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Resume

Nowadays there is a fast development of the methods based on transmutation op-

erators (TO) theory for solving differential equations. The possibility to construct the

images of solutions for TO in certain cases allowed the construction of accurate numer-

ical solutions to several problems that appear in different applied fields. In the present

work, for the first time, it is shown that these methods can be effectively applied to the

optimal stopping problems that appear in mathematical finance.

The first part of the thesis (Chapter 2) consists of an application of the method to the

valuation of European-style double-barrier knock-out options (DBKO). This is done by

using the efficient computation of eigenvalues for the Shrödinger equation and a repre-

sentation of solutions in terms of Neumann series of Bessel functions. This knowledge

was used in the construction of a novel analytically tractable method for pricing (and

hedging) DBKO, which can be applied to the whole class of one-dimensional time-

homogeneous diffusions even for the cases where the corresponding transition density

is not known. The proposed numerical method is shown to be efficient and simple to

implement. To illustrate the flexibility and computational power of the algorithm it is

constructed an extended jump to default model that is able to capture several empirical

regularities commonly observed in the literature.

The second part of the thesis (Chapters 3 and 4) is dedicated to the study of the more

complicated problems: the free boundary problems. For this purpose, the method was
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first (in some certain sense) generalized and tested on the Stefan-like problem. The

method consists in efficiently constructing a complete system of solutions for parabolic

equation from known solutions for the heat equation, heat polynomials (HP). This way

it was possible to extend the numerical method that existed only for the heat equation

to the large class of parabolic equations. However, for the selected financial problem,

Russian option with finite horizon (ROFH), the numerical computation from the method

based on HP revealed to be non-efficient. This is due to the more complex structure

of the problem, specifically the non-consistent boundary conditions. Hence, it was

developed another variation of the method that uses different systems of solutions for

the heat equation: the generalized exponential basis. The constructed method proved

to be accurate, relatively easy to implement and can it can be applied to the large

class of the free boundary problems. The value of the ROFH has been an important

theme of discussion in the last decades. The application of the method to this problem

confirmed several results that have appeared recently in the literature and shred some

light on the differences that were present.

The constructed methods have a large scope of applications not only in financial field,

but also in other disciplines. Both studies also open a variety of future research and

applications that are discussed in the text.

JEL Classification: G13, C60, G33.

Keywords: Finance, Double barrier options, Russian Options, Transmutation opera-

tors, Free boundary problems, Sturm-Liouville equations, Neumann series of Bessel

functions.
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Resumo

Actualmente estamos a assistir a um rápido desenvolvimento de métodos baseados

nos operadores de transmutação (OT) para a resolução de equações diferenciais. Em

certos casos, é possı́vel calcular as imagens de soluções para OT, o que permite con-

struir soluções numéricas com um elevado grau de precisão para diversos problemas

aplicados. No presente trabalho, pela primeira vez, é desenvolvida e ilustrada uma

aplicação eficiente destes métodos aos problemas de paragem óptima que surgem na

matemática financeira.

A primeira parte da tese (Capı́tulo 2) consiste na aplicação do método ao problema

de avaliação de opção com dupla barreira knock-out (DBKO) de estilo europeu. A

construção do método passa por um apurado cálculo de valores próprios do respec-

tivo problema de Schrödinger e a representação de soluções em termos de séries de

Neumann de funções de Bessel. Esse conhecimento foi utilizado para construir um

novo método de expressão analı́tica para definição de preço (e cobertura) de DBKO.

O método pode ser aplicado a toda uma classe de difusões uni-dimensionais ho-

mogéneas no tempo, mesmo para os casos em que não é conhecida a função de den-

sidade de transição. Neste capı́tulo é demonstrado que o método proposto é eficiente

e simples de implementar. Para ilustrar a flexibilidade e a robustez computacional do

respectivo algoritmo é construı́do um modelo estendido de salto para o incumprimento

que oferece a possibilidade de captar certos efeitos empı́ricos presentes na literatura.
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A segunda parte da tese (Capı́tulos 3 e 4) é dedicada ao estudo de problemas mais

complexos: problemas de fronteira livre. Para esse propósito, o método foi (em certo

sentido) generalizado e testado no problema do tipo de Stefan. O método consiste

numa construção eficiente de um sistema completo de soluções para uma equação

diferencial parabólica a partir de um sistema completo de soluções para a equação

de calor, os polinómios de calor (PC). Deste modo, foi possı́vel estender o método

numérico que existia apenas par a equação de calor para uma larga classe de equações

parabólicas. No entanto, para o problema financeiro seleccionado, a opção russa com

horizonte finito (ORHF), o método baseado nos PCs revelou-se computacionalmente

ineficiente. Isso deve-se a uma estrutura mais complicada do problema, nomeada-

mente as não-consistentes condições de fronteira. Como tal, foi desenvolvida uma

outra variação do método que usa um sistema de soluções diferente de PCs: uma

base exponencial generalizada. O método construı́do provou ser preciso, de relati-

vamente fácil implementação e pode ser aplicado a uma larga classe de problemas

de fronteira livre. O valor de ORHF foi e continua a ser um importante tema de dis-

cussão nas últimas décadas. A aplicação do método a esse problema confirmou vários

resultados que surgiram recentemente na literatura e revelou o porquê de algumas

diferenças.

Os métodos construı́dos têm uma larga gama de aplicações, tanto no âmbito de

matemática financeira como em outras disciplinas. Ambos os estudos abrem várias

possibilidades para futuras investigações e aplicações, as discussão das quais se en-

contram no texto.

JEL Classification: G13, C60, G33.

Palavras chave: Finanças, Opções barreira, Opções russas, Operadores de trasmutação,

Problemas de fronteira livre, Equações de Sturm-Liouville, Séries de Neumann de

funções de Bessel
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1. Introduction

1.1 Thesis structure

The thesis focuses on the application of the numerical methods derived from transmu-

tation operators theory to problems in mathematical finance. The three main chapters

2-4 are the following independent articles:

• Pricing double barrier options on homogeneous diffusions: a Neumann series of

Bessel functions representation

This paper is a joint work with Vladislav V. Kravchenko, Sergii M. Torba and

José Carlos Dias, it was submitted to Quantitative Finance and is available at

arXiv:1712.08247.

The article was accepted and presented at INFORMS Annual Meeting 2017,

Houston.

• Solution of parabolic free boundary problems using transmuted heat polynomials

This paper is a joint work with Vladislav V. Kravchenko and Sergii M. Torba. It

was submitted to Computational Mathematics and Mathematical Physics and is

available at arXiv:1706.07100.

The exposition based on this article was accepted and presented at Bachelier

Finance Society, 10th World Congress 2018, Dublin.
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• Generalized exponential basis for efficient solving of homogeneous diffusion free

boundary problems: Russian option pricing

This paper is a joint work with Vladislav V. Kravchenko, Sergii M. Torba and José

Carlos Dias, in preparation to be submitted and is available at arXiv:1808.08290.

The article was accepted and presented at Bachelier Finance Society, 10th World

Congress 2018, Dublin.

Each of the chapters is a self contained article the repetition of the concepts is un-

avoidable. It is also to be expected that the notation might differ between the chapters.

Besides the present introduction and the chapters described above, in the final chapter

are presented final comments and expected directions for future research.

1.2 Motivation and outline of the thesis

One of the modern problems in mathematical finance is the valuation of exotic options.

The introduction of the Black-Scholes-Merton formula for valuing European-type op-

tions triggered the development of mathematical models assuming a given stochastic

behaviour of the underlying asset. Under some general assumption, exotic option val-

uation problems often lead to optimal stopping problems, which is an exciting field of

mathematics, transversal to many applications, not only financial, but also in physics,

biology, etc.

To the best of my knowledge, this thesis focuses for the first time on the application of

the numerical methods derived from the transmutation operators (TO) theory for solv-

ing the optimal stopping problems that appear in mathematical finance. An additional

challenge for the practical applications is the ability of the method to be numerically

2



executable, i.e. to actually be implemented. This way for each separate problem the

two objectives have to be fulfilled:

• Construct the method for solving the proposed problem;

• Show that the method can be numerically implemented.

The first part of the thesis deals with double barrier knock-out options (DBKO)1. The

standard technique for solving this problem is to use the method of separation of vari-

ables and then represent the solution in terms of eigenfunctions, after solving the cor-

responding Sturm-Liouville problem. The generalization of this approach to more com-

plicated models (where we cannot explicitly calculate eigenvalues) is challenging. With

recent results from TO theory it was possible to construct a numerical algorithm that

permitted to generalize this construction for any model where the underlying follows

time-homogeneous diffusion with certain type of killing rate. This was done by using

Neumann series of Bessel functions (NSBF) decomposition for the derived Shrödinger

equation, that itself was obtained by transmutation of the solutions of the equation

uxx = 0. The use of NSBF decomposition in a standard method opened a large

scope of avenues for future research, such as its application to the singular problems

that arise in mathematical finance, plain-vanilla options (unbounded domains), default

cases (singularities in the coefficients) and others, and showed the potential of these

numerical methods for the practical applications. I intend to explore this direction in the

future research.

The second part of the thesis considers more complex problems: the free boundary

problems. The TO’s can be used to transmute (the known) solutions of the heat equa-

tion into the solution of the parabolic equation under study (PE). It is possible to take
1To avoid repetition and the bloating of this introductory section I have decided to keep the bibliography

references to the main chapters
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a complete system of solutions (CSS) for the heat equation, such as heat polynomials

(HP) and transmute it into the CSS for the PE. Recently, this theoretical construction

gained a fundamental practical application for the large class of differential operators

and for certain CSS. This was possible due to the newly developed method to compute

the images of these CSS under the action of TO. These images possess an analytically

tractable representation.

The idea for the numerical method based on the transmuted CSS was first tested on a

generalization of the classical Stefan-like problem. This experiment and illustration of

the method is presented in Chapter 3. For this purpose, the HP were used as a CSS

for the heat equation. This method is referred to as transmuted heat polynomials (THP)

method. The numerical implementation revealed to be relatively simple and direct.

However, the extension of the THP to the Russian option with finite horizon (ROFH),

the financial problem selected, presented an additional difficulty. The constructed THP

increase very rapidly and non-consistency of the boundary conditions requires a large

number of functions from CSS for the accurate approximation. These requirements

turn out to be hard to satisfy in numerical computations. They made THP unfit for

computing a precise approximated solution. This issue was circumvented by using a

different CSS for the heat equation, the generalized exponential powers.

The ROFH evaluation presents an interesting problem on both theoretical and numer-

ical sides. For the last decade there seems to be no agreement in the literature on a

value of the ROFH under different horizons. The application of our method permitted

to compute the values of ROFH that have been in discussion. We were able to confirm

some of the values obtained previously and (in our opinion) justifying the differences in

discussion. In the process, we were also able to present the valuation surface, never

illustrated before in the literature.

4



The constructed method can be applied to the large class of free boundary problems.

It does not depend on the knowledge of the density function and can be applied to gen-

eral time-homogeneous diffusion models. Currently, the author of this thesis is working

on its application to the evaluation problem for American options under a general time-

homogeneous diffusion model.

5
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2. Pricing double barrier options on homogeneous

diffusions: a Neumann series of Bessel functions

representation

Abstract: This paper develops a novel analytically tractable Neumann series of Bessel

functions representation for pricing (and hedging) European-style double barrier knock-

out options, which can be applied to the whole class of one-dimensional time-homoge-

neous diffusions even for the cases where the corresponding transition density is not

known. The proposed numerical method is shown to be efficient and simple to imple-

ment. To illustrate the flexibility and computational power of the algorithm, we develop

an extended jump to default model that is able to capture several empirical regularities

commonly observed in the literature.

JEL Classification: G13.

Keywords: Double barrier options; Default; Neumann series of Bessel functions; Sturm-

Liouville equations; Spectral decomposition; Transmutation operators
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2.1 Introduction

In this paper we develop a novel option pricing methodology based on an analytically

tractable Neumann series of Bessel functions (hereafter, NSBF) representation. The

new representation is derived by applying the NSBF expansion to the arising Sturm-

Liouville problem. To highlight the potential of our method, we derive a new analytical

tractable representation of the price (and Greeks) of double barrier European-style

knock-out options (henceforth, DBKO options), though applications to other similar

problems may be designed using this conceptual framework.

Barrier option contracts are path-dependent exotic options traded at over-the-counter

markets on several underlying assets, e.g., stocks, stock indexes, currencies, com-

modities, and interest rates. They have been actively traded mainly because they are

cheaper than the corresponding vanilla options and offer an important tool for risk man-

agers and traders to better express their market views without paying for outcomes that

they may find unlikely. Moreover, they are also used as building blocks of many struc-

tured products.

Given their popularity in the market, a vast literature dedicated to their valuation has

been developed. For instance, alternative pricing (and hedging) schemes for DBKO

options under the classic geometric Brownian motion (hereafter, GBM) assumption

have been proposed by Kunitomo and Ikeda (1992), Geman and Yor (1996), Sidenius

(1998), Pelsser (2000), Schröder (2000), Poulsen (2006), or Buchen and Konstandatos

(2009). Given that such modeling framework assumes the volatility is constant through-

out the option’s life, several attempts have been made to overcome this unrealistic

assumption implicit in the GBM diffusion.

It is well-known that the constant elasticity of variance (hereafter, CEV) diffusion model

8



of Cox (1975), where the volatility is a function of the underlying asset price, is able to

better reproduce two empirical regularities commonly observed in the literature, namely

the existence of a negative correlation between stock returns and realized volatility

(leverage effect) and the inverse relation between the implied volatility and the strike

price of an option contract (implied volatility skew). To accommodate these observa-

tions, the valuation of DBKO options under the CEV model have been performed by

Boyle and Tian (1999) through a trinomial scheme, by Davydov and Linetsky (2001)

using a pricing framework based on the numerical inversion of Laplace transforms,

by Davydov and Linetsky (2003) via an eigenfunction expansion approach, and by

Mijatović and Pistorius (2013) whose approach rests on the construction of an approx-

imation based on continuous-time Markov chains, amongst others.

More recently, Dias et al. (2015) tackle the valuation of DBKO options (using the stop-

ping time approach as well as the static hedging approach) under the so-called jump to

default CEV (hereafter, JDCEV) model proposed by Carr and Linetsky (2006), which

is known to be able to capture the empirical evidence of a positive correlation between

default probabilities (or credit default swap spreads) and equity volatility.2.1 Moreover,

it nests the GBM and CEV models as special cases and, therefore, it also accommo-

dates the aforementioned leverage effect and implied volatility skew stylized facts. The

importance of linking equity derivatives markets and credit markets has thus generated

a new class of hybrid credit-equity models with the aim of pricing derivatives subject to

the risk of default—for other applications of jump to default models, see, for instance,

Nunes (2009), Mendoza-Arriaga et al. (2010), Linetsky and Mendoza-Arriaga (2011),

Ruas et al. (2013), Nunes et al. (2015), Nunes et al. (2018), and the references con-

tained therein.

The main purpose of this paper is the development of a new analytically tractable NSBF
2.1See, for example, Campbell and Taksler (2003), Zhang et al. (2009), and Carr and Wu (2010).
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representation for pricing (and hedging) European-style DBKO options which can be

applied to the whole class of one-dimensional time-homogeneous diffusions, indepen-

dently of knowing the corresponding transition density. Similarly to Davydov and Linet-

sky (2003), we solve the boundary value problem for the parabolic partial differential

equation using a classical separation of the variables method. This technique reduces

the problem to the determination of the eigenvalues and eigenfunctions of the associ-

ated Sturm-Liouville problem. The approach based on the NSBF representation allows

one to compute large sets of eigendata with non-deteriorating accuracy. Hence, we

are able to calculate the prices for the general time homogeneous diffusion models,

not relying on the knowledge of the exact solutions as for example is done in Davydov

and Linetsky (2003) for the CEV model and Carr and Linetsky (2006) and Dias et al.

(2015) for the JDCEV model. Therefore, the novel NSBF representation permits the

construction of a fast and accurate algorithm for pricing DBKO options and opens its

application to other similar problems.2.2

We note that Carr and Linetsky (2006) are able to obtain closed-form solutions for

European-style plain-vanilla options, survival probabilities, credit default swap spreads,

and corporate bonds in the JDCEV model by exploring the powerful link between CEV

and Bessel processes. By adopting the hybrid credit-equity JDCEV architecture mod-

eling framework, Dias et al. (2015) are restricted to the volatility and default intensity

specifications that are implicit in the JDCEV model. By contrast, since we do not need

to be restricted to such specific modeling assumptions we are able to quickly and ac-

curately price DBKO options for a larger class of models. We illustrate our numerical

method on an extended jump to default constant elasticity of variance (hereafter, EJD-

CEV) model, which nests the JDCEV model as a special case.
2.2We recall that Davydov and Linetsky (2003) considered also interest rate knock-out options in the Cox et al.

(1985) term structure model, while Carr and Crosby (2010) studied foreign exchange double-no-touch options.
Even though our focus is on equity derivatives, our approach is also suitable for pricing interest rate knock-out
options and double-no-touch options, even in the absence of a closed-form solution for the transition density.
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In summary, our method can be considered as an alternative powerful computational

tool for pricing DBKO options. Since we are able to quickly construct the whole value

function and not just the price, we can easily observe the behavior of the option price

through time and different initial values. Moreover, the NSBF representation also

presents an easy way to calculate the derivatives of the value function and conse-

quently the ‘Greeks’ of the option, and thus it can be used for the design of hedging

strategies. Given its accuracy, efficiency, and easy implementation, the novel valuation

method can be used also for analyzing the empirical performance of models for barrier

option valuation under alternative underlying asset pricing dynamics, e.g. Jessen and

Poulsen (2013).

The remainder of the paper is structured as follows. Section 2.2 sets the general fi-

nancial framework and defines the boundary value problem. Section 2.3 provides the

main result of the paper (in Proposition 2.1): the representation of the solution to the

boundary value problem and the price for a DBKO option. Section 2.4 illustrates the

calculation of the so-called ‘Greeks’. Next sections are dedicated to the algorithm

implementation and numerical examples. First, we present, in section 2.5, some recur-

rence formulas which are more robust and efficient for computation of the coefficients

that appear in the direct representations of the value function and its derivatives pre-

sented in previous sections. Then, section 2.6 offers the conceptual algorithm for the

computation of the price of DBKO options. Section 2.7 presents numerical experiments

for the EJDCEV framework. For illustrative purposes, the analysis is separated into two

different horizons: medium (six months) and short (one day). The final section presents

the concluding remarks and the possible directions for further research.
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2.2 Modelling framework

This section presents the general financial model for our pricing method and describes

the boundary value problem associated to an option contract containing two barrier

(knock-out) provisions. We recall that the holder of such a DBKO option has the right

to receive, at the expiration date T , a payoff f (y) = (y −K)+ in the case of a call

option, or f (y) = (K − y)+ for the case of a put option, if the underlying asset price

(Y ) remains in the range (L,U). The real constants U > L > 0 are designated by the

upper and lower bounds (i.e., the knock-out trigger barrier levels), whereas K ∈ R :

L < K < U is the strike price.2.3

2.2.1 The general financial model setup

Hereafter, and during the trading interval [0, T ], for some fixed time T (> 0), uncertainty

is generated by a probability space (Ω,G,Q), where the equivalent martingale measure

Q associated to the numéraire “money market account” is taken as given. The price

dynamics of the underlying asset is assumed to be governed, under the risk-neutral

measure Q, by the time-homogeneous (or time invariant) diffusion

dYt = µ (Yt)Ytdt+ σ (Yt)YtdBt, (2.1)

with initial value Y0 = y0, and where the functions µ (y) and σ (y) are, respectively,

the (state dependent) instantaneous drift and instantaneous volatility (whose regularity

properties will be formally defined later in Assumption 2.1), whereas (Bt)t≥0 ∈ R is a

standard Wiener process defined under measure Q.
2.3To simplify the notation, it is assumed that the valuation date of each contract is today (i.e., the current time

t = 0). Moreover, in the case of a knock-out event it is assumed that there is no rebate. Nevertheless, the valuation
of rebates can be straightforwardly accomplished using the insights presented in Remark 2.3
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To explain the development of our pricing methodology we consider a European-style

DBKO option contract whose payoff at the expiry date T is a function of the single state

variable Y . Given the contractual clauses of such derivative security, the process is

considered on the interval [L,U ], where L and U are, respectively, the lower and upper

bounds of the DBKO option contract. The end-points L and U are set to be knock-

out boundaries, because if at any time between the initial date of the contract and its

expiration either the upper barrier or the lower barrier is hit, then the option contract

is canceled (i.e. it is knocked out). We are considering the case with no rebate for

simplicity. However, it is possible to incorporate a rebate value, as shown in Remark

2.3.

As in Davydov and Linetsky (2003), if any of these end-points is a regular boundary, we

adjoin a killing boundary condition at that end-point, sending the process to a cemetery

state {∆} at the first hitting time of the end-point. Consequently, the hitting time for our

problem (with two knock-out provisions) is defined by

τ{L,U} = inf {s ≥ t : Ys /∈ (L,U)} .

We also consider the possibility that the process may be killed by a sudden jump to

{∆}, i.e. the spot price is allowed to jump to zero from the interior of the interval. This

implies that the default event forces the option knock-out. There is no recovery value

(in the case of a DBKO put) upon default.

This is accomplished by imposing a killing time defined as

τh = inf

{
s ≥ 0 :

∫ s

0

h (Yu) du ≥ E
}
,

where h (y) ≥ 0 is the default intensity or the hazard rate, whereas E is an exponential
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random variable with unit mean, independent of Y and time. Therefore, the combined

stopping time of the process is denoted by

τ = min
{
τ{L,U}, τh

}
. (2.2)

Remark 2.1 The abuse of notation is in place; to simplify notation, the stopped process

set on the domain [L,U ]∪{∆} is denoted by the same letter Y as the original process.

This avoids bloating the paper with many technical details that are standard in the

literature—see, for instance, Rogers and Williams (1994, Section III.3.18), Borodin

and Salminen (2002, Section II.4), Øksendal (2003, Section 8.2) and Mendoza-Arriaga

et al. (2010). We notice that the defaultable asset price process is adapted not to

the filtration F = {Ft, t ≥ 0} generated by the predefault process, but rather to the

enlarged filtration G = {Gt : t ≥ 0}, obtained as Gt = Ft ∨ Dt, where {Dt, t ≥ 0} is a

default indicator process, with Dt = 11{t>τh}.

As usual, to ensure that the constructed (killed) process remains a martingale it is

necessary to set the drift of equation (2.1) as

µ (y) = r̄ (y)− q̄ (y) + h (y) , (2.3)

where r̄ (y) and q̄ (y) are the (time-homogeneous) continuously compounded interest

rate and dividend yield.

In summary, the main purpose of this paper is to develop an efficient and flexible pricing

methodology for computing risk-neutral expectations of the form

v (y, t) = Ey

[
e−

∫ T
t [r̄(Ys)+h(Ys)]dsf (YT ) 11{τ{L,U}>T}

]
. (2.4)
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This will be accomplished by applying the NSBF expansion to the associated Sturm-

Liouville problem.

2.2.2 The boundary value problem

Let us introduce the differential operator

A =
1

2
σ2 (y) y2∂yy + µ (y) y∂y − (r̄ (y) + h (y)). (2.5)

Then, the value function (2.4) is the solution of the following boundary value problem


Av (y, t) = −vt, (y, t) ∈ (L,U)× [0, T ) ,

v (y, T ) = f (y) , y ∈ (L,U) ,

v (L, t) = v (U, t) = 0, t ∈ [0, T ] .

(2.6)

The pricing of the DBKO option will be performed by solving problem (2.6). For conve-

nience, we rewrite the operator A in the following form

A =
1

w (y)

(
d

dy

(
p (y)

d

dy

)
− q (y)

)
,

where

p(y) = exp

(∫ y 2µ(s)

sσ2(s)
ds

)
, w(y) =

2p(y)

σ2(y)y2
, and q(y) = [r̄(y) + h(y)]w(y). (2.7)

At this point, we can set the needed conditions for the coefficients of the process Yt

through the problem (2.6). In this illustration paper we are looking only at the regular

case, so we will need the following assumptions:
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Assumption 2.1 The functions p, p′, q, w and w′ are real valued and continuous on

[L,U ]. Additionally, it is assumed that p′ and w′ are absolutely continuous and that

p > 0, σ > 0 and w > 0.

Assumption 2.2 The payoff function f is square integrable.

Application of Fourier’ separation of variables method to the partial differential equa-

tion in (2.6)—see, for example, Mikhailov (1978) and Pinchover and Rubinstein (2005)

for a general exposition of the method and Davydov and Linetsky (2003) for financial

applications—, leads to the eigenfunction expansion of the value function (2.4) as

v (y, t) =
∞∑
n=1

fnϕn (y) e−λn(T−t), (2.8)

where the pairs (λn, ϕn) are solutions of the Sturm-Liouville problem

 (p (y)ϕ′n (y))′ − q (y)ϕn (y) = −λnw (y)ϕn (y) y ∈ (L,U)

ϕn (U) = ϕn (L) = 0
. (2.9)

The functions ϕn form a complete orthogonal basis for the space L2
w ([L,U ]). The

coefficients fn are the Fourier coefficients of the function f relative to the basis {ϕn}n∈N

with scalar product

〈g1, g2〉 =

∫ U

L

g1 (s) g2 (s)w (s) ds. (2.10)

The Hilbert space L2
w ([L,U ]) with the above defined scalar product is denoted by Hw.

The function f can be explicitly decomposed as

f (y) =
∞∑
n=1

fnϕn (y) , (2.11)
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where fn are the Fourier coefficients of the payoff function f defined as

fn =
〈f, ϕn〉
〈ϕn, ϕn〉

.

We recall that Assumption 2.2 guarantees that the series converges to the function f

in L2
w norm. We note also that Assumption 2.1 ensures that problem (2.9) is a regular

Sturm-Liouville problem. The eigenvalues are real, positive and can be listed as λ1 <

λ2 < .. < λn < ..., with limn→∞ λn = +∞.2.4

Remark 2.2 We further notice that for the put and call barrier options under consid-

eration, problem (2.6) possesses non-consistent (discontinuous) boundary conditions.

For the barrier call option the value function is discontinuous at the point (U, T ), i.e.

v (U, T ) = 0 6= limy→U v (y, T ) = f (U) = U −K. A similar observation can be made for

the point (L, T ) in the barrier put case. Nevertheless, in both cases the value function

is still in the space Hw and can be represented by its Fourier series (2.11).

Remark 2.3 Consider the case of the call option with rebate R > 0. The upper bound-

ary condition for the problem (2.6) changes to

v (U, t) = R.

The boundary conditions (2.6) become non-homogeneous. For the direct application

of the presented method we have to first transform our value function. Let us define

the new function

ṽ (y, t) = v (y, t)− y − L
U − L

R,

2.4Decomposition (2.8) and other related topics, such as properties of the eigenfunctions, can be consulted in
Birkhoff and Rota (1989, Chapter 10) and Stakgold and Holst (2011, Chapter 7). The analysis of the spectral
decomposition directly applied to finance problems may be found in Linetsky (2004).
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which satisfies the following boundary problem


(i) Aṽ +A

(
y−L
U−LR

)
= −ṽt, y × t ∈ (L,U)× (0, T )

(ii) ṽ (L, t) = ṽ (U, t) = 0, t ∈ [0, T ]

(iii) ṽ (y, T ) = d (y) , y ∈ (L,U)

, (2.12)

with homogeneous boundary conditions. The details can be consulted in Pinchover

and Rubinstein (2005, Ch. 6.6). The interesting observation is that from a mathemati-

cal point of view the solution v (y, t) becomes smoother if R = U −K, i.e. the boundary

conditions become consistent.

2.3 An analytical representation through NSBF of the value

function

This section presents the pricing formula for the DBKO option using the NSBF repre-

sentation for the Sturm-Liouville problem (2.9) recently proposed by Kravchenko et al.

(2017b) for the one-dimensional Schrödinger equation—i.e. the case with w (y) = 1—

and then extended to a more general function w (y) in Kravchenko and Torba (2018).

In a nutshell, this powerful technique consists in the representation of the solutions of

the Sturm-Liouville problem (2.9) and their derivatives in terms of NSBF with explicit

formulas for the coefficients.

To extend this approach to our option pricing problem, let us first introduce the space

H1,0
w . This is the subspace of the functions u ∈ L2

w ([L,U ]× [0, T ]), that possesses

the first derivative ∂xu in the sense of distributions and ∂xu, u ∈ L2
w ([L,U ]× [0, T ])—

see, for example, Mikhailov (1978, Chapter III.2) for further details. Next proposition

provides our main theoretical result.
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Proposition 2.1 Under Assumptions 2.1 and 2.2, the value function (2.4) is the solu-

tion to problem (2.6) and can be represented as

v (y, t) =
∞∑
n=1

fn

[
sin (ωnl (y))

ρ (y)
+ 2

∞∑
m=0

(−1)m α2m+1 (y) j2m+1 (ωnl (y))

]
e−ω

2
n(T−t). (2.13)

The series converges in the norm of the space H1,0
w .2.5 Moreover the series converges

uniformly with respect to y ∈ [L,U ] and t ∈ [0, T0] ⊂ [0, T ).

Before providing a formal proof of Proposition 2.1 and for the sake of completeness, let

us first highlight some important details aiming to offer a better exposition. Consider

the following identities:

• The eigenfunctions, solutions to the Sturm-Liouville problem (2.9) are2.6

ϕn (y) =
sin (ωnl (y))

ρ (y)
+ 2

∞∑
m=0

(−1)m α2m+1 (y) j2m+1 (ωnl (y)) . (2.14)

• The spherical Bessel functions of the first kind, jν (y), are given by

jν (y) =

√
π

2y
Jν+ 1

2
(y) ,

where Jµ (y) are the Bessel functions of the first kind shown in Gradshteyn and

Ryzhik (2007, 8.461.1).

• The function l (y) is defined by2.7

l (y) :=

∫ y

L

√
w (s)

p (s)
ds =

√
2

∫ y

L

1

sσ (s)
ds, y ∈ [L,U ] .

2.5The price of the DBKO option is given by v (y0, 0) and the corresponding series converges in the norm
L2
w ([L,U ]).
2.6Note that these functions are not normalized.
2.7A detailed analysis of the role of this transformation in this decomposition and in the transmutation operators

theory can be found in Kravchenko et al. (2016).
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• The function ρ (y) is defined by

ρ (y) = [p (y)w (y)]1/4 =
√

2

(
p (y)

σ (y) y

)1/2

, y ∈ [L,U ] .

• The roots of the eigenvalues λn, denoted as ωn, are solutions of the equation

sin (ωl (U))

ρ (U)
+ 2

∞∑
m=0

(−1)m α2m+1 (U) j2m+1 (ωl (U)) = 0, ω ∈ R. (2.15)

• The functions αn (y), n ≥ 0 are defined as

αn (y) =
2n+ 1

2

(∑n
k=0

lk,nΦk (y)

(l (y))k
− 1

ρ (y)

)
, y ∈ (L,U ] . (2.16)

The efficient recursive method for computing αn will be presented in Section 2.5.

• lk,n is the coefficient of xk in the Legendre polynomial of order n—see, for in-

stance, Abramowitz and Stegun (1972, Chapter 8).

• Φk (y) are the formal powers that will be defined in Definition 2.1.

The formal powers Φk (y) are constructed on the basis of one non-vanishing solution g

of the equation2.8

(p (y) g′ (y))
′ − q (y) g (y) = 0, y ∈ [L,U ] , (2.17)

with an initial condition set as

g (L) =
1

ρ (L)
. (2.18)

Definition 2.1 Let p, q, w satisfy Assumption 2.1 and let g be a non-vanishing solution

of equation (2.17) that satisfies condition (2.18). Then, the associated formal powers
2.8For p, p′ and q continuous on [L,U ] such solution exists, see Kravchenko and Porter (2010, Remark 5).

20



are defined, for k = 0, 1, 2, ..., as

Φk (y) =

 g (y)Y (k) (y) , k odd

g (y) Ỹ (k) (y) , k even
,

where two families of the auxiliary functions are defined as

Y (0) (y) ≡ Ỹ (0) (y) ≡ 1,

Y (k) (y) =

 k
∫ y
L
Y (k−1) (s) 1

g2(s)p(s)
ds, k odd

k
∫ y
L
Y (k−1) (s) g2 (s) p (s) ds, k even

,

Ỹ (k) (y) =

 k
∫ y
L
Ỹ (k−1) (s) g2 (s) p (s) ds, k odd

k
∫ y
L
Ỹ (k−1) (s) 1

g2(s)p(s)
ds, k even

.

Remark 2.4 We note that these formal powers arise in the Spectral Parameter Power

Series (SPPS) representation for the solution of the Sturm-Liouville problem (2.9). The

SPPS method was introduced in Kravchenko (2008)—see also Kravchenko and Porter

(2010) and Khmelnytskaya et al. (2015).

Next we provide the formal proof of Proposition 2.1.

Proof. 2.1 (Proof of Proposition 2.1) The application of the Fourier separation of the

variables method to problem (2.6) leads to representation (2.8). It is a weak solution

of problem (2.6)—see, for example, Mikhailov (1978, Chapter VI.2, Theorem 3) and

Evans (1998, Chapter 7.1, Theorems 3 and 4). Application of Kravchenko and Torba

(2018, Theorem 3.1) gives representation (2.13) and guarantees the approximation

of the eigenfunctions uniformly in ω. Let us denote by fN (y) =
N∑
n=1

fnϕn (y) the ap-

proximation of the function f of the order N . For any ε > 0, there is a N such that
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‖f − fN‖L2
w
≤ εN , where εN → 0 when N → ∞. Applying Mikhailov (1978, Chapter

VI.2, Theorem 3), we have the following estimate

‖v − vN‖H1,0
w
≤ C ‖f − fN‖L2

w[L,U ] ≤ CεN .

The uniform convergence of the series is due to majorization by decreasing sequence

e−λnT0.

In summary, Proposition 2.1 provides a powerful computational technique with the po-

tential to be applied in a wide range of finance applications due to the fact that the

NSBF representation can be used as a simple and efficient numerical method. Fur-

thermore, the proposed novel representation is applicable to a large class of option

pricing models and it represents not only the price but also the entire value function.

This feature allows us to view the behavior of the option price under different initial

values for the asset (i.e., to construct the value surface as will be shown in Figure 2.1).

2.4 The analytical representation of ‘Greeks’

Since Proposition 2.1 presents an analytical representation of the value function, we

are then able to offer a similar representation for its derivatives, commonly known as

‘Greeks’ in the option pricing literature. This should be a useful computational tool

for both academics and practitioners, since numerical differentiation is known to be

problematic in this kind of problems.
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2.4.1 Delta

Let y0 ∈ (L,U). The Delta can be represented as

∆ =
∂v

∂y
(y0, 0) =

∞∑
n=1

fnϕ
′
n (y0) e−ω

2
nT , (2.19)

where

ϕ′n (y) =

√
w (y)

p (y)

(
1

ρ (y)
[G2 (y) sin (ωnl (y)) + ωn cos (ωnl (y))] +

+ 2
∞∑
m=0

(−1)m β2m+1 (y) j2m+1 (ωnl (y))

)
−

− ρ′ (y)

ρ (y)

(
sin (ωnl (y))

ρ (y)
+ 2

∞∑
m=0

(−1)m α2m+1 (y) j2m+1 (ωnl (y))

)
,

the functions G2 (y) and βm (y) are presented in the next section. The expressions for

the ϕ′n are adapted from Kravchenko and Torba (2018, Section 5). The representation

(2.19) is valid if the function ∂v
∂y

is continuous at (y0, 0). The conditions for this can be

consulted at Ladyzhenskaya et al. (1988, Theorem 12.1).

2.4.2 Vega

For the calculation of the Vega, we assume that the instantaneous volatility σ is differ-

entiable and σ′ (y0) 6= 0. Then by the application of the chain rule and the derivative of

the inverse function theorem, we have

ν =
∂v

∂σ
(σ (y0) , 0) =

∂v

∂y
(y0, 0)

1

σ′ (y0)
=

∆

σ′ (y0)
. (2.20)

For the constant σ we cannot apply this formula.2.9

2.9In particular, see Shaw (1998, Section 12.2) for the GBM model.
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2.4.3 Theta

The direct differentiation with respect to t of (2.13) provides us with a formula for the

Theta

θ =
∂v

∂t
(y0, 0) =

∞∑
n=1

fnλnϕn (y0) e−λnT . (2.21)

As in the case of the Delta, it is necessary to assume the continuity of ∂v
∂t

at (y0, 0).

2.5 Recurrence formulas for the coefficients αn (y) and βn (y)

For the (efficient and robust) computation of the coefficient functions αn (y) and βn (y) it

is convenient to use recurrence formulas borrowed from Kravchenko and Torba (2018).

These formulas increase the robustness of the calculations by solving the numerical

issue in (2.16) related to the fast growth of the Legendre coefficients.

We first introduce

An (y) = ln (y)αn (y) and Bn (y) = ln (y) βn (y) . (2.22)

The following formulas hold for n = 2, 3, ...

An (y) =
2n+ 1

2n− 3

(
l2 (y)An−2 (y) + (2n− 1) g (y) θ̃n (y)

)

and

Bn(y) =
2n+ 1

2n− 3

{
l2(y)Bn−2(y) + 2(2n− 1)

(√
p(y)

w(y)
(g′(y)ρ(y) + g(y)ρ′(y))

θ̃n(y)

ρ(y)

+
η̃n(y)

ρ2(y)g(y)

)
− (2n− 1)l(y)An−2(y)

}
,

24



where

θ̃n (y) =

∫ y

A

(
η̃n (x)

ρ2 (x) g2 (x)
− l (x)An−2 (x)

g (x)

)√
w (x)

p (x)
dx

and

η̃n(y) =

∫ y

A

(
l(x)(g′(x)ρ(x) + g(x)ρ′(x)) + (n− 1)ρ(x)g(x)

√
w(x)

p(x)

)
ρ(x)An−2(x)dx.

The initial values A0, A1, B0 and B1 can be calculated from

α0 (y) =
1

2

(
g (y)− 1

ρ (y)

)
or A0 (y) = α0 (y) ,

α1 (y) =
3

2

(
Φ1 (y)

l (y)
− 1

ρ (y)

)
or A1 (y) =

3

2

(
Φ1 (y)− 1

ρ (y) l (y)

)
,

and

β0 (y) =

√
p (y)

w (y)

(
α′0 (y) +

ρ′ (y)

ρ (y)
α0 (y)

)
− G1 (y)

2ρ (y)
,

β1 (y) =
α1 (y)

l (y)
+

√
p (y)

w (y)

(
α′1 (y) +

ρ′ (y)

ρ (y)
α1 (y)

)
− 3G2 (y)

2ρ (y)
,

with

α′0 (y) =
1

2

(
g′(y) +

ρ′ (y)

ρ2 (y)

)
,

α′1 (y) =
3

2


(
g′ (y)Y (1) (y) + 1

g(y)p(y)

)
l (y)− g (y)Y (1) (y)

√
w(y)
p(y)

l2 (y)
+
ρ′ (y)

ρ2 (y)

 ,

and

G1 (y) = h̃+G2 (y) , (2.23)
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G2 ((y) =
1

2

∫ y

L

1

(pw)1/4

(
q

(pw)1/4
−
[
p
{

(pw)−1/4
}′]′)

(s) ds

=
ρρ′

2w

∣∣∣∣y
L

+
1

2

∫ y

L

[
q

ρ2
+

(ρ′)2

w

]
(s) ds, (2.24)

where

h̃ =

√
ρ (L)

w (L)

(
g′ (L)

g (L)
+
ρ′ (L)

ρ (L)

)
. (2.25)

There is a useful practical test for the verification of the coefficients αn and βn—its

details may be consulted in Kravchenko and Torba (2018, Equations 7.1-7.3)—, that is

∞∑
m=0

αm (y) =
(G1 (y) +G2 (y)) l (y)

2ρ (y)
(2.26)

∞∑
m=0

(−1)m αm (y) =
h̃l (y)

2ρ (y)
(2.27)

and

∞∑
m=0

βm(y) = l(y)

[
q(y)

4ρ(y)w(y)
− 1

4w(y)

[
p(y)

(
1

ρ(y)

)′]′
+
h̃G2(y) +G2

2(y)

2ρ(y)

]
,

(2.28)

∞∑
m=0

(−1)mβm(y) = l(y)

 1

4ρ(y)

 q(L)

w(L)
− ρ(L)

w(L)

[
p(y)

(
1

ρ(y)

)′]′ ∣∣∣∣∣
y=L

+
h̃G2 (y)

2ρ (y)

 .
(2.29)

The relations (2.26) - (2.29) can also be used as an indicator for the optimal choice

of the number K of coefficients in the truncated series (2.13) and (2.14) to include in

computations, monitoring the differences between the right sides of equations (2.26) -

(2.29) and the partial sums of these.

Remark 2.5 When computing the coefficients αn (y) and βn (y) it is important to prop-
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erly perform the division by l (y)n. Here we present a simple scheme that proved to

be useful—the detail and the proofs can be consulted in Kravchenko and Torba (2018,

Section 7). Let us first note that the functions αn are increasing functions in the neigh-

borhood of L. Then, let {yi}1≤i≤Nε be the ordered set of Nε points of some neighbor-

hood of L, [L,L+ ε], with y1 = L < y2 < ... < yNε = L+ ε. For each coefficient function

αn consider2.10

ỹ = argmin
y∈{yi}

α (y) .

Let also k0 be the index of ỹ (i.e. yk0 = ỹ). Hence, we can set αn (y) = 0 for all

n < k0. They are larger only due to the numerical error. A similar construction can be

performed for the coefficients βn (y).

2.6 Implementation of the pricing algorithm

For the sake of completeness and to better describe important details of our pricing

methodology, let us now provide the conceptual steps for implementing our algorithm:

1. Compute the coefficients p, q and w of the associated Sturm-Liouville problem

using (2.7).

2. Create or choose an indefinite integration scheme. In this paper, we have used

the Newton-Cotes six point integration rule—see Kravchenko et al. (2017b) for

discussions on the use of other possible methods.

3. Construct or find any non-vanishing solution g to equation (2.17) that satisfies

(2.18). In our implementation, we have used the SPPS method presented in
2.10For a function f : X → Y , the argmin over a subset S of X is defined as argmin

x∈S⊆X
f (x) :=

{x : x ∈ S ∧ ∀y ∈ S : f (y) ≥ f (x)}.
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Kravchenko and Porter (2010). For example, if q (y) ≡ 0 (as in the case of the

standard CEV model), we can choose g (y) = 1
ρ(L)

as a particular solution.

4. Construct the formal power Φ(1) using Definition 2.1, compute the constant h̃ and

the functions G1 (y) and G2 (y) using formulas (2.25), (2.23) and (2.24), respec-

tively.

5. Compute recursively the coefficients Am (y) and Bm (y) using the representation

highlighted in Section 2.5.

6. Compute coefficients αm (y) and βm (y) using equations (2.22) and verify them

using relations (2.26) - (2.29) and Remark 2.5. We notice that this procedure can

incorporate a test for estimating an optimalM (truncation parameter for the series

(2.14) and for the second sum in the series (2.13)) to be used.

7. Find the eigenvalues λn = ω2
n from equation (2.15). Note that the values of

the spherical Bessel functions j2m+1 for varying indices m = 0, 1, . . . ,M at the

same point x can be computed efficiently using backward-recursive formula, see

Abramowitz and Stegun (1972, Equation 10.1.19)

jm (x) =
2 (m+ 1)

x
jm+1 (x)− jm+2 (x) .

8. Construct the eigenfunctions of the problem (2.9) given by (2.14).

9. Decompose function f into the Fourier series (2.11) using the eigenfunctions ϕn.

10. Construct the function v through a truncated expression (2.8). By N we denote

the number of terms in the truncated series.

11. Calculate the Greeks via expressions (2.19)-(2.21).
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Remark 2.6 Notice that the proposed algorithm can be significantly simplified if we are

interested only in the price of the option v (y0, 0). If this is the case, then in steps 4, 5

and 6 we only need terms relative to An and αn (y). Moreover, after calculating fn we

do not need to keep the eigenfunctions, but only values at the point y0. Further, at step

10, we construct only v (y0, t) and step 11 is not necessary.

2.7 Computational experiments and particular examples

In this section we apply the algorithm described in the previous section to the EJD-

CEV model, whose details will be described next. For illustrative purposes, we have

separated the examples in two different time horizons, the medium (six months) and

the short (one day). This particular choice will highlight the eigendata needed for the

accurate computations and the sensibility of the model to the chosen parameters.

We note that for the regular Sturm-Liouville problems that we are considering in this

paper, the asymptotics for the eigenvalue growth is of the order of n2, e.g. Polianin

and Zaitsev (1970, Section 2.13). In the case of the long horizon the exponential term

e−λn(T−t), with T − t of order 1
2
, decays rapidly and the representation (2.13) converges

quickly. Hence, few eigenvalues and eigenfunctions are needed to secure a good

approximation. For the short horizon case, with T−t of order 1
360

, that is analyzed in the

second set of numerical experiments, we need more eigenvalues to have an accurate

approximation for the option value. We further note that the NSBF method calculates

the required eigendata with the same accuracy. This NSBF’s important property, of

not loosing accuracy for the highest order eigenvalues, makes it an exciting tool for

applications to problems requiring large sets of eigenvalues.

Another computational advantage of our method is that there is no need in any two-
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dimensional grid for computation. The formulas for the steps 1-9 are one-dimensional.

In order to make the integration errors negligible and to concentrate mainly on the nu-

merical performance we have used an overwhelming number of mesh points (10000)

on the interval [L,U ] to represent all the functions involved, moreover, even 3000

mesh points produced close results. Once all the coefficients are obtained, the com-

putation of the value function and Delta may be performed only for the arguments

(y, t) ∈ [L,U ]× [0, T ] required by application. E.g., option price can be obtained as the

value of v at one point (y0, 0); the value surface requires calculation of the function v

on a mesh of about 101 × 101 points, etc. Even though the main purpose here is to

present the ability of the algorithm to be used in a wide variety of modeling contexts

and not the optimization speed, the very small computational burden that is required is

remarkable.

All the calculations where done in Matlab R2015a.

2.7.1 The EJDCEV model

The volatility specification under the time-homogeneous version of the JDCEV model

is given by

σ (y) = δyβ, (2.30)

with δ > 0 and β ∈ R. The drift is given by expression (2.3), with r̄ > 0, q̄ ≥ 0 and

hazard rate

h (y) := h1 (y) = b+ cσ2 (y) ,

with b > 0 and c > 0. The properties of the constructed diffusion with different param-

eterizations can be consulted in Carr and Linetsky (2006) and Mendoza-Arriaga et al.

(2010). The nice feature of the JDCEV model is its analytical tractability, due to the

30



special form of the assumed hazard rate h1 (y). The advantage of the NSBF represen-

tation is that it allows us to consider different default intensity specifications without any

additional effort. Following Campbell and Taksler (2003), we have also considered a

default intensity specification guaranteeing a positive relationship between the default

probability and volatility. Hence, in our variant of the JDCEV model, that we name as

the EJDCEV, the default intensity is assumed to be dependent of the constant param-

eter γ ≥ 0 as

h (y) := halt1 (y) = b+ cσγ (y) . (2.31)

It is important to point out that we are not restricted to functions of the form halt1 ; we

can choose any positive continuously differentiable function. This feature allows the

possibility of obtaining a wide alternative of default rates when calibrating the model to

market prices.

Medium horizon (6 months)

For this set-up, we adopt the parameter configuration considered in Dias et al. (2015,

Table 2, Panel C), that is y0 = 100, L = 90, U = 120, T = 0.5, r̄ = 0.1, q̄ = 0, b = 0.02,

c = 0.5, and σ0 = 0.25. As usual, the scale parameter δ is calculated, for each β

value2.11, through the relation

σ0 = δyβ0 , (2.32)

while keeping the initial instantaneous volatility σ0 = 0.25.

Table 2.1 shows the prices of European-style DBKO call and put options and the

corresponding Greeks under the EJDCEV model for different moneyness levels with

K ∈ {95, 100, 105}, β ∈ {0.5, 0.0,−1.0,−2.0} and γ ∈ {0, 1, 2}. We further note that

the six cases with γ = 2 and β ∈ {−1.0,−2.0} originate the values of DBKO put op-

2.11Notice that our β is equivalent to the β considered in Dias et al. (2015).
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tions shown in Dias et al. (2015, Table 2, Panel C). A direct comparison reveals that

the results are exactly the same (rounded to four decimal places of accuracy), which

gives further evidence on the robustness of our algorithm. More importantly, this also

allows us to test our methodology under a larger set of volatility and default intensity

specifications that until now were not possible to be tackled in the literature.
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Table 2.1: Prices and ‘Greeks’ of European-style DBKO options.

Call Option: f (y) = (y −K)+ Put Option: f (y) = (K − y)+

Parameters Price Greeks Price Greeks
K β γ v (100, 0) ∆ ν θ v (100, 0) ∆ ν θ

95 0.5 0 0.7314 -0.0332 -26.5669 4.9860 0.0029 -0.0001 -0.1101 0.0201
95 0.5 1 1.5057 0.0179 14.3442 6.5544 0.0168 0.0002 0.1364 0.0744
95 0.5 2 1.5572 0.0417 33.3312 6.3003 0.0222 0.0006 0.4438 0.0912
95 0.0 0 0.7163 -0.0319 5.0712 0.0023 -0.0001 0.0166
95 0.0 1 1.6417 0.0251 7.0686 0.0148 0.0002 0.0652
95 0.0 2 1.7117 0.0518 6.7849 0.0198 0.0006 0.0802
95 -1.0 0 0.6905 -0.0300 12.0097 5.2996 0.0014 -0.0001 0.0263 0.0111
95 -1.0 1 1.9733 0.0432 -17.2851 8.2401 0.0114 0.0002 -0.0865 0.0496
95 -1.0 2 2.0860 0.0771 -30.8585 7.8538 0.0157 0.0005 -0.2135 0.0615
95 -2.0 0 0.6421 -0.0280 5.5973 5.3842 0.0008 0.0000 0.0078 0.0071
95 -2.0 1 2.3959 0.0675 -13.5059 9.5993 0.0087 0.0002 -0.0419 0.0375
95 -2.0 2 2.5570 0.1107 -22.1395 9.0265 0.0123 0.0005 -0.0964 0.0469

100 0.5 0 0.4568 -0.0207 -16.5434 3.1114 0.0270 -0.0013 -1.0175 0.1860
100 0.5 1 0.8695 0.0105 8.4109 3.7784 0.1307 0.0014 1.0802 0.5772
100 0.5 2 0.8778 0.0237 18.9282 3.5444 0.1655 0.0042 3.3387 0.6801
100 0.0 0 0.4561 -0.0202 3.2256 0.0218 -0.0010 0.1563
100 0.0 1 0.9700 0.0150 4.1676 0.1181 0.0016 0.5189
100 0.0 2 0.9881 0.0301 3.9064 0.1517 0.0043 0.6143
100 -1.0 0 0.4571 -0.0198 7.9187 3.5041 0.0137 -0.0006 0.2535 0.1071
100 -1.0 1 1.2159 0.0269 -10.7784 5.0594 0.0962 0.0018 -0.7382 0.4167
100 -1.0 2 1.2574 0.0469 -18.7457 4.7137 0.1272 0.0044 -1.7458 0.4979
100 -2.0 0 0.4385 -0.0190 3.8045 3.6716 0.0082 -0.0004 0.0781 0.0709
100 -2.0 1 1.5313 0.0437 -8.7342 6.1011 0.0779 0.0019 -0.3774 0.3328
100 -2.0 2 1.6006 0.0699 -13.9770 5.6109 0.1059 0.0042 -0.8350 0.4012
105 0.5 0 0.2314 -0.0104 -8.3529 1.5750 0.1004 -0.0047 -3.7580 0.6899
105 0.5 1 0.4019 0.0049 3.9499 1.7435 0.4133 0.0044 3.4963 1.8212
105 0.5 2 0.3948 0.0107 8.5777 1.5909 0.5054 0.0129 10.2860 2.0713
105 0.0 0 0.2373 -0.0105 1.6764 0.0828 -0.0038 0.5924
105 0.0 1 0.4611 0.0073 1.9763 0.3842 0.0053 1.6823
105 0.0 2 0.4570 0.0140 1.8016 0.4762 0.0137 1.9220
105 -1.0 0 0.2522 -0.0109 4.3457 1.9300 0.0544 -0.0025 0.9987 0.4244
105 -1.0 1 0.6092 0.0137 -5.4756 2.5241 0.3317 0.0065 -2.5939 1.4293
105 -1.0 2 0.6129 0.0230 -9.2182 2.2859 0.4227 0.0147 -5.8633 1.6465
105 -2.0 0 0.2536 -0.0109 2.1851 2.1184 0.0342 -0.0016 0.3217 0.2940
105 -2.0 1 0.8049 0.0233 -4.6594 3.1840 0.2853 0.0070 -1.4099 1.2092
105 -2.0 2 0.8184 0.0361 -7.2223 2.8436 0.3736 0.0149 -2.9815 1.4039

This table shows the prices of European-style DBKO call and put options and the corresponding Greeks

under the EJDCEV model, with y0 = 100, K ∈ {95, 100, 105}, L = 90, U = 120, T = 0.5, r̄ = 0.1, q̄ = 0,

b = 0.02, c = 0.5, γ ∈ {0, 1, 2}, β ∈ {0.5, 0.0,−1.0,−2.0}, and σ0 = 0.25.
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We notice that the determination of the spectral parameters in step 7 was performed by

interpolation with a grid of equally distributed 100 points on the interval (0, 15) for the

practical purposes and the grid of 1000 points on the interval (0, 50) for the construction

of the illustration of Table 2.2 and the following graphs. The practical reasoning is to

cut out the eigenvalues λn > 152 due to the term eλn(T−t) in our formulas, this indirectly

sets the parameter N somewhere around 6, as can be observed in Table 2.2. Figure

2.1 illustrates the value function under the JDCEV model using the aforementioned pa-

rameters coupled with K = 100, β = −1 and γ = 2. Using the same set of parameters,

Figure 2.2 shows the detail of the approximation of the function f (y) = (y −K)+ at the

boundary for t = T . It is possible to observe a sharp decline at the boundary U , this is

the illustration of the Remark 2.2.

Table 2.2: Eigenvalues.

Parameters
n β = 1, γ = 1 β = 1, γ = 2 β = −2, γ = 1 β = −2, γ = 2

1 4.4047 4.1314 4.0997 3.6155
6 144.3068 144.0338 112.8959 112.4098

11 484.0679 483.7949 377.105 376.6189
16 1023.6885 1023.4155 796.731 796.2449
21 1763.1687 1762.8956 1371.7741 1371.288
26 2702.5083 2702.2352 2102.2343 2101.7481
31 3841.7073 3841.4343 2988.1115 2987.6253
36 5180.7659 5180.4929 4029.4057 4028.9196
41 6719.684 6719.411 5226.117 5225.6309

This table shows the eigenvalues for different γ and β parameters, with y0 = 100, K = 100, L = 90,

U = 120, T = 0.5, r̄ = 0.1, q̄ = 0, b = 0.02, c = 0.5, and σ0 = 0.25.

Figure 2.3 shows prices of European-style DBKO call options for different initial asset

values S0. The left-hand side plot sets γ = 1 for different β values. The right-hand side

plot sets β = −1 for different γ values. We note that with the chosen parametrization

for this model, the term eλnT decays very rapidly and thus we only need to compute few

eigenvalues to obtain accurate prices.
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Figure 2.1: This figure illustrates the value function, the payoff and the price of a European-style DBKO
call option, with y0 = 100, K = 100, L = 90, U = 120, T = 0.5, r̄ = 0.1, q̄ = 0, b = 0.02, c = 0.5,
γ = 2, β = −1, and σ0 = 0.25.
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Figure 2.2: This figure illustrates the payoff function approximation by an eigenfunction expansion for
a European-style DBKO call option, with N = 27 eigenfunctions and y0 = 100, K = 100, L = 90,
U = 120, T = 0.5, r̄ = 0.1, q̄ = 0, b = 0.02, c = 0.5, γ = 2, β = −1, and σ0 = 0.25.
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Figure 2.3: This figure prices European-style DBKO call options for different initial asset values y0.
The left-hand side plot sets γ = 1 for different β values. The right-hand side plot sets β = −1 for
different γ values. The remaining parameters are: K = 100, L = 90, U = 120, T = 0.5, r̄ = 0.1,
q̄ = 0, b = 0.02, c = 0.5, and σ0 = 0.25.

Short horizon (1 day)

In the case of the short horizon, the time is of the order 1
360

and, hence, the term

e−λn(T−t) decays much slower as n grows. For this case, in step 7, we have used

1000 points for the interval (0, 100). Some values are presented in Table 2.2. In order

to illustrate the convergence and the necessity of calculating accurately a significant

number of eigenvalues, we introduce the contribution of the partial sum from equation

(2.8), defined as

Contrib (n1, n2) =
n2∑

n=n1

fnϕne
−λn(T−t). (2.33)

We observe, in Table 2.3, that the value of the parameter β under the short horizon

does not have much influence on the price. However, the γ parameter associated with

default intensity is relevant. It is important to note that although the prices of the op-

tions for different β values differ slightly, the corresponding Sturm-Liouville problems

are very different. This can be observed in Tables 2.2 and 2.4. The observation of the

Table 2.4 induces the choice of N around 45.
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Table 2.3: Prices for one-day to maturity European-style DBKO calls.

γ = 3 γ = 2 γ = 1 γ = 0

β = −2 0.54297 0.54622 0.55950 0.61518
β = 1 0.54300 0.54634 0.55976 0.61516

This table shows prices for one-day to maturity European-style DBKO call options for different γ and β

parameters, with y0 = 100, K = 100, L = 90, U = 120, T = 1/360, r̄ = 0.1, q̄ = 0, b = 0.02, c = 0.5, and

σ0 = 0.25.

Table 2.4: Contribution values for one-day to maturity European-style DBKO calls.

n β = −2, γ = 2 β = −2, γ = 1 β = 1, γ = 2 β = 1, γ = 1

1-5 -0.94494 -1.60020 1.54180 1.77004
6-10 1.81670 2.60534 -1.15441 -1.41771
10-15 -0.23014 -0.31208 0.19023 0.24668
16-20 -0.10622 -0.14909 -0.03420 -0.04298
21-25 0.00934 0.01343 0.00311 0.00400
26-30 0.00157 0.00224 -0.00021 -0.00026
31-35 -0.00010 -0.00014 0.00001 0.00001
36-40 -0.00001 -0.00001 0.00000 0.00000
41-45 0.00000 0.00000 0.00000 0.00000
>45 0.00000 0.00000 0.00000 0.00000
Price 0.54622 0.55950 0.54634 0.55976

This table shows the value of the contribution defined in equation (2.33) for one-day to maturity European-

style DBKO call options for different γ and β parameters, with y0 = 100, K = 100, L = 90, U = 120,

T = 1/360, r̄ = 0.1, q̄ = 0, b = 0.02, c = 0.5, and σ0 = 0.25.

2.8 Concluding remarks and future research

This paper provides a new methodology for pricing (and hedging) European-style DBKO

options via the application of the NSBF decomposition of the Sturm-Liouville equa-
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tion associated to the corresponding boundary value problem. The illustration of the

method was done through the EJDCEV model. The modeling techniques applied in

this paper open several avenues for future research. For instance, it should be possi-

ble to apply the NSBF decomposition and similar constructions to other singular prob-

lems that naturally appear in many financial applications, e.g. plain-vanilla options

(unbounded domains), default cases (singularities in the coefficients) and others. It

would also be interesting to apply the method to calibrate a parametric curve of param-

eters to real market data. Finally, it has also the potential to be applied to stopping time

problems and related subjects.
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3. Solution of parabolic free boundary problems

using transmuted heat polynomials

Abstract: A numerical method for free boundary problems for the equation

uxx − q(x)u = ut (3.1)

is proposed. The method is based on recent results from transmutation operators

theory allowing one to construct efficiently a complete system of solutions for equation

(3.1) generalizing the system of heat polynomials. The corresponding implementation

algorithm is presented.

3.1 Introduction

Free boundary problems (FBPs) for parabolic equations are of considerable interest in

physics (e.g., the Stefan problem) and in financial mathematics (e.g., the problem of

pricing of an American option). One of the relatively simple and practical methods pro-

posed for solving FBPs involving the heat equation is the heat polynomials method (see

Colton (1976), Reemtsen and Lozano (1982), Colton and Reemtsen (1984), Reemt-

sen and Kirsch (1984), Sarsengeldin et al. (2014), Kharin et al. (2016)) based on the

39



fact that the system of the heat polynomials represents a complete family of solutions

of the heat equation. In the book Colton (1976) D. Colton proposed to extend this

method onto parabolic equations with variable coefficients by constructing an appro-

priate transmutation operator and obtaining with its aid the corresponding transmuted

heat polynomials. However, the construction of the transmutation operator is a diffi-

cult problem itself. In the present work we show that the transmuted heat polynomials

required for Colton’s approach can be constructed without knowledge of the transmu-

tation operator by a simple and robust recursive integration procedure. To this aim a

recent result from Campos et al. (2012) concerning a mapping property of the trans-

mutation operators is used.

This makes possible to extend the heat polynomials method onto equations of the form

uxx − q(x)u = ut. (3.2)

We mention that linear parabolic equations of a more general form with coefficients de-

pending on one variable reduce to (3.2) (see, e.g., (Colton, 1976, Chap. 2) or Miyazawa

(1989)).

Thus, we propose a numerical method for approximate solution of a class of FBPs

involving (3.2). This method of transmuted heat polynomials will be designated by

THP. The main aim of this paper is to explain it in detail and to propose a simple to

implement algorithm for its application.

The subject of FBPs appears in many different fields and applications, as such, presents

a large variety of formulations and still open questions. We will not be focusing on the

existence and uniqueness of the solution in this paper assuming that it exists in the

classical sense.
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Figure 3.1: Illustration of Problem 3.1 statement

The paper is structured as follows. In Section 3.2 we state the FBP. In Section 3.3

we define transmutation operators and present some of their properties motivating the

development of the THP method. In Section 3.4 we construct the conceptual algorithm

for the implementation of the THP method for solving FBPs. In Section 3.5 we consider

an example with an exact solution, with its aid we illustrate the performance of the

method. In Section 3.6 we discuss the possibilities of generalization of our construction

and its application to more general FBPs.

3.2 Statement of the problem

Consider the differential expression

A =
∂2

∂x2
− q(x)

with q ∈ C[0, L], q : [0, L]→ C.

Every s ∈ C1[0, T ], such that 0 < s(x) ≤ L for all x ∈ [0, T ) and s(0) = l, defines a

domain

D(s) =
{

(x, t) ∈ R2 : 0 < x < s(t), 0 < t < T
}
, (3.3)
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see Figure 3.1. Consider the first order linear differential operators G1 = γ11(x) +

γ12(x) ∂
∂x

and G2 = γ21(t) + γ22(t) ∂
∂x

, where γij are some given continuous functions.

Problem 3.1 Find functions (u, s) such that

(i) s ∈ C1[0, T ] and such that 0 < s(x) ≤ L for all x ∈ [0, T ) and s(0) = l,

(ii) u ∈ C2,1
(
D(s)

)
,

(iii) the following equation is satisfied on D(s)

Au(x, t) = ut(x, t), (x, t) ∈ D(s), (3.4)

(iv) and the following boundary conditions are satisfied

[G1u] (x, 0) = g1(x), x ∈ (0, l), l ≤ L, (3.5)

[G2u] (0, t) = g2(t), t ∈ (0, T ), (3.6)

u
(
s(t), t

)
= g3(t), t ∈ (0, T ), (3.7)

ux
(
s(t), t

)
= −ṡ(t), t ∈ (0, T ), (3.8)

here the dot over the function s means the derivative with respect to the variable

t. The last condition is usually known as the equation of heat balance or as the

Stefan condition.

This problem is broadly studied in literature (see, e.g., Friedman (1964), Rubinshtein

(1971), Crank (1984), Meirmanov (1992), Fasano and Primicerio (1979) and Tarzia

(2000) for additional bibliography). In particular, the classical one dimensional one

phase Stefan problem is a special case of Problem 3.1. Since the subject of this paper
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is the approximate numerical method for solution of Problem 3.1, we make the following

assumption.

Assumption 3.3 There exists a unique solution to Problem 3.1.

A relevant example of an existence and uniqueness result is given in (Fasano and

Primicerio, 1979, Theorem 1), see Remark 3.7 below.

3.3 Transmuted heat polynomials

3.3.1 Heat polynomials

The heat polynomials are defined for n ∈ N0 as (see, e.g., Rosenbloom and Widder

(1959) and Widder (1962))

hn(x, t) =

[n/2]∑
k=0

cnkx
n−2ktk, where cnk =

n!

(n− 2k)!k!

and [·] denotes the entire part of the number. The first five heat polynomials are

h0(x, t) = 1, h1(x, t) = x, h2(x, t) = x2 + 2t,

h3(x, t) = x3 + 6xt, h4(x, t) = x4 + 12x2t+ 12t2.

The set of the heat polynomials {hn}n∈N0
represents a complete system of solutions for

the heat equation

uxx = ut (3.9)

on any domain D(s) defined by (3.3) (see Colton and Watzlawek (1977)).
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3.3.2 Formal powers and the transmutation operator

Let f be a nonvanishing (in general, complex valued) solution of the equation

(
d2

dx2
− q(x)

)
f(x) = 0, x ∈ (0, L), (3.10)

such that

f(0) = 1. (3.11)

The existence of such solution3.1 for any complex valued q ∈ C[0, L] was proved in

Kravchenko and Porter (2010) (see also Camporesi and Di Scala (2011)).

Consider two sequences of recursive integrals (see Kravchenko (2009), Kravchenko

et al. (2016), Kravchenko and Porter (2010))

X(0)(x) ≡ 1, X(n)(x) = n

∫ x

0

X(n−1)(s)
(
f 2(s)

)(−1)n
ds, n = 1, 2, . . .

and

X̃(0) ≡ 1, X̃(n)(x) = n

∫ x

0

X̃(n−1)(s)
(
f 2(s)

)(−1)n−1

ds, n = 1, 2, . . . .

Definition 3.2 The family of functions {ϕn}∞n=0 constructed according to the rule

ϕn(x) =


f(x)X(n)(x), n odd,

f(x)X̃(n)(x), n even,
(3.12)

is called the system of formal powers associated with f .
3.1In fact the only reason for the requirement of the absence of zeros of the function f is to make sure that the

auxiliary functions (3.12) be well defined. As was shown in Kravchenko and Torba (2014) this can be done even
without such requirement, but corresponding formulas are somewhat more complicated.
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The formal powers arise in the spectral parameter power series (SPPS) representation

for solutions of the Sturm-Liouville equation, see Kravchenko (2008), Kravchenko and

Porter (2010), Khmelnytskaya et al. (2015), Kravchenko et al. (2016).

The following result from Marchenko (1952) (see also Kravchenko et al. (2017b) and

Kravchenko and Torba (2015) for additional details) and from Campos et al. (2012)

guarantees the existence of a transmutation operator associated with f and shows its

connection with the system of formal powers.

Theorem 3.1 Let q ∈ C[0, L]. Then there exists a unique complex valued function

K(x, y) ∈ C1
(
[0, L]× [−L,L]

)
such that the Volterra integral operator

Tu(x) = u(x) +

∫ x

−x
K(x, y)u(y) dy

defined on C[0, L] satisfies the equality

AT[u] = T

[
d2u

dx2

]

for any u ∈ C2[0, L] and

T [1] = f.

Note that if v = Tu then v(0) = u(0) and v′(0) = u′(0) + f ′(0)u(0).

Theorem 3.2 (Campos et al. (2012))

T [xn] = ϕn(x) for any n ∈ N0.
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3.3.3 Construction of the transmuted heat polynomials

Denote Hn = T [hn]. Thus, Hn(x, t) = hn(x, t) +
∫ x
−xK(x, y)hn(y, t) dy. The functions

Hn are called the transmuted heat polynomials Kravchenko et al. (2017c).

We have
(
A− ∂

∂t

)
Hn = AThn − ∂

∂t
Thn = T

(
∂2

∂x2
− ∂

∂t

)
hn = 0 and hence every Hn is

a solution of the equation

Au = ut. (3.13)

The set {Hn}n∈N0
is a complete system of solutions of (3.13) in the following sense.

Proposition 3.2 Let u be a classical solution of (3.13) in D(s), continuous in the clo-

sure D̄(s). Then for any compact set Dc ⊂ D(s) and any given ε > 0 there exist N and

constants a0, . . . , aN such that

max
(x,t)∈Dc

∣∣∣∣∣u(x, t)−
N∑
n=0

anHn(x, t)

∣∣∣∣∣ < ε.

Moreover, if s(t) can be extended to a function analytic in the disk {t ∈ C : |t| ≤ T}, the

uniform approximation property is valid on the whole set D̄.

Proof. 3.2 Suppose first that q ∈ C1[0, L]. Note that any compact set Dc can be cov-

ered by a subset Da ⊂ D̄(s) of the form Da = {(x, t) ∈ R2 : 0 ≤ x ≤ x1(t) ≤ s(t), 0 ≤

t ≤ T} with analytic function x1(t). For the set Da the proof is completely similar to that

of (Colton, 1976, Theorem 2.3.3) with the only change that the transmutation operator

T and its inverse are used. For the general case q ∈ C[0, L] one approximates q by a

C1 function.
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Theorem 3.3 The transmuted heat polynomials admit the following form

Hn(x, t) =

[n/2]∑
k=0

cnkϕn−2k(x)tk.

Proof. 3.3 This equality is an immediate corollary of Theorem 3.2. Indeed, we have

Hn(x, t) = Thn(x, t) =
∑[n/2]

k=0 c
n
kT
[
xn−2k

]
tk, where Theorem 3.2 is used.

The explicit form of the functions Hn presented in this theorem makes possible the

construction of the approximate solution to Problem 3.1 by the THP method.

3.4 Description of the method

We proceed to the step by step construction of the THP method, summarizing the

algorithm at the end of the section.

Assume that we have already calculated the formal powers ϕk and the functions Hn.

Further, let N be the highest index of the formal power considered, or equivalently the

highest degree in x of the considered heat polynomials. We denote by

uN(x, t) =
N∑
n=0

anHn(x, t) (3.14)

the approximation of the solution u(x, t), and by ā = (a0, ..., aN)T the column-vector of

the unknown coefficients. Note that by construction functions uN satisfy equation (3.4),

all we need is to find suitable coefficients ā.

Denote by {ti} an ordered set of Nt + 1 points of the interval [0, T ], with t0 = 0 < t1 <

... < tNt = T , t̄ = (t0, ..., tNt)
T , and by {xi} an ordered set of Nx + 1 points of the initial

boundary, with x0 = 0 < x1 < ... < xNx = l, x̄ = (x0, ..., xNx)
T .
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Consider a set of K + 1 linearly independent differentiable functions, βk : [0, T ] → R.

We are looking for the free boundary in the form

sK(t) =
K∑
k=0

bkβk(t).

Denote the vector of the unknown coefficients3.2 by b̄ = (b0, ..., bK)T . For any function v

defined on the set of points {yi}i=0,1,...,Ny
the following notation is introduced

v (ȳ) =
(
v (y0) , ..., v

(
yNy
))T

.

A numerical approximation problem consists in finding a set of the coefficients
(
ā, b̄
)

that best fits the conditions of Problem 3.1 with the following norm chosen

‖v(ȳ)‖2 =

Ny∑
i=0

|v(yi)|2.

The following magnitudes are to be minimized,

I1

(
ā, b̄
)

= ‖[G1uN ] (x̄, 0)− g1(x̄)‖ ,

I2

(
ā, b̄
)

= ‖[G2uN ] (0, t̄)− g2(t̄)‖ ,

I3

(
ā, b̄
)

=
∥∥uN(sK (t̄) , t̄

)
− g3(t̄)

∥∥ ,
I4

(
ā, b̄
)

=
∥∥(uN)x

(
sK (t̄) , t̄

)
+ ṡK(t̄)

∥∥ .
Each of them is related to a boundary condition from (3.5)–(3.8). With introduction of

the value function

F
(
ā, b̄
)

=
4∑
i=1

I2
i

(
ā, b̄
)
, (3.15)

the minimization problem can be stated as follows.
3.2It is possible to search for the free boundary in a more general form, see Section 3.6.3.
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Problem 3.2 Find3.3

arg min
(ā,b̄)

F
(
ā, b̄
)
,

subject to

0 < sK(t) ≤ L, t ∈ [0, T ]. (3.16)

Note that instead of the uniform norm chosen in Reemtsen and Lozano (1982) for the

heat polynomials method, we used the L2 norm in the value function (3.15). The main

reason for such choice was to take advantage of the presence of the so-called sep-

arable linear parameters (see (Ross, 1990, Chap. 6.2), see also Herrera-Gomez and

Porter (2017)) and to reduce the number of parameters in the value function. Indeed,

for each fixed b̄, the constrained minimization Problem 3.2 reduces to an unconstrained

linear least squares problem for parameters ā and can be easily solved exactly (see

Subsection 3.4.1). That is, for each b̄ we can define

ā(b̄) := arg min
ā

F
(
ā, b̄
)
. (3.17)

So instead of minimizing the value function F over an N +K + 2 dimensional space of

parameters (ā, b̄), the problem can be reduced to minimization of the function

F̃ (b̄) := F
(
ā(b̄), b̄

)
over aK+1 dimensional space. Such reformulation of the original optimization problem

leads to a more robust convergence of numerical optimization algorithms, c.f., Herrera-

Gomez and Porter (2017). We state this new minimization problem as follows.

3.3For a function f : X → Y , the arg min over a subset S of X is defined as

arg min
x∈S⊆X

f(x) := {x : x ∈ S ∧ ∀y ∈ S : f(y) ≥ f(x)} .

49



Problem 3.3 Find

arg min
b̄

F̃
(
b̄
)

subject to

0 < sK(t) ≤ L, t ∈ [0, T ]. (3.18)

3.4.1 Linear minimization problem

Let a vector b̃ be fixed. We have to solve the linear least squares problem (3.17). Let

us denote the corresponding approximate boundary by s̃,

s̃(t) =

Nβ∑
i=0

b̃iβi(t).

Note that problem (3.17) is equivalent to solving the overdetermined system of linear

equations (resulting from the boundary conditions (3.5)–(3.8))

[G1uN ] (x̄, 0) =
N∑
n=0

anBn (x̄) , uN
(
s̃ (t̄) , t̄

)
=

N∑
n=0

anDn (t̄) ,

[G2uN ] (0, t̄) =
N∑
n=0

anCn (t̄) , (uN)x
(
s̃ (t̄) , t̄

)
=

N∑
n=0

anEn (t̄) ,

where

Bn (x̄) =


cn0γ11(x̄)ϕn(x̄) + cnn−1

2

γ12(x̄)ϕ′1(x̄), n odd,

cn0γ11(x̄)ϕn(x̄), n even,
(3.19)

Cn (t̄) =


cnn−1

2

γ22(t̄)t̄
n−1
2 , n odd,

cnn
2
γ21(t̄)t̄

n
2 , n even,

(3.20)

Dn(t̄) =

[n/2]∑
k=0

cnkϕn−2k(s̃(t̄)t̄
k, En(t̄) =

[n/2]∑
k=0

cnkϕ
′
n−2k(s̃(t̄))t̄

k, (3.21)
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or in the matrix form

Bā ' g, (3.22)

where

B =



B0(x̄) . . . BN (x̄)

C0(t̄) . . . CN (t̄)

D0(t̄) . . . DN (t̄)

E0(t̄) . . . EN (t̄)


and g =



g1(x̄)

g2(t̄)

g3(t̄)

˙̃s(t̄)


.

Note that the derivatives ϕ′ in (3.21) do not require numerical differentiation and can be

obtained in a closed form from (3.12).

The solution of this overdetermined system coincides (Madsen and Nielsen, 2010,

Thm. 5.14) with the unique solution of the following fully determined system of linear

equations

Cā = h, where C = BTB and h = BTg. (3.23)

See also Lawson and Hanson (1995) or Nocedal and Wright (2006) for various meth-

ods of efficient solution of equation (3.22) or (3.23). In particular, we used the Moore-

Penrose pseudo-inverse method.

3.4.2 Implementation

Here we present the algorithm of the implementation of the THP method for Problem

3.1.

1. Find a particular solution of equation (3.10) satisfying (3.11). For example, the

SPPS method presented in Kravchenko and Porter (2010) can be used.
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2. Construct the formal powers on an interval from 0 to some L > l. In this paper we

represented all the functions involved by their values on a uniform mesh and used

the Newton-Cotes six point integration rule. Since we may need the values of the

formal powers at arbitrary points s̃ (t̄) ⊂ [0, L], we approximated the formal powers

by splines passing through their values on the selected mesh. Spline integration

can be used as well for the construction of the formal powers, c.f., Khmelnytskaya

et al. (2013). See also Kravchenko et al. (2017b) for the discussion of other

possible methods.

3. Compute the coefficients Bn and Cn given by (3.19) and (3.20) and the respective

functions g1 and g2. Since these conditions are independent of the free boundary

(i.e. of the choice of b̃), they need to be computed only once.

4. Construct a function that solves problem (3.17) for each given set of coefficients

b̃.

5. Construct the value function F̃ (b) using (3.15).

6. Solve the constrained minimization Problem 3.3 using any suitable algorithm,

see, e.g., Nocedal and Wright (2006). For the numerical illustration we used the

Matlab function fmincon. Note that for faster convergence we may initially solve

the minimization Problem 3.3 for some small value K ′ < K and use the coeffi-

cients b0
k, k = 0, . . . , K ′ obtained as an initial value for the optimization algorithm

for larger value K.
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3.5 Numerical illustration

3.5.1 Example with an exact solution and a tractable free boundary

For the numerical experiment we constructed an example of an FBP admitting an exact

solution.

For every s ∈ C1[0, 1], with s(0) = 1 consider the domain

D(s) =
{

(x, t) ∈ R2 : 0 < x < s(t), 0 < t < 1
}
.

Problem 3.4 Find the pair (s, u) such that s ∈ C1[0, 1], u ∈ C2,1 (D(s)) and

uxx − x2u = ut, (x, t) ∈ D(s),

with the following boundary conditions

u(x, 0) = e−
x2

2 , x ∈ [0, 1], (3.24)

ux(0, t) = 0, t ∈ (0, 1), (3.25)

u(s(t), t) = e−Ei−1(2C−2e−t)−t, t ∈ (0, 1), (3.26)

ux(s(t), t) = −ṡ(t), t ∈ (0, 1), (3.27)

where

C =
1

2
Ei

(
1

2

)
+ 1 ≈ 1.2271,

and Ei−1 stands for the inverse function of the exponential integral Ei,

Ei (x) = − v. p.

∫ ∞
−x

e−t

t
dt.

53



Problem 3.4 possesses an exact solution u given by

u(x, t) = e−
x2

2
−t, (x, t) ∈ D(s), (3.28)

and the free boundary

s (t) =

√
2 Ei−1 (2C − 2e−t), t ∈ [0, 1] . (3.29)

Remark 3.7 The existence and the uniqueness of the solution for t ∈ [0, 1] is guar-

anteed by (Fasano and Primicerio, 1979, Theorem 1). For the application of the the-

orem it is necessary to use the transformation v(x, t) = u(x, t) + γ(t), where γ(t) =

exp
(
−Ei−1 (2C − 2e−t)− t

)
.

3.5.2 Numerical illustration

We proceed by presenting numerical results delivered by the algorithm described in

Section 3.4. All the calculations were carried out in Matlab R2012a.

A particular solution to equation (3.10) and the formal powers (3.12) were represented

by their values on a 2000-points uniform mesh. The Newton-Cotes integration rule

was used for their computation. The number of formal powers considered was set

at N = 12. Finally the function spapi was used to create splines approximating the

formal powers. For computing the Ei−1 we have used a polynomial interpolation on

a fine grid for the function Ei. The values for the function Ei were constructed by

the series expansions presented in (Gradshteyn and Ryzhik, 2007, (8.214)), see also

Pecina (1986).

The sets of points {ti} and {xi} considered are both equidistant grids of 101 points.

The free boundary s is sought in terms of polynomials. The condition s(0) = 1 inspires
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the following form

sK (t̄) = 1 +
K∑
j=1

bj t̄
j.

In our calculations we have considered K = 6.

The linear problem (3.17) was solved by using the Matlab function pinv. We have

found the solution to Problem 3.3 using the Matlab routine fmincon.

The proposed algorithm converged rapidly for various initial free boundaries tested.

On Figure 3.2 we present one of the initial boundaries, the exact free boundary s(t)

calculated from equation (3.29) and the difference between the exact free boundary

s(t) and the obtained approximation sK(t). The obtained approximate boundary was

sK(t) = 1 + 0.60657885t− 0.30458770t2 + 0.03631846t3+

+0.06761711t4 − 0.05111378t5 + 0.01270860t6, (3.30)

here and after the coefficients are presented up to the eighth decimal place. The

coefficients of the vector ā that corresponds to the solution of the linear problem (3.17)

with b̄ consisting of the coefficients from (3.30) are

a0 = 1.00000201, a1 = −3.88882172 · 10−6, a2 = −5.00020660 · 10−1,

a3 = 2.67326664 · 10−5, a4 = 4.16822991 · 10−2, a5 = −2.03778980 · 10−5,

a6 = −1.38990292 · 10−3, a7 = 4.02691726 · 10−6, a8 = 2.43785480 · 10−5,

a9 = −2.56424452 · 10−7, a10 = −2.28538929 · 10−7, a11 = 4.70925279 · 10−9,

a12 = 7.12497038 · 10−10.
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Figure 3.2: Left: the initial boundary sin(t) = 1+0.1t and the exact boundary s(t) for the Prob-
lem 3.4. Right: the difference between the exact boundary s(t) and the approximate boundary
sK(t).
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Figure 3.3: Accuracy of fulfillment of the boundary conditions (3.24)–(3.27) for the approxi-
mate solution uN and approximate free boundary sK obtained by the algorithm. On the left:
conditions (3.24)–(3.26), on the right: condition (3.27).

Figure 3.3 illustrates the accuracy of fulfillment of the boundary conditions (3.24)–(3.27).

The absolute value of the difference between the exact solution (3.28) and the obtained

approximate solution in the domain D(s) is presented on Figure 3.4.

Note that for the problem considered one may look for an approximate solution in the
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Figure 3.4: The absolute difference |u(x, t)− uN(x, t)| between the exact and the approximate
solutions for the Problem 3.4 in the domain D(s).

form

uN(x, t) =

N/2∑
n=0

a2nH2n(x, t),

i.e., having only even coefficients a2n. In such way the boundary condition (3.25) is sat-

isfied automatically. The proposed algorithm can be applied with minimal modifications

for such simplified form of an approximate solution, however we did not observe any

gain in the obtained result, the original formulation of the algorithm performed equally

well.
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3.6 Possible extensions of the method to more general FBPs

and final remarks

3.6.1 Generalization of the operator A

The presented method can be extended onto operators of the form

C = α1(x)
∂2

∂x2
+ α2(x)

∂

∂x
+ α3(x)

with sufficiently regular coefficients αi(x). For the construction of the formal powers in

this case see Kravchenko and Torba (2018). The FBPs with this type of operators are

very common in financial applications.

3.6.2 Generalizations of the conditions on a free boundary

Linear generalization

The conditions (3.7) and (3.8) are sometimes referred to as Stefan’s conditions. Our

algorithm can be applied to more general conditions of the type

G3u(s(t), t) = g3

(
t, s(t), ṡ(t)

)
,

G4u(s(t), t) = g4

(
t, s(t), ṡ(t)

)
,

for some first order linear differential operators G3 and G4, and where g3 and g4 are

given functions of three variables.
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Nonlinear generalization

For some FBPs we can only express the conditions (3.7) and (3.8) as

g3

(
t, s(t), ṡ(t), u(s(t), t), ux(s(t), t)

)
= 0,

g4

(
t, s(t), ṡ(t), u(s(t), t), ux(s(t), t)

)
= 0,

where g3 and g4 are given functions of five variables. In this case the elegant de-

composition into a linear and nonlinear problems will be lost, however the hierarchic

structure of the minimization problem remains, i.e., the minimization Problem 3.2 can

be reduced to the Problem 3.3 with the only difference that the auxiliary problem (3.17)

may be nonlinear.

3.6.3 Nonlinear form of the boundary

Often in applications some additional information is available about the free boundary

structure. With this additional knowledge (or for other reasons) the linear decomposi-

tion of the boundary might not be appropriate. It is easy to see that we can still apply

the algorithm assuming that

sK = ξ (b0, ..., bK) ,

for the known function ξ. This nonlinear structure can slow down the algorithm for the

search of the minimum in Problems 3.2 or 3.3, due to the constraints (3.16) and (3.18)

respectively. In our particular Matlab implementation, we have used fmincon function

that performs better with a linear constraint on the boundary than a nonlinear one.
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3.6.4 Concluding remarks

A method for approximate solution of a large variety of FBPs is proposed. It is based

on a possibility to construct a complete system of solutions of a parabolic equation

called transmuted heat polynomials. The numerical implementation is relatively simple

and direct. The time required for computations is within seconds. The method admits

extensions onto a much larger class of FBPs then that discussed in the paper.
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4. Generalized exponential basis for efficient solv-

ing of homogeneous diffusion free boundary prob-

lems: Russian option pricing

Abstract: This paper develops a method for solving free boundary problems for time-

homogeneous diffusions. We combine the complete exponential system of solutions for

the heat equation, transmutation operators and recently discovered Neumann series of

Bessel functions representation for solutions of Sturm-Liouville equations to construct

a complete system of solutions for the considered partial differential equations. The

conceptual algorithm for the application of the method is presented. The valuation of

Russian options with finite horizon is used as a numerical illustration. The solution

under different horizons is computed and compared to the results that appear in the

literature.

JEL Classification: G13, C60.
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4.1 Introduction

One of the approaches for solving boundary value problems for partial differential equa-

tions (PDE’s) is based on complete systems of solutions (CSS). In particular, several

CSS have been used in different models such as: fundamental solutions (the well

known method of fundamental solutions or discrete sources) Kupradze (1967), Alex-

idze (1991), Fairweather and Karageorghis (1998) and Doicu et al. (2000); heat poly-

nomials Colton (1976), Reemtsen and Lozano (1982), Colton and Reemtsen (1984),

Sarsengeldin et al. (2014) and Kravchenko et al. (2017c); wave polynomials in Khmel-

nytskaya et al. (2013) among many others. For the present paper the following family

{e±n }n∈N of exponential solutions of the heat equation

hxx = ht, (4.1)

defined as

e±n (x, t) = exp(±iωnx− ω2
nt), (4.2)

are of particular interest. Here the constants ωn are chosen such that the limit

d := lim
n→∞

n

ω2
n

> 0 (4.3)

exists. In Colton (1980), the completeness of this system of solutions was proved for

bounded domains satisfying certain smoothness properties.

As a rule, the approach based on CSS cannot be directly applied to equations with

variable coefficients, because CSS are not available in a closed form. In Colton (1976),

there was developed the idea to extend the approach of CSS to equations with variable

coefficients with the aid of transmutation operators whenever they are known or can be
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constructed efficiently. However, the construction of the transmutation operators is

itself a complicated task.

In the present paper, we propose the construction of the CSS generalizing exponential

solutions (4.2) for the equation

Cu(y, t) :=
1

w (y)

(
∂

∂y

(
p (y)

∂

∂y

)
− q (y)

)
u(y, t) = ut(y, t). (4.4)

These generalized exponential solutions represent a CSS for equation (4.4) and are

the images of the exponential solutions (4.2) under the action of the transmutation

operator. Moreover, they can be computed by a simple robust recursive integration

procedure which does not require the knowledge of the transmutation operator itself.

This makes possible to extend the numerical methods (minimization problems) for free

boundary problems (FBP’s) for the heat equation to the time homogeneous parabolic

equations, in particular, to the finite horizon Russian option (FHRO) valuation problem

that we analyze in detail in this paper.

In Kravchenko et al. (2017a), a numerical method was developed for the classical one

dimensional Stefan like problem for the time-homogeneous parabolic operator using

the CSS of the transmuted heat polynomials, that was referred to as THP method. It

is well known that the CSS based on polynomials result in badly conditioned matrices,

making the application of THP complicated for the practical computations. This is the

case for the FHRO. Fortunately, there are alternative CSS for the heat equation (4.1),

for which we also know their transmuted images.

In practice, the FBP’s are often challenging for numerical methods. For example, the

boundary conditions arising in relation to the FHRO problem are non consistent (the

solution or its derivative can not be continuous along the boundary). This leads to all
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Figure 4.1: Free boundary problem.

sort of different computational issues. We present a step by step algorithm and discuss

the numerical issues that we have encountered. The method that we propose takes

into account known properties of the solution (such as monotone increase of the free

boundary) and of the functions from the CSS (possibility to automatically satisfy one of

the boundary conditions) making the computations easier and more predictable.

Even though there are several quantitative studies on the FHRO, e.g. Duistermaat et al.

(2005), Kimura (2008) and Jeon et al. (2016), it seems that there is no agreement on

the exact value for the option. We contribute to this discussion confirming the values

from Jeon et al. (2016) and providing possible explanation of the discrepancy with

Kimura (2008).

The parabolic FBP’s arise in many fields, and hence the method proposed has a lot of

potential for further applications and developments. In particular, for the financial engi-

neering applications presenting path-dependence and early exercise features such as

lookback options, American options, etc. In this paper, for the FHRO, we are restricted

to the Black and Scholes (1973) and Merton (1973) (BSM) model (and respective in-

finitesimal generator) since it is not clear how to generalize the problem to different
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diffusions and keep the resulting FBP two dimensional (see also Kamenov (2008) for

Bachelier model). However, for other financial (and non-financial) applications, where

the FBP can be formulated using a general operator (4.4), our method can be applied

as well. This is, for example, the case of American option where the underlying asset

follows time-homogeneous diffusion process.

The paper is structured as follows. In Section 4.2, we state the FBP. In Section 4.3,

we introduce the transmutation operators and highlight some of the relevant theoretical

results. In Section 4.4, we introduce the notion of the CSS and see how it can be

used to approximate the solutions of the PDE (4.4). We also show how to explicitly

construct the transmuted CSS for the case of the generalized trigonometric series. In

Section 4.5, we state the minimization problem and summarize an algorithm for the

solution. In Section 4.6, we introduce the FHRO and set-up the corresponding FBP.

The quantitative results for the FHRO, the discussion of the numerical issues and the

comparison with existing in the literature results are presented in Section 4.7. Section

4.8 presents some concluding remarks.

4.2 The free boundary problem

Consider the differential expression C from (4.4) where the functions p, q and w satisfy

the following assumption.

Assumption 1 The functions p, p′, q, w and w′ are real valued and continuous on [0, L].

Additionally, it is assumed that p′ and w′ are absolutely continuous and that p > 0 and

w > 0.

Every non-negative function s ∈ C1 [0, T ], such that s (0) = 0 and 0 < s(t) ≤ L, t ∈
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(0, T ], defines a domain

D(s) = {(y, t) ∈ R2 : 0 < y < s(t), 0 < t < T}, (4.5)

as shown on Figure 4.1.

Problem 4.5 Find functions u(y, t) and s(t) such that

Cu(y, t) = ut(y, t), (y, t) ∈ D(s), (4.6)

γ11(t)u (0, t) + γ12(t)uy(0, t) = g1 (t) , t ∈ (0, T ) , (4.7)

u (s (t) , t) = g2 (t) , t ∈ (0, T ) , (4.8)

uy (s (t) , t) = g3 (t) , t ∈ (0, T ) , (4.9)

where γ1j for j ∈ {1, 2} and gk for k ∈ {1, 2, 3} are analytic functions.

The aim of this paper is to illustrate the application of the numerical method based on

the transmutation operators theory to Problem 4.5. To avoid the questions of the exis-

tence and uniqueness of solution specific to each problem, we will make the following

assumption.

Assumption 2 There exists a unique solution to Problem 4.5.

The basic idea of a numerical method based on a CSS is that any linear combination

of the functions from the CSS is already a solution to (4.6). Hence one may con-

struct the linear combination that will satisfy (approximately) the boundary conditions

of Problem 4.5. As was mentioned in the introduction, for many practical problems the

boundary conditions are inconsistent resulting that the uniform norm is not a choice for
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measuring the quality of an approximate solution, and some kind of L2 norm is more

convenient. For this reason we will make the following assumption guaranteeing the

proposed numerical method to work.

Assumption 3 The solution to Problem 4.5 continuously depends on the boundary

data in a suitable L2 norm.

Remark 4.8 This problem includes as a special case the classical degenerate one

dimensional Stefan problem. For these types of problems the dependence of the func-

tions g2 and g3 on the function s and its derivatives can be specified—see Rose (1960)

for example. For our method this does not represent additional difficulty. The definition

of Problem 4.5 may also include additional conditions that can be necessary to guar-

antee the existence and the uniqueness of solution. We will see this in the example for

the FHRO constructed further.

4.3 Transmutation operators

In this section we present our main operational tool: the transmutation operator.

Definition 4.3 Let E1 and F1 be linear subspaces of the linear topological spaces E

and F , respectively. Consider the pair of operators A : E1 → E and B : F1 → F . A

linear invertible operator T : F → E defined on the whole F is called a transmutation

operator for the pair of operators A and B if the following conditions are met:

1. The operator T is continuous in F , its inverse T−1 is continuous in E;

2. T (F1) ⊂ E1;
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3. The following operator equality is valid

AT = TB,

or which is the same

A = TBT−1.

We are particularly interested in the case of A being the differential operator C defined

in (4.4) and B being the second derivative. The idea is to transmute the solutions of

the heat equation (4.1) into the solutions of the parabolic equation (4.6).4.1 Throughout

this section we consider equation (4.4) to be defined for y ∈ [A,B], and Assumption 1

to hold on the segment [A,B].

In the work of Kravchenko et al. (2016) and Kravchenko and Torba (2018) using the

Liouville transformation

x = l(y) :=

∫ y

A0

(w(s)/p(s))1/2ds, y ∈ [A,B],

where the point A0 is chosen such that

∫ A0

A

(w(s)/p(s))1/2ds =

∫ B

A0

(w(s)/p(s))1/2ds =: b,

the transmutation operator for the operators C and ∂xx was studied, for the spaces

E1 = C2[A,B], E = C[A,B], F1 = C2[−b, b] and F = C[−b, b].

Remark 4.9 Equation (4.6) is a separable PDE, which implies that we only have to

construct a one-dimensional transmutation operator for the operator C.
4.1As an illustration, let h(x, t) be a solution of (4.1), then if the operator T exists, u = Th will be the solution

to equation (4.6), indeed Cu− ut = CTh− ∂tTh = T(∂yyh− ∂th) = 0.
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The transmutation operator T is known in the closed form only for few equations (4.6).

However as we will show for the construction of the CSS the knowledge of the operator

T itself is not indispensable. This construction is based on the fundamental result

Theorem 4.4 that connects the images of the transmutation operator to the family of

the recursive integrals, that are called formal powers, see Definition 4.4 below.

Let us define an auxiliary function

ρ (y) = [p (y)w (y)]1/4 .

Let f be a non-vanishing (in general, complex-valued) solution of the equation

(p (y) f ′ (y))
′ − q (y) f (y) = 0, y ∈ [A,B] , (4.10)

with an initial condition set as

f (A0) =
1

ρ (A0)
. (4.11)

Since p and q satisfy Assumption 1, equation (4.10) has two linearly independent reg-

ular solutions f1 and f2 whose zeros alternate. We may construct a non-vanishing

solution as f = f1 + if2 —Kravchenko and Porter (2010, Remark 5)

Definition 4.4 Let p, q, w satisfy Assumption 1 and let f be a non-vanishing solution of

equation (4.10) that satisfies condition (4.11). Then, the associated formal powers are

defined, for k = 0, 1, 2, ..., as

Φk(y) =


f (y)Y (k) (y) , k odd

f (y) Ỹ (k) (y) , k even
, Ψk (y) =


1

f(y)
Y (k) (y) , k even

1
f(y)

Ỹ (k) (y) , k odd
,
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where two families of the auxiliary functions are defined as

Y (0) (y) ≡ Ỹ (0) (y) ≡ 1,

Y (k) (y) =


k
∫ y
A0
Y (k−1) (s) 1

f2(s)p(s)
ds, k odd

k
∫ y
A0
Y (k−1) (s) f 2 (s) p (s) ds, k even

,

Ỹ (k) (y) =


k
∫ y
A0
Ỹ (k−1) (s) f 2 (s) p (s) ds, k odd

k
∫ y
A0
Ỹ (k−1) (s) 1

f2(s)p(s)
ds, k even

.

Theorem 4.4 (Kravchenko et al. (2016)) Let p, q and w satisfy Assumption 1 for all

y ∈ [A,B] and let f be a non-vanishing solution of equation (4.10) that satisfies condi-

tion (4.11), then there exists a unique complex valued function K and the transmutation

operator T defined as

Th(y) =
h(l(y))

ρ(y)
+

∫ l(y)

−l(y)

K(y, t)h(t)dt,

for h ∈ C[−b, b] and satisfying the equality

CTh = T∂xxh,

for any h ∈ C2[−b, b] such that

T[1] = f(y).

Moreover, for any n ∈ N ∪ {0}

T [xn] = Φn (y) (4.12)
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and for u = Th the following boundary conditions are satisfied

u(A0) =
h(0)

ρ(A0)
(4.13)

u′(A0) = h(0)f ′(A0) + h′(0)
1

ρ(A0)

√
w(A0)

p(A0)
. (4.14)

The theorem provides tools for computation of the transmuted powers. It was used

directly in Kravchenko et al. (2017a) for the application of the Transmuted heat poly-

nomials (THP) method to the Stefan-like problem. In this paper, we will use a different

CSS.

Remark 4.10 This transmutation operator T has the following important property. Con-

sider a function u = Tv. Then the values u(y) for y ∈ [A0, B] are completely determined

by the function v and the values of p, q, w on the segment [A0, B] and are independent

of the values of p, q, w on [A,A0). For this reason we may consider the restriction of

equation (4.6) onto [A0, B] and the operator T as the operator mapping functions from

C[−b, b] to functions from C[A0, B]. Such operator is no longer invertible, however it is

continuous and maps a solution of the heat equation into a solution of (4.6) and is suf-

ficient to present the proposed numerical method. Moreover, it allows one to take into

account the boundary conditions (4.13) and (4.14). For that reason from now on we as-

sume that A0 = A in the Liouville transformation, and when we need the invertibility of

T, we continue the coefficients p, q, w to the left arbitrarily asking only that Assumption

1 be fulfilled. Moreover, in the rest of the present paper we consider A0 = 0.
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4.4 Transmutation of the complete systems of solutions

Let D = {(y, t) : y1(t) < y < y2(t), t ∈ (0, T ]}, where 0 ≤ yi(t) ≤ L, i ∈ {1, 2}, are

continuous functions, be a subset of R2.

Definition 4.5 The set of solutions {un}n∈N of equation (4.6) is said to be a complete

system of solutions in the closed region D̄ if for any u ∈ C(D̄) ∩ C2,1(D), a solution

to (4.6), and for any ε > 0 there exist an integer N = N(ε) and constants a0, ..., aN such

that

max
(y,t)∈D̄

∣∣u(y, t)− uN(y, t)
∣∣ < ε,

where

uN(y, t) =
N∑
n=0

anun(y, t). (4.15)

The completeness of a system of functions in the sense of Definition 4.5 may be dif-

ficult to establish, and the following weaker form of the definition may be sufficient for

practical applications.

Definition 4.6 The set of solutions {un}n∈N of equation (4.6) is said to be a complete

system of solutions if for any u ∈ C2,1(D), a solution to (4.6), for any compact subset

K ⊂ D and for any ε > 0 there exist an integer N = N(ε,K) and constants a0, ..., aN

such that

max
(y,t)∈K

∣∣u(y, t)− uN(y, t)
∣∣ < ε.

The following proposition allows us, on the basis of the CSS for the heat equation, to

construct the CSS for equation (4.6). Let

b =

∫ L

0

(w(s)/p(s))1/2ds.
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Proposition 4.3 Let {vn}n∈N be a CSS for the heat equation on a rectangle [−b, b] ×

[δ, T ] for all sufficiently small δ > 0. Consider the system of the transmuted functions

{un}n∈N, i.e.

un = T[vn], (4.16)

where T is defined in Theorem 4.4 (see Remark 4.10). Then the system {un}n∈N is a

CSS for equation (4.6) in D.

Proof. 4.4 Consider a continuation of the coefficients p, q, w onto [−L1, L] such that

the Liouville transformation satisfies l(−L1) = l(L) = b and Assumption 1 holds on

[−L1, L].

Let u(y, t) ∈ C2,1(D) be a real valued solution to (4.6), K ⊂ D a compact subset

and ε > 0. Consider the preimage ul = l−1(u) of the solution u under the Liouville

transformation. Let Kl = l−1(K). Then there exist a constant δ > 0 and functions s1(t)

and s2(t), analytic on a disk in the complex plane containing the segment [δ, T ] such

that the domain D(s1, s2) = {(x, t) : s1(t) ≤ x ≤ s2(t), t ∈ [δ, T ]} satisfies

Kl ⊂ D(s1, s2) ⊂ [0, b]× [0, T ].

The solution ul is a classical solution of the Liouville transformed parabolic equation in

D(s1, s2), continuous in D̄(s1, s2). Similarly to the proofs of Theorem 2.3.2 and 2.3.3

from Colton (1976) ul can be extended to the solution of the same equation on the

rectangle [−b, b]× [δ, T ], and its Liouville transformation (which we denote by ũ) is then

a solution of (4.6) on [−L1, L]× [δ, T ].

Consider v = T−1ũ. Then v is a solution of the heat equation on [−b, b] × [δ, T ]. Since

the system {vn}n∈N is a CSS for the heat equation on the region [−b, b] × [δ, T ], there
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exist a constant N and such constants a0, . . . , aN that

max
(x,t)∈[−b,b]×[δ,T ]

∣∣∣∣∣v(x, t)−
N∑
n=0

anvn(x, t)

∣∣∣∣∣ < ε

‖T‖
.

Hence

max
(y,t)∈[−L1,L]×[δ,T ]

∣∣∣∣∣ũ(y, t)−
N∑
n=0

anun(y, t)

∣∣∣∣∣ = max
(y,t)∈[−L1,L]×[δ,T ]

∣∣∣∣∣Tv(y, t)−
N∑
n=0

anTvn(y, t)

∣∣∣∣∣
<

ε

‖T‖
· ‖T‖ = ε.

Now the proof follows observing that K ⊂ [−L1, L]× [δ, T ].

Remark 4.11 Note that the transmuted CSS defined by (4.16) does not depend on a

continuation of the coefficients p, q, w

Remark 4.12 The technique developed in Colton (1976) and used in the proof of

Proposition 4.3 requires the boundaries y1,2 of the region to be separated, i.e., y1(t) <

y2(t), t ∈ [0, T ] and thus allows us to work with an approximation to the original problem

in which y1(0) = y2(0).

The idea to use the transmutation operator to transmute the CSS for the construction

of the solutions was studied in the monographs Colton (1976, 1980). At the time, the

representation (4.12) for the transmuted powers and the representations of the next

section were unknown, which limited the practical application of Colton’s theory.
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4.4.1 Transmutation of the exponential CSS

In the work of Kravchenko et al. (2017b) a representation for the solutions to equation

Cu = ω2u,

was obtained in terms of Neumann series of Bessel functions. This representation can

be used to construct a CSS for equation (4.6). Consider the set of functions {e±n }n∈N

defined in (4.2) where ωn are chosen such that the limit (4.3) exists. The next proposition

guarantees that it is in fact the CSS.

Let D = {(x, t) : s1(t) < x < s2(t), 0 < t < t0}, where s1 and s2 are analytic functions of

t for 0 ≤ t ≤ t0 and s1(t) < s2(t) for 0 ≤ t ≤ t0.

Proposition 4.4 (Colton (1980, Cor. 5.4)) Let h ∈ C2,1 (D)∩C(D̄) be a solution to the

heat the equation (4.1) in D. Then there exists an integer N and constants a±0 , ..., a
±
N

such that

max
D̄

∣∣∣∣∣h(x, t)−
N∑
n=0

a±n e
±
n (x, t)

∣∣∣∣∣ < ε.

Since under the change of the variable t 7→ t + δ each function e±n remains the same

up to a multiplicative constant, the system {e±n }n∈N is the CSS in the sense required for

Proposition 4.3.

Each of the basis functions en is a solution to the heat equation (4.1). We define the

transmuted basis functions as follows

E±n (y, t) = T[e±n (x, t)] = eω
2
ntT[e±iωnx].

Application of Theorem 4.4 guarantees us that they are solutions to equation (4.6), i.e.
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(C− ∂t)E±n = (CTe±n − ∂tTe±n ) = T(∂xx − ∂t)e±n = 0 and the application of Proposition

4.3 guarantees that they form a CSS for equation (4.6) on any compact contained in

[0, L]× (0, T ].

For the construction of functions E±n we can use the explicit form of the transmuted

solutions T[cos(ωx)] and T[sin(ωx)], since

T[e±iωnx] = T[cos(ωnx)]± iT[sin(ωnx)],

presented in Kravchenko and Torba (2018).

4.4.2 Representation of the transmuted Sine and Cosine

Two linearly independent solutions of equation

Cu = ω2u (4.17)

can be obtained as images of cosωx and sinωx, linearly independent solutions of the

equation z′′ = ω2z, under the action of the transmutation operator T, and will be de-

noted by

c(ω, y) = T[cos(ωx)], with c(ω, 0) = 1/ρ(0) and c′ (ω, 0) = h̃, (4.18)

and

s(ω, y) = T[sin(ωx)], with s(ω, 0) = 0 and s′ (ω, 0) =
ω

ρ(0)

√
w(0)

p(0)
, (4.19)
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where

h̃ =

√
ρ (0)

w (0)

(
f ′ (0)

f (0)
+
ρ′ (0)

ρ (0)

)
and f is a solution of (4.10) that satisfies (4.11) and appears in Theorem 4.4.

Theorem 4.5 (Kravchenko and Torba (2018, Theorem 4.1)) Let the functions p, q and

w satisfy the conditions from the Assumption 1 and f be the solution of (4.10) satisfying

(4.11) and such that f 6= 0 for all y ∈ [0, L]. Then two linearly independent solutions c

and s of equation (4.17) for ω 6= 0 can be written in the form

c(ω, y) =
cos(ωl(y))

ρ(y)
+ 2

∞∑
m=0

(−1)mα2m(y)j2m(ωl(y)) (4.20)

and

s(ω, y) =
sin(ωl(y))

ρ(y)
+ 2

∞∑
m=0

(−1)mα2m+1(y)j2m+1(ωl(y)), (4.21)

where jk stands for the spherical Bessel function of order k,

l(y) :=

∫ y

0

(w(s)/p(s))1/2 ds,

with the coefficients defined by

αm(y) =
2n+ 1

2

(
m∑
k=0

lk,mΦk(y)

lk(y)
− 1

ρ(y)

)
, (4.22)

where Φk are taken from Definition 4.4, and lk,m is the coefficient of xk in the Legendre

polynomial of order m. The solutions c and s satisfy the initial conditions (4.18) and

(4.19). The series in (4.20) and (4.21) converge uniformly with respect to y on [0, L] and

converge uniformly with respect to ω on any compact subset of the complex plane of
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the variable ω. Moreover, for the functions

cM(ω, y) =
cos(ωl(y))

ρ(y)
+ 2

[M/2]∑
m=0

(−1)mα2m(y)j2m(ωl(y))

and

sM(ω, y) =
sin(ωl(y))

ρ(y)
+ 2

[(M−1)/2]∑
m=0

(−1)mα2m+1(y)j2m+1(ωl(y))

the following estimates hold

∣∣c(ω, y)− cM(ω, y)
∣∣ ≤√2l(y)εM(l(y)) max

y∈[0,L]

1

|ρ(y)|
,∣∣s(ω, y)− sM(ω, y)

∣∣ ≤√2l(y)εM(l(y)) max
y∈[0,L]

1

|ρ(y)|

for any ω ∈ R, ω 6= 0, and

∣∣c(ω, y)− cM(ω, y)
∣∣ ≤ εM(l(y))

√
sinh(2Cl(y))

C
max
y∈[0,L]

1

|ρ(y)|
,

∣∣s(ω, y)− sM(ω, y)
∣∣ ≤ εM(l(y))

√
sinh(2Cl(y))

C
max
y∈[0,L]

1

|ρ(y)|

for any ω ∈ C, ω 6= 0 belonging to the strip |Imω| ≤ C, C ≥ 0, where εM is a function

satisfying εM → 0, as M →∞.

Remark 4.13 For ω = 0 the two linearly independent solutions can be represented as

c(0, y) = T [1] = f(y),

s̃(0, y) = lim
ω→0

T

[
sin(ωx)

ω

]
= T [x] = Φ1(y).

We also have the representation for the derivatives of the solutions in (Kravchenko and
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Torba, 2018, Section 5),

c′(ω, y) =

√
w(y)

p(y)

[
1

ρ(y)
(G1(y) cos(ωl(y))− ω sin(ωl(y))) + 2

∞∑
m=0

(−1)mµ2m(y)j2m(ωl(y))

]

− ρ′(y)

ρ(y)
c(ω, y)

and

s′(ω, y) =

√
w(y)

p(y)

[
1

ρ(y)
(G2(y) sin(ωl(y)) + ω cos(ωl(y))) + 2

∞∑
m=0

(−1)mµ2m+1(y)j2m+1(ωl(y))

]

− ρ′(y)

ρ(y)
s(ω, y),

where

G1 (y) = G2 (y) + h̃, G2 (y) =
ρρ′

2w

∣∣∣∣y
0

+
1

2

∫ y

0

[
q

ρ2
+

(ρ′)2

w

]
(s) ds,

and

µm(y) :=
2m+ 1

2ρ(y)

[ m∑
k=0

lk,m
lk(y)

(
k

Ψk−1(y)

ρ(y)
+ ρ(y)

√
p(y)

w(y)

(
f ′(y)

f(y)
+
ρ′(y)

ρ(y)

)
Φk(y)

)

− m(m+ 1)

2l(y)
−G2(y)− h̃

2
(1 + (−1)n)

]
.

(4.23)

We can use Theorem 4.5 to represent the transmuted base functions and their deriva-

tives as follows

E±n (y, t) = (c (ωn, y)± is(ωn, y)) e−ω
2
nt, (4.24)

∂y
(
E±n (y, t)

)
= (c′ (ωn, y)± is′(ωn, y)) e−ω

2
nt, (4.25)

∂t
(
E±n (y, t)

)
= −ω2

n (c (ωn, y)± is(ωn, y)) e−ω
2
nt. (4.26)
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4.4.3 Recurrence formulas

The representations (4.22) and (4.23) are not practical for efficient computation of a

large number of the coefficients due to the fast growth of the Legendre coefficients lk,m

when m → ∞. An alternative, robust for the computations recurrence formulas, were

developed in Kravchenko and Torba (2018). We introduce

An (y) = ln (y)αn (y) and Bn (y) = ln (y)µn (y) , (4.27)

and then the following formulas hold for n = 2, 3, ...

An (y) =
2n+ 1

2n− 3

(
l2 (y)An−2 (y) + (2n− 1) f (y) θ̃n (y)

)
(4.28)

and

Bn(y) =
2n+ 1

2n− 3

[
l2(y)Bn−2(y) + 2(2n− 1)

(√
p(y)

w(y)
(f ′(y)ρ(y) + f(y)ρ′(y))

θ̃n(y)

ρ(y)

+
η̃n(y)

ρ2(y)f(y)

)
− (2n− 1)l(y)An−2(y)

]
,

(4.29)

where

θ̃n (y) =

∫ y

0

(
η̃n (x)

ρ2 (x) f 2 (x)
− l (x)An−2 (x)

f (x)

)√
w (x)

p (x)
dx

and

η̃n(y) =

∫ y

0

(
l(x)(f ′(x)ρ(x) + f(x)ρ′(x)) + (n− 1)ρ(x)f(x)

√
w(x)

p(x)

)
ρ(x)An−2(x)dx.

The initial values A0, A1, B0 and B1 can be calculated from

A0 (y) =
1

2

(
f (y)− 1

ρ (y)

)
, A1 (y) =

3

2

(
Φ1 (y)− l (y)

ρ (y)

)
,
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and

B0 (y) =

√
p (y)

w (y)

(
f ′ (y) +

f (y) ρ′ (y)

ρ (y)

)
− G1 (y)

2ρ (y)
,

B1 (y) =
3

2

[
1

f (y) ρ2 (y)
+

√
p (y)

w (y)

(
ρ′ (y)

ρ (y)
+
f ′ (y)

f (y)

)
Φ1 (y)− G2 (y) l (y) + 1

ρ (y)

]
.

For the discussion on the computational details see Kravchenko and Torba (2018) and

Kravchenko et al. (2017b).

4.5 Minimization problem

In this section we describe the scheme of the numerical method proposed. In the

previous section, we saw that any solution to the PDE (4.6) can be approximated by a

linear combination of functions from the CSS of transmuted exponential functions. We

denote by uN this approximation and by an, n ∈ {0, . . . , N} the respective coefficients—

see equation (4.15). Note that we reordered the set of the functions E±n (y, t) into the

sequence {un(y, t)}∞n=0 by setting, e.g., u2n = E+
n and u2n+1 = E−n . We also denote

by t̄ = (t0, ..., tNt) an ordered numerical set of Nt + 1 points on the interval [0, T ], with

t0 = 0 < t1 < ... < tNt = T . Similarly, we construct the vector ȳ = (y0, ..., yNy), on an

interval [y0, yNy ], the bounds will be specified further. We look for the free boundary in

the form

sK(t) =
K∑
k=0

bkβk(t), (4.30)

where βk : [0, T ]→ R, k = 0, 1..., K is a set of K + 1 linearly independent functions.4.2

Recall that any expression of the form (4.15) is a solution to (4.6). Hence, our problem

now reduces to finding the coefficients ā = (a0, ..., aN) for the approximate solution and
4.2We can choose a more general representation for the boundary if needed. See Kravchenko et al. (2017a) for

the discussion.
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b̄ = (b0, ..., bK) for the free boundary in such a way that the approximate solution is

close to the exact solution of Problem 4.5. For this purpose, according to Assumption

3, it is sufficient to minimize the discrepancy for the boundary conditions (4.7)–(4.9) in

a suitable L2 norm. We consider the following one for each boundary condition

‖v(t̄)‖2 = ‖(v(t0), ..., v(tNt))‖
2 =

Nt∑
i=0

′′ |v(ti)|2 , (4.31)

where the double prime indicates that the first and the last terms of the sum are to

be halved. This formula is the discrete approximation for the L2 norm on the segment

[0, T ], and for different choices of the points tk reduces either to trapezoidal rule (for

uniformly distributed points tk) or to the highly accurate Lobatto–Tchebyshev integra-

tion rule of the first kind (for tk being Tchebyshev nodes), see (Davis and Rabinowitz,

1984, (2.7.1.14)). With this representation, the minimization problem that we have to

solve takes the following form.

Problem 4.6 Find 4.3

arg min
(ā,b̄)

F
(
ā, b̄
)
,

subject to

sK(0) = 0, 0 < sK(t) ≤ L, t ∈ (0, T ], (4.32)

where

F
(
ā, b̄
)

=
3∑
i=1

I2
i

(
ā, b̄
)

(4.33)

4.3For a function f : X → Y , the arg min over a subset S of X is defined as

arg min
x∈S⊆X

f(x) := {x : x ∈ S ∧ ∀y ∈ S : f(y) ≥ f(x)} .
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and

I1

(
ā, b̄
)

=
∥∥[G2u

N
]

(0, t̄)− g1(t̄)
∥∥ ,

I2

(
ā, b̄
)

=
∥∥uN(sK (t̄) , t̄

)
− g2(t̄)

∥∥ ,
I3

(
ā, b̄
)

=
∥∥(uN)

x

(
sK (t̄) , t̄

)
− g3(t̄)

∥∥ .

The value of the function F indicates the discrepancy with the exact solution.

Remark 4.14 For fixed b̄, the constrained Problem 4.6 reduces to the unconstrained

least squares minimization problem for the coefficients ā and can be solved exactly.

That is, for each b̄ we can define

ā(b̄) := arg min
ā

F
(
ā, b̄
)
. (4.34)

So instead of minimizing the value function F over an N +K + 2 dimensional space of

parameters (ā, b̄), the problem can be reduced to minimization of the function

F̃ (b̄) := F
(
ā(b̄), b̄

)
(4.35)

over a K + 1 dimensional space. This reformulation of the problem leads to a more

robust convergence of the numerical method— see Herrera-Gomez and Porter (2017).

We will apply this technique to the FHRO in Section 4.7—see also Kravchenko et al.

(2017a) for details in the THP case.

At this point, we can schematize the algorithm for constructing an approximate solution

to Problem 4.5 starting from the exponential series (4.2) as a CSS for the heat equation

and transmuting it to CSS for equation (4.6).
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4.5.1 Conceptual algorithm

(i) Find a particular solution f for the equation (4.10) that satisfies (4.11). The SPPS

method of Kravchenko and Porter (2010) can be used or any alternative analytical

or numerical method.

(ii) Compute the coefficients αn and µn using the recursive formulas (4.27), (4.28),

(4.29).

(iii) Choose a sequence ωn satisfying (4.3) and construct the functions E±n (y, t), n =

0, . . . , N and their derivatives by formulas (4.24)–(4.26).

(iv) Choose the basis functions β0, . . . , βNk for the approximation of the free boundary

function in the form (4.30).

(v) Construct the minimization function F̃ from equation (4.35).

(vi) Run a minimization algorithm for the function F̃ under constraints (4.32).

The application of the above schematics on the valuation of FHRO will be presented in

the next section.

4.6 The Russian option

The FHRO is a theoretical path-dependent financial contract, a special case of an

American lookback option. It was first introduced and studied in Shepp and Shiryaev

(1993, 1995). The owner of the Russian option has the right, but not the obligation,

to exercise it any time and receive the supremum of stock archived during the period

between the writing of an option (t = 0) and the exercise time. Originally, the Russian
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option was defined as a perpetual option (infinite horizon T = ∞) of the “reduced

regret”—Shepp and Shiryaev (1993) and Duffie et al. (1993). The problem of pricing

this option complicates if we want to treat finite horizon cases (∞ > T > 0).

The case where the underlying asset movement is given by the geometric Brownian

motion, i.e. pricing under the BSM model, was widely studied. For the infinite horizon,

there is a closed form solution, that for convenience of the reader is presented in the

Appendix. For the finite horizon, the theoretical results can be consulted for instance

in Ekström (2004), Peskir (2005) and Duistermaat et al. (2005). The Bachelier model

was analyzed in Kamenov (2008, 2014). In the latest work some theoretical results for

more general models are also presented.

One way of solving this pricing problem is to show that it satisfies a certain free bound-

ary problem for the parabolic PDE. For the BSM model there are several quantita-

tive studies, e.g. Duistermaat et al. (2005) by the method referred to as nth-order

randomization, based on a method proposed by Carr (1998) for American options,

Kimura (2008) applying the Laplace-Carlson transform and Jeon et al. (2016) defining

an equivalent PDE problem with mixed boundary conditions and solving it using Mellin

transform. These methods rely on the possibility of explicit solving the respective trans-

formed problems and hence are restricted to the BSM model.

4.6.1 The set-up of the FBP for FHRO

The value of the FHRO depends on three variables: price of the underlying asset

(s), the maximum of the underlying asset (m) and time (z). As we will see further, it

can be reduced to the FBP with only two variables, due to the homogeneity property

of the value function. The definition of the problem that we follow is from Ekström

(2004, Theorem 1) and Kimura (2008). An equivalent derivation can be consulted in
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Duistermaat et al. (2005, Theorem 3), Peskir (2005) and Peskir and Shiryaev (2006,

Section 26.2.5).

Under the risk neutral measure the FHRO at the time z ∈ [0, T ], with T > 0 being the

time horizon of the option price, is given by

V (s,m, z) = ess sup
0≤θz≤T−z

Es,m
[
e−rθzMθz

]
,

where

Mz = m ∨ sup
0≤u≤z

Su, z ≥ 0,

is the supremum process,

Sz = s exp

{(
r − δ − 1

2
σ2

0

)
z + σ0Bz

}
, z ≥ 0,

is the price process for the underlying asset, with: S0 = s – the initial fixed value; r > 0 –

the risk free rate of interest; δ ≥ 0 – the continuous dividend rate; σ0 > 0 – the volatility

coefficient of the asset price; Bz – the one-dimensional standard Brownian motion on

a filtered probability space
(
Ω,F, (Fz)z≥0 ,Q

)
; (Fz)z≥0 – the filtration generated by Bz;

Q – the probability measure chosen so that the stock has a mean of return r; θz – the

stopping time of the filtration F; Es,m [·] ≡ E [· | F0] = E [· | S0 = s,M0 = m] is calculated

under the risk neutral measure Q. Also, we define the early exercise boundary

S(m, z) = inf{s ∈ [0,m] : (s,m, z) ∈ C},

where C = {(s,m, z) : V (s,m, z) > m} is the so called continuation region. The function

S(m, z) is non-decreasing and continuous in z for δ > 0, see (Ekström, 2004, Theorem

2) and Duistermaat et al. (2005)).
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Theorem 4.6 (Ekström (2004, Theorem 1)) The value of the FHRO is a solution V (s,m, z)

of the following free boundary problem:

Vz +
σ2

0

2
s2Vss + (r − δ)sVs − rV = 0 for S(m, z) < s ≤ m

with boundary conditions:

V (s,m, z) = m if S(m, z) ≥ s,

lim
ε→0

1

ε
(V (s, s+ ε, z)− V (s, s, z)) = 0,

V (s, s, z) = 0 on S(m, z) = s,

Vs (s,m, z) ≤ V (1, 1, z),

V (s,m, T ) = m.

The homogeneity of the function V , that is

V (ks, km, z) = kV (s,m, z), for all k ∈ R+,

suggests that the problem is two dimensional. Consider the following change of the

dependent variable

V (s,m, z) = mV
( s
m
, 1, z

)
=: mu (1− y, t) ,

where

y = 1− s/m and t = T − z (4.36)

are the new independent variables. Moreover, we also introduce the following notation

for the free boundary

b(t) := 1− S(m,T − z)/m.
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Then the FBP problem for the FHRO under the BSM model can be written as follows.

Problem 4.7 Find functions u(y, t) and b(t), a monotone non-decreasing function, such

that

−ut + Mu = 0, for b (t) > y ≥ 0, t ∈ [0, T ], (4.37)

where

M =
1

2
σ2

0 (1− y)2 ∂yy − (r − δ) (1− y) ∂y − r, (4.38)

and the boundary conditions

u (b (t) , t) = 1, (4.39)

uy (b (t) , t) = 0, (4.40)

u (0, t) + uy (0, t) = 0, (4.41)

uy(y, t) + u(0, t) ≥ 0, (4.42)

b (0) = 0 (4.43)

are satisfied.

Problem 4.7 compared to Problem 4.5 has an additional condition (4.42). This con-

dition has to be taken into account in the proposed algorithm. Problem 4.5 has non-

consistent boundary conditions, i.e., it is impossible to satisfy all the boundary con-

ditions simultaneously at the point (0, 0). Indeed, conditions (4.39) and (4.40) imply

u(0, 0) + uy(0, 0) = 1, a contradiction to the condition (4.41). This observation already

leads us to expect the computational difficulties near the origin.

Remark 4.15 The classical transformation can be used to reduce the differential oper-

ator M from (4.38) to pqw form (4.6)—see e.g. Polyanin (2001, Sections 0.4.1-3).
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Remark 4.16 Theoretical results for the free boundary, asymptotics at the origin and

the infinite horizon case. In the case of the infinite horizon (i.e., perpetual option) the

problem can be solved exactly—see Shepp and Shiryaev (1993, 1995). For the sake

of completeness we have included the solution in the Appendix. The infinite horizon is

an important bound that we can use in the minimization process, since we know that

the value of the FHRO should be lower.

The free boundary can not have a smooth behaviour at the origin. This was confirmed

by the theoretical result established in Ekström (2004) and Peskir (2005). The asymp-

totics as t→ 0 is given by

b(t) ∼ σ0

√
t |log(1/t)|. (4.44)

4.7 Numerical experiments

In this section, we analyze the application of the proposed algorithm as well as the

arising numerical issues and their solutions. The results confirm the convergence of the

method as well as some numerical values that appear in the bibliography for Problem

4.7.

4.7.1 First steps

For the implementation details of the first two steps of the proposed algorithm, i.e., con-

struction of a particular solution f and of the coefficients αn and µn we refer the reader

to Kravchenko et al. (2017b), Kravchenko and Torba (2018), Kravchenko et al. (2017a)

and only want to mention that since the maximum upper boundary b∞ is known—see

Appendix 4.10.1, we only need values of E±n (y) on the interval [0, b∞]. In our computa-

tions we have used this knowledge and chose the interval [0, L] to be a bit larger than
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[0, b∞]. All the functions involved were represented by their values on 10000 points

uniform mesh.

4.7.2 The choice of {ωn}

The optimal choice for the set {ωn} is an open question. Since the condition (4.3) is for

the convergence at infinity, we have total liberty for the choice of the first finite number

of ω’s. The only exception is that the pair of solutions for ω = 0 is constructed as a part

of the representation for c(ω, y) and s(ω, y) from Theorem 4.5, see Remark 4.13. For

this reason we always include ω0 = 0 in the set {ωn} and from now on we assume that

0 = ω0 < ω1 < . . . < ωN < . . ..

In the experiments, we used a pseudo-random algorithm to generate {ωn} that depend

on the set up step d > 0 and density ∆ and works as follows: it starts with ω0 = 0

and set ωn+1 = ωn + rn + d, where rn is a random number between 0 and ∆. In our

experience, too few leads to less accurate approximation, too many leads to functions

linearly dependent up to machine error and hence the difficulty in solving the related

linear problems. The upper bound for {ωn} can be easily established: it is set where

the value of e−ωnT becomes too small, (e.g., we have considered |ωnT | < 20). And we

found that about 50 − 100 values of ωn allow us to obtain sufficiently accurate results,

further increase in the number of ωn does not lead to noticeable improvement.

This arbitrariness of the choice allows to test the algorithm under different choices of

ωn, though its convergence to almost the same values is another confirmation of its

robustness.
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4.7.3 Reduced system of solutions

The value function is approximated by a truncated series

uN(y, t) =
N∑
n=0

â±nE
±
n (y)e−ω

2
nt,

where

E±n (y) = T[e±iωnx].

Since we know the value at x = 0 of the solutions forming the CSS {E±n }n∈N and their

derivatives, we can use this information to modify the CSS into one that a priori satisfies

the condition (4.41), that will be denoted by {Ẽn}, and construct an approximate solution

in the form

uN(y, t) =
N∑
n=0

anẼn(y)e−ω
2
nt. (4.45)

It is worthwhile mentioning that we do not have a completeness result for this modified

system of solutions, nevertheless we appeal to Assumption 3 and proceed as follows.

If we can find coefficients for an approximate solution of the form (4.45) such that the re-

maining boundary conditions (4.39) and (4.40) are satisfied sufficiently well, we stay with

these coefficients, if not, we use the complete system of functions {E±n }n∈N. Performed

numerical experiments showed that there was no accuracy advantage in utilizing the

complete system {E±n }n∈N.

Each of the functions Ẽn can be written as a linear combination

Ẽn(y) = c(ωn, y) + βns(ωn, y),

where βn are constants such that the condition Ẽn(0) + (Ẽn)y(0) = 0 is fulfilled and
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hence (4.41) is valid for the truncated series, i.e.,

uN(0, t) + (uN)y(0, t) = 0.

Consequently, for n > 0, using (4.18) and (4.19) we obtain

βn = −
(
1 + f ′(0)

)
p(0)

ωn

√
w(0)
p(0)

.

For n = 0, i.e. ω0 = 0, according to Remark 4.13, the condition for β0 takes the form

c(0, 0) + c′(0, 0) + β0s̃
′(0, 0) = 0 and hence

β0 = −
(
1 + ρ(0)f ′(0)

)√ p(0)

w(0)
.

Thus, the first function for the transmuted basis is given by

Ẽ0(y) = f(y) + β0Φ1(y).

The computation of the value function (4.33) requires the possibility to compute values

of Ẽn(y) at arbitrary point y ∈ [0, L]. For that we have approximated these functions by

splines using the routine spapi in Matlab.

4.7.4 Representation of the free boundary

The boundary asymptotics (4.44) presented in Remark 4.16 possesses factor
√
t and

unbounded derivative at t = 0 suggesting that the polynomial approximation is not the
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best choice for the free boundary and that the following form

sK(t) =
√
t

(
K∑
k=0

bkt
k/2

)
(4.46)

may be better. For faster convergence of the minimization we have orthonormalized the

set of functions {tk/2}k=1,...,K+1, using the L2(0, T ) norm. We have for any polynomials

Pn and Pm ∫ T

0

√
tPn(
√
t) ·
√
tPm(

√
t) dt = 2

∫ √T
0

t3Pn(t)Pm(t) dt.

The orthogonal polynomials on the segment [0,
√
T ] with the weight t3 coincide up

to a multiplicative constant with the Jacoby polynomials P (0,3)
n

(
2t√
T
− 1
)

, see (Szegö,

1975, (4.1.2)). Hence using the formula (4.3.3) from Szegö (1975) we obtain that the

orthonormalized set consists of the functions

βk(t) =

√
(k + 2)t

4T
P

(0,3)
k

(
2

√
t

T
− 1

)
, k = 0, . . . , K.

For the computations K = 9 was used.

The grid t̄ was taken to contain 2000 points and was selected to be less dense near

t = 0 (the problematic point) and more dense near t = T . For that we selected the

points tn as a half of the Tchebyshev points, by the formula tn = T sin(nπ/(2Nt)). The

point t0 = 0 was excluded due to inconsistency of the boundary conditions at this point.

We would like to mention that the norm (4.31) under such selection of the points tn

can be reduced to Lobatto-Tchebyshev integration rule of the first kind, see (Davis

and Rabinowitz, 1984, (2.7.1.14)). We would also like to mention that the uniform

distribution for the points tn worked almost equally well.
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4.7.5 Solution of the least squares minimization problem (4.34)

For the fixed b̃, the minimization Problem 4.6 reduces to an unconstrained least squares

minimization problem (4.34) that can be solved exactly. This solution will be denoted by

ã. It can be constructed as follows. Under the notation

s̃K(t) =
K∑
k=0

b̃kβk(t),

for the free boundary with fixed coefficients b̃, the boundary conditions (4.39) and (4.40)

take the form

1̄ = uN(s̃(t̄), t̄) =
N∑
n=0

ãnẼn(s̃(t̄))eωn t̄,

0̄ = (uN)y(s̃(t̄), t̄) =
N∑
n=0

ãnẼ
′
n(s̃(t̄))eωn t̄.

The relations for ã can be written in the matrix form as

Dã = g, (4.47)

where

D =

 Ẽ0(s̃(t̄))eω0 t̄ ... ẼN(s̃(t̄))eω0 t̄

Ẽ ′0(s̃(t̄))eω0 t̄ ... Ẽ ′N(s̃(t̄))eω0 t̄

 and g =

 1̄

0̄


The solution of this overdetermined system coincides with the unique solution of a fully

determined one—see Madsen and Nielsen (2010, Theorem 5.14), Lawson and Han-

son (1995) or Nocedal and Wright (2006) for various methods of solution. Note that

the linear problem (4.47) is ill-conditioned, meanwhile is better than the one appearing

in relation with the generalized head polynomials, see Kravchenko et al. (2017a). As

a result, we were able to work with approximations (4.45) containing as many as 100
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functions Ẽn. However direct solution of the system (4.47) results in large coefficients

in the solution vector ã and hence in large round-off errors in the resulting approxi-

mate solution (4.45). This can be easily solved by applying Tikhonov regularization to

find a solution vector ã having relatively small coefficients. We have used the Matlab

package Regularization Tools by Christian Hansen (see, e.g., Hansen (1994))

to implement the regularization.

4.7.6 Minimization process

Minimization of the function F̃ from (4.35) was done with the help of fmincon function

from Matlab. As the initial guess for the free boundary we took sK = cβ0, where a

constant c was such that sK(T ) < b∞.

Two additional implementation details were somewhat unexpected to us however re-

sulted in more robust convergence and lower resulting minimum value for the function

F̃ .

Fist, instead of minimizing the function F̃ , we run the minimization process for the

function
√
F̃ . As a result, if in an experiment for the function F̃ the lowest value found

by fmincon was 1.3 · 10−4, when applied to the function
√
F̃ the returned minimum

value for the function F̃ was 5 · 10−9.

Second, the robustness of the minimization process as well as the returned minimal

value may improve by posing additional constrains for the problem, letting somehow

the function fmincon to avoid local minimums. The problem formulation possesses

constrain (4.32) and additionally (see formulation of Problem 4.7) asks the free bound-

ary to be monotone non-decreasing function, which can be written for our approximate
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boundary as

s′K(t) ≥ 0, 0 < t ≤ T. (4.48)

Additionally to these two natural constrains we considered the following one: we asked

the free boundary to be a concave function, such form of the boundary can be see in

Kimura (2008), Jeon et al. (2016). That is, in terms for our approximate boundary we

posed additionally

s′′K(t) ≤ 0, 0 < t ≤ T. (4.49)

This additional constrain resulted to produce excellent results. For different choices

of the exponents {ωk} and different initial guesses for the free boundary, minimization

process always converged to very close results. We have tried to improve the minimum

by using returned vector b̄ as an initial guess and running minimization process without

additional constrain (4.49) however with no success. Other standard ideas like to run

the minimization process for a small K and reuse the returned vector padded with

zeros as an initial guess for larger K do not produce significant improvements.

4.7.7 Numerical results presentation

There are several quantitative studies in the literature on the FHRO for the BSM model.

We will mainly compare our results with the Laplace–Carlson transform method (LCM)

from Kimura (2008) for the long horizon and with the recursive integration method (RIM)

from Jeon et al. (2016) for the short horizon.4.4 For the short horizon we have other val-

ues for the comparison, produced by the binomial tree model (BTM) and also reported

in Jeon et al. (2016). We will refer as TES (transmuted exponential system) for the

results produced by the proposed method

We start by presenting in Figure 4.2 the solution u, value option surface. As expected, it
4.4We would like to thank Junkee Jeon for providing us additional values that where not presented in their paper.
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increases with time (recall that in our notation t = 0 is the option expiry) and in the initial

value of the coefficient s/m. The condition (4.42) is satisfied. The cuts for the value of

the option in time T , i.e. (y, u(y, T )) and the free boundary (t, sK(t)) are presented in

Figure 4.3. We have chosen the following standard parameters for the model: r = 0.05,

δ = 0.03 and σ0 = 0.3.

Figure 4.2: The value function for Problem 4.7, with parameters r = 0.05, δ = 0.03, σ0 = 0.3,
T = 1.
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Figure 4.3: Left: the free boundary sK(t) (blue, upper), the initial boundary sin = 0.1β0 (red,
lower) and the infinite horizon bound b∞ = 0.6211 (top black line). Right: the value of the
option, i.e. uN(y, T ). Parameters (for both figures): T = 1, σ = 0.3, δ = 0.03, r = 0.05,
Nt = 2001, K = 10 and ωn selected with a fixed step of 1/10 and random step of 1/3 (resulting
in N = 68).
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In Figure 4.4 the typical absolute errors that we obtain for the boundary conditions

(4.39) and (4.40) are presented. Recall that condition (4.41) is satisfied by construction.

In Figure 4.5 the typical absolute values of the coefficients ā and b̄ obtained by solving

Problem 4.6 are presented. One can appreciate the smallness of the coefficients ā

due to the Tikhonov regularization and the rapid decrease in the coefficients b̄ as the

consequence of the applied orthonormalization.
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Figure 4.4: The typical approximation errors for the boundary conditions (4.39) and (4.40),
with the same parameters as used to produce Figure 4.3.
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Figure 4.5: The typical absolute values of the coefficients ã and b̄ for Problem 4.6, with the
same parameters as used to produce Figure 4.3.

In Table 4.1 the values of the option for the different time horizons T are shown, bor-
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u(0, T ) u(0.1, T ) u(0.2, T )

T TES LCM BTM RIM TES LCM BTM RIM TES LCM BTM RIM
1/3 1.1340 1.1324 1.1335 1.0462 1.0452 1.0454 1.0065 1.0062 1.0064
7/12 1.1744 1.1727 1.1742 1.0771 1.0761 1.0765 1.0208 1.0203 1.0203
1 1.2237 1.2188 1.2235 1.1175 1.1125 1.0453 1.0426
2 1.3078 1.1891 1.0968
5 1.4401 1.4228 1.3049 1.2890 1.1892 1.1741
10 1.5508 1.5273 1.4029 1.3816 1.2712 1.2517
40 1.6831 1.5208 1.3718
100 1.6904 1.5273 1.3775
∞ 1.6904 1.5273 1.3769

Table 4.1: Option value for Problem 4.7. The fixed parameters are r = 0.05, δ = 0.03 and
σ0 = 0.3.

rowing the parameter configuration of Kimura (2008, Table 1) and Jeon et al. (2016,

Table 1). One can appreciate an excellent agreement of the results produced by the

proposed method with those delivered by the RIM and slightly worse agreement with

the results produced by the BTM. The latter is due to the fact that even 10000 steps

used is insufficient for the BTM to be precise to 4 figures. As for the results from

Kimura (2008), there are two concerns. First, the method used in Kimura (2008) is

based on the Laplace-Carlson transform and requires the option value to be defined

for any t ∈ (0,∞) and to satisfy an equation similar to (4.37) for any t > 0. That is,

a solution should have a continuation across the free boundary satisfying the same

initial condition at t = 0. It is not clear why this rather strong assumption holds, and

if not, how close is the obtained solution to the exact one. Second, the inversion of

the Laplace-Carlson transform was computed by the Gaver-Stehfest method which is

rather delicate to implement and can result in relative errors as high as several %, see

Kuznetsov (2013) and references therein, no error analysis was presented. Neverthe-

less, our results are quite close to those of Kimura.

We can also observe from Table 4.1 that as T increases the algorithm converges to the

infinite horizon value. For T = 100, we are already very close to the theoretical value

of the perpetual option.
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In Figure 4.6 the value of the option under different initial conditions is revealed. By the

definition of y in (4.36) the option is more valuable if the initial supremum of the process

is the same as the initial value of the underlying, i.e. s/m = 1. We present this curve

under different financial parameters σ and r, that can be compared with Jeon et al.

(2016, Figures 2 and 3).
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Figure 4.6: Option value under different initial conditions. The common parameters are T = 1, δ =
0.03. Left: r = 0.05. Right: σ0 = 0.3.

4.8 Final comments and future research

In summary, the proposed method has a lot of potential for further financial engineering

applications possessing path-dependency and early exercise features such as look-

back options, American options, etc. The method is not restricted to the BSM operator

and can easily be applied to any other time-independent differential operator (4.4).
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4.10 Appendix

4.10.1 Russian option with infinite horizon under the BSM model

For the sake of completeness, we include the formula of Shepp and Shiryaev (1993)

for the pricing of the perpetual Russian option. For δ > 0, the upper boundary value is

given by

b∞ = 1−
(
d2(1− d1)

d1(1− d2)

) 1
d1−d2

,

where di, with i ∈ 1, 2, are the solutions to the quadratic equation

1

2
σ2x2 + (r − δ − 1

2
σ2)x− r = 0.

The value of the option is obtained from

u∞ =
1

d2 − d1

{
d2

(
s

b∞

)d1
− d1

(
s

b∞

)d2}
.

The detailed analysis of this problem can be consulted in Peskir and Shiryaev (2006,

Section VII, §26), Kimura (2008) and the references therein.
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4.10.2 Transmuted heat polynomials

The heat polynomials are defined for n ∈ N as—see, e.g., Rosenbloom and Widder

(1959) and Widder (1962),

hn(x, t) =

[n/2]∑
k=0

cnkx
n−2ktk,

where [·] denotes the entire part of the number and

cnk =
n!

(n− 2k)!k!
.

The first five heat polynomials are

h0 (x, t) = 1, h1 (x, t) = x, h2 (x, t) = x2 + 2t,

h3 (x, t) = x3 + 6xt, h4 (x, t) = x4 + 12x2t+ 12t2.

The set of heat polynomials {hn}n∈N∪{0} represents CSS for the heat equation

uxx = ut (4.50)

on any domain D (s) defined by (4.5)—see Colton and Watzlawek (1977).

Similarly to Kravchenko et al. (2017a), we will call the functions Hn = T [hn] the trans-

muted heat polynomials4.5. As corollary of Theorem 4.4 we can show that Hn are

solutions to equation (4.6), i.e., (C− ∂t)Hn (y, t) = 0. Moreover, the set {Hn}n∈N is

a CSS for (4.6) on any domain D (s) defined by (4.5) due to Proposition 4.3 and the

completeness of the system of heat polynomials Colton and Watzlawek (1977).

4.5In Kravchenko et al. (2017a) it is analyzed the case with p ≡ 1 and r ≡ 1 .
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Corollary 4.7 The transmuted heat polynomials admit the following form

Hn(y, t) =

[n/2]∑
k=0

cnkΦn−2k (y) tk. (4.51)

Proof. 4.5 This equality is an immediate corollary of Theorem 4.4. Indeed, we have

Hn(x, t) = T[hn(x, t)] =
∑[n/2]

k=0 c
n
kT[xn−2k]tk =

∑[n/2]
k=0 c

n
kΦn−2k (y) tk, where Theorem 4.4

is used.

The explicit form (4.51) of the functions Hn allows the construction of the approximate

solution to Problem 4.5 by the THP. The presented here is the extension of the results

from Kravchenko et al. (2017a).
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5. Final comments and future research

The thesis is composed by a set of three independent papers, and thus extended

conclusions and contributions of each of them are referred in the text. In this section I

concentrate on the importance of this study as whole.

The optimal stopping problems from mathematical finance can often be described as

boundary problems for certain partial differential equation (PDE) or free boundary prob-

lems for PDE. Each of the chapters 2-4 presents a novel numerical method for the

construction of an approximate solution using the transmutation operators in this type

of problems. In chapter 2 it is considered a fixed boundary problem and in Chapters 3

and 4 are considered free boundary problems.

The methods have a strong theoretical background and the ability to numerically com-

pute the corresponding solutions, which is often rare for this types of problems. They

illustrate the potential of application of TO methods in the optimal stopping problems

that appear in mathematical finance and other fields. For each analysed problem we

were able to extend the pool of the applicable models and presented the numerical

results that can be computed with at least state of the art precision.

For the DBKO, it was possible to extend the computational class of models to general

time-homogeneous diffusion with an arbitrary default rate, opening the possibility to

more realistic modelling of the market.
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In the Stefan-like free boundary problem it was possible to step away from the classical

case (heat equation) and compute the solution to the equation with potential. It is also

worth mentioning that in this article was constructed an exact example that can be

used by future researchers.

The ROFH paper shows that the method has the capacity to deal with problems that

have non-consistent boundary conditions. For ROFH there was no agreement on the

price of the option. The novel method for finding numerical solution under different

horizon lengths was presented and has confirmed values that appeared in the literature

for the short horizon and presenting the values for long horizons, setting this way a new

benchmark for the problem.

The future research possibilities look promising. The constructed method for the ROFH

can be applied to other path dependent options. It does not depend on any particu-

lar model, it should be possible to compute values for options under general time-

independent diffusion models, such as American options, Asian options, etc. It is also

very interesting to develop these constructions for singular models and have the oppor-

tunity to modulate the default scenarios. It might be possible to explore the knowledge

of the form of the solution for estimating the implied model parameters from real data.
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