
 

Repositório ISCTE-IUL
 
Deposited in Repositório ISCTE-IUL:
2018-12-11

 
Deposited version:
Post-print

 
Peer-review status of attached file:
Peer-reviewed

 
Citation for published item:
Cancela, L. G. & Pires, J. O. (2018). How to statistically model coherent MPI in optical
communications?. In Signal Processing in Photonic Communications, SPPCom 2018. Zurich: OSA -
The Optical Society.

 
Further information on publisher's website:
10.1364/SPPCOM.2018.SpM3G.3

 
Publisher's copyright statement:
This is the peer reviewed version of the following article: Cancela, L. G. & Pires, J. O. (2018). How to
statistically model coherent MPI in optical communications?. In Signal Processing in Photonic
Communications, SPPCom 2018. Zurich: OSA - The Optical Society., which has been published in
final form at https://dx.doi.org/10.1364/SPPCOM.2018.SpM3G.3. This article may be used for non-
commercial purposes in accordance with the Publisher's Terms and Conditions for self-archiving.

Use policy

Creative Commons CC BY 4.0
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in the Repository

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Serviços de Informação e Documentação, Instituto Universitário de Lisboa (ISCTE-IUL)
Av. das Forças Armadas, Edifício II, 1649-026 Lisboa Portugal

Phone: +(351) 217 903 024 | e-mail: administrador.repositorio@iscte-iul.pt
https://repositorio.iscte-iul.pt

https://dx.doi.org/10.1364/SPPCOM.2018.SpM3G.3


How to Statistically Model Coherent MPI in Optical 

Communications? 
 

Luís G. Cancela
1
 and João O. Pires

2
 

(1) Instituto de Telecomunicações and Dep. Information Science and Technology, Instituto Universitário de Lisboa (ISCTE-IUL), 

Portugal (2) Instituto de Telecomunicações and Dep. Electrical and Computer Engineering, Instituto Superior Técnico, Portugal.  

luis.cancela@iscte-iul.pt; jpires@lx.it.pt 

 

Abstract: The Beta distribution is used to model coherent MPI in optical communications and its 

fitness to describe experimental results is evaluated. It fits quite well to symmetric scenarios, but 

has some troubles when skewness matters. 
OCIS codes: (060.0060) Fiber optics and optical communications; (000.5490) Probability theory, stochastic processes, and 

statistics  

 

1.  Introduction 

Multipath interference (MPI) is a common impairment encountered in optical communications and it is originated 

whenever a transmitted signal reaches the destination through two or more optical paths. When the difference 

between the propagation time of the different paths is much smaller than the laser coherence time the impairment is 

called as coherent MPI. In the presence of this impairment the signals propagating over the different paths are 

correlated, which leads to slow fluctuations in the received optical power, a phenomenon similar to multipath fading 

present in wireless communications [1]. The sources of coherent MPI are diverse ranging from light leakages in 

optical network nodes [2], to mode coupling in both bend-insensitive fibers [3] and few mode fibers.  

A key question is how to statistically model those fluctuations. Contrary to wireless communications, where a 

large amount of statistical models is available to deal with fading, in optical communications the research in this 

subject is incipient and only Rice and the Beta distribution have been proposed in the literature [3], [4]. The main 

goal of this work is to contribute to model the coherent MPI in optical communications  using as the starting point 

the experimental data given in [2, 3]. For that purpose we use as an input model the Beta distribution, and afterwards 

we estimate the parameters of this distribution from the experimental data using the moment matching technique. 

We use this distribution because it is able to model a wide variety of shapes and at the same time accommodate 

different types of skewnesses, which is an important factor in modeling the data from [2]. 

 

2.  Coherent MPI statistical model 

Consider an optical received signal which is impaired by coherent MPI due to the presence of N  multiple 

propagation paths. Consider, also, that associated with the ith path there is the attenuation factor 
i
  and the 

differential propagation delay 
i

 , measured relatively to the signal, in such a way that the MPI level is defined as 
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MPI  . In this situation the instantaneous received optical power is given by [4], 
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where 0P  denotes the average received optical power in the absence of MPI and 
isi
 2  is the phase offset of 

the ith interfering field, due to multipath propagation, relative to the signal, with 
s

  the signal frequency. The phase 

offset 
i

  varies in a random manner following a uniform distribution between  2 ,0 , as a consequence of a number 

of uncontrollable disturbances like drifts in the laser source central frequency, variations in the differential delay 

coming from mechanical and thermal fluctuations, etc. In these conditions P  is no longer constant and it is subject 

to slow fluctuations of random nature. We assume that these fluctuations can be modelled using a Beta distribution. 

In this case we can write from (1) that ],)(41[0   MPIPP where [0,1] is a random variable with a Beta 

distribution, which permits to describe the probability density function (PDF) of P in the following form:  
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where ),;( f  is the PDF of  , and  and   are the distribution shaping parameters. In addition the expected 

value and variance of   are given by )/(    and 1]()([/ 22   , respectively. 

3.  Results and discussion 

The Beta distribution can take a large variety of shapes depending on the values of the parameters   and  . For 

instance, when    the distribution is symmetric about the mean, while for 2  and 21    the distribution 

is negatively skewed, i.e. the tail on the left side of the density function is longer than the tail on the right side. 

Interestingly enough, the experimental results for the received intensity in the presence of coherent MPI in bend-

insensitive fiber transmission, denoted here as Scenario 1, shows a symmetric distribution around its average value 

[3], while the experimental histograms for the Q function in the presence of coherent MPI in a WDM network node, 

denoted as Scenario 2, point out to a negatively skewed distribution [2]. Assuming that a Beta distribution applies to 

both the referred scenarios it would be useful to find the shape parameters that best fit the experimental data. To do 

so we use a moment matching technique, i.e. the sample mean x and the variance 2s are computed from the set of 

the experimental samples n

iix 1}{   and then these parameters are equated to  and 2

 , which permits to obtain the 

estimates ̂ and ̂  for the shape parameters of the Beta function. 

In Figs. 1(a) and 1(b) the PDF ),;( PfP  given by (2) is plotted as a function of the normalized optical power 

( 0/ PP ) for different values of the parameters   and  . These figures also include the experimental data from [2] 

and [3], respectively. Fig. 1(a), which corresponds to Scenario 1, was obtained assuming that    and a MPI 

level of –14 dB (the same value used in [3]). For this scenario we have obtained from the experimental data [3] 

5.0x and 032.02 s  leading to 36.3ˆˆ   . The PDF for these parameters is represented in Fig. 1(a), from 

which we can confirm the symmetry about 0/ PP , and observe that the Beta distribution fits quite well the sample 

data. This figure also shows that the density function widens as the value of the shape parameters decrease. The 

asymmetric case, corresponding to Scenario 2 is analyzed in Fig. 1(b), which is obtained considering a MPI level  

–30 dB (the same value used in [2]). For this scenario we have computed from the experimental data [2] 

614.0x and 051.02 s , considering n = 100 samples, yielding 24.2ˆ   and 41.1ˆ  . The curve corresponding 

to these parameters is shown in Fig. 1(b), which also includes additional curves for other values of the shape 

parameters. As can be seen this curve does not fit well the sample data, especially at the lower tail, mainly because 

this data is highly asymmetric and we have not considered moments of order higher than two in the analysis. 

 
Fig. 1 PDF of the normalized received power: (a) Symmetric case (Scenario 1); (b) Asymmetric case (Scenario 2). 
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