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ABSTRACT

Detrended Fluctuation Analysis has been used .~ several fields of science to study the
statistical properties of trend stationary ana noi ,..:lonary time-series. Its application to
financial data has produced important resu. .. coi.~erning long-range correlations and long-
memory. However, these results may »e contaminated if the researcher attributes to
nonstationary trends the effect of stationary . ends with endogenous structural breaks. Our
paper proposes a modified DFA mc tel wi =re boxes to determine local trends are replaced by
endogenous structural break wadow. We also allow local trends fitted by quadratic
functions and use squared re. v s “a place of patchy standard deviations to study the
magnitude of the power-la- - exponent. The results show that our modified DFA model
performs better than the “~ed length alternatives originally proposed, and is, therefore, a

suitable model to fit wit.. i* ancial data. Consistently with previous findings, our results show

positive long-range ¢ orre ation in all indices with the higher value for emerging markets.

KEYWORD?
Detrended flu ~tuati yn analysis; detrended walk; structural break; forecast accuracy; power-

law
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1. Introduction

Many researchers have attempted to model the statistical properties of ste .k market prices
and returns. This has led to the proposal of a huge number of models and cech..’tues capable
of dealing with the peculiarities of financial data. One of these techniqu s, t orn in the context
of statistical physics, is called Detrended Fluctuation Analysis. Th:-~ tec..~ique has gained
some popularity among researchers given its simplicity and the s .cc >ssfun results achieved.
In spite of this, the use of this technique with financial data still 1.. -ds some improvements,
given the specificities of these data. One such specificity s the >ccurrence of structural
breaks in time series that are relatively long. Structural “~ean. usually occur at irregular
intervals and should not be defined exogenously in relati. » with the chronological sequence

of the series.

In this paper we propose a modified DFA mode! *-~* ~-_)ymmodates structural breaks which
are determined endogenously on the basis of the ouv.>rved data. After the computation of
break dates, we define the patches on the basis ¢ © cach irregular break interval then obtained.
The forecasts are then computed within each 2w ™~ using a nonlinear deterministic trend to fit
the data. Instead of using the residuals’ standard deviation, we use squared residuals
themselves to evaluate the power '-v assumption. Finally, in order to evaluate the
performance of our model in comyp. ~ison " sith alternative models similar to the conventional
DFA, we perform both in-samr.e a.d out-of-sample forecast accuracy tests. Our model was
tested with four stock mark et ag v zated indexes published by Morgan Stanley Capital
International (MSCI). The .evei . ¥ aggregation varies since the main purpose of this paper is
to analyze and select thr be: ¢ fit in different contexts and levels of data aggregation. As we
shall see, our modifi.d Dr.* model yields in general better results than the fixed-length
models tested as alw.-r tivr s, confirming that accounting for endogenous structural breaks
improves the ovr call fi' ot our data. Our results indicate the presence of positive long-range

correlation in all 1,.Yice .

The rest ¥ the paper is organized as follows. In the next section we provide the background
to the stud, and summarize some features of conventional detrended fluctuation analysis.
Next, we present in three steps our model of integrated price returns with structural breaks
and the data used at each step for the four indexes under analysis. The following section

discusses the main empirical results and section 5 compares the forecast accuracy of the



models, both in-sample and out-of-sample, in order to ascertain whether our model performs
better than the conventional model or not. In the final section we draw some conclusions of

our study.

2. Background

Since the influential paper of Peng et al. [1] which introdr *ed Dewended Fluctuation
Analysis (DFA) to study the properties of DNA nucleotides, i .uy emp.rical researchers have
used this technique with applications to several fields of sciei ~e. In rinance there have been
some applications too, but there is no evidence that the c 1igi* .« model has been modified to
accommodate financial data oddities. One such oddity « ~nce~, the occurrence of structural
breaks that may be mistaken by stochastic non-static ~arities .n the data and lead to spurious

results.

Peng et al. [1] argue that “DFA permits the de. ct1 s of long-range correlations embedded in
a patchy landscape and avoids the spurious . “>cti. n of apparent long-range correlations that
are an artifact of patchiness”. This men!’ ... i< ~lated to the replacement of the unique long-
run trend embedded in the data by local trenus within patches, but in fact stochastic trends
and structural breaks are overloo’.ed in ‘this process. Others argue that DFA allows the
distinction of intrinsic autoce relatic > from that imposed by external nonstationary
movements. Intrinsic autocorre:~t'on “s associated with memory effects in the underlying
dynamic system, but the ex.. »nce of nonstationary movements on their own should not be
ignored. Therefore, rathe .. an computing local forecasts within patches simply on the basis
of deterministic trends, ~.d ignoring local stochastic trends, we may utilize a general
nonstationary frame vor! and test whether the residuals obtained from regressing actual on
fitted local values -re s. ‘.onary, i.e. actual and fitted values must be cointegrated both in

mean and in vari. nce.

Another adva. “age of detrended fluctuation analysis is that it can be used to assess multiscale
autocorrel tic 1+ | 2]. Multiscale in this context refers to different data frequencies or
resolutions, where higher frequencies are associated with finer scales and lower frequencies
are associated with coarser scales. Fine scales typically involve noise problems that need to

be purged while coarse scales may suffer from time aggregation problems. However, in the



context of fractal geometry, detrended fluctuation analysis has been used to assess the
statistical self-affinity of a time series at different times. Self-affinity occurs when a set can
be decomposed into subsets that can be linearly mapped into the full set, v.ith special cases
being called self-similarity. In this way, fractal objects are defined as shapes 1..~de of parts
similar to the whole in some way, such that different data scales wou’ { nc ¢ lead to different

results or structures, i.e. a fractal object is self-similar or self-affine at «. ~v sc..ie.

In finance, Ref. [3] studies multifractal detrended fluctuation analy. s in the German stock
market using tick data for six stocks traded in the Deéutsch' Borst and concludes that the
scaling exponent lies around 0.5 or less, indicating that n-. signiticant autocorrelations exist.
Ref. [4] analyses the multifractality degree of developed a..u en :rging stock market indices.
Their results show that the multifractality degree is invers. ly associated with the stage of
market development, with most developed markets ~xhiu...ng scaling exponents around 0.5
or less and emerging markets showing scaling e:. -oucus typically above 0.5, and imply that
the multifractality degree may be used to asse: . ~*~aes of stock market development. Ref. [5]
also uses multifractal detrended fluctuat'~n a. alysis, along with multifractal spectrum
analysis, to analyze 10-minute closing prices « f tue Chinese stock index futures market, and
found that this market exhibits long-range ¢« ~rrelations and multifractality, consistent with a
scaling exponent higher than 0.5. S'.au. " results for the Asian stock markets were obtained
by [6] using coupling detrended flu.*nat'yn analysis. Finally, Ref. [7] combines detrended
fluctuation analysis and mutua’ inf" rmztion to study frontier markets’ efficiency. The results
for the scaling exponent shov. that 1. _xceeds 0.5 in most markets and the higher the value the
“less efficient” is the underlying 1. arket. Therefore, we may conclude that emerging markets
tend to be less efficier ¢ th.n developed markets but, although the empirical evidence is
consistent across dif ereat s.adies, none of these actually proposes modifications to the

underlying basic moac’ to # .commodate singularities of the financial market data.

The use of the DFA .chnique leads to objects that can be statistically treated as power-laws
where the p ‘wer-le ¥ exponent describes the type of long-range correlation and memory
effects tk .. _“~racterize the specific data under study [8, 9]. Taking full advantage of this
relationship, »ne can define with precision what kind of time-series we are dealing with and
what are the main features of our data. Under cointegration of the detrended walk, DFA can

be used either with stationary and nonstationary data without misleading results [10, 11, 12].



Conventional detrended fluctuation analysis (DFA) involves the following steps [1]:

1.

Integrate the original series (cumulative sum or profile) after computing the difference
to the mean;

Divide the integrated series into patches of equal length /;

For each patch compute the forecast of the integrated series ans’ the corresponding in-
sample errors;

For each patch compute the square root of the average sum of s - -ared errors;

Test the power-law assumption by running a regression ° the log of the above

defined standard deviation on the log of 77, where 77dei otes th number of patches.

As we show in the next section, this paper proposes a mod fied Detrended Fluctuation

Analysis model, where the above-mentioned steps are gung to be changed in order to

accommodate structural breaks and obtain better esu.nates .« the model parameters.

3. Model and Data

3.1.Historical Price Returns

As noted above, the main purprse ot .*'s study is to analyze and select the best fit of the

distributional signal of prices ~*d r.turns using four stock market aggregated indexes

published by Morgan Star ..’ Capital International (MSCI): World, Emerging Markets,

Europe and Pacific. The “...* step 1s to examine the chronological profile of the signals. For

returns, this profile can be <en in Figure 1.
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Figure 1: Returns signal. Source: Morgan Stanley Capital Inw. mational (MSCI) daily price index, 07/13/1998 —
07/13/2018, 5220 observations. Shaded bars represent ¢ . ~~mic recession periods in the US.

Returns were calculated from the original pr'cc using x; = 100 X (P, — P;_;)/P;_;, where
P, denotes the published price series an. X oo resents the calculated return at time £' The
series of returns are substantially linearly correlated. The European index has a correlation of
83% with the World index and a ¢ relatic n of 66% with the Emerging Markets index.” The
Emerging Markets index, in tur i, bas a correlation of 68% with the World index and 59%
with the Pacific index. The I we. co relation occurs between the Pacific and the European
indexes (35%) and betweer the Pacific and the World indexes (40%). All the correlations are
significant at the 1% le /el. These results are not really unexpected, given the increasing
degree of volatility coatag.. » observed in financial markets over the past decades, especially
in the western econc mir 5, ar d the bulky contribution of European stock markets to the global

indexes [13].

The series de pictea n Figure 1 show that the volatility of returns varies with time and there is
a propensity to _luster the periods of high volatility, that is, high volatility periods follow

other perio.'s of high volatility and vice-versa (volatility clustering). Another stylized fact of

" In other studies, the returns were calculated as the difference of the logarithm of prices at two adjacent points
in time, with a similar interpretation.
2 Throughout this section, and unless otherwise stated, correlation refers to the Pearson correlation coefficient.



many financial time-series is the negative correlation between the volatility of returns and
prices, that is, high volatility occurs more frequently when prices drop (leverage effect). In
our case, the linear correlation between returns’ volatility and prices is negative and
statistically significant at the 1% level for the four aggregated indexes: Wo.ld (—34%),
Emerging Markets (—11%), Europe (-30%) and Pacific (-27%).

Asymmetry, and especially leptokurtosis, are also frequent]l’ fruun' in the empirical
distribution of stock market returns (leptokurtosis leads to fat ~r heo vy tails). Kurtosis lies
around 10 in all cases and, except for the European index, all ow series exhibit negative
skewness. Negative skewness means that the returns di.trib»*on has a long left-tail and,
although positive returns are more likely to occur than ~egative ceturns, the tail is greater on
the left-side. A Jarque-Bera [14] test of the null hyrothesis >f gaussianity is rejected at the
1% level in the distribution of returns of all our fou. ‘ndeaes. Thus, alternative distributions
that account for thicker tails may describe be.~r the distribution of returns. The main

descriptive statistics of the return’s series are ¢ cov. “~4 in Table 1.

World Emerg -, ""ar. ets Europe Pacific
Mean 0.017 0.029 0.013 0.020
Maximum 9.523 10.598 11.291 11.431
Minimum -7.063 -£.511 -9.677 -8.773
Std. Dev. 0.991 1.194 1.330 1.233
Skewness -0.234 -0.339 0.004 -0.023
Kurtosis 10.746 10.522 10.221 8.723
Jarque-Bera 13096.04 ** 12404.57 ** 11339.81 ** 7122.33 **

Table 1: Descriptive statisti.. .f the returns signal. Source: Morgan Stanley Capital International (MSCI)
daily price index, 07/13/1 98 — 07,.3/2018, 5220 observations.

The four time-se s outnned before follow, in general, the same chronological pattern of
volatility, where . ‘gher volatility occurs during periods of price decrease (crisis spells). There
are two relcvant j »riods of financial crisis during the whole span analyzed, each one
associated wit. - period of economic recession in the US too. The first financial downturn
occurred 1 v 1 2000 to 2003 (Dot-Com Crash). During this period, an economic downturn
known as the carly 2000s Recession (Mar.-Nov. 2001) also took place in the US, motivated
by the above-mentioned Dot-Com crash in combination with a fall in business outlays and

investments, and the September 11" attacks [15].



Later, a second and much more severe financial downturn occurred in 2007-2009, which is
known as the Global Financial crisis. During the same time span, an ec’ nomic downturn
known as the Great Recession also happened, motivated by the subprime mortga 2 crisis and
subsequent collapse of the US housing bubble, triggering a failure or ¢ illar se of many of the
US largest financial institutions (e.g. Lehman Brothers /nfér alia) as vell .s a crisis in the

automobile industry.

The above-mentioned financial and economic crises in the US prduced strong spillover
effects across the global economy, provoking a casce.c of pailouts and bankruptcies,
particularly in Europe, leading to the European Sovere.gn D.bt Crisis and other slump

economic events.

Overall, the behavior of the aggregated indexes . +aiyzea is rather synchronized, particularly
during the episodes of price downturn 2000 272 and 2007-2009, characterized by steep
negative slopes commencing, respectively, < 20v ) and 2007, and lasting until the end of the

respective crisis, and with a relatively similar 1.~aganitude in all the cases.

3.2. Integrated Series and Struv'''ra’' Breaks

The second step entails the .ompuw.ion of the integrated series of price returns of the four
aggregated indexes analyzed. Imiwcsration of price returns means to compute the cumulative
sum or profile of the se s fter taking the first difference to its mean: X, = ¥'_,(x; — (x)),
where (X) represents ne mean value of the returns time-series. Hence, the standardized price

series itself is the integ, “ter signal of returns, or just called the integrated signal.

Denoting by 7’ uie nuber of times that a series needs to be differenced in order to remove all
the stochasti® trenrs that may exist in the data, then returns are stationary if they are
integratec ui . - '~r d equal to zero. Under these circumstances, prices, that is the cumulative
sum of retui.'s, are integrated of first-order, and are said to be nonstationary or unit root
processes. The non-stationarity of prices implies that they have stochastic trends which can

be captured, for example, using Perron [16] unit root tests with structural breaks. In our case,



the Perron tests confirm that all the four price index series are nonstationary and integrated of
first-order, which means that they hold one stochastic trend. The series of returns, on the
other hand, are all trend stationary. Bai-Perron [17] methodology to determ’.ae /m endogenous
structural breaks was also applied and, within each break window (subsample), . onventional
ADF unit root tests were performed. The results are presented in Table -.

In his seminal paper on unit roots with structural breaks, Perrra [ 'C' noints out that the
conventional unit root tests (e.g. ADF) are biased toward a false un.. oot null when the data
are trend stationary with a structural break. A number of mo lified + DF unit root tests were

then proposed by the researchers which allow for levels ar . wenas that differ across single or

multiple break dates.

Breaks can occur in different situations, such as. i) g..aually (innovational outliers) or
immediately (additive outliers), ii) consisting or - icver shift, a trend break, or both, iii) the
break date is known (exogenous) or unknown ... =<timated from the data (endogenous), and
iv) the data are non-trending or trending. “ne «an thus define an intercept break variable
termed DU.(T,) = 1 (t = T}) that takes the -alue O for all dates prior to the break, and 1
thereafter, a trend break variable named D1,{™) = 1 (t = Tp) - (t — T}, + 1) which takes the
value 0 for all dates prior to the brrak «d is a break date re-based trend for all subsequent
dates, and a one-time break dummy -ariesle given by D;(T,) = 1 (t = T},) which takes the
value 1 only on the break date nd J ot'.erwise. 1(-) denotes the indicator function and 7y, the

break date.?

* In this paper we define the break date as the first date of the new regime.
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Perron (1997) unit root test

World Emerging Markets Europe Pacific
Breaks: 9/23/2002, 10/07/2003, Breaks: 11/0812001, 312412003, Breaks; 11/2812002, 9/29/2008, " Breiks: 7 1272001, 772112004,
10/07/2008, 5/1712012, 7116/2015 10/03/2008, 9/13/2012 9/1612013 0312008, 1/022013
Coeff ADF-Stat. Coeff ADF-Stat. Coeff ADF-Stat. Coeff ADF-Stat.
7/14/1998 - 9/20/2002 - 1094 obs 7/14/1998 - 11/07/2001 - 867 obs 7/14/1998 - 11/27/2002 - 1142 obs 7" 4/1998 - 7/11/2001 -~ 782 obs
0,043 33,798 *¥ 12,005 ** 19,391 *¥
0.100 ** 0.851 0.250 ** 0.376 0.066 ** 10 0.276 ** {.714
0.000 ** 0.000 ** 0.000 ** 0.000 **
9/23/2002 - 10/06/2005 - 794 obs 11/08/2001 - 3/23/2003 - 880 obs 711272001 - 7120/2004 - 789 obs
-210.993 109.229 18883 *
0.226 ** -1.965 * {257 1527 {481 {.874
0.000 *# 0.000 *# 0.000 *#
10/07/2005 - 10/06/2008 - 782 obs 3/24/2005 - 10/02/2008 - 921 obs 12702002 - 725 2008 1522 obs 712112004 - 10/02/2008 - 1097 obs
T40.639 ** 1074 -593.569 ** VRN 403.179
0.646 ** 0.521 * {418 0.179 ** 1897 0.383 ** 081
0.000 ** 0.000 *# 5,000 *# 0.000 *#
10/07/2008 - 5/16/2012 ~ 942 obs 10/03/2008 - 9/12/2012 ~ 1029 obs 12912008 - 9/13/2013 - 1295 obs 10/03/2008 - 1/01/2013 1108 obs
97244 * -1976.78 ** 453,584 * $02.523 *
0571 ** 0.739 |41 0.78 0.248 * 3307 0.529 ** 2139 *
0.000 ** 0.000 ** 0.000 0.000 **
SITTI2012 - 711572015 - 825 obs 9/132012- 732010 1522 o5 9/16/2013 - 7/13/2018 - 1260 obs 10212013 - T/13/2018 - 1443 obs
-1189.00 ** 957,77 ¥ 1035.49 ** 468.690 *
0.553 ** 215 * 400 1.4 0453 -1.942 ¥ 4.208 * 2300 *
0.000 ** o g # 0.000 *# 0.000 *
1162015 - 711372018 - 782 obs
§25.136
0373 % 3095 ¥
0.000 *

with structural breaks

3336

347

4032

Table 2. Structural Broabe ana yuie Roots of integrated signals. Sample: MSCI daily price index, 07/13/1998 - 07/13/2018, 5220 observations. Break coefficients and
dates computed using Bar ™ on [17] tests of /+1 vs. / globally determined brcaks. Perron [16] unit root test with an endogenous structural break in both the intercept and
trend. All integrated signals (s.andardized prices) have a unit oot with breaks. Conventional ADF unit root tests 18] without breaks were applied to each patch using
MacKinnon [19] one-sided p-values. The ADF null was rejected at standard levels in a number of patches. ** Significant at the 1% level, * significant at the 5% level,



Following Perron [20], the unit root tests with structural breaks are based on the equation
Ye =+ 0DU(Ty) + Bt +YDT(Tp) + 8D¢(Tp) + aye—1 + Xiey CiAye_; » €, where a, B,
4 and ¢, are parameters, 0, y and & are vectors of parameters with dimension cqual to the
number of breaks, similarly to the underlying dummies. For the int.~va ional outlier (10)
model, the null and alternative hypotheses can be set up imposing a 1.V restrictions on the
parameters. For example, the null under the original Perron’s me sel < cis “he trend parameter
f to zero, the autocorrelation (or unit root) parameter =1 ar * the y ~ector (trend break) to
zero, while the alternative sets the 3-vector (one-time break, to ze'o and o= 0. The break
variables and the innovations may enter the model with che -..1e dynamics given by a lag
polynomial y(L). The model is set up such as €; are . id. ‘~.ovations and the breaks are

selected endogenously as suggested by Perron [16] ai.™ others.

Bai and Perron [17] advise a number of strategies .~ dealing with the choice of endogenous
structural breaks using general to specific »rcocuures rather than methods based on
information criteria, such as AIC, becau'., th.y argue, the latter tend to select very

1

parsimonious models leading to tests w L. ~on.atimes serious size distortions and/or power
losses with data in the class of ARMA processus. Actually, recent research conducted by Hall
et al. [21] shows that the penalty .erms mncorporated in the structural breaks’ information
criteria of Yao [22] and LWZ [2,] ma, * nderestimate by a factor of 3 the number of /m true
breaks that have an asymptotic « ¥ ct o « the minimized residual sum of squares and propose a

modified penalty term for ‘he information criteria in the context of structural break

estimation.

We follow [17] to de.err.une breakpoints and coetficients computed by LS with Breaks, using
tests of /+1 vs. / slobal determined breaks selected by sequential evaluation, trimming
0.15, HAC stancard er ors & covariance (Quadratic-Spectral kernel, Andrews bandwidth)
and allowing neter~geneous error distributions across breaks. Breakpoints are the start of the
next regime. “nde  the null, the variable has / endogenous structural breaks in both the
intercept o d ‘rend. A useful strategy is to first look at the max tests [17] to see if at least one
break is pres.nt. In this case, then the number of breaks can be decided based upon a
sequential examination of the sup F(l + 1 | ) statistics constructed using global minimizers

for the break dates, i.e. select /m such that the tests are insignificant for /> m. As shown in

12



Table 2, all the integrated signals (standardized prices) have a unit root with breaks.
Conventional ADF [18] unit root tests without breaks were also applied to each patch and the

null was rejected at standard levels in some cases.

The ADF tests are based on the equation Ay, = u+ St + (p — Dy,.  + K Ay, + €,
where ¢ and S denote, respectively, the intercept and slope of a linear u. “ermunistic trend, pis
the autocorrelation parameter of J;, and €, denotes a white noise pro.cs. The parameters ¢;
are included in the model to capture any remaining serial corre'-*ion v, to order A on the left-
hand side variable. If p= 1, then J;is a difference stationary p -ocess. In addition, if ¢; = f =
0, then J;is a random walk with drift. A random walk pre cese - a unit root or nonstationary

process /() with d= 1.

4. Results

4.1. Cumulative Sum of Price Returns

The integrated series of price returns for the four aggregated indexes here analyzed are
depicted in Figure 2. Note that t' = peric Is of price decline correspond to the periods of
higher volatility shown in Figur¢ 1 upnolding the presence of leverage effects in the stock

market as mentioned before, tyge.. =t ~ /ith the recent well-known economic recessions.
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Figure 2: Integrated signal. Source: Morgan Stanley Capital Interr ational (MSCI) daily price index,
07/13/1998 — 07/13/2018, 5220 observations. Solid line denotes the actua series,  ashed line denotes the fitted
values. Shaded bars represent economic recession periods in the US accordu.: to *.e NBER definition.

For each aggregated index, Figure 2 depicts the actual v ~lues ‘<~ (id line) and the fitted values
(dashed line). The fitted values refer to an estimated *"*-degr ¢ polynomial with intercept for
each patch. Our results indicate the existence of six v.~ak patches for the World price index,
five for Emerging Markets and Pacific, and four 1.~ Europe, where the number of patches is
equal to the number of breakpoints plus one. sa> . dn our results, the integrated signal of
price returns for each patch tracks a seque. .~ ot nartial quadratic functions, most of which
having negative concavity, as shown in *he vaious landscapes of Figure 2. The R? statistic
for the polynomial fit with breaks varies be.veen 0.83 (Europe) and 0.92 (World) and is

significant at the 1% level in all cas .

The breakpoints we have ident.%er. usi ig the Bai-Perron [17] methodology (see Table 2 and
Figure 2) correspond, in sor = cases, to the end of spells of financial downturns such as the
Dot-Com crash, the Glob#' Yinancial crisis or the Chinese stock market crash, as described in
subsection 3.1. Breakp.'n‘s in several financial markets were identified in the second
semester of 2001 an . 2( )2, in 2004 and 2005, in September and October of 2008, in 2012
and 2013 and in Julv 2y 1S

4.2.Squa-ed R .siduals

After genera ‘ng the cumulative sum of price returns and the underlying 2nd—degree

polynomial fits with structural breaks, we next proceed to the third step, wherein we compute
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the squared distance (or squared residuals) from the observed to the fitted values of the

integrated series X

The residuals (or detrended walk) were estimated from u, = X, — X,, where X, 1.oresents the
fitted series (local trend), that is, the piecewise sequence of quadratic - »gre ssion fits for each
patch. Residuals are stationary in mean, as indicated by convention..! ALF tests without
deterministic terms, not reported here.* Therefore, according to “ae ¢ .. nger Representation
Theorem [24] the actual and fitted series are cointegrated of fire* oru.~ and hence we obtain
nonspurious residuals. Despite this evidence, a Jarque-Bera [1 4] test « f the null of gaussianity
is rejected at the 1% level in the distribution of resid-.ais in all cases. Alternative data
distributions may be suggested by inspection of the squ-.red residuals distributions

represented in Figure 3.

DISTRIBUTION OF SOUAK. ™ RESIDUALS
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Figure 3: Distr bution « fsquared residuals. MSCI daily price index, 07/13/1998 —07/13/2018, 5220 obs.

4.3. Powe.-Law

* Outputs not reported are available from the authors upon request.
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A natural candidate to replace the Gaussian distribution is the Zeta distribution modeled by
Detrended Fluctuation Analysis (DFA) as suggested by Peng et al. [1]. This is also known as

the power-law distribution [1, 10] with scaling parameter o where F(n) o« n® (a> 0) is the

cumulative distribution function of squared residuals. Note that F(n) = ©" .1(X =X t)z with
n € N. Detrended Fluctuation Analysis follows the same route describe ! .0oove to obtain the
integrated price return signal. However, the non-overlapped patches are J~termined in a very
different way, since endogenous breakpoints occurring at diffe- >nt .eng.hs (such as in our
case) are not considered in DFA and there is no real rationa’ vehina the choice of equally
lengthened boxes as suggested by [1]. Another difference i. our "rocedure is that we do
calculate F(n) as the cumulative distribution function of t 1e s-,u. ved residuals rather than the
average (over all the boxes) of the variances about the ~trer.”.d walk for each box. In fact,
the exponent o describes the scaling properties o. the er tire distribution, including the
cumulative distribution function or some other relev.nt statistics such as the root mean

squared error used by [1].

The scaling parameter « can be estimated as " slcpe of a normalized linear regression of the
logarithm of F(7) against the logarith.- Y n. If 0 < @ < 0.5 then the series is anti-
persistent. Anti-persistence means that larger fluctuations are followed by smaller
fluctuations and vice-versa. If 1.5 <« <1 then the series has positive long-range
dependence with persistent or | ng-mei..ory behavior. If @ = 0.5 then the integrated price
return series is white noise. Thi. mer.as that the autocorrelation function tends to zero and
price returns have no sigr.ticont long-memory. If @ = 1 then the integrated price return
series is pink noise. The pin - noise autocorrelation function does not decay exponentially as
the lag length increasss a. 1 memory tends to persist. Finally, when a > 1, there is long-
range correlation ttat rann t be explained by a power-law.” Therefore, the value of the

scaling paramete’ o measures the degree of long-range correlation existing in the data [8].

Figure 4 dey (cts the scatter plots of the logarithm of the distribution function of the squared
residuals for eac.. .ategrated price returns index. This is displayed against the logarithm of the
cumulative ~.um of 7. The estimates of « obtained by running the regression of the log F(/7)
on the log cum(77) are shown near each scatter plot. These estimates are the slopes of the

regression lines also depicted in the figure (light grey line). As can be seen, the slopes are

> If an intercept is also estimated the interpretation of the ¢ exponent should be adjusted.
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very similar in the four market indexes ranging from 0.57 (World) to 0.67 (Emerging
Markets). A Wald test for coefficient restrictions shows that all these estimates are
significantly different from 0.5 and 1 at the 1% level. The estimates obtair .d for the scaling
exponent indicate that squared residuals have positive long-range dependence w.*h persistent
or long-memory behavior. This behavior seems to be a little bit more r 1tig'.ted in aggregated
series such as the World index and aggravated in regional or sectoriai .~dexcs. Since squared
residuals can be seen as a proxy to residuals’ volatility, these rrsult* -2em to indicate that
fractional integrated models, such as the FIGARCH [25], mav nro. ce better estimates for
long-memory volatility than those obtained by discrete inte; rated 110dels, such as the I(0)

(stationary) GARCH-type models, which assume no memc.y [25, 26].°

World Emerging Markets
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4 5
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— 0 p. 0
= =

& 4 & 5

12 3 15

-16 ° -20

0 4 8 1. 16 20 0 4 8 12 16 20

log cur (n) log cum(n)

® However, a broader full discussion of this topic is outside of the scope of this paper.
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Figure 4: Detrended Fluctuation Analysis. MSCI daily pric~ inac. 07/13/1998 — 07/13/2018, 5220 obs. The
plot shows the scatter of log (/1) on log cum(/) along with u.> underlying regression fit (grey line). The
log F(n) denotes the logarithm of the cumulative distrib™ ‘v runcuon of squared residuals. The log cum(/)
denotes the logarithm of the cumulative values of 7. Histograi..~ for each variable are shown near the axes. The
estimated « exponent is reported near the scatter in eacl ... '~~"ne,

Looking at the scatter plots in the four lands-~a ~s of Figure 4 we see that the data are very
well fitted by the underlying regression .. e, c«cept for the first few observations of each
plot. The plot for Europe, however vields smaller deviations between actual and fitted
values, even for the first few ob.~rvatio s, which is in line with the higher value of R?
obtained for this fit (0.67) agair st ¢ 64 tor the Emerging Markets fit, 0.63 for the Pacific fit
and 0.57 for the World fit.

Another important issue .on: erns the size of the samples and the crossover value that triggers
a shift in the classific tion . ¢ the long-range correlation in the data: for example, from anti-
persistence to positi.~ 1 ,ng- ange correlation. To this end we perform a rolling regression of
the log A(n) on t'.e log cum(/) where the sample size increases by one unit every fit and the
first 260 estimatic»s w.re discarded to avoid initial sample noisy effects. The results of the
estimated o e disy layed in Figure 5. All estimates lie within the range 0.16-0.67 and as the
sample si== increases, the o exponent tends asymptotically to its estimate obtained with the
full sample Figure 4 and 5). Starting values lie in the range 0.16-0.31. The « coefficient
grows about 0.07-0.09 units per every 1000 days but this figure conceals a large percentage

variation between the four indexes, ranging from 10% in Europe to 170% in the World series.
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Figure 5: Rolling « exponents. MSCI daily price . 'ex, L 7/13/1998 — 07/13/2018, 5220 obs. The plot shows
the values of o when the regression sample anchore ! a. ~tart increases by one unit every fit. The first 260
estimations were discarded to avoid initial samp’ . ~‘<e ¢ fects. The power-law exponent « varies between 0.16
and 0.31 at the start and 0.57 and 0.67 at the end. “he cutoff point 0.5 occurs at observation #2988 (World),
#1289 (Emerging Markets), #1259 (Europe) and #1807 (Pacific).

The crossover value of interest is 0.>. An « below this value indicates that the series is anti-
persistent, that is large and sm ‘1l f.uct ations alternate over time with relatively short-range
correlations. Conversely, ar <« above this value indicates that the series has positive long-
range correlations with le~~-memory behavior. The evidence of long-memory increases as
a — 1. Finally, at the ci.<s ver value of 0.5, the series is a white noise random sequence. In
our case, the Worl. se.ies “needs” about 10 years of daily data, excluding discarded
estimations, to shift fro.~ .nort-range (or anti-persistence) to long-range correlation effects,
the Pacific series needs . bout 6 years of data and Emerging Markets and Europe need about 4
years of date 1he leading conclusion of these results is that researchers should be careful
with sample .'7e w! en dealing with detrended fluctuation analysis (or other models to assess
long-rang. cc .. lation), since small samples may bias the results and conclusions towards
short-range c. trelation. Another problem may arise when the researcher opts to artificially

split the full sample into a number of independent patches where the size of each patch is
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small. Therefore, using endogenous breaks to obtain non-overlapped and independent boxes

may provide a relevant alternative to conventional detrended fluctuation analysis.

9. Forecast Accuracy

We now turn to evaluate the forecast accuracy of our me «ified model of detrended
fluctuation analysis with endogenous structural breaks, using ca p0S: .n-sample and out-of-
sample forecast accuracy gauges. We use three tests of in-s. mple .orecast accuracy: Root
Mean Squared Error (RMSE), Theil inequality coefficien (U® a. 1 Theil UII coefficient [27].
Since our variables are all standardized, we do not fac. nrot'..ns of scale in the dependent
variable and the results for different models ca.. be diectly compared. Under these
circumstances, the smaller the error the better the forc.~sting ability of the model according
to the RMSE test. Likewise, smaller Theil coettic*ents U and UII indicate better forecast
ability of the model. For example, UII reach>s .5 .ower boundary of UIl = 0 at perfect
forecasts. In-sample tests use the full samp.- “r . >recasting purposes and then compare the

forecasts with the actual values observec ..~+ti.=» full sample.

On the other hand, out-of-sample tests .'se a sub-sample for model estimation and then
compare the forecasts for the rer .aining ~umple with the actual values observed. The popular
Diebold-Mariano test [28] wilh ™ en ployed in our case, where the null hypothesis states
equal accuracy of the two L] ~Is under consideration. A test of model adequacy using Monte

Carlo simulation or other' ... = could be important to perform in future work.

In order to perform *.esr tests, we computed the four above mentioned gauges for our model
with endogenous < ~ictui. ' breaks and for three alternatives following the recommendation of
Peng et al. [1] " 'here e split the full sample into several equal length patches using an
arbitrary size known @ priori for each patch. In our case we used the following window sizes

to obtain loca. *ren-'s: 100, 300 and 600. The results are presented in Table 3.
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World Emerging Markets

Model out-of-sample in-sample out-of-sample in-sample
DM RMSE Theil U Theil UIl DM RMSE Theil U Theil UIl
[: Breaks 2.075 0.124 252.101 1.938 0.099 191.968
[ =100 15.767 ** 2.249 0.160 421.073 29.437 ** 227, 0.145 343.365
1 =300 6.912 ** 2.159 0.137 323.919 25.823 ** 2.022 15 249.343
1 =600 -5.555 ** 2.069 0.122 224.074 -0.843 .96, 0.101 188.990
Europe Paci. -
out-of-sample in-sample out-of-sample in-sample
DM RMSE Theil U Theil UIl DM . MSE Theil U Theil UIl
[: Breaks 1.697 0.089 166.036 1.862 0.102 200.702
[ =100 31.006 ** 2.215 0.150 326.691 24.529 > 2.177 0.149 336.533
1 =300 24.481 ** 2.021 0.119 243.815 19.767 ** 1.961 0.116 207.571
1 =600 21.290 ** 2.077 0.118 298.446 7.330 ** 2.035 0.112 220.106

Table 3. Forecast accuracy of integrated signals. Sample: MSCT dauy pric index, 07/13/1998 — 07/13/2018,
5220 observations. Forecast tests.” éx post out-of-sample Diebold-Iv.. iano (DM) [28] forecast evaluation test
and in-sample RMSE, Theil U, and Theil UII tests [27]. Madels to ompare: forecasts using endogenous
structural breaks against local forecasts using patch sizes of 100, 220 a-.d 600 observations. DM null: the two
forecasts have the same accuracy. Loss function: squared. D.." forecast sample: 07/13/2012 — 07/13/2018.
RMSE and Theil tests should be minimized. ** significant ~* - "7 _:vel.

We first look at the Diebold-Mariano [28] out- ~- amiple forecast accuracy results displayed
in the first column of each block in Table 3. 1. ~ n 1l hypothesis of equal forecast accuracy is
rejected at the 1% level in all cases oot one (test / Breaks against /=600 for the
Emerging Markets index). Under rejection o1 the null it becomes evident that the models
produce different forecast accurac’ss but he DM test itself does not indicate which model
produces the best forecasts. In .nis cas , after knowing that the models produce different

levels of accuracy, we may rely « - the .n-sample tests to make the adequate selection.

Regarding the in-sample o ecasts, the results presented above indicate that our model of
DFA with endogenous su - :tural breaks performs, in general, better than the alternatives of
equal length patches (10, 310 and 600) except for the World index where the /= 600 model
appears to perforr. Jligh. better.” Thus, in spite of some potential limitations caused by the
level of World «~ta ag regation, our model appears to outperform conventional models of

DFA by imp ssing ! >ss restrictions and especially avoiding the prior selection of patch size.

’ Nevertheless, the model with structural breaks always performs better than the /= 100 and /= 300 alternatives.
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6. Conclusions

The use of statistical tools to determine the distributional shape of some fin: acial time-series
has become widespread in the literature since the recognition of a few Ltyli. 1 features of
these data. These features include volatility clustering, long-memory, at 1.ils, and leverage
effect, among others, which overturns the usual Gaussian assumptic ~ In _*atistical physics,
some researchers have used the Riemann Zeta distribution to exp’ain the scatistical behavior
of these phenomena. This is known in the literature as the pow. -law distribution which

describes a large number of real phenomena. The same occurs with 1. 1ancial data.

Some models and techniques to deal with power-laws he~ pee 1 proposed in the literature.
One such technique is called Detrended Fluctuation Analys. - and was originally suggested by
Peng et al. [1] in a study of DNA nucleotides. App'icau "ns .0 financial data were also made
but some oddities of these data may recommer- ~ - modifications in the original DFA
model. One such modification refers to the ocourrence of structural breaks in financial data,
which recommends that regularly spaced patche. ire replaced by irregularly spaced intervals
where endogenously determined break dates rc sed as the starting date of a new window.
Another modification refers to the repla.~ment of within patch standard errors by daily
observations on squared residuals, i» ~~uformity with the idea that squared residuals are a
proxy for volatility. Finally, the sei. ~tion ¢ [ the “best” model in our case is based on forecast
accuracy criteria instead of pure visnal inspection of overlapped results. Our process,
therefore, is more robust an . inac>adent of individual researcher judgement than in the

conventional DFA model.

Our results show tbit the modified DFA model performs in general better than the
conventional one, w. ~r. th’, judgement is made on the basis of pure analytic in-sample and
out-of-sample te s. Th ~retore, structural breaks seem to contain relevant information for the
construction of v~vec into which the full sample should be split. Another relevant
information ‘oncen s the determination of the sample size required to reach the crossover
value 0.5 Althougn it changes with the level of data aggregation, we can say that at least four
years of da."/ data are required to obtain stable estimates of the power-law exponent. As in
some previous studies, the results obtained exhibit positive long-range correlation, which

degree decreases with the level of index aggregation.
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