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Robust modeling and planning of
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in logistics under uncertainties
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Abstract
To realize higher coverage rate, lower reading interference, and cost efficiency of radio-frequency identification network
in logistics under uncertainties, a novel robust radio-frequency identification network planning model is built and a
robust particle swarm optimization is proposed. In radio-frequency identification network planning model, coverage is
established by referring the probabilistic sensing model of sensor with uncertain sensing range; reading interference is
calculated by concentric map–based Monte Carlo method; cost efficiency is described with the quantity of readers. In
robust particle swarm optimization, a sampling method, the sampling size of which varies with iterations, is put forward
to improve the robustness of robust particle swarm optimization within limited sampling size. In particular, the exploita-
tion speed in the prophase of robust particle swarm optimization is quickened by smaller expected sampling size; the
exploitation precision in the anaphase of robust particle swarm optimization is ensured by larger expected sampling size.
Simulation results show that, compared with the other three methods, the planning solution obtained by this work is
more conducive to enhance the coverage rate and reduce interference and cost.
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Introduction

With the development of information technology, there
is an increasing usage of radio-frequency identification
(RFID) network in logistics.1,2 How to deploy the min-
imum number of readers for covering all tags in the
entire space is known as the radio-frequency identifica-
tion network planning (RNP) problem,3 which is one
of the fundamental problems in large-scale RFID net-
works.4 Coverage, inference, and cost, which are key
elements of the RNP problem, are largely influenced by
the number and positions of the RFID devices.5,6

However, uncertainties, such as radio channel, antenna
read range and the influence on readers’ identification
ability by different materials and objects around tags,
may exist in the actual RFID network system. These

uncertainties bring great influence to coverage, interfer-
ence, and cost of the RFID network. Therefore, how to
adopt the intensive way of deploying the readers to
obtain higher coverage rate and less interference within
low budget becomes a key issue for the popularization
and application of RFID networks in logistics.
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In the past decades, extensive efforts have been
made to model and plan RFID network under certain
environment,5–10 and coverage problem is one of the
fundamental issues in RNP. Gong et al.5 formulated a
model of RNP, in which tag coverage, number of read-
ers, interference, and the sum of transmitted power
were considered. Liu and Ji6 proposed an optimization
model of RFID network system to solve the problem
of how to place readers, taking the coverage rate and
load balance into consideration. Di Giampaolo et al.8

developed a simple and effective model, in which the
performance indicators consisted of coverage efficiency,
overall overlapping, total power, and cost of the net-
work. Tao et al.10 conducted the reader deployment in
large-scale RFID systems as a problem of multi-
objective combination optimization by taking the
coverage, signal interference, and load balance as the
optimization objectives and deducing the objective
ranges.

The RFID network planning problem has been
proved to be NP-hard for its nonlinearity and complex-
ity. In recent years, evolutionary computation (EC) and
swarm intelligence (SI) have become an effective tool
for solving the planning of RFID network problem
under certain environment, such as genetic algorithm
(GA),3,7 plant growth simulation algorithm (PGSA),4

particle swarm optimization (PSO),8–10 and artificial
colony algorithm.11 Yang et al.7 proposed a GA-based
RNP method, which included mapping the RFID net-
work, presenting the problem states using gene and
chromosome, and implementing the mechanisms of
individual selection and genetic operation. Simple and
effective models of electromagnetic elements involved
in RNP are developed and included in the frame of
PSO algorithm.8 An improved PSO algorithm based on
genetic algorithm (GA-PSO) was proposed to solve the
problem of how to place readers so that the readers can
effectively get the information of multiple tags.9 Tao
et al.10 proposed an improved particle swarm algo-
rithm, which can restrict the position change of original
and new particles in the iteration process and accelerate
the convergence speed of the algorithm, to solve the
reader deployment in large-scale RFID systems. A
k-coverage model, which is formulated as a multi-
dimensional optimization problem with constraint
conditions is developed to evaluate the network perfor-
mance. And the PGSA is used to optimize the RFID
networks by determining the optimal adjustable para-
meters in the model.4 Ma et al.11 proposed a coopera-
tive multi-objective artificial colony algorithm to find
all the pareto optimal solutions and to achieve the opti-
mal planning solutions by simultaneously optimizing
four conflicting objectives (tag coverage, reader inter-
ference, economic efficiency and load balance) in multi-
objective RNP. Lin and Tsai3 proposed a micro-genetic
algorithm (mGA) with novel spatial crossover and

correction schemes to cope with this constrained three-
dimensional reader network planning problem. The
mGA was computationally efficient, which allowed a
frequent replacement of RFID readers in the network
to account for the short turnaround time of cargo stor-
age and guaranteed 100% tag coverage rate to avoid
missing the cargo records.

Although the modeling and planning of RFID net-
work has drawn extensive attention, few studies have
considered several objectives under uncertainties about
decision-making for the RNP problem. Meanwhile,
there have been some studies on the sensor deployment
of wireless sensor networks (WSNs) under uncertain-
ties. Li et al.12 and Ozturk et al.13 proposed a probabil-
ity sensing model when the detection region of sensor
was uncertain. Vu and Zheng14 presented a systematic
study of the impact of location uncertainty on the cov-
erage properties of WSNs and devised an efficient poly-
nomial algorithm. Vu and Zheng15 carried out a
rigorous study of the impacts of location uncertainty
on the accuracy of target localization and tracking, and
proposed an effective algorithm based on order-k max
and min Voronoi diagrams. However, different proper-
ties of WSNs and RFID network make these
approaches useful in WSNs inapplicable to RFID
networks.4

The robust optimization method is very important
in complicated RFID network planning under uncer-
tainties. To deal with complex uncertainty problem, it
is simple and effective to combine intelligent optimiza-
tion algorithms and robust optimization.16–19 However,
robust optimization is generally based on Monte Carlo
integral, while cyclic iteration is usually used in intelli-
gent optimization algorithms. This straightforward
method needs more number of fitness evaluations,
which brings about a large calculation. Therefore, how
to keep the search performance while reducing the
computational complexity, in other words, how to
improve the search performance in the case of limited
sampling size, is a problem deserving study.

Uncertainties, such as radio channel, antenna read
range, and the influence on readers’ identification abil-
ity by different materials and objects around tags, can
be converted to uncertain positions of tags with respect
to readers’ identification. Therefore, to enhance the
reliability and stability in logistics, this work focuses on
tags’ uncertain positions and studies robust modeling
and planning of RFID networks under uncertainties.
First, a robust planning model of an RFID network in
logistics is built, in which the coverage rate is analyzed
on the basis of the probability sensing model of WSN
under uncertainty. Second, the concentric map–based
Monte Carlo method is applied to calculate the interfer-
ence. Third, to enhance the searching capability, robust
particle swarm optimization (RPSO), which can trade
off the exploitation speed and precision, is put forward
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to solve the RFID planning problem under uncertain-
ties. Finally, the simulation results indicate that the pro-
posed method possesses a better robust optimization
capability.

RFID network planning problem under
uncertainties

The key to the RFID network planning problem is the
deployment of readers to satisfy multi-objective require-
ments due to the limited range of reader–tag communi-
cation. First, it is hoped that the tags can be identified
as much as possible. Second, reading interference is
closely related to the reader collision problem,20 which
may occur when the tags are located in the overlapping
area of any two readers’ interrogation zones, and both
readers read tags simultaneously.3 Consequently, the
number of tags located in the overlapping area of inter-
rogation zones should be as small as possible. Third,
the smaller the number of placed readers is, the lower
the cost is. Therefore, the proposed planning model of
RFID network aims to optimize a set of objectives
(such as tag coverage, reading interference, and eco-
nomic efficiency) simultaneously by adjusting the con-
trol variables (the coordinates of readers, the number of
readers, etc.) of the system. In view of uncertainties
which can be converted to uncertain positions of tags
with respect to readers’ identification, a novel study
related to the coverage and interference analysis is con-
sidered in this work.

The deployment region of the RFID network system
is supposed as a two-dimensional (2D) square domain
which consists of several tags. Assume that uncertain-
ties are arbitrary and then the uncertain area of tags’
positions to readers’ identification is circles with radius
RT. A conceptual view of tags’ uncertainty positions is
shown in Figure 1, where coarse dots indicate tags and
small circles are the ranges of tags’ uncertainty
positions.

Coverage rate

Coverage is the main task of an RFID network. By
referring the probability sensing model for WSNs,12,15

readerij, which denotes the capability of the ith reader
to identify the jth tag, is described using equation (1)

readerij =

0, RR +Rb� d(si, oj)

e �l1a1
b1 a2

b2 + l2ð Þ RR � Rb\d(si, oj)�RR +Rb

1 d(si, oj)�RR � Rb

8<
:

ð1Þ

where RR is the sensing radius of each reader; Rb is the
radius of each tag’s uncertainty position;
a1 =Rb � RR + d(si, oj); a2 =Rb +RR � d(si, oj); l2 is

the disturbing effect; b1, b2, and l1 are the measuring
parameters of detection probability; d(si, oj)=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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j
O) are the

coordinates of the ith reader and the jth tag, respec-

tively. Then, c
j
O, which denotes the coverage of the tag

overlapped by readers, is described using equation (2).
In equation (2), NR denotes the number of deployed
readers

c
j
O = 1�

YNR

i= 1

(1� readerij) ð2Þ

In order to make the coverage rate comparable in
different numbers of tags, f1 denotes the coverage rate
of the RFID network, which can be obtained using
equation (3) by referring to Gong et al.,5 Liu and Ji,6

and Di Giampaolo et al.8 In equation (3), Nb denotes
the number of tags

f1 =
100

Nb

XNb

j= 1

cj
o ð3Þ

Interference

Interference mainly occurs in an environment with
dense readers, where several readers try to interrogate
tags simultaneously. Interference will result in unaccep-
table misreading21 and failure of information collec-
tion.10 Due to uncertainty of tags’ positions, it is
complicated to use geometric analysis method to deal
with the interference problem. And it is hard to build
an approximate mathematical coverage model. Here
the Monte Carlo sampling method is employed.

If the ith reader can identify the sampling site o
j
k ,

then reader
j
ik = 1; otherwise, reader

j
ik = 0, where

k = 1, 2, . . . ,K, K is the number of sampling sites, o
j
k ,

the coordinate of which is (x0jk , y
0j
k ), denotes the kth sam-

pling site within the uncertainty range of the jth tag,
reader

j
ik is the capability of the ith reader to identify the

Figure 1. Tags and their uncertainty positions.
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sampling site o
j
k . When RR +Rb\d(si, oj) or

RR � Rb � d(si, oj), reader
j
ik is attained straightly by

equation (4)

reader
j
ik =

0, RR +Rb\d(si, oj)
1, RR � Rb � d(si, oj)

�
ð4Þ

When RR � Rb\d(si, oj)�RR +Rb, the concentric
map method22 is applied. For a unit circle, the center of
which is in the origin of the coordinate, the polar coor-
dinates of the sampling sites are

r = e1, u=
p

4
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, if e1. e2j j ð5Þ
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ð8Þ

r= 0, u= 0, if e1 = e2 = 0 ð9Þ

where e1 and e2 are the random real numbers in the
interval [21,1]. The Cartesian coordinate of a sampling
site is (x, y)= (r cos u, r sin u). In this work, the
Cartesian coordinate of the jth tag is (x, y)=
(xj

O +Rbr cos u, yj
O +Rbr sin u), because the jth tag is

located in (xj
O, y

j
O) and the uncertainty area of a tag’s

position is a circle with radius Rb.
Precision of random sampling is low, because e1, e2

are random real numbers in the interval [21,1]. A low-
discrepancy sampling, Korobov Lattice,23 is adopted to
enhance coverage calculation precision. Korobov
Lattice is defined as PK = f(m=K)(1, a mod K, . . . ,
as�1 mod K) mod 1 : m= 0, . . . ,K � 1g, where
a=

ffiffiffiffi
K
p� �

.

If
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2
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�R, reader
j
ik = 1; other-

wise, reader
j
ik = 0. Over

j
k , which denotes the reading

overlap of the kth sampling site within the uncertainty
area of the jth tag, is described using equation (10).
Referring to Di Giampaolo et al.,8 f2, which denotes
the average interference, is described using equation
(11)

Over
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Cost

The quantity of readers is a key impact factor of the
RFID network cost. f3 in equation (12) denotes the
RFID network cost. In equation (12), Nmax is the maxi-
mum number of readers that can be deployed

f3 =
Nmax � NR

Nmax
ð12Þ

RFID network planning model under uncertainties

The robust planning model of RFID network is built,
in which the coverage rate, interference, and cost are
considered. Equation (13) is taken as the objective func-
tion, where g1, g2, and g3 are the weight coefficients
and g1 + g2 + g3 = 1

max f = g1f1 + g2f2 + g3f3 ð13Þ

Any deployed reader must be in the region of the
RFID network. Let A be the region of the RFID net-
work. Then the feasible region is shown in equation
(14)

xi
S , yi

S

� 	
2 A, 8i 2 f1, 2, . . . ,NRg ð14Þ

Constraints of the RFID network planning model
are equations (1)–(3), (10)–(12), and (14).

Robust particle swarm optimization
algorithm

From section ‘‘RFID network planning model under
uncertainties,’’ it can be known that the RFID network
planning problem under uncertainties is mainly a con-
tinuous problem. In this work, PSO is applied to the
RFID network planning problem, because PSO pos-
sesses ease of implementation, high quality of solutions,
computational efficiency, and speed of convergence6

and also exhibits good ability to solve continuous opti-
mization problem.5

From section ‘‘Interference,’’ it can be shown that
there is a trade-off between accuracy and speed in inter-
ference calculation. Larger number of sampling sites
can improve the calculation accuracy and lead to lower
speed, or vice versa. In order to balance the calculation
of accuracy and speed, a novel robust particle swarm
optimization algorithm is proposed.
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Particle swarm optimization (PSO) algorithm

PSO is a population-based heuristic search technique,
in which a group of particles search the best solution by
iterations. The iteration formulations24 are as follows

V t+ 1
ld =vV t

ld + c1R1 X
pb
ld � X t

ld


 �
+ c2R2 X

gb
d � X t

ld


 �
ð15Þ

X t + 1
ld =X t

ld +V t + 1
ld ð16Þ

where d = 1, 2, . . . ,D with D being the number of par-
ticles’ dimensions; t is the iteration number,
t = 1, 2, . . . , T , with T being the maximum iteration; v

is the inertia weight; c1 and c2 are the acceleration con-
stants; R1 and R2 are random numbers between 0 and
1; X

pb
l is the best solution of the lth particle; X gb is the

best solution of the swarm; and X
pb
ld and X

gb
d are the dth

dimensions of X
pb
l and X gb, respectively.

Besides, the velocity Vld is limited by the maximum
velocity Vmax,d.

Basic idea of RPSO

In the prophase of iterations, PSO algorithm should
explore the search space to find the optimum region
with faster speed. In the anaphase of iterations, PSO is
supposed to develop the optimum region to search the
optimal solution with higher precision. The sampling
size is closely related to the exploring speed and exploi-
tation precision. The smaller the sampling size is, the
faster the exploring velocity is. The larger the sampling
size is, the higher the exploitation precision is.

According to this line of thinking, a robust particle
swarm optimization is proposed. To be specific, some
sampling sizes formed a set SN = fn1, n2, . . . , nNg. In
SN , some larger sampling sizes formed a subset Ss

N ,
while the other smaller sampling sizes formed a subset
Sl

N . In the prophase of iterations, the selection prob-
abilities of sampling sizes in Ss

N are larger than those in
Sl

N , or vice versa in the anaphase of iterations. Then the
exploring speed in the prophase of iterations and the
exploitation precision in the anaphase of iterations can
be ensured. In the prophase of iterations, sampling
sizes in Sl

N are given low selection probabilities to get
some high-reliability solutions, which can reduce blind
exploration, while in the anaphase of iterations sam-
pling sizes in Ss

N are given low selection probabilities to
get some unreliability solutions, which can help RPSO
to escape local extrema.

In this work, the sampling sizes in SN are symmetri-
cal about nav =(n1 + nN )=2.

Method of sampling size selection

Here, an asymmetric 2D sigmoid function is designed
to set the selection probability of each sampling size in
SN . u(n, t), which is described in equation (17), denotes

the probability of the sampling size n in the tth itera-
tion. u1(n) and u2(t) in equation (17) are given by equa-
tions (18) and (19)

u(n, t)=
B½u1(n)u2(t)+ 1�

2
ð17Þ

u1(n)=
2

1+ exp½�A1(n� nav)�
� 1 ð18Þ

u2(t)=
2

1+ exp½�A2(t � ta)�
� 1 ð19Þ

where B 2 (0, 1), A1,A2 2 (0, +‘), ta is an integer,
ta 2 ((1+T )=2, T ), and T is the maximum iteration of
the RPSO algorithm. It can be seen that u1(n) and u2(t)
are both changed from the sigmoid function. Here
u1(n) 2 (� 1, 1), u2(t) 2 (� 1, 1), and u(n, t) 2 (0, 1).
u1(n) and u2(t) are symmetrical about (nav, 0) and
(ta, 0), respectively.

The changes of u(n, t) with n and t are modified by
updating the parameters A1 and A2. Besides, the sum of
selection probabilities of sampling sizes in SN should be
1, then

PN
i= 1 B½u1(ni)u2(t)+ 1�=2= 1 and u2(t)

PN
i= 1

u1(ni)+N = 2=B.
It can be known that if

PN
i= 1 u1(ni)= 0, then

B= 2=N . So equation (20) holds

u(n, t)=
½u1(n)u2(t)+ 1�

N
ð20Þ

Expected sampling size

The expected sampling size, E(t), which is relevant to
the computational complexity of RPSO, is analyzed
here.

Calculation of expected sampling size. E(t) can be derived
as follows

E(t)=
XN

i= 1

niu(ni, t)=
1

N

XN

n= 1

ni½u1(ni)u2(t)+ 1�

=
1

N
u2(t)

XN

n= 1

niu1(ni)+
XN

n= 1

ni

( )

The sampling sizes in SN are symmetrical about nav.
Therefore, equation (21) holds

E(t)= nav +
1

N
u2(t)

XN

n= 1

niu1(ni) ð21Þ

From equation (21), it can be seen that the change
of E(t) with the iteration t depends entirely on u2(t). It
means that E(t) is a monotonically increasing function
of t, just like u2(t).
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Change of expected sampling size. ns
av and nl

av denote
the average sampling sizes in Ss

N and Sl
N , respectively,

and ns
m denotes the maximum sampling size in Ss

N .
If A2 � ln 2=(T � ta), exp½�A2(T � ta)� � 2, then
u2(t)’ 1 and equation (22) holds

E(T )’ nav +
1

N

XN

n= 1

niu1(ni) ð22Þ

because

ta 2
1+ T

2

� �
, T

� �

Therefore, when t 2 ½1, 2ta � T �, u2(t)’ � 1, and
equation (23) holds

E(t)’ nav �
1

N

XN

n= 1

niu1(ni), t 2 ½1, 2ta � T � ð23Þ

Therefore, E(t) is a monotonically increasing function
approximately from nav � 1

N

PN
n= 1 niu1(ni) to

nav +
1
N

PN
n= 1 niu1(ni) if A2 � ln 2=(T � ta). And E(t)

is almost unchanged when t 2 ½1, 2ta � T �.

Average expected sampling size. When t 2 ½2ta � T , T �

E(t)=
1

2T � 2ta + 1

XT

t= 2ta�T

E(t)

=
1

2T � 2ta + 1

XT

t = 2ta�T

nav +
1

N
u2(t)

XN

n= 1

niu1(ni)

" #

= nav +
1

N (2T � 2ta + 1)

XN

n= 1

niu1(ni)
XT

t= 2ta�T

u2(t)

Because u2(t) is symmetrical about (ta, 0),PT
t = 2ta�T u2(t)= 0 and equation (24) holds

E(t)= nav, t 2 ½2ta � T , T � ð24Þ

From equation (23), it can be known that equation
(25) is true if A2 � ln 2=(T � ta)

E(t)’ nav �
1

N

XN

n= 1

niu1(ni), t 2 ½1, 2ta � T � 1� ð25Þ

Therefore, if A2 � ln 2=(T � ta), then equation (26)
is obtained using equations (24) and (25), and equation
(27) is true

E(t)’
1

T
(2ta � T � 1) nav �

1

N

XN

n= 1

niu1(ni)

" #
+(2T � 2ta + 1)nav

( )
,

t 2 ½1,T �

ð26Þ

E(t)’
T + 1� 2ta

NT

XN

n= 1

niu1(ni)+ nav ð27Þ

Case of parameter setting

Here, a case of parameter setting is illustrated to visua-
lize the changes of u(n, t) and E(t). SN = {4, 8, 10, 30,
32, 36}, T = 100, A1 = 0.1, A2 = 0.25, and ta = 70.
It can be obtained that ln 2=(T � ta)’ 0:02, so
A2 � ln 2=(T � ta). The changes of u(n, t) and E(t) with
t are shown in Figures 2 and 3, respectively.

From Figure 2, it can be known that u(2, t), u(4, t),
and u(5, t) are larger in the prophase of iterations and
smaller in the anaphase of iterations; u(15, t), u(16, t),
and u(18, t) are smaller in the prophase of iterations
and larger in the anaphase of iterations. They all change
slightly when t 2 ½1, 40�. All these characteristics are
consistent with section ‘‘Basic idea of RPSO.’’

From Figure 3, it is seen that E(t) is almost
unchanged in the prophase of iterations. From the
simulation results, EðtÞ’ 9:211 (t 2 ½1, 40�), E(T )’

30:789, and E(t)’ 15:792. At the same time, it can be
obtained that E(t)’ 9:211 (t 2 ½1, 40�), E(T )’ 30:789,

Figure 2. Change of u(n, t) with t.

Figure 3. Change of E(t) with t.
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and E(t)’ 15:792 according to equations (23), (22),
and (27), respectively. Therefore, the conclusion of the
analysis is consistent with section ‘‘Expected sampling
size.’’

RPSO for the RFID network planning problem

Here, the proposed RPSO is applied for the RFID net-
work planning problem. The objective function, equa-
tion (13), acts directly as the fitness function of RPSO.
In the objective function, the coverage of RFID net-
work is calculated by referring to section ‘‘Coverage
rate’’; interference is determined by Monte Carlo sam-
pling method introduced in section ‘‘Interference’’; cost
is counted by equation (12) in section ‘‘Cost.’’ The
pseudo-code of RPSO is as follows

Simulations

In an ultra-high-frequency (UHF) RFID network area
of 30 m 3 30 m, 100 RFID tags (JY-T9662) are ran-
domly distributed. Tag (JY-T9662), which is made of
copperplate paper, is an UHF passive tag characterized
by 860–960 MHz. Parameters are set according to
Table 1, where RR is set in accordance with Gong
et al.;5 l1, l2, b1, and b2 are set in accordance with
Ozturk et al.;13 M and T are the population size and
the number of iterations of optimization algorithms
detailed in the following paragraphs, respectively.

To verify the performance of the proposed method,
four algorithms are implemented and compared,
among which RGA_MC is real-coded GA based on
traditional Monte Carlo method, RPSO_MC is PSO
based on traditional Monte Carlo method, RGA_SC is
real-coded GA based on the sampling method intro-
duced in this work, and RPSO_SC is RPSO described

in section ‘‘Robust particle swarm optimization algo-
rithm.’’ In all these four algorithms, coverage of the
RFID network is calculated by referring to section
‘‘Coverage rate’’; cost is calculated using equation (12);
interference in RGA_MC and RPSO_MC is deter-
mined by traditional Monte Carlo method, while inter-
ference in RGA_SC and RPSO_SC is calculated by
Monte Carlo method based on the sampling method
presented in this work. M and T of all algorithms are
set according to Table 1. In RGA_MC and RGA_SC,
the uniform crossover and uniform mutation are imple-
mented, where the crossover and mutation rates are
0.7 and 0.01, respectively. v= 0:729 and c1 = c2 =
1:49445 in RPSO_MC and RPSO_SC. Every chromo-
some or particle is coded as a 3 3 Nmax matrix. Each
reader has three codes: abscissa, ordinate, and whether
to be deployed. The third code is a real number in the
interval (0, 1). If the third code is greater than 0.5, the
reader is deployed, or vice versa. Parameters on sam-
pling size selection in RGA_SC and RPSO_SC are set
according to section ‘‘Case of parameter setting.’’

To compare these four algorithms, let the calcula-
tion quantity of the sampling method introduced in this
work be the same as that in the traditional Monte
Carlo method. In view of additional selection probabil-
ity calculation for sampling size in RGA_SC and
RPSO_SC, the sampling sizes of RGA_MC and
RPSO_MC are both set at 18, which is slightly higher
than E(N , t) in RGA_SC and RPSO_SC.

These four algorithms are continuously executed for
50 times. The best and average results are shown in
Tables 2 and 3, respectively, where f exp is obtained by
traditional Monte Carlo method in which the sampling
size is 1000. Table 4 shows Error(f exp) of interference
and fitness (Error(f exp)= jf exp � f̂ expj, where f̂ exp is
obtained by RGA_MC, RPSO_MC, RGA_SC, and
RPSO_SC). The average CPU times spent by these
four methods are shown in the last row of Table 3. The
unit of CPU time is seconds.

The average fitness value comparisons among these
four methods are shown in Figure 4(a). The average fit-
ness error comparisons among these four methods are
shown in Figure 4(b). The best results acquired by
RPSO_AS are shown in Figure 5, where * represents
the reader, coarse dots indicate the tags, large circles
represent the identification ranges of readers, and small
circles are uncertain positions of tags.

From Tables 2 and 3, the best and average results
displayed by RGA_SC and RPSO_SC are better than
those by RGA_MC and RPSO_MC. RPSO_SC shows
more excellent interference and fitness than RGA_SC.
CPU time spent by RPSO_SC is obviously less than
those spent by the other three methods.

From Table 4, individual evaluation errors in the
best and average results obtained by RGA_SC and
RPSO_SC are significantly smaller than those obtained

Initialize population
For t = 1: T

For i = 1: population size
Evaluate coverage rate according to section ‘‘Coverage
rate’’;
Evaluate interference according to section ‘‘Interference,’’
in which the sampling size is selected based on section
‘‘Method of sampling size selection’’;
Evaluate cost according to section ‘‘Cost’’;
Evaluate fitness according to section ‘‘RFID network
planning model under uncertainties’’;
If f (Xt

l ).f (X
pb
l ) then X

pb
l =Xt

l ;
Xgb = maxfXpb

l jl= 1, 2, . . .g;
for d = 1: D

update Vt+ 1
ld and Xt+ 1

ld according to section ‘‘PSO
algorithm’’;

end
end

end
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by RGA_MC and RPSO_MC. It can be reflected from
the expected sampling sizes in the last few iterations.
For example, in the 77th–100th iterations, the expected
sampling size of RGA_SC and RPSO_SC is between
30 and 31, which are drastically larger than those of
RGA_MC and RPSO_MC, which is 18. In addition, it
can be seen that the average fitness error obtained by
RPSO_SC is smaller than that obtained by RGA_SC.

From Figure 4(a), the convergence rate of RPSO_SC
is faster than those of the other three methods. From
Figure 4(b), the fitness errors are clearly influenced by
the sampling size. The average fitness error of
RPSO_SC is obviously larger than those of RGA_MC
and RPSO_MC in the 1st–65th iterations, but it is gra-
dually smaller than those of the other three methods
after the 70th iteration. From Figure 5, most tags have
been identified by readers and lower reading interfer-
ences occur among readers.

To verify the model and method proposed in this
work comprehensively, RFID network planning is done

using different numbers of tags. In areas of 50 m3 50 m,
50 m 3 100 m, and 100 m 3 100 m, the values of Nmax

are 40, 75, and 140, respectively; and there are 250, 500,
and 1000 tags, respectively, which are randomly distribu-
ted; the population sizes are 20, 40, and 50, respectively;
the numbers of iterations are 300, 500, and 1000, respec-
tively; the ta values are 210, 350, and 700, respectively; the
other parameters of sampling size selection in RGA_SC
and RPSO_SC are set according to section ‘‘Case of para-
meter setting.’’ Table 5 shows the average optimization
results and average CPU times of these three examples for
the four algorithms. Figures 6(a), 7(a), and 8(a) show the
average fitness value comparisons among these four meth-
ods, while Figs. 6(b), 7(b), and 8(b) show the average fit-
ness error comparisons among these four methods.

From Table 5, it can be seen that in different tag
quantities RPSO_SC which spent the shortest CPU
time is the best among the four algorithms referring to
the interference and fitness. From Figures 6–8, in
robust planning of the RFID network with different

Table 1. Parameter setting.

Parameter RR Rb l1 l2 b1 b2 Nmax g1 g2 g3 M T

Value 5 m 1 m 1 0 1 0.5 20 0.08 0.91 0.01 20 100

Table 2. The best results’ f exp of four methods.

Performance index RGA_MC RPSO_MC RGA_SC RPSO_SC

Coverage 92.945 90.424 91.764 90.301
Interference 0.002 0.318 0.474 0.8
Network cost 0.4 0.55 0.3 0.4
Fitness 7.441 7.529 7.775 7.956

Table 3. The average results’ f exp and CPU times of four methods.

Performance index RGA_MC RPSO_MC RGA_SC RPSO_SC

Coverage 80.943 82.226 84.076 85.787
Interference 0.015 0.033 0.035 0.364
Network cost 0.200 0.200 0.260 0.320
Fitness 6.491 6.610 6.761 7.197
CPU time 3.16 1.74 3.05 1.70

Table 4. Average Error(f exp) of interference degree and fitness.

Performance index RGA_MC RPSO_MC RGA_SC RPSO_SC

Best results Interference (31023) 5.765 3.405 2.127 1.569
Fitness (31023) 5.246 3.099 1.936 1.428

Average results Interference (31023) 4.049 2.433 1.956 1.303
Fitness (31023) 3.685 2.214 1.780 1.186
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numbers of tags, the convergence rate of RPSO_SC is
faster than those of the other three methods and the
average fitness error of RPSO_SC is gradually smaller
than those of the other three methods. The average fit-
ness value obtained by RPSO_SC is obviously larger
than those obtained by the other three methods from
the 44th, 25th, and 119th iterations in Figures 6(a),
7(a), and 8(a), respectively. The average fitness error in
fitness values obtained by RPSO_SC is obviously larger
than those obtained by RGA_MC and RPSO_MC in

Figure 4. Average fitness value (a) and average fitness error
Error(f exp) (b) with iterations.

Figure 5. Diagram of the best RFID network obtained by
RPSO_SC.

Table 5. Average planning results of the three examples.

Size of area network scale Performance index RGA_MC RPSO_MC RGA_SC RPSO_SC

50 m 3 50 m
250 tags

Interference 0.012 0.041 0.081 0.318
Fitness 6.147 6.111 6.480 6.541
CPU time 9.59 5.43 9.01 5.34

50 m 3 100 m
500 tags

Interference 0.011 0.037 0.062 0.232
Fitness 5.933 6.034 6.162 6.267
CPU time 15.33 9.78 15.06 9.58

100 m 3 100 m
1000 tags

Interference 0.011 0.026 0.053 0.161
Fitness 5.906 6.176 6.211 6.328
CPU time 35.44 22.15 34.38 21.35

Figure 6. Average fitness value (a) and average fitness error
Error(f exp) (b) with iterations when the number of tags is 250.
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the 1st–150th iterations, 1st–300th iterations, and 1st–
600th iterations shown in Figures 6(b), 7(b), and 8(b),
respectively. However, it is gradually smaller than those
obtained by the other three methods from the 206th,
351st, and 690th iterations shown in Figures 6(b), 7(b),
and 8(b), respectively.

These results suggest that RPSO_SC possesses better
optimization performance in solving the RFID network
planning problem under uncertainties.

Conclusion

To sum up, this work builds a RFID network planning
model in logistics under uncertainties which can be con-
verted to uncertain positions of tags with respect to
readers’ identification. The probability sensing model is
employed to analyze the coverage rate, and the Monte
Carlo method is applied to calculate the interference
among readers. To enhance the planning efficiency of
an RFID network under uncertainties, a robust particle
swarm optimization algorithm is proposed. To reduce
the computational complexity and improve the search
performance simultaneously, the sample sizes are

smaller and larger in the prophase and anaphase of
iterations, respectively. The expected sampling size is
analyzed for the convenience of performance compari-
sons between RPSO_SC and the other algorithms based
on traditional sampling method. Several simulations
are executed in different network scales. With respect to
coverage, interference, network cost, fitness, CPU time,
convergence rate, and fitness error, the proposed
approach can provide a better planning scheme for an
RFID network system in logistics under uncertainties.
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