ISCTE 2 1UL
REPOSITORIO

INSTITUTO UNIVERSITARIO DE LISBOA

Repositério ISCTE-IUL

Deposited in Repositdrio ISCTE-IUL:
2019-01-10

Deposited version:
Post-print

Peer-review status of attached file:
Peer-reviewed

Citation for published item:

Zhao, 1., Jiao, L., Liu, F., Basto-Fernandes, V., Yevseyeva, I., Xia, S....Emmerichd, M. T. M. (2018).
3D fast convex-hull-based evolutionary multiobjective optimization algorithm. Applied Soft
Computing. 67, 322-336

Further information on publisher's website:
10.1016/j.as0c.2018.03.005

Publisher's copyright statement:

This is the peer reviewed version of the following article: Zhao, J., Jiao, L., Liu, F., Basto-Fernandes,
V., Yevseyeva, I., Xia, S....Emmerichd, M. T. M. (2018). 3D fast convex-hull-based evolutionary
multiobjective optimization algorithm. Applied Soft Computing. 67, 322-336, which has been
published in final form at https://dx.doi.org/10.1016/j.as0c.2018.03.005. This article may be used
for non-commercial purposes in accordance with the Publisher's Terms and Conditions for self-
archiving.

Use policy

Creative Commons CC BY 4.0
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

e a full bibliographic reference is made to the original source
¢ a link is made to the metadata record in the Repository
o the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Servicos de Informagdo e Documentagdo, Instituto Universitario de Lisboa (ISCTE-IUL)
Av. das Forgas Armadas, Edificio II, 1649-026 Lisboa Portugal
Phone: +(351) 217 903 024 | e-mail: administrador.repositorio@iscte-iul.pt
https://repositorio.iscte-iul.pt

https://dx.doi.org/10.1016/j.asoc.2018.03.005

*Manuscript
Click here to view linked References

3D Fast Convex-Hull-Based Evolutionary Multiobjective
Optimization Algorithm

Jiaqi Zhao***, Licheng Jiao®, Fang Liu®, Vitor Basto Fernandes®9, Iryna Yevseyeva®,
Shixiong Xia®, Michael T. M. Emmerich!

aSchool of Computer Science and Technology, China University of Mining and Technology, No 1, Daxue Road,
Xuzhou, Jiangsu, 221116, China
bKey Laboratory of Intelligent Perception and Image Understanding of the Ministry of Education, International
Research Center for Intelligent Perception and Computation, Joint International Research Laboratory of Intelligent
Perception and Computation, Xidian University, Xi’an Shaanxi Province 710071, China
¢Instituto Universitario de Lisboa (ISCTE-IUL), University Institute of Lisbon, ISTAR-IUL, Av. das For¢as Armadas,
1649-026 Lisboa, Portugal
4School of Technology and Management, Computer Science and Communications Research Centre, Polytechnic
Institute of Leiria, 2411-901 Leiria, Portugal
¢Faculty of Technology, De Montfort University, Gateway House 5.33, The Gateway, LE1 9BH Leicester, UK
fMulticriteria Optimization, Design, and Analytics Group, LIACS, Leiden University, Niels Bohrweg 1, 2333-CA
Leiden, The Netherlands

Abstract

The receiver operating characteristic (ROC) and detection error tradeoff (DET) curves have
been widely used in the machine learning community to analyze the performance of classifiers.
The area (or volume) under the convex hull has been used as a scalar indicator for the performance
of a set of classifiers in ROC and DET space. Recently, 3D convex-hull-based evolutionary mul-
tiobjective optimization algorithm (3DCH-EMOA) has been proposed to maximize the volume
of convex hull for binary classification combined with parsimony and three-way classification
problems. However, 3DCH-EMOA revealed high consumption of computational resources due
to redundant convex hull calculations and a frequent execution of nondominated sorting. In this
paper, we introduce incremental convex hull calculation and a fast replacement for non-dominated
sorting. While achieving the same high quality results, the computational effort of 3DCH-EMOA
can be reduced by orders of magnitude. The average time complexity of 3DCH-EMOA in each
generation is reduced from O(n*logn) to O(nlogn) per iteration, where n is the population size.
Six test function problems are used to test the performance of the newly proposed method, and the

algorithms are compared to several state-of-the-art algorithms, including NSGA-III and MOPSO

20

variants, which were not compared to 3DCH-EMOA before. Experimental results show that the
new version of the algorithm (3DFCH-EMOA) can speed up 3DCH-EMOA for about 30 times for
a typical population size of 100 without reducing the performance of the method.

Keywords: Convex hull, area under ROC, classification, indicator-based evolutionary algorithm,

multiobjective optimization, ROC analysis.

1. Introduction

Receiver operator characteristic (ROC) [1] and detection error tradeoft (DET) [2] curves are
commonly used to evaluate the performance of binary classifiers in machine learning [3, 4]. ROC
describes the relationship between true positive rate (TPR) and false negative rate (FNR). High
value of TPR and small value of FNR are preferable, however, the performance of TNR and FNR
are in conflict with each other. DET curves show tradeoff between false positive rate (FPR) and
false negative rate (FNR). ROC convex hull (ROCCH) analysis, which covers potential optimal
points for a given set of classifiers, has drawn much attention in [5, 6]. More recently, multiob-
jective optimization techniques became useful for maximizing ROCCH [7, 8, 9, 10, 11]. The aim
of ROCCH maximization is to find a set of classifiers that perform well in the ROC space. The
ROCCH maximization is a special case of a multiobjective optimization problem [7], as the max-
imization of TPR and minimization of FNR can be viewed as two conflicting objectives, and the
parameters of a classifier can be viewed as decision variables.

Evolutionary multiobjective algorithms (EMOAs) [12, 13] are known to be good tools to deal
with the tuning of machine learning problems [14, 15], image processing pipelines [16, 17], text
message classifiers [18, 19]. Several EMOAs have been combined with genetic programming to
maximize ROCCH in [7], including Nondominated Sorting Genetic Algorithm II (NSGA-II) [20],
Multiobjective Evolutionary Algorithms Based on Decomposition (MOEA/D) [21, 22], Multiob-
jective selection based on dominated hypervolume (SMS-EMOA) [23, 24], and Approximation-
Guided Evolutionary Multi-Objective (AG-EMOA) [25]. However, these methods do not consider

*Corresponding author. Tel.: +86 17368987876.
Email address: jiaqizhao880126.com (Jiaqi Zhao)

Preprint submitted to Applied Soft Computing August 7, 2017

25

30

35

40

45

special characteristics of ROC: The objective space is bounded by (0,0) and (1, 1) and that con-
cavities on the Pareto front can be healed by convexly combining classifiers [4]. Convex-hull-
based multiobjective genetic programming (CH-MOGP) is proposed in [8] to maximize ROCCH
for binary classifiers, which takes the convex hull of ROC into consideration. CH-MOGP is a
tailor-made indicator-based evolutionary multiobjective algorithm (IBEA) [26] for computing a
representation of a Pareto front of binary classifiers, using the area under the convex hull (AUC)
as a performance indicator to guide the the evolution of a population.

CH-MOGP can only deal with binary classifiers, and is not able to address additional objec-
tives, such as parsimony [27]. Moreover, it can not deal with multi-class and three-way classi-
fication [28]. 3D convex-hull-based EMOA (3DCH-EMOA) is proposed in [9]. It extends the
ROCCH to triobjective problems by considering the classifier complexity ratio (CCR) of binary
classifiers as the third objective in augmented DET space. FPR is plotted on the X-axis, FNR
is plotted on the Y-axis, and CCR is plotted on the Z-axis in augmented DET space. Complex-
ity can for instance be measured by the number of rules used by the classifier and it determines
the average cost (in time) a classifier requires. Again, for instance by random linear combination,
classifiers with average objective function values can be obtained for every point on a line segment
that connects two classifiers - and therefore concave parts or linear parts of the Pareto front do not
have to be represented. Moreover, it is taken into account that the construction of more complex
classifier with the same DET performance is always possible, by adding redundant rules.

The potential classifiers lie on the surface of the augmented DET convex hull (ADCH). In
3DCH-EMOA the volume above DET surface (VAS) acts as a performance evaluation indicator of
population quality at each generation of the algorithm. While dealing with 3D augmented DET
convex hull maximization problems [9], 3DCH-EMOA can obtain solutions with good uniform
distribution and also has good ability to cover only those points of a Pareto front, from which all
other Pareto optimal points can be obtained by simple convex combination. No points are placed
in concave parts, such as dents, as this would be a waste of computational resources. Experimental
results in [9] show that 3DCH-EMOA outperforms NSGA-II [20], GDE3 (the third evolution step
of Generalized Differential Evolution) [29], SPEA2 (Strength Pareto Evolutionary Algorithm 2)

[30], MOEA/D [21] and SMS-EMOA [23] on the volume above surface (VAS) [31] performance
3

50

55

60

65

70

75

indicator and in the Gini coefficient [32, 9] on the size of gaps — indicating how evenly distributed
points are placed.

Also on application problems 3DCH-EMOA could obtain high quality results. More recently,
3DCH-EMOA has been successfully applied for sparse neural network optimization [9], in which,
the performance of neural networks is evaluated in the augmented DET space and the sparsity
is defined as the complexity objective to be optimized. 3DCH-EMOA can obtain better accuracy
results than other algorithms in [9]. The three-way classification for SPAM detection was proposed
in [28], in which the final user of an anti-spam filter could help in the detection task. 3DCH-EMOA
was applied for SPAM detection and it performs much better than all other tested algorithms.
3DCH-EMOA has great potential for classification performance improvement in areas such as
machine learning and computer vision.

However, 3DCH-EMOA performs worse than the compared methods in terms of computa-
tional time, that is when not considering the time required for function evaluations. 3DCH-EMOA
revealed high consumption of computational resources due to redundant convex hull calculations.
In particular, it needs to build a new convex hull many times, and at each iteration it ranks the
individuals in different priority levels. Very recently, several algorithms have been developed for
convex hull maximization [10, 11]. However, results focused so far on the 2D case and there was
a lack of attention to efficient algorithms for the maximization of higher dimensional convex hulls.
In this paper, a fast version of 3DCH-EMOA, which is denoted as 3DFCH-EMOA, is proposed
by adopting incremental convex hull computation and several new strategies. The average com-
putational time complexity of 3DCH-EMOA in each generation is improved from an average case
complexity of O(n?logn) to O(nlogn), where n is the size of population. For practical purposes,
we only consider the three dimensional case because it has many applications [9, 28] and still
allows the visualization of the convex hull.

In addition, this paper presents several modern algorithms for multiobjective optimization,
which were not applied to this problem domain previously. Particle Swarm Optimization (PSO) is
a bio-inspired metaheuristic mimicking the social behavior of bird flocking or fish schooling [33].
It has been widely used for solving multiobjective optimization problems [34, 35]. In this paper,

two variants of PSO i.e., Optimized Multiobjective PSO (OMOPSO) [35] and Speed-constrained
4

80

85

90

95

Multiobjective PSO (SMPSO) [36] are applied to deal with multiobjective problems of augmented
DET maximization. More recently, several studies focused on solving many-objective optimiza-
tion problems, i.e., problems having four or more objectives [37]. NSGA-III, a reference-point
based many-objective NSGA-II, was proposed in [38], which has good performance on various
many-objective problems. In this paper, NSGA-III will be adopted to deal with ZED [31] and
ZEJD [9] multiobjective optimization problems. Besides, Ens-MOEA/D, one of the variants of
MOEA/D proposed in [39], will be applied to solve multiobjective ADCH maximization prob-
lems.

The remainder of this paper is organized as follows. The related work is introduced in Section
2. The details of 3DFCH-EMOA are described in Section 3. Section 4 presents discussion of
performance evaluation results of the proposed algorithm and its comparison to the state-of-the-
art and previously developed algorithms on six test functions. Section 5 provides conclusions and

suggestions for future work.

2. Related Work

As it is discussed in [9], the ADCH maximization can be described as a multiobjective opti-

mization problem, and it can be defined by Eq. (1).

min F(x) = min (f:(x),), (%)) M

where x represents the optimization variables vector, and f, f>, f; represent FPR (false positive
rate), FNR (false negative rate) and CCR (classifier complexity ratio) [9], respectively. All func-
tions have a co-domain of [0,1] ¢ R. Usually, the points lie on the convex hull surface are
non-dominated with respect to each other, but there can be non-dominated points belonging to
the Pareto front that are not on the convex hull surface. This is a special characteristic of ADCH
maximization problem. The aim of 3DCH-EMOA is to find a set of non-dominated solutions that
covers the 3D convex hull surface, since the potential optimal classifiers lie on the convex hull
surface.

The convex hull of a set of points is the smallest convex set that contains the points and it is

5

105

110

115

120

125

a fundamental construction for mathematics and (computational) geometry [40, 41, 42]. The 3D
convex hull 7 of a finite set A C R? is given by Eq. (2),

Al

T(A)é{x:x:Za,»/l,-,Z/l,-=1,0£/1,-S1}, 2)
i=1

where a; € A. The convex hull can be represented with a set of facets (F) and a set of adjacency
ridges and vertices (V) for each facet [43]. Each ridge connects two adjacent facets, which are also
called edges in 2D and 3D space. In this paper, we only consider the convex hull in 3D space, and
the solutions of 3DCH-EMOA act as vertices on the convex hull surface. For a given convex hull
surface (CH), we can obtain its facets, edges and vertices.

Several convex hull construction algorithms have been developed in the computational geom-
etry community [40, 44]. The gift-wrapping algorithm presented in [41] achieves O(n*) com-
putational time complexity. The divide-and-conquer method for 3D convex hulls, with expected
O(nlogn) performance was proposed in [45], however, it is difficult to implement [40]. The ran-
domized incremental convex hull algorithm was proposed in [46], it repeatedly adds a point to the
convex hull of the previously processed points. Three steps are needed to add a new point to an ex-
isting convex hull. Firstly, the visible facets for the new point and the horizon ridges on the visible
facets should be found. Secondly, a cone of new facets from the point to its horizon ridges should
be constructed. Thirdly, the visible facets should be deleted to form a new convex hull with the
new point and the previously processed points. The computational complexity of the randomized
incremental algorithm is analyzed in [47]. It has been proven that random insertions take expected
time of O(log n) for 3D convex hulls. The incremental nature of this algorithm makes it attractive
to be used in our algorithm.

The Quickhull algorithm was proposed in [43]. It has a time complexity of O(nlogn) for 3D
convex hulls. Empirical evidence was provided to show that the Quickhull algorithm uses less
computer memory resources than most of the randomized incremental algorithms and executes
faster for inputs with non-extreme points. Even though, the Quickhull algorithm can deal with
convex hull with a certain set of points, it does not provide efficient mechanisms for dynamical

updates.

130

135

140

145

The aim of 3DCH-EMOA is to find a set of solutions lying on the surface of 3D convex hull,
which is constructed with population P C R? (the population is described in objective space) and
reference point(s) R ¢ R?. We define the set of frontal solutions (FS) containing solutions that are

located on the boundary of the convex hull, and denote it by Eq. (3).
FS(P) & {p:pe CH(PUR),p € P} (3)

Similarly, we define the set of non-frontal solutions (non-FS), which is complementary to FS set

of solutions located in the interior of the convex hull, and denote it by Eq. (4).
non-FS(P) £ P\ FS(P) 4)

The volume above DET convex hull surface (VAS) is defined as the volume of convex hull CH,

and is denoted by Eq. (5).

VAS(P) £ Volume(CH(P U R))

= Volume(CH(FS(P) U R)) 5)

VAS is used as an indicator in 3DCH-EMOA to guide the evolution of the population. 3DCH-
EMOA is time consuming, due to the Quickhull algorithm running many times in each generation
to rank the solutions.

In this paper, we treat the procedure of evolution of 3DCH-EMOA as a process of random-
ized incremental 3D convex hull construction. Several strategies are adopted to speed up 3DCH-

EMOA, details of these strategies are introduced in the next section.

3. 3D Fast Convex-Hull-Based EMOA

In this section, we describe the newly proposed fast version of 3DCH-EMOA, denoted as

3DFCH-EMOA. Several strategies are designed to accelerate the implementation of the algorithm:

e Firstly, we propose 3D incremental convex-hull-based (3DICH-based) sorting method, in

7

150

160

165

170

which the solutions are ranked in two levels at most.

e Secondly, the age of the individuals in the non-FS set is considered for older individuals to

be deleted (forgotten) first.

e Thirdly, we proposed a new method to calculate the contribution of each vertex to the volume
of the convex hull by building a partial and usually small size convex hull rather than a

convex hull composed by all points in the population, as it is done in 3DCH-EMOA.

e Finally, the idea of random incremental convex hull algorithm is adopted to take advantage
of the prior convex hull data structure, which helps to reduce computational time by reusing
the information of convex hull, rather than to rebuild the convex hull for each iteration, as it

1s done in 3DCH-EMOA.

3.1. 3DICH-based sorting

In 3DCH-EMOA the population is ranked into several levels with 3DCH-based (3D convex-
hull-based) sorting without redundancy strategy. The redundant solutions here have the same
performance in objective space as solutions in the non-redundant set. With the sorting strategy
the redundant solutions will be ranked to the last priority level and will have the smallest chance
to survive into the next generation. Non-redundant poor performing solutions will have a chance
to survive, as the redundant solutions with good performance will be discarded to improve the
diversity of the population. The procedure of ranking the solutions into several convex hull fronts
is similar to non-dominance classification of the population in NSGA-II. For example, in Fig. 1
the population is sorted in three convex hull fronts, marked in different colors, by constructing
different layers of convex hulls of the population.

Since only the solutions on the first level of convex hull (i.e., frontal solutions) contribute to the
value of VAS of the whole population, it is not necessary to rank the solutions that are not on the
first level of the convex hull, which is computationally expensive and doesn’t contribute to VAS.
The solutions in FS set obtained by 3DCH-EMOA lie on the surface of the convex hull. To obtain
a good result 3DCH-EMOA should find a good approximation of the true convex hull, which not

only has a large value of VAS, but also has a uniform distribution of vertices covering the whole
8

175

180

185

195

3

Figure 1: Ranking of population into three different levels with 3D convex-hull-based ranking without redundancy
scheme in 3DCH-EMOA, the individuals in different levels are marked in different colors. The first level of solutions
are marked in red, the second level of solutions are marked in green and the third level solutions are marked in blue

convex hull. Motivated by this idea, we designed a procedure of 3DFCH-EMOA to construct an
incremental convex hull. In the procedure, we try to insert good solutions into the convex hull and
remove bad solutions from it, while keeping the number of vertices on the convex hull equal to or
less than the population size.

In this paper, we propose the 3D incremental convex-hull-based ranking (3DICH-based rank-
ing) method. In 3DFCH-EMOA the population is classified in two sets, one is the FS set (FSset)
that includes solutions on the first level of the convex hull surface (denoted as CH in this paper),
the other one is the non-FS set (non-FSser) containing the remaining solutions, i.e., redundant so-
lutions and solutions in the interior of the convex hull not contributing to the VAS and therefore not
relevant to the final solution set. Solutions in FS set are marked in red and solutions in non-FS set
are marked in green, as it is shown in Fig. 2. If the non-FS set appears to be empty, the population
is ranked into one level only. The algorithm 3DICH-based sorting is described in Algorithm 1. In
the algorithm, the population of solutions P and a set of reference points R are given. A convex
hull CH is built with points in P U R. The solutions on the surface of CH are ranked in the first
level, and the remaining solutions are ranked in the second level. Both of the ranked solution sets
and the structure of CH are returned for further use. To rank a new solution in each generation we
should judge whether the solution is in or out of the convex hull, which is built with the points in
the first level and R. If a new solution that is out of the convex hull then it is first added to the CH
and then ranked in the first level, otherwise it is ranked in the second level. We prefer to obtain
a solution on the convex hull surface, as it has a chance to be a potential optimal classifier for

the final decision. Generally, the time complexity of 3DICH-based sorting is equal to O(log n),
9

where n denotes the number of vertices of CH. When the set of non-FS is empty » is equal to the

population size.

3

Figure 2: Ranking of the population into two different levels with 3DICH-based sorting in 3DFCH-EMOA. The
individuals in different levels are marked in different colors. The first level of solutions is marked in red and the rest
of solutions is marked in green

Algorithm 1 3DICH-based sorting (P, R)
Require:
P+ J3,R+ O,
P is a solution set,
R is the set of reference points.
Ensure:
A solution set RS is ranked
and the convex hull CH is built.
CH « building convex hull with points P U R.
FSset < FS(P)
non-FSset « P \FSset
RSy « FSset, RS| < non-FSset.
return the ranked solution set RS={RS,, RS;}, and built CH.

MEE

3.2. Age-based selection
Similarly to 3DCH-EMOA, 3DFCH-EMOA adopts (u+ 1) strategy (i.e., steady state strategy),
200 according to which a new solution is generated and added to the population in each generation.
Recently it has been shown that the selection of a subset of k (k> 1) points from n points in three
dimensional, maximizing the convex hull volume is NP complete [48]. This is why a single point
replacement scheme is favored over a more general (1 + A) selection. This yields a monotonically
increasing volume. To keep the population of fixed size, a solution should be deleted in each gen-

205 eration. If the non-FS set is not empty, we delete the oldest individual in the set.
10

210

215

220

The age-based selection mechanism for individuals to participate in genetic operations was intro-
duced for steady state strategies in [49, 50]. In addition, it was successfully used in Hupkens et
al. [24] in the SMS-EMOA (replacing non-dominated sorting). The age of a newly generated
individual is set to zero and it is increased by one at each generation. We use the age of individuals
in the selection scheme, because it has low computational complexity of O(1) and because more
recently generated individuals are more likely to be closer to the non-dominated frontier than older
ones [51].

Young individuals are selected to survive in the next generation and the oldest individual is the
first element in the queue to be deleted at each generation. The age-based deletion strategy reduces
the complexity of individual deletion in 3DCH-EMOA when the non-FS set is not empty. This
process is comparably less resource consuming and requires time complexity of O(1). An aging
queue (AgingQueue) is defined to store non-FS solutions, in which the oldest individual is always

at the head of the queue. The algorithm of age-based selection is described in Algorithm 2.

Algorithm 2 Age-based selection (AgingQueue, non-FSset)

Require:
AgingQueue that stores solutions in non-FSset,
non-FSset # &.

Ensure: AgingQueue and non-FSset are updated.

1: if non-FSset # & then

2: g <« the first element in AgingQueue.

3: Remove the first element in AgingQueue.

4: non-FSset < non-FSset \ g.

5

6

: end if
: return AgingQueue, non-FSset

3.3. Fast calculation of AVAS

If the non-FS set is empty, we delete the solution that has the least contribution to the VAS. To
rank the solutions in the F'S set the AVAS of each solution should be calculated.

The theory of random incremental convex hulls [47] shows that while inserting or deleting one
vertex on the convex hull, most of the vertices keep the same topological structure. Only vertices

sharing the same facet with the changed (added/deleted) vertex change the connection with other

11

225

230

235

240

vertices. As shown in Fig. 3, deletion of vertex 1 in Fig. 3(a) leads to a new convex hull in Fig.
3(b). Insertion of a new vertex 1 on the convex hull in Fig. 3(b) leads to the convex hull in Fig.
3(a). Only the local structure is changed when a vertex is inserted or deleted.

By comparing the two convex hulls in Fig. 3, we can conclude that with the insertion and
deletion only the topology structure of related vertices changes. The related vertices (RV) are
defined by the points on the convex hull that share the same facet with the vertex. The relationship

of related vertices is denoted by Eq. (6).

RV(p)={q:peF,qeF,p+qF; € CH) (6)

where i = 1,2,..., Np, Ny is the number of facets of convex hull CH. The algorithm to find the
related vertices for a given vertex ¢ is described in Algorithm 3. The time complexity of Algorithm

3 is O(n), where n is the number of vertices on the convex hull.

2 5 2 5
0.81 3 1 0.8 3 {
0.6 0.6
4
N 7 N 7
0.4+-- 0.4
0.24 ———————————————— 0 24 ————————————————

0.5 0 0.5

0.5 0 0.5

Y X Y X
(a) A convex hull with all vertices (b) A new convex hull without the vertex 1

Figure 3: Computing the VAS contribution for each vertex on the convex hull in 3DCH-EMOA

To make the algorithm effective, we preserve the structure of convex hull and the contribution
to VAS of all the vertices for each generation. After insertion and deletion in each generation we
only update the contribution of related vertices. To update n vertices of the convex hull, an average
time complexity in O(log n) is required [40].

The importance of individuals in the convex hull is evaluated by their contribution to VAS,
which is denoted as AVAS. In [31], the contribution of an individual p is obtained by subtracting

the volume of a new convex hull that is constructed without the individual, from the volume of the
12

245

250

Algorithm 3 Finding related vertices (CH, q)
Require:
CH is a convex hull,
q is a vertex of CH,
N is the number of facets of CH,
F is the set of facets of CH.
Ensure: A set of related vertices RV is created.
I: RV« g
2: fori < 1:Nrdo

3: forall p e F;do

4: if p # g and p ¢ RV then
5: RV <« RV U {p}

6 end if

7 end for

8: end for

9: return RV

initial convex hull that includes p. The contribution of solution p is calculated by Eq. (7).
AVAS(p) = VAS(P) — VAS(P \ {p}). (7

To update the contribution to VAS for each vertex, a new convex hull is built without the
vertex. As shown in Fig. 3, most vertices on the convex hull keep the same topological structure
with or without the vertex 1, except for vertices labeled 2, 3, 4, 5, 6 and 7, which are denoted as
related vertices of vertex 1. We can calculate the contribution of vertex 1 only with each of its
related vertex and each reference vertex r. The fast way to compute the contribution of vertex p is

described in Eq. (8).
AVAS(p) = Volume(CH(RV(p) U (p} U {r})) - Volume(CH(RV(p U {r})) ®)

where r is the reference vertex (r is point (1, 1, 1) in the context of VAS). In the implementation of
Eq. (8) the convex hull CH(RV(p) U {r}) is built first and then vertex p is added to CH to obtain
CH(RV(p) U {p} U {r).

A partial convex hull with just added vertex 1 and related vertices is shown in Fig. 4(a), another

partial convex hull without vertex 1 is shown in Fig. 4(b). The contribution to VAS of vertex 1
13

255

260

can be obtained by calculating the VAS difference between the two partial convex hulls shown in
Fig. 4. The approach allows reducing computational complexity especially when the size of the
population is large. The algorithm of fast AVAS is described in Algorithm 4. We define the average
number of points on the partial convex hull as m. The average time complexity of calculating a
vertex’s contribution is equal to O(m logm), where m = log n. With the new strategy the average

time complexity to update the contribution of a related vertex tends to O(log n).

0.5 1 1 0.5 0 0.5 1
X % X

(a) A partial convex hull (b) A partial convex hull without vertex 1

Figure 4: An example of calculating the VAS contribution of each vertex to the convex hull in 3DFCH-EMOA

Algorithm 4 Fast AVAS (CH, g, r) computation
Require:
CH is a convex hull,
q is a vertex of CH,
r is a reference vertex.
Ensure: VAS contribution of a population ¢ is computed.
1: RV « Finding related vertices(CH, q).
VASy « Volume(CH(RV U {gq} U {r})).
VAS| < Volume(CH(RV U {r})).
AVAS « VAS,-VAS,.
return AVAS

3.4. Incremental convex hull computation

We use CH to denote the convex hull of the population. The information of CH such as facets,
vertices and the contribution of each vertex to the volume of the whole convex hull is preserved

in the FSset as discussed in Algorithm 4. The (u + 1) selection strategy is employed in this
14

265

270

275

285

290

algorithm. According to this steady state strategy only one new offspring ¢ will be produced at
each generation. When ¢ is produced it will be judged whether it is in or out of the convex hull
CH. If g is not yet in CH, it will be added to CH, i.e., g will be stored in the FSset. If g is inside
CH, it will be stored in the non-FSset.

When adding ¢ to the convex hull, some facets of convex hull will be changed, the contribution
of related vertices to the convex hull volume will be affected and needs to be updated. Due to the
changes caused by the introduction of g, the vertices not belonging to the convex hull CH will be
removed from the FS-set and added to the end of the AgingQueue. The vertices not belonging to
the CH, due to the changes caused by the introduction of ¢, will be removed from the convex hull.
The details of adding a new point ¢ to the convex hull CH are described in Algorithm 5. In the
algorithm, the computational time complexity of adding a vertex to CH is equal to O(log n), where
n is the population size. The time complexity of finding related vertices is equal to O(n). And the
average computational time complexity of updating the contribution of related vertices is equal to
O((log n)*). So the average computational time complexity of Algorithm 5 is equal to O((log n)?).

To keep the population size of the algorithm constant (of size n), an individual needs to be
deleted in each iteration. The head element of the AgingQueue will be deleted if the queue is not
empty. If the AgingQueue is empty (all individuals are on the convex hull), the individual with
least contribution to VAS will be deleted. Then, the convex hull will be rebuilt with the incremental
convex hull algorithm and the contribution of each solution in CH will be updated. Details of
deleting the solution g with least contribution to VAS from FSset are described in Algorithm 6.
Similarly to Algorithm 5, the computational time complexity of finding related vertices is equal to
O(n). The computational time complexity of updating the contribution of related vertices is equal
to O((log n)*). The computational time complexity of rebuilding CH is equal to O(nlog n). So the

average computational time complexity of Algorithm 6 tends to O(nlogn).

3.5. Computational time complexity of 3SDFCH-EMOA

The framework of 3DFCH-EMOA is given in Algorithm 7. Both 3DCH-EMOA and 3DFCH-
EMOA are general evolutionary algorithms, their computational time complexity can be described

by considering one iteration of the entire algorithm. In this section, we consider the population

15

Algorithm 5 Adding a point to CH (CH, FSset, non-FSset, q)

Require:

CH is the convex hull,

FSset + &,

q is the new solution that will be added to CH.
Ensure:
The contribution to CH, FSset, non-FSset
and AgingQueue are updated.
CH <« Adding g to CH.
FSset « FSset U{g}
for all p € F'Sset do

if p is not a vertex of CH then

Add p to the end of AgingQueue

non-FSset « non-FSset U{p}

FSset < FSset \{p}

end if

end for
RV « Finding related vertices(CH,q).
CH .g.contribution «Fast AVAS(CH,q, r).
: for all p eRV do
CH.p.contribution <Fast AVAS(CH,p, r).
: end for
: return CH, FSset, non-FSset and AgingQueue.

—_— =
rS NS AR R o o

—_ e =

Algorithm 6 Deleting a point from CH (CH, FSset, q)

Require:

CH is the convex hull,

FSset + &,

q is a solution that will be deleted.
Ensure: The contribution to CH and FSset are updated.

1: FSset « FSset \{g}
RV « Finding related vertices(CH, q).
Storing contribution of each solution of CH in TEMP.
Rebuilding CH without solution g.
Set contribution of each solution of new CH based on TEMP.
for all p eRV do
CH.p.contribution «Fast AVAS(CH, p, r) computation.

end for
return CH, FSset

D B A S o

16

295

300

Algorithm 7 3DFCH-EMOA (MEs, n)

Require: MEs (MEs>0) is the maximum of evaluations, n (n >0) is the population size.
Ensure: Frontal solution set (FSset) is created.
1: Py « init()

2: RS, CH < 3DICH-based sorting (P, R)
3: FSset <« RSy, non-FSset «— RS,
4: for all p € FSset do
5: CH.p.contribution = Fast AVAS (CH, ¢, r) computation
6: end for
7: Add elements in non-FSset to Aging Queue
8 t<n
9: while r < MEs do
10: t <« t+ 1, q, < Mutate (Recombine (FSset U non-FSset))
11: if g, is inside the convex hull (CH) then
12 non-FSset < non-FSset U{g,}
13: Add ¢, to the end of AgingQueue
14: else
15: CH, FSset, non-FSset, AgingQueue «— Adding a point to CH (CH, FSset, non-FSset, g,)
16: end if
17: if AgingQueue # & then
18: AgingQueue, non-FSset <« Age-based selection (AgingQueue, non-FSset)
19: else
20: Finding the least contribution vertex p
21: CH, FSset « Deleting a point from CH (CH, p)
22: end if

23: end while
24: return FSset

to be of size n. In 3DCH-EMOA, the computational time complexity of variation operation for
generating new offspring is equal to O(n). 3DCH-based sorting without redundancy has the com-
putational time complexity of O(n* log n). The computational time complexity of VAS contribution
updating is equal to O(n?log n). The overall computational time complexity in each iteration of
3DCH-EMOA is equal to O(n* log n).

In 3DFCH-EMOA, the computational time complexity of variation operation for generating
a new offspring is equal to O(n). The average computational time complexity of 3DICH-based
sorting is equal to O(log n). The computational time complexity of age-based selection is equal to
O(1). The computational time complexity of adding a point to CH is equal to O((log n)*) and the

computational time complexity of deleting a point from CH is equal to O(n log n). So the average
17

305

310

315

320

325

computational time complexity of 3DFCH-EMOA in each iteration is equal to O(n log n).

4. Experimental Results

In this section, two sets of domain-specific test functions, ZED and ZEJD, are used to test
the performance of 3DFCH-EMOA and several EMOAs, such as NSGA-III, Ens-MOEA/D and
3DCH-EMOA. Two PSO-based methods (i.e., OMOPSO and SMPSO) were also applied to deal
with ZED and ZEJD test functions. ZED test functions were designed in [31] to evaluate the
performance of 3D ROCCH maximization for three-class classification problems. ZEJD test func-
tions are proposed in [9], which are simulations of augmented DET for parsimony binary classi-
fiers.

Most of these experiments were performed in jMetal [52, 53], which is an optimization frame-
work for the development of multiobjective metaheuristics in Java. The experiment for Ens-
MOEA/D was performed in Matlab. All experiments were run on a desktop PC with an i5 3.2GHz
processor and 4GB memory under Ubuntu 14.04LTS. For each mentioned algorithm, 30 indepen-
dent trials are conducted on ZED and ZEJD test problems. For algorithms performance compari-

son, three groups of different experiments were carried out:

e Comparison of 3DCH-EMOA and 3DFCH-EMOA to other EMOAs, including NSGA-III,
Ens-MOEA/D, OMOPSO and SMPSO on ZED and ZEJD test functions.

o Comparison of 3DFCH-EMOA and 3DCH-EMOA for runs with different population sizes
(i.e., 100, 200, 300, 400, 500, 1000) on ZED test functions.

o Comparison of age-based selection to random selection of individuals in non-FSset for

3DFCH-EMOA.

Several metrics are chosen to evaluate the performance of studied algorithms, including vol-
ume under convex hull surface (VAS), Gini coeflicient [9], pure diversity (PD) [54] and execution

time:

e VAS metric can be used to evaluate the performance of algorithms on ZED and ZEJD test

functions directly. The smallest value of VAS is 0, the largest value of VAS is bounded from
18

(d) Result of SMPSO (e) Result of 3DCH-EMOA (f) Result of 3DFCH-EMOA

Figure 5: Experimental results of the Pareto front (for single run) obtained by each algorithm on ZEDI test function
in fi — f» — f3 space
above by 5/6 for ZED test problems and the largest value of VAS is bounded from above by
0.5 for ZEJD test functions. Generally, the larger the value of VAS, the better performance

330 of the solution set of an algorithm.

e The Gini coeflicient was used for measuring the distribution of solutions of evolutionary
algorithms in [9]. Generally, the lower the value of the Gini coefficient, the more evenly

distributed the solution set.

e The PD is used as a new diversity metric in [54] to measure population diversity of evolu-

a5 tionary algorithms. A high population diversity leads to large value of PD.
e Execution time is used to measure the computational effort of all algorithms.

4.1. Comparison of 3DFCH-EMOA to other EMOAs
In this subsection performance of NSGA-III, Ens-MOEA/D, OMOPSO, SMPSO, 3DCH-

EMOA and 3DFCH-EMOA is compared on ZED and ZEJD test functions.
19

340

345

(d) Result of SMPSO

Figure 6: Experimental results of the Pareto front (for single run) obtained by each algorithm on ZED?2 test function

in fi — o — f5 space

4.1.1. Parameter settings

All algorithms use a maximum of 25000 function evaluations. The simulated binary crossover
(SBX), a single point crossover, and polynomial bit flip mutation operators are applied in the
experiments. The crossover probability of p, = 0.9 and a mutation probability of p,, = 1/n, where

n is the population size, are chosen according to the recommendation given in [31]. In this part,

the population size is set to 100 for all algorithms.

4.1.2. Experimental results and discussions

Table 1: Mean and standard deviation of VAS on ZED and ZEJD test problems.

(e) Result of 3DCH-EMOA

(f) Result of 3DFCH-EMOA

NSGA-1II

Ens-MOEA/D

OMOPSO

SMPSO

3DCH-EMOA

3DFCH-EMOA

ZEDI
ZED2
ZED3
ZEJD1
ZEID2
ZEJD3

3.48¢ — 015.20e-04
3.44e — 013.200-04
3.46¢ — 015.99.—04
4.65¢ — 01424006
4.64e — 01y 66¢-05
4.64e — 0115005

3.44e = 012 16e-04
3.42¢ — 012.768—04
3.42¢ — 012.29¢-04
4.63¢ — 011 20e—04
4.63¢ — 011 06e—04
4.62¢ — 01129004

3.37e — 012.66¢-03
3.34e — 012.75¢-03
3.35¢ — 012,63¢-03
4.62¢ — 016,020-04
4.62e — 017.06¢-04
4.61e —01579,—04

3.38¢ — 012.34¢—03
3.35¢ = 012.46¢-03
3.36e — 012.29.-03
4.63¢ — 014.30e-04
4.62¢ — 014.92¢-04
4.62¢ — 014.19.04

3.53¢ = 011.70e-05
3.52e — 012,07¢-05
3.51e = 01y.77.-05
4.65¢ — 017, 04e—06
4.65¢ — 012.09.—06

3.53¢ — 012.80.-05
3.52¢ — 012‘12€_05
3.51e — 0132205
4.65¢ — 012,08¢-06
4.65¢ — 012.16.-06
4.64e — 0115406

20

(d) Result of SMPSO

Figure 7: Experimental results of the Pareto front (for single run) obtained by each algorithm on ZED?3 test function

in fi — o — f5 space

(e) Result of 3DCH-EMOA

(f) Result of 3DFCH-EMOA

Table 2: Mean and standard deviation of Gini Coefficient on ZED and ZEJD test problems.

NSGA-III Ens-MOEA/D OMOPSO SMPSO 3DCH-EMOA 3DFCH-EMOA
ZED1 3.70¢ — 0lgq4e—02 4.24¢ — 01| 40e—02 2.46¢ — 017 680—02 2.64¢ — 011 99.—p = 4.44e — 02369003 = 4.75¢ — 024.610-03
ZED2 3.65¢ — 013640020 4.40e — Ol 51000 2.47¢—01l189¢—02 2.58¢ —01232—02 = 5.22¢ — 026 14e-03 = 3.70e — 0267203
ZED3 3.65¢ — 0la0pe—02 4.27¢ —011380—00 2.48¢ —O0lpge—02 2.59¢ —01103,—02 5.90e — 02¢.12.—03 = 6.75¢ — 021 09,02
ZEJD1l 1.57¢ —016990—03 2.63¢ —O01lj710—02 2.86¢ —0l201e—02 2.59¢ —01}950—02 = 7.30€ — 021 130—02 = 7.41le — 02} 95002
ZEID2 1.67¢ —0lgsee—03 2.75¢ —0119s0—02 2.87¢ —013.16e—02 2.64e — 01y 140—02 | 7.84€ —02)09,~02 7.69¢ — 02} p1e—02
ZEJD3 1.71e = 011 17¢—02 3.0le =011 91e—02 2.82¢ —=O0l3210—02 2.66¢ —01350,—02 ~ 1.16e — 011 24e—02 = 1.21€ — 01} 0902

Table 3: Mean and standard deviation of PD on ZED and ZEJD test problems.

NSGA-IIT Ens-MOEA/D OMOPSO SMPSO 3DCH-EMOA 3DFCH-EMOA
ZED] 9.94¢ + 041310104 1.70e + 056350403 | 2.13e + 051360104 = 2.09¢ +05066e103 1.97¢ + 058236403 1.97e + 051.09¢+04
ZED2 1.06e + 051.20e+04 1.61e + 055 80e+03 ~ 2.10€ + 058730403 2.10€ + 057330403 1.80e + 055 66¢+03 1.80¢ + 058.12¢+03
ZED3 1.12e + 059.920+03 1.69¢ + 055 67¢403 | 2.09¢ + 059390403 = 2.10e + 051130004 1.88e + 05851403 1.88e + 058 06403
ZEIDI1 4.51e + 043340103 9.65¢ + 043 120103 8.12¢ + 044770103 7.95¢ + 045070403 1.04¢e + 056.58¢+03 1.04e + 054.62¢+03
ZEID2 4.53¢+ 04197.403 9.38¢ + 044030403 8.24e + 045050103 8.32¢ + 0dg 680103 | 9.98¢ + 044660403 9.67¢ + 044 840103
ZEJD3 6.03¢ + 044330403 9.3le + 045810103 8.25¢ + 045500403 8.56€ + 046630103 | 8.8le+04539,.03 | 8.80¢ + 04411¢+03

Firstly, the Pareto fronts (for one run) of ZED and ZEJD are shown in Fig. 5-10. By analyzing
the Pareto fronts of ZED1 function obtained by the algorithms we can make some conclusions:

1) OMOPSO and SMPSO have the worst ability to deal with ZED]1 test function not only for

21

e
% °.’a’: ..g‘-apcwu

*%
e "t p 0%
2

* 55 °?

.6
0.8 0.8 1
17 02 04 06

2
(d) Result of SMPSO

(e) Result of 3DCH-EMOA

(f) Result of 3DFCH-EMOA

Figure 8: Experimental results of the Pareto front (for single run) obtained by each algorithm on ZEJD1 test function
in fi = f» — f3 space

Table 4: Mean and standard deviation of execution time (ms) on ZED and ZEJD test problems.

NSGA-III Ens-MOEA/D OMOPSO SMPSO 3DCH-EMOA 3DFCH-EMOA
ZED1 3.18¢ + 053.20¢+03 6.94¢ + 041 13¢103 | 2.17€¢ + 039200101 4.02¢ + 02571001 4.68¢ + 053700104 6.33¢ + 035680402
ZED2 3.16e + 05321¢403 6.90e + 049 850102 | 2.12¢ + 039 00er01 = 4.02¢ + 025400101 4.40e + 05353.104 4.79¢ + 033 116402
ZED3 3.17¢ + 052.19¢+03 6.96¢ + 041_53()4.()3 2.09¢ + 039290401 4.03e + 027.l5e+01 4.53¢ + 053470104 5.35¢ + 037.06e+02
ZEID1 2.95e¢ +05311¢+03 6.88¢ + 0d9ggerin | 3.73¢+ 021 66es01 2.14e + 021160401 2.28¢ + 054450403 5.70e + 035 04e+02
ZEID2 2.94e + 053100103 6.88¢ + 041200103 3.70e + 02| 220101 2.14e + 026330400 2.11e + 054540403 5.22¢ + 036.84¢+02
ZEID3 291e + 053126403 6.88¢ + 041560103 | 3.61e + 021210501 2.15¢ + 02817100 1.85¢ +05371.+03 5.53¢ + 03g.580+02

convergence but also for uniformity metrics; 2) Ens-MOEA/D does not have a good uniformity
of the Pareto front distribution, as it found too many solutions on the edges of objective space;
3) NSGA-III performs better than OMOPSO, SMPSO and Ens-MOEA/D; 4) 3DCH-EMOA and
3DFCH-EMOA perform better than the others not only for convergence but also for uniformity
metrics.

By comparing the Pareto fronts of ZED2 and ZED3 we can draw the same conclusions as
for ZED1. Besides, we can see that only 3DCH-EMOA and 3DFCH-EMOA can avoid sampling

solutions in the dent area, which is better because these regions contain only redundant solutions

22

360

365

370

(d) Result of SMPSO (e) Result of 3DCH-EMOA (f) Result of 3DFCH-EMOA

Figure 9: Experimental results of the Pareto front (for single run) obtained by algorithms on ZEJD2 test function in
Ji = fa = J3 space

since the goal is to represent the convex hull. Moreover, it performs well on problems with dis-
continuities (ZED?2 test problem) and continuous (ZED3 test problem) objective space.

By analyzing the Pareto fronts of ZEJD1 obtained by the algorithms we can make some con-
clusions: 1) OMOPSO and SMPSO have the worst ability to deal with ZEJD1 test function, not
only for convergence but also for uniformity metrics; 2) Ens-MOEA/D has better performance in
terms of convergence than OMOPSO and SMPSO, but it does not have the ability to find solutions
with good distribution on the Pareto front; 3) NSGA-III, 3DCH-EMOA and 3DFCH-EMOA can
find solutions with good uniformity and convergence metrics. NSGA-III has the most uniformly
distributed solutions on the Pareto front on ZEJD1 test function. As it is pointed in [54] that a
solution set with good uniformity does not necessarily mean that it also has good diversity. So-
lutions with good uniformity should have the same dissimilarity with their neighbors, however,
solutions with good diversity can provide decision makers the maximum amount of information.

The diversity of all the results will be discussed later.

23

o, }&:a Sa‘ﬂ."’.:oeﬂ
g'.o," PO ‘

(d) Result of SMPSO (e) Result of 3DCH-EMOA (f) Result of 3DFCH-EMOA

Figure 10: Experimental results of the Pareto front (for single run) obtained by each algorithm on ZEJD?3 test function
in fi = f» — f3 space

0.355 0.355 0.355
—_——— s

035 F 0.35 0.35 e

0.345 o 0.345 T 0.345 T
T T T = —_—

0.34 0.34 0.34 =
0.335 == L 0.335 E — 0.335 %

0.33 0.33 0.33
0.325 . MOD A0 0.325 o OA AOD 0325 AD. OB AOD

NSGL\—\\\E“S,MOY»SMO?SUSMV SO BDC\'\'LW:AD\:(‘“'b\ 5 G A_\\\E“SNOLB MOVS\JS N O 3069":“%0\: B! jese _\\\E“S_MO\,S MO\)SUsM" SO 396““‘“%99 -

(a) Box-plot for ZEDI test problem (b) Box-plot for ZED2 test problem (c) Box-plot for ZED3 test problem

0.465 L 0.465 L 0.4645
0.4645 0.464
s 0.464 - 0.4635
! i 0.463
0.4635 . - = 0.463 == s 0.4625 - 1
0.463 T 046 — — 0.462 B —
0.4625 '— |__| ’ /= 1 04615 —
0.462] 0.461 1 0-461 o
1 0.4605
04615 046 0.46
0.461 1 0.4595
0.4605 O 0.459 B

0.459 o M

<A/D. O AON A A D A MO
NSO e MOEMOPSOqpsO ypcr-ERypect® NSO MOP 0PSO o0 pci-ENypreiE NSO L MOB 0PSO, \4p50 cit-EN ppcht-EY

(d) Box-plot for ZEJD1 test problem (e) Box-plot for ZEJD2 test problem (f) Box-plot for ZEJD3 test problem

Figure 11: Box-plots of VAS for all algorithms on ZED and ZEJD test functions, each box-plot is generated by running
30 independent trials

24

375

380

385

390

395

By comparing the Pareto fronts of ZEJD2 and ZEJD3 we can draw the same conclusions as for
ZEJD1. NSGA-III can obtain solutions with good uniformity on the surface of Pareto fronts, but
in the area of machine learning, for problems such as ADCH maximization problem, the solutions
in the concave area make no contribution for classification [9]. In addition, we can see that only
3DCH-EMOA and 3DFCH-EMOA omit the concave area of ZEJD2 and ZEJD3, which allows
them to find more solutions in parts of the convex hull that are relevant for maximizing VAS. The
solutions, which are on the Pareto front but not on the convex hull surface, do not contribute to
VAS.

By comparing the Pareto fronts of all the algorithms we can conclude that 3DFCH-EMOA
obtains results as good as 3DCH-EMOA. NSGA-III can capture the Pareto fronts of ZEJD test
functions very well, but it can not avoid sampling solutions in the dent areas of ZEJD2 and ZEJD3
test problems. Solutions in the dent area, i.e., solutions on the Pareto front but not on the con-
vex hull surface, do not provide better performance of classifiers when compared to those on the
convex hull surface [9].

The statistical results (means and standard variances) of the VAS are shown in Table 1. VAS
is the most important indicator in this study as it measures the size of the objective space that
is either dominated by a point in the population or by a linear combination of such points [9].
VAS box-plots are shown in Fig. 11. Fig. 11(a) shows the results of all algorithms’ performance
on ZEDI test function. In the figure we can see that 3DFCH-EMOA can obtain as good results
as 3DCH-EMOA, and outperform other algorithms not only on the average VAS but also when
considering standard deviations. NSGA-III outperforms Ens-MOEA/D, OMOPSO and SMPSO
algorithms. By comparing algorithms performance on other test problems, we can also see that
3DFCH-EMOA and 3DCH-EMOA can obtain the best result on VAS metric. This confirms that
3DFCH-EMOA has successfully inherited the good performance of 3DCH-EMOA. From the table
we can see that 3DFCH-EMOA can obtain as good results as 3DCH-EMOA for the VAS evalua-
tion. 3DFCH-EMOA and 3DCH-EMOA outperform the other EMOASs on all ZED test problems.
When dealing with ZEJD test problems, NSGA-III, 3DCH-EMOA and 3DFCH-EMOA perform
better than the other EMOAs.

The statistical results of Gini coefficient are shown in Table 2. From the table we can see that
25

400

405

410

415

420

425

3DCH-EMOA and 3DFCH-EMOA outperform the other algorithms for most of the test problems.
3DCH-EMOA is slightly better than 3DFCH-EMOA for most of the test problems. NSGA-III
performs better than the other algorithms except 3DCH-EMOA and 3DFCH-EMOA on ZED and
ZEJD test functions.

The statistical results of PD diversity metric are shown in Table 3. OMOPSO and SMOSO
have good diversity metric results, but not very good convergence metric results as discussed
above. 3DFCH-EMOA performs as good as 3DCH-EMOA for the diversity metric. 3DFCH-
EMOA and 3DCH-EMOA can obtain higher values of PD than NSGA-IIIL

The statistical results on the execution times are shown in Table 4. SMPSO has always the
lowest execution time and OMOPSO performs better than the other algorithms except of SMPSO.
3DFCH-EMOA outperforms the other algorithms except of SMPSO and OMOPSO. NSGA-III
spends slightly more time than 3DCH-EMOA on ZEJD test functions. 3DCH-EMOA uses more
than 30 times as much computational time as 3DFCH-EMOA algorithm, that is to confirm that the

new algorithm speeds up 3DCH-EMOA about more than 30 times with the population size 100.

4.2. Comparison of 3DFCH-EMOA to 3DCH-EMOA

We tested 3DFCH-EMOA and 3DCH-EMOA on ZED test functions with different population
sizes (100, 200, 300, 400, 500, 1000). For each mentioned parameter, 30 independent trials were

run.

4.2.1. Parameter settings

All algorithms run for 25000 function evaluations. The simulated binary crossover (SBX)
operator and the polynomial mutation are applied in all experiments. The crossover probability
of p. = 0.9 and a mutation probability of p,, = 1/n, where n is the number of decision variables,
were used as recommended in [31]. The population size was set to 100, 200, 300, 400, 500, 1000

for all the test problems.

4.2.2. Experimental results and discussions
The Pareto fronts obtained by 3DCH-EMOA and 3ADFCH-EMOA with population size 300 are
shown in Fig. 12. From the figures we can observe that 3DFCH-EMOA can obtain as good Pareto
26

@e@wavo 29"
€ so 8590
[

N

of 3DFCH-EMOA on (¢c) Result of 3DFCH-EMOA on

of 3DFCH-EMOA on (b) Result

(a) Result

ZED?2 test problem ZED?3 test problem

ZED] test problem

(d) Result of 3DCH-EMOA on ZEDI1 (e) Result of 3DCH-EMOA on ZED2 (f) Result of 3DCH-EMOA on ZED3

test problem

test problem

test problem

Figure 12: Experimental results of the Pareto front (for single run) obtained by 3DFCH-EMOA and 3DCH-EMOA

algorithms on ZED test functions for population size of 300 in f; — f> — f5 space.

fronts as 3DCH-EMOA.

The results of VAS mean are listed in Table 5. By comparing the values of VAS we can see
that 3DFCH-EMOA can obtain the same values of VAS as 3DCH-EMOA. We can conclude that

w0 3DFCH-EMOA inherits from 3DCH-EMOA the good performance of 3D ROCCH maximization.

The results of mean execution time of 3DFCH-EMOA and 3DCH-EMOA on ZED test func-

tions are listed in Table 6. Execution time analysis for several population sizes for ZED1 function

increase of population size. The execution time of 3DCH-EMOA increases faster than 3DFCH-
27

is shown in Fig. 13. By comparing the results we can see that execution time increases with the

s EMOA with the increase of population size. Besides, the 3DCH-EMOA is computationally more
expensive than 3DFCH-EMOA for the same population size.

Table 5: The mean of VAS on ZED test problems.

compared methods
3DFCH-EMOA 3DCH-EMOA

test function population size

100 3.53e - 01 3.53¢ - 01
200 3.55¢ - 01 3.55¢ - 01
300 3.56e - 01 3.56e — 01
ZED1 400 3.56e — 01 3.56¢ — 01
500 3.56¢ — 01 3.56¢ — 01
1000 3.56e — 01 3.56e — 01
100 3.52¢ - 01 3.52¢ - 01
200 3.54e - 01 3.54e - 01
300 3.54¢ - 01 3.54¢ - 01
ZED2 400 3.54e - 01 3.54e - 01
500 3.55¢-01 3.55¢ - 01
1000 3.55¢ - 01 3.55¢ - 01
100 3.5le =01 3.51e-01
200 3.53¢ =01 3.53¢ - 01
300 3.54e - 01 3.54e - 01
ZED3 400 3.54e - 01 3.54e - 01
500 3.54e - 01 3.54e - 01
1000 3.55¢ - 01 3.55¢ - 01

Table 6: The mean of execution time (ms) on ZED test functions.

compared methods
3DFCH-EMOA 3DCH-EMOA

test function population size

100 6.33¢+ 03 3.68¢+ 05
200 472 + 04 1.40e + 06
300 1.04¢ + 05 3.42¢+ 06
ZEDI 400 1.79 + 05 6.48¢ + 06
500 2.87¢ + 05 1.07¢ + 07
1000 9.87¢ + 05 4.84¢ +07
100 379+ 03 3.40e + 05
200 4.50¢ + 04 1.32¢ +06
300 9.77¢ + 04 3220+ 06
ZED2 400 1.69 + 05 6.11¢+ 06
500 2.70e + 05 1.00e + 07
1000 8.95¢ + 05 4.50¢ +07
100 535¢+03 353¢+ 05
200 4.64¢ + 04 1.35¢ + 06
300 1.00¢ + 05 3.29¢ + 06
ZED3 400 1.74¢ + 05 6.26¢ + 06
500 2.78¢ +05 1.03¢ + 07
1000 9.28¢ + 05 4.62¢ +07

4.3. Comparison of age-based selection with random selection of 3DFCH-EMOA

In this subsection, we evaluate and analyze the strategies of age-based selection and random
selection of individuals in non-FS set. We run age-based selection and random selection on ZED1

s test function for 30 independent runs and recorded the values of VAS in every generation. The
average VAS over generations in 30 independent runs is shown in Fig. 14. We found that the age-
based selection has a slightly faster convergence rate than the random selection strategy. Simply

adopting the age-based strategy cannot improve the performance of the algorithm significantly. To

28

—6—3DFCH-EMOA(ZED1),
107 [3pci-EmoazEDY]

3

10° ! ! ! ! ! ! ! !
100 200 300 400 500 600 700 800 900 1000

Figure 13: Comparison of execution times of 3DFCH-EMOA and 3DCH-EMOA on ZED1 test function obtained by
30 independent trials with different population sizes

035}]
Age-based selection
Random selection
03 r]
(/J |- 4
X 0.25
02 ¢ . ‘ ‘ N
10' 107 10° 10* 10°

Number of function evaluations

Figure 14: Average VAS of age-based selection and random selection of 3DFCH-EMOA on ZED1 test function

make the proposed algorithm more efficient, the age-based strategy must be applied in combination

ws with other strategies.

5. Conclusions

In this paper, we proposed 3DFCH-EMOA, a fast version of 3DCH-EMOA, by adopting the
incremental convex hull algorithm and several other evolutionary strategies. To reduce the compu-

0 tational time complexity of an iteration, individuals are only ranked into two levels, one is convex
hull level and the other one is non-convex hull level, where age is used as a selection criterion.
Besides a fast incremental computation of the contribution of each vertex to the convex hull vol-

ume is used. In total the average time complexity of 3DCH-EMOA in each generation is reduced
29

455

465

470

475

480

from O(n? log n) to O(nlog n). Six test function problems were used to test the performance of the
proposed method. Experimental results show that the 3DFCH-EMOA can speed up 3DCH-EMOA
for about 30 times with the size of the population 100, without reducing the performance of the
method. Moreover, the benchmark was extended by modern algorithms, such as NSGA-III and
MOPSO.

Alternatively, the computational time complexity of iteratively computing the convex hull,
which is O(nt“/21¥2)) [55] for d dimensions, could be achieved by iteratively using the gift-wrapping
algorithm. However, also here, incremental algorithms might prove to be useful for obtaining a
better average computational time complexity. In the future it would be interesting to derive fast
algorithms for more than 3 dimensions. Besides, since Particle Swarm Optimization (PSO) meth-
ods show a relatively fast convergence, its search operators might be combined with indicator

based selection of 3DFCH-EMOA in the future.

Acknowledgments

This work was partially supported by the National Key Research and Development Plan (No.

2016 YFC0600908), the National Natural Science Foundation of China (No. U1610124 and 61473215),

the National Basic Research Program (973 Program) of China (No. 2013CB329402).

References

[1] T. Fawcett, An introduction to ROC analysis, Pattern recognition letters 27 (8) (2006) 861-874.

[2] A. E Martin, G. R. Doddington, T. Kamm, M. Ordowski, M. A. Przybocki, The det curve in assessment of
decision task performance, in: European Conference on Speech Communication and Technology, Eurospeech
1997, Rhodes, Greece, September, 1997, pp. 1895-1898.

[3] J. A. Hanley, Receiver operating characteristic (ROC) methodology: the state of the art., Critical Reviews in
Computed Tomography 29 (3) (1989) 307-335.

[4] T. Fawcett, Using rule sets to maximize ROC performance, in: IEEE International Conference on Data Mining,
2001, pp. 131-138. doi:10.1109/ICDM.2001.989510.

[S] M. Barreno, A. A. Cérdenas, J. D. Tygar, Optimal ROC curve for a combination of classifiers, in: J. C. Platt,
D. Koller, Y. Singer, S. T. Roweis (Eds.), Conference on Neural Information Processing Systems, Vancouver,

British Columbia, Canada, December, Curran Associates, Inc., 2008, pp. 57-64.

30

485

490

495

500

505

510

515

(6]

(71

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

T. Fawcett, PRIE: a system for generating rulelists to maximize ROC performance, Data Mining and Knowledge
Discovery 17 (2) (2008) 207-224.

P. Wang, K. Tang, T. Weise, E. Tsang, X. Yao, Multiobjective genetic programming for maximizing ROC
performance, Neurocomputing 125 (2014) 102-118.

P. Wang, M. Emmerich, R. Li, K. Tang, T. Béck, X. Yao, Convex hull-based multi-objective genetic program-
ming for maximizing receiver operator characteristic performance, IEEE Transactions on Evolutionary Compu-
tation 19 (2) (2015) 188-200. doi:10.1109/TEVC.2014.2305671.

J. Zhao, V. Basto Fernandes, L. Jiao, I. Yevseyeva, A. Maulana, R. Li, T. Bick, K. Tang, M. T.M. Emmerich,
Multiobjective optimization of classifiers by means of 3D convex-hull-based evolutionary algorithms, Informa-
tion Sciences 367-368 (2016) 80-104.

W. Hong, K. Tang, Convex hull-based multi-objective evolutionary computation for maximizing receiver oper-
ating characteristics performance, Memetic Computing 8 (1) (2016) 35-44.

W. Hong, G. Lu, P. Yang, Y. Wang, K. Tang, A new evolutionary multi-objective algorithm for convex hull
maximization, in: 2015 IEEE Congress on Evolutionary Computation (CEC), IEEE, 2015, pp. 931-938.

K. Li, S. Kwong, Q. Zhang, K. Deb, Interrelationship-based selection for decomposition multiobjective opti-
mization, IEEE Transactions on Cybernetics 45 (10) (2015) 2076-2088.

T. Liu, L. Jiao, W. Ma, J. Ma, R. Shang, Cultural quantum-behaved particle swarm optimization for environ-
mental/economic dispatch , Applied Soft Computing 48 (2016) 597-611.

A. Mukhopadhyay, U. Maulik, S. Bandyopadhyay, C. Coello, Survey of multiobjective evolutionary algorithms
for data mining: Part II, IEEE Transactions on Evolutionary Computation 18 (1) (2014) 20-35. doi:10.1109/
TEVC.2013.2290082.

S. Wang, L. L. Minku, X. Yao, A multi-objective ensemble method for online class imbalance learning, in: 2014
International Joint Conference on Neural Networks (IJICNN), 2014, pp. 3311-3318. doi:10.1109/IJCNN.
2014 .6889545.

L. Li, X. Yao, R. Stolkin, M. Gong, S. He, An evolutionary multiobjective approach to sparse reconstruction,
TEEE Transactions on Evolutionary Computation 18 (6) (2014) 827-845. doi:10.1109/TEVC.2013.2287153.
H. Li, M. Gong, Q. Wang, J. Liu, L. Su, A multiobjective fuzzy clustering method for change detection in sar
images, Applied Soft Computing 46 (C) (2016) 767-777.

I. Yevseyeva, V. Basto-Fernandes, J. R. Méndez, Survey on anti-spam single and multi-objective optimization,
in: ENTERprise Information Systems, Springer, 2011, pp. 120-129.

V. Basto-Fernandes, 1. Yevseyeva, J. R.Méndez, Anti-spam multiobjective genetic algorithms optimization anal-
ysis, International Resource Management Journal 26 (2012) 54-67.

K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II,
IEEE Transactions on Evolutionary Computation 6 (2) (2002) 182-197.

31

520

525

530

535

540

545

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(32]
[33]

[34]

Q. Zhang, H. Li, MOEA/D: A multiobjective evolutionary algorithm based on decomposition, IEEE Transac-
tions on Evolutionary Computation 11 (6) (2007) 712-731.

Z. Wang, Q. Zhang, A. Zhou, M. Gong, L. Jiao, Adaptive replacement strategies for MOEA/D, IEEE Transac-
tions on Cybernetics 46 (2) (2016) 474—486.

N. Beume, B. Naujoks, M. Emmerich, SMS-EMOA: Multiobjective selection based on dominated hypervolume,
European Journal of Operational Research 181 (3) (2007) 1653—1669.

I. Hupkens, M. Emmerich, Logarithmic-time updates in SMS-EMOA and hypervolume-based archiving, in:
EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation, 2013, pp.
155-169.

K. Bringmann, T. Friedrich, F. Neumann, M. Wagner, Approximation-guided evolutionary multi-objective opti-
mization., Proceedings of the twenty-second international joint conference on artifical intellignece (2011) 1846—
1853.

E. Zitzler, S. Kiinzli, Indicator-based selection in multiobjective search, Lecture Notes in Computer Science
(2004) 832-842.

R. Ariew, Ockham’s razor: A historical and philosophical analysis of Ockham’s principle of parsimony.

V. Basto-Fernandes, I. Yevseyeva, J. R. Méndez, J. Zhao, F. Fdez-Riverola, M. T.M. Emmerich, A SPAM filter-
ing multi-objective optimization study covering parsimony maximization and three-way classification, Applied
Soft Computing (2016) 111-123.

S. Kukkonen, J. Lampinen, GDE3: The third evolution step of generalized differential evolution, in: Proceedings
of the IEEE Congress on Evolutionary Computation (CEC 2005, Edinburgh, UK, 2-4 September 2005), Vol. 1,
IEEE Press, 2005, pp. 443-450.

E. Zitzler, M. Laumanns, L. Thiele, SPEA2: Improving the strength Pareto evolutionary algorithm, TIK Report
103, Computer Engineering and Networks Laboratory (TIK), ETH Zurich, Zurich, Switzerland (2001).

J. Zhao, V. Basto-Fernandes, L. Jiao, I. Yevseyeva, A. Maulana, R. Li, T. Biack, M. Emmerich, Multiobjec-
tive optimization of classifiers by means of 3-D convex hull based evolutionary algorithms, arXiv preprint
arXiv:1412.5710.

S. Yitzhaki, Relative deprivation and the gini coefficient, Quarterly Journal of Economics 93 (2) (1979) 321-24.
1. Zelinka, A survey on cvolutionary algorithms dynamics and its complexity mutual relations, past, present and
future, Swarm and Evolutionary Computation 25 (2015) 2—-14.

J. Moore, R. Chapman, Application of particle swarm to multiobjective optimization, in: International Confer-
ence on Computer Science and Software Engineering, 2003.

M. R. Sierra, C. A. Coello Coello, Improving PSO-based multi-objective optimization using crowding, mutation
and e-dominance, in: in Proceedings of the Third International Conference on Evolutionary Multi-Criterion

Optimization, EMO, 2005, pp. 505-519.

32

550

555

560

565

570

575

580

[36]

[37]

(38]

[39]

[40]
[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

A. J. Nebro, J. J. Durillo, J. Garcia-Nieto, C. A. Coello Coello, SMPSO: A new PSO-based metaheuristic
for multi-objective optimization, in: Computational intelligence in multi-criteria decision-making, 2009. IEEE
symposium on, 2009, pp. 66-73.

C. Liicken, B. Baran, C. Brizuela, A survey on multi-objective evolutionary algorithms for many-objective
problems, Computational Optimization and Applications 58 (3) (2014) 707-756.

K. Deb, H. Jain, An evolutionary many-objective optimization algorithm using reference-point-based nondom-
inated sorting approach, part I: Solving problems with box constraints, IEEE Transactions on Evolutionary
Computation 18 (4) (2014) 577-601.

S. Z. Zhao, P. N. Suganthan, Q. Zhang, Decomposition-based multiobjective evolutionary algorithm with an
ensemble of neighborhood sizes, IEEE Transactions on Evolutionary Computation 16 (3) (2012) 442—-446.

J. O’Rourke, Computational Geometry in C, Cambridge University Press, 1998.

D. R. Chand, S. S. Kapur, An algorithm for convex polytopes, Journal of the Association for Computing Ma-
chinery 17 (1) (1970) 78-86.

G. S. Brodal, R. Jacob, Dynamic planar convex hull, in: The 43rd Annual IEEE Symposium on Proceeding of
Foundations of Computer Science, 2002, pp. 617-626.

C. B. Barber, D. P. Dobkin, H. Huhdanpaa, The quickhull algorithm for convex hulls, ACM Transactions on
Mathematical Software (TOMS) 22 (4) (1996) 469-483.

M. Dietzfelbinger, A. Karlin, K. Mehlhorn, E. M. A. D. Heide, H. Rohnert, R. E. Tarjan, Dynamic perfect
hashing: upper and lower bounds, in: 2013 IEEE 54th Annual Symposium on Foundations of Computer Science,
1988, pp. 524-531.

F. P. Preparata, S. J. Hong, Convex hulls of finite sets of points in two and three dimensions, Communications
of the ACM 20 (2) (1977) 87-93.

K. L. Clarkson, P. W. Shor, Applications of random sampling in computational geometry, II, Discrete and Com-
putational Geometry 4 (5) (1989) 387—421.

K. Clarkson, Kenneth L.and Mehlhorn, R. Seidel, Four results on randomized incremental constructions, Com-
putational Geometry: Theory and Applications 3 (1993) 185-212. doi:10.1016/0925-7721(93)90009-U.
G. Rote, K. Buchin, K. Bringmann, S. Cabello, M. Emmerich, Selecting K points that maximize the convex
hull volume, in: The 19th Japan Conference on Discrete and Computational Geometry, Graphs, and Games
(JCDCGS3 2016), 2016, pp. 58-60.

A. Ghosh, S. Tsutsui, H. Tanaka, Individual aging in genetic algorithms, in: Proceedings of Australian and New
Zealand Conference on Intelligent Information Systems, 1996, pp. 276-279.

M. Crepinéek, S.-H. Liu, M. Mernik, Exploration and exploitation in evolutionary algorithms: A survey, ACM
Computing Surveys 45 (3) (2013) 533-545.

W. N. Chen, J. Zhang, Y. Lin, N. Chen, Z. H. Zhan, S. H. Chung, Y. Li, Y. H. Shi, Particle swarm optimization

33

with an aging leader and challengers, IEEE Transactions on Evolutionary Computation 17 (2) (2013) 241-258.
ses [52] J.J. Durillo, A. J. Nebro, jMetal: A Java framework for multi-objective optimization, Advances in Engineering
Software 42 (2011) 760-771.
[53] A.J. Nebro, J. J. Durillo, M. Vergne, Redesigning the jMetal multi-objective optimization framework, in: Ge-
netic and Evolutionary Computation Conference (GECCO), 2015, pp. 1093-1100.
[54] H. Wang, Y. Jin, X. Yao, Diversity assessment in many-objective optimization, IEEE Transactions on Cybernet-
590 ics (99) (2016) 1-13. doi:10.1109/TCYB.2016.2550502.
[55] R. Seidel, Convex hull computations, CRC Press, Inc., 1997.

34

