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ABSTRACT   

State-of-the-art light field (LF) image coding solutions, usually, rely in one of two LF data representation formats: Lenslet 

or 4D LF. While the Lenslet data representation is a more compact version of the LF, it requires additional camera metadata 

and processing steps prior to image rendering. On the contrary, 4D LF data, consisting of a stack of sub-aperture images, 

provides a more redundant representation requiring, however, minimal side information, thus facilitating image rendering. 

Recently, JPEG Pleno guidelines on objective evaluation of LF image coding defined a processing chain that allows to 

compare different 4D LF data codecs, aiming to facilitate codec assessment and benchmark. Thus, any codec that does not 

rely on the 4D LF representation needs to undergo additional processing steps to generate an output comparable to a 

reference 4D LF image. These additional processing steps may have impact on the quality of the reconstructed LF image, 

especially if color subsampling format and bit depth conversions have been performed. Consequently, the influence of 

these conversions needs to be carefully assessed as it may have a significant impact on a comparison between different LF 

codecs.  

Very few in-depth comparisons on the effects of using existing LF representation have been reported. Therefore, using the 

guidelines from JPEG Pleno, this paper presents an exhaustive comparative analysis of these two LF data representation 

formats in terms of LF image coding efficiency, considering different color subsampling formats and bit depths. These 

comparisons are performed by testing different processing chains to encode and decode the LF images. Experimental 

results have shown that, in terms of coding efficiency for different color subsampling formats, the Lenslet LF data 

representation is more efficient when using YUV 4:4:4 with 10 bit/sample, while the 4D LF data representation is more 

efficient when using YUV 4:2:0 with 8 bit/sample. The “best” LF data representation, in terms of coding efficiency, 

depends on several factors which are extensively analyzed in this paper, such as the objective metric that is used for 

comparison (e.g., average PSNR-Y or average PNSR-YUV), the type of LF content, as well as the color format. 

The maximum objective quality is also determined, by evaluating the influence of each block from each processing chain 

in the objective quality of the reconstructed LF image. Experimental results show that, when the 4D LF data representation 

is not used the maximum achieved objective quality is lower than 50 dB, in terms of average PSNR-YUV. 

Keywords: Light Field, Light Field Image Coding, Light Field Data Representation, JPEG Pleno, Objective Performance 

Assessment 
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1. INTRODUCTION  

Light field (LF) imaging technology allows the acquisition of not only radiance data from the light rays hitting the camera’s 

sensor, but also their angular information. This is possible by using a microlens array (MLA) located between the camera’s 

main lens and the camera sensor [1], each microlens creates a micro-image (MI) on the sensor. Thus generating 3D 

information, which enables a set of relevant features, like changing the focus and the perspective after the picture has been 

taken [1]. 



 

 
 

 

 

 

When capturing a LF image, the sensor capacity is being used to capture both spatial and angular information. Because of 

this, the rendered images tend to present only a fraction of the total available spatial resolution of the camera sensor [2]. 

Therefore, LF cameras tend to use larger sensors, i.e., more than 40 Megapixels [3], increasing the total amount of 

information to be stored or transmitted, when compared with traditional cameras. Since state of the art image coding 

solutions were not designed for LF images, when applying these techniques to LF image coding, i.e., without the use of 

proper LF compression techniques, the coding efficiency can be very low. 

To render a 2D image from LF data, metadata provided from the acquisition camera is necessary. Since there is no current 

standard which specifies the metadata required for rendering purposes, several authors have proposed different solutions 

that require different amounts of metadata do be stored or transmitted. There are two main LF image formats that will be 

referred to as Lenslet and 4D LF [4]. The Lenslet data representation requires minimum pre-processing before the encoding 

step, however, in order to properly render the images from the decoded LF image, camera metadata is required [4], [5]. 

The 4D LF data representation consists on a stack of sub-aperture images (SAIs), which are generated from the Lenslet 

LF image [5], prior to the encoding step. The 4D LF data representation requires more pre-processing than the Lenslet data 

representation, but this format facilitates the rendering at the decoder side since minimal camera metadata is required [4]. 

However, the 4D LF representation is less compact data representation.  

Several authors have proposed coding solutions specifically for Lenslet or 4D LF data representation, which can be divided 

into four categories [6]. The first category corresponds to direct use of a coding standard like HEVC [7] or the upcoming 

JEM [8] to encode the LF image. However, as mentioned before, current state of the art coding solutions are not suited for 

LF image coding, due to the lack of coding tools to exploit non-local spatial redundancy, i.e., neighboring MI redundancy.  

The second category, includes techniques that make direct use of the coding standards combined with some reversible pre-

processing techniques. This category includes pseudo-video sequence (PVS) based techniques [9]–[11], where the LF 

image is converted into a stack of SAIs. This stack of SAIs is organized by using a specific scanning strategy, e.g., raster 

or spiral [9], [10], forming a video sequence of SAIs. The PVS is then encoded using a standard video codec, like HEVC, 

where the temporal prediction tools are used to exploit inter-view redundancy from the sequence of SAIs. The coding 

efficiency is generally higher than with the former approach. 

The third category is based on solutions that combine new coding tools specific for LF images with existing coding 

standards [12]–[16]. The authors in [12] presented a low order prediction (LOP) tool to exploit neighboring MI redundancy, 

based on a block matching approach. This LOP tool was later on extended [13] with a bi-directional search algorithm. 

Alternatively, a prediction tool based on template matching and Locally Linear Embedding (LLE) was proposed in [14], 

[16], allowing to outperform the LOP tool. It was also shown that by increasing the order of the prediction in the LOP tool, 

i.e., using a high order prediction (HOP) tool, the coding efficiency of LF images could also be improved [15]. 

The fourth category is characterized by novel coding solutions, specifically created for LF image coding. Some examples 

of this category include research work presented in [17]–[19]. The work in [17], [19] shows that is possible to achieve high 

coding efficiency by transmitting a limited number of SAIs, normally referred to as Structural Key Views (SKV) to the 

decoder and then reconstructing the remaining SAIs based on additional information that is either transmitted or implicitly 

generated. In [17] the additional information is a stack of approximated disparity maps for the SAIs that are implicitly 

generated at the decoder, and residual information that is transmitted to the decoder to compensate the prediction error of 

the remaining SAIs. In [19], no information is transmitted to the decoder apart from four SKV, the remaining LF image is 

generated from the synthesized SAIs. In [18], a compact representation of LF is proposed, based on the optimization of 

low rank approximations of the LF and one or several homography matrices.   

Although in the four categories both LF data representations are used, very few comparisons exist between techniques 

applied for different formats. Additionally, very few in-depth comparisons were made on the effects of using different LF 

representations when trying to assess coding efficiency. The authors in [4] performed some tests comparing both Lenslet 

and 4D LF data representations, however this study was limited to four LF images using YUV 4:2:0 with 8 bit/sample. 

To compare different coding techniques when encoding LF images that rely on different data representations and color 

formats, JPEG Pleno [20] provided a processing chain for objective comparison [21], [22]. However, the common output 

LF data representation selected to calculate the objective metrics is the 4D LF data representation. Consequently, any 

alternative LF data representation, e.g., Lenslet, needs additional processing steps in order to be converted into 4D LF and 

then compared using the suggested objective metrics [21].  



 

 
 

 

 

 

In this paper, an in-depth analysis of using Lenslet and 4D LF data representations is presented. Using the JPEG Pleno 

guidelines, an exhaustive comparative study is presented for both LF data representations, in terms of LF image coding 

efficiency and use of different color formats. Each combination of LF data representation and color format needs a specific 

processing chain in order to be objectively compared with a reference LF image. To further analyze the consequences of 

each processing chain, the maximum achievable objective quality is also determined by applying each processing chain 

without encoding and decoding each LF image.  

The remainder of this paper is organized as follows: in Section 2 both LF data representations are described, Section 3 

describes the processing chains required for each combination of LF data representations and color formats, Section 4 

presents the experimental results and, finally, Section 5 concludes the paper. 

2. LENSLET AND 4D LF DATA REPRESENTATIONS 

In this section the Lenslet and 4D LF data representations will be described and compared. Since JPEG Pleno Group 

recommends the EPFL LF dataset [23], where all LF images have been captured with a Lytro Illum LF camera, the 

description and comparison of both data representations will be based on this type of images. Lytro Illum uses a 40MP 

image sensor, which generates images with a resolution of 7728×5368 pixels with 10 bit/sample, the MLA is organized in 

a hexagonal grid, where each MI has a diameter of approximately 15 pixels. Additionally, most of the processing steps 

that are applied, as suggested by JPEG Pleno call for proposals [21], using the LF Toolbox for Matlab [24].  

2.1 Lenslet data representation 

The Lenslet data represents a LF image after applying the demosaicking and the devignetting steps to a raw LF image. The 

Lenslet LF image is shown on the top of Figure 1. The demosaicking step is used to generate an RGB LF image from the 

raw LF captured by the camera. The devignetting step is applied to reduce the vignetting effect at the borders of each MI. 

The devignetting step in the LF Toolbox uses images that are available for each Lytro Illum LF camera that were taken 

using a white diffuser, or of a white scene.  

Although the Lenslet data representation requires minimum pre-processing on the encoder side, in order to render an output 

view using the Lenslet LF image some metadata is necessary that consequently needs to be transmitted or stored in addition 

to the LF image itself. The metadata includes the estimated center position each MI which is extrapolated from the white 

images provided for each camera. This information is used to convert the Lenslet into the 4D LF data representation. 

Additionally, general metadata is provided for each individual image, e.g., zoom and focus settings. 

2.2 4D LF data representation 

The 4D LF data representation is a format that organizes the LF image into a four-dimensional array of data that can be 

defined as 𝐿𝐹(ℎ, 𝑣, 𝑥, 𝑦). It comprises a stack of SAIs that is generated from the Lenslet data representation. The first two 

dimensions index the SAI location using horizontal and vertical coordinates, and the remaining two dimensions index the 

x and y spatial position within each SAI. The 4D LF data representation indexing is shown in Figure 2.  

The 4D LF data representation shares the initial steps with the Lenslet data representation, where demosaicking and 

devignetting pre-processing steps are applied (see brief description below). After these initial steps, Lenslet to SAIs 

conversion is applied in two steps. In the first step, resampling, rotation and scaling is applied so all MI centers can be 

aligned with an integer grid of pixels. The second step applies transforming and slicing to the LF image with the aligned 

MI centers. In this step, the hexagonally sampled data is converted into a square based grid of MIs. After this step, the 

SAIs can be constructed by extracting one pixel from a fixed position, in each MI, and organizing them into a matrix. 

When using the Lytro Illum, 15×15 SAIs with an individual resolution of 625×434 can be extracted, from the raw LF, 

using the LF Toolbox. This means that the total number of pixels is increased by about 47%, when compared to the Lenslet 

data representation. 

An optional rendering step can be applied, which may include color and gamma correction, and also rectification of each 

SAI. In this work, the suggested color and gamma correction matrices from JPEG Pleno were applied to each SAI, but the 

rectification tool was not used, in order to reduce the total amount of processing blocks in each test.   



 

 
 

 

 

 

Once the LF image is converted into the 4D LF data representation, i.e., a stack of SAIs, it can be organized in several 

ways. For example, a single LF image with concatenated squared 15×15 pixel MIs (4DLF-MI) as in Figure 1; all the SAIs 

concatenated in one single frame (4DLF-SAI); or generating a so called pseudo video sequence (PVS), using the SAIs, 

where a scanning order like raster or spiral is used (4DLF-PVS). All these conversions are possible and reversible due to 

the four-dimensional indexing, which also facilitates view rendering. 

 

 

Figure 1 – LF image using Lenslet (top) and 4DLF-MI (bottom) data representations, characterized by a non-integer 

hexagonal-based grid and an integer square-based grid, respectively 

 



 

 
 

 

 

 

 

Figure 2 – 4D LF data representation indexing (image  “Fountain and Vincent 2“ i.e. I09  from the EPFL LF dataset) 

3. PROCESSING CHAIN FOR OBJECTIVE QUALITY ASSESSEMENT 

JPEG Pleno proposes a reference processing chain to assess the coding efficiency of different LF coding solutions (see 

Figure 3). This processing chain aims to accommodate different LF coding solutions that may rely on different LF data 

representations [21]. However, objective and subjective performance evaluation is done using a common data 

representation: the 4D LF data representation [21]. Therefore, regardless of the coding approach, the corresponding output 

format must be converted into a 4D LF, organized as a stack of RGB 4:4:4 10-bit SAIs, i.e., the same format of the 

Reference LF image generated using the reference processing chain shown in Figure 3. 

 

 

Figure 3 – JPEG Pleno reference LF processing chain [21] 

 

The JPEG Pleno reference LF processing chain is comprised by the steps described in the previous section to generate the 

Lenslet and 4D LF data representation from the raw LF data. To assess the objective quality of a proposed LF image codec, 

it is required to encode and decode the images using a coding solution and then converting the LF image to the 4D LF data 

representation using a RGB 4:4:4 10 bit color format. If the proposed codec is limited to a specific LF data representation, 

e.g. Lenslet, and or a specific color format, e.g. YUV 4:2:0 8 bit, the processing chain needs to be adapted.  

The following subsections will tackle the adaptations required by the processing chain when two data representations are 

tested: Lenslet and the 4D LF common data representation. Additionally, for both data representations two color 

subsampling formats with different bit depths are also compared, YUV 4:4:4 10 bit/sample (10-bit) and YUV 4:2:0 8 

bit/sample (8-bit). 



 

 
 

 

 

 

3.1 Processing chain for the Lenslet data representation 

When the Lenslet data representation is used in a given codec, since it is different from the 4D LF common data 

representation, some adaptations to the processing chain are necessary. These adaptations will allow the output LF image 

to use the same data representation and color format as the Reference LF image, and therefore be comparable in terms of 

objective metrics. Additionally, since each codec might be designed for a specific color format, the required color 

conversions for the specific color format must also be included.  

The processing chain for a Lenslet data representation with an YUV 4:4:4 10-bit format is shown in Figure 4.  

 

 

Figure 4 – Processing chain to encode LF data with Lenslet data representation and YUV 4:4:4 10-bit format 

In the case of Figure 4, the proposed codec uses the YUV 4:4:4 10-bit format, therefore the necessary color conversion is 

applied prior to the encoding step. After encoding and decoding of the lenslet LF image, a conversion to the 4D LF data 

representation is necessary. The provided LF Toolbox for such conversion requires the input to use RGB 4:4:4 10-bit 

format, therefore the decoded Lenslet LF image is converted to such specific color format and then converted to 4D LF 

data representation. Color and Gamma correction is applied to the 4D LF image, and finally, it is converted to YUV 4:4:4 

10-bit in order to be compared with the Reference LF image in terms of objective metrics. 

When a different color format is necessary, e.g., YUV 4:2:0 8-bit, the necessary changes to processing chain are shown by 

the yellow blocks in Figure 5. 

 

 

Figure 5 – Processing chain to encode LF data using the Lenslet data representation and YUV 4:2:0 8-bit color format 

 

In Figure 5, the encoded Lenslet LF image is in the YUV 4:2:0 8-bit format, therefore the color quality may be potentially 

degraded, but the amount of information to be compressed is greatly reduced. 



 

 
 

 

 

 

When using the Lenslet data representation, some additional information, i.e., camera metadata [4], would be necessary to 

be transmitted to the decoder in order to allow a proper view rendering. Converting the Lenslet data representation into 4D 

LF facilitates the view rendering [4]. This metadata must include, at least, the MI center coordinates and MI size [5]. Any 

other alternative data representation format to 4D LF requires a processing step to convert the specific data representation 

to 4D LF using RGB 4:4:4 10-bit, in order to be compared with the Reference LF image. 

3.2 Processing chain for the 4D LF data representation 

For encoding the LF image using some variation of 4D LF data representation, the processing chain is more straightforward 

than when using the Lenslet data representation. In Figure 6, the required processing chain for 4D LF is shown. 

 

 

Figure 6 – Processing chain to encode LF data using the 4D LF data representation and YUV 4:4:4 10-bit color format 

 

As mentioned in the previous section, 4D LF can be used in several variants. In this paper only two variants are considered: 

4DLF-MI and 4DLF-PVS. The 4DLF-MI consists on a 2D frame with all MIs concatenated as a matrix and the 4DLF-

PVS is a video sequence of SAIs using a spiral scan [10]. Although the formats are different, the conversion between both 

is seamless, without losing any information. However, in order to encode the LF image using the 4DLF-PVS variant, 

efficiently exploiting the redundancy between each SAI, a video codec is necessary. 

In the case of Figure 6, the 4D LF image is converted into the color format required by the proposed codec, in this case 

YUV 4:4:4 10-bit. After this step, the image is converted into the 4D LF variant to be tested, either 4DLF-MI or 4DLF-

PVS. Finally, the resulting LF data is encoded, decoded and compared with the Reference LF image. This comparison can 

be done directly, because these 4D LF variants can be converted to SAIs to determine the objective quality metrics.  

When the proposed codec is limited to the color format YUV 4:2:0 8-bit, the blocks in yellow in Figure 7 need to be added 

to the previously described processing chain. 

 

 

Figure 7 – Processing chain to encode LF data using the 4D LF data representation and YUV 4:2:0 8-bit color format 

 



 

 
 

 

 

 

In this case, since the required color format is YUV 4:2:0 8-bit, a color conversion block is added to the processing chain, 

after the proposed codec block. This allows the output LF image to be compared with the Reference LF image. 

 

3.3 Comparison of Lenslet and 4D LF data representations 

The following major differences between the Lenslet and 4D LF data representations may drastically impact on the 

objective performance assessment: 

1. Camera metadata: By effectively converting the LF data into a stack of SAI, the 4D LF data representation does 

not require any camera metadata to perform basic rendering tasks at the decoder side, namely, view generation 

and focus change. However, when using the Lenslet data representation, some specific camera metadata is 

required to enable proper rendering tasks. This information is not standardized; however, it could include 

transmitting the MI size and MI centers, which are necessary to convert from the non-integer hexagonal grid to 

the integer squared grid of MIs.  

2. LF image resolution: In the case of the Lenslet data representation, the LF image resolution will be the native 

resolution, i.e., 7728×5368 pixels for the Lytro Illum. However, when this format is converted to the 4D LF data 

representation, the number of pixels is expanded to 9375×6510 pixels, or 625×434×15×15 pixels, when using 

4DLF-MI or 4DLF-PVS data representations, respectively, which represents an increase of around 47% in the 

amount of data to be transmitted to the decoder. Therefore, the Lenslet data representation is much more compact 

if camera metadata is not considered. 

3. Color processing: Due to the color conversion and color and gamma correction processing steps, which are 

necessary for both 4D LF and Lenslet data representations, color degradation along the processing chain is likely 

to occur. In such case, the Lenslet data representation is likely to suffer from a more prevalent degradation of 

color components when compared to the 4D LF data representation, because of two main reasons: 1) The number 

of color conversions steps for both YUV 4:4:4 10-bit and YUV 4:2:0 8-bit is higher; 2) The Color and Gamma 

correction step is only performed on the decoder side after the losses introduced by the codec and by the color 

conversion processing steps, reducing the final color accuracy.  

4. EXPERIMENTAL RESULTS 

In this section, the LF data representations described in the previous sections, namely Lenslet, 4DLF-MI and 4DLF-PVS, 

are tested and compared. Additionally, for each LF data representation two color formats, YUV 4:4:4 10-bit and YUV 

4:2:0 8-bit, are used in the codec block of the processing chain. With these combinations of LF data representation and 

color formats, the effects of the suggested processing chain are evaluated in terms of objective results. The codec used in 

these experimental tests is the HM-16.9 implementation of HEVC-RExt [25], that may use different coding profiles, 

depending on the combination of the LF data representation and color format. The following six scenarios, along the 

specific coding profiles and used processing chains, were tested: 

1. Lenslet YUV 4:2:0 8-bit, using Main Intra profile and the processing chain of  Figure 5; 

2. 4DLF-MI YUV 4:2:0 8-bit, using Main Intra profile and the processing chain of  Figure 7; 

3. 4DLF-PVS YUV 4:2:0 8-bit, using Main profile and the processing chain of  Figure 7; 

4. Lenslet YUV 4:4:4 10-bit, using Main 4:4:4 10 Intra profile and the processing chain of  Figure 4;  

5. 4DLF-MI YUV 4:4:4 10-bit, using Main 4:4:4 10 Intra profile and the processing chain of  Figure 6; 

6. 4DLF-PVS YUV 4:4:4 10-bit, using Main 4:4:4 10 profile and the processing chain of  Figure 6. 

In the following subsections, the specific block settings for each processing chain is described, as well as the achieved 

experimental results and individual conclusions. 



 

 
 

 

 

 

4.1 Color correction 

The Reference LF images were generated by the reference processing chain, shown in Figure 3, using the LF Toolbox v0.4 

for the Demosaicking, Devignetting and Conversion to 4D LF data representation blocks. Regarding the Color and Gamma 

correction blocks, the LF Toolbox was modified to accommodate the Color Correction suggested in the final version of 

the Call for Proposals from JPEG Pleno [21]. 

 𝐶𝑜𝑙𝑜𝑟𝑀𝑎𝑡𝑟𝑖𝑥 =  [
2.4036 −0.4913 −0.3136

−1.2089 1.6521 −0.9322
−0.1947 −0.1607 2.2458

];    𝐶𝑜𝑙𝑜𝑟𝐵𝑎𝑙𝑎𝑛𝑐𝑒 =  [1 1 1];    𝐺𝑎𝑚𝑚𝑎 = 1 (1) 

 

After applying the Color and Gamma correction defined by (1), the Reference LF image was generated and ready to be 

compared with the output LF images, either from the Lenslet or 4D LF processing chains. 

4.2 Chroma and bit depth upsampling and downsampling 

In order to generate output LF images in the 4D LF data representation to be compared with the Reference LF image, the 

processing chains described in the previous section are used. Regardless of using the Lenslet or 4D LF data representations, 

the color conversion blocks are necessary to convert the LF images to YUV 4:4:4 10-bit or YUV 4:2:0 8-bit.  

The conversion from RGB to YUV is done using the Recommendation ITU-R BT.601-5, however in the latest common 

test conditions document released by JPEG Pleno the Recommendation ITU-R BT.709-6 is used [22]. Although the results 

are slightly different using different color conversion standards, the conclusions in this paper still hold, since the same 

color conversion standard is applied in both reference processing chain and proposed codec processing chain.  

Additionally, subsampling the chroma components from YUV 4:4:4 to YUV 4:2:0 and upsampling from YUV 4:2:0 is 

done using scripts provided for the ICME 2016 Light Field Challenge [26]. Bit depth downsampling from 10-bit to 8-bit 

is performed by truncating the two least significant bits. Bit depth upsampling from 8-bit to 10-bit is done by multiplying 

the pixel value in 8 bits by 4. 

4.3 Objective performance assessment 

In order to access the objective performance of the proposed codec, in this case HEVC-RExt, for six different scenarios, it 

is necessary to: 1) calculate the number of bits per pixel the codec uses to encode the LF image and the metadata necessary 

to perform image rendering; 2) calculate the average PSNR of each rendered view, in comparison to the views rendered 

from the Reference LF image. 

Since the EPLF dataset is based on LF images, captured using the Lytro Illum LF camera, the number of possible views 

that can be extracted using the LF Toolbox is 15×15. However, since the outer views are mostly unusable, JPEG Pleno 

recommends that only the results for the inner 13×13 views are evaluated [22]. Because of this, when the 4D LF data 

representation is used, the outer views are discarded before the encoding step, so effectively, only 13×13 views are 

encoded. Each view has a resolution of 625×434 pixels, thus the total number of pixels is 45 841 250 [22]. Although it is 

a significant reduction in the number of views, i.e., from 225 views to 169 views, consequently, the spatial resolution used 

to encode the 4D LF data representation is still, roughly, 11% larger than the one used by the Lenslet data representation. 

The number of bits per pixel is calculated by dividing the number of bits used to encode the LF image by the total number 

of pixels. 

Likewise, the average PSNR only considers the inner 13×13 views. As it was explained in the previous section, regardless 

of the used data representation, the LF images that reach the decoder side are converted into 4D LF, with the color format 

YUV 4:4:4 10-bit, to be compared with the Reference LF image. Thus, regardless of the proposed codec limitations in 

terms of color format and LF data representation, the six different scenarios can be compared. The objective quality is 

obtained by calculating the individual PSNR-YUV for each view, comparing the output and the Reference LF image, and 

then averaging the 13×13 individual PSNR-YUV values. The PSNR-YUV is calculated by Eq. (2). 

 𝑃𝑆𝑁𝑅𝑌𝑈𝑉 =
6 ∗ 𝑃𝑆𝑁𝑅𝑌 + 𝑃𝑆𝑁𝑅𝑈 + 𝑃𝑆𝑁𝑅𝑉
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 (2) 



 

 
 

 

 

 

The EPFL dataset [23] was used for testing, as shown in Table 1. 

 

Table 1 – General information about the EPFL LF dataset 

Code Name Category 

I01 Bikes Urban 

I02 Danger de mort Grids 

I03 Flowers Nature 

I04 Stone pillars outside Urban 

I05 Vespa Mirrors and Transparency 

I06 Ankylosaurus and Diplodocus 1 Studio 

I07 Desktop Studio 

I08 Magnets 1 Studio 

I09 Fountain and Vincent 2 People 

I10 Friends 1 People 

I11 Color chart 1 ISO and Color charts 

I12 ISO chart 1 ISO and Color charts 

 

Every image from the EPFL dataset was encoded and decoded using HEVC-RExt, with the appropriate profile. The QPs 

used for the Lenselt and 4DLF-MI data representations were 22, 27, 32, 37 and 42, and the QPs used for 4DLF-PVS were 

17, 22, 27, 32, 37. The achieved results for this selection of QPs produce bitrates within the target bit rates proposed by 

JPEG Pleno, in the Common Test Conditions Document, i.e., between 0.001 bpp and 0.75 bpp [22] . 

4.4 Analysis of the experimental results 

The experimental results for the full EPFL dataset [23] using HEVC-RExt codec, in the six scenarios previously described 

are shown in Figure 8.  

 



 

 
 

 

 

 

 

 

 



 

 
 

 

 

 

 

 
Figure 8 - Rate-Distortion results comparing all six combinations of LF data representations and color formats for the twelve 

LF images from the EPFL dataset 

 

 

LF data representation comparison 

 

When comparing the results shown in Figure 8 in terms of LF data representation, it is possible to observe that the least 

efficient LF data representation is the 4DLF-MI. In all images, with the exception of I11, the 4DLF-MI has the worst 

performance in comparison with the other LF data representations, across all the tested bitrates. The redundancy that exists 

within neighboring MIs is not exploited by HEVC which explains the poor efficiency for this LF data representation. The 

4DLF-MI data representation is expected to perform significantly better if using a prediction tool to exploit the MI 

redundancy in HEVC [14][15].  

The two remaining LF data representations, Lenslet and 4DLF-PVS are much more efficient, however the comparison 

between both shows that the most efficient LF data representation depends on several factors. When comparing these two 

LF data representations, it is worth reinforcing the fact that no metadata is being considered for the Lenslet data 

representation, and that the 4D LF based data representations generate roughly 11% more pixels to encode, in comparison 

with the Lenslet data representation. 



 

 
 

 

 

 

If the color format is YUV 4:2:0 8-bit (red curves), the 4DLF-PVS is more efficient in comparison to the Lenslet for most 

cases, the exceptions are I02, I03 and I04. However, if the color format is YUV 4:4:4 10-bit (blue curves), the Lenslet is 

more efficient in 7 out of the 12 images, when compared to the 4DLF-PVS.  

If the comparison is done between the Lenslet and 4DLF-PVS, considering both tested color formats YUV 4:4:4 10-bit 

and YUV 4:2:0-8 bit, the results depend on the image content. 4DLF-PVS tends to be more efficient for Studio, Mirrors 

and Transparency, and ISO and Colour Charts categorized images in the EPFL dataset, these images include I05, I06, I08, 

I09, I11 and I12. However, the remaining dataset would have to be tested to confirm this assumption, which will be done 

in future work. From the results one can also conclude that the 4DLF-PVS tends to be more efficient when compared to 

the Lenslet data representation at lower bitrates. 

 

Color format comparison 

 

When strictly comparing color formats within each LF data representation, one can conclude that there is a clear tendency 

of the 4D LF data representations to be more efficient if encoded using YUV 4:2:0 8-bit color when compared to the YUV 

4:4:4 10-bit. This can be seen in both 4DLF-PVS data representation, for all images, and for 4DLF-MI data, for all images 

with the exception of I07 and I10 where the YUV 4:4:4 10-bit is slightly more efficient. This tendency is even more 

notorious for the average PSNR-Y, instead of the average PSNR-YUV.  

The exact opposite tendency can be seen in the case of the Lenslet data representation, where using YUV 4:4:4 10-bit is 

more efficient than using YUV 4:2:0 8-bit. This tendency can be seen for every tested image. Additionally, the exact 

opposite tendency is also seen if the average PSNR-Y is used instead of the average PSNR-YUV, i.e., the difference in 

performance between YUV 4:4:4 10-bit and YUV 4:2:0 8-bit are smaller when using average PSNR-Y. 

These results can be justified with the color correction and color conversions processing blocks for both LF data 

representations. In the case of 4D LF data representation, the color correction processing step is applied early in the 

processing chain before any color conversion or encoding takes place. The color conversion and encoding steps add 

distortion to the LF image luma and chroma components. However, since the color correction was applied before chroma 

subsampling and encoding, in the case of YUV 4:2:0 8-bit, the objective quality of these components is higher.  

In the case of the Lenslet data representation, more color conversions steps are necessary, especially when YUV 4:2:0 8-

bit color format is used, which adds more distortion to the chroma components. Additionally, the color correction step is 

only applied on the decoder side, after the chroma components are distorted by color conversion and encoding steps.  

 

Maximum objective quality 

 

When an alternative LF data representation and color format is used with 4D LF RGB 4:4:4 10-bit, additional processing 

blocks are necessary, as described in the last section. These additional processing blocks will add irreversible distortion to 

the LF image, regardless of the coding option that is used. In order to assess the maximum objective quality, the processing 

chains used in the last section for the six possible scenarios are reused, but removing the proposed codec processing block. 

The maximum objective quality for both Lenslet and 4D LF data representations, using YUV 4:4:4 10-bit and YUV 4:2:0 

8-bit color formats, is shown in Table 2 for the average PSNR-Y and Table 3 for the average PSNR-YUV.  

 

 

 

 

 

 

 

 

 

 

 



 

 
 

 

 

 

Table 2 – Maximum objective quality measured in Average PSNR-Y (bold and italic PSNR values correspond to the 

maximum and minimum, respectively). 

Avg. PSNR-Y 

(dB) I01 I02 I03 I04 I05 I06 I07 I08 I09 I10 I11 I12 AVG. 

Lenslet YUV 

4:2:0 8 bit 51.18 54.87 52.08 56.18 51.04 55.63 45.51 54.83 53.36 46.49 44.02 51.34 51.38 

4D LF YUV 

4:2:0 8 bit 55.98 56.77 56.45 55.94 56.15 55.19 53.04 55.26 55.43 54.36 55.30 55.40 55.44 

Lenslet YUV 

4:4:4 10 bit 64.76 65.45 65.47 64.51 65.38 65.54 65.32 65.54 64.13 63.31 63.95 63.76 64.76 

4D LF YUV 

4:4:4 10 bit Inf. Inf. Inf. Inf. Inf. Inf. Inf. Inf. Inf. Inf. Inf. Inf. Inf. 

 
Table 3 – Maximum objective quality measured in Average PSNR-YUV (bold and italic PSNR values correspond to the 

maximum and minimum, respectively). 

Avg. PSNR-

YUV (dB) I01 I02 I03 I04 I05 I06 I07 I08 I09 I10 I11 I12 AVG. 

Lenslet YUV 

4:2:0 8 bit 48.50 51.41 49.56 52.39 48.43 51.87 44.47 51.35 50.07 44.72 42.72 49.06 48.71 

4D LF YUV 

4:2:0 8 bit 52.85 53.86 53.29 53.17 53.31 52.47 50.49 52.61 52.22 51.99 51.83 52.61 52.56 

Lenslet YUV 

4:4:4 10 bit 62.88 63.39 63.46 62.67 63.36 61.92 63.75 61.92 62.40 61.82 62.32 62.12 62.67 

4D LF YUV 

4:4:4 10 bit Inf. Inf. Inf. Inf. Inf. Inf. Inf. Inf. Inf. Inf. Inf. Inf. Inf. 

 

From Table 2 and Table 3 it is possible to conclude that the processing chain for the 4D LF data representation has a 

smaller impact on the final average PSNR. This is justified by the fact that the alternative LF data representations, in this 

case the Lenslet, need additional processing steps that introduce distortion to the LF image.  

The average PSNR-Y is higher than the average PSNR-YUV for every case that was tested, which is justified by the 

necessary color conversions that are applied in each individual processing chain. Although this is true for both Lenslet and 

4D LF data representations, in the case of the Lenslet data representation, the average PSNR-YUV reaches values as low 

as 42 dB, when YUV 4:2:0 8-bit color format is used and 50 dB, when YUV 4:4:4 10-bit color format is used. 

The average PSNR-YUV for all images is roughly 4 dB higher for the 4D LF data representation in comparison with the 

Lenslet data representation. This confirms that the Lenslet data representations is more affected by the processing chain 

than the 4D LF data representation, in terms of both luma and chroma components. 

In this case, no distinction is done between 4DLF-MI and 4DLF-PVS, because the conversion between both of the 4D LF 

data representation is reversible and can be applied at any point in the processing chain.  

In the case of the 4D LF data representation used with YUV 4:4:4 10-bit color format, when removing the proposed codec 

processing block, the processing chain becomes identical to the reference processing chain, consequently, the PSNR is 

infinite for every case. 

 

Summary of the experimental results analysis 

 

The summary of the experimental results analysis is shown on Table 4. The presented table is a diagonal table, where the 

upper triangle shows the comparisons between the tested LF data representations in terms of color degradation and 

maximum objective quality. On the other hand, the lower triangle shows the comparisons between the tested LF data 

representation in terms of achieved coding efficiency for each color format that was tested. 



 

 
 

 

 

 

Table 4 - Summary of experimental results analysis 

VS 4DLF-MI 4DLF-PVS Lenslet 

4DLF-MI 

 

Both LF data representations 

achieve the same color 

degradation and maximum 

objective quality 

4DLF-MI has less color 

degradation and achieves a 

higher maximum objective 

quality 

4DLF-PVS 

4DLF-PVS is more efficient for 

every image that was tested 

regardless of the color format 

 

4DLF-PVS has less color 

degradation and achieves a 

higher maximum objective 

quality 

Lenslet 

YUV 4:4:4 10 bit: Lenslet is 

more efficient for every image 

that was tested 

YUV 4:2:0 8 bit: Lenslet is more 

efficient in every image with the 

exception of I11 

YUV 4:4:4 10 bit: Lenslet is 

more efficient for I01, I02, I03, 

I04, I07, I10 and I12 

YUV 4:2:0 8 bit: 4DLF-PVS is 

more efficient for every case 

with the exception of I02, I03 

and I04 

 

 

5. CONCLUSIONS 

In this paper, an in-depth comparison of the effects of using existing LF data representations, considering different color 

formats, using JPEG Pleno guidelines, was presented and analyzed. Lenslet, 4DLF-MI and 4DLF-PVS data representations 

were compared using YUV 4:4:4 10-bit and YUV 4:2:0 8-bit color formats. Consequently, the six individual combinations 

using the mentioned LF data representations and color formats were exhaustively tested and compared. Each combination 

of LF data representation and color format requires a specific processing chain, in order to be encoded and decoded by the 

proposed codec, and finally converted to the common format for objective quality assessment, namely 4D LF YUV 4:4:4 

10-bit.  

The experimental results show that, for the selected codec, i.e., HEVC-RExt, the LF data representation that achieves the 

lowest coding efficiency is the 4DLF-MI, regardless of the color format. Although the same number of pixels are being 

encoded, the 4DLF-PVS achieves a higher coding efficiency, when compared to 4DLF-MI, essentially because the inter-

view redundancy is exploited by the temporal predictions tools available in HEVC. The comparison between the Lenslet 

and 4DLF-PVS data representations required a more in-depth analysis of the experimental results. 

The 4DLF-PVS data representation is more efficient, in most cases, than the Lenslet data representation when the YUV 

4:2:0 8-bit color format is used. If the color format YUV 4:4:4 10-bit is used, the Lenslet data representation is more 

efficient than the 4DLF-PVS in seven out of twelve cases. If the best performing color format is selected for each LF data 

representation, i.e., Lenslet using a YUV 4:4:4 10-bit color format and 4DLF-PVS using a YUV 4:2:0 8-bit color format, 

the most efficient LF data representation depends on the content of the image. In this case, using 4DLF-PVS YUV 4:2:0 

8-bit appears to be more efficient than Lenslet YUV 4:4:4 10-bit when encoding LF images from the EPFL dataset, 

assigned to Studio, Mirrors and Transparency and ISO and Colour Charts categories. However, in order to verify this 

assumption, the full dataset would have to be tested. 



 

 
 

 

 

 

The Lenslet data representation benefits from the color format YUV 4:4:4 10-bit while both 4D LF data representations 

produce better results when YUV 4:2:0 8-bit color format is used. This conclusion can be further verified by comparing 

the results using the average PSNR-Y and average PSNR-YUV. When analyzing the results for average PSNR-Y, the 

efficiency gains of the YUV 4:2:0 8-bit color format are even more notorious than when using the average PSNR-YUV. 

However, when performing the same analysis using the Lenslet data representation, the opposite tendency occurs; the 

efficiency gains of the YUV 4:4:4 10-bit are lower when using the average PSNR-Y, instead of average PSNR-YUV. 

When analyzing the results for the maximum quality of each of the six test scenarios, with the different LF data 

representations and color formats, one can conclude that the maximum quality is lower when the Lenslet data 

representations is used. When the YUV 4:2:0 8-bit color format is used, the maximum quality using the average PSNR-

YUV can be as a low as 42 dB. When analyzing the maximum quality results using the average PNSR-Y metric, the 

objective quality is always higher, with an average increase of about 3 dB. These results lead to the conclusion that, an 

alternative LF data representation like Lenslet, although more compact than the 4D LF variants, is going to suffer more 

color degradation due to the more extensive processing chain.  

In general, a large variety of results were reproduced by testing six possible scenarios using a common codec. A further 

study must be conducted to evaluate the performance when comparing different codecs. One might assume that the higher 

coding efficiency of one codec over another may come from technical features, but one must take into account the effects 

of different LF representations or color formats. Also, an alternative LF data representation is most likely to produce a 

lower maximum quality when compared to the 4D LF, because of the additional processing steps necessary to convert to 

4D LF.  

Future work will include testing the full EPFL dataset, in order to better distinguish the different efficiencies achieved with 

Lenslet and 4DLF-PVS. An additional state of the art codec is also going to be tested that includes an efficient prediction 

tool to encode LF images. 
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