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Abstract—Automated environmental monitoring in ma-
rine environments is currently carried out either by small-
scale robotic systems, composed of one or few robots, or
static sensor networks. In this paper, we propose the use of
swarm robotics systems to carry out marine environmental
monitoring missions. In swarm robotics systems, each
individual unit is relatively simple and inexpensive. The
robots rely on decentralized control and local communi-
cation, allowing the swarm to scale to hundreds of units
and to cover large areas. We study the application of
a swarm of aquatic robots to environmental monitoring
tasks. In the first part of the study, we synthesize swarm
control for a temperature monitoring mission and validate
our results with a real swarm robotics system. Then,
we conduct a simulation-based evaluation of the robots’
performance over large areas and with large swarm sizes,
and demonstrate the swarm’s robustness to faults. Our
results show that swarm robotics systems are suited for
environmental monitoring tasks by efficiently covering a
target area, allowing for redundancy in the data collection
process, and tolerating individual robot faults.

I. INTRODUCTION

With the increasing exploration of the marine envi-

ronment there is a high demand for collecting large

amounts of spatially and temporally dispersed data [1].

Sensor networks have played a major role in marine

environmental monitoring, replacing expensive manned

vessels and allowing data collection across multiple sites

in parallel [2]. Sensor networks, however, have inherent

limitations. Specifically, they have fixed sampling loca-

tions, and therefore lack the ability to self-reconfigure in

response to unexpected events, or to increase the spatial

coverage of an area of interest. One promising solution

is the use of robotic platforms, which can add mobility

to the sensor nodes and bring to light the full potential of

automated environmental monitoring. Groups of robots

can collect data from multiple places simultaneously,

allowing a spatial and temporal resolution that would be

impossible with a single robot or static sensing nodes [1].

Most multirobot solutions are, however, based on

centralized path-planning solutions, and therefore require

regular communication between a base station and the

robots. These constraints can prevent such robotic sys-

tems from being deployed in remote locations, limit

the scale of deployment, and limit the robots’ ability

to address dynamic tasks where autonomous decision-

making is required. Furthermore, since there is a central

point of failure, malfunctions in the base station or in

the communication system may cause the mission to fail.

As stated in a recent survey of automated environmental

monitoring approaches [1] “methods are required for re-

source allocation to solve various observation objectives,

as well as decentralized cooperative control of large

groups of mobile sensing systems, particularly with low-

communication bandwidth and significant asynchronici-

ties and latencies in data transmission and information

processing...”.

We propose the use of swarms of aquatic surface

robots to address these limitations. Swarms of robots [3]

can adapt to unknown or dynamic environments by

relying on autonomous decentralized control, local com-

munication, and onboard sensing. Such a system can

potentially be used for various environmental tasks that

require high temporal and spatial resolution or to track

dynamic elements like sea-life or plumes. In this paper,

we study the application of swarm robotics systems to

marine environmental monitoring. We first synthesize

control for an area coverage task, where the robots

must cooperatively cover the area delimited by a user-



defined geo-fence and gather water temperature data.

Performance is validated using a swarm of eight real

aquatic surface robots. We then conduct a simulation-

based study to assess how such systems scale to large

application scenarios. We show that the swarm behavior

can scale to large number of robots, large areas, is

robust to individual faults (that is, unit failure does

not compromise the overall mission success), and can

provide redundancy in the data collection process.

II. RELATED WORK

A. Sensor Networks

A key aspect in marine environmental monitoring is

the measurement of relevant environmental variables [1].

According to Ballesteros-Gómez and Rubio [4] in their

survey of recent advances in environmental analysis,

environmental sensor networks (ESNs), that is, wireless

networks of sensors distributed throughout the environ-

ment, have recently emerged as a promising technology

for marine environmental monitoring. ESNs allow for

real-time measurement and/or monitoring in locations

that are potentially challenging to access. Sensor net-

works can thus play a major role in marine environ-

mental monitoring, replacing expensive manned vessels

and time-consuming and weather-constrained manual

data collection [1], [4]. ESNs additionally enable data

collection across multiple sites in parallel [2] and higher-

fidelity data [1].

ESNs were the first major shift in distributed, real-

time monitoring and observation in marine environ-

mental monitoring [1]. Corke et al. [5] reviewed the

recent developments in sensor networks for agricultural

and environmental applications. In the marine domain,

ESNs have typically been used in applications such

as water quality monitoring and temperature profile

measurements. Despite their potential, ESNs currently

face a number of technical challenges and have inherent

limitations. A major limitation of ESNs is that they

typically have fixed sampling locations [1], and there-

fore lack the ability to self-reconfigure in response to

unexpected events, or to increase the spatial coverage

of an area of interest. Although remedies such as cable

winches can be used to improve spatial coverage of ESN

measurements [6], such solutions are still significantly

limited in terms of their movement capabilities.

B. Autonomous Robots for Environmental Monitoring

One promising solution to overcome the limitations

of ESNs is the use of robotic platforms, which can add

mobility to the sensor nodes and realize the full potential

of ESNs. Groups of robots can collect data from multiple

places simultaneously, allowing a spatial and temporal

resolution that would be impossible to achieve with a

single robot or static sensing nodes [1].

Environmental robotics has been the subject of sig-

nificant progress in recent years. Relevant scientific

and engineering achievements include, for example, the

development of energy-efficient platforms [1], [7], which

enabled an increase of the operation time of robots.

As a result of progress in the field, different types of

robots have been applied to multirobot environmental

monitoring scenarios. In Leonard et al.’s study [8], a

group of six relatively complex and expensive gliders

carried out an ocean sampling task during a period of

24 days. Similarly, Smith et al. [9] used two gliders to

track and monitor algae blooms. Valada et al.’s [10], on

the other hand, developed a low-cost multirobot platform

that could sample water quality in an area specified by

the human operator. These studies, however, are based

on centralized path-planning solutions and additionally

require regular communication between a base station

and the robots. For example, in Valada et al.’s [10]

study, robots provide online situational awareness to the

operator, but the paths need to be centrally planned

and re-planned according to the measurements obtained.

These constraints can prevent such robotic systems from

being deployed in remote locations, limit the scale of

deployment, and limit the robots’ ability to address

dynamic tasks where autonomous decision-making is

required [1]. Furthermore, since there is a central point

of failure, malfunctions in the base station or in the

communication system may cause the mission to fail.

Overall, autonomous robots have the potential to over-

come the inherent limitations of ESNs. However, new

methods are required for resource allocation to solve

various observation objectives, and to enable efficient

control of large groups of cooperative, mobile sens-

ing systems [1]. To address the limitations of current

approaches, we propose the use of large-scale swarm

robotics systems [11] composed of simple, inexpensive,

and autonomous robots with decentralized control.

C. Swarm Robotics Systems

In a swarm robotics system, the robots rely on de-

centralized control. Each robotic unit is autonomous and

makes decisions based on sensory readings and informa-

tion received from other robots in its immediate vicinity.

In this way, individual robots can dynamically respond to

events in the environment and cooperate with neighbors

on the basis of local cues. The robots can incorporate

the sensory readings into the decision-making process,

in order to follow environmental gradients, track sea
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life, and so on. Decentralization of control leads to

a number of key properties [3], [11], [12], [13] that

make swarm robotics systems particularly well-suited for

marine environments, namely:

Robustness to individual faults: Given the decen-

tralized nature of the robot control, there is no central

point of failure in a swarm robotics system. In this way,

the swarm is robust against the failure of individual

robots and, since there is redundancy within the swarm,

faults do not compromise the completion of the mission.

Such robustness is especially relevant for long-term

missions in marine environments, as waves, wind, and

debris can cause unexpected failures in the robots.

Scalability: Swarms can scale dynamically to tens

or hundreds of robots [14], as the robots only interact

with other robots in their immediate vicinity. Such scala-

bility is essential for monitoring large bodies of water, as

it enables data sampling at several places simultaneously.

Flexibility: Robots in a swarm robotics system can

display different behaviors in response to changes in the

environment and sensory inputs, instead of relying on

pre-specified mission scripts.

The application of swarm robotics systems to marine

environments is advantageous in tasks where large and

dynamic environments have to be monitored. Having

multiple dynamic measuring points enables a high spatial

and temporal resolution of the gathered data, which is

particularly relevant in environments where the features

being measured change throughout time and space.

III. EXPERIMENTAL SETUP

A. Robotic Platform

We developed a swarm robotics system composed

of ten autonomous, small (65 cm) and inexpensive

(300 EUR) aquatic surface robots (see Fig. 1) in order

to validate the concept of swarm robotics systems ap-

plied to marine environmental monitoring. Each robot is

controlled by a Raspberry Pi 2 single-board computer

and is equipped with a GPS receiver, a digital compass,

a water temperature sensor, and Wi-Fi communication.

Propulsion is provided by a differential-drive system

which drives twin propellers. Each robot weighs 3 Kg,

has a maximum speed of 1.7 m/s, a maximum turning

radius of 90◦/s, and an autonomy of 90 minutes when

moving at full speed.

The robots communicate with nearby robots every

second by broadcasting UDP packets containing their

location and heading. Neighboring robots that receive the

packets record the information, which can then be used

to calculate relative distances and angles. The robots

Fig. 1. Six units of our swarm robotics platform (out of a total of ten
developed) on land, prior to deployment.

make autonomous decisions based on different pieces of

information: (i) the relative distance and angle of nearby

robots, (ii) the boundaries of a user-defined geo-fence,

and (iii) the relative distance and angle to a user-defined

waypoint. Furthermore, the robots are equipped with a

water temperature sensor. Additional details about the

hardware and software platforms can be found in [15].

B. Control Synthesis

We resort to evolutionary robotics (ER) tech-

niques [16] to automatically synthesize self-organized

swarm control. In ER, evolutionary algorithms generate

candidate solutions, evaluate them and select the highest-

performing ones, and apply variation operators to obtain

the next generation of candidate solutions. The process

continues for a number of predefined generations, or

until a fitness threshold is reached. The evolutionary

process is conducted offline, in simulation. For the

control synthesis process, we use JBotEvolver [17], an

open-source neuroevolution framework and simulation

platform. Each robot is controlled by an artificial neural

network (ANN), which receives normalized sensory data

as input, and outputs the desired heading and speed. The

heading and speed are then converted to the correspond-

ing left and right motor speeds. The configuration of

the ANN is optimized by the NEAT neuroevolutionary

algorithm [18]. NEAT differs from standard evolutionary

algorithms by optimizing both the networks’ topology

by through the addition of neurons and connections, in

addition to tuning the connection weights.

For the environmental monitoring task, we define a

geo-fence which delimits the area where the robots

should collect temperature data. The robots start from

a base station and are deployed to random positions
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within the area. After they reach the target locations,

the monitoring behavior is activated for a certain period

of time. After the data collection task is over, the robots

autonomously return to the base station. During the task,

the robots are aware of the geo-fence boundaries, the

position of the neighboring robots (up to 40 m), and

record the temperature sensor’s readings.

The monitoring area was divided into a grid in order

to assess the performance of the controllers. Each robot

visited cells within the coverage radius V , setting its

value to 1. The value of previously visited cells decayed

linearly over a time frame of 100 s to 0, and controllers

were scored based on how much of the grid was covered

over time. See [13] for details regarding the evolutionary

process and the definition of the fitness function.

IV. REAL-ROBOT TEMPERATURE MONITORING

EXPERIMENTS

The controllers synthesized in simulation were then

transferred and tested to a real swarm of aquatic robots,

composed of eight units. We evaluated the performance

of the swarm in a task were the robots had to collect

water temperature data in a given area, within a limited

amount of time. We ran three separate experiments, each

with a different area: square, rectangle and L-shape. In

all setups, the total size of the area was 10,000 m2 (1 ha).

The robots started randomly distributed inside the area,

and were given 5 minutes to cover the area.

Figure 2 shows the coverage of the different areas

through time, and how that coverage affected the tem-

perature map of the regions. The temperature maps were

built using all the observations from all the robots, up to

different points in time, and using Kriging interpolation.

The coverage results show that the regions are explored

uniformly through time. The evolved controllers trans-

ferred well to the real robots, the behavior patterns

displayed by the swarm were visually identical to those

observed in simulation, and the swarm was able to

successfully perform the mission. By the end of each

mission (after 5 minutes), the respective area was almost

completely covered. The temperature maps show how

the increasing coverage can progressively increase the

resolution of the map over time, capturing more local

variations. Overall, our results show that the swarm

behavior is well suited to such monitoring missions, as

the swarm rapidly provides a rough overview of the

gradients across the whole area, which gets progressively

refined as the mission progresses.

V. SIMULATED LARGE-SCALE EXPERIMENTS

We setup a series of tests in simulation to assess how

our swarm robotics system can scale to larger application

scenarios in terms of: (i) effectiveness in covering large

areas, (ii) scalability with respect to the number of

robots, and (iii) tolerance to faults in individual robots.

A. Area Coverage

We first studied the capability of the swarm to cover

large areas of different shapes, and how the size of the

swarm (i.e., the number of robots) affects the coverage

of the area. We considered three different areas for this

study, with similar shapes to the areas used in the real-

robot experiments, but 625× larger in terms of total area:

• Square: A square area with 2.5 km × 2.5 km (625 ha).

• Rectangle: A rectangular area with 4.2 km × 1.5 km

(630 ha).

• L-Shape: A square area with 2.9 km × 2.9 km with

a cutout of 1.45 km × 1.45 km, making the final area

L-shaped with 630 ha.

The swarm size was varied from 5 to 50 robots. The

robots started in random positions inside the given area,

and were allocated 240 minutes (4 hours) for the task.

Each experimental configuration was repeated in 10

independent simulation trials. The capabilities of each in-

dividual robot are similar to the robotic platform used in

the real-robot experiments (see Section III-A). The only

difference is that in the simulation-based experiments,

the communication and sensor range of the robots were

increased to 250 m (opposed to the 40 m in the real-robot

experiments).

In Figure 3, we show the capability of the swarm to

cover regions with different shapes, but with the same

total area. To measure the coverage of the space, the

areas were divided into a regular grid with 100 m ×

100 m cells. The final coverage is the proportion of cells

that were visited by at least one robot. The results show

that the performance of the swarm is independent of the

shape of the area. For each swarm size, the coverage

achieved is similar for all three regions, confirming the

capability of the controllers to adapt to arbitrary areas.

The results in Figure 4 show how the time required for

the swarm to cover the area depends on the swarm size.

The time needed to cover the area decreases predictably

as the swarm size increases. Given the mission time of

240 minutes, a swarm of 20 robots is actually sufficient

to cover all the cells of the area. Figure 5 illustrates how

the different areas are covered over time with a swarm

of 20 robots.
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Fig. 2. Experiments with a swarm of eight robots, in three different areas (real robots). For each area, we show the coverage of the area through
time (top), and the water temperatures measured by the robots, interpolated using Kriging (bottom).
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B. Robustness to Faults

One potential advantage of swarm robotics systems

is their inherent capacity to tolerate faults in individual

units. We assessed the robustness of the swarm to such

faults by injecting faults in the individual robots, with

different intervals of occurrence. At every simulation

step, each robot had a fixed probability of failing (stop-

ping), which could correspond to the robot’s motors

breaking down or getting clogged in a real system. The

robots also had a probability of recovering from the

fault. The probability of individual failure was set so

that, on average, each robot would fail every T minutes.

We defined three variants, with T assuming the values

60, 30, and 15 minutes. The probability of recovery was

the same in all variants – every minute, a robot had a

3.3% probability of recovering, meaning that each failure

lasted on average 30 minutes.

For the experiments described in this section, only

the square area (2.5 km × 2.5 km) was used, with 10

simulation trials for each experimental condition. Each

simulation trial lasted for 240 minutes of simulated time.

The plot in Figure 6 shows how swarms of different

sizes are affected by faults occurring with different

frequencies. The results show that larger swarms (> 30

robots) are generally unaffected by individual faults. As

it has been shown in the previous section, a swarm of 20

robots is sufficient to cover this area. The failure of some

robots in the larger swarms therefore has little impact

on the coverage achieved. The group behavior of the

swarm is maintained regardless of the type and frequency

of individual robot faults. The coverage achieved with

smaller swarms (5 and 10 robots) progressively degrades

with the frequency of the faults, as there are not enough

robots to offer sufficient redundancy.

C. Redundancy in Data Collection

Another type of fault that is especially relevant for

environmental monitoring tasks are faults in the onboard

sensors that cause erroneous readings to be collected.

This type of fault can significantly impact the measure-

ments in scenarios where each sensor node or robot

is assigned to a unique sub-region of the area to be

monitored. In swarm robotic systems, however, there is

no central division of labor: the behavior of the swarm

is organic and self-organized. This means that a single

robot can traverse many different sub-regions in the

monitoring area, and each sub-region is traversed by

many different robots, thus allowing for redundancy of

measurements.

We assessed this redundancy by analyzing the average

number of unique robots that pass through each cell
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Fig. 7. The average number of unique visitors per cell, relative to the
swarm size, for setups where the robots are affected by different types
of faults (simulation).

(100 m × 100 m) of the monitoring area (2.5 km ×

2.5 km), see Figure 7. Without faults, 30% of the robots

of the swarm, on average, pass through any given cell.

With swarms with 10 or more robots, each cell is on

average visited by at least three different robots, which

would allow the detection and elimination of outliers in

the readings of the environmental sensors. The number

of different robots visiting each cell decreases with the

frequency of the faults, since less robots are available.

7



VI. CONCLUSION

In this paper, we studied the potential of swarm

robotics systems in the marine environmental monitoring

task domain. In swarm robotics systems, control is

decentralized – each robot is autonomous and makes

decisions on how to perform the task based on sensory

readings and on the interaction with neighboring robots.

In the swarm robotics system studied in this paper,

the robots were relatively small and simple aquatic

surface robots. The robots were controlled by artificial

neural networks, which were automatically synthesized

in simulation using evolutionary robotics techniques.

We first demonstrated a swarm robotics system with

a real swarm of up to eight robots, operating in a real

environment of up to 10.000 m2 (1 ha). We assessed

the swarm’s performance in three temperature moni-

toring tasks, where the swarm had to cover areas of

different shapes. The results showed that the swarm

was effective in covering these areas, and could quickly

uncover the temperature gradients in the area, increasing

the resolution over time as more data was collected.

We then studied the swarm’s performance in a large-

scale simulated environment, with monitoring areas up

to 2.5 km2 (625 ha) and swarms of up to 50 robots. We

demonstrated that the swarm behavior is scalable with

respect to the number of robots, and that the swarm

behavior is robust to individual robot faults.

Swarm robotics systems display a number of prop-

erties that makes them especially suited for large-scale

applications, such as scalability, robustness to faults, and

decentralized autonomous control. Marine environmental

monitoring tasks can strongly benefit from these advan-

tages, as the monitoring areas are typically large, and

communication with a central control unit might not

always be available. Swarm robotics systems allow for

the collection of data with high temporal and spatial

resolution, meaning that it becomes possible to obtain

robust data from many different places simultaneously.

Swarm robotics systems present a unique set of benefits

that can be applied not only to temperature monitoring,

as shown in this paper, but other marine environmental

monitoring tasks, such as water sample collection, pol-

lution monitoring, sea-life monitoring, and so on.
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[4] A. Ballesteros-Gómez and S. Rubio, “Recent Advances in En-

vironmental Analysis,” Analytical Chemistry, vol. 83, no. 12,
pp. 4579–4613, 2011.

[5] P. Corke, T. Wark, R. Jurdak, W. Hu, P. Valencia, and D. Moore,
“Environmental Wireless Sensor Networks,” Proceedings of the

IEEE, vol. 98, no. 11, pp. 1903–1917, 2010.
[6] P. H. Borgstrom, B. L. Jordan, M. A. Batalin, G. S. Sukhatme,

and W. J. Kaiser, “Field-tests of a Redundantly Actuated Cable-
driven Robot for Environmental Sampling Applications,” in Pro-

ceedings of the IEEE International Conference on Automation

Science and Engineering (CASE), pp. 615–620, IEEE Press,
Piscataway, NJ, 2009.

[7] J. Manley and S. Willcox, “The Wave Glider: A Persistent
Platform for Ocean Science,” in Proceedings of the MTS/IEEE

OCEANS, pp. 1–5, IEEE Press, Piscataway, NJ, 2010.
[8] N. E. Leonard, D. A. Paley, R. E. Davis, D. M. Fratantoni,

F. Lekien, and F. Zhang, “Coordinated Control of an Underwater
Glider Fleet in an Adaptive Ocean Sampling Field Experiment
in Monterey Bay,” Journal of Field Robotics, vol. 27, no. 6,
pp. 718–740, 2010.

[9] R. Smith, J. Das, Y. Chao, D. Caron, B. Jones, et al., “Cooperative
Multi-AUV Tracking of Phytoplankton Blooms Based on Ocean
Model Predictions,” in Proceedings of the MTS/IEEE OCEANS,
pp. 1–10, IEEE Press, Piscataway, NJ, 2010.

[10] A. Valada, P. Velagapudi, B. Kannan, C. Tomaszewski, G. Kan-
tor, and P. Scerri, “Development of a Low Cost Multi-robot
Autonomous Marine Surface Platform,” in Field and Service

Robotics, pp. 643–658, Springer, Berlin, Heidelberg, 2014.
[11] M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo, “Swarm

Robotics: a Review from the Swarm Engineering Perspective,”
Swarm Intelligence, vol. 7, no. 1, pp. 1–41, 2013.
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