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Abstract

Strong magnetic fields in the magnetospheres of neutron stars (NSs) (especially magnetars) and other astrophysical
objects may release their energy in violent, intense episodes of magnetic reconnection. While reconnection has
been studied extensively, the extreme field strength near NSs introduces new effects: radiation cooling and
electron–positron pair production. Using massively parallel particle-in-cell simulations that self-consistently
incorporate these new radiation and quantum-electrodynamic effects, we investigate relativistic magnetic
reconnection in the strong-field regime. We show that reconnection in this regime can efficiently convert magnetic
energy to X-ray and gamma-ray radiation and thus power bright, high-energy astrophysical flares. Rapid radiative
cooling causes strong plasma and magnetic field compression in compact plasmoids. In the most extreme cases, the
field can approach the quantum limit, leading to copious pair production.

Key words: gamma-ray burst: general – magnetic fields – magnetic reconnection – radiation mechanisms: general –
relativistic processes – stars: magnetars

1. Introduction

Magnetic reconnection, a sudden, violent rearrangement of
magnetic field leading to a rapid release of magnetic energy,
powers many spectacular flaring events in space and astro-
physical plasmas, e.g., solar flares, geomagnetic storms, and
high-energy flares from various astrophysical objects(Zweibel
& Yamada 2009). In the most extreme sources, such as magnetar
and pulsar magnetospheres and gamma-ray bursts (GRBs), the
reconnecting magnetic field is so strong that its dissipation leads
to powerful gamma-ray emission and copious e−e+ pair
production. Both of these effects can, in turn, significantly
affect the reconnection process itself as well as its observational
appearance(Uzdensky 2011, 2016; Beloborodov 2017). Until
now, however, these radiation and quantum electrodynamic
(QED) processes have not yet been fully considered in a first-
principles calculation. Numerical studies of reconnection utiliz-
ing particle-in-cell (PIC) simulations have only recently started
to incorporate synchrotron cooling (Jaroschek & Hoshino 2009;
Cerutti et al. 2013, 2014; Nalewajko et al. 2015). Here we report
the results of the first systematic ab initio study of relativistic
magnetic reconnection which self-consistently includes non-
linear Compton radiation (which reduces to synchrotron
emission when the magnetic field greatly exceeds the electric
field), as well as pair production by the decay of MeV gamma-
ray photons propagating across strong magnetic and electric
fields.

The main quantity that governs the relative strength of QED
effects and radiation cooling is the magnetic field strengthB0.
QED effects can be conveniently characterized by the
relativistic invariant p B m cBe e Q0c » ^ ( ) (Klepikov 1954;
Erber 1966; Ritus 1985), where B m c e 4.4Q e

2 3 º ´
10 G13 =EQ (in Gaussian units) is the QED (Schwinger) field.
This dimensionless quantity corresponds to the electric field E
in the rest frame of an electron (or positron) with momentum
p⊥ perpendicular toB0, normalized toEQ, and can be

generalized for a photon with the same momentum. The rate
of radiation cooling can be expressed as e crad fsg g a c~ W˙ ,
where e cfs

2 a º is the fine-structure constant and
eB m cc e0W º is the classical cyclotron frequency. Significant

cooling thus occurs when the cooling time is comparable to a
characteristic time of the system t (e.g., the light-crossing time).
Our study involves a broad range of reconnecting magnetic
fieldsB0 spanning three distinct physical regimes.
(1) Classical nonradiative relativistic reconnection occurs in

relatively weak magnetic fields so that the local average
χe-parameter is very small everywhere, te c

1cá ñ < W -( ) , and
hence neither radiative cooling nor QED pair creation is
important. This regime is relevant to pulsar wind nebulae
(PWN) and winds and magnetospheres of weak pulsars
(Lyubarsky & Kirk 2001; Kirk & Skjaeraasen 2003) and it
serves as the baseline for our comparative study of radiative
and QED effects on reconnection.
(2) Radiative relativistic reconnection occurs in moderately

strong magnetic fields, t 1c e
1 cW < á ñ- ( ) , where strong

radiative cooling significantly affects the overall energetics
and dynamics of reconnection but pair production remains
insignificant(Jaroschek & Hoshino 2009; Cerutti et al.
2013, 2014; Uzdensky & Spitkovsky 2014; Uzdensky 2016).
This regime is applicable to the equatorial current sheet
beyond the light cylinder in the magnetospheres of bright
gamma-ray pulsars like the Crab(Lyubarskii 1996; Uzdensky
& Spitkovsky 2014; Cerutti et al. 2016; Uzdensky 2016;
Philippov & Spitkovsky 2018).
(3) The QED regime of radiative relativistic reconnection

with pair creation occurs in strong magnetic fields approaching
the quantum (Schwinger) field, e.g., 1;ecá ñ ~ this field is so
strong that the mean free path of the produced gamma-ray
photons with respect to QED one-photon pair production
becomes short and large numbers of pairs can be produced.
This regime is applicable to the most extreme astro-
physical objects: GRB jets and magnetars(Thompson 1994;
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Uzdensky 2011, 2016; McKinney & Uzdensky 2012; Parfrey
et al. 2013; Kaspi & Beloborodov 2017); to a lesser extent, it is
also relevant to the most powerful gamma-ray pulsars including
the Crab(Lyubarskii 1996; Philippov & Spitkovsky 2018).

In this study, we show that there are significant qualitative
differences between reconnection in the classical, radiative, and
QED regimes.

2. Simulation Setup

Motivated by these considerations, we conducted a two-
dimensional (2D) PIC study of relativistic reconnection in a
pair plasma, taking advantage of the OSIRIS framework
(Fonseca et al. 2002). OSIRIS self-consistently includes
radiation and the QED process of pair production by a single
gamma-ray photon propagating across a strong electromagnetic
field (Grismayer et al. 2016, 2017). In this section, we present
only the basic description of our simulation setup; a more
detailed discussion can be found in Appendix A.

We simulate a 2D double relativistic Harris initial equili-
brium(Harris 1962; Kirk & Skjaeraasen 2003) with periodic
boundary conditions. The computational domain is initially
filled with a relativistically hot background electron–positron
plasma with uniform density (of each species) nb and
temperature Tb=4mec

2, chosen to yield a high upstream
plasma magnetization B n h4 2 6.44h b b0

2s pº =( ) , where B0 is
the reconnecting field and hb is the relativistic enthalpy per
particle (hb≈4Tb for ultrarelativistic temperatures). We also
include a small out-of-plane (ẑ ) uniform guide magnetic field
BG=0.05B0. In addition to the uniform background, we
introduce two anti-parallel initial Harris current layers, each
lying in a y=constant plane and carrying electric current in
the z ˆ direction. The layers have central electron and positron
densities n0=10nb, temperature T0=6.92mec

2, and a half-
thickness δ=2.55ρL. Here, our main fiducial length scale
ρL≡γT mec

2/eB0=γT c/Ωc is defined as the Larmor radius
of a background particle with a Lorentz factor corresponding to
the peak of the initial upstream relativistic Maxwell–Jüttner
distribution, γT ≡ 2Tb/mec

2.
A novel feature of our simulations is the self-consistent

inclusion of radiation emission as well as propagation and pair-
production absorption of the radiated photons. Our treatment of
radiation emission has two alternative implementations,
employed depending on the emitting particle’s energy. For
low-energy particles below a certain energy threshold ( 10g < )
we use a continuous description, with the radiation back-
reaction accounted for classically using the Landau–Lifshitz
model(Landau & Lifshitz 1975) for radiative drag force, while
we keep track of the total radiated energy. For more energetic
particles, however, we model the emission as nonlinear
Compton scattering in strong electromagnetic fields, account-
ing for the production of discrete hard photons (with resulting
photon energies above keV). The radiation recoil on the
emitting particles is self-consistently implemented via momen-
tum conservation between the hard photon and the particle. We
treat these hard photons as computational particles that are
propagated in the simulation ballistically in straight lines at the
speed of light. At each time step, each of the>MeV photons
has a certain probability rate (depending on the χγ of the
photon) to be converted into an e+e− pair (see Appendix C.1);
when this happens, the photon is removed and a new

electron–positron pair is deposited into the simulation,
satisfying momentum conservation.
Our typical simulation domain size is 2Lx×2Ly=

943ρL×943ρL, with 3840×3840 computational cells of size
Δx=Δy=0.246ρL, initially with 16 particles per species in
each cell, with a total of nearly 0.5×109 particles. In our
strong-radiation runs, however, large numbers of photons
(as well as some secondary pairs) are created in the course of
the simulation, so that the total number of simulation
particles (including photons) grows and reaches up to
3×109. The simulations are typically run for about four
light-crossing timesLy/c (15088Ωc

−1), with a time step
of t x c c0.58 0.14 0.14L T c

1r gD = D = = W-/ / .
We conducted a series of simulations with magnetic field

strengths spanning the range B0/BQ=4.53×10−6
–4.53×

10−3. For clarity, however, we present only three representative
cases here, each illustrating one of the above-described distinct
physical regimes: (1) the classical case B0/BQ=4.53×10−6

where t ;e c
1cá ñ < W -( ) (2) the radiative case B0/BQ=4.53×

10−4 where t 1;c e
1 cW á ñ-  ( ) (3) the QED case B0/BQ=

4.53×10−3 where ecá ñ can reach ∼1 over the course of the
reconnection process.

3. Results

In all our simulations, the reconnection process develops
along a familiar sequence of events. First, each of the initial
two current layers becomes unstable to the tearing instability,
which quickly breaks it up into a chain of magnetic islands
(plasmoids) separated by small secondary current sheets
containing reconnecting X-points. Next, as the islands grow
and become nonlinear, they start moving along the layer and
merge with each other in a hierarchical fashion, until eventually
only one big island is left in each layer. While this general
morphological evolution is the same, there are substantial
differences in dynamics, energetics, and radiative appearance
between the three cases.
The first manifestation of the differences between these cases

can be seen in the time evolution of the system’s energy
content (see Figure 1). Reconnection converts free energy of a
reversing magnetic field into the kinetic energy of the particles
(which can take the form of bulk flows, plasma heating, and
nonthermal particle acceleration), as is clearly seen in the
classical case shown in Figure 1(a). In the radiative case,
however, shown in Figure 1(b), the energized particles quickly
and efficiently radiate their energy and so most of the released
magnetic energy is promptly transferred to hard photons, while
the particle kinetic energy saturates at a relatively low constant
level. This radiative cooling effect is also present, and is even
stronger, in the QED case (Figure 1(c)). In addition, however, a
small but noticeable portion (∼0.3%) of the total energy
powers secondary pair production in the QED case, increasing
the total number of electrons and positrons in the domain by a
similar percentage (see Figure 1(d)).
Importantly, while the energy going to the secondary pair

production is overall small even in the QED case, this energy
conversion channel is highly concentrated in the cores of
magnetic islands (plasmoids), which comprise only about 0.5%
of the total area of the simulation. Thus, pair production
accounts for a significant (∼1) fraction of the local energy
budget there. Likewise, the number density of newly produced
pairs inside the plasmoids becomes comparable tonb.

2
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This strong concentration of pair production in the plasmoids
is just one manifestation of an important and nontrivial general
feature of reconnection: generation of strong inhomogeneities
in the magnetic field, and especially in the plasma density and
pressure. These inhomogeneities have important consequences
for all three regimes. They can be seen in Figures 2(a) and (c)
which show density and magnetic field maps in the classical
and QED runs at t=1.2Ly/c, after the tearing instability has
reached the nonlinear stage.

In all cases, the magnetic islands are filled with plasma and
reconnected magnetic flux, leading to concentrated density and
magnetic field (see Sironi et al. (2016)). A pinch equili-
brium(Bennett 1934) is established inside each island, with the
inward magnetic tension balanced by the enhanced central
plasma pressure (and also the pressure of the compressed guide
field). However, in the radiative and QED regimes, the high
energies of accelerated particles, in conjunction with the
strongly compressed magnetic fields, lead to powerful radiative
cooling, causing the pressure balance in the plasmoids to
evolve toward even stronger compression. This, in turn, results
in an even stronger magnetic field amplification, further
enhancing radiative cooling and thus leading to a positive
feedback loop.

As shown in Figures 2 (b) and (d), the peak density and
magnetic field enhancements reached in the radiative case
(n/nb=300, B/B0=8), and especially in the QED case
(n/nb=900, B/B0=16, i.e., reaching about 7% ofBQ),
are significantly stronger than those found in the classical case
(n/nb=60, B/B0=3). This has significant observational
implications since the concentration of the magnetic field and
density inside the plasmoids leads to larger numbers of high-χ
particles, and hence greatly enhances photon emissivity there.
In particular, as illustrated in Figure 3(a) for our QED case, the
local average ecá ñ can reach significant values (∼0.1 or higher)

in plasmoid cores. Correspondingly, high-energy photon
emissivity and energy density are also strongly enhanced at
these locations (Figure 3(b)). Plasmoids thus effectively
become brightly shining fireballs (see Giannios 2013).
The spatial coincidence of the local enhancements of

gamma-ray photon density and of the magnetic field strength
leads to a strong concentration of one-photon QED pair
production inside the magnetic islands (Figure 3(c)). Indeed,
using the probabilities given in Appendix C.1, one can estimate
the characteristic photon decay length ldecay—the distance that
a typical hard photon (with m c B Be Qph

2 ~ ) travels before
producing a pair—to be l c B1700 cdecay » W ( ) (Appendix
C.2), which corresponds to (70–15)ρL for B=(3–15)B0. The
typical island width in our QED-case simulation (with
B>3B0) at t=1.2Ly/c is ∼20ρL and grows to ∼60ρL by
t=2.2Ly/c. The fact that the island size is larger than ldecay
allows for pair production to take place within the island.
Although secondary islands, generated independently of the
initial conditions as the inter-plasmoid current layers elongate
and themselves become tearing-unstable, are smaller and thus
have less photon emission and pair production (most photons
leave the small islands before producing pairs), this should not
be the case in more realistic, larger systems where even these
secondary islands may grow large enough to exceed the
characteristic decay length.
The x–t diagram (similar to Nalewajko et al. 2015) in

Figure 3(d) shows the location of pair production versus time
and illustrates the creation, motion, and merging of the islands.
We see that both pair production and gamma-ray emission are
enhanced at plasmoid mergers. For the presented QED
simulation, the compression of magnetic fields and the strong
radiative cooling in the centers of the islands lead to a moderate
local σh comparable to the background(Figure 4). We note that
in our simulations with lower density and hence higher σh

Figure 1. Top row (panels (a)–(c)): time evolution of various key energy components integrated over the system’s volume, for the classical case (a), the radiative case
(b), and the QED case(c). The electric and magnetic field energy is shown in green, the kinetic energy of the electrons and the positrons (including newly created
pairs) in red, and the energy emitted as radiation in blue. The total energy of the system is shown in black. The bottom panel (d) shows the percentage of the energy
that went into pair production (in red) and the relative number fraction of the produced pairs (in blue), for the QED case.
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(keeping Ly/ρL and B0/BQ constant, not presented here) the
number of produced pairs was increased; significant pair
production may thus be expected for such higher σh systems.

The main, and often the only, observable signature of
reconnection in astrophysical sources is the radiation spectrum,
from which the underlying electron energy distribution can be
inferred. All our simulations clearly show nonthermal electron
(and positron) acceleration, marked by extended power-law
segments, dN/dγ∼γ− p (see Figure 5(a)). In the classical case,
our measured electron spectral index p≈1.8−1.9 is in
agreement with the results of previous nonradiative PIC studies
for the given value of σh=6.44, predicting p≈1.7−2.0 (Guo
et al. 2014; Sironi & Spitkovsky 2014; Werner et al. 2016;
Werner & Uzdensky 2017). In the radiative case, energy-
dependent radiation cooling steepens the electron spectrum
appreciably at the highest energies, while the medium-energy
part of the spectrum steepens only slightly (to p≈2.0).
Finally, the even stronger radiative cooling in the QED case
leads to a significant steepening of the entire spectrum (to

p≈2.5). (Note that the presented spectra are all taken at the
same fixed time t=3Ly/c and integrated over all directions;
we leave the investigations of the spectral evolution and of
particle and radiation anisotropy to future studies.)
The photon energy spectra, dN d ph , are shown in

Figures 4(b)–(d) for the classical, radiative, and QED cases,
respectively, at t=3Ly/c. For classical synchrotron radiation,
a power-law electron spectrum produces a power-law radiation
spectrum dN dph ph ph  ~ a- with α=(p− 1)/2 (see, e.g.,
Rybicki & Lightman 1979). And indeed, our measured electron
and photon spectral indices agree with this relationship
reasonably well in both the classical case ((p−1)/2≈0.4
versus α≈0.6; Figure 5(b)) and the radiative case ((p−1)/
2≈0.5 versus α≈0.4; Figure 5(c)). (The modest discre-
pancy in the classical case is likely because the measured
photon spectrum is based on all of the accumulated photons
rather than the instantaneous emission spectra.)
In the QED case, however, the measured photon slope

(α≈1.5) is consistently steeper than that predicted classically

Figure 2. Panel (a): maps of the electron density n at t L c1.2 y= for the classical (top sub-panel) and QED (bottom sub-panel) cases around the current sheet on the
upper half of the simulation domain; the gray-scale texture overlay represents the in-plane (xy) magnetic field lines. The evolution of the maximum electron density is
shown in panel (b) for the QED case in red, the radiative case in black, and the classical case in blue. Panels (c) and (d) are the same as (a) and (b), respectively, but for
the total magnetic field strengthB∣ ∣.
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(α≈0.7, see Figure 5(d)). The reason for this is that the
energy of emitted photons cannot exceed the emitting
electron’s energy γmec

2; the critical photon energy thus
transitions from the classical synchrotron value ph ~

m c B Be Q
2 2g to the quantum limit m ceph

2 g= . This modifies
the α versusp relationship from α=(p− 1)/2 to α=p−1,
as is confirmed in Figure 5(d) (with measured p≈2.5 and
α≈1.5). Furthermore, the energy range of the power-law part
of the photon spectra can be estimated from the above relations
between òph andγ and matches with the simulation results. In
the classical case, B≈B0, and so the electron power-law range

of γ=10–200 yields òph/mec
2≈5×10−4

–0.2 (Figure 5(b)).
In the radiative case, the compression leads to a typical
B≈5B0, and so the nonthermal electron energy range of
γ=10–40 translates to òph/mec

2≈0.2–4 (Figure 5(c)).
Finally, in the QED case, where òph∼γmec

2, the electron
power-law range of γ=6–80 translates directly to
òph/mec

2≈6–80, clearly visible in Figure 5(d).

4. Summary

In summary, we have unambiguously demonstrated, via
first-principles PIC simulations that self-consistently incorpo-
rate radiation and QED effects, that relativistic reconnection of
strong magnetic fields can power intense high-energy radiation
flares and lead to pair production. We showed that radiation
(dominated by synchrotron) cooling and one-photon pair
production in strong-field reconnection can lead to remarkable
differences from classical relativistic reconnection. These
effects are greatly enhanced by the cooling-caused compression
of the plasma density, pressure, and reconnected magnetic flux
inside magnetic islands (plasmoids); the cooling is, in turn,
further intensified by the compressed magnetic field. The
resulting powerful emission of gamma-ray photons, in
combination with the amplified magnetic field, then leads to
enhanced pair production in plasmoid cores. Thus, both high-
energy emission and pair creation are strongly concentrated in

Figure 3. Snapshot maps of the local average electron χ parameter (a), of the radiation energy density ò (b), and of the in-plane magnetic flux with the locations of pair
production events shown in magenta (c) for the QED case at t L c2.2 y= around the current sheet on the upper half of the simulation domain; (d) is the spacetime map
of the pair creation rate density per c Ly Lr averaged over the upper half of the simulation.

Figure 4. Snapshot map of the average σh parameter, where the local
relativistic enthalpy hb is calculated from the trace of the pressure tensor, for
the QED case at t L c2.2 y= around the current sheet in the upper half of the
simulation domain.
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the plasmoids, effectively turning them into bright, dense, and
relativistically hot flying fireballs. The observable spectra of the
emitted radiation are significantly steeper than those produced
in classical relativistic reconnection, both because radiation
reaction inhibits nonthermal particle acceleration and because
of QED effects on the emission from particles with 1c ~ ,
resulting in potentially measurable signatures.

These results have profound implications for our under-
standing of the role of reconnection in high-energy astro-
physical environments with very strong magnetic fields—most
notably, magnetospheres of neutron stars (NSs), especially
magnetars(Masada et al. 2010). Our study provides firm
support for the hypothesis (Thompson & Duncan 2001;
Lyutikov 2006; Uzdensky 2011) that magnetic reconnection
in the QED regime is capable of powering the spectacular

gamma-ray flares observed in a class of magnetars called soft
gamma repeaters, in which 1044–1046 erg is emitted in gamma-
rays in just a fraction of a second (Mazets et al. 1999; Palmer
et al. 2005; Turolla et al. 2015). While our simulations are
initialized with thin, intense current sheets (which are necessary
for reconnection onset), recent theoretical research has indicated
that such structures can indeed form in active magnetar
magnetospheres via nonlinear magnetohydrodynamic processes
similar to those driving the flaring activity in the solar corona.
Namely, it is believed that even smooth sheared motions of the
magnetic footpoints on a magnetar’s surface can drive the force-
free field in the magnetosphere above the surface toward
explosive development of thinner and thinner current sheets,
thus setting the stage for reconnection onset (e.g., Thompson
et al. 2002; Uzdensky 2002; Parfrey et al. 2013).

Figure 5. Panel (a): electron energy spectra at t=3Ly/c for the classical case (blue), the radiative case (black), and the QED case (red). The best-fit power-law slopes
are shown as dashed lines. The spectra of the photons accumulated in the system by t=3Ly/c are shown for the classical (panel (b)), radiative (panel (c)), and QED
(panel (d)) cases, with best power-law fits represented by the black dashed lines. The green dashed lines show the classical synchrotron prediction α=(p − 1)/2. In
the QED case, the best-fit black dashed line is in excellent agreement with the theoretical quantum radiation regime prediction α=p − 1=1.5.
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Intriguingly, while our study confirms that near-Schwinger-
field reconnection readily produces intense gamma-radiation
and large numbers of e+e− pairs, it also indicates that, due to
the concentrated magnetic field enhancement in the plasmoids,
strong radiation and significant pair production may take place
even in environments with modest ambient magnetic fields,
well below the Schwinger fieldBQ. This may happen, for
example, in the magnetospheres of normal (1011–1012 G) NSs
(radio- and X-ray pulsars) and in magnetar flares taking place at
large distances (∼10 NS radii) from the star. Finally, our
demonstration of high, order-unity radiative efficiency of
reconnection in this parameter regime suggests that prompt
(i.e., on the reconnection timescale) radiative cooling is
important and needs to be accounted for in NS magnetospheric
reconnection (see Uzdensky & Spitkovsky 2014; Philippov &
Spitkovsky 2018).

Our present investigation opens up exciting new frontiers
and lays the groundwork for future studies. First, we envision
several important straightforward extensions of the present
work: performing more realistic 3D simulations, delving even
deeper into the QED reconnection regime (with stronger
magnetic fields, i.e., higher σh), and studying the effects of a
guide magnetic field.

In particular, the extra degree of freedom in 3D would allow
the compressed plasma to escape from the pinch equilibrium in
plasmoids, making the 2D compression less pronounced.
Determining a more realistic upper limit on the compression
is thus an open issue requiring 3D simulations.

Next, in more magnetically dominated systems (with higher
σh, even when B0/BQ is kept fixed), yet to be explored, the
greater available amount of magnetic energy per particle would
lead to stronger heating and nonthermal particle acceleration.
The resulting stronger radiative cooling of these energetic
particles may then drive further compression of the flux ropes.
Both the enhanced heating/acceleration and the compression of
the magnetic field mean a higher ecá ñ, increasing the emission
of MeV gamma-rays. Even for modest system sizes, the
compactness for one-photon QED pair production may be so
high that large numbers of pairs would be created and would
eventually trap the radiation and produce an optically thick, hot
and dense lepto-photonic fireball, with temperature and
density independent of their initial background values
(Uzdensky 2011).

Finally, all these aspects of reconnection are likely to be
affected by an out-of-plane guide (Bz) magnetic field. A
moderate or strong guide field will resist compression and may
suppress the efficiency of nonthermal particle acceleration
(Werner & Uzdensky 2017). At the same time, it can also
suppress the relativistic drift-kink instability, which develops in
the third dimension and competes with the tearing instability
(Zenitani & Hoshino 2007). The effects of guide magnetic field
are thus another important direction for further study.

Beyond these immediate generalizations, this project paves
the way to future rigorous, first-principles exploration of
qualitatively new, physically rich regimes of magnetic
reconnection and, in fact, of many other relativistic kinetic
plasma processes. In these regimes traditional kinetic plasma
physics is closely intertwined with radiation, pair creation and
annihilation, and perhaps other even more exotic QED effects.
It thus opens a new research direction—computational QED
plasma astrophysics, which will help unlock the secrets of

magnetar flares and other fascinating and exotic astrophysical
phenomena.
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Appendix A
Numerical Setup

In our simulations, we model a 2Lx×2Ly domain with two
oppositely directed thin current sheets located at y=±Ly/2.
The current is directed out of the (x, y) simulation plane in the
respective z directions, which leads to an asymptotic
magnetic field B B x0= ˆ, between L y Ly y- > > , and
B B x0= - ˆ on the outside of the two current sheets. An
initially uniform background Maxwell–Jüttner population of
relativistic electrons and positrons, each with density n nb= at
temperature T Tb= , is included to represent the ambient
(upstream) plasma. This population is initially stationary and
does not contribute to the current. Furthermore, we include a
weak uniform guide magnetic field B B0.05G 0= along the z
direction.
The current and self-consistent magnetic field profiles are

in pressure balance in a kinetic equilibrium, known as the
relativistic Harris sheet(Harris 1962; Kirk & Skjaeraasen
2003). The current is carried by counter-drifting Maxwell–
Jüttner distributions of positrons and electrons with a
uniform temperature T0, boosted into opposite directions
with a uniform velocity vd. The lab-frame density profile (of
both electrons and positrons) in the Harris current sheet at
y L 2y=  is

n n n
y L

sech
2

, 1b
y

0
2

d
= -

⎛
⎝⎜

⎞
⎠⎟( ) ( )

where n0 is the total electron (or positron) density at the center
of each current sheet. The self-consistent magnetic field is

B B
y L y L

y L y L

tanh
2

tanh
2

tanh
3 2

tanh
3 2

1 . 2

x
y y

y y

0
d d

d d

= -
-

+
+

+
-

-
+

+

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥ ( )

We conduct our simulations with periodic boundary conditions,
so we also include the self-consistent magnetic field due to two
more current sheets at y L3 2y= and y L3 2y= - (outside of
the simulation box). This is a small correction due to the
periodic boundary conditions introduced to account for the
exponential tail that passes through the boundary. In order to
facilitate the onset of magnetic reconnection, the initial
thickness of the current sheet δ is chosen to be sufficiently
small (of order the gyro-radius of the particles in the sheet), so
that the tearing instability growth rate approaches the
characteristic cyclotron period(Daughton 1999). We normalize
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all the length scales in our simulation to m c eBL T e
2

0r gº =
cT cg W , defined as the Larmor radius of a background

particle with a Lorentz factor corresponding to the peak of
the initial upstream relativistic Maxwell–Jüttner distribution,

T m c2T b e
2g º , and choose Ld r> , L0r , where T TL L b0 0r r=

is the gyroradius of a typical particle in the current sheet.
The three main physical parameters that describe the

upstream plasma conditions outside of the current sheets—Tb,
nb, and B0—define two important dimensionless parameters:
the magnetization σh and the plasma-β parameter, βup (the ratio
of the background plasma pressure to the magnetic pressure):

B

n h4 2
, 3h

b b

2
s

p
º

( )
( )

n T

B

T

h

8 2 2 1
. 4up

b b b

b h0
2

b
p

s
º =

( ) ( )

The subscript h refers to the “hot”magnetization σh, defined
with the upstream background relativistic enthalpy per particle
hb(Melzani et al. 2013). In the nonrelativistic limit (T m cb e

2 ),
the enthalpy h m c T5 2b e b

2» + is dominated by the rest-mass
m ce

2 and so the “hot” magnetization σh approaches the so-called
“cold” magnetization B n m c4 2c b e0

2 2s pº ( ) , which is often
used in the literature. In the ultrarelativistic limit (T m cb e

2 ),
however, h T4b b» , and then 1 2h ups b= ( ).

Using the βup parameter allows us to cast the electron and
positron drift speed inside the two Harris current layers,
determined by Ampère’s law, in a convenient form as

v

c

n

n n

1
. 5d L b

bup 0b
r
d

=
-

( )

In addition, the temperature T0 of the drifting plasma in the
layer, determined by the cross-layer pressure balance, can be
written as

T

m c

T

m c

n

n n
, 6

e

b

e

d b

b

0
2 2

up 0

g
b

=
-

( )

where v c1 1d d
2 2g º - .

Appendix B
Conditions of Applicability of the Model

The physical parameters needed to be specified for magnetic
reconnection starting from a Harris sheet(Harris 1962) equili-
brium are the following: (A) ambient (upstream) pair-plasma
parameters: the background electron/positron density nb, the
background temperatureTb, the upstream (reconnecting)
magnetic fieldB0, and the out-of-plane guide fieldBG;
(B) initial current-layer parameters: the electron density in the
center of the current sheetn0, and the current half-thicknessδ.
(The temperature and the drift velocity can then be determined
by force balance and Ampère’s law; see Appendix A.) (C) The
system’s dimensions Lx and Ly, which set the typical time of
reconnection; in the collisionless case considered here, it is
several light-crossing times t L cycross = .

We believe that, as long as the system size is large enough
that the overall number of background particles dominates the
drifting population, n L nb y 0d , the exact values of the initial
current-layer parameters (parameter group (B) above) are not

critically important and affect only the initial transient stage of
reconnection. In contrast, the initial background plasma
parameters (Tb, nb, and B0, i.e., parameter group (A)) are
fundamentally important as they determine the two key
dimensionless parameters, σh and βup (see Equations (3) and
(4)), which control the reconnection regime. (The system size
Lx=Ly (group (C)) is also important as it needs to be large
enough for the reconnection process to proceed in the large-
system, plasmoid-dominated regime.) It is thus important to
describe our reasons for choosing the specific values of these
parameters for our study. Our choices are dictated in part by the
considerations of simplicity and computational feasibility
(which, for example, limit the maximum system size that we
can achieve) and in part by various physical assumptions and
validity conditions for our model, which we discuss in this
section.
For clarity, we present these conditions on the 2D n T,b b( )

parameter-space map shown in Figure 6. We show several lines
delineating the regions where certain additional physical
processes that we do not include become non-negligible.
These lines represent the most restrictive constraints and are
applied to both the background and the Harris populations,
characterized by their values of T (relativistic or nonrelativis-
tic), n, andB0.
The physical requirements are the following.

1. The density does not surpass the Compton density
n m c 1.739 10 cm .C e

3 31 3º = ´- -( )
2. The relativistic field invariants are small (E B2 2-∣ ∣

B E B B, 1Q Q
2 2 ∣ · ∣ ); this is part of the constant cross-

field approximation, used in determining our photon
emission/pair production rates (in red).

3. No strong upstream cooling (t t t, rrad rad, cross ); the
background plasma does not cool significantly during the
crossing time of the system. Here we define trad and t rrad,
as the characteristic cyclo-synchrotron cooling times for

Figure 6. Parameter space of Tb and nb keeping 0.0776upb = , 2.55Ld r = ,
n0/nb=10, and L 472y Lr = constant. The blue region represents the highly
radiative regime, where t tradcross > , and the green region represents the highly
collisional regime where tcross

1n> - . The boundaries of the other physical
requirements on our assumptions lie in either the radiative or the collisional
regimes. The black line corresponds to 1ecá ñ = for the thermal particles of the
initial setup. In each of the lines the temperature and density are taken from
the population—either Harris (T0, n0) or background (Tb, nb)—that leads to the
most restrictive limits, using the appropriate relativistic or nonrelativistic
expressions based on the values of T0 andTb. Levels of constant magnetic field
are indicated by thin dashed red lines and the red circles show the three
simulations reported in this paper.
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the nonrelativistic and ultrarelativistic cases, respectively:

t
B

B
t

B

B

3

4

1 1
,

3

2

1 1
7Q

c
r

T

Q

c
rad

fs
rad,

fsa a g
=

W
=

W
( )

where e cfs
2 a º is the fine-structure constant (in blue).

4. Quantum degeneracy effects can be neglected (the
temperature is high compared to the Fermi energy
E c n3F

2 1 3 pº ( ) )/ (in purple).
5. Cyclotron orbits are not quantized (the temperature is

high compared to Landau energy levels c~ W ) (in cyan).
6. Collective effects dominate (large plasma parameter

n D
3lL º , where Dl is the Debye length) (in green).

7. Collisionless plasma (a typical particle does not collide
during the light-crossing time of the system tcross =
L cy

1n- ). The electron–electron and electron–
positron collision rate is lnpe Cn w~ L L( ) , where pew
is the classical plasma frequency, and ln CL( ) is the
Coulomb logarithm (in dark green).

The parameter space is shown in Figure 6, where all these
conditions are met in the white region, bounded above by the
highly radiative regime in blue, and below by the collisional
regime in green. Specifically, in order to be able to cast these
conditions in the (n T,b b) parameter space, we adopt a fixed
value 0.0776upb = for all our simulations; this value is chosen
to be small compared to unity so that the upstream region is
magnetically dominated. In addition, we set n0/nb=10,

2.55Ld r = , and L 472y Lr = for all the runs. These
parameters yield T m c 6.92e0

2 = , v c 0.56d = ( 1.21dg = ),
and 1.47L0d r = where L0r is the Larmor radius based
onT0. We have thus chosen δ larger than, but close enough to,

L0r so that tearing commences quickly. The specific three
simulations presented in this paper are indicated in Figure 6 by
the red circles; they all correspond to the same initial
background temperature T m c 4.0b e

2 = , while the background
density is varied, n 1.90 10 , 1.90 10 , 1.90b

19 23= ´ ´ ´
1025 cm−3 (equivalent to varying B B 4.53 10 ,Q

6= ´ -

4.53 10 , 4.53 104 3´ ´- - ).
We performed our simulations taking advantage of the

OSIRIS framework(Fonseca et al. 2002) with 3840×3840
computational cells of size x y 4LrD = D = , initially with 16
particles per species in each cell. The presented simulations are
run for 4.2 light-crossing timesLy/c, with a time step
of t c0.142 0.142L T c

1r gD = = W- .
We also show that the relativistic field invariants remain

small as the system evolves in Figure 7.

Appendix C
QED Processes

C.1. Probability Rates

Rigorous investigation of some so-far unexplored reconnec-
tion regimes must take into account various QED processes
associated with strong magnetic fields. Many such processes
can in principle take place, but in this work we only consider
two quantum processes that have the highest probabilities.
These processes (implemented in our code through a Monte
Carlo module in the PIC loop) are (1) single photon emission
due to nonlinear Compton scattering in intense electromagnetic
fields (with self-consistent back-reaction recoil on the emitting
electron/positron), which is a QED extension of the classical
synchrotron radiation, and (2) single-photon pair creation from

the decay of a hard gamma-ray photon ( m c2 e
2w > ) in intense

electromagnetic fields, also known as the Breit–Wheeler pair
production process(Ritus 1985). Other possible quantum
processes such as photon splitting, Compton scattering, two-
photon pair creation, and pair annihilation can in principle
occur. Photon splitting is only relevant for B BQ , whereas
the other processes have cross-sections that are at best re

2~ ,
where re is the classical electron radius. The ratio between the
mean free path of a particle before experiencing one of the
simulated processes λ, and the other processes λσ, is

n

n

B

B
, 8

C

Q
fs

l
l

a~
s

( )

where n is the density of the species the particle will interact
with; this ratio is much smaller than1 in all the regimes that we
consider. The respective probability rates for photon emission
and pair creation depend on the invariant quantum parameter χ
and the energy of the particle.
The χ-parameter determines if classical or QED interactions

dominate the physics and is defined using the 4-momentum pμ

of the particle (electron/positron, or photon):

p F

B m c
. 9

Q e

2

c =
m

mn( )
( )

The parameter χ will be denoted as χe for electrons, and χγ

for photons where p k=m m, and kμ is the photon wave
4-vector. We can also express χ as a function of 3-vectors and
the background electric and magnetic field vectors:

E
p

B
p

E
B mc mc

1
. 10

Q

2 2

c g= + ´ -⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠· ( )

p m c p m ce e e0
2

0
2 g = =  = g for photons, where e is

the electron energy, and  w=g is the photon energy. The
differential probability rate of photon emission with χγ by
nonlinear Compton scattering of an electron with χe is then

Figure 7. Maps of the relativistic invariants E B BQ
2 2 2-( ) (panel a) and

E B BQ
2· (panel b) at t L c2.2 y= for the QED case around the current sheet

on the upper half of the simulation domain.
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given(Ritus 1985) by

d P

dt d t

K dxK x

3

1
1

1
, 11

e

2
fs

C

2 3 1 3ò

c
a
p gc

x
x

c

=

´ - +
-

-

g

c

¥⎡
⎣⎢
⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥( ˜ ) ( ) ( )

˜

where t m ceC
2º is the Compton time, 2c x=˜

3 1ec x-( ( )), ex c c= g , and K xa ( ) is the modified Bessel
function of the second kind. Integrating Equation (11) over χγ

results in the likely number of photons that would be emitted
per unit time (essentially in the direction of the emitting
particle’s momentum in accordance with the limiting case of
relativistic beaming where g  ¥),

dP

dt
d

d P

dt d

t

t

1.46 for 1

1.44 for 1. 12

e e

e e

2

fs

C

2 3

fs

C

ò c
c

a
g
c c

a
g
c c

=

»

»

g
g



 ( )

The total radiated power is

P d
d P

dt d
d

d P

dt d
, 13e

e
rad

2 2
 




ò òc

c c
c

= =g g
g

g g
g

( )

assuming 1g  and thus e e c c =g g. For 1x  (valid
for nearly all photons if 1ec  ), Prad given by Equation (13)
reduces to the classical synchrotron radiated power:

P
e m c

t

2

3 c
sin

2

3
, 14e

erad

2
2

c
2 2 fs

2

c

2g a
a

c= W = ( )

where α is the pitch angle of the radiating particle. In our
simulations, the emitted photons are treated as computational
particles that are propagated through the simulation domain
along straight lines but have some probability of decaying into
pairs. The differential rate of pair production of an electron and
a positron with χe by a photon with χγ in a background
electromagnetic field is given by(Ritus 1985)

d P

dt d

m c

t

K dxK x

3

15

e

e
2

fs
2

c

2 3 1 3



ò

c
a
p c

x
x

x
x

c

=

´ + +

g g

c

+

-

-

+

¥⎡
⎣⎢
⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥( ˜ ) ( ) ( )

˜

where 2 3c c x x= g
+ -˜ ( ) and 1ex c c x= = -g

+ -. The
total rate for this process can be approximated for very small or
very high χγ in the following way:

dP

dt
d

d P

dt d

m c

t

m c

t

0.38 for 1

0.23 exp
8

3
for 1. 16

e
e

e

e

2

fs
2

c

2 3

fs
2

c





ò c
c

a
c c

a
c

c
c

=

»

» -

g
g g

g
g

g
g




⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )

The leptons (i.e., electrons and positrons) are divided into
two categories; mildly relativistic particles ( 10g < ) and
ultrarelativistic particles (γ�10). This division is not
ad hoc; it is based on the fact that the above QED probabilities
are derived in the limit 1g  .
The leptons in the first category ( 10g < ) have 1c  and

thus the radiation-reaction force on them can be described
using the classical relativistic Landau–Lifshitz formula
(Landau & Lifshitz 1975). The energy lost to radiation is
calculated using the Larmor formula and the total radiated
energy is recorded as a function of time.
In the second category, when γ�10, the leptons emit

discrete photons according to the aforementioned QED
probabilities. When a photon is emitted, the recoil is self-
consistently implemented using the conservation of momen-
tum. Unfortunately, due to memory constraints, we cannot keep
track of all the photons emitted on the grid. In our simulations,
we only track photons above a certain energy cut . We choose
this cutoff either as m c2 ecut

2 = , the minimum energy for a
photon that could potentially produce a pair, or as the lower
end of the gamma-ray spectra we wish to plot (which was used
for the three simulations presented).

C.2. Photon Decay Length

In this section we justify the expression used in the
manuscript for the decay length of a hard photon
(l c B1700 cdecay = W ( )/ ). A very good approximation for the
pair production rate (see Equation (16)), over the full range of
χγ is(Erber 1966)

dP

dt t

m c
K

K

B

4

25

4

3

4

25

4

3

6 10 for 3 100, 17

C

e

c

c

fs
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1 3
2
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1 3
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a
c

a
c c

c

=

=
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~ ´ W < <

g g

g g

g
-

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

( ) ( )

assuming the photons move perpendicular to the magnetic
field. Now

l
c

dP dt

c

B
1700 . 18decay

c
º »

W ( )
( )

As long as 3c >g , i.e., the hard photon has m c B Be Q
2 ~g ,

this approximate decay length is valid. Note that for large
100c >g , ldecay increases as

1 3cg .
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