
 

Repositório ISCTE-IUL
 
Deposited in Repositório ISCTE-IUL:
2019-01-17

 
Deposited version:
Post-print

 
Peer-review status of attached file:
Peer-reviewed

 
Citation for published item:
Rodrigues, D., Prada, M., Gaspar, R., Garrido, M. V. & Lopes, D. (2018). Lisbon Emoji and Emoticon
Database (LEED): norms for emoji and emoticons in seven evaluative dimensions. Behavior Research
Methods. 50 (1), 392-405

 
Further information on publisher's website:
10.3758/s13428-017-0878-6

 
Publisher's copyright statement:
This is the peer reviewed version of the following article: Rodrigues, D., Prada, M., Gaspar, R.,
Garrido, M. V. & Lopes, D. (2018). Lisbon Emoji and Emoticon Database (LEED): norms for emoji and
emoticons in seven evaluative dimensions. Behavior Research Methods. 50 (1), 392-405, which has
been published in final form at https://dx.doi.org/10.3758/s13428-017-0878-6. This article may be
used for non-commercial purposes in accordance with the Publisher's Terms and Conditions for self-
archiving.

Use policy

Creative Commons CC BY 4.0
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in the Repository

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Serviços de Informação e Documentação, Instituto Universitário de Lisboa (ISCTE-IUL)
Av. das Forças Armadas, Edifício II, 1649-026 Lisboa Portugal

Phone: +(351) 217 903 024 | e-mail: administrador.repositorio@iscte-iul.pt
https://repositorio.iscte-iul.pt

https://dx.doi.org/10.3758/s13428-017-0878-6


Running Head: SUBJECTIVE NORMS FOR THE LEED DATABASE 1 

NOTICE: this is the author’s version of a work that was accepted for publication 

in Behavior Research Methods. Changes resulting from the publishing process, 

such as peer review, editing, corrections, structural formatting, and other quality 

control mechanisms may not be reflected in this document. Changes may have 

been made to this work since it was submitted for publication. A definitive 

version was subsequently published as:  

Rodrigues, D. L., Prada, M., Gaspar, R., Garrido, M. V., & Lopes, D. (2018). 

Lisbon Emoji and Emoticon Database (LEED): Norms for emoji and emoticons 

in seven evaluative dimensions. Behavior Research Methods, 50, 392-405. 

doi:10.3758/s13428-017-0878-6  



Running Head: SUBJECTIVE NORMS FOR THE LEED DATABASE 2 

 
 

 

 

Lisbon Emoji and Emoticon Database (LEED): Norms for Emoji and Emoticons in 

Seven Evaluative Dimensions 

 

David Rodriguesa,b, Marília Pradaa, Rui Gasparc, Margarida V. Garridoa, & Diniz 

Lopesa 

 

aInstituto Universitário de Lisboa (ISCTE-IUL), CIS - IUL 

b Goldsmiths, University of London  

cWilliam James Center for Research, ISPA- Instituto Universitário 

 

Note: David Rodrigues, Marília Prada, Margarida V. Garrido, and Diniz Lopes, 

Department of Social and Organizational Psychology, Instituto Universitário de 

Lisboa (ISCTE-IUL), Cis-IUL, Lisboa, Portugal; Rui Gaspar, William James Center 

for Research, ISPA- Instituto Universitário, Lisboa, Portugal. 

Part of this research was funded by Fundação para a Ciência e Tecnologia awarded to 

the first (SFRH/BPD/73528/2010), the third (UID/PSI/04810/2013), and the fourth 

authors (PTDC/MHC-PCN/5217/2014), and by a Marie Curie fellowship (FP7-

PEOPLE-2013-CIG/631673) awarded to the fourth author. 

We thank Nuno Porto for his assistance in preparing the figures. 

 

Correspondence concerning this paper should be addressed to D. Rodrigues, ISCTE-

IUL, Av. das Forças Armadas, Office AA121, 1649-026, Lisbon, Portugal.  



Running Head: SUBJECTIVE NORMS FOR THE LEED DATABASE 3 

E-mail: dflrs@iscte.pt 

Abstract 

The use of emoticons and emoji is increasingly popular across a variety of new 

platforms of online communication. Moreover, they have also become popular as 

stimulus materials in scientific research. However, the assumption that 

emoji/emoticon users’ interpretation always corresponds to the developers/researchers 

intended meaning might be misleading. This paper presents subjective norms of emoji 

and emoticons provided by everyday users. The Lisbon Emoji and Emoticon 

Database (LEED) comprises 238 stimuli: 85 emoticons and 153 emoji (iOS, Android, 

Facebook and Emojipedia). The sample included 505 Portuguese participants 

recruited online. Each participant evaluated a random subset of 20 stimuli in seven 

evaluative dimensions: aesthetic appeal, familiarity, visual complexity, concreteness, 

valence, arousal and meaningfulness. Participants were additionally asked to attribute 

meaning to each stimulus. The norms obtained include quantitative descriptive results 

(mean, standard deviation and confidence intervals), and meaning analysis per 

stimulus. We also examined the correlations between the dimensions, and tested for 

differences between emoticons and emoji, as well as between two major operating 

systems – Android and iOS. The LEED constitutes a readily available normative 

database (available at www.osf.io/nua4x) with potential applications to different 

research domains.  

 

Keywords: LEED; emoticons; emoji; aesthetic appeal; familiarity; visual complexity; 

concreteness; valence; arousal; meaningfulness; meaning analysis; normative ratings; 

Android; iOS; Facebook; ICTs 
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Lisbon Emoji and Emoticon Database (LEED): Norms for Emoji and Emoticon in 

Seven Evaluative Dimensions 

 

Human communication involves the transmission of abstract and concrete 

information using verbal and non-verbal symbols (for a review, see Richmond & 

McCroskey, 2009). Since a few decades ago, and particularly as of the beginning of 

the 21st century, innovations in technology have dramatically changed the way people 

communicate with each other. With internet usage and smartphone ownership 

increasing worldwide, including in emerging economies (PEW Research Center, 

2016), different forms of written communication mediated by Information and 

Communication Technologies (ICTs) have been introduced. These include instant 

messaging and email applications based on ICT devices operating systems (Android, 

iOS) or messaging services (e.g., Gmail, Whatsapp), VoIP systems providers (e.g., 

Skype), social networking sites (e.g., Facebook) and social media platforms (e.g., 

Twitter). 

Some authors suggest that these forms of communication filter out social, 

affective and non-verbal/visual cues, and can originate less effective communication 

outcomes (Walther & D’Addario, 2001; e.g., Walther, 1996). However, other studies 

also show that the absence of such cues does not necessarily render communications 

less effective. Instead they may promote the implementation of uncertainty reduction 

strategies to compensate for this absence (Antheunis, Valkenburg, & Peter, 2007, 

2010). In particular, the use of written paralanguage cues, often used in written 

communicative contexts, has been identified as a strategy to overcome the absence of 

certain cues, because they convey meaning (e.g., Lea & Spears, 1992). These cues 

include typographical marks (i.e., letters and numbers) and ideograms (e.g., graphic 
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symbols), identified as “typographic or text-based emoticons” and “graphic 

emoticons” respectively (e.g., Huang, Yen, & Zhang, 2008; Wang, Zhao, Qiu, & Zhu, 

2014). In the late 1990s, the latter emerged as an independent strand of meaning and 

emotional expression through ideograms and pictographs that could be used across 

ICT platforms. These came to be known as emoji, created with the goal of facilitating 

mobile communication (Negishi, 2014; Nelson, Tossell, & Kortum, 2015).  

In addition to their massive use in daily written communications, both 

emoticons and emoji are being increasingly used in applied domains, such as 

marketing and health, as well as stimulus materials in scientific research (e.g., 

Davidov, Tsur, & Rappoport, 2010; Hogenboom et al., 2013; Skiba, 2016; Thelwall, 

Buckley, & Paltoglou, 2012; Thelwall, Buckley, Paltoglou, Cai, & Kappas, 2010; 

Vashisht & Thakur, 2014; H. Wang & Castanon, 2015). However, their selection, 

coding and analysis may be somewhat biased by assuming a direct correspondence 

between the users’ interpretation of emoji/emoticon and their intended meaning (e.g., 

a sad face emoji is negative and will be perceived as such).  

In this study we report evaluations of emoticons and emoji provided by ICT 

users. Specifically, we present the Lisbon Emoji and Emoticon Database (LEED), 

which includes systematic evaluations of emoji and emoticons in several evaluative 

dimensions, as well as results concerning the meanings attributed to the stimuli. We 

provide the first set of normative evaluations for 238 stimuli comprising 85 emoticons 

and 153 emoji, based on seven evaluative dimensions: aesthetic appeal, familiarity, 

visual complexity, concreteness, valence, arousal and meaningfulness. In addition, we 

examined the meaning attributed to each stimulus. It is our contention that the LEED 

contributes to the literature by proposing subjective norms for emoji and emoticons as 

stimuli and guaranteeing quality of the codebooks used in both research and practice 
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in a multitude of areas (e.g., affective priming). 

Emoticons and Emoji in ICT Mediated Communication 

Emoticons and emoji have been considered a new medium to share daily 

narratives, emotions and attitudes with others through ICTs (for a review, see Gülşen, 

2016). Emoticons (from emotion + icon) are symbols created by using punctuation, 

numbers or letters, with the intention to transmit feelings or emotional states, 

information in the absence of words, or to complement a written message (Dresner & 

Herring, 2010; Krohn, 2004; Thompson & Filik, 2016). The first known emoticons :( 

and :) were proposed in 1982 and are attributed to Scott E. Fahlman, a professor at the 

Carnegie Mellon’s School of Computer Science, who created them in an attempt to 

differentiate serious posts from joke remarks in a bulletin board1. Since then, 

emoticons have hugely increased in number and the current list of emoticons is 

extensive and spans from simple symbols to highly complex ones (e.g., 

http://www.netlingo.com/smileys). Emoticons include representations of facial 

expressions, typically sideways [western style; e.g., ;)], as well as representations of 

abstract concepts and emotions/feelings (e.g., <3). Other emoticons are represented in 

a right way up position [eastern style; e.g., (*^.^*)].  

Emoji (from the Japanese e [picture] + moji [character]) are graphic symbols 

with a pre-defined name/ID and code (Unicode), and include not only representations 

of facial expressions (e.g., ), abstract concepts (e.g., ), and emotions/feelings 

(e.g., ), but also animals (e.g., ), plants (e.g., ) activities (e.g., ), 

gestures/body parts (e.g., ) and objects (e.g., ). Presumably, emoji were first 

proposed by Shegetaka Kurita during the late 1990s, who created them while working 

at a mobile phone operator in Japan to facilitate mobile communication (Negishi, 

																																																								
1 For a first-person account of emoticon history, see http://www.cs.cmu.edu/~sef/sefSmiley.htm 
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2014). Currently, there are more than 2,000 emoji supported by different platforms, 

and they are constantly evolving and becoming more diverse (http://emojipedia.org). 

For instance, new Unicode releases (e.g., Unicode 11.0 released in 2016) include 

emoji that represent different social groups, varying for example in ethnicity (e.g., 

), and age (e.g., ). 

Ganster, Eimler, and Krämer (2012) pointed out some major general differences 

between emoji and emoticons. Compared to emoticons, emoji are colored, are not 

rotated by 90º and, in those representing facial expressions, the face is often delimited 

by a circle and may include multiple facial cues. 

Emoticons and emoji are increasingly popular in our everyday life. They are a 

constant presence in the way we communicate in the virtual world (e.g., social media, 

email, text messages; Gülşen, 2016). Nowadays, emoji are also being included in 

everyday products (e.g., toys, home decoration items, or even clothes). Moreover, 

emoji have been integrated in the way artists communicate with their audience (e.g., 

Katy Perry’s “Roar” music video), and in the way brands connect with consumers (for 

a review, see Wohl, 2016). For instance, brands have included emoji in advertising 

campaigns (e.g., McDonalds used people with emoji as their heads; Beltrone, 2015), 

and have developed new sets of brand-related emoji (e.g., Dove launched a set of 

curly-haired emoji; Neff, 2015). In another example of emoji popularity, the Oxford 

Dictionaries considered the emoji  (“face with tears of joy”) to be “the word of the 

year 2015”. Just on Twitter alone, this emoji registered 6.6 billion uses in that year 

(@TwitterData).  

Scientific research about emoticons and emoji is also increasing. Some of the 

studies examined naturalistic data, such as public messages posted on social media 

platforms (e.g., Twitter, Google forums, Facebook) to understand and characterize 
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emoticon/emoji usage. For example, Novak, Smailović, Sluban and Mozetič (2015) 

proposed the Emoji Sentiment Ranking, an index of positivity based on the frequency 

of each emoji used in negative, neutral and positive tweets. Also, Ljubešić and Fišer 

(2016) used tweets as their dataset and investigated how popular emoji are on Twitter, 

which countries exhibited greater emoji usage, and the popularity of specific emoji. 

Similarly, Tossell and colleagues (2012) conducted a longitudinal study monitoring 

the use of emoticons in text messages. This type of descriptive analysis can also be 

conducted in specific domains. For example, Vidal, Ares and Jaeger (2016) examined 

tweets about eating situations and how people used emoticons/emoji to spontaneously 

express food-related emotional experiences. Other studies used similar naturalistic 

data to monitor a given event (e.g., public health information; Paul & Dredze, 2011) 

or to examine event-centered reactions, opinions, feelings, evaluations or emotions 

(e.g., elections; Burnap, Gibson, Sloan, Southern, & Williams, 2016). Even though 

these studies have typically relied on emotional word lexicons, more recently 

researchers have called upon the need to extend these lexicons to include emoticons 

and emoji (B. Liu, 2012; Pang & Lee, 2008). 

Research focusing on emoticon/emoji usage and functions, suggests that these 

stimuli serve two key functions: to portray emotional or social intent, and to reduce 

potential discourse ambiguity (for a review, see Kaye, Wall, & Malone, 2016). 

Skovholt, Grønning and Kankaanranta (2014) showed that such stimuli also function 

as contextualization cues (e.g., markers of positive attitudes that facilitate message 

interpretation) and as organizers of social relationships in written interaction (e.g., 

reducing perceived interpersonal distance by decreasing impersonality/formality). As 

examples of these functions, Lo (2008) showed that adding emoticons to online 

messages improved receivers' understanding of the intensity and valence of the 
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emotions (sad vs. happy) and attitudes (like vs. dislike) expressed by the sender. 

Likewise, Ganster and colleagues (2012) showed that using a smiling (vs. frowning) 

emoji/emoticon impacts on how the message is evaluated (i.e., more positive and 

humorous), how the sender is perceived (i.e., more extroverted), and how the receiver 

feels (i.e., more positive mood). Derks, Bos and von Grumbkow (2008) further 

showed that emoticons are useful to strengthen the intensity of a message (e.g., a 

positive message with a smile emoticon is rated more positively than the same 

positive message without that emoticon). Yet, in the case of incongruence between 

valence of the message and of the emoticon (e.g., positive message accompanied by a 

frown emoticon), message interpretation relies more on the text content.  

Another line of research adopts experimental methodologies to examine how 

the presentation of emoticon/emoji influences different phenomena. For example, 

Wang and colleagues (2014) focused on the effects of adding positive and negative 

emoji to messages regarding workplace performance on recipient’s acceptance of 

negative feedback. Likewise, Tung and Deng (2007) tested how the presentation of 

emoji in an e-learning environment affected children’s motivation. In another 

example, Siegel and colleagues (2015) investigated if including emoji on food 

packages influenced children´s meal choice. Emoji and/or emoticons have also been 

used as experimental materials on studies focusing on affective processing (e.g., Han, 

Yoo, Kim, McMahon, & Renshaw, 2014; Kerkhof et al., 2009; Yuasa, Saito, & 

Mukawa, 2011). For example, positive and negative emoji have been used as primes 

to induce valence, influencing responses (event-related potentials) to valenced target 

words  (e.g., Comesaña et al., 2013). Also, research has shown that novel target words 

primed with positive emoji are more likely to be erroneously categorized as familiar 

(e.g., Garcia-Marques, Mackie, Claypool, & Garcia-Marques, 2004). Finally, 
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emoji/emoticons have also been used for research methods development, for example 

as anchors in rating scales assessing current emotional states (e.g., Moore, Steiner, & 

Conlan, 2013), emotional associations with specific stimuli (e.g., food names; Jaeger, 

Vidal, Kam, & Ares, 2017), well-being (Fane, MacDougall, Jovanovic, Redmond, & 

Gibbs, 2016) or pain (e.g., Chambers & Craig, 1998). 

Methodologies and Tools for Emoticons/Emoji Analysis 

The selection, coding and analysis of emoticons and emoji as direct indicators 

of emotional meaning conveyed by messages are either based on human (e.g., Park, 

Baek, & Cha, 2014; Vidal et al., 2016), or computer-based procedures (Davidov et al., 

2010; Hogenboom et al., 2013; Vashisht & Thakur, 2014; H. Wang & Castanon, 

2015). A computer-based procedure relies on machine-learning algorithms and 

semantic lexicons that apparently provide a more objective analysis of 

emoticons/emoji usage. Nevertheless, both human- and computer-based procedures 

may be prone to bias because they exclusively rely on the evaluations of, and 

meanings attributed by, researchers/analysts, without taking into consideration the 

way they are perceived by the users. One area in which this has been particularly 

worrisome, is the field of computer based sentiment analysis (Thelwall et al., 2012, 

2010), which allows detecting and analyzing sentiment/affective reactions, based on 

semantic analysis of written text. Such analyses rely on codebooks developed by 

researchers based on the commonly accepted designations/feelings portrayed by 

emoticons and emoji (e.g., Emoticon Smoothed Language Models, Liu, Li, & Guo, 

2012; SentiStrenght coding manual for sentiment in texts available at 

http://sentistrength.wlv.ac.uk/; e.g., Thelwall et al., 2012, 2010). 

The Emoji Sentiment Ranking (Novak et al., 2015) constitutes an attempt to 

overcome some of these limitations. However, this index focuses exclusively on the 
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valence dimension and does not take into account other relevant information such as 

the level of arousal elicited by a given emoji or the meaning attributed to it. 

Therefore, standardized procedures for the classification of emoticons/emoji are still 

missing. 

In our view, this state of affairs may have two potential problems. First, the 

stimuli selection, coding and analysis may be prone to biases from researchers’ own 

evaluations of the stimuli (e.g., analyses based on ad hoc emotionality categorization 

made by two coders; Park et al., 2014). Second, there may be a biased assumption that 

emoticon/emoji users’ interpretation necessarily corresponds to the 

developers/researchers intended meaning. Because emoji/emoticons are not usually 

labeled when presented (with the exception being the Facebook emoji set), they are 

open to interpretations. Indeed, users can select an emoji based on superficial visual 

features, which can lead to misinterpretations of meaning and intent. For example, 

one may wish to express sadness by selecting a tearful emoji and mistakenly choose 

 (face with tears of joy), instead of  (face with tears of sadness). Additionally, the 

same emoticon/emoji can be used to represent a variety of meanings. For instance, a 

smiley face may be used to express happiness, but may also be used to express 

agreement with or liking something/someone, express one’s physical or mental 

wellbeing state, express empathy, comprehension, or other meanings. Moreover, the 

same emoticon/emoji can also be interpreted differently according to the 

communication context. For example, emoticons such as :p and ;) are typically 

described as positive, but can also be used as markers of irony (Carvalho, Sarmento, 

Silva, & de Oliveira, 2009), or sarcasm (Thompson & Filik, 2016). Finally, emoji 

with the same intended meaning may have distinct visual representations across 

operating systems, potentially leading to different interpretations and evaluations 
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(Miller et al., 2016). To sum up, as with other types of visual stimuli, emoji/emoticons 

are prone to subjectivity in their evaluation and interpretation, which supports the 

need to develop a normative database.  

Normative data are abundant in the literature (for reviews, see Prada, Rodrigues, 

Silva, & Garrido, 2015; Proctor & Vu, 1999). These validated databases typically 

include stimuli such as words (e.g., Bradley & Lang, 1999a), sounds (e.g., Bradley & 

Lang, 1999b), or images depicting a broad range of contents (e.g., Dan-Glauser & 

Scherer, 2011; Lang, Bradley, & Cuthbert, 2008). Regarding the latter, some 

databases include for example visual materials such as simple line drawings (e.g., 

Bonin, Peereman, Malardier, Méot, & Chalard, 2003; Snodgrass & Vanderwart, 

1980), or symbols (e.g., Mcdougall, Curry, & Bruijn, 1999; Prada et al., 2015). Other 

databases are theme-focused and include specific contents such as food (e.g., 

Blechert, Meule, Busch, & Ohla, 2014; Charbonnier, van Meer, van der Laan, 

Viergever, & Smeets, 2016) or human faces (e.g., Ebner, Riediger, & Lindenberger, 

2010; Garrido et al., 2016; Mendonça, Garrido, & Semin, 2016).  

The absence of published normative data on visual stimuli such as emoticons 

and emoji has two important consequences. First, it implies the additional effort of 

pretesting materials to meet study demands. For example, prior to their affective 

priming study, Comesaña and colleagues (2013) had to conduct two extensive pretests 

in which 180 participants evaluated the valence, arousal and meaning associated to 

each emoji. Second, the comparison of results between studies can be challenging 

because stimuli are often categorized ad hoc. For example, in their study on tweets 

about food, Vidal and colleagues (2016) had two coders categorizing emoji and 

emoticons as negative, neutral or positive by considering their intended meaning or 

available description. Park and colleagues (2014) also had two coders categorizing 
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emoticons in three levels, but considered a different dimension (emotionality: sad, 

neutral, happy) and distinct criteria (emotion conveyed by shape of the eyes and by 

the shape of the mouth).  

In the current paper we present the normative ratings of a set of emoticons and 

emoji from the two most used operating systems – Android and iOS. We also 

included emoji reactions from the most used social networking platform – Facebook. 

Each stimulus was evaluated regarding its aesthetic appeal, familiarity, visual 

complexity, semantic clarity, valence and arousal of the meaning conveyed, and 

meaningfulness. Additionally, we assessed the subjective meaning attributed by 

participants to each stimulus. We selected this set of seven evaluative dimensions 

based on previous norms with other types of visual stimuli. Specifically, we followed 

the methodology adopted in a recent validation study (for a detailed review of the 

dimensions of interest, see Prada et al., 2015), with the exception of adding the 

dimension of clarity, which has emerged as a relevant for the evaluation of facial 

expressions (for a review, see Garrido et al., 2016).  

Method 

Participants 

A sample of 505 Portuguese individuals (71.7% women; Mage = 31.10, SD = 

12.70) volunteered to participate in a web survey. These individuals were recruited 

on-line through Facebook (university institutional page and online studies 

advertisement page) and mailing services (students mailing lists). All participants 

were native Portuguese speakers or lived in Portugal for the last five years. The 

sample comprised mostly university students (46.7%) and active workers (43.3%), 

with at least a Bachelor degree (46.0%). Most participants indicated Android/Google 

(67.5%) or iOS (26.3%) as their operating system. 
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Stimulus Set 

The LEED includes 238 stimuli2: 85 emoticons and 153 emoji (77 iOS, 63 

Android, 9 Facebook and 4 Emojipedia) mostly representing facial expressions of 

emotions (e.g., “happy face”) and/or symbolic meanings (e.g., “silence”)3.  

The emoticon set was developed based on the list of emoticons presented in 

the “Twitter emotion coding instructions”4 for the SentiStrenght™ tool (Thelwall et 

al., 2010; adapted from Wiebe, Wilson, & Cardie, 2005), used for sentiment detection 

in short texts. This list included 63 Western style emoticons (e.g., Emot07, see Figure 

1) and 23 Eastern style emoticons (e.g., Emot56a, see Figure 1). One symbol was 

removed due to unavailability in mobile phone text packages (:Þ). 

Because a given emoticon can sometimes vary in its presentation, variations of 

the same stimulus were included. For example, Emot01 (“laughing, big grin”) has 

three variations identified in the database from Emot01a to Emot01c. Each emoticon 

was generated in black 28-point Arial font on a white background and saved as a 

single image file (72x68 px, 72 dpi, RGB, PNG format). 

According to the information available at the Unicode foundation 

(http://unicode.org/emoji/charts/full-emoji-list.html), we selected emoji with an 

intended meaning similar to emoticons. Figure 1 depicts examples of emoticons and 

emoji for “laughing” and “crying”. As in the case of emoticons, variations of the same 

emoji were included. The 153 emoji set was extracted from the Emojipedia database 

(http://emojipedia.org/) and included stimuli from the two most used and available 

operating systems at the time the study was performed: Apple iOS 9.3 (used in 

																																																								
2 The full set of stimuli is available as online supplemental material, and at www.osf.io/nua4x. This 
includes the corresponding Unicode references (http://unicode.org/emoji/charts/full-emoji-list.html) 
and intended meanings for each emoticon/emoji proposed by the Unicode foundation. 
3 For identifying the stimuli in our database, we used the prefixes: Emot = Emoticon; Emj = Emoji; Ap 
= Apple iOS; An = Google Android; Fb = Facebook; Pe = Emojipedia. 
4 Available at http://sentistrength.wlv.ac.uk/documentation/TwitterVersionOfSentimentCodeBook.doc 
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iPhone, iPad, iMac, Apple Watch, Apple TV) and Google Android 6.0.1 (Android 

devices, Gmail Web Interface, Google Hangouts, and Google Chrome internet 

browser). 

Emoji were matched across operating systems according to their Unicode 

reference. Of the 153 emoji set, 63 stimuli were represented in both operating systems 

(all 63 Android emoji had a corresponding iOS emoji), 14 were only represented in 

the iOS operating system (e.g., EmjAp51) and eight were represented in both 

operating systems and in the Facebook reactions set (see Figure 1)5. This latter subset 

included nine emoji: the like/dislike buttons (EmjFb76 and EmjFb77, respectively), 

the recently added “Facebook Reactions” (five faces expressing emotions, EmjFb07 

to EmjFb67; one heart symbol, EmjFb71), and the new like button (EmjFb78). Lastly, 

four Emojipedia images (EmjPe86 to EmjPe89) were also included in the final set. 

These Unicode 9.0 emoji were not available in Android or iOS operating systems at 

the time of the study (e.g., EmjPe89), but were included in order to represent 

potentially future official emoji not currently available. Each emoji was saved as a 

single image file (72x72 px, 72 dpi, RGB, PNG format). 

The vast majority of the emoji set represents facial expressions (88.89%), the 

exceptions being popular symbols (3.27%; e.g., heart, EmjAn71; heartbreak, 

EmjAn72) and hand gestures (7.84%; e.g., hand palm, EmjAp75).  

																																																								
5	Except for the new “like” emoji which had no correspondence, given that the old “like” button was 
the one used as a correspondent to similar emoji in iOS and Android. Moreover, a non-existent emoji 
in Facebook, the “dislike” emoji (representing the “like” emoji in an inverted position), was also 
included in the stimuli set given that when the study materials were created there were news stating 
that Facebook would include this option in their platform, which proved later on not to be the case.	
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Figure 1. Sample emoticons and emoji across operating systems for “laughing” and 

“crying” (stimuli codes are included). 

Procedure and Measures 

The study was conducted using Qualtrics® software. Participants were invited 

to collaborate on a web survey about the perception and evaluation of emoticons and 

emoji. After clicking on the hyperlink, participants were directed to a secure webpage 

and were informed about the goals of the study and its expected duration 

(approximately 20 minutes). Initial instructions provided the definition of emoji and 

emoticons and examples of each type of stimulus were presented (emoticon:  

and emoji: ). To avoid overlap, these examples were different from the stimuli 

used in the evaluation task. Participants were also informed that all the data collected 

would be treated anonymously and that they could abandon the study at any point by 

closing the browser, without their responses being considered for analysis. 

After providing their informed consent to collaborate in the study (by 

checking the “I agree” option), participants were asked to provide information 

regarding their age, sex, educational level, current occupation, and their operating 

system. Following this, they were given specific instructions to evaluate each stimulus 

in seven evaluative dimensions, namely: aesthetic appeal, familiarity (subjective 

frequency), visual complexity, clarity, valence, arousal, and meaningfulness (all 

dimensions rated using 7-points Likert-type scales; detailed instructions for each scale 

are presented in Table 1; see also Garrido et al., 2016; Prada et al., 2015). These 
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dimensions were randomly presented per trial in the evaluation task.  Finally, 

participants were requested to write the first meaning or emotion that came to their 

mind for each stimulus in an open-ended response format, or alternatively select the 

option “I do not know” if they were not able to provide a specific meaning or emotion. 

Instructions also emphasized that responses would have to be fast and spontaneous 

and that there were no right or wrong answers. 

Table 1 

Instructions and Scale Anchors for each Dimension 

Dimension Instructions Scale 

1. Aesthetic appeal 
 

In your opinion, considering the visual 
characteristics of the symbol, and not 
the object or concept it may depict, 
how visually appealing is the 
stimulus? 
 

1 = Visually unpleasant/unappealing; 
7 = Visually very pleasant/appealing 

2. Familiarity 
 

How frequently do you encounter or 
see this stimulus in your daily routine? 
More frequently encountered stimuli 
are more familiar. 
 

1 = Not familiar; 
7 = Very Familiar 

3. Visual complexity 
 

Considering the complexity of the 
visual characteristics of the stimulus, 
and not those of the concept that can 
be related to it, how much visual detail 
and complexity does this stimulus 
contain? The more details the stimulus 
contains, the more complex it is. 
 

1 = Very simple; 
7 = Very complex 

4. Clarity 
 

How clear or ambiguous is this 
stimulus? Stimuli that, in your opinion, 
clearly convey an emotion/meaning 
should be considered clear. Otherwise, 
they should be considered more 
ambiguous. 
 

1 = Totally ambiguous; 
7 = Totally clear 

5. Valence 
 

To what extent do you consider this 
stimulus refers to something 
positive/pleasant or 
negative/unpleasant. 
 

1 = Very negative; 
7 = Very positive 
 

6. Arousal 
 

To what extent do you consider this 
stimulus refers to something 
arousing/exciting or passive/calm? 
 

1 = Very passive/calm; 
7 = Very arousing/exciting 
 

7. Meaningfulness 
 

Please indicate to what extent this 
stimulus conveys a meaning/emotion. 

1 = Conveys no meaning/emotion at all; 
7 = Conveys a lot of meaning/emotion 
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Participants then proceeded to the main task. In order to prevent fatigue and 

demotivation, each participant only saw a sub-set of 20 randomly selected stimuli 

from the available pool of 238 stimuli. Each stimulus was presented in a single page 

of the web survey. We used the force response option, such that participants were 

required to answer each question in order to progress in the survey. The number of 

participants evaluating each stimulus varied between 40 and 49. The stimuli were 

always presented on the top left corner of the page, with all evaluative dimensions 

presented below. Upon completing the task, participants were thanked and debriefed. 

Results 

The norms for the full set of stimuli are provided as supplementary material. 

In the following sections we present: a) the preliminary analysis regarding outlier 

detection; b) the analysis of the differences by gender and operating system; c) the 

subjective rating norms for each dimension; d) the correlations between evaluative 

dimensions; and e) the analysis of attributed meaning/emotion.  

Preliminary Analysis 

Because only completed surveys were included in the analysis, there were no 

missing cases. Outliers were determined considering the criterion of 2.5 standard 

deviations above or below the mean evaluation of each stimulus in a given dimension. 

This analysis yielded a small percentage (1.32%) of outlier ratings. Moreover, none of 

the participants responded systematically in the same way (i.e., using the same value 

of the scale). Therefore, no participants were excluded.  

Emoticons and Emoji Evaluations 

Comparing the evaluations of emoticons and emoji on each dimension for the 

total sample (see Table 2), overall results show that emoji (vs. emoticons) were rated 

as aesthetically more appealing, t(498) = -24.82, p < .001, d = 1.11, more familiar, 
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t(498) = -23.73, p < .001, d = 1.06, clearer, t(497) = -31.45, p < .001, d = 1.41, more 

positive, t(498) = -2.50, p = .013, d = 0.11, more arousing, t(498) = -21.51, p < .001, d 

= 0.96, and more meaningful, t(498) = -31.00, p < .001, d = 1.39.  

Table 2 

Evaluations (Mean and Standard Deviation) for Emoticons and Emoji in each 

Dimension for the Total Sample, Men and Women and Mean Difference Tests 

  
Total Sample  

(N = 505)   
Men  

(n = 143)   
Women 

(n = 362)   
Difference test 

for gender 

Stimulus/Dimension M SD   M SD   M SD   t p 

Emoticons            

Aesthetic appeal 3.01a 1.13   3.09a 1.19   2.89a 1.11   0.91 .373 

Familiarity 3.38a 1.30  3.29a 1.31  3.42a 1.30  -1.03 .306 

Visual complexity 3.39a 1.25  3.35a 1.20  3.41a 1.27  -0.50 .612 

Clarity 3.52a 1.20  3.48a 1.17  3.54a 1.21  -0.49 .622 

Valence 3.96a 0.82  3.96a 0.83  3.95a 0.82  0.08 .941 

Arousal 3.90a 0.81  3.95a 0.80  3.88a 0.81  0.88 .379 

Meaningfulness 3.69a 1.22   3.62a 1.22   3.70a 1.23   -0.39 .699 

Emoji            

Aesthetic appeal 4.65b*** 1.04  4.55b*** 0.99  4.69b*** 1.05  -1.42 .141 

Familiarity 4.86b*** 1.18  4.55b*** 1.14  4.99b*** 1.17  .3.85 < .001 

Visual complexity 3.52a 1.24  3.52a 1.14  3.53a 1.27  0.05 .965 

Clarity 5.33b*** 0.93  5.15b*** 0.91  5.41b*** 0.93  -2.87 .003 

Valence 4.08b* 0.85  4.01a 0.80  4.11b* 0.87  -1.20 .204 

Arousal 4.84b*** 0.86  4.73b*** 0.84  4.88b*** 0.87  -1.73 .079 

Meaningfulness 5.43b*** 0.85  5.29b*** 0.81  5.49b*** 0.86  -2.43 .015 
Note. Subscripts indicate 5,000 bootstrap samples paired sample t tests comparing emoticons and emoji 
on each evaluative dimension, by column. Different subscripts indicate significant differences: *** p < 
.001, * p < .050. p values for gender differences correspond to 5,000 bootstrap samples paired samples 
t-tests. 
 

Gender differences. The general results of the comparison between emoticons 

and emoji were also observed in both women and men subsamples. However, men 

provided equivalent valence ratings for emoticons and emoji. We also tested for 

gender differences in the evaluation of emoticons and emoji on each dimension. As 

shown in Table 2, no gender differences emerged in the ratings of emoticons. 
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Replicating this analysis for emoji, results showed that women evaluated emoji as 

more familiar, clear and meaningful than men, all p < .015. This pattern of results 

remained the same after controlling for the main operating system used by 

participants, all p < .019. 

Operating system differences. Emoji evaluations were compared between 

Android and iOS operating systems (Table 3). Results show that iOS emoji were 

evaluated as more aesthetically appealing, familiar, clearer and meaningful, all 5,000 

samples bootstrapped p < .006. In contrast, no differences between operating systems 

were found for visual complexity, valence and arousal, both 5,000 samples 

bootstrapped p > .059.  

Table 3 

Evaluations (Mean and Standard Deviation) for Android and iOS Emoji in each 

Dimension for the Total Sample and Mean Difference Tests 

  Android   iOS     Difference test 

Stimulus/Dimension M SD   M SD     t (504) p 

Aesthetic appeal 4.45 1.22   4.77 1.11    6.38 <.001 

Familiarity 4.43 1.53  5.05 1.22   10.40 <.001 

Visual complexity 3.59 1.32  3.55 1.27   -0.89 .370 

Clarity 5.12 1.12  5.30 0.99   3.70 <.001 

Valence 3.85 1.01  3.95 0.91   1.89 .059 

Arousal 4.74 0.98  4.77 0.95   0.69 .494 

Meaningfulness 5.31 1.04   5.42 0.92    2.72 .006 
Note. 5,000 bootstrap samples paired sample t tests comparing Android and iOS emoji on each 
evaluative dimension. 
 
Subjective Rating Norms 

In order to define subjective rating norms, data was further coded and 

analyzed by stimulus. For each stimulus, we calculated frequencies, means, standard 

deviations and confidence intervals (CI) in each dimension (see Appendix 1). Based 

on these results, stimuli were categorized as Low, Moderate or High in each 
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dimension (for a similar procedure see Prada et al., 2015). When the CI included the 

response scale midpoint (i.e., 4) stimuli were considered as “Moderate” in a given 

dimension. Stimuli were categorized as “Low” when the upper bound of the CI was 

below the scale midpoint and as “High” when the lower bound of the CI was above 

the scale midpoint. In the case of valence, Low means Negative, Moderate means 

Neutral, and High means Positive. Figures 2 and 3 presents a summary of this 

analysis for emoticons and emoji separately. 

 

Figure 2. Emoticon frequency distributions in each dimension level. Note. For 

valence: Low = Negative, Moderate = Neutral, High = Positive. 

 

As shown in Figure 2, the majority of emoticons were categorized as low in 

aesthetic appeal (76.47%), familiarity (57.65%), and clarity (50.59%), and as 

moderately arousing (55.29%). Moreover, results show that most emoticons were 

categorized as low (48.24%) or moderate (44.71%) in complexity, and as low 

(43.53%) or moderate (36.47%) in meaningfulness. Regarding valence, emoticons 

were distributed across the three levels: low (42.35%), moderate (30.59%), and high 

(27.06%).  
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Figure 3. Emoji frequency distributions in each dimension level. Note. For valence: 

Low = Negative, Moderate = Neutral, High = Positive. 

 

Figure 3 shows that the majority of emoji were categorized as highly familiar 

(58.82%), clear (79.08%), arousing (65.36%) and meaningful (88.24%). Results 

further show that emoji were categorized as high (49.02%) or moderate (45.10%) in 

aesthetic appeal, and moderate (54.25%) or low (43.10%) in complexity. Of notice, 

emoji were somewhat polarized in their valence, being mostly categorized as low 

(49.02%) and high (42.48%) in this dimension. Figure 4 depicts examples of 

emoticons and emoji for each level per evaluative dimension.  
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Figure 4. Sample emoticons and emoji in each level across dimensions (LEED stimuli 

codes are included). Note. For valence: Low = Negative, Moderate = Neutral, High = 

Positive. 

 

Correlations Between Dimensions 

Overall, results show significant correlations between dimensions (see Table 

4). For example, meaningfulness was strongly correlated with aesthetic appeal (r = 

.547), familiarity (r = .648), clarity (r = .743) and arousal (r = .506). Also, clarity was 

strongly associated with aesthetic appeal (r = .538) and familiarity (r = .704). 

Aesthetic appeal was also strongly associated with familiarity (r = .556).  

Table 4 
Pearson's Correlations Between the Dimensions 
Dimensions 1 2 3 4 5 6 

1. Aesthetic appeal -      
2. Familiarity .556*** -     
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3. Visual complexity -.038*** -.188*** -    
4. Clarity .538*** .704*** -.175*** -   
5. Valence .403*** .250*** -.032*** .176*** -  
6. Arousal .266*** .314*** .106*** .398*** -.005 - 
7. Meaningfulness .547*** .648*** -.062*** .743*** .123*** .506*** 

*** Correlation is significant at the .001 level (2-tailed). 
 

Analysis of Attributed Meaning/Emotion 

In addition to meaningfulness ratings, participants were also asked to indicate 

the meaning or emotion attributed to each stimulus. Percentage of responses was 

computed considering the sample size that evaluated a given stimulus. Two 

independent judges coded the meaning/emotion attributed by the participants to each 

symbol (for a similar strategy see, for example, Prada et al., 2015). Synonyms (e.g., 

“don't speak” and “silence”, EmjAp31) and singular/plural forms (e.g., “smiles” and 

“smile”, Emot1c) were included in the same category. The meaning of 15 emoticons 

was not categorized due to a low percentage of responses (i.e., < 25%). For example, 

from the 42 participants that evaluated Emot32, only eight indicated meaning, from 

which two were categorized as “smile”, two as “ignore”, and the remaining were 

uncategorized. Note that the sum of percentages of both categories does not 

necessarily equals 100. For example, 48.4% of the valid responses for EmjAp47 were 

categorized as “glad”, 25.8% as “upside down”, whereas the remaining responses (n = 

8) were heterogeneous and therefore uncategorized (e.g., “normality”; “sarcasm”).  

The percentage of meaning responses varied between 4.3% (Emot75) and 

95.0% (Emot01a) for emoticons (M = 49.9%, SD = 24.1), between 46.9% (EmjAn24) 

and 100% (e.g., EmjAn71) for Android emoji (M = 84.6%, SD = 11.9), and between 

48.8% (EmjAp24) and 100% (e.g., EmjAp57) for iOS emoji (M = 86.9%, SD = 11.3). 

Moreover, the percentage varied between 90.7% (EmjFb17) and 100% (e.g., 

EmjFb76) for Facebook emoji (M = 95.7%, SD = 2.9), and between 74.4% (EmjPe86) 
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and 97.8% (e.g., EmjPe88) for Emojipedia emoji (M = 82.9%, SD = 10.8). Within 

each operating system, results regarding the first category showed that, on average 

participants agreed on the meaning of both Android (64.95%) and iOS (66.78%) 

emoji. 

A detailed discussion of the meaning or emotion attributed to each stimulus 

would be too extensive. The complete meaning analysis is presented in Appendix 2 

alongside the Unicode intended meaning for comparison purposes. In some cases, the 

meaning categorization converged with the Unicode intended meaning. For instance, 

participants attributed a congruent meaning to the “winking face” stimulus in its 

different formats. For emoticon (Emot08a) the most frequent meanings were “wink” 

(40.5%) and “agree” (21.6%), for the iOS emoji (EmjAp08) these were 

“agree/compliance” (40.0%) and “wink” (28.6%), and for the Android emoji 

(EmjAn08) these were “wink” (40.6%) and “compliance” (25.0%). 

In other cases, there was only partial convergence. For example, the emoji 

“face savoring delicious food” was interpreted as “cheeky/fun” (63.2%) and “tasty” 

(18.4%) in the iOS emoji (EmjAp10), and as “wink/cheeky” (59.4%) and “tasty” 

(12.5%) in the Android emoji (EmjAn10). In another example, the emoji “imp” was 

attributed the meanings “evil” (60.0%) and “mischief/prank” (30.0%) in the iOS 

emoji (EmjAp70), and “evil/mischief” (62.5%) and “rage” (22.5%) in the Android 

emoji (EmjAn70). 

In addition, for other stimuli the attributed meaning differed across operating 

systems and from the Unicode intended meaning. For example, the emoji “dizzy face” 

was attributed the meaning “shocked” (66.7%) in the iOS emoji (EmjAp66), and 

“confusion” (46.5%) and “hypnotized” (18.6%) in the Android emoji (EmjAn66). 

These examples clearly illustrate that the meaning participants assign to emoji is not 
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always convergent with their Unicode intended meaning and also varies across 

operating systems. 

Discussion 

In this paper we present the LEED, which includes 238 emoticons and emoji, 

evaluated across seven evaluative dimensions: aesthetic appeal, familiarity, visual 

complexity, clarity, valence, arousal, and meaningfulness. Additionally, participants 

attributed meaning to each stimulus. To our knowledge, this is the first available 

emoticon/emoji normative database.  

First of all, results showed that, in comparison to emoticons, emoji are 

perceived as more aesthetically appealing and familiar, clearer and more meaningful. 

Most emoticons were categorized as low in aesthetic appeal, familiarity, clarity, 

valence and meaningfulness, whereas most emoji were categorized as high in 

familiarity, clarity, arousal and meaningfulness. This may be associated with an 

increasing popularity and use of emoji. Indeed, recent evidence shows that as emoji 

usage increases the usage of emoticons decreases (Pavalanathan & Eisenstein, 2015). 

Also, in the case of stimuli depicting facial cues, the graphical representation of emoji 

may be more appealing because they are better proxies to human facial expressions 

(e.g., Ganster et al., 2012).  

Second, results showed no gender differences regarding the evaluation of 

emoticons. Emoji, however, were evaluated as more familiar, clear and meaningful by 

women. This finding converges with empirical evidence showing that women were 

more likely than men to use emoji (e.g., Fullwood, Orchard, & Floyd, 2013). Third, 

recent literature suggests the need to take into account possible differences in emoji 

evaluation across operating systems (Miller et al., 2016). Indeed, our results show that 

iOS emoji were evaluated as more aesthetically appealing, familiar, clear and 
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meaningful than Android emoji. Fourth, overall we found significant correlations 

between the evaluative dimensions (e.g., stimuli that were perceived as more 

meaningful were also perceived as more aesthetically appealing, familiar, clear and 

arousing). This pattern replicates findings from databases of other visual stimuli using 

the same evaluative dimensions (Garrido et al., 2016; Prada et al., 2015).  

Fifth, in addition to presenting normative ratings across dimensions, our 

database includes participants’ interpretation of the meaning of each stimulus. 

Participants were more likely to attribute meaning to emoji than to emoticons 

irrespectively of the operating system (iOS vs. Android). It is important to note that 

even though participants described the meaning in terms of what the stimulus directly 

represents (e.g., wink), they were also likely to go beyond this mere description and 

infer about its intent (e.g., being cheeky). This is particularly relevant because it 

allows researchers to assess the extent to which the intended meaning overlaps with 

the meaning attributed by users, and more importantly because our findings show this 

is not always the case. However, as in previous research, our coding system for the 

meaning has shortcomings that render this overlap subjective (see limitations below).  

Emoticons and emoji are often analyzed in the absence of information about 

the context in which they are communicated (Gaspar, Pedro, Panagiotopoulos, & 

Seibt, 2016). This was also the case of the current research in which ratings were 

obtained by presenting the stimuli in isolation. This can constitute a limitation, 

because the interpretation of visual stimuli is often context-dependent (e.g., Wolff & 

Wogalter, 1998). Emoticons/emoji are typically incorporated in a message and 

research has already shown that they can influence how the message is interpreted 

(e.g., Derks et al., 2008; Fullwood et al., 2013). Moreover, the reverse may also 

occur, such that the content of the message can influence the interpretation of 
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emoticons/emoji (e.g., Miller et al., 2016). For instance, a winking emoji can be 

interpreted differently when accompanied by “Let’s go to the movies ;)” versus “Let’s 

watch a movie at my place ;)”. Furthermore, emoticons/emoji interpretation can also 

depend on how the sender’s goals are perceived (Gaspar, Barnett, & Seibt, 2015; 

Gaspar et al., 2016). For instance, winking emoji accompanying a sarcastic remark 

can be differently interpreted when the sender is a close friend or when the sender is 

one’s boss. 

Another limitation to the present study concerns the specific cultural context 

where this dataset was developed. Culture has emerged as a factor that influences 

emoticon and emoji usage in online communication (Park et al., 2014). Our normative 

dataset was obtained with Portuguese participants and, according to recent data 

(Ljubešić & Fišer, 2016), Portugal ranks fourth in Europe for emoji usage on Twitter. 

Nevertheless, as with other normative databases, generalizations to other populations 

should be made with caution and cross-validation is recommended. Therefore, future 

studies may explore extending this study and resulting database to other 

countries/cultures to assess cross-cultural differences and similarities. It should also 

be noted that differences may arise between studies that analyze how emoticon and 

emoji are evaluated in isolation from the context in which they are often used, and 

those focusing on how users actually contextualize them in communication. For 

example, in our study participants perceived emoji as negative or positive, whereas 

the work by Novak and colleagues (2015) showed that users mostly use positive 

emoji in their tweets.   

Finally, the results from the meaning analysis indicated that intended meaning 

and users’ interpretation of that meaning do not always overlap. Two independent 

coders analyzed and categorized the responses given by participants to each stimulus. 
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Although this procedure is not exempt from bias, the lack of overlap constitutes an 

important indicator that the selection of emoji and emoticons to use in research or 

practice should be carefully conducted, based on more objective normative data such 

as reported in the LEED. Other procedures could be used to determine users’ 

interpretation of meaning. For instance, researchers could use forced choice tasks 

(i.e., decide which emotion/meaning is expressed by the stimuli; Vaiman, Wagner, 

Caicedo, & Pereno, 2015). 

The LEED mostly includes stimuli depicting graphical representations of 

faces. Research has shown that this type of emoji is processed similarly to other 

human nonverbal information (e.g., voice and facial expression; Yuasa et al., 2011) 

and that emoji can be used to prime social presence (Tung & Deng, 2007). Therefore, 

our stimuli can be used in studies concerning affective processing and be used as 

experimental primes in this regard. Future studies could also seek to expand our 

normative ratings to other emoji representing humans (e.g., bodily postures and 

activities). Considering that recently new emoji varying in age group and skin tone 

were added to the available set in different platforms, it would be interesting to 

examine whether they are suitable as stimulus materials in research designed to 

examine topics such as person perception, intergroup relations, and social influence.  

The LEED is a useful tool for researchers and practitioners (e.g., public health 

officials) interested in conducting research with naturalistic data (e.g., user-generated 

messages shared on social media platforms). It can also be used in a variety of 

experimental paradigms, particularly when the control of stimuli characteristics is 

required. Instead of relying their selection, coding and analysis of emoticons and 

emoji on ad hoc categorization and intended meaning, researchers and analysts can 

rely on the systematic normative ratings offered by the LEED.  
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This type of database has also the potential to be used in more applied contexts 

comprising ICTs mediated written communication, such as in marketing, education 

and professional contexts (e.g., Skiba, 2016; Skovholt et al, 2014). Particularly 

promising is the field of health informatics (see, for instance, Eysenbach, 2011). Both 

human based and computer based evaluations of ICT users reactions to health related 

events have been used for a variety of public health issues monitoring and 

surveillance (e.g., influenza like diseases and dengue; Milinovich, Williams, 

Clements, & Hu, 2014). In such monitoring, machine learning algorithms and 

semantic lexicons often use computer based techniques. These techniques would 

benefit if based on normative ratings as offered by the LEED.  
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