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"We must be careful not to confuse data

with the abstractions we use to analyze them."
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Resumo

Os modelos atuais de value-at-risk (VaR) são suportados por uma componente histórica de preços

e de metodologias que estimam matrizes de covariância, respeitando meramente informação

histórica, tais como: pesos igualmente ponderados, médias móveis exponenciais ponderadas,

GARCH, etc. Todos estes métodos observam uma lacuna: são desenvolvidos com informação

histórica. Nesse sentido, ninguém pode garantir que os mercados vão continuar a comportar-se

da mesma maneira que antigamente.

Dado o exposto, aliado com returns históricas de ações, incorporamos volatilidades implícitas

at-the-money derivadas de opções cotadas com prazos de vencimento reduzidos. As volatilidades

implícitas irão ser utilizadas com vista ao refinamento das matrizes de covariância com uma me-

dida forward looking. Criamos 8 modelos paramétricos (normal vs T-Student) e 7 históricos (sem

ajustamentos vs ajustados à volatilidade resultado da decomposição de Cholesky) VaR que es-

timam o VaR diário para o nosso portefólio, o qual concentra 10 ações liquidadas cotadas nas

bolsas norte americanas.

Através do backtesting dos nossos resultados, comparamos os modelos VaR que usam infor-

mação histórica e estimam a volatilidade, com os que incorporam ajustamentos da volatilidade

implícita. Os resultados do backtesting produzem testes estatísticos com p-values mais elevados

para modelos que usam volatilidade implícita. Esta melhoria, embora marginal, é mais preponder-

ante nos resultados do teste BCP, o que sugere uma influência mais significativa das volatilidades

implícitas na redução dos excedentes de clustering.

Por fim, desenvolvemos simulações nos pesos dos portefólios de modo a aferir se, em média,

esta melhoria é de facto apenas marginal, mais significativa, ou se nem sequer existe. Depois de

simular 500 portefólios diferentes, observamos que existe um aumento significativo dos p-values

do teste BCP quando se utiliza as volatilidades implícitas para atualizar as matrizes de covariân-

cia. Por outras palavras, a volatilidade implícita provoca reduções, positivas no fundamental, nos

excedentes de clustering do VaR.

Palavras chave: Volatilidade Implícita, Ações, Value-at-Risk, Backtesting.

Classificação JEL: C32, G17
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Abstract

Current value-at-risk (VaR) models are based on historical prices and (co)variance es-

timation methods that relies purely on historical data: equally weighted, exponentially

weighted moving average (EWMA), generalized autoregressive conditional heteroscedas-

ticity (GARCH), etc. All these methods suffer from one main flaw: they are backward

looking. In other words, no one can guarantee that markets will continue performing in

the same manner as they did in the past.

Thus, along with historical stock returns, we incorporate at-the-money implied volatil-

ities derived from listed options with nearest expiration. Implied volatilities will be used

to refine our covariance matrices with this forward looking measure. We create eight para-

metric (normal vs. Student’s t) and seven historical (no adjustment vs. volatility adjusted

based on the Cholesky decomposition method) VaR models that estimate 1-day total VaR

for our portfolio, which consists of 10 liquid stocks listed on US exchanges.

We backtest and compare VaR models that use historical prices and well known

volatility estimation methods, with its peers that incorporate implied volatility adjust-

ment. Backtest results show mostly marginal increase of statistical test p-values for mod-

els that use implied volatility. This marginal improvement is mainly with Berkowitz,

Christoffersen and Pelletier (BCP) test results, which suggests that the main contribution

of implied volatility lies in the reduction of VaR exceedance clustering.

Finally, we perform portfolio weights simulation to verify whether, on average, this

improvement is indeed just marginal, more significant, or does not exist at all. After

simulating 500 different portfolios, we conclude that there exist a significant increase in

BCP test p-values when implied volatility is being used to update covariance matrices. In

other words, implied volatility can indeed help us to reduce VaR exceedance clustering.

Keywords: Implied Volatility, Stocks, Value-at-Risk, Backtesting.

JEL Classification: C32, G17
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1 Introduction

Volatility estimation of future asset returns is one of the most important topics in the fi-

nancial world nowadays. There are several well-known methods used by practitioners

and academics, such as: equally weighted, EWMA, GARCH (symmetric and asymmetric

versions) and stochastic volatility models. It is a stylized fact, also supported by Alexan-

der (2008), Dowd (2005), and other authors, that EWMA and GARCH models are robust,

most stable and produce satisfactory results across different market regimes.

One of the most widely used tools for measuring financial risk within banks and in-

vestment firms is the value-at-risk (VaR) method. It represents the portfolio or single

asset loss over specific time horizon, that we are 100(1− α)% sure will not be exceeded.

The main input into VaR models (parametric and adjusted historical) is variance, more

specifically, estimation of future variance of asset returns. In case we are dealing with

multivariate time-series, we need to include covariances to capture dependencies between

portfolio constituents. This dissertation will focus on equity VaR and usage of multivari-

ate time series of asset returns. Thus, both variance and covariance estimation will be in

the scope of this work.

All VaR models are based on historical prices and/or (co)variances estimated by meth-

ods that rely, directly or implicitly, on historical data. It means that they are highly depen-

dent on market conditions that already occurred in the past. But nobody can guarantee

that markets will continue to perform in the same manner. This raises the question if it

is possible to find a better, forward-looking estimator of future realized volatility, which

will in turn better anticipate changes in market behavior. We try to find a solution for this

issue in the options market.

Option prices represents an additional source of data. From them we can extract in-

formation about expectation of future volatility of the underlying stocks. Time series of

implied volatility was obtained for ten US stocks that constitutes our portfolio. Most liq-

1
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uid options are usually the ones with shortest maturity and with strikes closest to current

stock price. Thus, we will focus our attention to implied volatility derived from options

with nearest month expiration and that are at-the-money, and investigate if information

embedded in these options can provide us input that is valuable enough to improve per-

formance of VaR models.

First, using out-of-sample data for stocks in our portfolio, we construct lists of daily

covariance matrices forecasts using well-known methods: equally weighted, EWMA, and

multivariate dynamic conditional correlation (DCC) GARCH. We then extract correla-

tions from them and use it to create new, "hybrid" type of covariance matrices that use

those correlations, but also incorporate implied volatilities: Implied Vol/Equally Weighted,

Implied Vol/EWMA and Implied Vol/DCC GARCH.

Subsequently, we assign equal weights to our stocks and thus create a typical portfolio

that we shall follow through the rest of this work. We estimate t-distribution degrees of

freedom for these portfolio returns, which is required for estimating parametric Student’s

t total VaR.

Two types of VaR models are used to estimate profit and loss (P&L) distribution

of future stock and portfolio returns: parametric (normal and Student’s t version) and

historical (non-adjusted and volatility adjusted based on the Cholesky decomposition

method). Parametric VaR models are used along with the following covariance matri-

ces: Equally weighted, EWMA, Implied Vol/Equally Weighted, Implied Vol/EWMA.

Historical VaR models (volatility adjusted based on the Cholesky decomposition method)

are used with all the available covariance matrices: Equally Weighted, EWMA, multi-

variate DCC-GARCH, Implied Vol/Equally Weighted, Implied Vol/EWMA and Implied

Vol/DCC-GARCH. Finally, historical VaR models (non-adjusted) do not assume any P&L

distribution, thus do not require any covariance estimation. In total we have six parametric

(three normal and three student-t) and nine historical (one non-adjusted, eight volatility

adjusted based on the Cholesky decomposition method) VaR models.

Finally, using all 15 models and out-of-sample data, we estimate 1-day dynamic VaR

(total for parametric) under three different significance levels. Thus, in total 45 different

time-series of 1-day VaR for 10-years period are created, that should be faced with time-

series of realized portfolio log-returns for the same period. Dynamic VaR implies that

portfolio weights are not changed, thus we assume daily rebalancing in order to keep

2
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weights at the constant levels throughout entire time horizon.

To compare estimated out-of-sample VaR with actual portfolio log-returns, we per-

form backtesting and evaluate results using several statistical tests: Unconditional Cov-

erage test (Kupiec, 1995), Conditional Coverage test (Christoffersen, 1998) and BCP

(Berkowitz, Christoffersen and Pelletier, 2009) test at several different lags. Moreover, we

make visual inspection of the graphs to detect some unusual paterns or VaR exceedance

clustering. Backtesting and evaluation is performed for two reasons: firstly, to evaluate

overall performance of our VaR models and detect the best ones among them, and sec-

ondly, more relevant for the topic of this dissertation, to directly compare the models that

use pure historical data with the hybrid ones that incorporate implied volatility, and ob-

serve VaR exceedance clustering behaviour. As implied volatility is the forward looking

measure, we expect that its inclusion could help us better anticipate the changes in current

market conditions and ultimately lead to reduction of VaR exceedance clustering, which

is the main cause of value-at-risk underestimation.

As expected, the improvement, although marginal, is reflected through the increase of

BCP test p-values at all lags up to five. This indicates that incorporating implied volatility

might indeed help us with the reduction of VaR exceedance clustering. On the other hand,

we do not observe any improvements with UC and CC test p-values, mainly because most

of the models that use purely historical data already have decent results and do not have

problems with passing these two basic tests.

Since backtesting and statistical tests are performed based on one specific portfolio

only, this raises an important question of VaR models robustness and stability. What will

happen if some other portfolio weights are used? Are results going to be changed and will

some VaR models perform better or worse than before?

To evaluate stability of VaR models, we perform portfolio weights simulation and

generate five hundred portfolios, each with different seed and random weights assigned to

its constituents. Then we analyze behavior of median p-values, number of null-hypothesis

rejections and number of VaR exceedances, in order to check whether models are robust

and stable enough.

The simulation results showed that the difference between classic and hybrid models

is no longer marginal, but now more concrete. On average, we observe significant increase

of p-values generated from BCP test at all lags up to five. This gives us stronger evidence

3
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that hybrid models perform better than the backward looking ones that use purely his-

torical data. Thus, incorporation of implied volatility can indeed help us with reduction

of VaR exceedance clustering. Again, UC and CC p-values are similar as all historical

volatility adjusted models, both hybrid and regular ones, have a decent amount of VaR

exceedances.

The structure of this work is the following: In Section 2, we review and challenge the

current literature and papers related to this field. The Value-at-Risk concept is described

briefly in the third section. Next, Section 4 is dedicated to the explanation of variables

and sources for obtaining stocks and implied volatility data. Subsequently, in Section 5

we describe the covariance estimation methods and statistical tests used for backtesting

evaluation. In the Section 6, we backtest and analyse one specific, equally weighted

portfolio. Section 7 is used for portfolio weights simulation where we check the stability

of results from the previous section. We make conclusion in the Section 8 and summarize

our work. Finally, last section is dedicated for presenting the bibliography that was used.

4
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2 Review of Literature

Volatility forecasting as topic of financial econometrics, has occupied academics and prac-

titioners for years. The first autoregressive conditional heteroscedasticity (ARCH) model

for estimating variance was introduced by Engle (1982) and has later been generalized

(GARCH) by Bollerslev (1986). The main contribution of GARCH model is that it can

capture conditional variance (variance changing over time) and volatility clustering be-

haviour.

Equities and commodities have a common property called leverage effect. It means

that a volatility increase is more likely to happen after a huge negative return rather than

after a positive return of the same magnitude. That was the main motive for Engle (1990)

to propose asymmetric A-GARCH model, which was later evolved to GJR GARCH by

Glosten et al. (1993). The major property of asymmetric GARCH model is its ability to

properly capture this leverage effect. Now there exists several other asymmetric versions:

E-GARCH, T-GARCH, P-GARCH.

Exponentially weighted moving average (EWMA) is also a very popular method for

covariance estimation. Depending on smoothing constant λ, it puts more or less weight to

recent observations, and influence of past observations on the estimator decay exponen-

tially as we move back in time.

One special case of EWMA model with predefined parameter λ is RiskMetricsTM,

presented by JP Morgan (1996) in the RiskMetrics Technical Document. For estimating

daily variances and covariances, the decay parameter equals to λ = 0.94 and for monthly

estimation they propose λ = 0.97.

When it comes to option pricing, there is no document which made more scientific

contribution than "The pricing of options and corporate liabilities" by Black and Scholes

(1973). Black-Scholes pricing formula provides the framework for calculating European

option prices based on several inputs: volatility, risk-free rate, strike, time to maturity

5
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and price of the underlying asset. When we "invert" this formula and use option prices

from the market as an input, using numerical procedure we can get implied volatilities

as an output. These volatilities represent the expectation of investment community, more

specifically of option traders, about the future variance of the market returns.

However, the fact that the implied volatility is not constant with respect to the strike of

the option from which the volatility is implied, as imposed by Black and Scholes (1973),

indicates that there is some extra information embedded in option prices which is not

captured by the Black-Scholes formula. There are several papers that used the implied

volatility curve as an input to variance estimation, and tried to estimate future probability

density functions of asset returns.

Most of the papers that are dealing with implied volatility, for example Bentes (2015)

and Nishina et al. (2006), are interested in volatility forecasting per se. In other words,

they are comparing volatility forecasts based on implied volatility, with actual, realized

volatility, to see whether they can perform better than traditional volatility forecasting

methods presented above. Nevertheless, there are some exceptions where implied volatil-

ity was tested for other purposes such as improving VaR models performance. For in-

stance, Giot (2005) assesses the information content of volatility forecasts based on the

VIX1 and VXN2 implied volatility indexes in a daily market risk evaluation framework.

His empirical findings show that "volatility forecasts based on the implied volatility in-

dexes provide meaningful results when market risk must be quantified".

On the other hand, Kim and Ryu (2015) tried to estimate VaR using implied volatility

from the options on index of the KOSPI 2003. Their empirical results show that the model-

free implied volatility VKOSPI (which is equivalent to US-based VIX) does not improve

the performance of suggested VaR models. Yet, when they incorporated implied volatility

derived from OTM options and combined it with GJR-GARCH model, they were able to

improve the overall performance of VaR models.

When it comes to research of the option volatility smile, Xing et al. (2010) tried to

predict future equity returns based on the steepness of the volatility skew. They concluded

that stocks with the steepest slopes of their options’ smiles underperform peer companies

by 10.9% per year on a risk-adjusted basis. They also managed to prove that most in-

1The Chicago Board Options Exchange (CBOE) Volatility Index of S&P 500.
2The Chicago Board Options Exchange (CBOE) Volatility Index of Nasdaq 100.
3Korea Composite Stock Price Index consisting of 200 biggest companies.
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formed traders with negative news are most likely to trade out-of-the-money put options

and that these options have the highest information content embedded.

Feng, Zhang and Friesen (2015) came to a similar conclusion when they investigated

the relationship between the option-implied volatility smile, stock returns and heteroge-

neous beliefs. They studied the implied volatility slope of both call and put options with

different delta’s and found that "stocks with a steeper put slope earn lower future returns,

while stocks with a steeper call slope earn higher future returns".

There is a significant amount of academic work on dynamics of implied distributions,

more specifically how those can be translated into implied probability density function of

future asset returns. Breeden and Litzenberger (1978) showed that second order derivative

of a put option with respect to its exercise price is equivalent to the current value of the

risk neutral probability density of St, which represents an asset price at some future time

t.

Parametrization of volatility surface was also in the scope of researchers and practi-

tioners. This topic is very significant in the presence of low liquidity in the options market.

Gatheral and Jacquier (2013) showed how to calibrate stochastic volatility inspired (SVI)

parametrization in a way that guarantees the absence of static arbitrage. The no-arbitrage

principle is important in the context of translating implied volatility surface into series of

implied PDFs4 to secure non-negative values for latter.

In our modest opinion, the main flow of these works is that they work exclusively with

single stocks or indices, thus applicability in a real world situation other than univariate is

questionable. It is very rare to see institutional investors with portfolio consisting of only

one instrument or with portfolios that closely follows the weights from a specific market

index.

Another major issue we find important is verification and stability of the proposed

models. The vast majority of scientific papers that are dealing with implied volatility and

VaR are using UC, CC and similar statistical tests that check exceedances up to first lag

only. More advanced tests, like BCP that checks independence and exceedance clustering

at higher lags, are not used in these papers. Moreover, results presented are characteristic

for one specific index or stock, thus it is not sure whether these VaR models will behave

in the same manner if some other index or shares are being used.

4Probability density functions.
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Our dissertation will try to answer these questions and analyze applicability of implied

volatility VaR models in a true multivariate environment, with ten different stocks. More-

over, BCP which is a more sophisticated statistical test, will be used to check exceedance

clustering all the way up to lag five.

Instead of using only one specific portfolio, we check for robustness and stability

of our VaR models by shaking shares’ weights and simulating several hundred different

portfolios to check if test results are consistent enough. We believe that this will provide

enough evidence whether proposed VaR models could be applicable to the real portfolios

with dozens or even hundreds of stocks.

8
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3 Data

3.1 Stocks

Stock prices are pulled from Yahoo Finance using R package quantmode and function

getSymbols.yahoo(). We use adjusted daily closing prices from January 2001 -

June 2017, for the following stocks that are included in our portfolio:

• Apple [AAPL]

• Amazon [AMZN]

• Bank of America Corporation [BAC]

• Ford [F]

• General Electric [GE]

• Intel [INTC]

• Coca-Cola [KO]

• Microsoft [MSFT]

• Pfizer [PFE]

• AT&T [T]

After downloading stock prices in USD, we convert those to daily log returns for the

purpose of estimating daily VaR in percentage points.

Adjusted closing prices are used since they are already corrected for all stock splits,

dividends, and other important events that might impact log returns.

3.2 Implied Volatilities

Implied volatility data is obtained through Quandl, which is the main aggregator of finan-

cial databases. R package Quandl and function Quandl.datatable() are available

for pulling database into R Studio.

The original provider of database is Quantcha, Inc., a Redmond, Washington (US)

based company. Quantcha is a financial software and services company focused on stocks

9
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and options investors. Moreover, this company provides a suite of tools for searching,

filtering, and analyzing stock market investments.1

The dataset contains historical (March 2002 – June 2017) daily implied volatilities

for the ten stocks from our portfolio. Implied volatilities are derived based on "inverted"

Black-Scholes formula where option and stock prices from the market are used as an

input. There is no analytical solution so numerical procedure is required to generate IV

values for different strikes.

This dataset is updated on a daily basis, and includes at-the-money (ATM) implied

volatilities for calls, puts, and means, as well as skew steepness indicators. Implied

volatilities are provided for constant future maturities of 10, 20, 30, 60, 90, 120, 150,

180, 270, 360, 720, and 1080 calendar days. The data is calculated using end of day

(EOD) market data provided by the option exchanges.2

Since we are dealing with 1-day VaR, we extrapolate volatilities for constant maturi-

ties of 10 and 20 days to create time series of IVs with constant maturity of 1 day. As

implied volatilities are annualized, daily volatility is calculated using the "square root of

time rule" assuming that there are 252 trading days per each calendar year.

We decided to choose mean ATM implied volatility as the input to our VaR models

since it is calculated as arithmetic mean of calls and puts ATM IVs, thus we do not have

to make any assumptions and this should keep us free from model risk, at least regarding

selection of implied volatility variables.

1Company description obtained via https://www.quandl.com/publishers/QUANTCHA, access date: 04
October 2018.

2Implied volatility data specification obtained via https://www.quandl.com/data/VOL-US-Equity-
Historical-Option-Implied-Volatilities/documentation/introduction, access date: 04 October 2018.
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4 Value-at-Risk (VaR)

As a broad definition, value-at-risk represents a portfolio loss that we are sure will not

be exceeded, within certain confidence and specific time horizon. The main parameters

of VaR are thus the significance level α (equivalent to 1-α confidence level), and the risk

horizon h over which the VaR is estimated. Depending on the context and whether we

need to comply with certain regulations or not, different alphas can be used. However, in

this work we work exclusively with three different values of α: 0.01, 0.05 and 0.1. Put

it the other way around, we are sure that our portfolio loss will not exceed the estimated

VaR with 99%, 95% and 90% confidence, respectively.

A more formal definition of VaR states that the 100α% h-day Value-at-Risk at time

t (usually omitted), V aRht,α, is minus the α quantile of the h-day discounted P&L (or

return) distribution. Throughout this work, we will work exclusively with log returns.

Moreover, we deal with 1-day VaR, thus the discounting effect is negligible and therefore

can be omitted without creating any bias in the results.
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Figure 4.1: Value-at-Risk, PDF of Portfolio Returns
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In the language of statistics, the value-at-risk estimate at significance level α for a

time horizon h, at time t, indicates the portfolio or single asset loss over h-days at time t

that is exceeded with probability α, such that:

P [rt+h < −V aRt+h,α|It] = α (4.1)

where rt+h is the return from time t to time t+h and It represents information set at time

t.

Alexander (2008) divides VaR models into three different categories according to their

resolution method, in other words how they model the returns distribution:

• Parametric linear VaR;

• Historical simulation VaR;

• Monte-Carlo VaR.

Both parametric and Monte-Carlo VaR are directly dependent on variance and co-

variance estimation. On the other hand, pure historical VaR is the only method which

does not make any distributional assumptions as it simply represents the α -quantile of an

empirical h-day discounted P&L or returns distribution.

However, volatility-adjusted historical VaR, introduced by Duffie and Pan (1997) and

Hull and White (1998), also uses variances and covariances to refine historical returns,

and make it more actual to the current regime of the market. Thus, the main prerequisite

for any good VaR model is to produce solid forecasts of variances, and covariances in

case of a multi-factor model.

Throughout this work, we treat each stock in our portfolio as a single risk factor. We

have two reasons for this. Firstly, we wish to calculate total VaR and make predictions

as accurate as possible. Secondly, to directly compare VaR models that use standard co-

variance estimation methods with the ones that incorporate implied volatility adjustment.

As implied volatility from exotic option on basket of stocks that matches our portfolio is

obviously not available, but only from the single stocks that constitutes the portfolio, any

other comparison would be inappropriate.

Moreover, to simplify calculations, we always report dynamic VaR. Thus, we assume

that portfolio is constantly rebalanced to keep the portfolio weights constant.

12
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4.1 Parametric VaR

Parametric value-at-risk assumes that we use some of the well known families of distri-

butions to model our portfolio returns. Most commonly used are normal and Student’s

t distribution. These distributions in the context of VaR are fully explained by the mean

and standard deviation of discounted portfolio returns, and, in case of Student’s t, degrees

of freedom. As we are interested in 1-day VaR, a reasonable assumption can be made that

the expected daily portfolio excess return over the risk free rate is zero. Thus, the only

thing that we require to locate the quantile of interest is the covariance matrix of stock

returns, and the vector of portfolio weights.

4.1.1 Parametric - Normal VaR

We start by deriving formula for xα, which represents the α-quantile return, i.e. the return

such that P (X < xα) = α.

Under the assumption that asset returns are normally distributed, thusXh ∼ N(µh, σ2
h),

where µh and σh are the estimates for the mean and standard deviation of the discounted

asset returns, over the future period h. we apply the standard normal transformation:

P (Xh < xh,α) = P (Xh − µh
σh

<
xh − µh
σh

) = P (Z <
xh − µh
σh

) = α,

where Z is a standard normal variable. Therefore:

xh,α − µh
σh

= Φ−1(α), (4.2)

where Φ−1(α) represents the standard normal α quantile. Thus, we can finally provide

formula for the 100α% h-day parametric normal VaR, that is presented as the percentage

of the single asset or portfolio value:

V aRh,α = Φ−1(1− α)σh − µh. (4.3)

As mentioned earlier, we do not calculate VaR based on portfolio that is treated as

univariate time-series, but we attribute it to the different risk factors. Therefore, equivalent

13
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formula for the parametric normal VaR in multivariate framework is the following:

V aRh,α = Φ−1(1− α)
√
w′Vhw −w′µh, (4.4)

where w′ represents vector of portfolio weights, Vh is the covariance matrix of risk fac-

tors, in our case 10 × 10 matrix of 1-day stock returns, and µh is the vector of average

discounted stock returns. Obviously, the second part of this equation can be omitted, as

we assume that vector of means of 1-day discounted returns is a zero vector.

4.1.2 Parametric - Student’s t VaR

Very often, the assumption that returns of financial instruments follow a normal distri-

bution is unrealistic. It is a stylized fact that empirical stock returns have more of a

leptokurtic distribution, thus heavier tails and higher peak, when compared to the equiva-

lent normal distribution with same variance. Thus, if we try to fit past returns with normal

distribution but the actual returns exhibit excess kurtosis, it is very likely that we will

underestimate VaR at low significance levels.

The exact boundary at which significance level Student’s t VaR is higher than normal

VaR depends on degrees of freedom, the main parameter that determines the tail shape

of the t-distribution. This parameter can be obtained by fitting the empirical distribution

using the maximum likelihood method. With the increase of degrees of freedom, the t-

distribution converges to the normal one. Again, how many previous observations should

be included in the rolling sample is arbitrary. We believe that 1-year represents a reason-

able size, thus in this work we always estimate degrees of freedom based on the last 250

daily portfolio returns.

Value-at-Risk can be calculated as:

V aRh,α,ν =
√
ν−1(ν − 2)T−1

ν (1− α)σh − µh, (4.5)

where ν represents degrees of freedom and T−1
ν (1− α) is the quantile of the regular Stu-

dent’s t distribution. The adjustment
√
ν−1(ν − 2) has to be made to obtain the quantile

of the standardized Student’s t distribution.

Another common property of empirical distributions of asset returns is that they are

negatively skewed. It is worth noting that there exists non-central t-distribution which is
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able to capture this effect, however here we shall work with symmetric t-distribution only.

4.2 Historical VaR

4.2.1 Historical - No Adjustment

Contrary to the parametric method, historical VaR do not have to make any distributional

assumptions about the future returns. As a general definition, the 100α%h-day historical

VaR is simply the α quantile of the empirical h-day discounted distribution of returns.

Estimating historical VaR is therefore a pretty simple task. After choosing sample size

(size of the rolling window in backtesting environment), we compute h-day returns for the

assets that constitutes the portfolio. Empirical h-day portfolio’s return distribution is cre-

ated by keeping the portfolio weights constant. Finally, from this distribution of returns,

we find the α quantile that we are interested in. Although simple historical simulation has

its advantages, the main downside of this method is that market conditions change over

time. Selection of sample size can highly affect our VaR estimation. Thus we need to find

the way to make this sample of returns better reflect the current market conditions.

4.2.2 Historical - Volatility Adjusted

Volatility adjusted, or more formally, volatility weighted method, was proposed by Duffie

and Pan (1997) and Hull and White (1998). This method assumes that we still assign the

same weight to each observation, but we adjust the entire series of returns in a way that it

matches the current volatility estimation. Thus, the entire sample size is adjusted to match

the current volatility regime of the market.

When we are dealing with univariate time-series of returns, either as a single stock or

portfolio treated as the single asset, this methodology is simple. After obtaining a series of

volatility estimates (using EWMA, GARCH or other methods), we adjust the time-series

of returns as following:

r̂t = σ̂T
σ̂t
rt (4.6)

where σ̂T represents the current volatility estimate, and σ̂t is the past volatility estimate

made at time t.
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Cholesky Decomposition

Throughout this work, we treat each stock as the risk factor. As we wish to make the

volatility adjustment at the risk factor level, thus for the vector of portfolio returnsXt, we

need to perform a Cholesky decomposition. This method allows us to adjust the volatility

of all stocks in the portfolio simultaneously, while preserving their correlations. Accord-

ing to Miller (2014), when the covariance matrix satisfies certain minimum requirements,

we can decompose it by rewriting it as the product of the lower triangular matrix, L, and

its transpose, L′:

Σ = LL′. (4.7)

Now, the vector of stock returns generated at time t can be updated as follows:

X̃t = Xt(LTL−1
t )′, (4.8)

where ΣT = LTL
′
T and Σt = LtL

′
t.

This transformation changes our stock returns vector covariance matrix from Σt to

ΣT , which was our initial intention.

In this work, the following covariance estimation methods will be used to refine histor-

ical returns: equally weighted, EWMA, GARCH and hybrid implied volatility, that will

be presented in the next section. Although adjusting returns with covariances estimated

using equally weighted method might sound like an oxymoron, it actually makes sense

to perform it if the rolling windows for decomposition and covariance estimation are of

a different size. With Cholesky decomposition, we always use 1000 observations in the

rolling window but only last 250 for calculating historical covariances based on equally

weighted method. This gives us longer time series, thus more observations from which

to draw the quantile we are looking for, but makes it better reflect the current market

conditions.

Even though volatility adjusted is the official name of this method, all historical

volatility-adjusted VaR models here will be called ’Cholesky adjusted’, to indicate that

the adjustment was performed on a risk factor (individual stock) level.

16



Implied Volatility: Can we improve VaR models?

5 Methodology

5.1 Covariance Estimation

The covariance matrices of the returns of stocks that constitutes our portfolio represent

the key component of our VaR models. With parametric VaR, they are used to calculate

the standard deviation of the entire portfolio. On the other hand, with historical, adjusted

VaR by Cholesky decomposition, it is used to refine historical returns with most actual

volatility while, at the same time, not disturbing correlations.

The covariance matrix Σ in our case is 10 × 10 matrix that has variances of stock

returns on the main diagonal and covariances on places other then main diagonal. Thus,

for each covariance matrix, we need to estimate 55 different values: 10 variances and 45

covariances (covariance of returns between stock a and b is identical to the covariance of

returns between stock b and a). Therefore, the covariance matrix Σ can be easily decom-

posed as Σ = V RV where V is 10 × 10 diagonal matrix with 10 different volatilities

on its diagonal, zeros otherwise, and R represents 10 × 10 correlation matrix. Once the

covariance matrix is estimated, we can use the portfolio weights vector w to calculate

variance of our entire portfolio as σ2
p = w′Σw. Throughout this chapter, for the purpose

of plotting and comparing the differences between different estimation methods, we will

assume an equally weighted portfolio.

Several standard methods for covariance calculation are used: equally weighted, ex-

ponentially weighted moving average (EWMA), multivariate dynamic conditional corre-

lation GARCH (DCC GARCH). Moreover, we introduce hybrid implied volatility covari-

ance matrices to check their applicability in the VaR framework.
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5.1.1 Equally Weighted

One of the simplest but still widely used methods is based on assigning the equal weights

to all past observation within defined time frame. Then we use the rolling window of size

T to estimate covariance matrix of i stock returns. The size of the rolling window is arbi-

trary and it needs to reconcile two opposite interests: larger T means more observations

for estimating the value, thus more confidence in the estimation, but consequently makes

forecasted values not properly reflecting the current market conditions. In our case, we

use T = 250 which represents a rolling window size of one calendar year.

As (co)variances are calculated on a daily basis, it is assumed that discounted returns

have an expectation of zero. This gives us the following formula for variance calculation:

σ̂2
i,t = T−1

T∑
k=1

r2
i,t−k . (5.1)

Similarly, we can define the following formula for covariance estimation:

σ̂2
ij,t = T−1

T∑
k=1

ri,t−krj,t−k , (5.2)

which represents the covariance estimate for two stock returns, i and j at time t, based on

the previous T (250) daily returns. Once we have both variances and covariances, we can

derive the following formula for the correlation between two stocks i and j:

ρ̂ij,t = σ̂ij,t
σ̂i,tσ̂j,t

. (5.3)

To plot portfolio standard deviation across time, we use an equally weighted portfolio.

Then, for each day, based on portfolio weights vector w and covariance matrix Σ, we

can obtain time series of forecasted portfolio standard deviations using equally weighted

method with rolling window size of 250 days. Thus, to construct the time series of port-

folio volatility forecasts that starts on 1 January 2007, we use multivariate time series of

stock returns that starts roughly on 1 January 2006.
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Figure 5.1: Portfolio Volatility Forecasting - Equally Weighted Method

5.1.2 EWMA - Exponentially Weighted Moving Average

As clearly seen from figure 5.1, the main issue with the equally weighted method is that

it is not reactive enough and suffer from so called ghost feature. When the extreme ob-

servation drops out from the sample, it is no longer counted. Until then, it was treated

the same way as it occurred last day or last month, as long as it is included in the rolling

window.

As a logical alternative, exponentially weighted moving average method was pro-

posed, where larger weights were assigned to more recent observations and vice versa.

As mentioned by Dowd (2008, 129), "this type of weighting scheme might be justified by

claiming that volatility tends to change over time in a stable way, which is certainly more

reasonable than assuming it to be constant". Thus, EWMA is still considered uncondi-

tional volatility estimation method for the time-series of returns that are assumed to be

i.i.d. and can be used with parametric methods.

To estimate future variance, we use:

σ̂2
t = (1− λ)

∞∑
i=1

λi−1r2
t−i (5.4)
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likewise, for covariance:

σ̂12,t = (1− λ)
∞∑
i=1

λi−1r1,t−ir2,t−i. (5.5)

When performing actual calculations, the above formulas are more useful in their recur-

sive forms:

σ̂2
t = (1− λ)r2

t−1 + λσ̂2
t−1 (5.6)

as well as

σ̂12,t = (1− λ)r1,t−1r2,t−1 + λσ̂12,t−1. (5.7)

Obviously, 0 < λ < 1 represent the smoothing parameter and it is an arbitrary value.

Higher λ gives less weight to recent observations and lower λ does the opposite, thus

make it more reactive.

We use the value proposed in the RiskMetrics – Technical Document, which states that

the optimal parameter is λ = 0.94, when we are dealing with daily returns. Obviously,

the size of the rolling window does not play much of a role here as after some time

observations become statistically insignificant. With λ = 0.94, the weight on the 100th

observation is 0.21%, and on the 250th observation it is only 0.00002%. Nevertheless,

make the initial estimation with 250 past observations and always use all available data.

Thus, the window size gradually increases each day by one. Daily portfolio volatility

estimated using EWMA method is plotted in the figure 5.2.

5.1.3 GARCH - Generalized Autoregressive Conditional

Heteroscedasticity

Moving average models, both equally weighted and EWMA, consider that returns are

independent and identically distributed (i.i.d.). Therefore, forecast of volatility is always

equal to the current estimate, despite the time-horizon we are interested in. Obviously,

this assumption is very unrealistic. Moreover, the EWMA method assumes that the λ

parameter is constant. It implies that it is not responsive to current market conditions and

stays the same whether market is turbulent or we have a calm period. That was the main

motivation for inventing the new method for conditional covariance estimation.

The plain ARCH model was introduced by Engle (1982) and it was later generalized
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Figure 5.2: Portfolio Volatility Forecasting - EWMA

(GARCH) by Bollerslev (1986). After that, a lot of other sub-types were created.

As mentioned by Alexander (2008, a, 131), "the volatility can be higher or lower than

average over the short term but as the forecast horizon increases, the GARCH volatility

forecasts converge to the long term volatility". Moreover, GARCH models are able to

capture volatility clustering.

The most basic GARCH (1,1) model for the conditional volatility can be presented in

the following form:

σ2
t = ω + αε2

t−1 + βσ2
t−1 (5.8)

where we use the following AR(1) process to model the returns:

rt = µ+ ρrt−1 + εt, εt ∼ (0, σ2
t ) (5.9)

under the constraints:

ω > 0, α, β ≥ 0, α + β < 1. (5.10)

Finally, parameters µ, ρ, ω, α and β are estimated by maximizing the (log) likelihood

function.

The basic GARCH (1,1) model implies that the response of the conditional variance

to the negative market shocks is the same as the response to the positive market shocks.
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However, in financial markets, there is a well known phenomenon called the leverage

effect. It means that bad news cause larger volatility increase than good news. The best

way to prove existence of the leverage effect is to observe the correlation between VIX

and S&P500. When markets are performing well, volatility goes down and vice versa,

strong bear market probably means that VIX is skyrocketing. Here we will deal with

symmetric multivariate GARCH models only, however it should be mentioned that there

are several asymmetric versions like A-GARCH, GJR-GARCH and E-GARCH, that are

able to capture the leverage effect.

As GARCH forecasts are applied here with disaggregated historical VaR, we need to

use multivariate GARCH models to obtain covariances. It seems that volatility clustering

has its counterparty in the multivariate world, called the correlation clustering. It is a

known fact that during period of crisis, correlations tend to increase and stay at high levels

for long period of time. There are several multivariate GARCH methods proposed by

Alexander (2008, a), according to the asset class of the instruments, we wish to estimate

the covariance for:

• Constant correlation GARCH (CC-GARCH) and dynamic conditional correlation

(DCC-GARCH) for covariance matrices of FX exchange rates and equity indices.

• Factor GARCH (F-GARCH) for estimating covariance matrices of stocks.

• Orthogonal GARCH (O-GARCH) for estimating covariance matrices of interest

rates or any other like commodity futures.

F-GARCH is able to capture systematic risk only, thus idiosyncratic risk is not included.

Even though F-GARCH was initially proposed for equities, here we use DCC-GARCH

due to the fact that we are interested in total risk.

Since the constant conditional correlation is obviously a very unrealistic assumption,

a new type of model called Dynamic Conditional Correlation (DCC) was introduced by

Engle (2002) and Tse and Tsui (2002), which allows the correlation matrix to be time

varying with the following dynamics:

Σt = VtRtVt , (5.11)

where Vt is a diagonal matrix with conditional volatilities and Rt represents the time

varying correlation matrix. To secure positive semi-definiteness of Rt Engle (2002) pro-
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poses a specific proxy process Qt. Interested readers can check Engle (2002) for more

details.

Again, for the purpose of plotting portfolio volatility, we assign equal portfolio weights

for our ten stocks. The first 500 observations are used to estimate first set of parameters us-

ing maximum likelihood method. Then, after each 22 trading days (roughly one calendar

month), the model is refitted and new set of parameters is obtained. Window size grad-

ually increases until we reach 1000 observations. Afterwards, we keep rolling window

size constant at this level. This methodology will be used again when we perform estima-

tion of portfolio volatility, backtesting and simulation using specific vectors of portfolio

weights.

D
ai

ly
 V

ol
at

ili
ty

2008−01−01 2012−01−01 2016−01−01

0.
01

0.
02

0.
03

0.
04

Portfolio Volatility
Multivariate DCC GARCH

Figure 5.3: Portfolio Volatility Forecasting - DCC GARCH

5.1.4 Hybrid - Implied Volatility

So far, we spoke about implied volatility and implied variance only. However, since

we are dealing with portfolio of stocks and total VaR, thus, more than one risk factor,

we need to fill non-diagonal elements of covariance matrices. There exist, at least to

our knowledge, only two cases when it is possible to derive true implied covariances or

implied correlations from the option prices.

The first one is clearly with foreign exchange (FX) options market, which is liquid
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enough to get critical amount of data. In the review of Campa and Chang (1997) paper,

Allen, Boudoukh, and Saunders (2004: 240) correctly concluded that "given the implied

volatilities of, for example, the USD/GBP, GBP/Euro, and Euro/USD, one could obtain

the USD/GBP and USD/Euro implied volatility as well as the implied correlation between

the two". Unfortunately, the scope of this work does not include FX VaR, thus this method

is not helpful.

Second case is present when we are dealing with options on more than one stock,

such as a spread, quanto, or basket. First, let us write the formula for the variance of the

difference between two stocks, a and b:

σ2
a−b = σ2

a + σ2
b − 2ρa,bσaσb . (5.12)

Now we can rearrange the equation in order to get correlation on the left hand side:

ρa,b = σ2
a + σ2

b − 2σ2
a−b

2σ2
aσ

2
b

. (5.13)

This is the perfect formula for implied correlation between stocks a and b. Unfortunately,

there is one main flaw with this approach. As indicated by Dowd (2005, 141), "in this

particular case, this (formula) means that we need options on a and on b, and also, more

problematically, an option on the difference between a and b (e.g., a spread, quanto or diff

option)". All these options are exotic and, even if they exist, they are traded exclusively

in the over-the-counter (OTC) markets. Therefore, they have very low liquidity and more

important, it is not possible to obtain critical amount of data required for proper estimation

and backtesting. Thus, we need to find alternative way of obtaining implied covariances.

As indicated at the beginning of this section, the covariance matrix Σ can be written

as Σ = V RV , where V is a diagonal matrix with (implied) volatilities on its diago-

nal. Since implied volatilities for single stock options are already obtained, the critical

component is the (implied) correlation matrix R, which is obviously missing. Thus, we

create three hybrid types of covariance matrices with implied volatility diagonal matrix

V and correlation matrices R with (historical) correlations already calculated using well

established methods: equally weighted, EWMA and DCC GARCH.

To make sure that covariance matrices are always estimated using out-of-sample data,

implied volatilities are shifted one day ahead. For instance, to construct hybrid covariance
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Figure 5.4: Portfolio Volatility Forecasting - Hybrid Covariance Matrices
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matrix Σ estimate for June 15, we use correlation matrix based on data available up to

(including) June 14, and diagonal matrix of implied volatilities obtained on June 14.

Ensuring that these hybrid matrices stay positive semi-definite is a concern that we

need to tackle. The positive semi-definiteness property of the covariance matrix Σ is

inherited from its parental correlation matrix R. As long as this correlation matrix R

is positive semi-definite, then the covariance matrix Σ is guaranteed to be positive semi-

definite as well. As all correlation matrices are estimated from historical data, this is not

more of a problem than if the covariance matrices were estimated from historical data

alone.

Even though we are fully aware that these covariance matrices are forward looking in

terms of volatilities, but still backward looking in terms of correlations, this is still our

best guess about future volatility of the portfolio, when multiplied with portfolio weights.

These hybrid matrices will be used to check whether the forward looking component V

is strong enough to improve performance of our VaR models, mainly in terms of p-values

derived from BCP test, which checks for autocorrelation of VaR exceedances.

Here we plot portfolio volatility estimated using all three hybrid covariance matrices

and compare it with the portfolio volatility using standard estimation methods that does

not incorporate implied volatility. As it can be seen from the figure 5.4, it is indicative

that the biggest difference is between portfolio volatility estimated using equally weighted

(rolling window size 250 days) method and hybrid equally weighted/IV model. On the

other hand, EWMA and DCC GARCH graphs are very similar to its hybrid counterparties

that incorporate implied volatility.

Finally, in figure 5.5 we plot the differences between hybrid portfolio volatilities ver-

sus the regular ones. It is interesting to observe that portfolio volatility estimated using

traditional methods that utilize purely historical data is, on average, higher than volatility

estimated using our hybrid covariance matrices that leverage implied volatility from the

options market. This opposes the stylized fact (Eraker, 2009) that implied volatility is,

on average, higher than realized volatility, at least when comparing volatility index such

as VIX with its counterparty, S&P500 index. Moreover, it means that VaR estimated

using hybrid methods is, on average, lower than VaR estimated with other methods, ce-

teris paribus. Thus, less capital has to be devoted for the purpose of covering prospective

losses.
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5.2 Evaluating performance of VaR models

To compare the performance of VaR models, unconditional coverage (Kupiec LR), condi-

tional coverage (Christoffersen), and BCP tests are used. The first two fall into likelihood

ratio tests and the last one is Ljung-Box, which tests for autocorrelation. Statistical tests

however cannot be performed on the actual VaR and returns series. Thus, a backtesting

engine was created, which takes estimated VaR (using out-of-sample data) for each spe-

cific day, and compare it to the actual, realized portfolio return on that date. In case the

portfolio return on specific day is lower than estimated VaR, we count it as an exceedance

and value 1 is assigned, zero otherwise.

If the VaR model is well specified, the number of exceedances is expected to match

the significance level. For instance V aR1,5% is expected to have: 0.05 × 252 ≈ 12.6 ex-

ceedances per calendar year. Large deviations from that number will reject the assumption

that the model is correct.

Moreover, we also tend to avoid exceedence clustering. If VaR exceedances are clus-

tered, statistical tests (like Kupiec LR) that are not considering autocorrelation might

show good performance, while the actual risk might be underestimated. Good perform-

ing models are able to handle this issue as well.

Backtesting is performed based on a 10-year period (2007-2016) with daily frequency,

thus 2518 observations (trading days) in total. We calculate p-values based on statistical

tests for each calendar year and for the entire period as a whole. Each VaR model is

backtested for three significance levels: 0.01, 0.05 and 0.1.

5.2.1 Unconditional Coverage (UC) Test

The unconditional coverage test introduced by Kupiec (1995) is a likelihood ratio test

based on the number of exceedances where the indicator function is represented by:

Iα,t+1 =


1, if rt+1 < V aR1,α,t

0, otherwise.
.
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Now the null and alternative hypotheses are being defined as follows:

H0 : E(Xn,α) = n(1− α)

H1 : E(Xn,α) 6= n(1− α) ,

where Xn,α is a number of successes (each day when indicator function has a value of 0

and VaR is not exceeded).

The test statistic is calculated by:

LRuc =
πn1
exp(1− πexp)n0

πn1
obs(1− πobs)n0

, (5.14)

where πexp is the expected proportion of exceedances, πobs is the realized proportion of

exceedances, n1 is the observed number of exceedances and n0 is the number of days

when there was no exceedance.

The distribution of test statistic under the null hypothesis is: −2ln(LRuc) ∼ χ2(1df).

If the null hypothesis is not rejected, it is assumed that the model is well specified. In

other words, the expected number of exceedances matches the realized number of ex-

ceedances, under the specific significance level.

5.2.2 Conditional Coverage (CC) Test

This test proposed by Christoffersen (1998) summarises unconditional coverage and in-

dependence test into one unique test. It checks for exceedance rate and independence rate

at the same time.

The null and alternative hypotheses are defined as follows:

Ho : π(exp) = π(obs) and π(n11) = π(n01)× π(n10)

H1 : π(exp) 6= π(obs) or π(n11) 6= π(n01)× π(n10) .
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The test statistic is calculated by:

LRcc =
πn1
exp(1− πexp)n0

πn01
01 (1− π01)n00πn11

11 (1− π11)n10
. (5.15)

Under the null hypothesis, the test statistic is distributed: −2ln(LRcc) ∼ χ2(2df).

If the null hypothesis is not rejected, it can be assumed that the expected number of

exceedances matches the realized number of exceedances and that there is no first order

autocorrelation of exceedances.

5.2.3 Berkowitz, Christoffersen and Pelletier (BCP) Test

The main downside of conditional coverage test is that it tests for the first order autocor-

relation of exceedances only.

Thus, we use Berkowitz, Christoffersen and Pelletier (2009) test that checks for first

K autocorrelations of exceedances. The test statistic is specified as per following:

BCP (K) = T (T + 2)
K∑
k=1

ρ̂2
k

T − k
, (5.16)

where:

• ρ̂2
k = Corr(It,α − α, It+k − α) is the kth lag sample autocorrelation of the series

It,α

• Iα,t+1 =


1, if yt+1 < V aR1,α,t

0, otherwise.
is the exceedance indicator

• K is the maximum autocorrelation lag considered in the test

• T is the sample size

If our model is well specified, autocorrelation coefficients should be statistically in-

significant at all lags. Therefore, the null and alternative hypotheses are defined as fol-

lows:

Ho : ρk = 0,∀k

H1 : ρk 6= 0,∃k .
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Under the null hypothesis, the test statistic is distributed: BCP (K) ∼ χ2
K .

K is the arbitrary parameter which should reconcile trade-off between detecting non-

independence presence at higher-order lags on one hand, and the power of the test (less

degrees of freedom in the distribution of the test statistic) on the other. In this work, we

shall use values between 1 and 5, thus five different statistical tests and p-values will be

generated.
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6 Backtesting Results

VaR models are evaluated based on the portfolio that consists of ten stocks. Specific

weights must be chosen in order to generate time series of portfolio returns, estimate

degrees of freedom for Student’s t-distribution (related to parametric VaR), perform VaR

estimation, backtest the models, and finally evaluate results. As indicated earlier, we

report dynamic VaR, thus it is assumed that portfolio weights are not changed over time

and portfolio is constantly rebalanced to keep them at constant levels.

To avoid any bias in the results, we choose an equally weighted portfolio. Thus, each

stock has been assigned a weight of 10%. Now that the vector of portfolio weights is

selected, portfolio returns are calculated for the entire backtesting period and beyond, all

the way from 2001 to 2016. As shown in Section 4, for historical adjusted VaR with

rolling window of size 1,000 (trading days) and with at least 250 observations to have

meaningful estimation of covariance matrices, we need 5 years of additional data that

precedes the start of the backtesting period.

VaR is estimated based on eight parametric and seven historical models, and then com-

pared with the actual portfolio returns. Evaluation results such as number of exceedances

and p-values from statistical tests for three significance levels: 0.01, 0.05 and 0.1, can be

seen in the tables below.

It is worth mentioning that the results presented here treat the period 2007 - 2016

as a whole. Thus, the period of 2008-2009 financial crisis is included, which obviously

deteriorates the performance of most models. In fact, there are some models which easily

pass statistical tests for each individual year, even the years of crisis, but fail when evalu-

ated on the entire sample of 2518 trading days. For full evaluation, we therefore provide

Appendix A with complete backtesting results for each specific year between 2007 and

2016, as well as graphs with marked exceedances.
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Cells in the tables below are formatted conditionally, based on the p-values. In case

the p-value is above 0.05, it is marked with green color. On the other hand, if the p-value

is between 0.01 and 0.05, cell is marked with yellow. Finally, cells with p-values lower

than 0.01 have a white background.

6.1 VaR Backtesting, Alpha = 1%

For significance level 0.01 and sample size 2518, expected number of VaR exceedances is

25. Even though this is not the official statistical test, our starting point will always be to

compare the actual number of exceedances with the expected. Obviously, all parametric

normal VaR models, as well as Student’s t with equally weighted covariance estimation

method, fail to pass the most basic UC and CC tests, due to much greater number of VaR

exceedances than expected.

On the other hand, three parametric models with t-distribution are able to pass UC and

CC test, although with p-values higher than 0.01 but not than 0.05: IV/Equally Weighted,

EWMA and IV/EWMA. Out of those three, the two models that incorporate implied

volatility are able to pass BCP tests at all lags up to five, IV/EWMA does it with p-values

significantly higher than 0.05.

Table 6.1: VaR Models Backtesting, Alpha = 0.01

Models Exceeds UC
pvalue

CC
pvalue

BCP L1
pvalue

BCP L2
pvalue

BCP L3
pvalue

BCP L4
pvalue

BCP L5
pvalue

Parametric VaR
Normal-Eqw 58 0.000 0.000 0.557 0.000 0.000 0.000 0.000
Std t-EqW 46 0.000 0.001 0.197 0.000 0.000 0.000 0.000
Normal-IV/Eqw 47 0.000 0.000 0.222 0.001 0.004 0.011 0.022
Std t-IV/EqW 37 0.027 0.026 0.045 0.018 0.035 0.057 0.083
Normal-EWMA 53 0.000 0.000 0.068 0.004 0.006 0.015 0.019
Std t-EWMA 38 0.017 0.019 0.056 0.000 0.000 0.000 0.000
Normal-IV/EWMA 55 0.000 0.000 0.851 0.745 0.891 0.956 0.859
Std t-IV/EWMA 36 0.042 0.105 0.492 0.624 0.703 0.746 0.780

Historical VaR
No Adjustment 41 0.004 0.006 0.097 0.000 0.000 0.000 0.000
EqW Adjusted 34 0.094 0.056 0.021 0.000 0.000 0.000 0.000
IV/EqW Adjusted 34 0.094 0.056 0.021 0.005 0.011 0.021 0.034
EWMA Adjusted 26 0.870 0.089 0.001 0.000 0.000 0.000 0.000
IV/EWMA Adjusted 34 0.094 0.056 0.021 0.005 0.011 0.021 0.034
GARCH Adjusted 30 0.349 0.097 0.005 0.000 0.000 0.000 0.000
IV/GARCH Adjusted 31 0.261 0.089 0.008 0.001 0.002 0.000 0.000

When it comes to adjusted historical VaR, exceedances are between 26 - 34 which

indicates that models slightly underestimate VaR, but still perform better than the para-

metric ones, at least regarding the actual number of exceedances. Both UC and CC test
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p-values are above 0.05 for all six volatility adjusted models.

Regarding BCP test p-values, results are not encouraging. Only IV/Equally Weighted

and IV/EWMA have some p-values above 0.01, but still evidently lower than 0.05. Even

though both models comes from the hybrid implied volatility family, this represents just

a marginal improvement and we cannot make any meaningful conclusions.

As it can be seen in the Appendix A where a full evaluation of the results is presented,

significance level of 1% is not so thankful for BCP test as a lot of NA values are gener-

ated. In cases where zero or only one exceedance is recorded in a specific year, the test

statistic cannot be calculated. Additionally, estimating autocorrelation coefficients based

on roughly 25 or 30 observations can be misleading. Thus, BCP results will be more

meaningful when we switch to significance levels of 5% and 10%.

6.2 VaR Backtesting, Alpha = 5%

At significance level of 0.05, we expect to have 126 exceedances. Out of the parametric

models, the ones which use normal distribution now perform better than the ones which

use Student’s t distribution to model the distribution of returns. When it comes to p-values

from UC and CC tests, best results are provided by normal hybrid IV/EqW and hybrid

IV/EWMA, although regular normal EWMA also pass the test with p-values over 0.05

and slightly higher number of exceedances.

Table 6.2: VaR Models Backtesting, Alpha = 0.05

Models Exceeds UC
pvalue

CC
pvalue

BCP L1
pvalue

BCP L2
pvalue

BCP L3
pvalue

BCP L4
pvalue

BCP L5
pvalue

Parametric VaR
Normal-Eqw 145 0.088 0.037 0.038 0.000 0.000 0.000 0.000
Std t-EqW 176 0.000 0.000 0.008 0.000 0.000 0.000 0.000
Normal-IV/Eqw 139 0.238 0.482 0.796 0.000 0.001 0.000 0.001
Std t-IV/EqW 167 0.000 0.001 0.347 0.025 0.058 0.003 0.008
Normal-EWMA 145 0.088 0.155 0.387 0.004 0.013 0.000 0.000
Std t-EWMA 172 0.000 0.000 0.813 0.074 0.138 0.000 0.001
Normal-IV/EWMA 139 0.238 0.401 0.522 0.016 0.034 0.002 0.005
Std t-IV/EWMA 170 0.000 0.001 0.879 0.026 0.062 0.073 0.127

Historical VaR
No Adjustment 155 0.010 0.008 0.060 0.000 0.000 0.000 0.000
EqW Adjusted 146 0.073 0.035 0.043 0.000 0.000 0.000 0.000
IV/EqW Adjusted 134 0.463 0.688 0.654 0.023 0.044 0.004 0.004
EWMA Adjusted 116 0.359 0.630 0.767 0.000 0.001 0.000 0.000
IV/EWMA Adjusted 132 0.580 0.858 0.975 0.018 0.024 0.004 0.003
GARCH Adjusted 138 0.276 0.254 0.186 0.000 0.000 0.000 0.000
IV/GARCH Adjusted 142 0.149 0.272 0.456 0.248 0.257 0.004 0.005

Out of the models that are able to pass UC and CC test, the best performing one in
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terms of BCP test results is the normal IV/EWMA. However, it has p-values higher than

0.01, but not than 0.05. Moreover, these p-values are valid only up to the lag three. Thus,

out of our parametric models, there does not exist one that is able to pass both UC and

CC test, as well as BCP test, up to lag five.

Historical adjusted models again show slightly better performance comparing to the

parametric ones, in terms of number of exceedances, which is now between 116 - 146.

When it comes to BCP test results, at least up to lag three, IV/GARCH model performs

better comparing to other models. Moreover, two other hybrid IV models have p-values

higher than 0.01, but still under the 0.05 threshold. Unfortunately, at lags higher than

three, we do not have any model that is able to pass BCP test.

6.3 VaR Backtesting, Alpha = 10%

Finally, we check the performance of VaR models at 0.1 significance level. The expected

number of exceedances, considering the number of observations in the sample, is 252.

Still, when it comes to parametric models, normal ones show better performance than

Student’s t, latter obviously underestimating VaR. The best performing parametric model

is the normal hybrid IV/EWMA, which is able to pass UC, CC, and all BCP tests up to

lag five, with p-values significantly higher than 0.05.

Table 6.3: VaR Models Backtesting, Alpha = 0.1

Models Exceeds UC
pvalue

CC
pvalue

BCP L1
pvalue

BCP L2
pvalue

BCP L3
pvalue

BCP L4
pvalue

BCP L5
pvalue

Parametric VaR
Normal-Eqw 223 0.052 0.003 0.002 0.000 0.000 0.000 0.000
Std t-EqW 284 0.036 0.005 0.010 0.000 0.000 0.000 0.000
Normal-IV/Eqw 231 0.162 0.303 0.503 0.028 0.006 0.002 0.004
Std t-IV/EqW 290 0.013 0.044 0.756 0.016 0.002 0.000 0.000
Normal-EWMA 243 0.557 0.715 0.574 0.002 0.002 0.000 0.001
Std t-EWMA 303 0.001 0.004 0.618 0.007 0.004 0.001 0.001
Normal-IV/EWMA 229 0.125 0.307 0.968 0.225 0.354 0.244 0.342
Std t-IV/EWMA 301 0.001 0.006 0.722 0.043 0.033 0.014 0.028

Historical VaR
No Adjustment 263 0.460 0.031 0.008 0.000 0.000 0.000 0.000
EqW Adjusted 249 0.852 0.032 0.006 0.000 0.000 0.000 0.000
IV/EqW Adjusted 252 0.989 0.349 0.134 0.006 0.002 0.000 0.001
EWMA Adjusted 231 0.162 0.343 0.667 0.004 0.001 0.000 0.001
IV/EWMA Adjusted 242 0.513 0.265 0.122 0.025 0.043 0.023 0.041
GARCH Adjusted 240 0.430 0.287 0.157 0.000 0.000 0.000 0.000
IV/GARCH Adjusted 262 0.501 0.391 0.221 0.006 0.005 0.001 0.002

Once again, historical volatility-adjusted models show slightly better performance re-

garding number of exceedances, which is in the range of 231 - 263. When it comes to
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BCP test results, IV/EWMA is the only one which has p-values higher than 0.01 at all

lags up to five. Unfortunately, except at lag one, these p-values are not exceeding 0.05.

The results presented here show that in certain cases hybrid models that incorporate

implied volatility indeed show some improvement, when compared to its counterparties

that use pure historical data. This improvement is mostly reflected in the marginal increase

of the BCP test p-values, except in the case of hybrid Student’s t IV/EWMA at 1% VaR,

and hybrid normal IV/EWMA at 10% VaR, when this improvement is more obvious. On

the other hand, when it comes to UC and CC p-values, there is no clear difference between

the models, mainly because all volatility adjusted models, both standard and hybrid ones,

are able to pass these tests without any problems.

This means that the main advantage of hybrid implied volatility models could be in

the reduction of VaR exceedance clustering. As implied volatility represents the forward

looking measure, exceedance clustering is the area where we indeed expect to observe the

largest improvement.

However, we need to be aware that the results presented here are specific just for one

single portfolio, with equal portfolio weights. Thus, we need to find the way to check

stability of these results and robustness of our models in case that some other portfolio is

used. Moreover, we are interested to verify whether the increase in BCP p-values is just

marginal as seen here, a bit more significant, or does not exist at all.

That is the main motivation to proceed further with this research, and jump into the

next section dedicated for portfolio weights simulation.
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7 Portfolio Weights Simulation

So far we backtested and compared VaR models using one specific, equally weighted

portfolio consisting of ten stocks, (AAPL, AMZN, BAC, F, GE, INTC, KO, MSFT, PFE,

T). Therefore, VaR models evaluation results from the previous section such as the num-

ber of exceedances, or p-values generated from UC, CC and BCP tests, are valid for this

specific vector of portfolio weights where each element is equal to 0.1.

Here, a different approach will be used to generate portfolio weights. First, we will use

the set.seed() function to assign seed for random number generator, specific to each

single simulation. Then, weights will be randomly drawn from the normal distribution

with mean 0.1 and standard deviation 0.05. In order to secure that portfolio weights sum

up to one, the weight on last stock w10 will be calculated as 1−∑9
k=1 wk.

7.1 Algorithm

In order to check robustness of created VaR models and stability of results, additional

500 portfolios are simulated by iterating seed from 1 to 500. The following algorithm is

used to perform portfolio weights simulation and evaluation of VaR models robustness

and stability:

1. Select subset of the VaR models that will be used for simulations.

2. Generate list of 500 vectors with length 10, each containing randomly generated

portfolio weights. Weights are drawn from the normal distribution with mean 0.1

and standard deviation 0.05.

3. For each vector of portfolio weights, create time-series of portfolio returns with

daily frequency, based on realized returns (2007-2016) of specific stocks that con-

stitutes the portfolio. Thus, list of 500 different time-series of portfolio returns is
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created.

4. For each time-series of portfolio returns, estimate 1-day VaR (2007-2016) using

out-of-sample data, for three significance levels: 0.01, 0.05, 0.1.

5. Calculate summary statistics based on 500 simulations (median p-value for UC, CC,

BCP, average number of exceedances, cumulative % simulations that fall below

expected number of exceedances) for each significance level and model from the

subset.

6. Select best performing model(s), evaluate its robustness and plot results.

Here, we plot the first 100 simulations to observe how portfolio weights are shaked, based

on step 2 of the proposed algorithm. The exceedances below zero and above one, as well

as white areas on the graph, means that some weights are negative. Thus, certain stocks

are sometimes shorted and leverage is used to invest more funds in other stocks, however

the total sum of weights always equals one.
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Figure 7.1: Portfolio Weights Simulation - First 100 Seeds
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7.2 Simulation Results

As there was a lot of variation in the performance of parametric models (normal vs. Stu-

dent’s t) depending on VaR significance level, here we perform simulation based on the

following six models that are free of any distributional assumptions:

• Historical (Cholesky Adjusted - Equally Weighted) VaR

• Historical (Cholesky Adjusted - Implied Vol / Equally Weighted) VaR

• Historical (Cholesky Adjusted - EWMA) VaR

• Historical (Cholesky Adjusted - Implied Vol / EWMA) VaR

• Historical (Cholesky Adjusted - DCC GARCH) VaR

• Historical (Cholesky Adjusted - Implied Vol / DCC GARCH) VaR

Similarly to the tabular comparison from the previous chapter, same values are reported

but now as an agregated statistics: average number of exceedances and median p-values

from UC, CC and BCP tests at lags one to five. Since we expect that number of ex-

ceedances has symmetrical distribution, mean value is reported. As for p-values from

statistical tests, expected distribution is right skewed. Thus, more appropriate measure is

the median since just a few outliers could easily push the mean above the threshold of

0.01 or 0.05. Moreover, we can easily observe whether at least at half of the simulations,

our model is able to pass the statistical test.

Based on these summary statistical measures, we see that at 0.05 and 0.1 significance

level, results slightly improved when compared to the ones from the previous section,

where we analysed only one specific portfolio. Models that incorporate implied volatility

to a certain extent perform better than the others without this innovation.

At 5% VaR, IV/Equally Weighted, IV/EWMA and IV/GARCH models passed all

statistical tests on at least half of the simulations. Regular GARCH and Equally Weighted

models passed BCP tests only up to the lag one and EWMA did not passed UC test,

mainly due to the average number of exceedances lower than expected.

Regarding 10% VaR, again the best model is IV/EWMA, followed by IV/GARCH

and IV/Equally Weighted. Other models are also able to pass UC and CC tests and BCP

but only up to the lag one.
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Table 7.1: Portfolio Weights Simulation - Summary Statistics

Models Exceeds
Mean

UC
p-value
Median

CC
p-value
Median

BCP1
p-value
Median

BCP2
p-value
Median

BCP3
p-value
Median

BCP4
p-value
Median

BCP5
p-value
Median

VaR, Alpha = 0.01
EqW Adjusted 15.7 0.027 0.012 0.001 0.000 0.000 0.000 0.000
IV/EqW Adjusted 12.0 0.001 0.000 0.000 0.000 0.000 0.000 0.000
EWMA Adjusted 11.5 0.001 0.000 0.000 0.000 0.000 0.000 0.000
IV/EWMA Adjusted 10.9 0.001 0.000 0.000 0.000 0.001 0.004 0.007
GARCH Adjusted 14.5 0.027 0.002 0.000 0.000 0.000 0.000 0.000
IV/GARCH Adjusted 13.0 0.003 0.000 0.000 0.000 0.000 0.000 0.000

VaR, Alpha = 0.05
EqW Adjusted 115.4 0.196 0.058 0.069 0.000 0.000 0.000 0.000
IV/EqW Adjusted 107.1 0.094 0.203 0.690 0.053 0.084 0.030 0.041
EWMA Adjusted 92.2 0.002 0.005 0.291 0.001 0.003 0.000 0.001
IV/EWMA Adjusted 99.6 0.014 0.049 0.702 0.247 0.388 0.199 0.189
GARCH Adjusted 107.9 0.105 0.082 0.161 0.000 0.000 0.000 0.000
IV/GARCH Adjusted 113.5 0.175 0.331 0.651 0.132 0.177 0.047 0.055

VaR, Alpha = 0.1
EqW Adjusted 249.3 0.321 0.018 0.008 0.000 0.000 0.000 0.000
IV/EqW Adjusted 253.9 0.207 0.152 0.217 0.016 0.009 0.003 0.005
EWMA Adjusted 229.8 0.125 0.159 0.356 0.006 0.003 0.001 0.001
IV/EWMA Adjusted 241.9 0.232 0.200 0.315 0.075 0.102 0.064 0.061
GARCH Adjusted 253.1 0.289 0.118 0.108 0.000 0.000 0.000 0.000
IV/GARCH Adjusted 262.7 0.142 0.155 0.259 0.025 0.014 0.006 0.009

Unfortunately, at 1% VaR, with at least half of the simulations, models did not pass

the threshold. With CC and especially UC test, the reason is obvious. Models are too

conservative as the mean of exceedances is much lower than expected 25. With median

p-values from BCP tests, most of the values are zero or very close to it. Thus we cannot

make proper comparison of the models.

Even though portfolio weights simulation for 5% and 10% VaR gives strong evidence

that implied volatility models perform better than its peers, we should still be careful with

the interpretation of the summary p-values of statistical tests, even we decided to use the

median instead of the mean. To be on the safe side here, we decide to show cumulatively

how many times, out of 500 simulations, our models are able to pass statistical tests at

0.01 significance. This will also help us to better anticipate the differences between the

models for 1% VaR, as there were a lot of zero median p-values, which are obviously

incomparable.

As the differences between models for 5% and 10% VaR are already interpreted, we

shall focus our attention to number of null-hypothesis non-rejections at 1% VaR. Finally

we have enough data to make proper comparison of the models. Regarding UC and CC

test, highest passing rate has Equally Weighted model. When it comes to BCP, the best

model is once again Implied Volatility / EWMA, as it is able to capture exceedances at

40



Implied Volatility: Can we improve VaR models?

lags higher than one, in roughly 40%− 45% of the total number of simulations.

Again, we use conditional formatting to emphasize the differences. Values above 400

represent more than 80% of the total number of simulations, and are thus marked with

green. On the other hand, we use yellow color to present values between 250 and 400

which is the range of 50-80%. Finally, light yellow is used for those cases when the

number of simulations that pass statistical test at 0.01 significance is between 100 and

250, which in percentage terms represents the range between 20% and 50%.

Table 7.2: Portfolio Weights Simulation - Non-Rejections of Null Hypothesis at 0.01 (out
of 500)

Models UC Non-
Rejects

CC Non-
Rejects

BCP1
Non-

Rejects

BCP2
Non-

Rejects

BCP3
Non-

Rejects

BCP4
Non-

Rejects

BCP5
Non-

Rejects

VaR, Alpha = 0.01
Equally Weighted 315 257 140 21 21 22 22
IV/Equally Weighted 182 88 101 98 107 110 113
EWMA 158 39 122 90 91 91 95
IV/EWMA 145 90 201 207 224 227 246
DCC GARCH 298 146 46 40 61 52 61
IV/DCC GARCH 213 106 90 90 99 100 108

VaR, Alpha = 0.05
Equally Weighted 396 358 409 2 2 1 0
IV/Equally Weighted 341 368 499 391 417 346 378
EWMA 196 214 482 119 172 76 96
IV/EWMA 272 316 497 471 481 458 456
DCC GARCH 345 348 472 64 75 10 16
IV/DCC GARCH 381 399 499 452 470 362 389

VaR, Alpha = 0.1
Equally Weighted 422 300 225 0 0 0 0
IV/Equally Weighted 397 406 497 296 230 135 184
EWMA 372 384 499 204 161 70 89
IV/EWMA 382 401 498 427 458 423 438
DCC GARCH 415 407 473 11 2 0 0
IV/DCC GARCH 372 385 499 349 277 187 235

One remark must be made here as there are some simulations that produce NA p-value

for BCP tests at 0.01 significance. When this occur, such observation is removed from

the sample and not counted. This approach might be conservative since NA value means

that there is zero or only one exceedance, thus obviously there cannot be autocorrelation

of exceedances. However, there are only a few such cases (out of 500) so counting NA as

a failure will not create large negative bias in our results.

Even though in the previous section we mostly observed just the marginal increase of

BCP test p-values, after performing several hundred simulations we can be confident that

models which incorporate implied volatility adjustment are indeed better in avoiding VaR

exceedance clustering.

The main problem of the methods which use historical volatility is that they are al-
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ways somewhat slow to pick up changes in market conditions, since they are backward

looking. On the other hand, implied volatility being forward looking, is expected to per-

form better in the area of exceedance clustering reduction, and this claim was backed by

the simulation results.

When it comes to UC and CC test, most of the volatility adjusted models at 5% and

10% VaR do not have a problem with passing them. Moreover, there is no obvious differ-

ence between the hybrid models and the regular ones. At 1% significance, both types of

models are conservative and overestimating VaR. Thus, we cannot claim that there exists

any difference between the models, when the number of exceedances is considered as the

criteria for comparison.

Again, we invite the reader to check complete simulation results that are provided in

the Appendix B.
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8 Conclusion

The main purpose of this work was to investigate whether the current covariance esti-

mation and forecasting methods within Value-at-Risk framework could be improved, by

incorporating implied volatility data obtained from the options market. If the implied

volatility is indeed a true forward looking measure, then VaR exceedance clustering re-

duction is the area where it is most likely to get some improvement.

Each time we estimate variances and covariances, we need to decide how reactive

our model should be. On one hand, slow reactive methods like equally weighted which

assumes unconditional variance within defined window size, gives us smooth forecasts

and we can extract some general knowledge about the underlying process. Unfortunately,

during turbulent periods when we desperately need to have good forecasts, it shows poor

performance because it cannot adapt to turbulent market conditions quickly enough.

On the other hand, more reactive models like EWMA and GARCH, of which the latter

assumes conditional variance, are more closely following current regime of the market.

By choosing parameters like λ for EWMA, we decide how reactive we wish our model

to be. This parameter is obviously arbitrary. Even with GARCH models which use maxi-

mum likelihood to estimate optimal values for parameters, by choosing size of the rolling

window and how often we refit the model, we implicitly determine how reactive it would

be. Thus, we are always exposed to model risk. The nice thing about implied volatilities

is that we do not need to make any assumptions in that sense. Implied volatility always

represents some general market consensus about the future volatility of the underlying

asset, until the options expiry date.

As this research is based on portfolio of ten (obviously) correlated stocks from the US

market, vector of implied volatilities with these stocks as the underlyings was not enough.

We had to find the way to fill non-diagonal elements of implied covariance matrices. True

implied covariances are available only with FX options and exotic options with two (or
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more) stocks as an underlying. None of these two are applicable to this work. Thus, new

hybrid type of covariance matrix was created, based on implied volatilities and historical

correlations.

To summarize this part, we use three types of traditional covariance estimation meth-

ods: equally weighted, EWMA and DCC GARCH. Additionally, correlations were iso-

lated from these well know methods and combined with implied volatilities, to create

three new types of hybrid covariance matrices: IV/equally weighted, IV/EWMA and

IV/DCC GARCH. Thus, in total we have six different covariance matrix estimation tech-

niques.

Equally weighted, IV/equally weighted, EWMA and IV/EWMA were used with para-

metric (normal and Student’s t) VaR to estimate volatility of the entire portfolio. Multi-

variate DCC GARCH and IV/DCC GARCH were added when it comes to refining his-

torical returns using Cholesky decomposition method.

Short remark must be made whether implied volatility should be used or not with

parametric VaR. Implied volatility was derived by inverting Black-Sholes formula which

assumes constant volatility, obviously wrong due to the volatility smile effect. However,

since we are always obtaining IV derived from ATM options, thus from one specific point

on the volatility smile, we can consider implied volatility unconditional and use it with

parametric VaR models, which is not the case with GARCH method.

As part of evaluation process, equal weights were assigned to stocks that constitutes

the portfolio and time-series of portfolio returns was created based on the actual daily

returns within 10-year period (2007-2016). Value-at-Risk was estimated using out-of-

sample data with eight parametric (normal and Student’s t) and seven historical (no ad-

justment and Cholesky decomposition adjusted) models and confronted with the actual

time-series of realized portfolio returns.

We backtested and compared VaR models that use purely historical data and well

known volatility estimation methods, with its peers that incorporate implied volatility

adjustment. Statistical tests were performed on a 10-year period as a whole, but also

separately for each year. As 1-day VaR is estimated, we use daily frequency and three

significance levels: 0.01, 0.05 and 0.1.

Results showed mostly marginal improvement of BCP statistical test p-values for hy-

brid models that use implied volatility, usually at lags higher than one. This indicates that
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the main contribution of hybrid models, if proved significant, lies in the reduction of VaR

exceedance clustering at higher lags, as it was our initial assumption.

At 1% VaR, the best performing model was the parametric Student’s t IV/EWMA,

which was able to pass BCP test at all lags with p-values significantly higher than 0.05.

On the other hand, at 5% significance VaR, the model that showed the highest p-values

was the historical volatility adjusted IV/GARCH, although only up to lag three. Finally,

at 10% VaR, parametric normal IV/EWMA was superior comparing to others as it has

BCP p-values higher than 0.05 at all lags up to five.

When it comes to UC and CC test p-values, we have not observed any meaningful

difference between the models that use standard covariance estimation methods and the

hybrid ones that incorporate implied volatility. The reason is mainly because most of the

historical volatility adjusted models that use purely historical data already showed solid

performance, thus there was not much space for improvement.

These statistical test results were generated based on one specific vector of equal port-

folio weights. Thus, a simulation of portfolio weights was performed by generating 500

different time-series of portfolio returns. BCP test results significantly improved when

compared to the previous section where only one portfolio was observed. On the other

hand, UC and CC test results were mostly consistent with the equally weighted portfolio.

For VaR 5% and 10%, IV/EWMA was able to pass UC and CC tests at 0.01 signifi-

cance at more than 50% of the total number of simulations. When it comes to BCP test

results are much better, IV/EWMA model was able to pass tests (from lag 1 to lag 5) at

roughly 90% of all simulations.

For VaR 1%, best results with UC and CC test are present with historical adjusted

equally weighted method, mainly because other models are too conservative. However,

when it comes to BCP test, IV/EWMA is again dominant when compared to others, with

passing rate between 40% - 45% of the total number of simulations.

This gives us enough confidence that when it comes to VaR exceedance clustering, our

hybrid models are indeed, on average, better than its counterparties that does not incor-

porate the implied volatility innovation. Moreover, we have not observed any significant

change in p-values derived from UC and CC tests. This indicates that hybrid models are

reducing exceedance clustering, but not at the expense of some other parameters, such as

the total number of VaR exceedances.
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A possible extension of this work could be to combine implied volatility with other

types of multivariate GARCH covariance estimation methods such as orthogonal GARCH

(O-GARCH) or factor GARCH (F-GARCH). Also, instead of using λ = 0.94 with

EWMA method as proposed by RiskMetrics1, one could use some other parameter value

set for λ.

Moreover, this work uses ATM options with nearest expiration. It would be interesting

to observe the results when implied volatility is taken from some other section of volatility

surface, for instance from deep out-of-the money put options with longer expiration.

11996 RiskMetricsTM Technical Document
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A Appendix: Backtesting Results

Backtesting results for the following models:

1. Equally Weighted (n=250), Parametric (Normal) Total VaR

2. Equally Weighted (n=250), Parametric (Student-t) Total VaR

3. Implied Vol / Equally Weighted (n=250), Parametric (Normal) Total VaR

4. Implied Vol / Equally Weighted (n=250), Parametric (Student-t) Total VaR

5. EWMA (Lambda = 0.94), Parametric (Normal) Total VaR

6. EWMA (Lambda = 0.94), Parametric (Student-t) Total VaR

7. Implied Vol / EWMA (Lambda = 0.94), Parametric (Normal) Total VaR

8. Implied Vol / EWMA (Lambda = 0.94), Parametric (Student-t) Total VaR

9. Historical (No Adjustment) VaR

10. Historical (Cholesky - Equally Weighted) VaR

11. Historical (Cholesky - Implied Vol / Equally Weighted) VaR

12. Historical (Cholesky - EWMA 0.94) VaR

13. Historical (Cholesky - Implied Vol / EWMA 0.94) VaR

14. Historical (Cholesky - DCC GARCH) VaR

15. Historical (Cholesky - Implied Vol / DCC GARCH) VaR

Backtest period: 01-01-2007 / 31-12-2016 (10-years)

Significance levels: 0.01, 0.05, 0.10

Portfolio Weights (Equally Weighted Portfolio):

AAPL AMZN BAC F GE INTC KO MSFT PFE T

0.10000 0.10000 0.10000 0.10000 0.10000 0.10000 0.10000 0.10000 0.10000 0.10000
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Figure A.1: Equally Weighted (n=250), Parametric (Normal) Total VaR
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Implied Volatility: Can we improve VaR models?

Table A.1: Equally Weighted (n=250), Parametric (Normal) Total VaR

Year UC pvalue CC pvalue BCP L1
pvalue

BCP L2
pvalue

BCP L3
pvalue

BCP L4
pvalue

BCP L5
pvalue

Alpha = 1%
2007 0.001 0.004 0.552 0.387 0.329 0.011 0.013
2008 0.000 0.000 0.311 0.273 0.452 0.616 0.494
2009 0.273 0.546 0.949 0.996 1.000 1.000 1.000
2010 0.166 0.346 0.746 0.899 0.956 0.980 0.991
2011 0.006 0.017 0.599 0.000 0.000 0.000 0.000
2012 0.278 0.553 0.949 0.996 1.000 1.000 1.000
2013 0.273 0.546 0.949 0.996 1.000 1.000 1.000
2014 0.061 0.150 0.696 0.857 0.927 0.961 0.978
2015 0.061 0.003 0.000 0.000 0.000 0.000 0.000
2016 0.061 0.150 0.696 0.060 0.123 0.021 0.039
ALL 0.000 0.000 0.557 0.000 0.000 0.000 0.000

Alpha = 5%
2007 0.081 0.046 0.190 0.157 0.028 0.026 0.047
2008 0.000 0.000 0.648 0.477 0.087 0.049 0.026
2009 0.001 0.004 0.847 0.963 0.990 0.997 0.999
2010 0.637 0.540 0.464 0.054 0.091 0.132 0.174
2011 0.014 0.035 0.394 0.485 0.278 0.162 0.109
2012 0.004 0.016 0.795 0.934 0.977 0.991 0.011
2013 0.274 0.330 0.213 0.004 0.005 0.011 0.020
2014 0.141 0.124 0.102 0.000 0.001 0.000 0.000
2015 0.345 0.414 0.296 0.579 0.778 0.704 0.825
2016 0.155 0.181 0.125 0.094 0.069 0.047 0.079
ALL 0.088 0.037 0.038 0.000 0.000 0.000 0.000

Alpha = 10%
2007 0.422 0.706 0.821 0.257 0.147 0.092 0.152
2008 0.000 0.000 0.749 0.947 0.781 0.846 0.921
2009 0.000 0.000 0.647 0.810 0.261 0.108 0.167
2010 0.175 0.355 0.610 0.058 0.053 0.094 0.078
2011 0.238 0.401 0.491 0.626 0.544 0.235 0.323
2012 0.000 0.000 0.645 0.808 0.887 0.930 0.491
2013 0.021 0.071 0.907 0.456 0.373 0.381 0.384
2014 0.326 0.416 0.354 0.067 0.052 0.000 0.000
2015 0.867 0.131 0.024 0.049 0.103 0.122 0.194
2016 0.002 0.002 0.039 0.014 0.005 0.001 0.002
ALL 0.052 0.003 0.002 0.000 0.000 0.000 0.000
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Implied Volatility: Can we improve VaR models?
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Figure A.2: Equally Weighted (n=250), Parametric (Student-t) Total VaR
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Implied Volatility: Can we improve VaR models?

Table A.2: Equally Weighted (n=250), Parametric (Student-t) Total VaR

Year UC pvalue CC pvalue BCP L1
pvalue

BCP L2
pvalue

BCP L3
pvalue

BCP L4
pvalue

BCP L5
pvalue

Alpha = 1%
2007 0.060 0.148 0.695 0.857 0.124 0.024 0.044
2008 0.000 0.000 0.347 0.215 0.278 0.412 0.446
2009 0.024 0.079 NaN NaN NaN NaN NaN
2010 0.388 0.646 0.796 0.935 0.977 0.992 0.997
2011 0.061 0.150 0.696 0.000 0.000 0.000 0.000
2012 0.278 0.553 0.949 0.996 1.000 1.000 1.000
2013 0.273 0.546 0.949 0.996 1.000 1.000 1.000
2014 0.166 0.346 0.746 0.899 0.956 0.980 0.991
2015 0.061 0.003 0.000 0.000 0.000 0.000 0.000
2016 0.768 0.923 0.847 0.963 0.990 0.998 1.000
ALL 0.000 0.001 0.197 0.000 0.000 0.000 0.000

Alpha = 5%
2007 0.003 0.012 0.823 0.452 0.030 0.033 0.058
2008 0.000 0.000 0.615 0.794 0.441 0.297 0.198
2009 0.078 0.174 0.647 0.810 0.261 0.108 0.167
2010 0.691 0.404 0.346 0.217 0.156 0.117 0.190
2011 0.000 0.000 0.686 0.852 0.471 0.268 0.385
2012 0.004 0.016 0.795 0.934 0.977 0.991 0.011
2013 0.908 0.919 0.672 0.209 0.108 0.143 0.175
2014 0.048 0.007 0.003 0.000 0.000 0.000 0.000
2015 0.226 0.355 0.393 0.691 0.862 0.739 0.850
2016 0.274 0.054 0.002 0.004 0.005 0.005 0.005
ALL 0.000 0.000 0.008 0.000 0.000 0.000 0.000

Alpha = 10%
2007 0.048 0.126 0.634 0.235 0.136 0.086 0.133
2008 0.000 0.000 0.709 0.933 0.684 0.799 0.867
2009 0.021 0.071 0.907 0.058 0.010 0.011 0.000
2010 0.867 0.692 0.371 0.194 0.124 0.084 0.021
2011 0.001 0.003 0.870 0.761 0.812 0.686 0.743
2012 0.000 0.001 0.506 0.491 0.493 0.581 0.572
2013 0.175 0.355 0.610 0.772 0.012 0.025 0.024
2014 0.078 0.152 0.406 0.279 0.359 0.016 0.032
2015 0.169 0.103 0.082 0.176 0.216 0.326 0.436
2016 0.021 0.036 0.188 0.021 0.022 0.019 0.037
ALL 0.036 0.005 0.010 0.000 0.000 0.000 0.000
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Implied Volatility: Can we improve VaR models?
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Figure A.3: Implied Vol / Equally Weighted (n=250), Parametric (Normal) Total VaR
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Implied Volatility: Can we improve VaR models?

Table A.3: IV / Equally Weighted (n=250), Parametric (Normal) Total VaR

Year UC pvalue CC pvalue BCP L1
pvalue

BCP L2
pvalue

BCP L3
pvalue

BCP L4
pvalue

BCP L5
pvalue

Alpha = 1%
2007 0.763 0.921 0.847 0.963 0.990 0.997 0.999
2008 0.020 0.055 0.648 0.810 0.901 0.947 0.970
2009 0.273 0.546 0.949 0.996 1.000 1.000 1.000
2010 0.001 0.005 0.553 0.007 0.010 0.011 0.012
2011 0.020 0.054 0.647 0.151 0.262 0.378 0.489
2012 0.278 0.553 0.949 0.996 1.000 1.000 1.000
2013 0.768 0.923 0.847 0.963 0.990 0.997 0.999
2014 0.166 0.346 0.746 0.899 0.956 0.980 0.991
2015 0.006 0.001 0.000 0.000 0.001 0.003 0.006
2016 0.768 0.923 0.847 0.963 0.990 0.998 1.000
ALL 0.000 0.000 0.222 0.001 0.004 0.011 0.022

Alpha = 5%
2007 0.491 0.303 0.309 0.593 0.460 0.390 0.531
2008 0.007 0.003 0.108 0.218 0.300 0.377 0.518
2009 0.155 0.280 0.599 0.757 0.840 0.524 0.624
2010 0.861 0.851 0.551 0.115 0.197 0.284 0.372
2011 0.226 0.475 0.879 0.175 0.182 0.233 0.221
2012 0.083 0.181 0.645 0.154 0.266 0.382 0.171
2013 0.861 0.851 0.551 0.702 0.196 0.253 0.304
2014 0.084 0.212 0.742 0.314 0.274 0.047 0.077
2015 0.345 0.414 0.296 0.579 0.540 0.519 0.664
2016 0.436 0.480 0.286 0.014 0.020 0.023 0.026
ALL 0.238 0.482 0.796 0.000 0.001 0.000 0.001

Alpha = 10%
2007 0.851 0.425 0.244 0.344 0.206 0.255 0.348
2008 0.021 0.030 0.218 0.357 0.554 0.592 0.726
2009 0.011 0.017 0.346 0.409 0.603 0.750 0.851
2010 0.113 0.233 0.498 0.633 0.714 0.771 0.486
2011 0.435 0.719 0.827 0.580 0.609 0.740 0.739
2012 0.012 0.042 0.798 0.937 0.521 0.678 0.795
2013 0.175 0.181 0.156 0.134 0.024 0.024 0.023
2014 0.169 0.388 0.978 0.508 0.643 0.138 0.199
2015 0.966 0.562 0.254 0.461 0.617 0.613 0.611
2016 0.069 0.132 0.356 0.102 0.036 0.073 0.128
ALL 0.162 0.303 0.503 0.028 0.006 0.002 0.004
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Figure A.4: Implied Vol / Equally Weighted (n=250), Parametric (Student-t) Total VaR
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Implied Volatility: Can we improve VaR models?

Table A.4: IV / Equally Weighted (n=250), Parametric (Student-t) Total VaR

Year UC pvalue CC pvalue BCP L1
pvalue

BCP L2
pvalue

BCP L3
pvalue

BCP L4
pvalue

BCP L5
pvalue

Alpha = 1%
2007 0.763 0.921 0.847 0.963 0.990 0.997 0.999
2008 0.168 0.350 0.746 0.900 0.957 0.980 0.991
2009 0.273 0.546 0.949 0.996 1.000 1.000 1.000
2010 0.061 0.150 0.696 0.857 0.927 0.961 0.978
2011 0.061 0.150 0.696 0.060 0.123 0.204 0.297
2012 0.278 0.553 0.949 0.996 1.000 1.000 1.000
2013 0.733 0.928 0.898 0.984 0.997 0.999 1.000
2014 0.388 0.646 0.796 0.935 0.977 0.992 0.997
2015 0.061 0.003 0.000 0.000 0.000 0.000 0.000
2016 0.768 0.923 0.847 0.963 0.990 0.998 1.000
ALL 0.027 0.026 0.045 0.018 0.035 0.057 0.083

Alpha = 5%
2007 0.220 0.136 0.245 0.502 0.554 0.593 0.727
2008 0.001 0.001 0.249 0.503 0.671 0.651 0.754
2009 0.637 0.540 0.464 0.584 0.654 0.692 0.731
2010 0.345 0.640 0.983 0.581 0.538 0.518 0.662
2011 0.001 0.003 0.834 0.659 0.783 0.764 0.834
2012 0.163 0.190 0.127 0.097 0.176 0.264 0.181
2013 0.691 0.895 0.791 0.933 0.512 0.521 0.527
2014 0.084 0.212 0.742 0.314 0.274 0.047 0.077
2015 0.084 0.092 0.137 0.319 0.297 0.438 0.571
2016 0.637 0.158 0.018 0.004 0.007 0.011 0.016
ALL 0.000 0.001 0.347 0.025 0.058 0.003 0.008

Alpha = 10%
2007 0.693 0.339 0.205 0.174 0.147 0.210 0.281
2008 0.000 0.000 0.149 0.293 0.466 0.546 0.474
2009 0.800 0.562 0.341 0.557 0.747 0.727 0.080
2010 0.708 0.735 0.468 0.295 0.227 0.183 0.019
2011 0.000 0.001 0.900 0.940 0.979 0.660 0.776
2012 0.122 0.290 0.774 0.771 0.373 0.522 0.652
2013 0.640 0.381 0.148 0.124 0.029 0.044 0.061
2014 0.169 0.388 0.978 0.508 0.643 0.138 0.199
2015 0.238 0.491 0.863 0.701 0.858 0.924 0.870
2016 0.113 0.222 0.456 0.179 0.087 0.160 0.254
ALL 0.013 0.044 0.756 0.016 0.002 0.000 0.000
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Figure A.5: EWMA (Lambda = 0.94), Parametric (Normal) Total VaR
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Implied Volatility: Can we improve VaR models?

Table A.5: EWMA (Lambda = 0.94), Parametric (Normal) Total VaR

Year UC pvalue CC pvalue BCP L1
pvalue

BCP L2
pvalue

BCP L3
pvalue

BCP L4
pvalue

BCP L5
pvalue

Alpha = 1%
2007 0.763 0.921 0.847 0.963 0.990 0.997 0.999
2008 0.020 0.055 0.648 0.149 0.266 0.390 0.510
2009 0.388 0.646 0.796 0.935 0.977 0.992 0.997
2010 0.006 0.011 0.125 0.267 0.404 0.524 0.624
2011 0.020 0.054 0.647 0.000 0.000 0.000 0.000
2012 0.380 0.638 0.795 0.934 0.977 0.991 0.997
2013 0.166 0.346 0.746 0.899 0.956 0.980 0.991
2014 0.166 0.346 0.746 0.899 0.956 0.980 0.991
2015 0.020 0.002 0.000 0.000 0.000 0.000 0.000
2016 0.768 0.923 0.847 0.963 0.990 0.998 1.000
ALL 0.000 0.000 0.068 0.004 0.006 0.015 0.019

Alpha = 5%
2007 0.873 0.539 0.422 0.609 0.720 0.259 0.344
2008 0.027 0.013 0.146 0.203 0.320 0.124 0.181
2009 0.274 0.393 0.553 0.386 0.519 0.621 0.700
2010 0.226 0.475 0.879 0.688 0.689 0.702 0.716
2011 0.141 0.084 0.217 0.124 0.125 0.014 0.015
2012 0.657 0.717 0.437 0.547 0.091 0.132 0.176
2013 0.691 0.895 0.791 0.616 0.372 0.399 0.417
2014 0.014 0.035 0.460 0.197 0.129 0.000 0.000
2015 0.908 0.364 0.086 0.203 0.278 0.339 0.446
2016 0.155 0.280 0.599 0.267 0.404 0.240 0.334
ALL 0.088 0.155 0.387 0.004 0.013 0.000 0.000

Alpha = 10%
2007 0.422 0.016 0.037 0.104 0.208 0.223 0.273
2008 0.121 0.032 0.064 0.117 0.214 0.244 0.337
2009 0.113 0.071 0.217 0.372 0.560 0.709 0.587
2010 0.259 0.456 0.607 0.418 0.601 0.504 0.442
2011 0.169 0.341 0.599 0.761 0.292 0.408 0.550
2012 0.387 0.546 0.524 0.489 0.186 0.263 0.337
2013 0.175 0.355 0.610 0.772 0.115 0.191 0.162
2014 0.238 0.401 0.491 0.141 0.138 0.001 0.002
2015 0.365 0.424 0.302 0.322 0.459 0.332 0.424
2016 0.175 0.163 0.137 0.019 0.016 0.034 0.063
ALL 0.557 0.715 0.574 0.002 0.002 0.000 0.001
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Figure A.6: EWMA (Lambda = 0.94), Parametric (Student-t) Total VaR
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Implied Volatility: Can we improve VaR models?

Table A.6: EWMA (Lambda = 0.94), Parametric (Student-t) Total VaR

Year UC pvalue CC pvalue BCP L1
pvalue

BCP L2
pvalue

BCP L3
pvalue

BCP L4
pvalue

BCP L5
pvalue

Alpha = 1%
2007 0.276 0.550 0.949 0.996 1.000 1.000 1.000
2008 0.062 0.152 0.696 0.059 0.124 0.209 0.308
2009 0.273 0.546 0.949 0.996 1.000 1.000 1.000
2010 0.166 0.346 0.746 0.899 0.956 0.980 0.991
2011 0.061 0.150 0.696 0.000 0.000 0.000 0.000
2012 0.758 0.919 0.846 0.963 0.990 0.997 0.999
2013 0.273 0.546 0.949 0.996 1.000 1.000 1.000
2014 0.166 0.346 0.746 0.899 0.956 0.980 0.991
2015 0.020 0.002 0.000 0.000 0.000 0.000 0.000
2016 0.768 0.923 0.847 0.963 0.990 0.998 1.000
ALL 0.017 0.019 0.056 0.000 0.000 0.000 0.000

Alpha = 5%
2007 0.873 0.539 0.422 0.609 0.720 0.259 0.344
2008 0.014 0.006 0.126 0.215 0.316 0.166 0.223
2009 0.691 0.404 0.346 0.619 0.795 0.896 0.846
2010 0.084 0.207 0.690 0.813 0.881 0.616 0.460
2011 0.000 0.001 0.937 0.993 0.587 0.695 0.731
2012 0.669 0.886 0.798 0.334 0.229 0.357 0.488
2013 0.500 0.791 0.907 0.987 0.664 0.619 0.589
2014 0.014 0.035 0.460 0.197 0.129 0.000 0.000
2015 0.691 0.423 0.141 0.320 0.382 0.425 0.555
2016 0.861 0.279 0.046 0.115 0.181 0.248 0.314
ALL 0.000 0.000 0.813 0.074 0.138 0.000 0.001

Alpha = 10%
2007 0.048 0.081 0.315 0.512 0.627 0.710 0.684
2008 0.013 0.016 0.176 0.331 0.523 0.459 0.525
2009 0.708 0.376 0.234 0.488 0.630 0.729 0.798
2010 0.435 0.719 0.827 0.580 0.287 0.168 0.105
2011 0.000 0.001 0.687 0.823 0.525 0.286 0.382
2012 1.000 0.934 0.718 0.200 0.230 0.239 0.242
2013 0.966 0.609 0.284 0.116 0.059 0.071 0.081
2014 0.238 0.401 0.491 0.141 0.138 0.001 0.002
2015 0.966 0.242 0.064 0.160 0.209 0.246 0.275
2016 0.640 0.654 0.411 0.045 0.027 0.052 0.085
ALL 0.001 0.004 0.618 0.007 0.004 0.001 0.001
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Figure A.7: Implied Vol / EWMA (Lambda = 0.94), Parametric (Normal) Total VaR
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Table A.7: IV / EWMA (Lambda = 0.94), Parametric (Normal) Total VaR

Year UC pvalue CC pvalue BCP L1
pvalue

BCP L2
pvalue

BCP L3
pvalue

BCP L4
pvalue

BCP L5
pvalue

Alpha = 1%
2007 0.737 0.930 0.898 0.984 0.997 0.999 1.000
2008 0.006 0.017 0.600 0.758 0.857 0.911 0.944
2009 0.061 0.150 0.696 0.857 0.927 0.961 0.978
2010 0.061 0.150 0.696 0.857 0.927 0.961 0.978
2011 0.006 0.017 0.599 0.001 0.004 0.003 0.006
2012 0.758 0.919 0.846 0.963 0.990 0.997 0.999
2013 0.020 0.054 0.647 0.810 0.261 0.377 0.488
2014 0.061 0.150 0.696 0.857 0.927 0.961 0.978
2015 0.061 0.051 0.020 0.061 0.124 0.205 0.298
2016 0.768 0.923 0.847 0.963 0.990 0.998 1.000
ALL 0.000 0.000 0.851 0.745 0.891 0.956 0.859

Alpha = 5%
2007 0.647 0.543 0.463 0.582 0.639 0.136 0.180
2008 0.007 0.003 0.108 0.218 0.300 0.377 0.518
2009 0.436 0.488 0.508 0.487 0.596 0.577 0.647
2010 0.861 0.851 0.551 0.115 0.197 0.284 0.372
2011 0.226 0.475 0.879 0.175 0.182 0.080 0.083
2012 0.286 0.342 0.216 0.216 0.331 0.435 0.378
2013 0.908 0.919 0.672 0.622 0.272 0.321 0.359
2014 0.345 0.215 0.277 0.060 0.077 0.002 0.005
2015 0.345 0.414 0.296 0.579 0.540 0.519 0.664
2016 0.861 0.567 0.462 0.614 0.703 0.748 0.791
ALL 0.238 0.401 0.522 0.016 0.034 0.002 0.005

Alpha = 10%
2007 0.506 0.096 0.124 0.306 0.500 0.548 0.691
2008 0.247 0.267 0.286 0.503 0.669 0.714 0.804
2009 0.259 0.093 0.167 0.336 0.482 0.601 0.722
2010 0.069 0.189 0.879 0.688 0.855 0.938 0.911
2011 0.116 0.273 0.713 0.916 0.586 0.739 0.836
2012 0.075 0.202 0.872 0.694 0.247 0.384 0.521
2013 0.365 0.175 0.063 0.031 0.016 0.029 0.023
2014 0.563 0.287 0.197 0.357 0.286 0.007 0.013
2015 0.640 0.341 0.130 0.227 0.397 0.478 0.543
2016 0.069 0.132 0.356 0.428 0.128 0.224 0.338
ALL 0.125 0.307 0.968 0.225 0.354 0.244 0.342
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Figure A.8: Implied Vol / EWMA (Lambda = 0.94), Parametric (Student-t) Total VaR
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Implied Volatility: Can we improve VaR models?

Table A.8: IV / EWMA (Lambda = 0.94), Parametric (Student-t) Total VaR

Year UC pvalue CC pvalue BCP L1
pvalue

BCP L2
pvalue

BCP L3
pvalue

BCP L4
pvalue

BCP L5
pvalue

Alpha = 1%
2007 0.737 0.930 0.898 0.984 0.997 0.999 1.000
2008 0.168 0.350 0.746 0.900 0.957 0.980 0.991
2009 0.733 0.928 0.898 0.984 0.997 0.999 1.000
2010 0.733 0.928 0.898 0.984 0.997 0.999 1.000
2011 0.061 0.150 0.696 0.060 0.123 0.204 0.297
2012 0.742 0.932 0.898 0.983 0.997 0.999 1.000
2013 0.166 0.346 0.746 0.899 0.031 0.062 0.105
2014 0.166 0.346 0.746 0.899 0.956 0.980 0.991
2015 0.166 0.079 0.003 0.013 0.032 0.063 0.107
2016 0.733 0.928 0.898 0.984 0.997 0.999 1.000
ALL 0.042 0.105 0.492 0.624 0.703 0.746 0.780

Alpha = 5%
2007 0.873 0.539 0.422 0.609 0.720 0.259 0.344
2008 0.001 0.001 0.249 0.503 0.671 0.805 0.876
2009 0.908 0.488 0.383 0.626 0.633 0.756 0.748
2010 0.908 0.919 0.672 0.209 0.347 0.481 0.601
2011 0.000 0.000 0.802 0.941 0.782 0.874 0.938
2012 0.885 0.918 0.678 0.214 0.355 0.400 0.520
2013 0.500 0.791 0.907 0.987 0.664 0.619 0.589
2014 0.226 0.475 0.879 0.175 0.182 0.011 0.017
2015 0.141 0.278 0.498 0.603 0.493 0.432 0.569
2016 0.908 0.516 0.421 0.642 0.254 0.358 0.422
ALL 0.000 0.001 0.879 0.026 0.062 0.073 0.127

Alpha = 10%
2007 0.693 0.339 0.205 0.174 0.263 0.345 0.430
2008 0.001 0.001 0.135 0.271 0.453 0.603 0.629
2009 0.238 0.093 0.112 0.279 0.308 0.339 0.263
2010 0.966 0.506 0.291 0.537 0.500 0.074 0.124
2011 0.000 0.001 0.687 0.823 0.942 0.488 0.604
2012 0.670 0.909 0.924 0.800 0.481 0.518 0.544
2013 0.966 0.609 0.284 0.116 0.059 0.071 0.081
2014 0.326 0.592 0.778 0.300 0.358 0.030 0.056
2015 0.326 0.221 0.126 0.303 0.469 0.517 0.370
2016 0.493 0.776 0.845 0.003 0.005 0.012 0.023
ALL 0.001 0.006 0.722 0.043 0.033 0.014 0.028
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Figure A.9: Historical (No Adjustment)
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Implied Volatility: Can we improve VaR models?

Table A.9: Historical (No Adjustment) VaR

Year UC pvalue CC pvalue BCP L1
pvalue

BCP L2
pvalue

BCP L3
pvalue

BCP L4
pvalue

BCP L5
pvalue

Alpha = 1%
2007 0.019 0.053 0.646 0.809 0.263 0.109 0.049
2008 0.000 0.000 0.424 0.098 0.166 0.228 0.077
2009 0.024 0.079 NaN NaN NaN NaN NaN
2010 0.388 0.646 0.796 0.935 0.977 0.992 0.997
2011 0.166 0.346 0.746 0.000 0.000 0.000 0.000
2012 0.278 0.553 0.949 0.996 1.000 1.000 1.000
2013 0.273 0.546 0.949 0.996 1.000 1.000 1.000
2014 0.768 0.923 0.847 0.963 0.990 0.997 0.999
2015 0.061 0.003 0.000 0.000 0.000 0.000 0.000
2016 0.733 0.928 0.898 0.984 0.997 1.000 1.000
ALL 0.004 0.006 0.097 0.000 0.000 0.000 0.000

Alpha = 5%
2007 0.001 0.000 0.077 0.010 0.016 0.022 0.040
2008 0.000 0.000 0.827 0.718 0.246 0.107 0.045
2009 0.001 0.004 0.847 0.963 0.990 0.997 0.999
2010 0.861 0.539 0.423 0.099 0.174 0.256 0.341
2011 0.014 0.035 0.394 0.485 0.278 0.162 0.109
2012 0.001 0.004 0.846 0.963 0.990 0.997 0.999
2013 0.861 0.851 0.551 0.115 0.040 0.062 0.086
2014 0.345 0.414 0.296 0.337 0.536 0.015 0.031
2015 0.345 0.414 0.296 0.579 0.778 0.704 0.825
2016 0.274 0.054 0.002 0.004 0.005 0.005 0.005
ALL 0.010 0.008 0.060 0.000 0.000 0.000 0.000

Alpha = 10%
2007 0.018 0.060 0.791 0.201 0.039 0.009 0.018
2008 0.000 0.000 0.306 0.583 0.360 0.515 0.586
2009 0.000 0.001 0.317 0.486 0.486 0.487 0.564
2010 0.640 0.381 0.148 0.124 0.100 0.153 0.008
2011 0.002 0.008 0.746 0.795 0.771 0.493 0.637
2012 0.000 0.000 0.551 0.389 0.522 0.623 0.528
2013 0.175 0.355 0.610 0.772 0.012 0.025 0.024
2014 0.116 0.197 0.355 0.220 0.277 0.008 0.017
2015 0.708 0.370 0.145 0.238 0.377 0.352 0.487
2016 0.021 0.036 0.188 0.021 0.022 0.019 0.037
ALL 0.460 0.031 0.008 0.000 0.000 0.000 0.000
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Figure A.10: Historical (Cholesky - Equally Weighted) VaR
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Table A.10: Historical (Cholesky - Equally Weighted) VaR

Year UC pvalue CC pvalue BCP L1
pvalue

BCP L2
pvalue

BCP L3
pvalue

BCP L4
pvalue

BCP L5
pvalue

Alpha = 1%
2007 0.019 0.053 0.646 0.809 0.263 0.109 0.049
2008 0.002 0.005 0.554 0.007 0.017 0.032 0.055
2009 0.024 0.079 NaN NaN NaN NaN NaN
2010 0.273 0.546 0.949 0.996 1.000 1.000 1.000
2011 0.166 0.346 0.746 0.000 0.000 0.000 0.000
2012 0.278 0.553 0.949 0.996 1.000 1.000 1.000
2013 0.273 0.546 0.949 0.996 1.000 1.000 1.000
2014 0.733 0.928 0.898 0.984 0.997 0.999 1.000
2015 0.166 0.003 0.000 0.000 0.000 0.000 0.000
2016 0.768 0.923 0.847 0.963 0.990 0.998 1.000
ALL 0.094 0.056 0.021 0.000 0.000 0.000 0.000

Alpha = 5%
2007 0.001 0.003 0.288 0.120 0.061 0.113 0.181
2008 0.000 0.000 0.286 0.250 0.205 0.172 0.065
2009 0.000 0.001 0.898 0.984 0.997 0.999 1.000
2010 0.155 0.280 0.599 0.267 0.404 0.524 0.349
2011 0.500 0.440 0.212 0.027 0.040 0.043 0.053
2012 0.001 0.004 0.846 0.963 0.990 0.997 0.000
2013 0.691 0.895 0.791 0.327 0.221 0.256 0.282
2014 0.003 0.003 0.047 0.003 0.009 0.000 0.000
2015 0.345 0.414 0.296 0.579 0.778 0.704 0.825
2016 0.155 0.181 0.125 0.094 0.063 0.039 0.025
ALL 0.073 0.035 0.043 0.000 0.000 0.000 0.000

Alpha = 10%
2007 0.162 0.306 0.532 0.210 0.120 0.138 0.206
2008 0.000 0.000 0.553 0.824 0.923 0.910 0.952
2009 0.000 0.000 0.647 0.810 0.261 0.108 0.167
2010 0.113 0.233 0.498 0.028 0.020 0.036 0.024
2011 0.435 0.683 0.686 0.852 0.471 0.268 0.385
2012 0.003 0.006 0.421 0.002 0.005 0.009 0.016
2013 0.493 0.269 0.099 0.180 0.025 0.041 0.029
2014 0.078 0.152 0.406 0.279 0.359 0.016 0.032
2015 0.078 0.042 0.055 0.107 0.213 0.341 0.416
2016 0.021 0.036 0.188 0.021 0.022 0.019 0.037
ALL 0.852 0.032 0.006 0.000 0.000 0.000 0.000
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Figure A.11: Historical (Cholesky - Implied Vol / Equally Weighted) VaR
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Implied Volatility: Can we improve VaR models?

Table A.11: Historical (Cholesky - Implied Vol / Equally Weighted) VaR

Year UC pvalue CC pvalue BCP L1
pvalue

BCP L2
pvalue

BCP L3
pvalue

BCP L4
pvalue

BCP L5
pvalue

Alpha = 1%
2007 0.384 0.642 0.796 0.935 0.977 0.991 0.997
2008 0.002 0.005 0.554 0.702 0.803 0.865 0.905
2009 0.024 0.079 NaN NaN NaN NaN NaN
2010 0.166 0.346 0.746 0.899 0.956 0.980 0.991
2011 0.768 0.923 0.847 0.000 0.000 0.000 0.000
2012 0.025 0.081 NaN NaN NaN NaN NaN
2013 0.273 0.546 0.949 0.996 1.000 1.000 1.000
2014 0.768 0.923 0.847 0.963 0.990 0.997 0.999
2015 0.061 0.003 0.000 0.000 0.000 0.000 0.000
2016 0.768 0.923 0.847 0.963 0.990 0.998 1.000
ALL 0.094 0.056 0.021 0.005 0.011 0.021 0.034

Alpha = 5%
2007 0.220 0.136 0.245 0.502 0.554 0.593 0.727
2008 0.002 0.003 0.293 0.539 0.725 0.625 0.346
2009 0.078 0.174 0.647 0.810 0.888 0.376 0.487
2010 0.861 0.851 0.551 0.115 0.197 0.284 0.372
2011 0.637 0.540 0.464 0.054 0.094 0.135 0.181
2012 0.083 0.181 0.645 0.808 0.887 0.930 0.491
2013 0.691 0.895 0.791 0.616 0.372 0.399 0.417
2014 0.084 0.212 0.742 0.314 0.487 0.085 0.140
2015 0.691 0.423 0.141 0.320 0.382 0.425 0.458
2016 0.155 0.289 0.645 0.249 0.148 0.087 0.140
ALL 0.463 0.688 0.654 0.023 0.044 0.004 0.004

Alpha = 10%
2007 0.316 0.357 0.334 0.222 0.166 0.275 0.396
2008 0.013 0.016 0.176 0.374 0.572 0.496 0.556
2009 0.021 0.027 0.310 0.594 0.788 0.900 0.956
2010 0.259 0.288 0.223 0.447 0.379 0.526 0.460
2011 0.238 0.496 0.920 0.789 0.677 0.724 0.810
2012 0.006 0.011 0.381 0.626 0.632 0.641 0.749
2013 0.493 0.269 0.099 0.067 0.010 0.018 0.028
2014 0.032 0.061 0.306 0.353 0.496 0.018 0.032
2015 0.563 0.180 0.055 0.159 0.297 0.447 0.401
2016 0.175 0.342 0.562 0.280 0.160 0.268 0.390
ALL 0.989 0.349 0.134 0.006 0.002 0.000 0.001
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Figure A.12: Historical (Cholesky - EWMA 0.94) VaR
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Implied Volatility: Can we improve VaR models?

Table A.12: Historical (Cholesky - EWMA 0.94) VaR

Year UC pvalue CC pvalue BCP L1
pvalue

BCP L2
pvalue

BCP L3
pvalue

BCP L4
pvalue

BCP L5
pvalue

Alpha = 1%
2007 0.276 0.550 0.949 0.996 1.000 1.000 1.000
2008 0.168 0.350 0.746 0.900 0.964 0.986 0.995
2009 0.273 0.546 0.949 0.996 1.000 1.000 1.000
2010 0.733 0.928 0.898 0.984 0.997 0.999 1.000
2011 0.166 0.346 0.746 0.000 0.000 0.000 0.000
2012 0.742 0.932 0.898 0.983 0.997 0.999 1.000
2013 0.273 0.546 0.949 0.996 1.000 1.000 1.000
2014 0.733 0.928 0.898 0.984 0.997 0.999 1.000
2015 0.388 0.002 0.000 0.000 0.000 0.000 0.000
2016 0.768 0.923 0.847 0.963 0.990 0.998 1.000
ALL 0.870 0.089 0.001 0.000 0.000 0.000 0.000

Alpha = 5%
2007 0.897 0.486 0.382 0.626 0.276 0.147 0.223
2008 0.232 0.143 0.247 0.354 0.349 0.134 0.141
2009 0.155 0.280 0.599 0.757 0.840 0.890 0.923
2010 0.691 0.895 0.791 0.327 0.512 0.669 0.787
2011 0.436 0.488 0.508 0.000 0.000 0.000 0.000
2012 0.014 0.043 0.744 0.899 0.956 0.980 0.990
2013 0.908 0.919 0.672 0.837 0.912 0.858 0.833
2014 0.141 0.326 0.781 0.254 0.231 0.027 0.050
2015 0.861 0.279 0.046 0.110 0.175 0.238 0.311
2016 0.034 0.032 0.020 0.004 0.011 0.002 0.004
ALL 0.359 0.630 0.767 0.000 0.001 0.000 0.000

Alpha = 10%
2007 0.851 0.048 0.064 0.123 0.238 0.289 0.386
2008 0.337 0.133 0.120 0.206 0.261 0.303 0.418
2009 0.040 0.041 0.277 0.554 0.757 0.881 0.788
2010 0.259 0.499 0.724 0.885 0.633 0.528 0.185
2011 0.563 0.843 0.937 0.993 0.587 0.695 0.731
2012 0.276 0.475 0.600 0.423 0.112 0.179 0.253
2013 0.259 0.288 0.223 0.227 0.063 0.107 0.087
2014 0.238 0.244 0.202 0.079 0.137 0.001 0.002
2015 0.365 0.175 0.063 0.097 0.172 0.255 0.339
2016 0.175 0.163 0.137 0.019 0.016 0.034 0.063
ALL 0.162 0.343 0.667 0.004 0.001 0.000 0.001
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Figure A.13: Historical (Cholesky - Implied Vol / EWMA 0.94) VaR
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Implied Volatility: Can we improve VaR models?

Table A.13: Historical (Cholesky - Implied Vol / EWMA 0.94) VaR

Year UC pvalue CC pvalue BCP L1
pvalue

BCP L2
pvalue

BCP L3
pvalue

BCP L4
pvalue

BCP L5
pvalue

Alpha = 1%
2007 0.763 0.921 0.847 0.963 0.990 0.997 0.999
2008 0.006 0.017 0.600 0.758 0.857 0.911 0.944
2009 0.024 0.079 NaN NaN NaN NaN NaN
2010 0.733 0.928 0.898 0.984 0.997 0.999 1.000
2011 0.166 0.346 0.746 0.013 0.031 0.062 0.106
2012 0.742 0.932 0.898 0.983 0.997 0.999 1.000
2013 0.388 0.646 0.796 0.935 0.977 0.992 0.997
2014 0.768 0.923 0.847 0.963 0.990 0.997 0.999
2015 0.388 0.002 0.000 0.000 0.000 0.000 0.000
2016 0.768 0.923 0.847 0.963 0.990 0.998 1.000
ALL 0.094 0.056 0.021 0.005 0.011 0.021 0.034

Alpha = 5%
2007 0.491 0.303 0.309 0.593 0.787 0.628 0.761
2008 0.007 0.018 0.400 0.555 0.309 0.386 0.250
2009 0.436 0.488 0.508 0.643 0.721 0.675 0.732
2010 0.861 0.851 0.551 0.115 0.197 0.284 0.372
2011 0.637 0.540 0.464 0.054 0.094 0.135 0.181
2012 0.014 0.043 0.744 0.899 0.956 0.980 0.990
2013 0.691 0.423 0.141 0.327 0.512 0.521 0.527
2014 0.226 0.140 0.246 0.090 0.103 0.006 0.013
2015 0.691 0.423 0.141 0.320 0.382 0.425 0.458
2016 0.637 0.665 0.394 0.484 0.537 0.556 0.640
ALL 0.580 0.858 0.975 0.018 0.024 0.004 0.003

Alpha = 10%
2007 0.162 0.306 0.532 0.459 0.439 0.607 0.743
2008 0.013 0.030 0.391 0.646 0.808 0.840 0.849
2009 0.175 0.084 0.191 0.374 0.545 0.679 0.769
2010 0.113 0.273 0.781 0.767 0.893 0.901 0.913
2011 0.867 0.692 0.371 0.596 0.211 0.336 0.439
2012 0.024 0.077 0.913 0.464 0.671 0.622 0.756
2013 0.365 0.175 0.063 0.031 0.016 0.029 0.023
2014 0.169 0.208 0.242 0.504 0.713 0.047 0.086
2015 0.800 0.454 0.185 0.336 0.534 0.699 0.713
2016 0.069 0.132 0.356 0.428 0.422 0.588 0.726
ALL 0.513 0.265 0.122 0.025 0.043 0.023 0.041
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Implied Volatility: Can we improve VaR models?
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Figure A.14: Historical (Cholesky - DCC GARCH) VaR
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Implied Volatility: Can we improve VaR models?

Table A.14: Historical (Cholesky - DCC GARCH) VaR

Year UC pvalue CC pvalue BCP L1
pvalue

BCP L2
pvalue

BCP L3
pvalue

BCP L4
pvalue

BCP L5
pvalue

Alpha = 1%
2007 0.019 0.053 0.646 0.809 0.263 0.109 0.049
2008 0.020 0.055 0.648 0.810 0.901 0.947 0.970
2009 0.024 0.079 NaN NaN NaN NaN NaN
2010 0.024 0.079 NaN NaN NaN NaN NaN
2011 0.768 0.923 0.847 0.000 0.000 0.000 0.000
2012 0.278 0.553 0.949 0.996 1.000 1.000 1.000
2013 0.273 0.546 0.949 0.996 1.000 1.000 1.000
2014 0.273 0.546 0.949 0.996 1.000 1.000 1.000
2015 0.166 0.003 0.000 0.000 0.000 0.000 0.000
2016 0.166 0.346 0.746 0.013 0.031 0.001 0.003
ALL 0.349 0.097 0.005 0.000 0.000 0.000 0.000

Alpha = 5%
2007 0.000 0.001 0.545 0.324 0.094 0.143 0.230
2008 0.000 0.000 0.475 0.661 0.484 0.398 0.475
2009 0.078 0.174 0.647 0.810 0.888 0.931 0.956
2010 0.436 0.488 0.508 0.487 0.596 0.673 0.648
2011 0.274 0.393 0.553 0.000 0.000 0.000 0.000
2012 0.004 0.016 0.795 0.934 0.977 0.991 0.997
2013 0.274 0.330 0.213 0.385 0.325 0.430 0.521
2014 0.500 0.791 0.907 0.058 0.081 0.001 0.002
2015 0.226 0.137 0.063 0.176 0.195 0.319 0.451
2016 0.861 0.240 0.039 0.014 0.005 0.001 0.002
ALL 0.276 0.254 0.186 0.000 0.000 0.000 0.000

Alpha = 10%
2007 0.162 0.306 0.532 0.210 0.120 0.138 0.206
2008 0.001 0.002 0.549 0.802 0.905 0.881 0.946
2009 0.021 0.027 0.310 0.594 0.788 0.900 0.829
2010 0.021 0.071 0.907 0.456 0.663 0.810 0.901
2011 0.493 0.789 0.954 0.697 0.372 0.213 0.141
2012 0.001 0.004 0.437 0.547 0.613 0.662 0.700
2013 0.069 0.189 0.879 0.688 0.029 0.034 0.038
2014 0.169 0.327 0.549 0.185 0.194 0.002 0.005
2015 0.169 0.103 0.082 0.176 0.321 0.404 0.410
2016 0.365 0.640 0.787 0.150 0.273 0.248 0.351
ALL 0.430 0.287 0.157 0.000 0.000 0.000 0.000
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Implied Volatility: Can we improve VaR models?
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Figure A.15: Historical (Cholesky - Implied Vol / DCC GARCH) VaR
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Implied Volatility: Can we improve VaR models?

Table A.15: Historical (Cholesky - Implied Vol / DCC GARCH) VaR

Year UC pvalue CC pvalue BCP L1
pvalue

BCP L2
pvalue

BCP L3
pvalue

BCP L4
pvalue

BCP L5
pvalue

Alpha = 1%
2007 0.019 0.053 0.646 0.809 0.263 0.000 0.000
2008 0.002 0.005 0.554 0.702 0.803 0.865 0.905
2009 0.024 0.079 NaN NaN NaN NaN NaN
2010 0.273 0.546 0.949 0.996 1.000 1.000 1.000
2011 0.388 0.646 0.796 0.001 0.002 0.005 0.011
2012 0.025 0.081 NaN NaN NaN NaN NaN
2013 0.273 0.546 0.949 0.996 1.000 1.000 1.000
2014 0.733 0.928 0.898 0.984 0.997 0.999 1.000
2015 0.388 0.002 0.000 0.000 0.000 0.000 0.000
2016 0.768 0.923 0.847 0.963 0.990 0.998 1.000
ALL 0.261 0.089 0.008 0.001 0.002 0.000 0.000

Alpha = 5%
2007 0.013 0.033 0.457 0.758 0.740 0.418 0.562
2008 0.000 0.000 0.405 0.690 0.810 0.708 0.522
2009 0.436 0.488 0.508 0.643 0.721 0.675 0.732
2010 0.861 0.851 0.551 0.115 0.197 0.284 0.372
2011 0.637 0.540 0.464 0.054 0.094 0.135 0.181
2012 0.037 0.097 0.695 0.856 0.926 0.960 0.978
2013 0.637 0.705 0.432 0.560 0.621 0.676 0.717
2014 0.908 0.919 0.672 0.837 0.912 0.047 0.063
2015 0.226 0.333 0.356 0.653 0.588 0.555 0.697
2016 0.637 0.665 0.394 0.484 0.537 0.556 0.640
ALL 0.149 0.272 0.456 0.248 0.257 0.004 0.005

Alpha = 10%
2007 0.422 0.486 0.397 0.184 0.110 0.187 0.277
2008 0.000 0.000 0.149 0.347 0.529 0.681 0.769
2009 0.069 0.056 0.246 0.504 0.706 0.840 0.830
2010 0.175 0.355 0.610 0.772 0.857 0.907 0.945
2011 0.326 0.599 0.802 0.677 0.381 0.421 0.550
2012 0.044 0.130 0.976 0.999 0.747 0.652 0.782
2013 0.365 0.175 0.063 0.031 0.016 0.029 0.023
2014 0.238 0.380 0.447 0.564 0.721 0.027 0.048
2015 0.169 0.103 0.082 0.218 0.381 0.465 0.295
2016 0.365 0.640 0.787 0.150 0.151 0.245 0.348
ALL 0.501 0.391 0.221 0.006 0.005 0.001 0.002
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Implied Volatility: Can we improve VaR models?

B Appendix: Portfolio Weights Simula-

tion

Portfolio weights simulation results for the following models:

1. Historical (Cholesky - Equally Weighted) VaR

2. Historical (Cholesky - Implied Vol / Equally Weighted) VaR

3. Historical (Cholesky - EWMA 0.94) VaR

4. Historical (Cholesky - Implied Vol / EWMA 0.94) VaR

5. Historical (Cholesky - DCC GARCH) VaR

6. Historical (Cholesky - Implied Vol / DCC GARCH) VaR

Backtest period: 01-01-2007 / 31-12-2016 (10-years)

Significance levels: 0.01, 0.05, 0.10

Number of simulations: 500

Portfolio weights simulation parameters: Mean: 0.1, St.Dev: 0.05
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B.1 Historical (Cholesky Adjusted) VaR, Alpha = 1%

Table B.1: Portfolio Weights Simulation - Summary Statistics, Alpha 0.01

Results Equally
Weighted

IV/Equally
Weighted

EWMA IV/EWMA DCC-
GARCH

IV/DCC-
GARCH

Actual Exceed.(Mean) 15.69 12.03 11.5 10.93 14.47 12.95
Actual Exceed.(St.Dev) 6.38 6.66 4.9 6.52 5.96 6.11
Range of Exceedances 0 - 38 1 - 34 1 - 27 1 - 33 1 - 35 1 - 34
Cum. % of Simulations < Expected 91.8% 95.4% 99.0% 96.6% 96.6% 97.2%
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Figure B.1: VaR Models Robustness Test, Alpha = 0.01
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B.2 Historical (Cholesky Adjusted) VaR, Alpha = 5%

Table B.2: Portfolio Weights Simulation - Summary Statistics, Alpha 0.05

Results Equally
Weighted

IV/Equally
Weighted

EWMA IV/EWMA DCC-
GARCH

IV/DCC-
GARCH

Actual Exceed.(Mean) 115.43 107.11 92.22 99.59 107.9 113.52
Actual Exceed.(St.Dev) 20.67 21.01 19.48 20.13 20.88 21.38
Range of Exceedances 43 - 163 38 - 170 34 - 142 34 - 158 34 - 168 39 - 176
Cum. % of Simulations < Expected 66.0% 81.0% 96.6% 90.2% 80.6% 70.0%
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Figure B.4: VaR Models Robustness Test, Alpha = 0.05
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B.3 Historical (Cholesky Adjusted) VaR, Alpha = 10%

Table B.3: Portfolio Weights Simulation - Summary Statistics, Alpha 0.1

Results Equally
Weighted

IV/Equally
Weighted

EWMA IV/EWMA DCC-
GARCH

IV/DCC-
GARCH

Actual Exceed.(Mean) 249.29 253.88 229.83 241.91 253.13 262.72
Actual Exceed.(St.Dev) 29.23 33.84 30.17 32.77 32.02 35.05
Range of Exceedances 137 - 355 135 - 379 117 - 332 127 - 351 128 - 364 144 - 386
Cum. % of Simulations < Expected 50.8% 43.2% 82.2% 62.8% 43.8% 32.2%
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Figure B.7: VaR Models Robustness Test, Alpha = 0.10
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C Appendix: R Code

C.1 BCP Test

#Function for BCP test

#Arguments: TS of returns, TS of VaR, maximum lag for checking

autocorrelation, vector of significance levels

bcp.test = function(tsret,tsvar,maxlag,sig){

tsvar.sub = na.exclude(tsvar)

l = length(tsret)

obs = rownames(tsvar.sub)

tsret.sub = tsret[obs,]

tsexceeds1 = ifelse(tsret.sub >= -tsvar.sub[,1], 0, 1) - sig[1]

ac1 = acf(tsexceeds1, lag.max = maxlag, plot = FALSE, type = "

correlation")

tsexceeds2 = ifelse(tsret.sub >= -tsvar.sub[,2], 0, 1) - sig[2]

ac2 = acf(tsexceeds2, lag.max = maxlag, plot = FALSE, type = "

correlation")

tsexceeds3 = ifelse(tsret.sub >= -tsvar.sub[,3], 0, 1) - sig[3]

ac3 = acf(tsexceeds3, lag.max = maxlag, plot = FALSE, type = "

correlation")

LB1 = vector(mode = ’numeric’, length = maxlag)

s = vector(mode = ’numeric’, length = maxlag)

p.value1 = vector(mode = ’numeric’, length = maxlag)

for (i in 1:maxlag){

s[i] = ifelse(i==1,((ac1[[1]][i+1])^2)/(l-i),s[i-1]+((ac1[[1]][i

+1])^2)/(l-i))

LB1[i] = l*(l+2)*s[i]

90



Implied Volatility: Can we improve VaR models?

p.value1[i] = pchisq(LB1[i], i, lower.tail = F)

}

LB2 = vector(mode = ’numeric’, length = maxlag)

s = vector(mode = ’numeric’, length = maxlag)

p.value2 = vector(mode = ’numeric’, length = maxlag)

for (i in 1:maxlag){

s[i] = ifelse(i==1,((ac2[[1]][i+1])^2)/(l-i),s[i-1]+((ac2[[1]][i

+1])^2)/(l-i))

LB2[i] = l*(l+2)*s[i]

p.value2[i] = pchisq(LB2[i], i, lower.tail = F)

}

LB3 = vector(mode = ’numeric’, length = maxlag)

s = vector(mode = ’numeric’, length = maxlag)

p.value3 = vector(mode = ’numeric’, length = maxlag)

for (i in 1:maxlag){

s[i] = ifelse(i==1,((ac3[[1]][i+1])^2)/(l-i),s[i-1]+((ac3[[1]][i

+1])^2)/(l-i))

LB3[i] = l*(l+2)*s[i]

p.value3[i] = pchisq(LB3[i], i, lower.tail = F)

}

pvalue.mat = cbind(sig_1=p.value1,sig_2=p.value2,sig_3=p.value3)

rownames(pvalue.mat) = paste("Lag",1:maxlag)

colnames(pvalue.mat) = sig

return(pvalue.mat)

}

C.2 Covariance Estimation - Equally Weighted

#Covariances, correlations in list of matrices, betas in dataframe,

covariances of residuals and df for student t in list of matrices.

#Function that estimates covariances, correlations and betas based on

last x days, equal weights, and place it in t+1

#Arguments: Dataset(xts), No. of days (window), Portfolio weights

volhist.mat = function(tsret,days,w){

dims = dim(tsret)

variance = list()

variance[[1]] = index(tsret[(days+1):(dims[1]),])

covmat = list()
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cormat = list()

for (i in 1:((dims[1])-days)) {

covmat[[i]] = cov(tsret[i:(i+days-1),])

cormat[[i]] = cor(tsret[i:(i+days-1),])

}

variance[[2]] = covmat

variance[[3]] = cormat

variance[[4]] = 0 #Old list for Beta’s (Systematic VaR)

dflist = list()

for (y in 1:((dims[1])-days)) {

portret = vector(mode = ’numeric’, length = days)

dfvec = vector(mode = ’numeric’, length = 3L)

for (r in 1:days){

portret[r] = rowSums(t(t(tsret[(y+r-1)][,-11]) * w))

}

mean1 = mean(portret)

std1 = sqrt(var(portret))

dfvec[1] = as.numeric(fitdistr((portret-mean1)/std1,"t")[["

estimate"]][["df"]]) #Estimating df for standardized

portfolio returns

dfvec[2] = 3 #as.numeric(fitdistr((ret2-mean2)/std2,"t",start =

list(m=0, s=1, df=ifelse(y==1,dfvec[1],(dfvec[1]+dflist[[y

-1]][2])/2)))[["estimate"]][["df"]]) #Estimating df for

standardized mapped portfolio returns

dfvec[3] = 3 #as.numeric(fitdistr((ret3-mean3)/std3,"t")[["

estimate"]][["df"]]) #Estimating df for standardized

portfolio residuals

dflist[[y]] = dfvec

}

variance[[5]] = 0 #Old list for covariance matrices of residuals

variance[[6]] = dflist

return(variance)

}
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C.3 Covariance Estimation - EWMA

volewma.mat = function(tsret,lambda,days,vobject){

dims = dim(tsret)

vecnames = colnames(tsret)

variance = list()

variance[[1]] = index(tsret[1:(dims[1]),])

covmat = list()

covmat[[1]] = matrix(data = 0, nrow = dims[2], ncol = dims[2],

dimnames = list(vecnames,vecnames))

cormat = list()

cormat[[1]] = matrix(data = 0, nrow = dims[2], ncol = dims[2],

dimnames = list(vecnames,vecnames))

for (i in 2:(dims[1])) {

covmat[[i]] = matrix(data = NA, nrow = dims[2], ncol = dims[2],

dimnames = list(vecnames,vecnames))

for (x in 1:(dims[2])){

for (y in 1:(dims[2])) {

covmat[[i]][y,x] = (1-lambda) * tsret[(i-1),x] * tsret[(i-1),y

] + lambda * covmat[[(i-1)]][x,y]

}

}

cormat[[i]] = cov2cor(covmat[[i]])

}

t1 = days+1

t2 = length(variance[[1]])

variance[[1]] = variance[[1]][t1:t2]

variance[[2]] = covmat

variance[[2]] = variance[[2]][t1:t2]

variance[[3]] = cormat

variance[[3]] = variance[[3]][t1:t2]

variance[[4]] = 0 #Old list for Beta’s (Systematic VaR)

variance[[5]] = 0 #Old list for covariance matrices of residuals

variance[[6]] = vobject[[6]]

return(variance)

}
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C.4 Covariance Estimation - DCC GARCH

volmgarch.mat = function(xtsret,start,refit,winsize,distrmod){

#distrmod = ifelse(distrmod == 0, "norm", "sstd")

spec = ugarchspec(variance.model = list(model = "sGARCH", garchOrder

= c(1, 1),submodel = NULL, external.regressors = NULL, variance.

targeting = FALSE), distribution.model = "norm", mean.model=list(

armaOrder=c(1, 0), include.mean = T))

mspec = multispec(replicate(dim(xtsret)[2], spec))

dcc_spec = dccspec(mspec, distribution = c("mvnorm"))

roll = dccroll(spec=dcc_spec, data=xtsret, n.ahead = 1, refit.every =

refit, n.start = start, refit.window = "moving", window.size =

winsize, keep.coef = TRUE)

covars = rcov(roll)

corels = rcor(roll)

output = list()

output[[1]] = as.Date(attributes(covars)$dimnames[3][[1]])

output[[2]] = list()

for (i in 1:(dim(covars)[3])){

output[[2]][[i]] = covars[,,i]

}

output[[3]] = list()

for (i in 1:(dim(corels)[3])){

output[[3]][[i]] = corels[,,i]

}

output[[4]] = 0 #Old list of Beta’s

output[[5]] = roll

return(output)

}
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C.5 Covariance Estimation - Hybrid Implied Volatility

implied.cov = function(ivs,cormats,day,tsret){

vec = NULL

vec1 = c(1,seq(3,93,by=6))

#Shifting IVs one day ahead, so IV from 2002-12-11 is placed in

2002-12-12 since we use it as vol estimator for 2002-12-12.

ivsub = ivs[1:(dim(ivs)[1]-1),vec1]

ivsub[,1] = ivs[2:(dim(ivs)[1]),1]

ivsub = ivsub[,c(1,1+keepcols)]

ind = which(cormats[[1]] >="2002-12-11")

ivsub$date = as.Date(ivsub$date)

tmpdays = data.frame(date = cormats[[1]][ind])

ivsub = left_join(tmpdays,ivsub,by="date")

dims = dim(ivsub)

variance = list()

variance[[1]] = cormats[[1]][ind] #Dates

covmat = list() #Implied Covariances

for (i in 1:length(ind)) {

#Covariance matrix = VRV, where V is diagonal matrix constructed of

implied volatilities and R is correlation matrix constructed

of EWMA, Eq.W or GARCH correlations

covmat[[i]] = diag(ivsub[i,-1]*sqrt(day/252)) %*% cormats[[3]][(i+

length(cormats[[3]])-length(ind))][[1]] %*% diag(ivsub[i,-1]*

sqrt(day/252))

dimnames(covmat[[i]]) = list(colnames(cormats[[3]][[1]]),colnames(

cormats[[3]][[1]]))

}

variance[[2]] = covmat

variance[[3]] = cormats[[3]][ind] #’Old’ correlation matrix

variance[[4]] = 0 #Old list for beta’s

variance[[5]] = 0 #Old list for residuals

variance[[6]] = 0 #cormats[[6]][ind] just for v4.new.garch.new

return(variance)

}
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C.6 Parametric VaR

#Function that returns parametric normal and student-t VaR

#Arguments: XTS of returns, significance levels, object with

covariances and betas, weights

param.var = function(xtsrets,sig,covlist,w){

start.point = index(head(xtsrets,1))

end.point = index(tail(xtsrets,1))

p1 = match(start.point,covlist[[1]])

p2 = match(end.point,covlist[[1]])

covlist[[1]] = covlist[[1]][p1:p2]

covlist[[2]] = covlist[[2]][p1:p2]

covlist[[3]] = covlist[[3]][p1:p2]

#covlist[[4]] = covlist[[4]][p1:p2,]

#covlist[[5]] = covlist[[5]][p1:p2]

covlist[[6]] = covlist[[6]][p1:p2]

xtsrets.sub = xtsrets[covlist[[1]]]

dims = dim(xtsrets.sub)

stdev = matrix(data = NA, nrow = dims[1], ncol = 1)

total.df = vector(mode = ’numeric’, length = dims[1])

syst.df = vector(mode = ’numeric’, length = dims[1])

spec.df = vector(mode = ’numeric’, length = dims[1])

for (i in 1:dims[1]){

stdev[i,1] = sqrt(t(w) %*% covlist[[2]][[i]][-11,-11] %*% w) #

Total

total.df[i] = covlist[[6]][[i]][1]

}

var.xts.nor = xts(cbind(-qnorm(sig[1])*stdev,-qnorm(sig[2])*stdev,-

qnorm(sig[3])*stdev), order.by = index(xtsrets.sub))

var.ts.nor = timeSeries(var.xts.nor)

var.xts.std = xts(cbind(-qt(sig[1],total.df)*sqrt((total.df-2)/total.

df)*stdev,-qt(sig[2],total.df)*sqrt((total.df-2)/total.df)*stdev

,-qt(sig[3],total.df)*sqrt((total.df-2)/total.df)*stdev), order.

by = index(xtsrets.sub))

var.ts.std = timeSeries(var.xts.std)
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colnames(var.ts.nor) = c(paste(sig[1],"Total VaR"),

paste(sig[2],"Total VaR"),

paste(sig[3],"Total VaR"))

colnames(var.ts.std) = c(paste(sig[1],"Total VaR"),

paste(sig[2],"Total VaR"),

paste(sig[3],"Total VaR"))

output = list()

output[[1]] = var.ts.nor

output[[2]] = var.ts.std

return(output)

}

C.7 Historical VaR - Non Adjusted

#Function that returns series of portfolio VaR (historical) at

different significance levels

#Inputs: Time series (xts) of portfolio returns, rolling sample size,

significance levels

hist.var = function(portrets, n, sig){

dims = dim(portrets)

dfhist = matrix(data = NA, nrow = dims[1], ncol = length(sig)+1)

dfhist = data.frame(dfhist)

colnames(dfhist) = c("date",sig)

dfhist$date = index(portrets)

for (i in (n+1):dims[1]){

for (z in 1:3) {

dfhist[i,z+1] = -quantile(portrets[(i-n):(i-1),],sig)[z]

}

}

dfhist = xts(dfhist[-1], order.by=as.Date(dfhist[,1]))

dfhist = timeSeries(dfhist["2007/2016"])

return(dfhist)

}
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C.8 Historical VaR - Cholesky Adjusted

#Arguments: xtsrets, n = size of rolling window, s = how many

observations to skip due to ’the leading minor is not positive

definite’ error

hist.var.chol = function(xtsrets, n, sig, covlist, w, s){

xtsrets.sub = xtsrets[covlist[[1]]] #returns with dates extracted

from cov list (v1,v2,v4...)

dims = dim(xtsrets.sub)

dfhistchol = matrix(data = NA, nrow = dims[1], ncol = length(sig)+1)

dfhistchol = data.frame(dfhistchol)

colnames(dfhistchol) = c("date",sig)

dfhistchol$date = index(xtsrets.sub)

for (i in (n+1+s):dims[1]) {

temprets = xtsrets.sub[(i-n):(i-1)] #creating temp subset of n

returns

cholrets = matrix(data = NA, nrow = n, ncol = (dims[2]-1))

for (z in 1:n) {

cholrets[z,] = temprets[z,1:10] %*% solve(chol(covlist[[2]][[(z+i

-n-1)]][1:10,1:10])) %*% chol(covlist[[2]][[(i-1)

]][1:10,1:10])

}

portrets = rowSums(t(t(cholrets[,1:10] * w))) #1:10 because of

excluding SPY

for (y in 1:3) {

dfhistchol[i,y+1] = -quantile(portrets,sig)[y]

}

}

dfhistchol = xts(dfhistchol[-1], order.by=as.Date(dfhistchol[,1]))

dfhistchol = timeSeries(dfhistchol)

return(dfhistchol)

}
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C.9 Portfolio Weights Simulation

#Generating portfolio weights 500 times with different seed

weights.mat = list()

for (w in 1:500){

set.seed(w)

weights = rnorm(9, mean = 0.1, sd = 0.05)

weights[10] = 1 - sum(weights)

weights.mat[[w]] = weights

}

#Cholesky decomposition 500 times with different portfolio weights

start.time = Sys.time()

cl <- makeCluster(15) #Use no of cores on Amazon EC2 instance

registerDoParallel(cl) #Set parallel backend

var.mat4 <- foreach(p=1:500, .packages=c(’dplyr’,’timeSeries’,’xts’,’

MASS’,’doParallel’)) %dopar% {

window(hist.var.chol(xts.returns1, 1000, significance, v4.new,

weights.mat[[p]], 10),"2007-01-01","2016-12-31")

}

stopCluster(cl)

Sys.time() - start.time

#Generating portfolio returns 500 times with different weights

portrets.long = list()

for (p in 1:500){

portr = rowSums(t(t(xts.returns1[,1:10]) * weights.mat[[p]]))

portr = xts(portr, order.by = index(xts.returns1))

names(portr) = "Portfolio"

portr = timeSeries(portr)

portrets.long[[p]] = window(portr,"2004-01-01","2016-12-31")

}
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