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Abstract

This paper proposes wild and the i.i.d. parametric bootstrap implementations

of the time-varying cointegration test of Bierens and Martins (2010, Econometric

Theory 26, 1453-1490). The bootstrap statistics and the original likelihood ratio

test share the same �rst-order asymptotic null distribution. Monte Carlo results

suggest that the bootstrap approximation to the �nite-sample distribution is very

accurate, in particular for the wild bootstrap case. The tests are applied to study

the purchasing power parity hypothesis for twelve OECD countries and we only �nd

evidence of a constant long-term equilibrium for the U.S.-U.K. relationship.
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1 Introduction

Structural change is of key importance in economics and econometrics, especially for coin-

tegration analysis, as it normally involves long term historical trends, which, consequently,

are likely to display breaks in their equilibrium relationship. In a recent paper, Bierens and

Martins (2010) proposed a vector error correction model in which the cointegration vec-

tors change smoothly over time and, from that model, a likelihood ratio test for standard

time-invariant cointegration. Despite the simplicity of the test, the asymptotic chi-square

distribution appears to be a poor approximation to the relevant �nite-sample distribu-

tion. In particular, the test falsely indicates the existence of time-varying cointegration

too often.

To address this problem, we propose in this paper a bootstrap algorithm for obtain-

ing critical values and show that this alternative approach does lead to test procedures

that have, approximately, the correct size. As in many other estimation and inference

contexts, in our case the bootstrap distribution is also an accurate approximation to the

�nite-sample one under the null hypothesis of constant cointegration vectors, as initially

presented by Johansen (1988, 1991 and 1995).

It has extensively been shown in the literature that bootstrap methods provide higher

order asymptotic re�nements and, thus, better results in bias reduction, con�dence inter-

val construction and hypothesis testing in �nite-samples, even in the cases where analytical

results are known. See, for example, Jeong and Maddala (1993), Horowitz (2001), as well

as Li and Maddala (1996) and Härdle, Horowitz and Kreiss (2001) surveys, the last two

in the time series context. As an example in the structural breaks literature, Diebold and

Chen (1996) demonstrate the bene�ts of bootstraping the �supremum�tests of Andrews

(1993).

The likelihood ratio bootstrap tests we suggest follow very closely those already pro-

posed in the literature for testing and determining the cointegration rank in VAR models.

Swensen (2006) consider an i.i.d. bootstrap version of the pseudo LR trace test statistic

whereas Cavaliere, Rahbek and Taylor (2010a) advocate the usage of the wild bootstrap

instead as it provides better results under conditional heteroskedasticity when compared to

the i.i.d. procedure. Moreover, Cavaliere, Rahbek and Taylor (2012) propose a bootstrap

scheme that improves Swensen�s approach to create bootstraped data once the VECM is
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estimated under the null hypothesis and not under both hypothesis as in Swensen (2006).1

The contents of the paper are as follows. In Section 2, we review the time-varying

VECM and the original LR test for time-invariant cointegration and introduce the wild

and i.i.d. parametric bootstrap versions of the pseudo LR test, showing their consistency

because the three share the same chi-square asymptotic distribution. Section 3 sets out the

designs of the Monte Carlo experiments and suggests that the bootstrap approximation to

the �nite-sample distribution is very accurate, especially for the wild bootstrap. Finally,

Section 4 discusses the purchasing power parity hypothesis in the context of time-varying

cointegration and reports results from an application of the methodology to international

prices and nominal exchange rates.

2 Bootstrap Time-Varying Cointegration Tests

2.1 The Time-Varying Cointegration Model

As in Bierens and Martins (2010), consider the time-varying VECM(p) with a drift,

4Yt = �+ ��
0

tYt�1 +

p�1X
j=1

�j 4 Yt�j + "t; t = 1; :::; T; (1)

where Yt 2 Rk; "t 2 Rk; �; �;
 and the �j�s are �xed coe¢ cients, the �t�s are time-varying
(TV) k� r matrices of cointegrating vectors, and T is the number of observations. 2 The
initial values Yt; t = 0;�1; :::;�p + 1; are assumed to be �xed. The LR test is de�ned
for the null hypothesis of standard time-invariant (TI) cointegration, �t = � for all t;

1In the context of cointegrated VARmodels, see also the bootstrap approaches of Trenkler (2009) - i.i.d.

bootstrap where in a �rst stage the deterministic terms are estimated by a feasible GLS procedure - and

Cavaliere, Rahbek and Taylor (2010b) - wild bootstrap under non-stationary volatility. van Giersbergen

(1996), Harris and Judge (1998) and Mantalos and Shukur (2001) focus on the properties of the bootstrap

by means of Monte Carlo simulations. For bootstrapping methods in standard unit root testing, see, for

example, Park (2003) and Paparoditis and Politis (2003).
2In this Bierens and Martins (2010) baseline model, there is a drift in Yt which is denoted by �: This

does not cover all the usual leading cases for the deterministic components within standard cointegration

test frameworks. In particular, we do not consider the cases of the intercept being absorbed into the

cointegration relation and the existence of a linear trend. Accounting for a trend is not straightforward

in time-varying cointegration as pointed out by Bierens and Martins (2010).
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against time-varying cointegration (TVC) in which the cointegrating relationship varies

smoothly over time, maintaining the number of cointegration relations as equal to r < k:

In this test setup, there must exist a �xed certain number of cointegration relations, r > 0:

Time-varying cointegrating systems do not necessarily generate time-varying cointegration

spaces. The conditions for the existence of time-invariant or time-varying cointegration

spaces can be found at Martins and Gabriel (2013). Assuming that the function of discrete

time �t is smooth (see Bierens and Martins (2010) for details), it can be written as

�t = �m (t=T ) =
mX
i=0

�i;TPi;T (t) (2)

for some �xed m < T �1; where the orthonormal Chebyshev time polynomials Pi;T (t) are
de�ned by P0;T (t) = 1; Pi;T (t) =

p
2 cos (i� (t� 0:5) =T ) ; t = 1; 2; :::; T; i = 1; 2; 3; :::;m and

�i;T =
1
T

PT
t=1 �tPi;T (t) are unknown k � r matrices.

Similar to Johansen (1988, 1991 and 1995), model (1) can be speci�ed more conve-

niently as

4Yt = ��
0
Y
(m)
t�1 +�Xt + "t; (3)

where �
0
=
�
�
0

0; �
0

1; :::; �
0

m

�
is an r � (m + 1)k matrix of full rank r, Y (m)t�1 is de�ned by

Y
(m)
t�1 =

�
Y 0t�1; P1;T (t)Y

0
t�1; P2;T (t)Y

0
t�1; :::; Pm;T (t)Y

0
t�1
�0
and � = (�;�1; :::;�p�1) and

Xt =
�
1;4Y 0

t�1; :::;4Y
0
t�p+1

�0
: Under the null hypothesis, �

0
= (�0;0r;k:m) ; where � is the

standard k � r matrix of TI cointegrating vectors, so that then ��0Y (m)t�1 = ��0Y
(0)
t�1 �

��0Yt�1: Therefore, given m and r; the LR test takes the form

LRtvcm;T = T
rX
j=1

ln

 
1� b�0;j
1� b�m;j

!
; (4)

where 1 > b�m;1 � b�m;2 � ::: � b�m;r � ::: � b�m;(m+1)k are the ordered solutions of the
generalized eigenvalue problem det

h
�S

(m)
11;T � S

(m)
10;TS

�1
00;TS

(m)
01;T

i
= 0 with

S00;T =
1

T

TX
t=1

4Yt4 Y
0

t �
 
1

T

TX
t=1

4YtX
0

t

! 
1

T

TX
t=1

XtX
0

t

!�1 
1

T

TX
t=1

Xt4 Y
0

t

!
; (5)

S
(m)
11;T =

1

T

TX
t=1

Y
(m)
t�1 Y

(m)0

t�1 �
 
1

T

TX
t=1

Y
(m)
t�1 X

0

t

! 
1

T

TX
t=1

XtX
0

t

!�1 
1

T

TX
t=1

XtY
(m)0

t�1

!
; (6)
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S
(m)
01;T =

1

T

TX
t=1

4YtY (m)
0

t�1 �
 
1

T

TX
t=1

4YtX
0

t

! 
1

T

TX
t=1

XtX
0

t

!�1 
1

T

TX
t=1

XtY
(m)0

t�1

!
;(7)

S
(m)
10;T =

�
S
(m)
01;T

�0
: (8)

The b�0;j�s are similarly de�ned by imposing m = 0 (standard cointegration).

Assuming that the errors are i.i.d. Gaussian, i.e., "t � i:i:d: Nk [0;
] ; Bierens and

Martins (2010) show that, given m � 1 and r � 1; under the null hypothesis of standard
cointegration, LRtvcm;T is asymptotically �

2
mkr distributed. They also concluded that, for

small T and large m; the test su¤ers from size distortions and tends to overreject the

correct null hypothesis of standard cointegration. Given this result, we propose in the

next Section two bootstrap versions of LRtvcm;T along the lines of Cavaliere, Rahbek and

Taylor (2010a, 2012) and Swensen (2006).

Following the seminal work by Johansen (1988, 1991, 1995), Bierens and Martins

(2010) take the normal distribution for "t and from that derive the exact likelihood func-

tion and LR statistic. Actually, imposing normality is not necessary for deriving the

asymptotic distribution of LRtvcm;T under the null hypothesis. By simply assuming i.i.d.

errors, a straightforward but tedious exercise would be to show that the pseudo LRtvcm;T

statistic is also asymptotically �2mkr distributed when based on the pseudo Gaussian like-

lihood function.3

In terms of the bootstrap approach, we relax the original assumptions by taking those

at Cavaliere, Rahbek and Taylor (2010a) under our context of standard cointegration:

Assumption 1.

(a) For m = 0; the usual conditions related to the characteristic roots and the nonsin-

gularity of matrix �0 (Ik � �1 � :::� �p�1) � are taken to be true.
(b) The innovations f"tg form a martingale di¤erence sequence with respect to the

�ltration Ft; where Ft�1 � Ft for t = :::;�1; 0; 1; 2; :::; satisfying (b1) the global ho-
moskedasticity condition

1

T

TX
t=1

E ("t"
0
tjFt�1)

p! 
 > 0 (9)

3In this case, the exact likelihood function and the pseudo Gaussian likelihood function would coincide

and therefore the last piece of the proof of Bierens and Martins (2010)�Theorem 1, where a Taylor

expansion around the MLE of a particular function, would follow through.
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and (b2) E k"tk4 � K <1:

Remark. Here, f"tg is serially uncorrelated and possibly conditionally heteroskedastic.
Instead, Cavaliere, Rahbek and Taylor (2012) and Swensen (2006) assume i.i.d. innova-

tions. See Cavaliere, Rahbek and Taylor (2010a) for more details about the underlying

di¤erences and the functional central limit theorem and the law of large numbers that

apply to martingale di¤erence sequences.

2.2 Bootstrap Tests

The parametric bootstrap versions of the TVC test statistic we consider are the wild boot-

strap and the i.i.d. bootstrap. They both are implementations to TVC of the Cavaliere,

Rahbek and Taylor (2010a, 2012) (wild and i.i.d.) and Swensen (2006) (i.i.d.) bootstrap

procedures for testing the cointegration rank. Next, we de�ne the bootstrap procedures

using the unrestricted residuals (and b�; b�) as in Cavaliere, Rahbek and Taylor (2010a)
and Swensen (2006) and at the end of this Section we de�ne the alternative procedure

based upon the restricted residuals (and b�; b�) as in Cavaliere, Rahbek and Taylor (2012).
As in Cavaliere, Rahbek and Taylor (2010a), we construct the pseudo Gaussian like-

lihood function and the pseudo LR test by assuming i.i.d. Gaussian errors. For the

unrestricted TVC model (3), m > 0; let
�b�; b�� denote the pseudo maximum likelihood

(ML) estimate of (�;�) and b"t; t = p + 1; :::; T; the pseudo ML residuals. Moreover, let�b�; b�� denote the restricted pseudo ML estimates of (�; �) under the null hypothesis of
standard cointegration, m = 0: The bootstrap algorithms are described as follows:

Wild bootstrap test for TVC using the unrestricted residuals First, generate

B bootstrap pseudo-disturbances "bt ; t = p + 1; :::; T and b = 1; :::; B; from residuals b"t
according to "bt = b"twt where fwtgTt=p+1 is an independentN (0; 1) scalar sequence. Second,
construct the bootstrap sample

�
4Y bt

	T
t=1

recursively from the equation

4Y bt = b�+ b�b�0Y bt�1 + p�1X
j=1

b�j4Y bt�j + "bt ; t = 1; :::; T; (10)

with initial values Y bt = Yt; t = 1; :::; p: Third, using the bootstrap sample,
�
4Y bt

	T
t=1
;

construct the bootstrap LR test statistic, LRbm;T = T
Pr

j=1 ln

�
1�b�b0;j
1�b�bm;j

�
; where the b�b�s
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denote the bootstrap versions of the ordered generalized eigenvalues b��s. Fourth, the
bootstrap 95% percentile of the resulting distribution is used as the 5% critical value

for the bootstrap test procedure. In a similar manner, bootstrap p-values pbm;T for the

test statistic LRtvcm;T are computed as p
b
m;T = 1 � F bm;T

�
LRtvcm;T

�
; where, conditional on

the original data fYtg ; F bm;T (�) denotes the cumulative distribution function of LRbm;T :
Because the bootstrap distribution F bm;T is a complicated function of fYtg, in practice, pbm;T
is obtained through the numerical approximation: epbm;T = 1

B

PB
b=1 1

�
LRbm;T > LR

tvc
m;T

�
:

Fifth, for a signi�cance level �; reject the null hypothesis of standard cointegration ifepbm;T < �:
As pointed out by Cavaliere, Rahbek and Taylor (2010a), an alternative could be

drawing from equation (10) but without the estimate of the deterministic part, b�; and
setting initial values to zero, Y bt = 0; t = 1; :::; p: See Cavaliere, Rahbek and Taylor (2010a,

2012), Swensen (2006) but also Cavaliere, Rahbek and Trenkler (2013) for a discussion on

why the rank statistic is invariant with respect to � and recall that Bierens and Martins

(2010) showed that LRtvcm;T has the same distribution whether or not there is an intercept

in the model.

Swensen�s i.i.d. bootstrap test for TVC Same as the wild bootstrap approach

except that the bootstrap pseudo-disturbances "bt ; t = p+1; :::; T; are drawn randomly with

replacement from the residuals b"t: Following the same argument as in Cavaliere, Rahbek
and Taylor (2010a), obtain instead the centered residuals

nb"t � 1
T�p

PT
i=p+1b"ioT

t=p+1
if

drawing from equation (10) without the intercept term.

The number of bootstrap pseudo-samples B must be "large enough" since epbm;T con-
verges to pbm;T as B increases. In their numerical experiments, Cavaliere, Rahbek and

Taylor (2010a, 2012) set B = 399 and Swensen (2006) considers B = 5000: In the next

Theorem we show that the �rst-order asymptotic distributions of the bootrastrap TVC

test statistics and the Bierens and Martins (2010) original TVC test statistic are the same.

Moreover, in the next Section, we provide, by means of simulations, evidence that the

bootstrap approximation to the �nite sample distribution seems to be much more accu-

rate, as opposite to the asymptotic approximation. Hence, we consider the wild and i.i.d.

bootstrap versions of the TVC test statistic as valid ones to test for standard cointegration
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and recommend using their critical values to ensure correct 5% type-I errors, say.

The proof of Theorem 1 is presented in a similar way as in Cavaliere, Rahbek and

Taylor (2010a, 2012) and Swensen (2006). Note that, under the null hypothesis, our

model is the same as in Cavaliere, Rahbek and Taylor (2010a, 2012) and Swensen (2006)

and the assumptions as in Cavaliere, Rahbek and Taylor (2010a). We also consider the

wild and the i.i.d. bootstraps but the di¤erence is that, in our context, we test against

TVC and �x r.

Theorem 1. Let LRwbm;T and LR
sb
m;T denote the LR

b
m;T bootstrap test statistics for the

wild and i.i.d. cases, respectively. Given m � 1 and r � 1; under the null hypothesis of
standard cointegration and Assumption 1, the bootstrap LR statistics LRwbm;T and LR

sb
m;T

de�ned above are asymptotically �2mkr distributed, as T !1:
Proof : For sake of simplicity, and as in Cavaliere, Rahbek and Taylor (2010a), we

take the no-drift case, � = 0; for which Bierens and Martins (2010) showed that LRtvcm;T is

also asymptotically �2mkr distributed. To avoid confusion with the "wb=sb" notation, we

denote any of the two bootstrap probabilities by P � and the expectation under P � by E�

and we do, similarly, with the bootstrap quantities Y bt ; "
b
t ; R

b
t;T ; :::

Under standard cointegration, we have from Cavaliere, Rahbek and Taylor (2010a)

that (i)

Y bt =
bC tX
i=p+1

"bi +
p
TRbt;T ; t = p+ 1; :::; T; (11)

where for all � > 0; P �
�
max

p+1�t�T

��Rbt;T �� > �� p! 0 as T ! 1; j�j is the usual Euclidean

distance and bC = b�? �b�0?b�b�?��1 b�0?; (ii) 4Y bt =Pt�1
i=0
b�i"bt�i; where b�i are exponentially

decreasing coe¢ cients, (iii) E�
�
"bt"

b0
t

�
= b
b p! 
 as T !1; and (iv)

1p
T

b�T cX
i=p+1

"bi
w! W (�) ; (12)

where W (u) ; u 2 [0; 1] is a k�dimensional Wiener process with covariance matrix 
:
Contrary to Cavaliere, Rahbek and Taylor (2010a, 2012) and Swensen (2006), b� and b"t
are obtained from the TVC model (3) and, as a result, our bootstrap samples Y bt ; "

b
i ; R

b
t;T

are di¤erent from theirs. The formulas for Rbt;T are in Cavaliere, Rahbek and Taylor

(2010a).
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With the following Lemmas, we show that the TVC test statistic applied to the boot-

straped sample, LRbm;T ; is also asymptotically �
2
mkr distributed, as T ! 1: The Lem-

mas are as those at Bierens and Martins (2010) involving the matrices S(m)ij;T ; i; j = 0; 1;

but with bootstrapped data Y b;(m)t�1 =
�
Y b0t�1; P1;T (t)Y

b0
t�1; P2;T (t)Y

b0
t�1; :::; Pm;T (t)Y

b0
t�1
�0
and

Xb
t =

�
4Y b0t�1; :::;4Y b

0
t�p+1

�0
and invoking the functional central limit theorem and the law

of large numbers that apply to martingale di¤erence sequences instead (Brown, 1971, and

Hannan and Heyde, 1972), and where it is shown that the original limiting results still

hold.

Lemma 1. Let l = 1; :::; p� 1: As T !1;

1

T

TX
t=1

"btY
b;(m)0
t�1

d!
Z 1

0

(dW (u))fWm (u)
0 (C 0 
 Im+1) (13)

1

T

TX
t=1

4Y bt�lY
b;(m)0
t�1

d! C

�Z 1

0

(dW (u))fWm (u)
0 (C 0 
 Im+1)

�
+M b

l (14)

1

T 2

TX
t=1

Y
b;(m)
t�1 Y

b;(m)0
t�1

d! (C 
 Im+1)
�Z 1

0

fWm (u)fWm (u)
0 du

�
(C 0 
 Im+1) ; (15)

where W (u) is a k-variate standard Wiener process,

fWm (u) =
�
W 0 (u) ;

p
2 cos(�u)W 0 (u) ; :::;

p
2 cos(m�u)W 0 (u)

�0
;

the M b
l �s are k � k(m+ 1) non-random matrices and C = �? (�

0
?��?)

�1 �0?.

Proof : Let u 2 [0; 1] ; �x j; h = 1; :::;m and let l = 1; :::; p � 1: For the �rst result,
note that

1

T

TX
t=1

Pj;T (t) "
b
tY

b0

t�1 =
p
2
1

T

TX
t=1

cos (j� (t� 0:5) =T ) "bt
t�1X
i=p+1

"b
0

i
bC 0

+
p
2
1

T

TX
t=1

cos (j� (t� 0:5) =T ) "bt
p
TRb0t�1;T :

From Bierens (1994), Lemma 9.6.3., page 200,

1

T

TX
t=1

cos (j� (t� 0:5) =T ) "bt
t�1X
i=p+1

"b
0

i

= cos (j� (1� 0:5=T )) 1
T

TX
t=1

"bt

t�1X
i=p+1

"b
0

i + j�

Z 1

0

sin (j� (u� 0:5=T ))

0@ 1
T

buT cX
t=1

"bt

t�1X
i=p+1

"b
0

i

1A du
9



and

1

T

TX
t=1

cos (j� (t� 0:5) =T ) "bt
p
TRb0t�1;T

= cos (j� (1� 0:5=T )) 1
T

TX
t=1

"bt
p
TRb0t�1;T + j�

Z 1

0

sin (j� (u� 0:5=T ))

0@ 1
T

buT cX
t=1

"bt
p
TRb0t�1;T

1A du;
where the last term vanishes because for all � > 0;

P �

0@ max
p+1�t�T

������ 1pT
buT cX
t=1

"btR
b0
t�1;T

������ > �
1A < P �

0@ max
p+1�t�T

0@������ 1pT
buT cX
t=1

"bt

������ ��Rb0t�1;T ��
1A > �

1A
<

������ 1pT
buT cX
t=1

"bt

������ :P �
�
max

p+1�t�T

��Rb0t�1;T �� > �� p! 0 as T !1:

From (12) and the continuous mapping theorem (CMT), the �rst term converges in dis-

tribution to

cos (j�)

Z 1

0

dW (u)W (u)0 + j�

Z 1

0

sin (j�u)

�Z u

0

dW (y)W (y)0
�
du

=

Z 1

0

(dW (u)) cos (j�u)W (u)0 ;

via integration by parts (see Bierens and Martins (2010)). Then,

1

T

TX
t=1

Pj;T (t) "
b
tY

b0

t�1
d!
Z 1

0

(dW (u))
p
2 cos (j�u)W (u)0C 0 as T !1

due to convergence in probability of bC (see Bierens and Martins (2010) for the limiting

properties of the pseudo MLE bC and the Proof of Lemma S2 in the Supplement to

Swensen (2006), available at Econometrica�s website, for why the CMT still holds under

P �) and the result follows.

For the second result,

1

T

TX
t=1

Pj;T (t)4Y bt�lY b
0

t�1 =
1

T

TX
t=1

Pj;T (t)4Y bt�l
�
Y b

0

t�1 � Y b
0

t�1�l

�
+
1

T

TX
t=1

Pj;T (t)4Y bt�lY b
0

t�1�l

10



where

1

T

TX
t=1

Pj;T (t)4Y bt�lY b
0

t�1�l

=
p
2 cos (j� (1� 0:5=T )) 1

T

TX
t=1

4Y bt�lY b
0

t�1�l

+
p
2j�

Z 1

0

sin (j� (u� 0:5=T ))

0@ 1
T

buT cX
t=1

4Y bt�lY b
0

t�1�l

1A du:
Cavaliere, Rahbek and Taylor (2010a) show that, under standard cointegration,

1

T

buT cX
t=1

4Y bt�lY b
0

t�1�l
d! C

�Z u

0

dW (y)W (y)0
�
C 0 + uM b

0 ;

where M b
0 is the nonrandom k � k matrix that de�nes the limiting variance term

E�
��p

TRbt;T

��p
TRb0t;T

��
: Hence, 1

T

PT
t=1 cos (j� ((t� 0:5) =T ))4Y bt�lY b

0
t�1�l converges

in distribution to

cos (j�)

�
C

�Z 1

0

dW (u)W (u)0
�
C 0 +M b

0

�
+j�

Z 1

0

sin (j�u)

�
C

�Z u

0

dW (y)W (y)0
�
C 0 + uM b

0

�
du

= C

�Z 1

0

(dW (u)) cos (j�u)W (u)0
�
C 0;

(see Bierens and Martins (2010) for the equality). On the other hand,

1

T

TX
t=1

Pj;T (t)4Y bt�l
�
Y b

0

t�1 � Y b
0

t�1�l

�
=

1

T

TX
t=1

Pj;T (t) bC"bt�l"b0t�l bC 0 + 1

T

TX
t=1

Pj;T (t)
�p
TRbt�1�l;T

��p
TRb0t�1�l;T

�
+ op (1)

p!M b
j;l; say.

Then,

1

T

TX
t=1

Pj;T (t)4Y bt�lY b
0

t�1
d! C

�Z 1

0

(dW (u))
p
2 cos (j�u)W (u)0

�
C 0 +M b

j;l

and the second result follows.
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For the last one, again, by Bierens (1994), Lemma 9.6.3.,

1

T 2

TX
t=1

Ph;T (t)Pj;T (t)Y
b
t�1Y

b0

t�1

= 2 cos (h� (1� 0:5=T )) cos (j� (1� 0:5=T )) 1
T 2

TX
t=1

Y bt�1Y
b0

t�1

�2
Z 1

0

d

du
cos (h� (u� 0:5=T )) cos (j� (u� 0:5=T ))

0@ 1

T 2

buT cX
t=1

Y bt�1Y
b0

t�1

1A du:
From Cavaliere, Rahbek and Taylor (2010a),

1

T 2

buT cX
t=1

Y bt�1Y
b0

t�1
d! C

�Z u

0

W (y)W (y)0 dy

�
C 0;

and the result holds given that

1

T 2

TX
t=1

Ph;T (t)Pj;T (t)Y
b
t�1Y

b0

t�1
d! 2C

�Z 1

0

cos (h�u)W (u) cos (j�u)W (u)0 du

�
C 0:

(see Bierens and Martins (2010) for the integration by parts).�
Lemma 2. Let �? and �? be the orthogonal complements of � and �; respectively. The

following quantities have the same limiting laws as in Bierens and Martins (2010):

(�0?
�?)
�1=2

�0?S
b;(m)
01;T (�

0
? 
 Im+1) ; (16)

p
T (�0?
�?)

�1=2
�0?S

b;(m)
01;T (� 
 Im+1) ; (17)�

�0
�1�
��1

�0
�1S
b;(m)
01;T (�

0
? 
 Im+1) ; (18)�

�0
�1�
��1

�0
�1S
b;(m)
01;T (� 
 Im+1) ; (19)�

�0 
 Im+1; T�1=2�0? 
 Im+1
�
S
b;(m)
10;T S

b;�1
00;T S

b;(m)
01;T

�
� 
 Im+1; T�1=2�0? 
 Im+1

�
and(20)�

T�1=2�0? 
 Im+1; �0 
 Im+1
�
S
b;(m)
11;T

�
T�1=2�0? 
 Im+1; � 
 Im+1

�
: (21)

Proof : It follows from Lemma 1, given the de�nition of Sb;(m)ij;T ; i; j = 1; 2 (see above)

and the sequence of arguments in Bierens andMartins (2010). Notice that these results are

related to Lemma A6 at Cavaliere, Rahbek and Taylor (2010a) and Lemma S2 at Swensen

(2006) (for i.i.d. errors) where in their case m = 0: In our test, m being greater than zero

implies deriving the limiting laws of processes that involve the Chebishev polynomials.

That is provided by the previous Lemma 1. �

12



Lemma 3. Under the null hypothesis of standard cointegration and Assumption 1 and if

� > 0;

P �
�Sb00;T � �XX > �� ! 0 (22)

P �
�Sb;(m)01;T

b� � �X� > �� ! 0 (23)

P �
�b�0Sb;(m)11;T

b� � ��� > �� ! 0 (24)

in probability, where k�k is the Euclidean norm and

�XX = p lim
T!1

1

T

TX
t=1

XtX
0

t ; �X� = p lim
T!1

1

T

TX
t=1

XtY
0
t�1�

��� = p lim
T!1

1

T

TX
t=1

�
0
Yt�1Y

0
t�1�:

Proof : The results were shown by Cavaliere, Rahbek and Taylor (2010a) (Lemma A7)

and Swensen (2006) (Lemma S1, for i.i.d.) for the case of m = 0: As in Lemma 2, the

results of this Lemma for any m > 0 follow from Lemma 1. �
Lemma 4. Under the null hypothesis of standard cointegration and Assumption 1, the r

largest ordered solutions b�bm;1 � b�bm;2 � ::: � b�bm;r of the generalized eigenvalue problem
det
h
�S

b;(m)
11;T � Sb;(m)10;T S

�1;b
00;T S

b;(m)
01;T

i
= 0 (25)

converge in probability to constants 1 > �1 � ::: � �r > 0; which do not depend on m.

Thus, these probability limits are the same as in the standard TI cointegration case:

det

�
����� � ����

��
�0
�1�

��1
+ ����

��1
����

�
= 0; (26)

where ���� = ��� � �0X���1XX�X�: Moreover,

T
�b�bm;r+1; b�bm;r+2; :::; b�bm;k�0 d!

�
�m;1; :::; �m;k�r

�0
; (27)

where �m;1 � �m;2 � :::: � �m;k�r are the k � r largest solutions of the generalized
eigenvalue problem

det

24�
0@ R 1

0
fWk�r;m(u)fW 0

k�r;m(u)du O(k�r)(m+1);r:m

Or:m;(k�r)(m+1) Ir:m

1A (28)

�

0@ R 1
0
fWk�r;m(u)dWk�r(u)

0

V

1A�Z 1

0

(dWk�r(u))fWk�r;m(u)
0; V 0

�35 = 0;
13



where Wk�r(u) is a k � r variate standard Wiener process,

fWk�r;m (u) =
�
(�0?
�?)

�1=2
�0?C0 
 Im+1

�fWm(u);

and with V an r:m� (k � r) random matrix with i.i.d. N [0; 1] elements.

Proof : It follows from applying the previous results to the correspondent Lemmas at

Bierens and Martins (2010) (A7, A8 and A9). Just as in Bierens and Martins (2010), we

need to de�ne

�?;T =

0@�? 
 Im+1;
0@ Ok;m:rp

T
�
��

�1=2
�� 
 Im

� 1A1A
to prevent T�1�0?;TS

b;(m)
11;T �?;T from converging to a singular matrix (see Andersson et al.,

1983). See Theorems 3 and 4 at Cavaliere, Rahbek and Taylor (2010a) and Proposition

1 at Swensen (2006) (i.i.d.) for the case of m = 0: �
Proof of Theorem 1. Following the same route as in Bierens and Martins (2010),

the �2mkr distribution of the bootstrap TVC test statistic follows from a combination of

gaussian and �2 processes, as shown by Johansen (1995), once we apply the Taylor expan-

sion of Johansen (1988) around the pseudo MLE to the pseudo LR statistic. Recall that

the exact ML function (Bierens and Martins (2010)) is the same as the pseudo ML func-

tion once we assume Gaussian disturbances. To that end, and given the previous Lemmas,

we state that the pseudo ML estimator of � with a bootstrapped sample, b�b = �b�b1; :::;b�br� ;
where b�bi ; i = 1; :::; r; are the eigenvectors associated with the r largest eigenvalues b�bm;i;

S
b;(m)
10;T S

�1;b
00;T S

b;(m)
01;T

b�bi = b�bm;iSb;(m)11;T
b�bi ; i = 1; ::; r; (29)

has the same limiting distribution as the one in Bierens and Martins (2010). More specif-

ically, for the normalization e�b = b�b ��0b�b��1 �0� with a partition e�b = �e�b00 ;e�b0m� ; wheree�bm is a k:m� r matrix, and under the null hypothesis of standard cointegration,
T
�e�b0 � �� d! (�?; Ok;k:m)

�Z 1

0

fWk�r;m(u)fW 0
k�r;m(u)du

��1
(30)

�
Z 1

0

fWk�r;m (u) dW �
(u)0

�
�0
�1�

��1=2
p
Te�bm d!

�
��

�1=2
�� 
 Im

�
V

�

�
�0
�1�

��1=2
; (31)

where W
�
is an r-variate standard Wiener process, V

�
is a k:m� r matrix with indepen-

dent N [0; 1] distributed elements, and V
�
; W

�
and fWk�r;m are independent. The result

14



can be shown by generalizing Lemma A6 of Cavaliere, Rahbek and Taylor (2010a) and

Lemma S2 of Swensen (2006) (Supplementary Material) (i.i.d.) to the case of m > 0:

That can be done given our Lemma 1 that involves the Chebishev polynomials. See also

page 9 of the Supplementary Material to Swensen (2006)�s paper for why the continuous

mapping theorem still holds under P �:�

Bootstrap test for TVC using the restricted residuals In the context of the

LR cointegration rank test and associated sequential rank determination procedure of

Johansen (1995), Cavaliere, Rahbek and Taylor (2012) show that important gains can

be achieved once the residuals (and b�; b�) are obtained from the cointegration model

under the null hypothesis. In particular, the bootstrap sequential rank determination

procedure consistently determines the cointegration rank, in the sense that the probability

of choosing a rank smaller than the true one will converge to zero.

As mentioned before, in our test for time varying cointegration, the cointegration rank,

r, is �xed and assumed to be known and therefore the "sequential rank determination

procedure" is not relevant in our framework. Still, we see no reason why using restricted

residuals shouldn�t work as well for bootstrap TVC testing and, thus, suggest it as an

alternative to the unrestricted procedure de�ned above.

Let all estimated quantities be exclusively obtained from the standard time invariant

cointegration model, m = 0 : b�; b�; b�; b� and b"t; t = 1; :::; T: Following Cavaliere, Rahbek

and Taylor (2012), this alternative Wild and i.i.d. bootstrap procedure is the same as the

one above but (i) the bootstrap pseudo-disturbances "bt are obtained from the restricted

residuals b"t; and (ii) the bootstrap sample �4Y bt 	Tt=1 is constructed from the same equa-
tion with all estimated coe¢ cients obtained under the null hypothesis. According to the

Monte Carlo results shown in the next Section, this bootstrap procedure is surely also

asymptotically correctly sized but, apparently, not applicable to some particular mod-

els. We suspect that the usual bootstrap procedures using the restricted residuals are

not suitable for models with r > 1 under conditionally heteroskedastic errors and, thus,

alternative methods need to be proposed in the literature.

15



3 Monte Carlo Study

In this Section we illustrate the merits of the Bootstrap TVC tests by assessing their �nite-

sample size performance through numerical simulations. We consider three cointegration

models that follow closely the literature and combine distinct values for the number of

cointegrating vectors, the number of variables in the system and the VAR lag order.

3.1 The Designs

The data generating processes (DGP�s) correspond to the standard cointegrated VAR�s

(m = 0) presented by Bierens and Martins (2010) (denote it by BM), Johansen (2002)

and Swensen (2006) (JS) and Engle and Yoo (1987) (EY). In the BM model there is

a single cointegrating relationship driving a bivariate system and where p = 2; The JS

model is instead of dimension 3 and p = 1; and, relatively to JS, the EY model assumes

that there are two cointegrating vectors. There are no deterministic components and the

models parameters are:

BM: � = (�0:5; 0)0 ; � = (1; 1)0 ; � =

0@ 0:25 0

0 0

1A (32)

JS: � = (�0:4;�0:4; 0)0 ; � = (1; 0; 0)0 (33)

EY: � =

0BB@
�0:4 0:1

0:1 0:2

0:1 0:3

1CCA ; � =
0BB@

1 1

�2 �1=2
1 �1=2

1CCA : (34)

The errors "t are independent, Gaussian and with diagonal covariance matrix 
 = Ik;

except for EY where 
 = 100Ik: As in Cavaliere, Rahbek and Taylor (2010a), we also

consider a fatter-tails case of independent errors "t that follow a t-distribution with �ve de-

grees of freedom and the conditional heteroskedasticity case "it � h1=2it vit; i = 1; :::; k; where
vit � i:i:d:N (0; 1), independent across i; and hit = 1 + 0:3"2it�1 + 0:65hit�1; t = 1; :::; T:

These three distinct speci�cations for the errors "t are consistent to our Assumption 1.

The initial values are set equal to zero and the �rst �fty observations are dropped. All

experiments are based on 10; 000 replicas and consider samples of size T = 50; 100 and

200: The original and bootstrap TVC tests are calculated for a wide range of Chebyshev

time polynomials, with a maximum number of T=10 of them: m = 1; 2; 5 for T = 50;m =
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1; 2; 5; 10 for T = 100; andm = 1; 2; 5; 10; 20 for T = 200: Following Cavaliere, Rahbek and

Taylor (2010a, 2012), for each replica, the number of bootstrap pseudo-samples B equals

399: For each procedure, we impose a nominal test size of 5%:

3.2 The Results

We seek to estimate the probability of rejecting the null hypothesis of TI cointegration

when it is in fact true, for each of the three TVC tests described above and to observe

how those results vary with m and T; besides p; r and k which change across DGP�s. The

Tables 1 (BM model), 2 (JS model) and 3 (EY model) report the �nite-sample test-levels

for each distributional approximation where tvc denotes the original TVC test against the

chi-squared distribution and wb and sb refer to the wild and i.i.d. TVC tests, respectively,

against the bootstrap distribution. The results based on the bootstrap procedure using

the unrestricted residuals (and b�) are presented at the right of label "UR" and those
using the restricted ones at the right of "R". The results for tvc under t-distributed and

heteroskedastic errors must be somehow read in careful under the original assumption of

normality at Bierens and Martins (2010), although we conjecture that the result hold true

when relaxing this distributional restriction.

The examination of the empirical properties of the original test illustrates the severity

of the size distortions, especially for small T and large m; regardless of the DGP under

consideration. For large m; the empirical size approaches the nominal one at the expense

of a (much) higher number of observations. In contrast, the bootstrap tests provide in

general near-exact levels for any combination of T or m: This fact is robust to any of the

considered model speci�cations except for the conditional heteroskedasticity case with

large m where real sizes of the i.i.d. bootstrap test are equal to about 10% or above.

Regarding this particular setup, only the wild bootstrap test showed very reasonable

results in general. This is somehow consistent with the �ndings at Cavaliere, Rahbek and

Taylor (2010a).

In terms of the unrestricted and restricted approaches, we observe that the empirical

size of the latter is always smaller than the former. For most cases, this implies having an

empirical size (even) closer to the nominal 5% for the restricted procedure. But on the

other hand, the Wild bootstrap under the restricted approach fails to reject the null too
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often for m large and models JS and EY. Noticebly, the restricted procedure seems not

to work for the EY model under conditionally heteroskedastic errors (contrary to models

BM and JS, r = 2 at the EY model): the largest solution of the generalized eigenvalue

problem under the null and/or under the alternative, b�0;1; b�m;1; is systematically larger
than one for the simulated data, thus invalidating the calculation of the test statistic

(recall that it must hold true that 1 > b�m;1 � b�0;1):
Hence, we advocate the usage of the bootstrap versions of the TVC test, namely the

wild bootstrap using the unrestricted residuals, since these seem to be the only techniques

that work well globally when testing for standard cointegration against TVC.

In a recent paper, Cavaliere, Taylor and Trenkler (2013) extend Swensen (2006) and

Cavaliere, Rahbek and Taylor (2010a, 2012) by adapting Killian�s (1998) bootstrap-after-

bootstrap (BaB) framework to their bootstrap-based LR cointegration rank tests. More

speci�cally, bias-corrected VECM parameter estimates, obtained from the bootstrap repli-

cations, are used instead to generate the pseudo-data and calculate the test statistic. Be-

cause Cavaliere, Taylor and Trenkler�s standard cointegration model is the same as ours,

we also implemented their algorithm to the TVC unrestricted bootstrap procedures in

order to assess whether small sample gains can be obtained. The TVC BaB algorithm

is the same as the one previously described with the following di¤erence: The estimatedb�0js used to obtain the bootstrap sample �4Y bt 	Tt=1 in step two, and consequently the LR
test statistic in step three, are replaced by the bootstrap bias-corrected estimates. That

is, b�j � b�bj = e�bj �
 
1

B

BX
b=1

e�bj � e�bj
!
; j = 1; :::; p� 1;

where e�bj is the estimate based on the b� th bootstrap sample. According to the Monte
Carlo results for model BM, there seems not to exist gains by implementing the BaB pro-

cedure. In general, the empirical level increases slightly in both wild and i.i.d. bootstrap

schemes and for all sample sizes. The only exceptions are: wb with m = 1 and T = 50

(drops from 5.9 to 5.7) and sb with m = 10 and T = 100 (a drop from 7.2 to 6.8).
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Table 1: Empirical Sizes of Standard and Bootstrap TVC Tests for the BM model

BM m = 1 m = 2 m = 5 m = 10 m = 20

T tvc wb iidb tvc wb iidb tvc wb iidb tvc wb iidb tvc wb iidb

Gaussian

50 UR 10.4 5.9 5.7 14.7 5.8 5.8 35.2 5.9 6.8 - - - - - -

R 5.1 5.8 5.1 5.6 5.5 6.3 - - - - - -

100 UR 7.2 6.0 5.7 9.3 6.2 5.7 15.4 5.8 6.0 37.1 6.3 7.2 - - -

R 5.7 5.6 5.9 5.4 5.3 5.4 6.0 6.2 - - -

200 UR 5.9 6.0 5.3 6.8 6.0 5.7 8.9 5.6 5.6 15.5 5.7 5.9 44.8 6.6 6.3

R 5.5 5.5 5.3 6.0 4.9 5.5 5.2 5.4 5.6 4.7

t5

50 UR 10.2 5.4 5.0 15.2 5.8 5.7 38.3 6.6 7.3 - - - - - -

R 5.1 4.7 5.3 5.2 5.8 6.2 - - - - - -

100 UR 7.4 5.6 5.7 9.2 6.1 5.4 16.2 5.4 5.9 39.1 6.4 6.5 - - -

R 4.6 6.3 5.2 5.4 4.5 5.5 5.7 5.4 - - -

200 UR 5.9 5.4 5.0 6.7 5.3 4.8 10.0 5.9 5.5 17.1 5.8 4.4 48.7 6.7 6.5

R 5.1 4.9 5.1 4.8 5.8 5.3 5.5 4.2 6.2 4.5

Heteroskedastic

50 UR 2.3 6.5 6.8 18.3 6.8 7.5 43.6 8.8 11.5 - - - - - -

R 5.8 7.0 6.2 7.4 6.8 10.3 - - - - - -

100 UR 10.1 5.9 7.1 13.0 6.0 7.9 22.9 7.0 10.0 48.7 9.5 13.9 - - -

R 5.7 6.9 5.4 7.7 5.9 9.6 7.4 12.3 - - -

200 UR 11.2 6.2 9.4 13.4 6.5 10.5 18.7 6.8 12.0 28.3 7.8 13.1 61.3 10.5 18.6

R 5.7 9.5 5.8 10.6 6.0 12.4 6.4 12.9 7.3 15.8
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Table 2: Empirical Sizes of Standard and Bootstrap TVC Tests for the JS model

JS m = 1 m = 2 m = 5 m = 10 m = 20

T tvc wb iidb tvc wb iidb tvc wb iidb tvc wb iidb tvc wb iidb

Gaussian

50 UR 15.6 5.6 5.9 27.4 5.9 7.0 74.0 6.1 11.0 - - - - - -

R 5.4 5.6 5.3 6.4 4.1 8.9 - - - - - -

100 UR 9.0 6.1 5.4 12.9 5.4 5.6 31.1 5.0 7.4 77.5 4.9 10.4 - - -

R 4.9 5.0 4.6 4.9 4.0 6.4 2.6 7.4 - - -

200 UR 7.0 5.6 5.4 8.4 5.4 5.5 14.6 4.9 5.8 32.8 3.9 6.9 86.2 4.4 10.1

R 5.3 5.3 4.9 5.4 4.5 5.3 3.0 5.5 2.3 6.8

t5

50 UR 16.1 5.9 6.3 27.5 5.9 7.5 73.4 6.3 10.9 - - - - - -

R 5.0 5.8 4.7 6.6 3.8 8.3 - - - - - -

100 UR 9.6 5.3 5.9 12.9 5.1 5.5 30.0 5.0 6.7 76.3 4.6 10.2 - - -

R 4.8 5.8 4.2 5.7 4.0 5.8 3.0 7.1 - - -

200 UR 7.0 5.5 5.6 8.1 5.3 5.3 14.1 5.1 6.0 32.0 4.7 6.6 85.3 4.4 10.3

R 5.2 5.3 5.0 5.4 4.3 5.4 3.3 5.6 1.8 6.3

Heteroskedastic

50 UR 18.9 6.8 8.0 32.2 7.3 10.0 74.0 8.3 15.0 - - - - - -

R 6.4 7.5 6.0 9.8 5.6 12.1 - - - - - -

100 UR 13.2 6.6 8.3 18.4 6.7 10.3 41.2 7.9 14.8 80.7 8.4 18.6 - - -

R 6.4 8.3 6.1 9.7 5.3 13.7 4.8 15.2 - - -

200 UR 10.1 6.7 8.3 13.6 6.9 10.1 25.4 7.4 13.4 51.0 7.5 18.9 90.6 9.0 24.7

R 6.2 8.0 6.1 10.1 5.9 13.2 5.0 17.5 4.1 19.9
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Table 3: Empirical Sizes of Standard and Bootstrap TVC Tests for the EY model

EY m = 1 m = 2 m = 5 m = 10 m = 20

T tvc wb iidb tvc wb iidb tvc wb iidb tvc wb iidb tvc wb iidb

Gaussian

50 UR 10.9 5.7 4.7 17.7 5.0 5.2 57.2 3.9 6.4 - - - - - -

R 4.9 4.9 4.7 5.0 3.0 5.6 - - - - - -

100 UR 7.3 5.7 5.1 9.5 5.8 5.1 20.0 4.5 5.4 59.7 3.1 6.0 - - -

R 5.2 5.0 5.0 4.9 3.5 5.2 2.0 5.0 - - -

200 UR 5.6 5.2 5.2 6.0 5.3 5.2 9.7 5.1 4.9 21.8 5.0 5.3 71.7 2.8 6.3

R 5.0 4.8 5.1 5.0 4.5 5.0 3.0 4.9 1.0 4.8

t5

50 UR 11.3 5.8 5.5 17.6 5.6 5.0 56.6 3.7 6.2 - - - - - -

R 4.8 4.9 4.2 5.3 2.4 5.6 - - - - - -

100 UR 7.4 5.8 5.4 9.8 5.6 5.2 19.9 4.7 5.5 59.6 3.1 6.1 - - -

R 5.8 5.7 5.2 5.5 3.1 4.7 1.6 4.0 - - -

200 UR 6.1 5.8 5.0 7.1 5.7 5.6 10.9 5.9 5.4 22.3 4.4 5.9 72.8 2.7 6.4

R 5.3 5.3 5.1 5.0 5.1 5.7 3.7 5.5 1.2 5.3

Heteroskedastic

50 UR 14.7 7.3 7.3 23.8 8.0 8.9 66.8 7.2 12.6 - - - - - -

R n/a n/a n/a - - - - - -

100 UR 10.3 6.5 7.8 14.5 7.3 9.1 32.7 8.3 13.0 74.6 8.1 18.5 - - -

R n/a n/a n/a n/a - - -

200 UR 9.7 7.0 8.6 12.6 6.5 10.0 19.9 7.2 13.0 41.0 8.5 18.8 88.1 10.6 29.1

R n/a n/a n/a n/a n/a

Note: n/a stands for "not available"
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4 Reassessing TV PPP

In Bierens and Martins (2010), the original TVC test statistic was applied to the pur-

chasing power parity (PPP) hypothesis: In its absolute form, it means that the same

bundle of goods, measured in real terms, should have the same value across countries. By

taking the U.S.A. as the domestic country, Bierens and Martins (2010) concluded that

price indices and nominal exchange rates are cointegrated, but in a TV fashion. Given the

size distortions of the test and the accurate distribution approximation of the bootstrap

versions of the test, in this Section, we reevaluate the PPP hypothesis using the same

data as in Bierens and Martins (2010), but now computing the wild and i.i.d. bootstrap

TVC test statistics as well, for both unrestricted (UR) and restricted (R) approaches.

4.1 PPP in the Context of TVC

The literature on the PPP hypothesis is recognizably vast and several reviews have

been proposed (see, for example, Taylor and Taylor, 2004). In our notation, Yt =�
lnSft ; lnP

n
t ; lnP

f
t

�0
; where P nt and P

f
t are the price indices in the domestic and for-

eign economies, respectively, and Sft is the nominal exchange rate in home currency per

unit of the foreign currency. Taking the symmetry and proportionality restrictions of

the absolute version of PPP, �0 = (1;�1; 1) ; is not expected to hold in empirical work
due to several aspects namely measurement errors of the price indices. Hence, the tra-

ditional empirical strategy assumes � to be unknown and estimates the deviation series

from PPP, et = �0Yt; under the Engle and Granger (1987) or Johansen�s methodology,

� = (1; �2; �3) : Under the assumption of no transactions costs, PPP requires that bet
follows a stationary process.

Whether it be the existence of transaction costs, nontradable goods, or market struc-

tures with imperfect competition, it is highly unlikely that the equilibrium parity condition

holds in its traditional representation. Due to the presence of such market frictions or

measurement errors of the price indices in equilibrium models of real exchange rate de-

termination, which may imply a nonlinear adjustment process in the PPP relationship,

we test for the single constant cointegration hypothesis against our TVC speci�cation.

The short run deviations from the PPP due to shocks in the system are measured by
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et = �
0
tYt; where �t is an unknown deterministic function of time that is approximated by

�t(m) =
Pm

i=0 �iPi;T (t) ; where the �i�s are the Fourier coe¢ cients. Under the standard

PPP hypothesis (time-invariant cointegration), �i = 0 for all i = 1; :::;m; for a �xed m:

The way to departure from the traditional Engle and Granger and Johansen�s ap-

proaches might not be consensual. To put it simple, depending on the underlying model

speci�cation and assumptions and the properties of the data, one may �t the PPP the-

ory within an I(1) or I(2) framework; assume a linear or nonlinear type of cointegration

model; and impose a set of coe¢ cients that are either �xed or time-varying (threshold

cointegration, smooth transition, markov-switching, and so forth).

For example, Falk and Wang (2003) considered the PPP relationship within an I(1)

framework whereas Johansen et al (2010) and Frydman et al (2008) argue that it �ts

instead within the I(2) framework and thus making the standard approach possibly mis-

leading. Based on rational expectations hypothesis sticky-price monetary models, the

I(1) approach assume that nominal exchange rates and relative good prices are unit-root

processes, while the real exchange rate is stationary (or a near-I(1) process). Instead,

Johansen et al (2010) question these monetary models, specifying an I(2) model with

piecewise linear trends where the change in real exchange rate is stationary but highly

persistent and apply it to German-USA data in the period 1975-1999.4 On the other

hand, Hong and Phillips (2010) propose a RESET-type test for linear against nonlinear

cointegration and applied it to the PPP theory using UK-USA, Mexico-USA, Canada-

USA and Japan-USA data from 1971 to 2004. They found little evidence for a linear

relationship, except for the Mexico-USA case.

An important branch of the PPP literature assumes a nonlinear adjustment process

in the �xed PPP cointegration relationship. It is argued that due to the presence of

transactions costs, the deviations from the PPP et = �
0Yt is a nonlinear process that can

very well be characterized in terms of a smooth transition autoregressive model (ESTAR

model). In this type of models, regime changes occur gradually rather than suddenly and

the speed of adjustment varies with the extent of the deviation from parity. Typically,

the deviations from the PPP are obtained (i.e., estimated, bet = b�0Yt) using the Engle
4Michael et al. (1997) also found German prices and nominal exchange rates to be I(2) processes

whereas non-German series are I(1). That is, German data seems to be a good empirical example where

PPP holds within an I(2) approach.
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and Granger (see Michael et al., 1997) or the Johansen�s cointegration method (see Baum

et al, 2001). The results provide strong evidence of mean-reverting behavior for PPP

deviations and against the linear framework.

It is known that testing for a linear speci�cation with time varying coe¢ cients against

a nonlinear model with �xed parameters, or selecting the best out of the two, is not an

easy task. Once we believe in Clive W. J. Granger�s assertion that �any non-linear model

can be approximated by a time-varying parameter linear model� (Granger, 2008), we

cannot reject a priori the relevance of a speci�cation such as the one we are considering

in the paper.

As it just so happens with the nonlinear adjustment speci�cation, our model also as-

sumes PPP cointegration in a nonstandard fashion, including the smooth transitions. In

particular, the TVECM is able to empirically assess the strongest assumption in PPP the-

ory: The single cointegration vector being of the form � = (1;�1; 1) and, correspondingly,
the real exchange rate a stationary process. This absolute version of the PPP hypothesis

occurs if the null hypothesis of our TVC test is not rejected and, furthermore, the restric-

tions are also not rejected. The bootstrap TVC test is shown to be a "good" statistical

tool to see if those changes around a constant � are signi�cant or not.

Cheung and Lai (1993) claim that, due to transaction costs and measurement errors

in prices, if et is stationary and (�2 < 0; �3 > 0) ; PPP holds. The Appendix to Bierens

and Martins�paper includes the plots of the estimated b�t: There, one can see that, in
general, b�t seems to �uctuate around (1;�1; 1) and, in particular, �t2 < 0; �t3 > 0 for

most t: From an economic point of view, this means that the presence of market frictions

and/or measurement errors of the price indices is the cause of time-varying adjustments

on the relative importance of each variable in Yt (nominal exchange rates and prices) to

guarantee stationary PPP deviations.5 That is, contrary to the former two-stage approach

(obtain bet = b�0Yt and then �t a STAR model to it), at the TVECM, the PPP equilibrium
is directly restored via the cointegration vector, b�t:

5As a simple example, �t =
�
1;�1 + cos(t)

T ; 1
�
; t = 1; :::; T; �uctuates very closely to (1;�1; 1) and

satis�es �t2 < 0; �t3 > 0. In this case, slightly smaller importance in relative prices is given to the

domestic economy.
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4.2 Empirical Results

The data we use to illustrate the usefulness of the bootstrap TVC tests in empirical

work is the same as in Falk and Wang (2003), downloaded from the Journal of Applied

Econometrics data archives web site. For this particular dataset, they put the PPP

relationship within an I(1) framework.6 The U.S.A. bilateral relationship of study is with

the U.K., Japan, Canada, France, Italy, Germany, Belgium, Denmark, the Netherlands,

Norway, Spain and Sweden. The data are monthly comprising 324 observations and cover

the period from January 1973 to December 1999.

In this empirical application where a drift is included, k = 3 and r = 1; we consider m

ranging from 1 to 32 = bT=10c : For the bootstrap tests, B = 399 and the initial values
Y bt ; t = �p + 1; :::; 0; are set equal to the �rst observation in the sample, Y1: Just as in
Bierens and Martins (2010), the admissible values for the lag order include p = 1; 6; 10 and

18: Based on the Hannan-Quinn information criterion (HQ, Hannan and Quinn, 1979),

we took p = 1 which, for all reasonable m and countries, becomes the selected model over

p = 6; 10; 18:7

The results are presented in Table 2. The column labeled "m�
HQ" indicates the value

for m that is selected according to the HQ criterion. At its right, we �nd results for

1%; 5% and 10% levels (columns "pvalue<...") for each one of the three tests (tvc; wb

and sb): For a given test and signi�cance level, each number corresponds to an integer em
such that one cannot reject the standard PPP hypothesis for all m < em: Also, one can
�nd evidence for TV PPP whenever m � em: The pvalues are not always monotonic with
respect to m: It is by comparing "m�

HQ" to the em0s; at its right, that we draw conclusions

6We also computed several unit root tests (including some more recent ones not in Falk and Wang,

2003) and con�rmed that nominal exchange rates are clearly I(1) and for the case of the price indices

some evidence in favor of I(1) is found as well. Results available upon request.
7Apparently, in our TVECM, the HQ criterion tends to pick very large models and, consequently,

reducing drastically the degrees of freedom, as it happens with the AIC information criterion. In par-

ticular, when m is relatively large, HQ chooses models with large values for p: For example, in the UK

case HQ selects p = 1 rather than p = 6 for all m; rather than p = 10 for all m < 23; and rather than

p = 18 for all m < 26: On the contrary, BIC always picks extremely small models, p = 1;m = 0; which

becomes non-informative when testing for TVC. Therefore, to prevent from having models with m = 0

(BIC) or m close to bT=10c and p = 18 (huge loss of degrees of freedom), we set p = 1 and adopted the
HQ criterion.
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about the PPP hypothesis, for each bilateral relationship.

For the U.K., we �nd some evidence of a standard (TI) type of cointegration between

U.K. and U.S.A. prices and the nominal exchange rate. According to Table 4 and for the

bootstrap tests at a 1% level, em > m�
HQ meaning that there is a wide range of possible

values form such that one cannot reject the null hypothesis, includingm that corresponds

to the selected model, according to HQ. At a 5% level, em is basically equal to m�
HQ: This

conclusion is, nevertheless, not shared by the remaining bilateral relationships where a

TV cointegrating system is more likely to be true. That is, for all other countries, for any

test and signi�cance level, em is too small when compared to m�
HQ:

This empirical exercise shows the relevance of computing the bootstrap versions of

the TVC test. It seems that the U.S.A. and the U.K. have kept a constant equilibrium

relationship of prices and nominal exchange rates during the last quarter of the 20th

century.8 This is contradicted by the original TVC testing procedure.

5 Conclusion

In this paper we have considered two alternative bootstrap algorithms to the time-varying

cointegration test proposed by Bierens and Martins (2010), based on a VECM speci�ca-

tion where the cointegration vector changes smoothly over time. The original likelihood

ratio test and its wild and i.i.d. bootstrap versions have the same �rst-order asymptotic

distribution under the null hypothesis of standard/time-invariant cointegration. Accord-

ing to some extensive Monte Carlo simulations, and contrary to what happens with the

original test statistic, the bootstrap procedures did not show severe size distortions. That

is, the bootstrap approximation to the �nite-sample distribution can be considered very

accurate, especially for the wild bootstrap case. We have applied the tests to the purchas-

ing power parity hypothesis of international prices and nominal exchange rates with the

U.S. as the home economy, and found evidence of standard cointegration in the U.S.A.-

U.K. bilateral relationship and time-varying cointegration in the remaining eleven cases.

8In the standard Johansen�s cointegration context, the null hypothesis of symmetry and proportionality

restrictions � = (1;�1; 1) is clearly rejected and the point estimate is b� = (1;�1:413; 0:747):
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Table 4: Standard and Bootstrap TVC Tests Applied to the PPP Hypothesis

pvalue < 0:1 pvalue < 0:05 pvalue < 0:01

m�
HQ tvc wb iidb tvc wb iidb tvc wb iidb

U.K. 10 UR 3 9 10 3 9 10 3 12 14

R 10 10 12 10 12 14

Japan 15 UR 3 5 5 3 5 5 5 6 5

R 5 5 5 5 6 5

Canada 15 UR 1 8 1 1 8 1 1 9 8

R 8 1 9 1 12 8

France 15 UR 1 1 1 1 1 1 1 6 1

R 1 1 1 1 7 1

Italy 16 UR 1 10 1 1 10 1 1 10 10

R 10 1 10 1 12 10

Germany 16 UR 2 9 9 2 9 9 2 10 10

R 15 8 15 9 16 10

Belgium 18 UR 1 6 6 3 7 7 5 8 8

R 8 6 8 6 14 7

Denmark 17 UR 1 5 1 1 5 1 1 6 6

R 7 1 8 1 8 6

Netherlands 12 UR 1 5 1 1 5 1 1 5 1

R 6 1 6 1 6 1

Norway 16 UR 1 7 11 1 10 11 1 11 12

R 12 11 13 11 13 13

Spain 16 UR 1 5 1 1 5 1 1 8 1

R 1 1 6 1 9 2

Sweden 23 UR 2 7 14 3 9 14 4 11 15

R 15 14 15 15 16 15

Note: Each entry below columns "pvalue<..." represents a value for m

(denote it as em); such that for all m < em one cannot reject the null hypothesis.

Similarly, reject for all integers m � em:
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The simplicity of application of the bootstrap TVC tests and their good performance in

�nite-samples make the procedures discussed in this paper a valuable tool when address-

ing the possibility for smooth time-transitions of the equilibrium relationship in several

other examples of cointegrated variables. It is important to notice that the LR test setup

is conditional on the existence of cointegration. An interesting topic that deserves fur-

ther attention is how to test for "spurious" regression in our time-varying framework.

The work by Park and Hahn (1999) in single-equation time-varying cointegration can be

helpful in this respect.
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