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Abstract – This paper presents the Spy Walker, a measurement 

system intended to characterize gait in walker assistive devices. 

The proposed system can be easily integrated into any commercial 

walker without any loss of native functionality. The system makes 

use of e-textile electrodes to sense the heart rate of the user, load 

cells to measure the force applied on the walker legs, and an 

inertial measurement unit to sense motion and orientation. These 

signals are sampled locally and then transferred over a Bluetooth 

link to a remote host where they are processed in real time. Data 

processing includes the detection, classification and 

characterization of steps. A rich set of parameters is presented for 

each step, including estimates of unbalance and motor 

incoordination, travelled distance and azimuth, and lift of the 

walker frame. This information can be used by a physiotherapist 

to assess objectively the physical condition of the user, and tune 

the rehabilitation therapy if needed. 

Keywords – walker assistive device; gait analysis; heart rate; load 

cell; IMU. 

I.  INTRODUCTION 

 Assistive walking devices play an important role in 
extending the autonomy and quality of life of elderly people. 
They are also key elements in recovering the mobility of people 
affected by locomotion disabilities due to amputation, injuries of 
spine, muscular dystrophies or other causes. 

Walkers, in particular, increase the support base of elderly 
people and help them to stay balanced. This assistance reduces 
the costs associated with accidental falls, thus contributing to the 
sustainability of the medical care system [1,2]. Walkers also help 
increasing the confidence levels of the patient during long-term 
rehabilitation therapies. Vogt el al. [3] showed that the use of 
rollators (walkers with wheels) does not affect the therapy 
results and accelerates the recovery time.  

In many walker-related studies, the evaluation of the user’s 
balance and motor coordination is usually based on subjective 
data acquired through human observations. In order to improve 
the evaluation process, instrumented walkers have been 
proposed by several research groups. Bachschmidt et al. [4] 
developed an instrumented walker equipped with six strain-
gauges to sense the forces applied on the walker legs and 
handgrips.  Chan et al. [5] presented a rollator capable of 
measuring distance, velocity and the forces applied on the 
handgrips. In both cases, the goal was to monitor the physical 
condition of the user and analyze the walker usage. 

Our team [6,7,8] has been working on smart walkers over the 
last years. We’ve tried a vast set of sensors, including force 
sensing resistors and load cells to measure force, and LIDAR 
and microwave Doppler RADAR to measure distance and 
velocity. Our purpose is to evaluate the proper usage of the 
assistive device, and to extract gait parameters to understand 
how the rehabilitation therapy is progressing over time. 

In this paper we present the Spy Walker, our last proposal for 
a smart walker. It includes e-textile electrodes to detect user’s 
heart rate, load cells to measure the forces applied on the walker 
legs, an Inertial Measurement Unit (IMU) to sense motion and 
orientation, and software to bind all things together. The work 
was done on a standard four-leg walker, but it can be easily 
extended to other kinds of walkers. Care was taken to preserve 
the native functionality of the device and to reduce the upgrade 
costs. 

The paper is organized as follows: section II defines the 
geometry and metrics used along the paper; section III describes 
the implemented measurement system; section IV presents 
experimental results; and section V draws conclusions. 

II. PRELIMIAR DEFINITONS 

 The next paragraphs define a Cartesian coordinate system to 
represent the walker frame, and two indexes to characterize 
user’s gait. 

A. Unbalance Index 

Balance has to do with the distribution of forces applied on 

the walker legs. Considerer the coordinate system illustrated in 

Fig. 1, where the walker legs are numbered from 1 to 4 (as 

quadrants) and the y-axis points to the forward direction. 

According to this arrangement, the center of forces (COF) is 

given by: 

𝐶𝑂𝐹𝑥 =
𝑊12(𝐹1−𝐹2)+𝑊43(𝐹4−𝐹3)

2(𝐹1+𝐹2+𝐹3+𝐹4)
   

𝐶𝑂𝐹𝑦 =
𝐿(𝐹1−𝐹4)+𝐿(𝐹2−𝐹3)

2(𝐹1+𝐹2+𝐹3+𝐹4)
   

where Fk represents the force applied on each leg, W12 and W43 
represent the distances between the front and rear legs 
respectively, which corresponds roughly to the mean walker 
width (W), and L represents the distance between the front and 
rear legs, which corresponds to the walker length. 
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Fig. 1. Coordinate system of the measurement system: a) Four-leg 
walker; b) Cartesian plane and coordinates of the walker legs. 

We define the unbalance index (I1) as the deviation of the 

COF in relation to the geometrical center of the walker polygon: 

𝐼1(%) = 100 ×
√(𝐶𝑂𝐹𝑥)

2+(𝐶𝑂𝐹𝑦)
2

√(𝑊/2)2+(𝐿/2)2
× 𝛼  

with  being given by: 

𝛼 =
𝐹1+𝐹2+𝐹3+𝐹4

𝐹𝑈
=

𝐹𝑇

𝐹𝑈
    

where FT represents the total force applied on the walker legs 

and FU represents the user weight. Alpha () is a weighting 

factor that varies between 0 (walker resting) and 1 (walker full 

charged with the user weight). 

B. Motor Incoordination Index 

Motor coordination has to do with the right sequence of 

movements needed to complete a step. Considerer the state 

machine illustrated in Fig. 2, where the states represent the gait 

phases and the continuous arrows represent normal transitions 

between states [9,10]. If the user completes a step passing 

through all the gait phases, the step is classified as good; 

otherwise is classified as bad. 
We define the incoordination index (I2) as the number of 

bad steps (B) in the last N steps: 

𝐼2(%) = 100 ×
𝐵

𝑁
    

III. MEASUREMENT SYSTEM 

The measurement system includes a wireless data 

acquisition module, an IMU, a heart rate sensor, four load cells 

and software to process data and extract meaningful 

information. 

A. Data Acquisition Module 

The data acquisition module, model Shimmer3 [11] from 

Shimmer Sensing, is the central hub where all the sensors are 

connected. Wires pass nicely through the tubular structure of 

the walker without any loss of functionality. The module 

includes an embedded IMU and a four-input extension board 

where the external sensors are connected (AI1-AI4). Samples 

from all sensors (IMU and external) are acquired at a rate of 

51.2 S/s and sent to a remote host through a Bluetooth link. 

B. Inertial Measurement Unit 

The embedded IMU is used to sense motion and orientation. 

It has nine degrees of freedom (9DoF) given by a 3-axes 

accelerometer (model KXRB5-2042 from Kionix), a 3-axes 

gyroscope (model MPU-9150 from Invensense) and a 3-axes 

magnetometer (model LSM303DLHC from 
STMicroelectronics). 

 
Fig. 2. Gait Phases (GP) during a walker step (the polygon delimits the support area). GP0: the walker is resting on the floor; GP1: the 
walker is flying; GP2: the walker is on the floor waiting for the injured foot to move forward; GP3: the injured foot is moving forward; GP4: 
waiting for the healthy foot to move forward; GP5: the healthy foot is moving forward. 



 The IMU has a pre-defined coordinate system that associates 
the x, y and z axes to the length, width and height of its case, 
respectively. The IMU is placed horizontally so that the 
accelerations across the x and y axes give motion over the plan, 
while the acceleration across the z axis, subtracted by 1 g = 9.81 
ms-2, gives motion in the vertical. 

The IMU also runs a gradient descent algorithm [12] that 

gives the orientation of the device in absolute ENU coordinates 

(local East-North-Up). This allows us to know the azimuth of 

the walker, where {0°, 90°, 180°, 270°} corresponds to {north, 

east, south, west} respectively. 

All the sensors must be calibrated in advance to cancel 
offset errors and tune gain matrices. The calibration procedure 

[13] is executed once and the results are saved into a non-

volatile memory. 

C. Heart Rate Sensor 

Two dry e-textile electrodes, placed on the walker 
handgrips, are used to acquire the electrocardiogram signal 

(ECG) of the user. The electrodes are tied with a tiny Velcro 

strip making them removable and washable. Since the 

electrodes seem like ordinary cloth, they don’t introduce 

additional stress to the user. 

The ECG signal is conditioned by an analog front-end based 

on the AD8232. The signal passes through a two-pole band-

pass filter, with cutoff frequencies at 7 Hz and 24 Hz, followed 

by an amplifier with gain 1000. The narrow-band filter 

eliminates motion artifacts and line noise but distorts the ECG 

waveform significantly, making it suitable only for heart-rate 

detection. The output signal is connected to the first analog 
input (AI1) of the data acquisition module. 

D. Force Sensors 

Four load cells are used to sense the forces applied on the 

walker legs. Each cell is attached to the extremity of a leg using 

a dedicated plastic adapter grown on a low-cost 3D printer (see 

Fig. 3).  
Each load cell contains four strain gauges fixed to a small 

bending beam (55.3 x 12.7 x 12.7 mm) that supports 20 kgf. 

Other characteristics include: rate output = 10.15 mV/V, non-

linearity = 0.05% FS and hysteresis = 0.05% FS. The use of 

bending beam load cells is justified because they are much 

cheaper than inline/axial load cells. 

 

Fig. 3. Load cell attached to the walker leg. 

The load cells are supplied at 3 V and conditioned by 

instrumentation amplifiers with gain 100. The voltages are then 

combined in pairs, subtracted from each other (1-3 and 2-4), 

amplified by 4 and biased around 1.5 V, as shown in Fig. 4. The 

result is a voltage that varies linearly between 0.3 V and 2.7 V 

for forces applied along the auxiliary axes p and q, between 

−𝐷/2 and +𝐷/2, where 𝐷 = √𝐿2 +𝑊2 is the walker 

diagonal. The coordinates over these axes are given by: 

 

𝑃[mm] =
𝐷[mm]

2.4
× 𝐴𝐼2[V] − 0.625 × 𝐷[mm] (6) 

 

𝑄[mm] =
𝐷[mm]

2.4
× 𝐴𝐼3[V] − 0.625 × 𝐷[mm] (7) 

 

The conversion to x and y coordinates is done by taking 

advantage of the left/right symmetry of the walker: 

 

𝐶𝑂𝐹𝑥[mm] = (𝑃 − 𝑄) × cos𝛽   (8) 

 

𝐶𝑂𝐹𝑦[mm] = (𝑃 + 𝑄) × sin𝛽   (9) 

 

where 𝛽 = tan−1 (
𝐿

𝑊
) is the angle made by the walker diagonal. 

Additionally, the voltages from the load cells are all 

summed together to give the total load applied on the walker. 

Knowing that the maximum weight, given by 4 x 20 = 80 kgf, 

corresponds to 1.2 V, we get: 

 

𝐹𝑇[kgf] = (
80

1.2
)× 𝐴𝐼4[V]   (10) 

 
All this effort is needed because the data acquisition module 

has only four analog inputs for five sensors. Playing with the 

walker symmetry, together with some basic trigonometry, we 

were able to eliminate the need for a fifth input. 
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Fig. 4. Signal conditioning circuitry. 

E. Data Processing 

Data processing is done by the application Spy Walker that 

runs on the host side. The application was developed in Visual 

Studio 2012 and makes use of Shimmer C# API [14] to interact 

with the Shimmer3 module. 



Data processing includes the following main tasks:  

1. Computation of the heart rate from the signal connected 

to AI1. A simple Schmitt-trigger algorithm, with fixed 

thresholds at 0.5 V and 1 V, is executed to detect the 

heart beats. The time elapsed between beats is inverted 
to give the heart rate.  

2. Computation of COFx and COFy from the signals 

connected to AI2 and AI3. This is done by solving 

equations (6), (7), (8) and (9), by this order. 

3. Computation of the unbalance index (I1) taking into 

account the signal connected to AI4. This is done by 

solving equations (10), (4) and (3), by this order. 

4. Detection of bad steps (B) by running the state machine 

represented in Fig. 5. 

5. Computation of the motor incoordination index (I2) by 

solving equation (5). 

The state machine illustrated in Fig. 5 is a key element of 
the smart walker because it classifies steps as good or bad.  

States 0 to 5 represent the gait phases (as in Fig. 2) and state 10 

represents a waiting state to rearm the machine. Transitions 

between states (Tfrom,to) are triggered by sensor measurements 

as follows: 

• T0,1 is enabled if FT < WEIGHT_TH. This transition 

occurs when the total force measured by the load cells 

falls below a given threshold (below the walker weight). 

In other words, it occurs when the walker is lifted in the 

air, at the beginning of a new step. 

• T1,2 is enabled if FT > WEIGHT_TH. This transition 
occurs when the walker touches down the floor again.   

• T2,3 is enabled if COFx > RIGHT_TH or COFx < 

LEFT_TH depending on which foot is injured (left or 

right, respectively). This transaction occurs when the 

user moves forward the injured foot and applies force on 

the opposite side. The injured foot shall be the first to 

move forward. The type of disability must be defined in 

advance to determine the threshold value. 

• T3,4 is enabled if COFx < RIGHT_TH or COFx > 

LEFT_TH depending on which foot is injured (left or 

right, respectively). This transaction occurs when the 
user alleviates the force previously applied to the walker, 

i.e., when COFx returns to the origin. 

• T4,5 is enabled if COFx < LEFT_TH or COFx > 

RIGHT_TH depending on which foot is injured (left or 

right, respectively). This transaction occurs when the 

user moves forward the healthy foot and applies force on 

the opposite side. The healthy foot shall be the last to 

move forward. 

• T5,0 is enabled if COFx > LEFT_TH or COFx < 

RIGHT_TH depending on which foot is injured (left or 

right, respectively). This transaction occurs when COFx 
returns to the origin. 

• T2,0 and T4,0 are enabled if COFx moves to the wrong 

side, i.e. if the user moves forward the wrong foot. The 

machine returns to state 0 and waits for a new step. 

• T2,10 and T4,10 are enabled if FT < WEIGHT_TH. This 

transition occurs if the user lifts up the walker before 
finishing the step. In other words, it occurs if the user 

aborts the step. 

• T10,0 is enabled if FT > WEIGHT_TH.  This transition 

occurs when the walker touches down the floor again. 

The machine returns to state 0 and waits for a new step. 

A step is marked as good if the machine passes through all 

the states from 0 to 5. A step is marked as bad if the user aborts 

it or moves forward the wrong foot. 

The threshold WEIGHT_TH is fixed and equal to half of the 

walker weight. The thresholds RIGHT_TH and LEFT_TH are 

dynamic and computed according to the following instructions: 
 

(11)

{
 

 𝐿𝐸𝐹𝑇_𝑇𝐻(0) = −
𝑊

6

𝐿𝐸𝐹𝑇_𝑇𝐻(𝑘) =
𝑚𝑖𝑛𝐶𝑂𝐹𝑥(𝑘−1)

2

If (𝐿𝐸𝐹𝑇_𝑇𝐻(𝑘) > −50 mm) 𝐿𝐸𝐹𝑇_𝑇𝐻(𝑘) = −50 mm 

 

  

(12)

{
 

 𝑅𝐼𝐺𝐻𝑇_𝑇𝐻(0) = +
𝑊

6

𝑅𝐼𝐺𝐻𝑇_𝑇𝐻(𝑘) =
𝑚𝑎𝑥𝐶𝑂𝐹𝑥(𝑘−1)

2

If (𝑅𝐼𝐺𝐻𝑇_𝑇𝐻(𝑘) < +50 mm) 𝑅𝐼𝐺𝐻𝑇_𝑇𝐻(𝑘) = +50 mm 

 

  

where k represents the kth good step, and min/maxCOFx(k-1) 

represents the minimum/maximum value reached by COFx 

during the previous (k-1) good step. 
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Fig. 5. State machine used to identify good and bad steps. 

F. Data Visualization 

Processed data is shown, namely to a physiotherapist, 

through the graphical interface shown in Fig. 6, which consists 
of four main panels: 

• Panel 1: Shows the instantaneous value of the user’s 

heart rate. This is useful to estimate the effort and stress 

felt by the user. 



• Panel 2: The COF is computed, and the result is 

presented as a red cross moving over a XY graph. When 

the user loads his left side the cross moves toward 

negative values of X; otherwise, the cross moves toward 

positive values of X. The same applies for the front/back 

direction over the Y axis, much like a joystick. A vertical 

slider shows the instantaneous value of the unbalance 
index (I1). 

• Panel 3: A set of six LEDs are turned on sequentially 

while the state machine moves forward from state 0 to 

state 5. If the user passes through all the gait phases 

successfully, all the LEDs end up lighted and the step is 

marked as good. If the user violates any gait phase, the 

machine is reset to state 0 and the step is marked as bad. 

The number of good and bad steps is registered. A 

vertical slider shows the instantaneous value of the 

motor incoordination index (I2). 

• Panel 4: Presents a list of all steps detected. For each 
step the following information is provided: timestamp 

(date and time), maximum heart rate, maximum 

unbalance (I1max), motor incoordination (I2), quality 

(GOOD or BAD), travelled distance, azimuth, lift of the 

walker frame while moving forward, and failure 

(NONE, STEP_ABORTED, INJURED_FOOT_

FAILED_TO_MOVE_FORWARD, HEALTHY_

FOOT_FAILED_TO_MOVE_FORWARD). The 

physiotherapist can also add free comments to each step. 

The list can be saved to a text file in the tsv format. 

IV. EXPERIMENTAL RESULTS 

Experimental tests were carried by a user with impaired gait 

caused by an injury in the right lower limb. A standard four-leg 

walker was used (shown in Fig. 1a), with a weight equal to 2 kg 

and dimensions W12 = 512 mm, W43 = 530 mm and L = 445 

mm. 

Fig. 7 shows the trajectory followed by the user after being 
instructed to follow an imaginary straight line. The XY graph 

covers 12 steps, with each step being represented by a line 

segment. The length and angle of the segment represent the 

travelled distance and azimuth of the walker. The user moves 

from the origin (0,0) to the periphery. The positive y-axis points 

to the magnetic north (azimuth = 0º).  

During the test, the user followed a trajectory almost linear 

with a mean squared error equal do 3.5 cm. The step length had 

an average value of 18.8 cm and a standard deviation equal to 

2.2 cm. The walker was lifted 4.9 cm in average, with a standard 

deviation equal to 1.0 cm. The average heart rate was about 84 
bpm, and the indexes for unbalance and motor incoordination 

did not exceed 25% and 10%, respectively. All these values 

suggest a stress-free, regular gait, with good control of 

movements. 

 

Fig. 6. User interface of the Spy Walker application. 



 

Fig. 7. User walking towards northeast (approximately). 

Fig. 8 plots the number of good and bad steps inside a 
moving-window during a sequence of 20 steps. The window 
starts empty and covers the last 10 steps. It becomes full at the 
10th step, with 2 bad and 8 good steps, which gives a value of 
20% for I2. Thereafter, the value of I2 increases when a bad step 
is detected and a good step leaves the window; decreases when 
a good step is detected and a bad step leaves the window; and 
remains constant if both steps (entering and leaving the window) 
have the same quality. 

The state machine worked well with few false bads. There 
were no false goods because the validation of a good step is quite 
demanding.  

 

Fig. 8. Motor incoordination during a sequence of 20 steps. 

 
 

 

V. CONCLUSIONS 

The experimental results show that our prototype is able to 

detect and classify steps on a standard four-leg walker. Each 

step is characterized by a rich set of parameters, including 

estimates of unbalance and motor incoordination, travelled 

distance, azimuth and lift. This record of information can be 

used by a physiotherapist to assess objectively the physical 

condition of the user. If these records are saved during multiple 

sessions, the physiotherapist can look at them, understand how 

the rehabilitation therapy is progressing over time, and take 

corrective actions if needed. 
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