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Energy-Aware and Adaptive Fog Storage Mechanism with Data 
Replication Ruled by Spatio-Temporal Content Popularity  

RUBEN VALES, ISCTE-IUL 
JOSE MOURA, ISCTE-IUL, Instituto de Telecomunicações 
RUI MARINHEIRO, ISCTE-IUL, Instituto de Telecomunicações 

Data traffic demand increases at a very fast pace in edge networking environments, with strict requisites on latency 
and throughput. To fulfil these requirements, among others, this paper proposes a fog storage system that incorporates 
mobile nodes as content providers. This fog storage system has a hybrid design because it does not only bring data 
closer to edge consumers but, as a novelty, it also incorporates in the system other relevant functional aspects. These 
novel aspects are the user data demand, the energy consumption, and the node distance. In this way, the decision 
whether to replicate data is based on an original edge service managed by an adaptive distance metric for node 
clustering. The adaptive distance is evaluated from several important system parameters like, distance from consumer 
to the data storage location, spatio-temporal data popularity, and the autonomy of each battery-powered node. 
Testbed results evidence that this flexible cluster-based proposal offers a more responsive data access to consumers, 
reduces core traffic, and depletes in a fair way the available battery energy of edge nodes. 
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1 INTRODUCTION 
Mobile devices are inherently resource constrained in terms of storage, processing and energy. These 

resource constraints limit the number of applications that are adequate to be run on mobile devices 
[1][2][3]. To tackle this limitation, [4] arguments for the use of mobile cloud computing (MCC). MCC 
offers to mobile devices storage and processing resources located at centralized distant servers [1][3]. 
These clouds can provide unlimited resources; however, MCC does not easily scale, centralized servers 
are prone to the classic problem of “single point of failure”, and they are typically located far away from 
mobile users. This long distance between each user and the remote cloud inflicts a high latency, 
experienced by mobile users when accessing data or services stored at the remote cloud. 

Due to both technological enhancements and the increase on the user demand, mobile applications are 
even more requiring real-time data processing. These applications include high quality multimedia 
dissemination, distributed interactive games, and sharing of high amounts of data with low latency [5]. In 
fact, the already referred high latency, added to bandwidth bottleneck, communication overhead, and 
location blindness experienced by mobile users when accessing remote clouds, raises a serious problem in 
mobile scenarios [6]. It is then very urgent to bring computing resources closer to end-users to satisfy the 
strict requisites imposed by emerging mobile applications. Consequently, remote MCC needs to be 
surpassed with alternatives that offer a more edge-oriented computing paradigm [7][8], by migrating 
resources, such as services and data, closer to end users and devices. This is on the genesis of the edge-
oriented computing paradigm, that allows more responsive cloud services, accomplished by extending the 
services from the core in cloud data centers to the edge of the network, by placing intermediate nodes 
between the cloud and the end user, which are responsible for better serving ubiquitous smart devices, 
fulfilling user resource requests. In addition, we can observe the high proliferation of smartphones and the 
continuous evolution of their resources [9]. All these aspects make possible to use the extra resources of 
smartphones in novel edge services. Consequently, we envision to bring cloud services even closer to 
consumers, by empowering devices as providers, i.e., remote cloud services might be replaced or enriched 
with local fog services. Using this new paradigm, legacy functional aspects of computing, networking, 
and storage need to be revisited. This paper is focused on the storage service improvements that this 
paradigm shift brings. 

The current work contributes to the area of fog storage, by designing and implementing a hierarchical 
hybrid file system, which uses edge devices as both consumers and providers of local data storage, as 
shown in Figure 1. It is a hybrid system because, on one hand, it has a centralized management and on the 
other hand, it enables both data storage and data dissemination on a completely distributed way. 
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Fig. 1. Architecture of the proposed fog storage system. 

Figure 1 shows two data-storing node types: mobile nodes and fog nodes. A central node manages data 
storage at the network edge by considering networking nodes’ energy levels and localization information. 
The peripheral data storage also considers data’s popularity. These local metrics are sent to the central 
node, using management control messages, shown in Figure 1. Data messages are exchanged directly 
among data-storing nodes in a completely distributed way.  

The current proposal contributes for the research area of fog storage, as follows:  
• the edge computing is useful not only for either pushing data or services closer to users or for 

diminishing their access latency, as vastly addressed by the literature. In fact, according to our 
perspective, edge computing also obliges the networking research community to holistically 
rethink some classical concepts such as location, distance, energy, and popularity. 

• it extends HDFS [10] with Pharos [11] to obtain a cluster-based file system enhanced with the 
capability for evaluating distances between pairs of nodes in a scalable way; it also considers 
spatial-temporal data popularity [12] and nodes available battery energy [13]; 

• this hybrid data storage was deployed in a testbed with fog devices, to evaluate the proposed 
solution in a comprehensive way. The obtained results show that this proposal replicates data 
to edge devices based on node localization and spatio-temporal data popularity, offers data to 
consumers with low latency, offloads traffic from core to the edge, and enables a fair energy 
consumption among battery-powered nodes; 

• the proposal can support emerging mobile services similar to [14][15]; it can also enhance the 
caching service already supplied by content distribution networks (CDNs) [16], extending the 
caching services from cloud datacenters to fog devices; 

• our contribution is agnostic regarding where the storage is placed, being it fog devices, such 
as mobile devices, middleboxes or core devices such as storage servers. 

The rest of the paper is organized as follows: section 2 revises the literature in topics related with our 
contribution; after that, section 3 explains how the proposed solution was designed and implemented; 
section 4 presents and analyzes testbed results; and finally, section 5 concludes the paper. 

2 RELATED WORK 
There are several alternatives to MCC such as edge computing [8], cloudlets [2][17][18], multi-access 

edge computing (MEC) [19][7], or fog computing [20][7][17]. First, the edge computing tries to 
overcome the latency issue of MCC by introducing an intermediate layer between the remote cloud and 
end-users. This intermediate layer is responsible for satisfying the mobile users’ resource requests. 
Second, the cloudlets have been proposed as trusted stationary machines or a cluster of stationary 
machines with high capabilities at the neighborhood of mobile devices. In this way, cloudlets act as 
resource providers, most often installed along with Access Points (AP) to enable the communication with 
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mobile devices, and in some cases both cloudlet and AP are integrated on a single entity. However, they 
may not always be available due to wireless short range, channel congestion or interference issues. Third, 
MEC, proposed by Telcos, deploys servers that offer cloud computing capabilities inside the Radio 
Access Network (RAN), near mobile subscribers. Mobile network operators allow the use of the access 
network, where low latency and high-bandwidth as well as direct access to real-time radio network 
information (such as subscriber location, cell load, etc.) is available. This can be used to allow content, 
services and applications to be accelerated, increasing server responsiveness from the edge. Additionally, 
MEC servers are context aware, as they manage information on end devices, such as their location and 
network information. But their capacity is limited, therefore deciding which and how resources can be 
managed at the edge can still be a trick endeavor [13]. Furthermore, MEC can become an expensive 
option for mobile users due to the data access is made typically via cellular networks. Fourth comes the 
fog computing paradigm, term introduced by Cisco Systems, whose rationale for coining this term is that 
a fog is nothing more than a cloud that is closer to the ground. In fog scenarios, the storage and 
processing requisites are ubiquitously addressed by nearby fog nodes, that fulfil the necessary resources, 
in a widely distributed manner [8], in the form of fog nodes [21], possibly at different node levels and 
densities [22]. These fog nodes are typically access routers and, in some cases, could be machine to 
machine (M2M) gateways [7]. Fog computing can be pertinent to support data management for smart 
cities [23], including the deployment of 5G mobile access technology [24] or for IoT [25]. Table 1 lists 
and compares the main technical aspects among these four architectures for mobile services. From these, 
the architecture more well-aligned with our current work is fog computing. 

Table 1. Comparison Among Several Architectures for Mobile Services 
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Referenced work [26] [27] [28] [17] 

Distance to mobile node High Low Low Low 
Latency High Variable Low Low 
Backhaul load High Low Medium Low 
Computational power Ample Ample Limited Medium 
Storage capacity Ample Ample Limited Medium 
Access xG WiFi xG Heterog 
Mobility support Good Limited Good Medium 
Coverage Ample Limited Ample Ample 
Context awareness No Could be Yes Yes 
Reliability Low Low Medium High 
Hierarchy 1 tier 2 tiers 2 tiers 3+ tiers 
Cooperation among mobile nodes No No No Yes 
Energy efficiency High Medium Medium Low 

As already discussed, mobile cloud computing is evolving to a more well-identified edge-oriented 
computing paradigm, by migrating services even closer to end users. Aligned with this paradigm, new 
computing architectures should enable mobile devices to share among them their available resources to 
support local services, with minimum latency, in a coordinated manner. This contrasts with the previous 
edge implementations, where the mobile device’s exclusive role in the cloud was that of a consumer. 
There is a myriad of proposals, that, regarding control, follow two architectures types: centralized such as 
FemtoClouds [29], CACTSE [30], Hyrax [31], and MOMCC [32] or decentralized, where nodes keep 
track of their own resources, such is the case with EECRS [33], Phoenix [34], E-DRM [35], the proposal 
of Barca [36], the proposal do Lacuesta et al with their spontaneous ad hoc mobile cloud computing 
network [37] and the proposal of Monteiro et al. [38]. 

However, none of the previous proposals directly uses mobile node’s energy level as a metric in their 
resource allocation strategies. Additionally, precise node location is not properly addressed in the 
Network Coordinates (NC) of their choice. Moreover, previous works do not address in a complete way 
how to manage the data storage closer to the final consumers, in particular, how data storage can be 
refined by the data popularity. Literature discussed below address some of the functional characteristics 
aligned with our work, such as: energy efficiency, nodes NC, and edge data caching. 

Several works [39][40] addressed energy efficiency in wireless sensor networks in a similar way as we 
do in the current contribution. In addition, [41] proposes a solution to place edge servers in order to 
support both energy efficiency and diminishment of the access latency. The authors of [42] go a step 
further to diminish the access latency in the sense that they discuss client-storage techniques for  
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supporting multiple consumer cloud storage on mobile devices. Nevertheless, these techniques based on 
mobile devices could rapidly deplete their batteries. To avoid this problem, we think that, whenever 
possible, most part of the data storage effort should be supported by the network edge devices (e.g. base 
stations, access points, routers) that have a permanent energy supply. Additionally, [43] exploits content 
caching and delivery techniques for 5G and [44] surveys literature about caching in information centric 
networks. Our proposed fog storage system integrates very well with [43][44] because the former enables 
energy-efficiency and the latter work is driven by efficient data discovery distributed mechanisms. But it 
is not only important to improve the energy efficiency. In fact, it is fundamental to minimize data traffic 
at the backhaul link, as suggested in [13]. This is normally designated by traffic offloading [45]. Our 
solution follows this approach and also offers online caching during data delivery [46]. 

We have also found some proposals regarding the use of node NC in a networking system, such as: 
landmark-based [47] or distributed [48][11][49]. A landmark-based approach is used in the Content 
Addressable overlay Network (CAN) [47]. It relies on a few fixed nodes, called landmarks, which are 
known to the cluster. In this way, clients measure their Round Trip Time (RTT) latency to each landmark 
and then compute their network position in a Euclidean coordinate system. Considering these steps, the 
node position in the coordinate system is represented with a vector with a cardinality matching the total 
number of landmarks being used. The number of landmarks has a very strong impact on the predicted 
node localization accuracy when compared with its real localization. A main drawback of this approach 
occurs when there is landmark failure or overload, which increases latency to the client and consequently 
affects the system’s accuracy. But another less obvious problem is the triangle inequality violation (TIV) 
[50]. This happens because a routing path between two nodes with a direct link can very often have a 
longer path than an alternative path through an intermediary node. Consequently, systems merely using 
the Euclidean distance model are in-capable of denoting TIVs in their metric space, and therefore the 
performance is seriously impacted. An alternative method to the previous discussed CAN is Vivaldi [48], 
where nodes determine their coordinates by sending ping packets to some closest nodes. The RTT 
between two nodes is modelled as a physical force. The nodes’ coordinates are related with the diverse 
existing forces among the nodes. The final goal is to reach a system state with a minimum value of 
energy, in the sense that, when the minimum value of system energy is achieved, the system knows the 
localization of all nodes with a higher accuracy. Pharos [11] is another distributed localization system. In 
Pharos, uses a cluster-based design, where nodes have a pair of network coordinates: global and local. 
These new characteristics empower Pharos with better RTT predictions than in the case of Vivaldi. 
Pharos also relies on the use of n-dimensional Euclidean space for their coordinates, accompanied by a 
height coordinate. The height coordinate models the latency penalty of network access links, such as 
queuing delay [51]. A similar work is available in [49]. The current work uses and compares both Pharos 
and CAN approaches. 

Another aspect in our proposal is the caching of data at the network edge [52][4][53][13][54][55], 
since it can significantly improve bandwidth and energy efficiency in wireless networks when compared 
with caching only at infrastructure nodes. The authors of [52] argue that a considerable amount of 
information could potentially be used in wireless networks for achieving efficient content caching and 
low-latency data delivery to the consumers. Information to be processed may include: channel access; 
interference; users’ mobility; battery level; accurate predictions about the data demand; and even the 
social connections among data consumers. Similarly to our contribution, the work in [25] also deals with 
the delivery of data at the network edge, in particular IoT data. They have addressed the complete 
lifecycle of data, mainly the interchange of that between heterogeneous devices, and scalability, by 
adding several servicing layers. However, these works haven’t considered energy limitations of mobile 
devices or sensors or, a novelty in our proposal, the distribution of data in several caches within the 
network infrastructure depending on the spatio-temporal data popularity [52][16][54]. This data 
popularity is evaluated using a dynamic model [56][57][58]. Dynamic models evidence global gains on 
flexibility, reliability and performance in comparison with static ones. A previous contribution [59] 
discusses the literature on stream processing engines and mechanisms for exploiting resource elasticity 
features of cloud computing in data stream processing. Resource elasticity allows for an application or 
service to scale out/in according to fluctuating usage demands. In addition, the data stream processing is 
performed at the network edge before delivering data to consumers, which causes delay. Our work has a 
slightly different perspective. Data are directly transferred from a source node to a consumer without any 
intermediation or brokerage support. In [60] studies data obfuscation and encryption techniques on multi-
cloud storage systems. These are out of scope of our work but one can consult [60] for further details. 
Other interesting aspects for studying are service migration [61] and Big IoT data analytics [62].  

To sum up, this paper presents the design and implementation of a hybrid cluster-based system that 
supervises a fog domain. Our system collects the following metrics that previous proposals have only 
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partially considered: distance from consumers to the data, node battery level, and spatio-temporal 
information popularity. It has also a replication data algorithm that decides whether to replicate or not 
depending on the previous discussed metrics. Both metadata and policies are centrally managed, but, in 
opposition, data storage and dissemination among users are both managed in a distributed way. Table 2 
compares our proposal with previous work, highlighting the novel aspects integrated by our research.  

Table 2. Comparison of Major Features of Our proposal with Related Work 
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[39] No No Yes No 
[40] No No Yes No 
[25] No No No Yes 
[41] Yes No Yes No 

Our current proposal Yes Yes Yes Yes 

3 PROPOSED SOLUTION 
This section has two parts: i) discuss the hybrid design proposal; ii) details the implementation of the 

proposed data storage for relevant edge computing environments. 

3.1  Architecture 

This paper proposes a fog computing architecture [17]. This has fog nodes which refer to devices 
commonly installed at user’s premises, such as: switch, router, set-top box, etc. Using fog nodes to store 
data enhances data availability and brings data closer to consumers. We have proposed a hybrid 
architecture, where a central node has the next components (Figure 2): i) a master DFS instance which is 
responsible for managing the filesystem’s metadata; ii) a Data Placement Scheme which runs resource 
allocation strategy; iii) a Network Topology Map augmented by rich context awareness; iv) a Data 
Control that receives nodes coordinates and battery level information. Both fog and mobile nodes, run 
server DFS instances, for transferring data directly among nodes using a decentralized operation mode. In 
addition, the mobile nodes run a client DFS instance to interact with the central node (Figure 2).  

Central Node

Mobile Node

 Fog Node

Client DFS Instance

Server DFS Instance

F1

Network Coordinates & 

Battery Level

Metrics
Network Coordinate 

System & OS

from

Master DFS Instance

Data Placement Scheme

Network Topology Map

Data Control Server DFS Instance

Network Coordinate 

System 
Network Coordinates

Metrics
from

Send NC & 

Battery Level

Send NC

1- Write File ‘F1’

2- Store on Fog 

Node

Update nodes’ metrics

 Retrieve nodes’ metrics

Active 

Communication

Passive 

Communication

3- Send ‘F1’

F3

F2

F1

 

Fig. 2. Interaction between central node and data-storing nodes. 

Figure 2 shows a solution design for integrating the custom metrics (node localization and node battery 
energy level) in our system. The mobile nodes store some part of the existing data inside the edge cloud. 
There are two types of communication. The first communication type is passive, and it updates the 
context awareness information (node’s localization and energy level) on the central node. It is passive 
because the metrics aren’t explicitly requested; they are periodically retrieved and sent by the data-storing 
nodes, and then received and saved on the central node. The localization of each node is retrieved using a 
network coordinate system that should be deployed on each data-storing node. If the data-storing node 
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has battery, it should also retrieve the battery energy level via the local operating system (OS). The 
central node receives this information in a Data Control unit, which updates the network topology map 
with the transferred metrics. The network’s topology map should be kept updated, as it is used in the data 
placement scheme. This decides where data get stored/retrieved from. The second communication type 
(active) is also present in Figure 2. It is associated to a filesystem write request from the mobile node. The 
data placement scheme weights the cost between distance and battery level for all the network nodes, to 
determine which node the data should be transferred to. We follow-up detailing how filesystem 
operations are used in the proposed system to perform data replication in a dynamic way.  

3.1.1  Data Replication Scheme.  Write and read operations follow the steps shown in Figure 3. We have 
a default number of replicas in the system for each file. This is a system’s parameter and it is designated 
by ‘NrDefaultReplicas’. This enhances data availability and the management of available battery energy. 

Write Operation
Inquire 

Replication 
Algorithm

Retrieve nodes from 
Network Topology 

Map 

Sort nodes by 
distance

Read Operation
Get Block 

Locations for 
Requested File

Retrieve selected 
nodes from Network 

Topology Map

Sort nodes by 
distance

Return list of ‘NrDefaultReplicas’ 
closest nodes to the reading node

Return ‘NrDefaultReplicas’ 
closest nodes to the writing node

  
Fig. 3. The interaction between central node and data-storing nodes. 

A novel aspect of our solution is how distances are evaluated among nodes. In this proposal, distances 
between nodes are energy-aware, as it is explained below. When a write operation is requested, the 
central node accesses its replication algorithm, which is a part of the data placement scheme. This 
replication algorithm evaluates distances between nodes in a novel way by factoring in their localization 
and their energy level (see expression (1)). From (1) is noticeable how the replication algorithm evaluates 
the distance between the writing node (Node1) and each potential replication node (Node2). The weighted 
distance (WD) function has two terms. The first is related with the Euclidean distance between the nodes 
and this term is directly proportional to WD. The second term is related with the battery status of Node2. 
In opposition to the first term, this second term is inversely proportional in relation to WD. This means if 
Node2’s battery has a low energy level (i.e. short lifetime), then the distance between the nodes is 
increased. In this case, Node2 probably would not be selected as a replicating node because Node2 will be 
considered far away from the writing node. This is also a novel facet of our work. 

			��(����	,�����) = �.����1, ����2 + �.
1

���������������

	( )	  

Expression (1) has two parameters. Considering the first one, T, when we assign to it the value of one, 
this means the replication algorithm evaluates directly the distance between two nodes according to their 
network coordinates. Alternatively, the second parameter, ω, it controls the level of fairness in energy 
depletion as the content is disseminated within the network.  

When a read operation is requested, the central node verifies which nodes store the requested file, and 
then retrieves context awareness information from both the reader and the file-storing nodes. The central 
node then runs a sorting algorithm that evaluates the distances among the file-storing nodes and the 
reader, using (1). The central node sorts these WDs and creates a sorted node list, with the closest node in 
the first position, and sends this list to the reader, so the reader can retrieve the file from the closest node 
to itself, with minimum delay. 

Additionally, the data placement scheme includes a replica management module that manages the 
number of replicas per file in the fog cloud storage service, based on files’ popularity. The replicas should 
be placed in the areas where those are very popular. By high popular data within a specific area, it means 
that users within that area and at a quite recent time interval have made a significant number of requests 
for those data. We propose a reactive replica management (RM) module. Figure 4 shows the flow 
diagram for the RM module.  

The RM module shall run whenever a ‘read’ request is received on the central node. The RM module 
calculates the files’ popularity according to their near-past access frequency. The module then “draws” a 
circumference, with radius ‘b’, around the reader node’s position. This radius is inversely proportional to 
the file’s popularity. So, a high popular file has a relatively low search radius. Then, the RM module 
verifies if any of the nodes that store the requested file are already located within the circle area 
associated to the search radius. At this step, two options could occur. On one hand, if at least one node is 
within the circle area, then the data are considered close enough to the reader, and no replication takes 
place; the read operation resumes normal functionality by sending to the reader node the list of sorted 

(1) 
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closest nodes. On the other hand, if all the nodes that store the requested file are outside of the circle area, 
then the system registers a ‘hit’ for that user/file. The term ‘hit’ reflects the system’s intent to replicate a 
file to a node that is closer to the reader. After a configurable amount of consecutive ‘hits’– ‘hit 
threshold’, the system finally replicates the file to the closest node to the reader node using (1).  The “hit 
threshold” is a very useful parameter to confirm in a stable way to our proposal an increase on a 
popularity file, avoiding undesirable system oscillations. As the file is initially stored too far apart from 
the potential reader node, then our proposal discovers that situation and it moves that file to the vicinity of 
that reader node. In this way, the reader nodes experience smaller download times than they would 
experience if content stay far-away from them. 

no

Read file A

Retrieve file A's 
popularity

Determine 
search radius 

'b'

Retrieve closest 
nodes with file 
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Any of 
these nodes 
within ‘b’?
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yes

no
yes

no

noyes

De-ReplicationReplication
 

Fig. 4. Flow diagram for the Replica Management module at Central Node’s Data Placement Scheme. 

Our current solution allows popular content to get consistently replicated to the network edges. 
Alternatively, unpopular content doesn’t get so much replicated in the network, as the search radius 
around the reader node should be large enough to include the nodes that already store the requested file, 
avoiding data replication. The expression (2) evaluates the ‘b’ search radius around the reader node.  

" = #. � + $
	

%
			(s)																																																										(2)	

In (2), P means the file’s (temporal) popularity and a is the minimum possible search radius (i.e. 
spatial popularity). Parameters k and β are configurable parameters. They regulate the replication 
sensitivity according to node proximity (spatial popularity) and (temporal) popularity level, respectively. 
By varying k, the intensity of replication that occurs in the system changes according to node proximity. 
Lower values of k will make the system replicate with more intensity, because it requires requested data 
to be placed very close to the reader node. Similarly, β controls the impact of popularity on the system’s 
replication intensity. When high values of β are used then these values imply a low level of data 
replication. This also means (temporal) popularity has almost no impact on data replication.  

Our proposal to evaluate files’ popularity is inspired on the temporal sliding window average, which is 
used in TCP to estimate Ack timeouts. It uses moving average calculations to smooth out short-term 
fluctuations and highlight long-term trends. The popularity will reflect the trend of access frequency for 
any given file. The file popularity is also shared amongst all the data chunks associated to that file. The 
expression (3) evaluates files’ popularity. 

' =
	

()*	∆,-
		(s-1)																																																												(3)	

As visualized in (4), ∆tn is the time that has passed from the last access of the file to the present time. 
Parameter ∝ is a constant that determines the system’s reaction to the current ∆tn. The Avg	∆t5	of a file 
ends up being equivalent to its access frequency in the near past. It relates to the file popularity history. 
When a file is accessed more often, its ∆t5 will decrease, and so will the Avg	∆t5, which will reflect a 
high popularity for that file, as shown in (3). 

6�7	∆�8 = ∆�8. ∝ 	+(1−∝). 6�7	∆�8:			(s)																																			(4)	

Analyzing the previous four expressions, (1)-(4), one can conclude that our proposal is based on a 
spatio-temporal data popularity [63] to decide how the data should be replicated within the network. The 
data replication is controlled by a searching radius around the reading node (see (2)). In this way, as the 
data popularity increases then the searching radius inversely decreases. This also increases the probability 
of a data replication being executed within the network infrastructure.                
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3.1.2  De-replicating unpopular content. It is also important to avoid over-replicated data occupying 
unnecessary storage, essentially in nodes with scarce available resources. Figure 4 also shows that a lease 
time is given to files that are replicated beyond the default ‘NrDefaultReplicas’. The lease time is 
renewed whenever the file is requested. If the lease time expires, the file is deleted on the node furthest 
away from the initial writer of the file, or its last known position. This way, the system gets balanced out 
in a stateless mode, by keeping the file replication level correctly tuned to its instantaneous popularity. 

In the following sub-section, we discuss the implementation of our proposal for a fog DFS that is 
aware of node localization, file popularity, and available energy on each battery-powered node. 

3.2  Implementation 

This sub-section starts by justifying why we have opted for Hadoop Distributed File System (HDFS) 
[10] to be implemented as the data sharing system as well as detailing its implementation on each node 
type. Afterwards, we focus on how data-storing nodes retrieve their position and battery level. Then, we 
describe how these metrics are integrated in the data sharing system. Finally, the implemented data 
replication scheme is discussed. 

3.2.1  Data Sharing System.  Recalling, our proposal has a central node, fog and mobile nodes. Each run 
different OSs, forming a heterogeneous environment. We have opted for HDFS [10] as the data sharing 
system. A strong reason for choosing HDFS is that it is implemented in Java. This enables running the 
same Java application on any machine independently of its hardware and operating system. We next 
discuss how HDFS has been implemented on each node type of our proposed system. First, the central 
node runs Ubuntu and is responsible to launch the HDFS namenode. Secondly, the fog nodes use 
OpenWrt, which is a specialized network OS that enables routing between wired and wireless networks. 
Thirdly, we have used Android for mobile nodes. Android works with a different Java implementation 
than the one required for HDFS. We have used the chroot method to port HDFS into Android. 

3.2.2  Network Coordinate System and Battery Level.  Two different network coordinate system (NCS) 
have been implemented on the datanode devices. They allow for collecting datanodes’ positions. The first 
NCS is a landmark-based approach, inspired on the Content Addressable Network (CAN) topology [47], 
and the second NCS is a decentralized approach designated by Pharos [64]. We below detail the 
implementation of each of these two NCSs. 

CAN implementation in each datanode is now discussed. Here, three stationary devices are known by 
all nodes. They will be used as landmarks. Datanode devices will ping each one of these landmarks 
sequentially. The ping measures the RTT latency between the datanode and each landmark associates it to 
a specific level. Each node has coordinates (lvl A, lvl B, lvl C), which are associated to the landmarks (A, 
B, C) latency levels. For example, a datanodes’ position could be (0,2,1) meaning it has a 0-30ms RTT 
latency to the landmark A, a 101+ms latency to B, and a 31-100ms latency to C. After a namenode knows 
its network coordinates, it is ready to send them off to the HDFS namenode. In this way, the namenode is 
updated by all the datanodes. Then, the namenode can evaluate the Euclidean distances among the 
datanodes, using their received coordinates. 

An implementation of Pharos [11] that is written in twisted python has also been used. Each datanode 
machine runs a client of Pharos. Using the initial Pharos implementation, when a node moves to a new 
area which could be considered as belonging to a different cluster, the node cluster doesn’t get updated. 
So, every node remains in the initial cluster where it was placed at start-up, regardless of its mobility. In 
this way, we have changed the Pharos client implementation to offer a script that takes in consideration 
the node mobility and exports the updated node localization to whom could be interested in that 
information. By periodically running this script, the datanode device is now able to collect their updated 
network coordinates and send them to the HDFS namenode.  

Integrating the energy level metric to be used in the DFS, was a matter of collecting that metric on the 
datanode with battery and sending it to the Data Control unit on the namenode, as shown in Figure 2. This 
has been done by sending this energy metric (and the already discussed updated node localization 
coordinates) in the periodic HDFS heartbeat message that each datanode sends to the namenode. The 
heartbeat feature is used natively by HDFS namenode to check the liveness of every datanode. The 
heartbeat receiving code running at the namenode has also been changed. So, it can retrieve the metrics 
received via the heartbeat message and update the network topology with routing paths among the 
datanodes. These paths have associated energy-aware distances. In this way, the distance between two 
datanodes enables the namenode to evaluate the delay associated to the routing path between them.  

The next step is the HDFS namemode to issue via a secure shell (ssh) a remote execution in each 
datanode of a configuration script to allow that datanode to communicate with others, using the emulated 
environment but, assuming real values for both rate and delay of each routing path. As an example, one 
can suppose that the namenode aims to configure a routing path from datanode A ($Aip=”192.168.1.2”) 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT 9 
 
to datanode B ($Bip=”192.168.1.3”) with a rate and delay values of respectively 30mbit and 100ms 
($ABdelay=”100ms”). To achieve this, the namenode should namely configure datanode A, issuing the 
next command: ssh root@192.168.1.2 “bash –s” < config.sh $ABdelay $Bip. The Table 3 shows the 
contents of the script “config.sh” with some commands associated to the Linux utility Traffic Control 
(TC). This script after being remotely executed by namenode in datanode A, it configures datanode A 
with real network metrics (rate, delay) associated to a flow path from datanode A to datanode B. 

Table 3. TC commands to configure datanode A with real network metrics of a flow path to datanode B 
tc qdisc add dev eth0 root handle 1: htb # define hierarchical token bucket for flow 
policing 
tc class add dev eth0 parent 1:1 classid 1:11 htb rate 30 mbit burst 50kb mtu 10000 # 
configure flow average rate with 30mbit 
tc qdisc add dev eth0 parent 1:11 netem delay $1 # configure flow delay with 100ms 
tc qdisc add dev eth0 parent 1:0 protocol ip u32 match ip dst $2 flow id 1:1 # define 
the forwarding rule in datanode A to enable the network flow A -> B 

3.2.3 New Data Replication Scheme.  Data placement scheme modifications were made on the HDFS 
namenode. Main changes are as follows: modify the replication strategy as well as the sorting strategy to 
evaluate expression shown in (1); log the diverse times each file has been requested; these instances of 
time are also used to update the file popularity; and implement the replica management module based on 
file popularity. We next explain the more relevant changes we have made on the HDFS namenode. 
 

Replication Strategy 
HDFS deploys its replication strategy in a class designated as block placement module. We replaced its 

code for the Weighted Distance (WD), evaluating expression (1). This way, whenever a file is written to 
the filesystem, the block placement module calculates the WD from the writer to all the other nodes in the 
system. It then sorts the WDs and chooses which nodes to write to, with a criterion of the closest node to 
the writer node first and then the second closer node and so on up the parameter “number of replicas” is 
reached. When a file is requested for a read operation, the system also checks the sorting strategy. Again, 
we replaced the code in the sorting module for our WD, following (1). In this way, it is returned a sorted 
list of nodes with the closest node to the reader node at its top position and the farthest node to the reader 
node at its bottom position. 
 

File Popularity  
The file popularity is evaluated as shown in (3). This equation expects the Avg ∆tn for that file. The 

Avg ∆tn is calculated in (4). It needs the ∆tn associated to the time the read request was received, and 
Avg	∆t5:	 . This has been implemented by logging read requests in a structure like: Hashmap1(File, 
Hashhmap2(timestamp, Avg ∆tn)). 

When is accounted the first request for a file read, a new entry in Hashmap1 is created for that file, 
which has its value pointing to Hashmap2, which saves its key as the timestamp of the last received 
request time, and the value as the Avg ∆tn associated to that timestamp. The Avg ∆tn is calculated using 
equation (4), by first evaluating ∆tn. ∆tn is the difference between the current timestamp and the last saved 
timestamp for that file. Second, it retrieves the previously stored Avg	∆t5, which is associated to the last 
saved timestamp. In this way, the RM module evaluates the file popularity, using the two terms in (3). 
 

Replication Management 
As shown in Figure 4 (left side), when a file is requested for a read operation, a sequence of system 

checks is performed. They verify if a file should be replicated to a node closer to the reader. Another extra 
mechanism was implemented in HDFS that replicates a file between two specific nodes. This has been 
implemented by using two HDFS features. The first feature changes the replica count on files. The second 
feature runs a block recovery tool periodically to feed both replication management and HDFS with the 
exactly same view about the system status. In this way, the block recovery tool keeps in a completely 
synchronized manner the files’ replica counts against the total amount of replicas in the filesystem. 
 

De-Replication Management 
The de-replicating data module has been implemented, by adding, in the first place, the replicated files 

to a list at replication time. A thread that is launched at namenode’s start-up, periodically verifies, for 
each file in the list, if the configured ‘lease time’ has expired (Figure 4, right side). If it has, then the 
system decreases the replica count for that file by one. Similarly, to the replicating process, the block 
recovery feature has another method that checks if a file has more replicas in the filesystem than it should. 
In this case, it calls the delete replica method in the data placement scheme. This method has been 
changed to find and delete the farthest replica from the last known position of the original writer. 
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The next section discusses obtained results from the tests made over our proposal to evaluate the 
network coordinate system’s accuracy and the data placement scheme’s performance. 

4 EVALUATION RESULTS 
This section presents functional and performance tests and discusses the obtained results. In the sub-

section 4.1 we discuss the next aspects: the evaluation scenario; the testbed specification; and the set of 
configuration parameters used during our experiments. In the sub-section 4.2, we present and discuss the 
obtained results from the diverse experiences we have made to evaluate our current fog storage proposal. 

4.1  Evaluation Scenario 

The network was configured, as shown in Figure 5, which mimics a typical networking layout scenario 
on the Internet. It shows three edge networks, designated by cluster’s A, B and C. The network topology 
of Figure 5 has two link types. The first type aggregates the links among nodes in the same edge network; 
these links have their rate set to 300Mbit/s. Each of these edge networks has a gateway, which forwards 
traffic to nodes on other edge networks. The second link type aggregates the links between gateways, 
emulating the backbone connections of current topology. These connections have their rate set to 
30Mbit/s. In this way, we assume the core link capacity per user is 10 times less than edge link capacity. 

 Table 4 shows the VMs specifications used in the testbed. The communication between the diverse 
VMs was supported by network adapters “Internal network” of the Hypervisor. Then, each link of our 
topology was emulated using the traffic control (TC) Linux tool. To configure the latency link connecting 
two datanodes, a shell script was run on the namenode, that: i) retrieves every datanode’s position; ii) 
calculates the euclidean distance between the two datanodes; iii) translates the distance into a latency 
value in milliseconds; and then iv) establishes a ssh connection into each datanode to issue the tc 
command that emulates the evaluated latency (and the bandwidth) in the communications link between 
the two datanodes. In this way, the latency of each link is configured accordingly the distance between the 
nodes that are interconnected by that network link. Figure 6 shows the node layout for test scenarios, 
including the delay of each link of the network topology.  

Some system parameters values have been configured and remained unchanged throughout tests. The 
‘NrDefaultReplicas’ has been set to two. The ‘hit threshold’ was set to three. All the obtained “average 
results” have a confidence interval (CI) of 95%. In the next sub-section, we present and discuss the 
evaluation results of our fog storage proposal. 
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Fig. 5. Network topology for test scenarios. 

Table 4. Testbed specifications 
Node Type Hypervisor CPU RAM Storage OS 
Namenode VirtualBox Virtualized CPU  4GB 30GB Ubuntu 
Fog Datanode VirtualBox Virtualized CPU 512MB 34GB Openwrt 
Mobile Datanode Genymotion Virtualized CPU 2GB 34GB Android 

Host 
Intel i5-
4200M@2.50Ghz 

16GB 1TB Windows 
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Fig. 6. Node layout for test scenarios. 

4.2  Analysis of Results 

The implemented prototype was initially tested, by studying the accuracy of each NCS for measuring 
the distances among nodes. This information is used in (1) to determine where to read or write data from. 
The system has also been tested regarding the data placement scheme. In addition, some performance 
metrics have been tested, which we will describe in the following sections. 

4.2.1 Measure the Accuracy of Network Coordinate Systems for Efficient Node Localization (Test I).  A test 
scenario has been created to evaluate the network coordinate system (NCS) localization accuracy. The 
test consists of instructing the Android node in Figure 5, to move around the distinct localizations within 
the map topology of our scenario. For each occupied position by the Android node, the system collects 
information about the Android node “correct” coordinates as well as the measured latency between the 
same Android node and each other node of our network. At the end, the collected data are processed to 
verify if, for each location, the discretized coordinates (and associated discretized distances among the 
nodes) obtained via the latency measurements, using a triangularization method, correlate well or not with 
the “correct” Android coordinates. In other words, we measure the accuracy level of the studied NCS.   

We have experimented CAN with three landmarks fixed in the same position but changing the number 
of levels to discretize the latency and associate to discrete distance values (Table 5). 

Table 5. CAN Topology latency discretization for different number of levels 
Number of Levels Latency discretization (ms) 

3 0-30; 30-100; 100+ 
4 0-30; 30-50; 50-75; 75+ 
5 0-30; 30-50; 50-75; 75-100; 100+ 
6 0-30; 30-50; 50-75; 75-100; 100-120 ; 120+ 

The previous CAN test has been repeated for Pharos. When using Pharos, each node runs a client that 
continuously converges its network coordinates to an optimal solution. So, the system’s accuracy has 
been studied for different converging times. To enable studying this convergence time, a slight 
modification was made to the test scenario. Now, the Android node stays in each position for a 
configurable amount of time – PositionDelay, before collecting the latency links and network coordinates 
and moving on to the next position. Furthermore, the Pharos client on each node is modified to run every 
six seconds. In this way, by changing the PositionDelay between tests, we can study the system’s 
accuracy for different converging times. We cycle the PositionDelay between four, eight and fourteen 
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seconds, which represent the 0.66; 1.33 and 2.33 iterations per position, respectively. This is evaluated 
by: NrIterationsPerPosition=PositionDelay/PharosIterationTime. We below compare Pharos and CAN. 

As visualized in Figure 7, when CAN used only 3 levels of discretization, it evidences low accuracy 
(i.e. 61% accuracy, meaning in 39% of cases the CAN distances were not accurate). For higher “number 
of levels” the CAN accuracy slightly increases but it stabilizes at a maximum accuracy value around 75% 
for 5 and 6 levels. As shown in Figure 8, the minimum accuracy value of Pharos (i.e. 85% for 0.66 
iterations/position) is still higher than the maximum measured accuracy of CAN (i.e. 75%). The 
maximum value we measured for Pharos was 90% for 2.33 iterations/position. This result occurs because 
the iterative algorithm requires some extra time to converge to the more accurate distances among nodes. 
So, Pharos shows an interesting tradeoff between its accuracy and nodes mobility pattern. 

 
Fig. 7. CAN accuracy vs. the number of levels. Fig. 8. Pharos accuracy vs. the iterations / position. 

4.2.2 Evaluate Data Replication Scheme. We have tested the prototype for some performances aspects, 
such as: the effect of the “hit threshold” parameter on the proposed solution functionality; the system’s 
fairness in energy depletion when distributing content; the processing overhead on the namenode; the 
system’s responsiveness to different replication parameters; and the traffic offloading from the network 
core to edge. We discuss all these results below. 

“Hit threshold” Parameter Study (Test II) 
As already explained before, after three (i.e. the default value of “hit threshold”) consecutive read 

requests for a specific file, the system could replicate that file from a too-far away datanode to datanodes 
closer to the file consumers. Once the file is replicated, the clients should benefit from lower download 
times. We have tested this functionality, using the topology of Figure 5. The obtained results are shown in 
Figure 9. From this figure, we see that at times 98s, 100.9s and 103.2s the download period is 
considerably long due to the reading node did not have any nearby node with a copy of the file the former 
node aims to consume. In addition, for each reading request, there is normally a delay of 1s between the 
time instant when the reading node issues the reading request and the time when the file download is 
initiated. A considerable amount of this delay is due to the namenode that initially is involved in the 
reading process, namely to process the file metadata. After three consecutive read requests sent to node F 
of the same file, the “hit threshold” value is reached, and the system replication process is initiated. This 
replication consists on initially the namenode determines the closest datanode to the current consumer 
node (using equation 1 in section 3.1.1). In this scenario, the nearest node from the consumer has been 
selected as the node E. After the closest datanode has been found (i.e. node E), node E receives the extra 
replica of the file, as shown in Figure 9 via the traffic between t=107.5s and t=109s. At t=110.8s, when 
the fourth request is issued by the reading node, the transfer time is considerably reduced because the 
current data source node (E) is closer to that reading node than in the case of node F being the source.  
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Fig. 9. Evaluation results of “Hit threshold” parameter. 

Fairness in Energy Depletion (Test III) 
In this test scenario, the gateway nodes in Figure 5 act as regular datanodes. All the nodes except A, B 

and C are instructed to write one file to the HDFS. Nodes A, B and C will each be receiving one file from 
each node in their edge network. Every datanode, expect for A, B and C, will then retrieve all the files in 
the filesystem. During this experience, we changed the parameter ‘ω’ of (1). 

All datanodes have an initial battery level of 100%, and for every transfer between two nodes, their 
battery level decrease by 1%. At the end of the test, the battery level of each node has been collected. 
From our results (Figure 10), one can conclude that lower values of ‘ω’ (e.g. 25) have higher standard 
deviation (i.e. 19). Higher values of deviation indicate that the battery levels collected at the end of the 
test are very diverse. This means that some nodes finished the test with a rather low battery level, and 
others with high battery level. Therefore, using lower values of ‘ω’, some nodes that store popular data 
get penalized by draining out their battery. On the other hand, when ‘ω’=3000, the standard deviation 
diminished from 19 to 10 (i.e. 47% reduction). In this way, when ‘ω’=3000 there is a fairer energy 
depletion among the datanodes during files transfer. 

 
Fig. 10. Standard deviation of battery energy depletion for distinct values of ‘ω’ . 

Processing Overhead on Namenode (Test IV) 
From this test onwards, the gateway nodes in Figure 5 act as regular gateways. Each datanode is 

instructed to write a file of 1MB to the HDFS. Then, all datanodes retrieve all files, ten times. Each time 
every file is retrieved, counts as a loop attempt. This experiment used the following replication 
parameters: ∆tn=2s; β=1000; k=1.0. From the obtained results (Figure 11), we have concluded the highest 
time (i.e. average value for the ten tries) the namenode spends on processing a file request was 10ms. In 
this situation, it can be neglected for the analysis on system performance. The maximum value for 
processing a file at the namenode occurs for the third loop attempt, essentially due to file replication. 
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Fig. 11. Average time for processing a file per loop attempt at the namenode. 

System’s Responsiveness to Node Proximity (Test V) 
In this experience, we want to study how the system responds in terms of speed in accessing data, 

when changing the node proximity in (2). We have assumed distinct values for the parameter ‘k’ and 
other replication parameters have been static, as follows: β=800, ∆tn=2s and α=95%. 

Figure 12 shows that for higher levels of ‘k’ (e.g. k=3.0) the average transfer time remained practically 
the same throughout the entire test. This means no file replication has occurred. This is expected, as the 
‘b’ search radius associated to higher values of ‘k’, is big enough to create a circumference around each 
reader node that has always within that circumference the requested files. For values of ‘k’ smaller 2.0 it 
is visible a decrease on the average transfer time. This decrease on the file transfer time occurs because 
for smaller values of ‘k’ the system increases its responsiveness to node proximity. In this way, the 
system performs replication to closer nodes after the third reading request of each file. 

System’s Responsiveness to Popularity (Test VI) 
This test studies how the system reacts to the popularity level. The parameter ‘β’ in (2) assumed 

diverse values, while keeping the other replication parameters as constants: k=1.4, ∆tn=2s and ‘α’=95%. 
Figure 13 shows that lower values of ‘β’ give quicker access times to data. This happens because data 

are replicated in a more intensive way, and latency in accessing data is overall decreased. By giving 
higher values of ‘β’, the replication requirement regarding popularity are stricter, meaning data needs to 
have higher popularity levels to get replicated. This can be seen in Figure 13, for values of ‘β’=1550, 
where download time remains unchanged, meaning there has hardly been any file replication.  

  
Fig. 12. System responsiveness to node proximity by 

varying ‘k’. 
Fig. 13. System responsiveness to data popularity by 

varying ‘β’.  
 
Core to Edge Traffic Offloading (Test VII) 

This test evaluates backhaul traffic offloading. In this test, each file has 10MB instead of 1MB, to 
emulate a scenario with “elephant flows”. The incoming traffic has been monitored at the edge and 
gateways interfaces. The replication parameters were as follows: β=550; k=1.2; ∆tn=2s; and α=99%.  

Figure 14 shows that the core connections are heavily used up until around 360s, while the edge 
connections are not very used. This is expected as many file requests are for data belonging to other edge 
networks, so data need to pass through the core. At around 360s, data finish being replicated to the edge. 
From this point on, the core traffic increases very slowly, while the edge traffic increases at a much 
higher rate. This is because now, most data being requested are located on the same network as the reader 
node. Since the edge network (per user) has more bandwidth than the core, access speeds to data increase. 
The obtained results from this last test evidence a gradual traffic offloading from the network core to the 
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network edge, according to the number of file requests from clients. The Table 6 presents a summary of 
the main obtained results from the testbed evaluation of our novel fog storage proposal. 

 
Fig. 14. Core to edge data offloading. 

Table 6. Summary of the main obtained results from the evaluation tests of our novel fog storage system 
Test Main Result 

I Pharos showed better accuracy than CAN 
II Highlighted the system performance gains of using the “hit threshold” parameter and its associated 

replication functionality 
III Parameter ‘ω’ controls the fairness on the depleted energy per mobile node 
IV Namenode showed a satisfactory performance for managing the cluster-based system 
V Parameter “K” controls the system sensibility to the distance between nodes; after a parametrized value (in 

“hit threshold”) of consecutive requests for the same file, this file is temporarily replicated to the clusters 
where the previous requests come from. Consequently, the file transfer time to each consumer is diminished. 

VI Parameter “β” controls system sensibility to the file (data) popularity. It decreases file transfer time between 
the elected data source node and each consumer. 

VII Our solution offloads traffic from the network core to the network edge organized in clusters. This offloading 
is made incrementally according to the data popularity. 

5 CONCLUSION 
We have proposed and implemented a solution that pools the storage resources of mobile devices and 

fog nodes for deploying an edge cloud. The content distribution is managed according to the node’s 
energy level, node’s localization, and spatio-temporal data popularity. 

Results show that the proposed solution reduces the file transfer time experienced by end users. This 
better responsiveness occurs because data are stored closer to their consumers and are available in a more 
robust way. These responsiveness and robustness gains are due to novel aspects such as nodes’ distance 
augmented by spatio-temporal data popularity as well as the available energy at nodes powered by 
battery. Results also evidence the backhaul links become less congested, as data get replicated to the 
edge, mitigating the backhaul bandwidth limitations per user that early proposals of MCC suffer from. In 
addition, the obtained results confirm the enhancement of both network’s lifetime and data availability.  

The current work can be extended to high-complexity scenarios, aggregating several network domains, 
where each domain has its own namenode running, as an example, within a SDN controller [17]. In this 
way, the migration of user files across distinct domains could be supported by a federation of SDN 
controllers with learning capabilities [56]. A relevant learning capability is to assess the impact of edge 
data processing on the quality of user experience. Other option to evolve the current work is to investigate 
a new edge approach that integrates storage, processing, and networking features.  
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