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H I G H L I G H TS 

 Quadratic functions with negative concavity track integrated price returns 

 Squared residuals yield better fits than average variances about the detrended walk 

 Endogenous structural breaks yield better forecasts than equal length alternatives 

 Data fitted by power-law distributions after the first few observations 

 Crossover value of 0.5 reached for samples of at least four years of daily data 
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A BST R A C T 

Detrended Fluctuation Analysis has been used in several fields of science to study the 

statistical properties of trend stationary and nonstationary time-series. Its application to 

financial data has produced important results concerning long-range correlations and long-

memory. However, these results may be contaminated if the researcher attributes to 

nonstationary trends the effect of stationary trends with endogenous structural breaks. Our 

paper proposes a modified DFA model where boxes to determine local trends are replaced by 

endogenous structural break windows. We also allow local trends fitted by quadratic 

functions and use squared residuals in place of patchy standard deviations to study the 

magnitude of the power-law exponent. The results show that our modified DFA model 

performs better than the fixed length alternatives originally proposed, and is, therefore, a 

suitable model to fit with financial data. Consistently with previous findings, our results show 

positive long-range correlation in all indices with the higher value for emerging markets. 
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1. Introduction 
 

Many researchers have attempted to model the statistical properties of stock market prices 

and returns. This has led to the proposal of a huge number of models and techniques capable 

of dealing with the peculiarities of financial data. One of these techniques, born in the context 

of statistical physics, is called Detrended Fluctuation Analysis. This technique has gained 

some popularity among researchers given its simplicity and the successful results achieved. 

In spite of this, the use of this technique with financial data still needs some improvements, 

given the specificities of these data. One such specificity is the occurrence of structural 

breaks in time series that are relatively long. Structural breaks usually occur at irregular 

intervals and should not be defined exogenously in relation with the chronological sequence 

of the series. 

 

In this paper we propose a modified DFA model that accommodates structural breaks which 

are determined endogenously on the basis of the observed data. After the computation of 

break dates, we define the patches on the basis of each irregular break interval then obtained. 

The forecasts are then computed within each patch using a nonlinear deterministic trend to fit 

the data. 

themselves to evaluate the power-law assumption. Finally, in order to evaluate the 

performance of our model in comparison with alternative models similar to the conventional 

DFA, we perform both in-sample and out-of-sample forecast accuracy tests. Our model was 

tested with four stock market aggregated indexes published by Morgan Stanley Capital 

International (MSCI). The level of aggregation varies since the main purpose of this paper is 

to analyze and select the best fit in different contexts and levels of data aggregation. As we 

shall see, our modified DFA model yields in general better results than the fixed-length 

models tested as alternatives, confirming that accounting for endogenous structural breaks 

improves the overall fit of our data. Our results indicate the presence of positive long-range 

correlation in all indices. 

 

The rest of the paper is organized as follows. In the next section we provide the background 

to the study and summarize some features of conventional detrended fluctuation analysis. 

Next, we present in three steps our model of integrated price returns with structural breaks 

and the data used at each step for the four indexes under analysis. The following section 

discusses the main empirical results and section 5 compares the forecast accuracy of the 



models, both in-sample and out-of-sample, in order to ascertain whether our model performs 

better than the conventional model or not. In the final section we draw some conclusions of 

our study. 

 

2. Background 
 

Since the influential paper of Peng et al. [1] which introduced Detrended Fluctuation 

Analysis (DFA) to study the properties of DNA nucleotides, many empirical researchers have 

used this technique with applications to several fields of science. In finance there have been 

some applications too, but there is no evidence that the original model has been modified to 

accommodate financial data oddities. One such oddity concerns the occurrence of structural 

breaks that may be mistaken by stochastic non-stationarities in the data and lead to spurious 

results. 

 

Peng et al. [1] argue that DFA permits the detection of long-range correlations embedded in 

a patchy landscape and avoids the spurious detection of apparent long-range correlations that 

are an artifact of patchiness . This mention is related to the replacement of the unique long-

run trend embedded in the data by local trends within patches, but in fact stochastic trends 

and structural breaks are overlooked in this process. Others argue that DFA allows the 

distinction of intrinsic autocorrelation from that imposed by external nonstationary 

movements. Intrinsic autocorrelation is associated with memory effects in the underlying 

dynamic system, but the existence of nonstationary movements on their own should not be 

ignored. Therefore, rather than computing local forecasts within patches simply on the basis 

of deterministic trends, and ignoring local stochastic trends, we may utilize a general 

nonstationary framework and test whether the residuals obtained from regressing actual on 

fitted local values are stationary, i.e. actual and fitted values must be cointegrated both in 

mean and in variance. 

 

Another advantage of detrended fluctuation analysis is that it can be used to assess multiscale 

autocorrelation [2]. Multiscale in this context refers to different data frequencies or 

resolutions, where higher frequencies are associated with finer scales and lower frequencies 

are associated with coarser scales. Fine scales typically involve noise problems that need to 

be purged while coarse scales may suffer from time aggregation problems. However, in the 



context of fractal geometry, detrended fluctuation analysis has been used to assess the 

statistical self-affinity of a time series at different times. Self-affinity occurs when a set can 

be decomposed into subsets that can be linearly mapped into the full set, with special cases 

being called self-similarity. In this way, fractal objects are defined as shapes made of parts 

similar to the whole in some way, such that different data scales would not lead to different 

results or structures, i.e. a fractal object is self-similar or self-affine at any scale. 

 

In finance, Ref. [3] studies multifractal detrended fluctuation analysis in the German stock 

market using tick data for six stocks traded in the Deutsche Börse and concludes that the 

scaling exponent lies around 0.5 or less, indicating that no significant autocorrelations exist. 

Ref. [4] analyses the multifractality degree of developed and emerging stock market indices. 

Their results show that the multifractality degree is inversely associated with the stage of 

market development, with most developed markets exhibiting scaling exponents around 0.5 

or less and emerging markets showing scaling exponents typically above 0.5, and imply that 

the multifractality degree may be used to assess stages of stock market development. Ref. [5] 

also uses multifractal detrended fluctuation analysis, along with multifractal spectrum 

analysis, to analyze 10-minute closing prices of the Chinese stock index futures market, and 

found that this market exhibits long-range correlations and multifractality, consistent with a 

scaling exponent higher than 0.5. Similar results for the Asian stock markets were obtained 

by [6] using coupling detrended fluctuation analysis. Finally, Ref. [7] combines detrended 

for the scaling exponent show that it exceeds 0.5 in most markets and the higher the value the 

less efficient  is the underlying market. Therefore, we may conclude that emerging markets 

tend to be less efficient than developed markets but, although the empirical evidence is 

consistent across different studies, none of these actually proposes modifications to the 

underlying basic model to accommodate singularities of the financial market data. 

 

The use of the DFA technique leads to objects that can be statistically treated as power-laws 

where the power-law exponent describes the type of long-range correlation and memory 

effects that characterize the specific data under study [8, 9]. Taking full advantage of this 

relationship, one can define with precision what kind of time-series we are dealing with and 

what are the main features of our data. Under cointegration of the detrended walk, DFA can 

be used either with stationary and nonstationary data without misleading results [10, 11, 12]. 

 



Conventional detrended fluctuation analysis (DFA) involves the following steps [1]: 

1. Integrate the original series (cumulative sum or profile) after computing the difference 

to the mean; 

2. Divide the integrated series into patches of equal length l; 

3. For each patch compute the forecast of the integrated series and the corresponding in-

sample errors; 

4. For each patch compute the square root of the average sum of squared errors; 

5. Test the power-law assumption by running a regression of the log of the above 

defined standard deviation on the log of n, where n denotes the number of patches. 

 

As we show in the next section, this paper proposes a modified Detrended Fluctuation 

Analysis model, where the above-mentioned steps are going to be changed in order to 

accommodate structural breaks and obtain better estimates of the model parameters. 

 

 

3. Model and Data 
 

3.1.Historical Price Returns 

 

As noted above, the main purpose of this study is to analyze and select the best fit of the 

distributional signal of prices and returns using four stock market aggregated indexes 

published by Morgan Stanley Capital International (MSCI): World, Emerging Markets, 

Europe and Pacific. The first step is to examine the chronological profile of the signals. For 

returns, this profile can be seen in Figure 1. 

 



 
 
Figure 1: Returns signal. Source: Morgan Stanley Capital International (MSCI) daily price index, 07/13/1998  
07/13/2018, 5220 observations. Shaded bars represent economic recession periods in the US. 
 

Returns were calculated from the original prices using , where 

Pt denotes the published price series and xt represents the calculated return at time t.1 The 

series of returns are substantially linearly correlated. The European index has a correlation of 

83% with the World index and a correlation of 66% with the Emerging Markets index.2 The 

Emerging Markets index, in turn, has a correlation of 68% with the World index and 59% 

with the Pacific index. The lowest correlation occurs between the Pacific and the European 

indexes (35%) and between the Pacific and the World indexes (40%). All the correlations are 

significant at the 1% level. These results are not really unexpected, given the increasing 

degree of volatility contagion observed in financial markets over the past decades, especially 

in the western economies, and the bulky contribution of European stock markets to the global 

indexes [13]. 

 

The series depicted in Figure 1 show that the volatility of returns varies with time and there is 

a propensity to cluster the periods of high volatility, that is, high volatility periods follow 

other periods of high volatility and vice-versa (volatility clustering). Another stylized fact of 

In other studies, the returns were calculated as the difference of the logarithm of prices at two adjacent points 
in time, with a similar interpretation.

Throughout this section, and unless otherwise stated, correlation refers to the Pearson correlation coefficient. 



many financial time-series is the negative correlation between the volatility of returns and 

prices, that is, high volatility occurs more frequently when prices drop (leverage effect). In 

our case, the linear correlation between volatility and prices is negative and 

statistically significant at the 1% level for the four aggregated indexes: World ( 34%), 

Emerging Markets ( 11%), Europe ( 30%) and Pacific ( 27%). 

 

Asymmetry, and especially leptokurtosis, are also frequently found in the empirical 

distribution of stock market returns (leptokurtosis leads to fat or heavy tails). Kurtosis lies 

around 10 in all cases and, except for the European index, all our series exhibit negative 

skewness. Negative skewness means that the returns distribution has a long left-tail and, 

although positive returns are more likely to occur than negative returns, the tail is greater on 

the left-side. A Jarque-Bera [14] test of the null hypothesis of gaussianity is rejected at the 

1% level in the distribution of returns of all our four indexes. Thus, alternative distributions 

that account for thicker tails may describe better the distribution of returns. The main 

descriptive statistics of the  series are presented in Table 1. 

 

 
Table 1: Descr iptive statistics of the returns signal. Source: Morgan Stanley Capital International (MSCI) 
daily price index, 07/13/1998  07/13/2018, 5220 observations. 
 

The four time-series outlined before follow, in general, the same chronological pattern of 

volatility, where higher volatility occurs during periods of price decrease (crisis spells). There 

are two relevant periods of financial crisis during the whole span analyzed, each one 

associated with a period of economic recession in the US too. The first financial downturn 

occurred from 2000 to 2003 (Dot-Com Crash). During this period, an economic downturn 

known as the Early 2000s Recession (Mar.-Nov. 2001) also took place in the US, motivated 

by the above-mentioned Dot-Com crash in combination with a fall in business outlays and 

investments, and the September 11th attacks [15]. 

Mean 0.017 0.029 0.013 0.020

Maximum 9.523 10.598 11.291 11.431

Minimum -7.063 -9.511 -9.677 -8.773

Std. Dev. 0.991 1.194 1.330 1.233

Skewness -0.234 -0.339 0.004 -0.023

Kurtosis 10.746 10.522 10.221 8.723

Jarque-Bera 13096.04 ** 12404.57 ** 11339.81 ** 7122.33 **



 

Later, a second and much more severe financial downturn occurred in 2007-2009, which is 

known as the Global Financial crisis. During the same time span, an economic downturn 

known as the Great Recession also happened, motivated by the subprime mortgage crisis and 

subsequent collapse of the US housing bubble, triggering a failure or collapse of many of the 

US largest financial institutions (e.g. Lehman Brothers inter alia) as well as a crisis in the 

automobile industry. 

 

The above-mentioned financial and economic crises in the US produced strong spillover 

effects across the global economy, provoking a cascade of bailouts and bankruptcies, 

particularly in Europe, leading to the European Sovereign Debt Crisis and other slump 

economic events. 

 

Overall, the behavior of the aggregated indexes analyzed is rather synchronized, particularly 

during the episodes of price downturn 2000-2003 and 2007-2009, characterized by steep 

negative slopes commencing, respectively, in 2000 and 2007, and lasting until the end of the 

respective crisis, and with a relatively similar magnitude in all the cases. 

 

 

3.2. Integrated Series and Structural B reaks 

 

The second step entails the computation of the integrated series of price returns of the four 

aggregated indexes analyzed. Integration of price returns means to compute the cumulative 

sum or profile of the series after taking the first difference to its mean: , 

where x  represents the mean value of the returns time-series. Hence, the standardized price 

series itself is the integrated signal of returns, or just called the integrated signal. 

 

Denoting by d the number of times that a series needs to be differenced in order to remove all 

the stochastic trends that may exist in the data, then returns are stationary if they are 

integrated or order d equal to zero. Under these circumstances, prices, that is the cumulative 

sum of returns, are integrated of first-order, and are said to be nonstationary or unit root 

processes. The non-stationarity of prices implies that they have stochastic trends which can 

be captured, for example, using Perron [16] unit root tests with structural breaks. In our case, 



the Perron tests confirm that all the four price index series are nonstationary and integrated of 

first-order, which means that they hold one stochastic trend. The series of returns, on the 

other hand, are all trend stationary. Bai-Perron [17] methodology to determine m endogenous 

structural breaks was also applied and, within each break window (subsample), conventional 

ADF unit root tests were performed. The results are presented in Table 2. 

 

In his seminal paper on unit roots with structural breaks, Perron [20] points out that the 

conventional unit root tests (e.g. ADF) are biased toward a false unit root null when the data 

are trend stationary with a structural break. A number of modified ADF unit root tests were 

then proposed by the researchers which allow for levels and trends that differ across single or 

multiple break dates. 

 

Breaks can occur in different situations, such as: i) gradually (innovational outliers) or 

immediately (additive outliers), ii) consisting on a level shift, a trend break, or both, iii) the 

break date is known (exogenous) or unknown and estimated from the data (endogenous), and 

iv) the data are non-trending or trending. One can thus define an intercept break variable 

termed  that takes the value 0 for all dates prior to the break, and 1 

thereafter, a trend break variable named  which takes the 

value 0 for all dates prior to the break and is a break date re-based trend for all subsequent 

dates, and a one-time break dummy variable given by  which takes the 

value 1 only on the break date and 0 otherwise. 1( ) denotes the indicator function and Tb the 

break date.3 

 

 

In this paper we define the break date as the first date of the new regime.



 
 
Table 2. Structural B reaks and Unit Roots of integrated signals. Sample: MSCI daily price index, 07/13/1998  07/13/2018, 5220 observations. Break coefficients and 
dates computed using Bai-Perron [17] tests of l +1 vs. l globally determined breaks. Perron [16] unit root test with an endogenous structural break in both the intercept and 
trend. All integrated signals (standardized prices) have a unit root with breaks. Conventional ADF unit root tests [18] without breaks were applied to each patch using 
MacKinnon [19] one-sided p-values. The ADF null was rejected at standard levels in a number of patches. ** Significant at the 1% level; * significant at the 5% level. 

Variable

7/14/1998 - 9/20/2002 -- 1094 obs 7/14/1998 - 11/07/2001 -- 867 obs 7/14/1998 - 11/27/2002 -- 1142 obs 7/14/1998 - 7/11/2001 -- 782 obs
constant -9.943 ** -33.798 ** -12.025 ** -19.391 **

0.100 ** 0.250 ** 0.066 ** 0.276 **
2 0.000 ** 0.000 ** 0.000 ** 0.000 **

9/23/2002 - 10/06/2005 -- 794 obs 11/08/2001 - 3/23/2005 -- 880 obs 7/12/2001 - 7/20/2004 -- 789 obs
constant -229.993 ** 109.229 - 248.883 **

0.226 ** -0.257 ** - -0.481 **
2 0.000 ** 0.000 ** - 0.000 **

10/07/2005 - 10/06/2008 -- 782 obs 3/24/2005 - 10/02/2008 -- 921 obs 11/28/2002 - 9/26/2008 -- 1522 obs 7/21/2004 - 10/02/2008 -- 1097 obs
constant -740.659 ** 1.074 -595.569 ** -219.190 ** -403.179 **

0.646 ** 0.521 ** 0.179 ** 0.383 **
2 0.000 ** 0.000 ** 0.000 ** 0.000 **

10/07/2008 - 5/16/2012 -- 942 obs 10/03/2008 - 9/12/2012 -- 1029 obs 9/29/2008 - 9/13/2013 -- 1295 obs 10/03/2008 - 1/01/2013 -- 1108 obs
constant -977.244 ** -1976.78 ** -453.584 * -862.523 **

0.571 ** 1.241 ** 0.248 * 0.529 **
2 0.000 ** 0.000 ** 0.000 0.000 **

5/17/2012 - 7/15/2015 -- 825 obs 9/13/2012 - 7/13/2018 -- 1522 obs 9/16/2013 - 7/13/2018 -- 1260 obs 1/02/2013 - 7/13/2018 -- 1443 obs
constant -1189.00 ** 957.771 ** 1055.49 ** 468.690 *

0.553 ** -0.406 ** -0.453 ** -0.208 *
2 0.000 ** 0.000 ** 0.000 ** 0.000 *

7/16/2015 - 7/13/2018 -- 782 obs
constant 825.136 - - -

-0.373 * - - -
2 0.000 * - - -

-3.352 -3.336 -3.872 -4.032

*

*

-0.714

-0.874

-0.851

-2.139

-2.520

-

*

0.110

-

-1.897

-3.307

-1.942

-*

-0.376

-1.527

-0.418

-0.783

-1.741

-

Perron (1997) unit root test 
with structural breaks

0.851

-1.965 *

-0.739

-2.115 *

-3.695

Coeff. ADF-Stat.

Breaks: 9/23/2002, 10/07/2005, 
10/07/2008, 5/17/2012, 7/16/2015

Breaks: 11/08/2001, 3/24/2005, 
10/03/2008, 9/13/2012

Breaks: 11/28/2002, 9/29/2008, 
9/16/2013

Breaks: 7/12/2001, 7/21/2004, 
10/03/2008, 1/02/2013

Coeff. ADF-Stat. Coeff. ADF-Stat. Coeff. ADF-Stat.



 

Following Perron [20], the unit root tests with structural breaks are based on the equation 

, where , , 

 and ci, are parameters, ,  and  are vectors of parameters with dimension equal to the 

number of breaks, similarly to the underlying dummies. For the innovational outlier (IO) 

model, the null and alternative hypotheses can be set up imposing a few restrictions on the 

parameters. For exam

  to zero, the autocorrelation (or unit root) parameter  = 1 and the -vector (trend break) to 

zero, while the alternative sets the -vector (one-time break) to zero and  = 0. The break 

variables and the innovations may enter the model with the same dynamics given by a lag 

polynomial (L). The model is set up such as  are i.i.d. innovations and the breaks are 

selected endogenously as suggested by Perron [16] and others. 

 

Bai and Perron [17] advise a number of strategies for dealing with the choice of endogenous 

structural breaks using general to specific procedures rather than methods based on 

information criteria, such as AIC, because, they argue, the latter tend to select very 

parsimonious models leading to tests with sometimes serious size distortions and/or power 

losses with data in the class of ARMA processes. Actually, recent research conducted by Hall 

et al. [21] shows that 

criteria of Yao [22] and LWZ [23] may underestimate by a factor of 3 the number of m true 

breaks that have an asymptotic effect on the minimized residual sum of squares and propose a 

modified penalty term for the information criteria in the context of structural break 

estimation. 

 

We follow [17] to determine breakpoints and coefficients computed by LS with Breaks, using 

tests of l +1 vs. l globally determined breaks selected by sequential evaluation, trimming 

0.15, HAC standard errors & covariance (Quadratic-Spectral kernel, Andrews bandwidth) 

and allowing heterogeneous error distributions across breaks. Breakpoints are the start of the 

next regime. Under the null, the variable has l endogenous structural breaks in both the 

intercept and trend. A useful strategy is to first look at the max tests [17] to see if at least one 

break is present. In this case, then the number of breaks can be decided based upon a 

sequential examination of the  statistics constructed using global minimizers 

for the break dates, i.e. select m such that the tests are insignificant for l  m. As shown in 



Table 2, all the integrated signals (standardized prices) have a unit root with breaks. 

Conventional ADF [18] unit root tests without breaks were also applied to each patch and the 

null was rejected at standard levels in some cases. 

 

The ADF tests are based on the equation , 

where  and  denote, respectively, the intercept and slope of a linear deterministic trend,  is 

the autocorrelation parameter of yt, and  denotes a white noise process. The parameters ci 

are included in the model to capture any remaining serial correlation up to order k on the left-

hand side variable. If  = 1, then yt is a difference stationary process. In addition, if 

then yt is a random walk with drift. A random walk process is a unit root or nonstationary 

process I(d) with d = 1. 

 

 

4. Results 
 

4.1. Cumulative Sum of Price Returns 

 

The integrated series of price returns for the four aggregated indexes here analyzed are 

depicted in Figure 2. Note that the periods of price decline correspond to the periods of 

higher volatility shown in Figure 1, upholding the presence of leverage effects in the stock 

market as mentioned before, together with the recent well-known economic recessions. 

 

    
 



    
 
Figure 2: Integrated signal. Source: Morgan Stanley Capital International (MSCI) daily price index, 
07/13/1998  07/13/2018, 5220 observations. Solid line denotes the actual series, dashed line denotes the fitted 
values. Shaded bars represent economic recession periods in the US according to the NBER definition. 
 

For each aggregated index, Figure 2 depicts the actual values (solid line) and the fitted values 

(dashed line). The fitted values refer to an estimated 2nd-degree polynomial with intercept for 

each patch. Our results indicate the existence of six break patches for the World price index, 

five for Emerging Markets and Pacific, and four for Europe, where the number of patches is 

equal to the number of breakpoints plus one. Based on our results, the integrated signal of 

price returns for each patch tracks a sequence of partial quadratic functions, most of which 

having negative concavity, as shown in the various landscapes of Figure 2. The R2 statistic 

for the polynomial fit with breaks varies between 0.83 (Europe) and 0.92 (World) and is 

significant at the 1% level in all cases. 

 

The breakpoints we have identified using the Bai-Perron [17] methodology (see Table 2 and 

Figure 2) correspond, in some cases, to the end of spells of financial downturns such as the 

Dot-Com crash, the Global Financial crisis or the Chinese stock market crash, as described in 

subsection 3.1. Breakpoints in several financial markets were identified in the second 

semester of 2001 and 2002, in 2004 and 2005, in September and October of 2008, in 2012 

and 2013 and in July 2015. 

 

 

4.2. Squared Residuals 

 

After generating the cumulative sum of price returns and the underlying 2nd-degree 

polynomial fits with structural breaks, we next proceed to the third step, wherein we compute 



the squared distance (or squared residuals) from the observed to the fitted values of the 

integrated series Xt. 

 

The residuals (or detrended walk) were estimated from , where  represents the 

fitted series (local trend), that is, the piecewise sequence of quadratic regression fits for each 

patch. Residuals are stationary in mean, as indicated by conventional ADF tests without 

deterministic terms, not reported here.4 Therefore, according to the Granger Representation 

Theorem [24] the actual and fitted series are cointegrated of first order, and hence we obtain 

nonspurious residuals. Despite this evidence, a Jarque-Bera [14] test of the null of gaussianity 

is rejected at the 1% level in the distribution of residuals in all cases. Alternative data 

distributions may be suggested by inspection of the squared residuals distributions 

represented in Figure 3. 

 

 
 
Figure 3: Distr ibution of squared residuals. MSCI daily price index, 07/13/1998  07/13/2018, 5220 obs. 
 

 

4.3. Power-Law 

 

Outputs not reported are available from the authors upon request.



A natural candidate to replace the Gaussian distribution is the Zeta distribution modeled by 

Detrended Fluctuation Analysis (DFA) as suggested by Peng et al. [1]. This is also known as 

the power-law distribution [1, 10] with scaling parameter  where  (  > 0) is the 

cumulative distribution function of squared residuals. Note that  with 

. Detrended Fluctuation Analysis follows the same route described above to obtain the 

integrated price return signal. However, the non-overlapped patches are determined in a very 

different way, since endogenous breakpoints occurring at different lengths (such as in our 

case) are not considered in DFA and there is no real rational behind the choice of equally 

lengthened boxes as suggested by [1]. Another difference in our procedure is that we do 

calculate F(n) as the cumulative distribution function of the squared residuals rather than the 

average (over all the boxes) of the variances about the detrended walk for each box. In fact, 

the exponent  describes the scaling properties of the entire distribution, including the 

cumulative distribution function or some other relevant statistics such as the root mean 

squared error used by [1]. 

 

The scaling parameter  can be estimated as the slope of a normalized linear regression of the 

logarithm of F(n) against the logarithm of . If  then the series is anti-

persistent. Anti-persistence means that larger fluctuations are followed by smaller 

fluctuations and vice-versa. If  then the series has positive long-range 

dependence with persistent or long-memory behavior. If  then the integrated price 

return series is white noise. This means that the autocorrelation function tends to zero and 

price returns have no significant long-memory. If  then the integrated price return 

series is pink noise. The pink noise autocorrelation function does not decay exponentially as 

the lag length increases and memory tends to persist. Finally, when , there is long-

range correlation that cannot be explained by a power-law.5 Therefore, the value of the 

scaling parameter  measures the degree of long-range correlation existing in the data [8]. 

 

Figure 4 depicts the scatter plots of the logarithm of the distribution function of the squared 

residuals for each integrated price returns index. This is displayed against the logarithm of the 

cumulative sum of n. The estimates of  obtained by running the regression of the log F(n) 

on the log cum(n) are shown near each scatter plot. These estimates are the slopes of the 

regression lines also depicted in the figure (light grey line). As can be seen, the slopes are 

 If an intercept is also estimated the interpretation of the  exponent should be adjusted.



very similar in the four market indexes ranging from 0.57 (World) to 0.67 (Emerging 

Markets). A Wald test for coefficient restrictions shows that all these estimates are 

significantly different from 0.5 and 1 at the 1% level. The estimates obtained for the scaling 

exponent indicate that squared residuals have positive long-range dependence with persistent 

or long-memory behavior. This behavior seems to be a little bit more mitigated in aggregated 

series such as the World index and aggravated in regional or sectorial indexes. Since squared 

fractional integrated models, such as the FIGARCH [25], may produce better estimates for 

long-memory volatility than those obtained by discrete integrated models, such as the I(0) 

(stationary) GARCH-type models, which assume no memory [25, 26].6 

 

    

However, a broader full discussion of this topic is outside of the scope of this paper.



    
 
Figure 4: Detrended F luctuation Analysis. MSCI daily price index, 07/13/1998  07/13/2018, 5220 obs. The 
plot shows the scatter of log F(n) on log cum(n) along with the underlying regression fit (grey line). The 
log F(n) denotes the logarithm of the cumulative distribution function of squared residuals. The log cum(n) 
denotes the logarithm of the cumulative values of n. Histograms for each variable are shown near the axes. The 
estimated  exponent is reported near the scatter in each landscape. 
 

Looking at the scatter plots in the four landscapes of Figure 4 we see that the data are very 

well fitted by the underlying regression line, except for the first few observations of each 

plot. The plot for Europe, however, yields smaller deviations between actual and fitted 

values, even for the first few observations, which is in line with the higher value of R2 

obtained for this fit (0.67) against 0.64 for the Emerging Markets fit, 0.63 for the Pacific fit 

and 0.57 for the World fit. 

 

Another important issue concerns the size of the samples and the crossover value that triggers 

a shift in the classification of the long-range correlation in the data: for example, from anti-

persistence to positive long-range correlation. To this end we perform a rolling regression of 

the log F(n) on the log cum(n) where the sample size increases by one unit every fit and the 

first 260 estimations were discarded to avoid initial sample noisy effects. The results of the 

estimated  are displayed in Figure 5. All estimates lie within the range 0.16-0.67 and as the 

sample size increases, the  exponent tends asymptotically to its estimate obtained with the 

full sample (Figure 4 and 5). Starting values lie in the range 0.16-0.31. The  coefficient 

grows about 0.07-0.09 units per every 1000 days but this figure conceals a large percentage 

variation between the four indexes, ranging from 10% in Europe to 170% in the World series. 

 



 
 
Figure 5: Rolling  exponents. MSCI daily price index, 07/13/1998  07/13/2018, 5220 obs. The plot shows 
the values of  when the regression sample anchored at start increases by one unit every fit. The first 260 
estimations were discarded to avoid initial sample noise effects. The power-law exponent  varies between 0.16 
and 0.31 at the start and 0.57 and 0.67 at the end. The cutoff point 0.5 occurs at observation #2988 (World), 
#1289 (Emerging Markets), #1259 (Europe) and #1807 (Pacific). 
 

The crossover value of interest is 0.5. An  below this value indicates that the series is anti-

persistent, that is large and small fluctuations alternate over time with relatively short-range 

correlations. Conversely, an  above this value indicates that the series has positive long-

range correlations with long-memory behavior. The evidence of long-memory increases as 

 Finally, at the crossover value of 0.5, the series is a white noise random sequence. In 

our case, the World series needs  about 10 years of daily data, excluding discarded 

estimations, to shift from short-range (or anti-persistence) to long-range correlation effects, 

the Pacific series needs about 6 years of data and Emerging Markets and Europe need about 4 

years of data. The leading conclusion of these results is that researchers should be careful 

with sample size when dealing with detrended fluctuation analysis (or other models to assess 

long-range correlation), since small samples may bias the results and conclusions towards 

short-range correlation. Another problem may arise when the researcher opts to artificially 

split the full sample into a number of independent patches where the size of each patch is 



small. Therefore, using endogenous breaks to obtain non-overlapped and independent boxes 

may provide a relevant alternative to conventional detrended fluctuation analysis. 

 

 

5. Forecast Accuracy 
 

We now turn to evaluate the forecast accuracy of our modified model of detrended 

fluctuation analysis with endogenous structural breaks, using ex post in-sample and out-of-

sample forecast accuracy gauges. We use three tests of in-sample forecast accuracy: Root 

Mean Squared Error (RMSE), Theil inequality coefficient (U) and Theil UII coefficient [27]. 

Since our variables are all standardized, we do not face problems of scale in the dependent 

variable and the results for different models can be directly compared. Under these 

circumstances, the smaller the error the better the forecasting ability of the model according 

to the RMSE test. Likewise, smaller Theil coefficients U and UII indicate better forecast 

ability of the model. For example, UII reaches its lower boundary of UII = 0 at perfect 

forecasts. In-sample tests use the full sample for forecasting purposes and then compare the 

forecasts with the actual values observed over the full sample. 

 

On the other hand, out-of-sample tests use a sub-sample for model estimation and then 

compare the forecasts for the remaining sample with the actual values observed. The popular 

Diebold-Mariano test [28] will be employed in our case, where the null hypothesis states 

equal accuracy of the two models under consideration. A test of model adequacy using Monte 

Carlo simulation or otherwise could be important to perform in future work. 

 

In order to perform these tests, we computed the four above mentioned gauges for our model 

with endogenous structural breaks and for three alternatives following the recommendation of 

Peng et al. [1] where we split the full sample into several equal length patches using an 

arbitrary size known a priori for each patch. In our case we used the following window sizes 

to obtain local trends: 100, 300 and 600. The results are presented in Table 3. 

 



 
 
Table 3. Forecast accuracy of integrated signals. Sample: MSCI daily price index, 07/13/1998  07/13/2018, 
5220 observations. Forecast tests: ex post out-of-sample Diebold-Mariano (DM) [28] forecast evaluation test 
and in-sample RMSE, Theil U, and Theil UII tests [27]. Models to compare: forecasts using endogenous 
structural breaks against local forecasts using patch sizes of 100, 300 and 600 observations. DM null: the two 
forecasts have the same accuracy. Loss function: squared. DM forecast sample: 07/13/2012  07/13/2018. 
RMSE and Theil tests should be minimized. ** significant at the 1% level. 
 

We first look at the Diebold-Mariano [28] out-of-sample forecast accuracy results displayed 

in the first column of each block in Table 3. The null hypothesis of equal forecast accuracy is 

rejected at the 1% level in all cases except one (test l: Breaks against l = 600 for the 

Emerging Markets index). Under rejection of the null it becomes evident that the models 

produce different forecast accuracies but the DM test itself does not indicate which model 

produces the best forecasts. In this case, after knowing that the models produce different 

levels of accuracy, we may rely on the in-sample tests to make the adequate selection. 

 

Regarding the in-sample forecasts, the results presented above indicate that our model of 

DFA with endogenous structural breaks performs, in general, better than the alternatives of 

equal length patches (100, 300 and 600) except for the World index where the l = 600 model 

appears to perform slightly better.7 Thus, in spite of some potential limitations caused by the 

level of World data aggregation, our model appears to outperform conventional models of 

DFA by imposing less restrictions and especially avoiding the prior selection of patch size. 

 

 

Nevertheless, the model with structural breaks always performs better than the l = 100 and l = 300 alternatives. 

Model

RMSE Theil U Theil UII RMSE Theil U Theil UII

: Breaks 2.075 0.124 252.101 1.938 0.099 191.968

 = 100 15.767 ** 2.249 0.160 421.073 29.437 ** 2.225 0.145 343.365

 = 300 6.912 ** 2.159 0.137 323.919 25.823 ** 2.022 0.115 249.343

 = 600 -5.555 ** 2.069 0.122 224.074 -0.843 1.963 0.101 188.990

RMSE Theil U Theil UII RMSE Theil U Theil UII

: Breaks 1.697 0.089 166.036 1.862 0.102 200.702

 = 100 31.006 ** 2.215 0.150 326.691 24.529 ** 2.177 0.149 336.533

 = 300 24.481 ** 2.021 0.119 243.815 19.767 ** 1.961 0.116 207.571

 = 600 21.290 ** 2.077 0.118 298.446 7.330 ** 2.035 0.112 220.106

in-sample

out-of-sample

DM

in-sample out-of-sample in-sample

DM

DM DM

out-of-sample in-sample out-of-sample



6. Conclusions 
 

The use of statistical tools to determine the distributional shape of some financial time-series 

has become widespread in the literature since the recognition of a few stylized features of 

these data. These features include volatility clustering, long-memory, fat tails, and leverage 

effect, among others, which overturns the usual Gaussian assumption. In statistical physics, 

some researchers have used the Riemann Zeta distribution to explain the statistical behavior 

of these phenomena. This is known in the literature as the power-law distribution which 

describes a large number of real phenomena. The same occurs with financial data. 

 

Some models and techniques to deal with power-laws have been proposed in the literature. 

One such technique is called Detrended Fluctuation Analysis and was originally suggested by 

Peng et al. [1] in a study of DNA nucleotides. Applications to financial data were also made 

but some oddities of these data may recommend a few modifications in the original DFA 

model. One such modification refers to the occurrence of structural breaks in financial data, 

which recommends that regularly spaced patches are replaced by irregularly spaced intervals 

where endogenously determined break dates are used as the starting date of a new window. 

Another modification refers to the replacement of within patch standard errors by daily 

observations on squared residuals, in conformity with the idea that squared residuals are a 

proxy for volatility. Finally, the select

accuracy criteria instead of pure visual inspection of overlapped results. Our process, 

therefore, is more robust and independent of individual researcher judgement than in the 

conventional DFA model. 

 

Our results show that the modified DFA model performs in general better than the 

conventional one, where this judgement is made on the basis of pure analytic in-sample and 

out-of-sample tests. Therefore, structural breaks seem to contain relevant information for the 

construction of boxes into which the full sample should be split. Another relevant 

information concerns the determination of the sample size required to reach the crossover 

value 0.5. Although it changes with the level of data aggregation, we can say that at least four 

years of daily data are required to obtain stable estimates of the power-law exponent. As in 

some previous studies, the results obtained exhibit positive long-range correlation, which 

degree decreases with the level of index aggregation. 
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