues without being a paid app on App Stores.

Figure 66 - Share of Global Mobile App Revenue By Type (Appsflyer, 2016)

According to Pordata Figure 67 and Figure 68, there was 1 213 107 SME in Portugal

in 2016 that represented 99,9% of the total companies. Eurostat defines that enterprises

are classified in different categories according to the number of people employed. SMEs

stand for small and medium-sized enterprises with fewer than 250 persons employed.

SMEs are further subdivided into:

• micro-enterprises: fewer than 10 persons employed;

• small enterprises: 10 to 49 persons employed;

• medium sized enterprises: 50 to 249 persons employed.

The vast number of SMEs companies is also a great opportunity for Hybrid mobile

development, since SMEs usually have less capital to invest in a mobile app.

Figure 67 - Number of SMEs in Portugal in 2016

 (Pordata, 2016b)

Figure 68 – Percentage of SMEs in Portugal in 2016

(Pordata, 2016a)

Total SME

2016

99,9 %

Total SME

2016

1 213 107

From Native to Cross-platform Hybrid Development

80

If mobile apps start as free, one can estimate that there is a huge market for Hybrid

mobile apps, for start-ups or small software companies to develop more and cheaper

multiplatform apps using Hybrid development for the huge market of SMEs. As apps

become successful, one can assume that there is then money to invest in app development,

increasing complexity and moving to Native approach.

4.2.2 Mobile Hybrid Development Risks

There are long-running challenges facing software developers. On Figure 69, it is

possible to see that many of them are regarding training needed to acquire and to get on

continuing upgrades on dynamics platforms in immature tools.

Through the text, I have already mentioned the risk of the Ionic platform during the

time of this dissertation on several upgrades due to Angular and Firebase upgrades and

from updates of the platform itself. Some of them were disrupted, meaning some rewrite

code was needed. Hybrid platforms have evolved a lot in recent years to improve their

approach to the performance and functionality of Native but there is the risk of breaking

code.

Figure 69 - Most pressing long-running challenges facing software developers worldwide as of 2015(Statista, 2015)

From Native to Cross-platform Hybrid Development

81

4.3. Analysis and discussion of results

The learning time needed for all the technologies and languages in the CodeGT app

development platform was long. A long period of time was needed for learning all the

programming language and technologies involved in the CodeGT mobile Hybrid app

development, like C#, JavaScript, TypeScript, HTML5 and CSS, Angular, Cordova and

the Ionic Platform. Even so, the time was less than the necessary to learn all the

programming languages and tools for the development of the application in the two-main

Native operating systems IOS and Android. With the advantage that the application can

be deployed in any mobile platform, any App Store and can still be accessed through any

device via browser, via hosting (but without Native functionalities in this approach).

The advantages are that the result is a mobile Hybrid application that work on the most

popular mobile operating systems and platforms and run as well as a Progressive Web

App (PWA), so also run in any web browser in any device mobile or desktop. I estimate

that the time was half of the time of the Native approach with the advantages mentioned.

The Hybrid mobile application can be deployed to mobile device or can be accessed

through any desktop equipment accessing a site on Firebase hosting through any web

browser, which is a huge advantage.

From Native to Cross-platform Hybrid Development

82

Chapter 5 – Conclusions

5.1 Main conclusions

With the increasing number of mobile devices, there has been a trend away from

desktop applications towards mobile apps. Many more mobile applications are needed to

interact with clients and end users. The demand for mobile experiences is growing 5x

faster than IT teams can deliver (Gartner, 2015). So, there is a delivery gap that Hybrid

platforms can help, delivering faster and cheaper apps on the market.

Native applications offer by far the best user experience and can use all Native features

and functionalities of the devices. Native offers rich Native libraries and SDKs, better

performance, with less 3rd party dependencies. When using Native apps targeting several

OS, this means that separate teams are needed to build in parallel, manage multiple

codebases, hire specialized and costly Native developers, so a higher cost is a major issue

on that approach.

Hybrid and Native apps have been coexisting with a higher performance from Native

ones. However, with the rapid development of HTML5 and Hybrid app platforms, the

performance of Hybrid apps is improving. The cross-platform mobile development

solutions shorten the software development lifecycle by writing the mobile application

once to then run it on different platforms. The use of platforms for developing mobile

Hybrid apps will increase to maximize the impact of their coding effort by applying the

concept of “Write (develop) Once and Run Anywhere” (WORA) (Huynh & Truong,

2017).

Cross-platform mobile frameworks such as Microsoft’s Xamarin, Apache Cordova

and Ionic are continuously improving and replacing the use of Native development in

Basic and medium complexity apps.

The demand for mobile application development is a reality and more and more mobile

app will arise focus on cross-platform with Hybrid frameworks development advantages.

The advance in Hybrid framework in general and the growing acceptance of open source

frameworks, such as Ionic in particular, may provide an alternative to the Native app

domination. With Hybrid framework like Ionic, it is possible to run our app on any

platform or device from a single codebase and access device capabilities via plugins. It

can even run our apps in a regular browser as a Progressive Web App (PWA), which is a

major advantage over Native development.

From Native to Cross-platform Hybrid Development

83

The cost involving the mobile development is cheaper and faster in a Hybrid approach

if a multi-platform app is the target. Hybrid platforms now are more powerful and easier

to use, and I believe they will be more and more used by developers.

The combination of mobile app platforms development technologies, backend

platforms and, along with new mobile device hardware capabilities, will continue to push

mobile apps evolution. This proves hypothesis HYPOTHESIS 1.

The mobile Hybrid application CodeGT, resulted in an intuitive and clear UI

application for the user and the access to the API and firebase was quite fast. The

developed mobile app shows a UX friendly and faster. Ionic platform is a valid alternative

development platform for cross-platform development creating an apps to interact as an

add-in for the ERP software. Mobile Hybrid platforms are a good solution to build mobile

apps faster and cheaper to interact to an ERP with a good UX Figure 70.

Figure 70 - Hybrid platforms solution to build mobile apps to interact ERP

The Hybrid mobile application CodeGT can be deployed to any mobile device or can

be access through any desktop equipment accessing a site on Firebase hosting through

any web browser, which is a huge advantage. This proves HYPOTHESIS 2.

Having a Hybrid app framework in place is profitable for business groups, enterprises,

and start-ups that are looking to reach out to a greater number of people in a lesser amount

of time. On multi-platform target Native apps require more time and money for

development, while Hybrids can be hosted quickly and with greater ease and cheaper.

From Native to Cross-platform Hybrid Development

84

There were some negative points, through the development of the project CodeGT,

Ionic platform had constant updates. Some updates were due to Angular updates, others

due to the dynamics of the Ionic Team to develop a better Hybrid platform. All these

updates required continued training to learn new and disruptive functionalities, what

could be seen has a risk.

5.2 Main Scientific and Business Community Contributions

5.2.1 Contributions at the academic level

The research contributions include the analysis of the state of the art in the related

fields of mobile app development and ERP software, also the analysis of cross-platforms

more specifically Hybrid development approach advantages, versus Native, are clearly

highlighted in this document on sections 4.3 and 5.1.

 A creation of a proof-of-concept where the proposed mobile app CodeGT using

Hybrid platforms.

This research was also supported by peer validation in the acceptance and publication

of a paper accepted for publication in the scientific IEEE International Conference of

Intelligent Systems 2018 (http://www.ieee-is2018.com), where the paper and research

were presented to scientific live participation in referenced conference and workshops in

the fields of research.

International Conference with double blind Peer Revision:

• Pinto, Carlos Manso; Coutinho, Carlos Eduardo, “From Native to Cross-platform

Hybrid Development”, in Proceedings of the 9th IEEE-TEMS International Conference

on Intelligent Systems 2018 (Funchal, Madeira, 2018-09-26). To be published.

5.2.2 Contributions at the industry and business level

The development of mobile applications through Hybrid platforms are an opportunity

for organizations to create apps intended to all mobiles devices, faster and cheaper than

the Native approach. Several mobile Hybrid apps can be developed as modules to interact

to any ERP given a very good UX experience to the user. The presented application

CodeGT not only was developed but was considered of excellent value for real industry

companies which are interested in it.

http://www.ieee-is2018.com/

From Native to Cross-platform Hybrid Development

85

5.3 Future work

In the last years, many new Hybrid platforms are emerging to give a cross platform

approach and I expect more will come up in the years to come to decrease a difference in

both Native and Hybrid approaches, also with the evolution with the existing ones in the

market.

Developers can use client-side technologies to build client apps themselves, using

specific frameworks and patterns for a cross-platform experience.

In a future version of the mobile app CodeGT, I have the challenge of developing new

modules that can complement the actual application, maintaining the strategy of

complementing the ERP in a mobile perspective. Thus, new modules must be developed

to facilitate mobility and access through mobile equipment the information in the ERP.

As an example, an agenda with a calendar, tasks and scheduling, or a bar code reading on

the confirmation of delivered products. Another approach will be creating analytics with

dashboards for managers.

From the market point of view, the mobile app CodeGT, aims all potentials enterprise

customers, who use an ERP system and wants to interaction to the ERP from a mobile

device.

From Native to Cross-platform Hybrid Development

86

Bibliography

Accenture. (2018). (m)apping the future, Enterprise.

Adams, L. G., Persaud, R., Acworth, G., Adams, D. G., & Hamadeh, S. (2013).

SPLASSH (Student Programs Like Aquatic Science Sampling Headquarters)

http://splassh.meteor.com a socially driven platform about water. Oceans-San

Diego, 1–9. https://doi.org/10.23919/OCEANS.2013.6741344

Adinugroho, T. Y., Reina, & Gautama, J. B. (2015). Review of Multi-platform Mobile

Application Development Using WebView: Learning Management System on

Mobile Platform. Procedia Computer Science, 59(Iccsci), 291–297.

https://doi.org/10.1016/j.procs.2015.07.568

Alan R. Hevner, Salvatore T. March, J. P. and S. R. (2004). Design Science in

Information Systems Research. MIS Quarterly, Vol. 28, N.

Angular - One framework. Mobile & desktop. (2018). Retrieved January 1, 2018, from

https://angular.io/

Apache Cordova. (2018). Retrieved from https://cordova.apache.org/

Apps, D. M. M., Justin, J., & Jude, J. (2017). Learn Ionic 2.

Appsflyer. (2016). The State of In-App Spending, 1–22.

Autoridade Tributaria. (2012). Regime de bens em circulação objeto de transações entre

sujeitos passivos de IVA. Retrieved January 1, 2018, from

https://dre.pt/application/conteudo/174543

Bahrami, M., Arabzad, S. M., & Ghorbani, M. (2012). Innovation In Market

Management By Utilizing Business Intelligence: Introducing Proposed

Framework. Procedia - Social and Behavioral Sciences, 41, 160–167.

https://doi.org/10.1016/j.sbspro.2012.04.020

Barafort, B., Shrestha, A., Cortina, S., Renault, A., Mesquida, A.-L., & Mas, A. (2018).

A Software Artefact to support Standard-based Process Assessment: Evolution of

the TIPA® Framework in a Design Science Research Project. Computer Standards

& Interfaces, (April), 0–1. https://doi.org/https://doi.org/10.1016/j.csi.2018.04.010

Bera, M. H. G., Mine, A. F., & Lopes, L. F. B. (2015). MEAN Stack : Desenvolvendo

Aplicações Web Utilizando Tecnologias Baseadas em JavaScript.

Bosnic, S., Papp, I., & Novak, S. (2017). The development of hybrid mobile

applications with Apache Cordova. 24th Telecommunications Forum, TELFOR

2016. https://doi.org/10.1109/TELFOR.2016.7818919

Bott, R. (2014). Ng-Book. Igarss 2014. https://doi.org/10.1007/s13398-014-0173-7.2

Build Amazing Native Apps and Progressive Web Apps with Ionic Framework and

Angular. (2018). Retrieved February 28, 2018, from https://ionicframework.com/

Build Apps with JavaScript | Meteor. (2018). Retrieved February 21, 2018, from

https://www.meteor.com/

Charland, A., & Leroux, B. (2011). mobile application Development : Web vs . native.

Communications of the ACM, 54, 0–5. https://doi.org/10.1145/1941487

Chou, D. C., Bindu Tripuramallu, H., & Chou, A. Y. (2005). BI and ERP integration.

Information Management & Computer Security, 13(5), 340–349.

https://doi.org/10.1108/09685220510627241

Davenport, Thomas H., Prusak, L. (1998). Working Knowledge. Harvard Business

School.

Davenport, T. H. (1998). Putting the Enterprise into the Enterprise System. Harvard

Business Review, 1–12. https://doi.org/Article

Eisenman, B. (2015). Learning React Native: Building Native Mobile Apps with

JavaScript. O’Reilly Media. Retrieved from

From Native to Cross-platform Hybrid Development

87

https://books.google.com/books?id=t74fCwAAQBAJ&pgis=1

El-Kassas, W. S., Abdullah, B. A., Yousef, A. H., & Wahba, A. M. (2017). Taxonomy

of Cross-Platform Mobile Applications Development Approaches. Ain Shams

Engineering Journal, 8(2), 163–190. https://doi.org/10.1016/j.asej.2015.08.004

Elbashir, M. Z., Collier, P. A., & Davern, M. J. (2008). Measuring the effects of

business intelligence systems: The relationship between business process and

organizational performance. International Journal of Accounting Information

Systems, 9(3), 135–153. https://doi.org/10.1016/j.accinf.2008.03.001

Emam, A. Z. (2013). Critical success factors model for buisness intelligent over ERP

cloud. 2013 International Conference on IT Convergence and Security, ICITCS

2013, 13–16. https://doi.org/10.1109/ICITCS.2013.6717819

Firebase. (2018). Retrieved March 5, 2018, from https://firebase.google.com/

Ganesh, K. , Sivakumar, S. M. (2014). Enterprise Resource Planning : Fundamentals of

Design and Implementation. Springer International Publishing Switzerland.

https://doi.org/10.1007/978-3-642-31371-4

Gartner. (2015). Demand for Enterprise Mobile Apps Will Outstrip Available

Development Capacity Five to One. Retrieved January 1, 2018, from

https://www.gartner.com/newsroom/id/3076817

Graeme Shanks,Peter B. Seddon, L. W. (2003). Second-Wave Enterprise Resource

Planning Systems: Implementing for Effectiveness. Second-Wave Enterprise

Resource Management Systems (Vol. 1).

https://doi.org/10.1017/CBO9781107415324.004

Griffith, C. (2017). Mobile app development with Ionic 2 : cross-platform apps with

Ionic, Angular, and Cordova. Retrieved from

https://books.google.co.uk/books?id=G6WkDgAAQBAJ&pg=PT10&lpg=PT10&

dq=ionic+framework+first+release+date+2015&source=bl&ots=DH35CkMwn6&

sig=jIIxbhb_A_FhpcEMRWij9NbXIqE&hl=en&sa=X&ved=0ahUKEwij1LjVo4r

WAhXkbZoKHfvFBHwQ6AEIXTAJ

Griffiths, J. (2016). Mastering Ionic 2.

Hawking, P., & Sellitto, C. (2010). Business Intelligence (BI) Critical Success Factors.

ACIS 2010 Proceedings, 11.

He, Y., Zhang, D., & Fang, Y. (2017). Development of a mobile post-disaster

management system using free and open source technologies. International

Journal of Disaster Risk Reduction, 25(August), 101–110.

https://doi.org/10.1016/j.ijdrr.2017.08.007

Hevner, A. R. (2007). Scandinavian Journal of Information Systems A Three Cycle

View of Design Science Research A Three Cycle View of Design Science

Research. Scandinavian Journal of Information Systems © Scandinavian Journal

of Information Systems, 19(192), 87–92.

https://doi.org/http://aisel.aisnet.org/sjis/vol19/iss2/4

Holzinger, A., & Slany, W. (2012). Multidisciplinary Research and Practice for

Information Systems, 7465(March 2016). https://doi.org/10.1007/978-3-642-

32498-7

Huynh, M., & Truong, D. (2017). Hybrid App Approach: Could it mark the end of

native app domination? Issues in Informing Science + Information Technology, 14,

49–65. https://doi.org/10.28945/3723

Ionic. (2018). Ionic Framework. Retrieved January 27, 2018, from

https://ionicframework.com

jQuery Mobile. (2018). Retrieved February 23, 2018, from https://jquerymobile.com/

Koupaei, M. N., Mohammadi, M., & Naderi, B. (2016). An Integrated Enterprise

From Native to Cross-platform Hybrid Development

88

Resources Planning (ERP) Framework for Flexible Manufacturing Systems Using

Business Intelligence (BI) Tools, 3(1), 1112–1125.

Kudo, N., Yamauchi, T., & Austin, T. H. (2017). Access control for plugins in cordova-

based hybrid applications. Proceedings - International Conference on Advanced

Information Networking and Applications, AINA, (2), 1063–1069.

https://doi.org/10.1109/AINA.2017.61

Latif, M., Lakhrissi, Y., Nfaoui, E. H., & Es-Sbai, N. (2016). Cross platform approach

for mobile application development: A survey. 2016 International Conference on

Information Technology for Organizations Development (IT4OD), 1–5.

https://doi.org/10.1109/IT4OD.2016.7479278

Malavolta, I. (2016). Web-based Hybrid Mobile Apps : State of the Practice and

Research Opportunities, 2016–2017. https://doi.org/10.1145/2897073.2897133

Microsoft. (2018a). Visual Studio Code. Retrieved from https://code.visualstudio.com/

Microsoft. (2018b). Visual Studio IDE. Retrieved from

https://visualstudio.microsoft.com/vs/

Mobile Operating System Market Share Worldwide | StatCounter Global Stats. (2018).

Retrieved March 4, 2018, from http://gs.statcounter.com/os-market-

share/mobile/worldwide/#monthly-201401-201712

Mobile Solutions | Google Cloud Platform. (2018). Retrieved March 5, 2018, from

https://cloud.google.com/solutions/mobile/

Monk, E., & Wagner, B. (2009). Comcepts in enterprise resource planning.

Moroney, L. (2017). The Definitive Guide to Firebase: Build Android Apps on Google’s

Mobile Platform. The Definitive Guide to db4o. https://doi.org/10.1007/978-1-

4302-0176-2

Newhook, R., Jaramillo, D., Temple, J. G., & Duke, K. J. (2015). Evolution of the

Mobile Enterprise App: A Design Perspective. Procedia Manufacturing, 3(Ahfe),

2026–2033. https://doi.org/10.1016/j.promfg.2015.07.250

NodeJS. (2018). Retrieved January 27, 2018, from https://nodejs.org/en/

Novac, O. C., Marczin, R.-G., & NOVAC, M. C. (2016). Comparison of Hybrid Cross-

Platform Mobile Applications with Native Cross-Platform Applications. Journal of

Computer Science & Control Systems, 9(2), 24–27.

Omar, K., & Gómez, J. M. (2016). A selection model of ERP system in mobile ERP

design science research, Case study: mobile ERP usability. 2016 IEEE/ACS 13th

International Conference of Computer Systems and Applications (AICCSA).

https://doi.org/10.1109/AICCSA.2016.7945791

Paulson, L. D. (2005). Web Applications with Ajax. IEEE Computer, 38(10), 14–17.

https://doi.org/10.1109/MC.2005.330

Perchat, J., Desertot, M., & Lecomte, S. (2013). Component based framework to create

mobile cross-platform applications. Procedia Computer Science, 19, 1004–1011.

https://doi.org/10.1016/j.procs.2013.06.140

PHC. (2018). PHC Software. Retrieved January 1, 2018, from

https://www.phcsoftware.com/

Pordata. (2016a). Qual a percentagem de micros, pequenas e médias empresas no total

de empresas. Retrieved January 1, 2018, from

https://www.pordata.pt/Portugal/Pequenas+e+médias+empresas+em+percentagem

+do+total+de+empresas+total+e+por+dimensão-2859

Pordata. (2016b). Quantas PME existem. Retrieved January 1, 2018, from

https://www.pordata.pt/Portugal/Pequenas+e+médias+empresas+total+e+por+dim

ensão-2927

Portdata, I. and. (2018). No Subscribers of mobile land service in Portugal. Retrieved

From Native to Cross-platform Hybrid Development

89

January 1, 2018, from

https://www.pordata.pt/Portugal/Assinantes+++equipamentos+de+utilizadores+do

+serviço+móvel-1180

Que, P., Guo, X., & Zhu, M. (2017). A Comprehensive Comparison between Hybrid

and Native App Paradigms. Proceedings - 2016 8th International Conference on

Computational Intelligence and Communication Networks, CICN 2016, 611–614.

https://doi.org/10.1109/CICN.2016.125

Ramos, M., Valente, M. T., & Terra, R. (2017). AngularJS Performance: A Survey

Study, 1–13. Retrieved from http://arxiv.org/abs/1705.02506

React - A JavaScript library for building user interfaces. (2018). Retrieved February 21,

2018, from https://reactjs.org/

Robert Jacobs, F., & “Ted” Weston, F. C. (2007). Enterprise resource planning (ERP)-A

brief history. Journal of Operations Management, 25(2), 357–363.

https://doi.org/10.1016/j.jom.2006.11.005

Shahzad, F. (2017). Modern and Responsive Mobile-enabled Web Applications.

Procedia Computer Science, 110, 410–415.

https://doi.org/10.1016/j.procs.2017.06.105

Shahzad, F., Sheltami, T. R., Shakshuki, E. M., & Shaikh, O. (2016). A Review of

Latest Web Tools and Libraries for State-of-the-art Visualization. Procedia

Computer Science, 58(Euspn), 100–106.

https://doi.org/10.1016/j.procs.2016.09.017

Smutný, P. (2012). Mobile development tools and cross-platform solutions.

Proceedings of the 2012 13th International Carpathian Control Conference, ICCC

2012, (May 2012), 653–656. https://doi.org/10.1109/CarpathianCC.2012.6228727

Statista. (2015). Most pressing long-running challenges facing software developers

worldwide, as of 2015. Retrieved January 1, 2018, from

https://www.statista.com/statistics/627071/worldwide-developer-survey-pressing-

developer-challenges/

Statista. (2018a). Number of apps available in leading app stores as of 1st quarter 2018.

Retrieved September 1, 2018, from

https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-

app-stores/

Statista. (2018b). Number of mobile app downloads worldwide in 2017, 2018 and 2022

(in billions). Retrieved from https://www.statista.com/statistics/271644/worldwide-

free-and-paid-mobile-app-store-downloads/

Tadjer, R. (1998). Enterprise Resource Planning - ABI/INFORM Collection - ProQuest.

Retrieved from

https://vpn2.iscte.pt/+CSCO+00756767633A2F2F66726E6570752E63656264687

266672E70627A++/abicomplete/docview/226885690/fulltext/864A0B02892342D

APQ/1?accountid=38384

Tomišová, V., & Hudec, J. (2017). Modelling of the costs of decision support for small

and medium-sized enterprises, 22–31. https://doi.org/10.20470/jsi.v8i1.280

Torre, C. de la, & Calvert, S. (2016). Microsoft Platform and Tools for Mobile

Application Development.

Turban, E., & Volonino, L. (2011). Information Technology for Management. Jhon

Wiley & Sons, Inc. (Vol. 8). https://doi.org/10.1017/CBO9781107415324.004

Wajid, A., Junjun, P., Akbar, A., & Mughal, M. A. (2018). WebGraveStone: An online

gravestone design system based on jQuery and MVC framework. 2018

International Conference on Computing, Mathematics and Engineering

Technologies: Invent, Innovate and Integrate for Socioeconomic Development,

From Native to Cross-platform Hybrid Development

90

ICoMET 2018 - Proceedings, 2018–Janua, 1–6.

https://doi.org/10.1109/ICOMET.2018.8346322

Walker, J. D., & Chapra, S. C. (2014). A client-side web application for interactive

environmental simulation modeling. Environmental Modelling and Software, 55,

49–60. https://doi.org/10.1016/j.envsoft.2014.01.023

Wargo, J. M. (2012). PhoneGap Essentials: Building Cross-platform Mobile Apps.

https://doi.org/10.1007/s13398-014-0173-7.2

Xamarin. (2018). Mobile Application Development to Build Apps in C# - Xamarin.

Retrieved January 27, 2018, from https://www.xamarin.com/platform

