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Abstract—Different diseases can affect an individual’s gait in 

different ways and, therefore, gait analysis can provide 

important insights into an individual’s health and well-being. 

Currently, most systems that perform gait analysis using 2D 

video are limited to simple binary classification of gait as being 

either normal or impaired. While some systems do perform gait 

classification across different pathologies, the reported results 

still have a considerable margin for improvement. This paper 

presents a novel system that performs classification of gait 

across different pathologies, with considerably improved 

results. The system computes the walking individual’s 

silhouettes, which are computed from a 2D video sequence, and 

combines them into a representation known as the gait energy 

image (GEI), which provides robustness against silhouette 

segmentation errors. In this work, instead of using a set of hand-

crafted gait features, feature extraction is done using the VGG-

19 convolutional neural network. The network is fine-tuned to 

automatically extract the features that best represent gait 

pathologies, using transfer learning. The use of transfer learning 

improves the classification accuracy while avoiding the need of 

a very large training set, as the network is pre-trained for 

generic image description, which also contributes to a better 

generalization when tested across different datasets. The 

proposed system performs the final classification using linear 

discriminant analysis (LDA). Obtained results show that the 

proposed system outperforms the state-of-the-art, achieving a 

classification accuracy of 95% on a dataset containing gait 

sequences affected by diplegia, hemiplegia, neuropathy and 
Parkinson’s disease, along with normal gait sequences. 

Keywords—Transfer learning, Gait analysis, 2D video 

analysis, Classification of pathologies 

I. INTRODUCTION 

Gait is a highly cognitive task that involves a coordinated, 
cyclic combination of movements which results in human 
locomotion [1]. Analysis of gait can provide useful 
information about an individual’s health, identity, gender or 
walking patterns, having a wide range of applications in fields 
such as sports, biometrics or medicine. In the field of 
medicine, gait analysis over time can help detect or follow the 
development of several types of pathologies, for instance 
resulting from neurological or systemic disorders, diseases 
affecting an individual’s gait, injuries or ageing [2]. 
Traditionally, gait was analysed by specialists by observing a 
patient’s walk to identify different gait pathologies. However, 
with recent development in technology, various devices can 
now be used to acquire features that allow such analysis to be 
performed automatically, or semi-automatically. Typically, 
biomechanical features such as speed, cadence, step length, 
stance time, or swing time, can be used to identify different 
gait pathologies [3]. However, as presented in [4], features 
acquired from a gait representation typically used for 
biometric recognition, called the gait energy image (GEI), can 

also be used. Although the effectiveness of such systems is 
currently lower than the systems that rely on biomechanical 
features [1], their robustness to silhouettes segmentation 
errors makes them advantageous in a daily life setting, where 
the capture of gait sequences cannot be performed in (near-) 
ideal conditions. This paper presents a novel system that 
performs classification of gait across different pathologies, 
based on features learned by a deep convolutional neural 
network (CNN) network, VGG-19, after appropriately fine-
tuning it to the problem addressed. The system operates on 
videos acquired by a single 2D camera and does not require 
placing any kind of markers on the individual’s body, making 
its deployment possible in a daily life setting, including in 
clinics or even home environments. 

A. State-of-the-art 

The existing acquisition systems for gait analysis vary 

significantly and can be broadly classified into wearable or 

non-wearable systems [2]. Wearable systems include the use 

of sensors such as accelerometers [5] and gyroscopes [6], 

which acquire motion signals that represent human gait. These 

sensors do not limit gait acquisition to a laboratory 

environment, allowing it to be used in a daily life setting. 

However, setting up an individual with such sensors requires 

clinical professionals, as their position on the body must be 

precise. 

The non-wearable systems can be further classified into 

floor based and vision based systems. Floor based systems use 

sensors such as force sensitive resistors [7] and pressure mats 

[8], which are setup on the floor, allowing them to measure 

the forces exerted by individuals as they walk. However, such 

systems can only operate in a controlled environment, such as 

a laboratory, where the walking path is clearly defined. Vision 

based systems on the other hand acquire images using one or 

multiple optical sensors. These images can then be processed 

to obtain the gait features. The most widely used systems in 

medical environments, being considered the gold standard 

type of system, are marker based systems. One example is the 

optoelectronic motion capture system [9], which operates by 

relying on the application of multiple markers to various parts 

of the body, together with a setup containing multiple 

calibrated optical sensors, to capture an individual’s gait. 

However, due to the use of markers, such systems cannot 

operate outside laboratory environments. Also, the complex 

setup and the need for calibration limits their use to trained 

professionals. As an alternative, marker-less vision based 

systems use multiple cameras or depth sensing cameras to 

estimate gait features, such as joint angles [10] and joint 

positions [11], to analyze an individual’s gait. However, such 

systems do not operate as accurately as the marker based 
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system, and the depth sensing cameras typically operate 

between a limited range of 80 cm and 4 m. 

Recently, a significant amount of work has also been done 

in capturing and analysing gait from a single 2D camera. 

Since the major articulations during a gait cycle occur in the 

sagittal plane [12], some vision based systems rely on a single 

side view video sequence of an individual to perform gait 

analysis. Such systems typically acquire several 

biomechanical features, such as step length, leg angles, gait 

cycle time [13], cadence, speed, and stride length [14], or the 

fraction of the stance and swing phases during a gait cycle 

[15], using the available side view body silhouettes. These 

features are then used to classify gait as being either normal 

or impaired. Specific posture instabilites can also be 

identified using features such lean and ramp angles [16], axial 

ratio and change in velocity [17], obtained from the body 

silhouettes. Apart from biomechanical features, some vision 

based systems use biometric feature representations that 

perform well in biometric applications [18] to perform 

classification of gait across different pathologies [4]. A 

drawback of 2D video based systems is that they do not have 

access to depth information, which limits their accuracy when 

compared to other sensor based systems. However, features 

obtained from such systems are unique enough to identify the 

pathologies and since these systems are easier to install, they 

are suitable to operate in daily life settings. 

B. Motivation and contribution 

Most vision based systems that rely on a 2D video only 

perform a binary classification of whether the observed gait is 

normal or impaired. While some systems, such as [1], can 

identify gait pathologies, their results are very much 

dependent on the quality of the silhouettes used. In such 

situations, poor silhouette segmentation can significantly 

reduce the classification results. Since gait representations 

used for biometric recognition, such as the GEI, are robust to 

such limitations [4], they provide opportunities for a more 

robust assessment of an individual’s health based on gait 

analysis, allowing operation in less constrained setups where 

silhouettes are expected to present segmentation errors, for 

instance due to video acquisition against a dynamic 

background. 

Recently, the use of deep CNNs, such as VGG-16 [19] or 

pose based temporal-spatial networks [20], have significantly 

improved the performance of silhouette based gait recognition 

systems. Similar improvements have also been seen in the 

medical domain, especially in detecting Alzehimer’s disease 

[21]. Thus, it can be expected that the use of such deep 

learning techniques will also improve the performance of the 

gait pathology classification systems. 

This paper presents a novel vision based system that relies 

on 2D video to perform classification of gait across different 

gait pathologies. It uses the deep CNN VGG-19 [22] to extract 

gait features. The pre-trained VGG-19 model is fine-tuned to 

be able to extract features that better describe gait pathologies, 

while also generalizing well to datasets different from the one 

considered in the fine-tuning stage. The use of a gait 

representation based on a GEI, as input to the VGG network 

makes the proposed system robust to silhouette segmentation 

errors. The VGG extracted features are used as input to a 

classifier using linear discriminant analysis (LDA). The use of 

a simple classifier highlights the effectiveness of the features 

used. 

II. PROPOSED SYSTEM 

As illustrated in Fig. 1, the proposed system operates in 
three steps: pre-processing, feature extraction and 
classification. During pre-processing, the proposed system 
extracts binary silhouettes from a given video sequence, and 
then transforms them into a GEI. Next, the resulting GEI is 
used as an input to the feature extraction step, using the VGG-
19 network. Although VGG-19 can be used as a classifier, in 
this paper the output from its fully connected layer is used as 
a feature vector [19]. The quality of the feature vectors 
resulting from VGG-19 can be further improved by transfer 
learning, where the final layers of the CNN are fine-tuned to 
better represent the different gait pathologies. The final step 
of classification is performed using LDA, which classifies 
each feature vector across different pathology groups. 

 
Fig. 1. Architecture of the proposed system 

A. Preprocessing 

The first step of the proposed system involves transforming 

a 2D video sequence into a GEI, see Fig. 2. It begins by using 

background subtraction to convert an input video, into a 

sequence of binary silhouettes [18]. The silhouettes are then 

normalized to a common height. Next, the silhouettes 

belonging to a gait cycle (1, N) are cropped, Ic(x,y,n), and 

averaged to obtain the GEI, GEI(x,y), according to (1), 

𝐺𝐸𝐼(𝑥, 𝑦) =
1

𝑁
∑ 𝐼𝑐(𝑥, 𝑦, 𝑛)

𝑁

𝑛=1

 (1) 

 
Fig. 2. Converting silhouettes into a GEI 

Depending on the number of gait cycles present in a video 

sequence, multiple GEIs can be obtained. The resulting GEIs 

to be used for feature extraction are resized to 224×224 

pixels, as it is the default input size for VGG-19. 

B. Feature extraction using VGG-19 

VGG-19 is a 19-layer CNN [22]. It can be considered as a 

stack of convolutional layers, as illustrated in Fig. 3, with a 

filter size of 3×3, with stride and pad of 1, along with max 

pooling layers of size 2×2 with stride of 2. The convolutional 

layers in VGG-19 detect the local features in the input GEI. 

Next, the max pooling layers reduce the size of the feature 

vectors obtained, thus reducing the computational complexity 

of the network. A series of such layers are followed by two 

fully connected layers that learn the non-linear relationship 

among the local features. The final layer of the network is a 



softmax layer, which performs classification. 

The VGG-19 trained on ImageNet [22] can classify images 

across 1000 different image groups. That model has been 

trained using over 1.3 million images. However, a dataset of 

such a scale containing sequences of gait affected by different 

gait pathologies is currently unavailable. And, training VGG-

19 with a small dataset is expected to result in problems such 

as overfitting to the small training set. This limitation can be 

addressed using transfer learning, a machine learning 

technique where a model trained to address one problem is 

re-purposed to address a second related problem. The 

proposed system therefore uses the VGG-19 model pre-

trained on ImageNet [22] and part of the network is retrained 

with gait GEIs from an available dataset, to fine-tune the 

model parameters. In a deep CNN, the initial convolutional 

layers of the network typically detect simple features, and 

features become more complex in subsequent network layers, 

with the final layers capturing more problem specific 

features. Thus, using transfer learning, the final layers of the 

network can be re-trained such that they are fine-tuned for the 

classification of gait pathologies. The details of the fine-

tuning process are discussed in section III.A. Although the 

complete VGG-19 can be used as a classifier, the output of 

the first fully connected layer is more effective as a feature 

vector [19] when the training data is small. Thus, the 

proposed system extracts the 4096-dimensional vector from 

the first fully connected layer as a feature vector. The 

resulting feature vector is then used to perform classification. 

 

Fig. 3. Feature extraction (VGG-19) architecture 

C. Classification 

To perform classification, the proposed system uses LDA, 

after selecting the most significant features using principal 

component analysis (PCA). In this paper, those values that 

contain the top 95% of the total variance are retained. Thus, 

the application of PCA reduces the dimensionality and the 

computational complexity of the proposed system, while 

improving the classification results by discarding noisy 

components. 

The proposed system then applies LDA to the resulting 

feature vectors for data decorrelation and classification. LDA 

identifies a projection matrix onto a subspace that maximizes 

the ratio of within-class to between-class scatter, using 

Fisher’s criterion. Given 𝑛  pathology groups, their within-

class scatter matrix  Σ𝑤  and the between-class scatter 

matrix  Σ𝑏 can be used to obtain a transition matrix 𝜙  that 

maximizes the ratio of the between-class scatter matrix to the 

within-class scatter matrix, given by (2). 

 𝐽(𝜙) =
|𝜙𝑇Σ𝑏𝜙|

|𝜙𝑇Σ𝑤𝜙|
 (2) 

Thus, given a test GEI, 𝑧, it can be classified into one of the 

existing gait pathologies, using a simple Euclidean distance 

metric, according to (5), where 𝑥𝑘̅̅ ̅ is the centroid of the k-th 

group. 

 arg 𝑚𝑖𝑛
𝑘

𝑑(𝑧𝜙, 𝑥𝑘̅̅ ̅𝜙)  (5) 

III. RESULTS 

In this paper, three different datasets are considered: INIT 

Gait Dataset [3], DAI Gait Dataset [15] and DAI Gait Dataset 

2 [4]. The INIT Gait Dataset is used to fine-tune VGG-19. 

Next, DAI Gait Dataset is used to test the ability of the 

proposed system to classify gait as either normal or impaired. 

Finally, DAI Gait Dataset 2 is used to perform classification 

of gait across different gait pathologies. All three datasets 

contain gait sequences captured from a lateral viewpoint. The 

type of gait pathologies are also provided as the ground truth. 

The summary of the three datasets is presented in table I. 

The INIT Gait Dataset contains binary silhouettes of 10 

individuals simulating 4 different leg related gait pathologies. 

Each individual is recorded 2 different times in a LABCOM 

[3] studio, at 30 fps, capturing multiple gait cycles in each of 

these 2 sessions. The sequences are labelled as: restricted full 

body movement, restricted right leg movement, restricted left 

leg movement and normal gait. 

The DAI Gait Dataset [15] contains 30 gait sequences 

divided into two groups. The first 15 gait sequences are 

considered normal, while the remaining 15 contain impaired 

gait sequences, considering randomly selected pathologies, 

simulated by 5 walking individuals. The individuals are 

captured walking over a distance of 3m using the RGB 

camera of the Kinect sensor. 

The third dataset, DAI Gait Dataset 2 [4], contains healthy 

subjects simulating gait affected by diplegia, hemiplegia, 

neuropathy and Parkinson’s diseases, together with normal 

gait sequences. Each individual is recorded 3 times walking 

a distance of 8m, resulting in a total of 75 samples. 

TABLE I.  SUMMARY OF THE AVAILABLE DATASETS 

Datasets 

Properties 

# of 

individuals 

# of 

sequences 

# of 

pathologies 

Total 

sequences 

INIT 10 2 4 80 

DAI 5 3 2 30 

DAI 2 5 3 5 75 

A. Fine-tuning VGG-19 

Having three relatively small datasets available, it was 

decided to take 60% of the largest one for fine-tuning the 

CNN weights, and use the remaining gait sequences of that 

dataset for validation. Tests are also conducted on the other 

two datasets, using the previously adopted CNN weights, as 

a way to test the generalization ability of the obtained model. 

The INIT Gait Dataset was thus selected to fine-tune VGG-

19, as it includes 20 video sequences for each of the four 



pathology groups. Since each sequence captures at least two 

gait cycles, a GEI for every gait cycle is generated, increasing 

the total number of GEIs to 160. As mentioned above, the 

dataset is split into a training set, with 60% of the sequences, 

and a validation set, with the remaining 40%. To further 

increase the size of the training set and to make the network 

robust to minor changes such as flips, scale changes and 

translations, data augmentation is performed on the training 

dataset. Data augmentation allows the system to account for 

situations not foreseen in the original training set, such as 

walking in the opposite direction of that available in the 

training sequences. The training set is thus augmented using 

small shifts, shear, zoom, as well as horizontal flipping, 

resulting in a total of 480 GEIs. 

The pre-trained VGG-19 model has been optimized to 

perform classification across the 1000 ImageNet image 

groups. To fine-tune the network for pathology classification 

the final softmax layer of the VGG network needs to be 

replaced with a new one, performing classification only 

across the four INIT dataset groups considered. Fine-tuning 

is done using backpropagation considering a learning rate of 

0.001, as further increasing the learning rate may lead to 

convergence problems. The batch size is set to 34 to 

optimally use the available graphic card memory size, and the 

number of training epochs is set to 150 to prevent 

underfitting. The remaining parameters, such as dropout 

regularisation and loss function, maintain their default 

settings. 

For the fine-tuning of the VGG-19, several alternatives are 

considered, notably by changing the set of layers whose 

weights are adjusted when running the backpropagation 

optimization. In a first experiment, only the fully connected 

layers (FC) are re-trained. In the following experiments, the 

FC layers along with one or more convolutional layers 

(CONV) are re-trained. This process is repeated re-training 

an extra CONV layer at each experiment. The classification 

accuracy over the training and the validation sets is reported 

in table II. The final column reports the results on the 

validation set after replacing the softmax layer with the 

proposed LDA classifier. During each experiment, the LDA 

classifier is trained using features extracted by the fine-tuned 

VGG-19 over the INIT training set. 

TABLE II.  VGG-19 CONFIGURATIONS AND THE CORRESPONDING 

CLASSIFICATION ACCURACY 

Trained VGG-19 blocks 

Classification accuracy 

 

Training Validation 
Proposed 

system 

FC layers 100 80 79 

FC + CONV 5 layers 100 81 85 

FC + CONV 5, 4 layers 100 84 89 

FC + CONV 5, 4, 3 layers 100 81 82 

As illustrated in table II, the best results are obtained by 
re-training the fully connected and the convolutional layers 4 
and 5. Further training other layers reduces the accuracy in the 
validation set, indicating overfitting of the model. Thus, this 
configuration was selected for feature extraction. It can also 
be concluded from the results in table II that the fine-tuned 
VGG-19 is better suited for feature extraction rather than 
classification of gait pathologies, as the LDA classifier 

outperforms the softmax classifier of the VGG-19 
architecture. 

B. Classification of gait pathologies 

Once VGG-19 is fine-tuned, the proposed system can use it 

to obtain features for the classification step. Since the VGG-

19 was fine-tuned using the INIT dataset, the proposed 

system will be tested using the other 2 datasets: DAI and DAI 

2. These two datasets respectively contain 2 and 5 different 

types of gait pathologies, as reported in table I. Thus, the 

LDA classifier must be trained separately on the two datasets. 

The training, as well as the testing of the proposed system, is 

performed using a fivefold cross-validation technique, 

dividing the data into five mutually exclusive sets of 

individuals. The process is repeated 5 times, such that each 

time one of the five sets is used for testing and the other four 

sets are used for training the system. Finally, an average is 

computed to represent the classification accuracy of the 

system. 

The proposed system is first tested using VGG-16 and 

VGG-19 trained on ImageNet. The resulting features are not 

specifically fine-tuned for classification of gait across 

different pathologies. However, even without fine-tuning, the 

proposed architecture achieves a classification accuracy 

above 90% across both datasets. It can be noted in table III 

that the accuracy of the system improves when VGG-16 is 

replaced with VGG-19 for the feature extraction step. Since 

the deeper VGG-19 network performs better than VGG-16, it 

is selected for the fine-tuning process. It should also be noted 

that although VGG-19 is fine-tuned for the INIT Gait Dataset, 

the resulting model improves the classification accuracy 

across the other two datasets. This is significant because the 

INIT Dataset is captured in a LABCOM studio [3], which 

produces perfectly segmented silhouettes. The other two 

datasets, however, are captured in less constrained 

environments, where the segmentation of silhouettes is far 

form perfect, often missing parts of the walking person’s 

silhouette. Thus, it can be concluded that the proposed fine-

tuning scheme generalizes well across datasets, even in the 

presence of silhouette segmentation errors, which affect the 

performance of most systems based on biomechanical hand-

crafted features [1]. 

TABLE III.  CLASSIFICATION ACCURACY OF THE PROPOSED SYSTEM 

AND THE STATE-OF-THE-ART 

Methods 
Classification accuracy 

DAI DAI 2 Mean 

Leg angle method  [15] 100 NA NA 

GEI method [4] 97 74 86 

Proposed system + VGG-16 90 92 91 

Proposed system + VGG-19 92 94 93 

Proposed system + VGG-19 

(fine tuned) 
97 95 96 

Table III also reports results for the state-of-the-art 

methods. Among them, only the GEI method [4] operates on 

both test datasets, as this method also uses the GEI, making 

it robust to silhouette segmentation errors. The GEI method 



[4] performs well with the binary classification problem of 

the DAI Gait dataset, but its performance degrades 

significantly when the number of pathology groups increases. 

The biomechanical feature extraction method [1] that 

operates on INIT Gait Dataset with a classification accuracy 

of 98% cannot be applied to the DAI and DAI 2 datasets, 

since it relies on features such as shift in centre of gravity, 

torso orientation and amount of movement, which cannot be 

reliably computed in the presence of silhouete segmentation 

errors. Finally, the leg angle method [15] is very effective in 

performing binary classification over the DAI dataset but, as 

reported in [4], it cannot be used to perform pathology 

specific classification. 

As a conclusion, and although the proposed system does not 

have the best performance in all situations across both 

datasets, it performs consistently well under different 

conditions, even when its feature extraction module has been 

trained on a dataset different from the ones considered for 

testing. It also provides the best results in the presence of 

silhouettes with segmentation errors, which can be a 

challenging task for the current state-of-the-art 2D video 

based methods. 

It should also be noted that the proposed system can 

distinguish between different gait pathologies with a high 

level of certainty, as illustrated by the confusion matrix in 

table IV. Only the gait affected by hemiplegia presents a 

classification accuracy lower than 90%, due to its similarities 

with gait affected by diplegia and neuropathy. This is a 

significant improvement over the GEI method [4], which fails 

in classifying diplegia, with a classification accuracy of only 

40 %. It also performs poorly in the classification of gait 

affected by hemiplegia and neuropathy. Hence, the proposed 

system can be considered a step forward, when compared to 

the current state-of-the-art 2D video based systems. 

TABLE IV.  CONFUSION MATRIX FOR THE PROPOSED SYSTEM 

OPERATING ON DAI GAIT DATASET 2   

Actual 

Group 

Predicted Group 

Diplegia Hemiplegia Neuropathy Parkinson Normal 

Diplegia 98% 2% 0% 0% 0% 

Hemiplegia 8% 87% 5% 0% 0% 

Neuropathy 0% 6% 94% 0% 0% 

Parkinson 2% 0% 0% 98% 0% 

Normal 0% 6% 0% 0% 94% 

 

IV. CONCLUSION 

This paper presents a novel system to perform classification 

of gait across different pathologies. These pathologies vary 

from restrictions in leg movement to alterations in gait caused 

by neurological or systemic disorders such as diplegia, 

hemiplegia, neuropathy and Parkinson’s diseases. The 

proposed system is also capable of performing binary 

classification between normal and impaired gait with a high 

level of accuracy. The classification results are better than 

most state-of the-art methods. The proposed system operates 

even in situations where some state-of the-art methods fail, 

such as in the presence of poorly segmented silhouettes. The 

proposed system tackles this problem by using a GEI for 

feature representation. To further improve the classification 

accuracy, the proposed system obtains the best features from 

the GEI using a fine-tuned VGG-19 deep neural network. The 

results indicate that VGG-19 fine-tuned for the classification 

of gait pathologies performs significantly better than VGG-

16 and VGG-19 trained on ImageNet, while also generalizing 

well on other datasets. 

Although the results look promising, the size of the 3 

datasets currently being considered is relatively small, with 

the biggest dataset among them containing only 20 sequences 

per pathology. Thus, the future work will consider capturing 

a dataset with more individuals and different types of gait 

pathologies. The dataset can then be used to fine-tune and test 

the system to obtain more significant results. 
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