

Repositório ISCTE-IUL

Deposited in Repositório ISCTE-IUL:
2018-12-05

Deposited version:
Post-print

Peer-review status of attached file:
Peer-reviewed

Citation for published item:
Taborda, B., de Almeida, A., Santos, F., Eloy, S. & Kwiecinski, K. (2018). Shaper-GA: automatic
shape generation for modular house design. In 2018 Genetic and Evolutionary Computation
Conference, GECCO 2018. (pp. 937-942). Tokyo: ACM.

Further information on publisher's website:
10.1145/3205455.3205609

Publisher's copyright statement:
This is the peer reviewed version of the following article: Taborda, B., de Almeida, A., Santos, F.,
Eloy, S. & Kwiecinski, K. (2018). Shaper-GA: automatic shape generation for modular house design.
In 2018 Genetic and Evolutionary Computation Conference, GECCO 2018. (pp. 937-942). Tokyo:
ACM., which has been published in final form at https://dx.doi.org/10.1145/3205455.3205609. This
article may be used for non-commercial purposes in accordance with the Publisher's Terms and
Conditions for self-archiving.

Use policy

Creative Commons CC BY 4.0
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in the Repository

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Serviços de Informação e Documentação, Instituto Universitário de Lisboa (ISCTE-IUL)
Av. das Forças Armadas, Edifício II, 1649-026 Lisboa Portugal

Phone: +(351) 217 903 024 | e-mail: administrador.repositorio@iscte-iul.pt
https://repositorio.iscte-iul.pt

https://dx.doi.org/10.1145/3205455.3205609

Shaper-GA: Automatic Shape Generation for Modular House Design

Extended Abstract†

Bruno Taborda
CISUC

Instituto Universitário de Lisboa

(ISCTE-IUL)
Portugal

Bruno_Taborda@iscte-iul.pt

Ana de Almeida
ISTAR-IUL & CISUC

Instituto Universitário de Lisboa

(ISCTE-IUL)
Portugal

Ana.Almeida@iscte-iul.pt

Filipe Santos
ISTAR-IUL

Instituto Universitário de Lisboa

(ISCTE-IUL)
Portugal

Filipe.Santos@iscte-iul.pt

 Sara Eloy
ISTAR-IUL

Instituto Universitário de Lisboa

(ISCTE-IUL)
Portugal

Sara.Eloy@iscte-iul.pt

Krystian Kwiecinski
Warsaw University of Technology

Poland
Krystian.Kwiecinski@pw.edu.pl

ABSTRACT

This work presents a Genetic Algorithm (GA) approach to produce

automatic designs for modular houses: Shaper-GA. A set of

architectural design rules defining a language of design is

incorporated into the GA fitness function. When possible genetic

drift or local convergence might be occurring, the method starts an

adaptive mutation rate to overcome fitness stagnation. The GA tool

efficiently produces several layout solutions obeying the design

rules and further placement constraints. Such a tool can be

integrated into an appropriate user interface allowing future house

owners to customize their own house or construction companies to

answer client's' requirements while complying with a language of

design.

KEYWORDS

Genetic Algorithms, Automatic Layout Design, Cutting and

Packing, Language of Design

ACM copyright statement

GECCO '18, July 15–19, 2018, Kyoto, Japan

© 2018 Copyright is held by the owner/author(s). Publication rights

licensed to ACM.

ACM ISBN 978-1-4503-5618-3/18/07…$15.00

https://doi.org/10.1145/3205455.3205609

1 INTRODUCTION

Mass fabrication of houses seems to have started in the mid-19th

century with the establishment of colonial settlements and, since

then, prefabricated houses have been successfully used [1].

However, modular construction, i.e., to build using modules,

emerged with the Fuller experimentation, in last century’s 20s and

30s, and the Dymaxion House, which incorporated prefabricated

bathroom modules. In fact, house modules, more than individual

elements (like doors or walls) but rather self-enclosed dwelling

spaces, are often fabricated off-site [2]. With recent advances in

mass construction and the urge of vast developing urban dwellings,

mass construction has been making the headlines, like with the 461

Dean Street modular skyscraper in Brooklyn, NY, USA. However,

architectural evolution resulted mainly in the development of design

processes in which the end user influence on the design has been

very limited. Kwiecinski and Slyk presented a formal language of

design for the development of a mass customized system allowing

for Polish costumers to participate in the design of their homes [3].

Two different approaches have been taken to meet the automation

of this language of design and providing a good technical solution

satisfying users' needs: one based in shape grammars [4]

supplemented with processes and the other based in genetic

algorithms.

This work introduces the latter, Shaper-GA, which is an

automated shaper floor planning application, implemented via a

genetic algorithm (GA) and able to generate rectangular houses

obeying a predefined architectural language of design.

The remainder of the paper is organized as follows. In section 2

the problem formulation can be found. A summary of the most

relevant literature review is presented on section 3. Section 4

describes the proposed genetic algorithm, Shaper-GA. Results and

are discussed in section 5, where a summary of the experiments is

also presented. Section 6 presents conclusions and possible

directions for future work.

https://doi.org/10.1145/3205455.3205609

GECCO’18, July 15-19, 2018, Kyoto, Japan B. Taborda et al.

2 PROBLEM FORMULATION

A house layout can be viewed as a set of positions that represent

the spatial relations between rooms – a floor plan. Each house has a

predetermined number of rooms, total width and depth, and a central

axis that equally divides the width in two, allowing for a central

corridor to access all the rooms.

The rooms (smaller rectangles) must be placed such that all the

architectural design rules [3] are fulfilled and without rotating any

of the rectangles. An optimal solution, or proper layout, is one that

obeys all the rules and further positioning constraints derived from

the transposition of the design, and is free of room overlaps. Thus,

the rooms should be assigned into the floor (larger enclosing

rectangle) such that the positioning constraints are met. The problem

to be solved may be looked at as a Two-Dimensional Single Large

Object Placement Problem (2SLOPP) [5], where the overall

dimensions are both fixed and there are further positioning

restrictions to be obeyed.

The number of possible arrangements for the rooms’ placement

in the given floor is combinatorial. Almeida et al. present a small

example, with 6 different rooms of fixed dimensions and a fixed

entrance module [6], having 2 × 1012 possible combinations for

the rooms positioning, that is, different floor plans. Naturally, the

fact that some of the rooms have relative positioning design rules to

fulfill restricts the total number of free possibilities. However, the

combinations remain combinatorial in nature. If we add the

possibility of dynamic adjustments of rooms depth, the search space

dimension for a 𝑑 × 𝑤 rectangular house with 𝑅 rooms, each with

dimensions 𝑑𝑖 × 𝑤𝑖 and 𝑚ℎ 𝑖
≤ 𝑑 𝑖 ≤ 𝑀ℎ 𝑖

, (𝑑 𝑖 , 𝑤𝑖 , 𝑚ℎ 𝑖
, 𝑀ℎ 𝑖

∈ ℕ,

= 1,2 … , 𝑅) is given by

∏ (𝑤 − 𝑤𝑖)(𝑑 − 𝑑𝑖)(𝑀ℎ𝑖
− 𝑚ℎ 𝑖

)𝑅
𝑖=1 (1)

In fact, if a variable dimension is allowed, the problem may be

considered as a Two-Dimensional Strip Packing Problem (2D-SPP)

[7][8], where the objects have fixed width and variable depth. Either

way, both mathematical formulations involved in the problem of

finding the optimal house layout are NP-hard combinatorial problem

formulations [9][7][8], establishing Genetic Algorithms as a suitable

method to tackle the layout design search. Moreover, the open

possibility of emergence of design layouts from the architectural

shape grammar through evolutionary strategies is especially

appealing, further motivating this explorative study.

3 LITERATURE REVIEW

Cutting & Packing (C&P), general field that encompasses

2SLOPP and 2D-SPP, refers to combinatorial optimization

problems with diverse real applications. Several methods and

approaches have already been proposed to tackle the computational

complexity usually involved [10]–[13]. Applications using

evolutionary algorithms have also been proposed to address C&P

problems [14]–[17]. According to Wäscher et al. [5], 2SLOPP is a

particularization of a C&P problem where the main goal is to place

smaller objects on larger ones, leaving as little free space as possible.

2D-SPP is a specific case of Strip Packing where a set of rectangular

objects should be inserted into one container without overlaps, in

such a way that the strip is minimized [9][10]. In this case, the

rectangles have fixed width but variable depth. Although being a

slightly more recent variant of the C&P problem, a handful of

publications can also be found [7], [11]–[15]. To solve a 2-D Bin

Packing Problem (2BPP) of polygonal shapes on a rectangular

canvas, a genetic algorithm whose main feature is the definition of

each figure based on an orthogonal axis was implemented [17]. The

orthogonal axis has as parameters 𝑥, 𝑦, and 𝜃 (Euclidian coordinates

and rotation angle of the figure). Also for the Bin Packing Problem

(BPP), a GA method has been proposed to brand polygonal figures

in a rectangular piece [18].

In terms of applications for architecture and buildings, GA

strategies are recently appearing as an optimization tool of interest,

due to its robustness and simplicity [19]. GAs have been employed

to find the best exterior building architectural solutions and to solve

complex architectural problems [20]. A GA approach aiming at the

generation of automatic designs for modular houses production, G-

Shaper [6], was the first attempt to find an optimal house layout

incorporating a language of design. This version considered both

rooms’ dimensions as previously fixed.

4 METHODOLOGY

4.1 Classic genetic algorithm

Over 30 years ago, John Holland proposed Genetic Algorithms

(GA) as a paradigmatic method to tackle computationally complex

search spaces [21]. The classic approach for genetic algorithms [22]

can be described by Algorithm 1.

Algorithm 1: Classic genetic algorithm

1. Randomly generate an initial population

2. Select 𝑁 best fitted individuals

3. While stop criterion not met:

4. Select parents for reproduction

5. Crossover
6. Mutation

7. Select 𝑁 individuals for a new generation

Defining the right quantity of individuals (N) for the

evolutionary population is an important GA parameter. If there is a

huge number of individuals in the population, the generational

chromosomic diversity tends to be large and consequently the

exploration of the search space is higher. The lack of diversity may

hinder a broader exploration and the algorithm might easily get stuck

in a local solution.

4.2 Shaper-GA

This section describes an evolution of the previously referred G-

Shaper algorithm [6], Shaper-GA. In the previous version, only one

final optimal solution based on the rules of Kwiecinski and Slyk [3]

is found and the rooms’ side dimensions, width and depth, are both

fixed. Shaper-GA primal difference is that rooms’ depths are not

fixed: the algorithm may adjust depths within a pre-defined range.

Another difference is that several proper house layouts should be

found before the algorithm terminates its evolution. Finally, when

Shaper-GA: Automatic shape generation for modular house design GECCO’18, July 15-19, 2018, Kyoto, Japan

3

possible genetic drift or local convergence might be occurring, the

method starts an adaptive mutation rate to overcome fitness

stagnation. The next subsections describe the operators used in

Shaper-GA in more detail.

4.2.1 Chromosome and Gene representation. The encoding for a

chromosome representing a house layout is an array X of R genes

(where R is the predefined number of rooms). Each gene represents

a room Xi, whose position in the layout can be represented by

assigning a 1 to each of di × wi sequential cells in a d × w

rectangular binary grid representing the house, where d (depth) and

w (width) are the ceiling or integer values for the given house side

dimensions.

Figure 1 : Multiple gene representation visualization

The encoding of one room is described by:

Table 1: Room (gene) encoding

Parameter Description

Name Name of room i (e.g.: living room)

x x=1 or x=w 2 + 1⁄
y y ∈ [1, d − di]
Width wi (fixed)

Depth di ∈ [mi, Mi] (predefined range)

In Table 1, x and y are the grid cell coordinates (row and column)

of the up-left vertex of a rectangular shape representing the

positioning of the room in the grid. Since the house divisions must
be placed on either one of the sides of a central axis that divides the

weight of the layout into two equal subrectangles, the vertical is

either 1 or w/2+1.

4.2.2 Fitness. Embodiment of the rules of design. The

architectural rules to be obeyed by the optimal house layout

chromosome are the following:

1. The vestibule must be placed next to the garage;

2. The toilet and technical room must be placed next to the

garage;

3. The kitchen must be placed either at the front of the house

or next to the living room;

4. The dining room must be placed at front or next to the

kitchen;

5. The living room must be placed next to the kitchen or

dining room;

6. The single bedroom must be placed next to another single

bedroom or a bathroom;

7. The bathroom is placed next to a single bedroom;

1 Note that the size of the evolutionary population is fixed (Section 4.2.3).

8. The double bedroom must be placed at the back.

The rooms are to be positioned into a compact rectangular floor

plan according to the rules, having only the garage sticking out of

the rectangular area at a predetermined position [4] (Figure 2).

The fitness function penalizes non-compliance with the rules in the

chromosome’s layout representation. Harder penalties are assigned

for overlaps found between rooms. While non-compliance implies

a penalization of 100 per rule, overlaps penalization is 100 × no,

where no is the number of cells that overlay. Considering F(i) as

the fitness of individual i and P(i) as the sum of all penalties for i,

F is calculated by Equation 2:

F(i) = {
1, P(i) = 0

−
1

P(i)
, P(i) ≠ 0

 (2)

The higher the fitness the most adapted the house is. A fitness value

of 1 implies that the house represented by the chromosome is an

optimal solution (obeys all the rules and there are no overlaps).

4.2.3 Population. An initial population is generated with M

different individuals, each representing a house layout. Note that

unfeasible layouts, that is, layouts with overlapping room’s

positions may be generated. The rationale behind is that a non-

expected layout might emerge, defining an alternative placement of

the rooms not foreseen by the architect but still satisfying the design

rules. The individuals are evaluated and sorted in decreasing order

of fitness value. The M × 0,1 individuals with higher fitness values

are selected for the first evolutionary population (that will evolve

until the stop criterion is met).

4.2.4 Selection. There are two different selection moments:

parent selection and next generation selection. The selection of the

individuals (parents) that will be allowed to reproduce generating

offspring was implemented using the Roulette Wheel Selection

(RWS). This method is the most efficient operator for

recombination within this domain of application as shown in the

extensive study developed for the previous version [6]. The

probability of an individual i being selected for crossover in a

population with N individuals having F(i) as the fitness function is

described in Equation 3:

Pselect(i) = F(i)/ ∑ F(j), i ∈ {1,2, . . , N}N
j=0 (3)

In the case of the selection of individuals1 that will survive for the

next generation, three different methods are tested:

o Elitism: half of the most adapted offspring joins with half

of the most adapted individuals from the actual

evolutionary population (parents) to create the new

evolutionary population.

o Ranking: selection of the N most fitted individuals

between the current evolutionary population and its

offspring.

GECCO’18, July 15-19, 2018, Kyoto, Japan B. Taborda et al.

o Elitism plus ranking: the best 10% of the current

population transfer to the new evolutionary population,

which is completed by the most fitted individuals

between the remaining parental population and offspring.

The reason not to choose only one selection mechanism comes from

the fact the test results have not distinguished any operator (Section

5).

4.2.5 Crossover and Mutation. The crossover method used in

Shaper-GA is Random Respectful Crossover (RRC) since it has

shown the best results for the previous G-Shaper version [6]. If both

parents share the same gene (i.e., the same room’s position), it will

be copied for the offspring, otherwise a new gene (new positioning)

is randomly created.

The mutation operator may modify one room for a new offspring

chromosome. The probability for a mutation to occur is of 2%. This

operator was implemented in Shaper-GA using the two different

approaches presented in Section 4.3 that tackle the issue of depth

dimension variability, and, in fact, are a first strategy to enable the

possible emergence of solutions.

4.3 Variability and Emergence of solutions

Shaper-GA as a house layout automatic generator has the

following objectives: produce several proper (optimal) layout

solutions and optimize performance. Within the several solutions,

the architectural main challenge is that of visualizing layouts that are

somehow unexpected.

4.3.1 Optimization. The evolution of a GA may slower down due

to genetic drift. Trying to overcome this issue, an adjustable

mutation rate is explored. Considering 𝐺 as the current population,

if the average generational fitness doesn't increase at least 0.5%

between generation 𝐺 − 1 and 𝐺, the probability of mutation

duplicates. An upper limit of 20% was defined for the maximal

probability of mutation. Once the average fitness unlocks the

situation above, the mutation probability goes back to 2%.

4.3.2 Production of several solutions. Shaper-GA aims to provide

different optimal solutions, i.e. different room arrangements

obeying all the positioning constraints. Even when the internal

structure of the house remains the same, rooms vary its depth,

making the arrangements define different houses (Erro! A origem

da referência não foi encontrada.2).

The question of parametric depth was implemented using a resize

function (Algorithm 2) that allows for a mutation in a gene to affect

only the depth of the room. When a resize mutation is decided, the

room may either increase or decrease its depth. Otherwise, a

completely new random positioning is generated to fulfill the

mutation decision.

Resizing can also occur in the crossover operator. Since we are

using RRC recombination, when parents have different genes

(positions) for a given chromosome index, the new room for the

offspring has equal probability of being assigned to a new random

position or keeping the position and being resized.

Algorithm 2 - Resize function

1. Randomly generate r ∈ [0, 1];
2. If r < 0,5

3. If 𝑑𝑖 > 𝑚𝑖 then 𝑑𝑖 ← 𝑑𝑖 – 1;
4. Else

5. If 𝑑𝒊 < 𝑀𝑖 then 𝑑𝑖 ← 𝑑𝑖 + 1;

Shaper-GA implements and tests two different GA versions:

Standard and Resizable from Beginning (RfB) version. While in

the Standard version, for the initial population, each house is

generated with all the rooms having a given (standard) depth (Table

3), RfB version generates each random room with depth in the

allowed range for each type of division (Table 2). Thus, in RfB the

initial population has individuals with the same type of rooms but

with different depths. More explicitly, each gene 𝑋𝑖 will be

generated with a (random) depth 𝑑𝑖 ∈ {𝑚𝑖 , 𝑀𝑖} for given 𝑚𝑖 and

𝑀𝑖 .

In either of the versions, when a chromosome representing a proper

house is selected for gene mutation, it can only suffer a resize. In

case the respective layout is not optimal, a room mutation has equal

probability of generating a new position for the room or resize it

(Algorithm 3).

Algorithm 3 - Mutation operator

1. Randomly generate a value 𝑐 ∈ [0, 1];
2. If 0.001 ≤ 𝑐 ≤ 𝑃 (𝑃 ∈ [0.02, 0.2])

3. Pick a random room, 𝑑;

4. If fitness of 𝑑 = 1.0

5. Resize 𝑑;
6. Else

7. Randomly generate 𝑟 ∈ [0, 1];
8. If 𝑟 < 0,5

9. Generate new position for 𝑑;
10. Else:

11. Resize 𝑑;

5 Results and discussion

Both Shaper-GA versions – Standard and RfB - were

implemented using Java.

The modular layout design rules for a house are the ones

previously referred to (subsection 4.2.2) and described on previous

works [6][4]: a detached one-store house, with a garage sticking out

of the rectangular perimeter. The house’s width and depth are

14 × 17 grid units (usually a grid unit stands for one square meter

(1𝑚 × 1𝑚) area). There is also a central axis dividing the floor plan

into identical left and right sides. This imposition allows for the

insertion of a central communication area – a corridor.

Table 2: Depth (in grid units) for each room

Room i Minimum
depth: mi

Maximum
depth: Mi

Kitchen 2 8

Living room 4 9

Dining room 4 6

Double bedroom 5 7
Single bedroom 4 7

Bathroom 3 5

Shaper-GA: Automatic shape generation for modular house design GECCO’18, July 15-19, 2018, Kyoto, Japan

5

Table 3: Standard depth (in grid units) for each room

Room Standard depth

Kitchen 2

Living room 5
Dining room 4

Double bedroom 6

Single bedroom 4

Bathroom 3

Four of the rooms (vestibule, toilet, garage, and tech room)

positions are previously fixed by the design and, thus, only the

remaining 6 rooms are to be positioned (bathroom, kitchen, living

room, double bedroom, 2 single bedrooms and dining room). The

rooms’ side dimensions are measured in grid units (Table 2 and

Table 3). Although the final rooms’ width might have to be adjusted

at the end of the evolution to insert the corridor, during the evolution

the width is fixed to 7 grid units, i.e. w/2. This implies that each one

of the rooms can be placed either at the left side (the correspondent

left column coordinate is 𝑥 = 1) of the axis, or at the right side (𝑥 =

w/2+1).

Shaper-GA evolution for this example stops when a minimum

of five different optimal solutions are found. Two houses are

different if there is, at least, one room that differs between the two

houses. As an example, the solutions shown in Figure 2 have either

different depths or arrangements. In the layout at the top-left, the

living room is 4 × 7 grid units. On the solution at the top-right, the

living room area is larger (5 × 7). In contrast, this kitchen’s area is

smaller (in fact, it stands out as a kitchenette). Different layout

arrangements may also be found, like the one at the bottom of

Figure 2.

Figure 2: Three different solutions from Shaper-GA

The following figures (Figure 3 and Figure 4) show averaged

results of 30 runs with 1 million generations each and 100

individuals in the evolutionary population. While for the standard

version the selective schemas performance is rather similar, the

same cannot be said for the RfB version, where the Elitism &

Ranking schema clearly outperforms the other two. In general,

Elitism & Ranking produces the best average results for both

versions. Interestingly, comparing the average fitness values in the

population for both versions it is visible that, for the same amount

of generations, the Standard version reaches higher averaged

values, 0.203 (approx.) against 0.139 (approx.) with the RfB

version, showing the latter to evolve rather slower than the former.

6 Conclusions

Shaper-GA employs a classic genetic algorithm approach that

returns at least five different house layouts compliant with the

language of design proposed by Kwiecinski et al. [4] in the form of

a shape grammar.

Related to a previous and less dynamical version, Shaper-GA

encloses several differences. A new encoding for the gene (room)

has been used allowing for a more efficient search in terms of

running time. To prevent larger generation drift, a new mechanism

for spatial search space exploration increase was introduced, that

adjusts the mutation probability in function of the average of the

evolutionary population fitness values variation. The crossover

operator, RCC, also has been modified to allow for a recombination

that incorporates the possibility of a random gene (room) depth

resize, instead of using only random gene generation. Finally, this is

the first GA approach for this specific problem that deals with

variable room side dimensions and can return several different

solutions.

Figure 3: Average fitness values for the Standard version

0,00E+00

5,00E-02

1,00E-01

1,50E-01

2,00E-01

2,50E-01

1 200
000

400
000

600
000

800
000

100
0000

A
ve

ra
ge

 f
it

n
e

ss

Generation

Standard version

100 RRC - Elitism Standard 100 RRC - Ranking Standard

100 RRC - Elitism & Ranking Standard

GECCO’18, July 15-19, 2018, Kyoto, Japan B. Taborda et al.

A deeper exploration of this method is still needed to produce

an operational software prototype to be tested by real users: a) to

reduce the number of generations required to obtain several different

solutions; b) to work with more complex layouts. Namely, the

mutation operator can be further adjusted so that, when the average

population fitness starts to smooth its increase, it favors specially

fitted alterations that effectively reduce the penalizations, thus

increasing fitness values.

Another interesting challenge is that of evolving communication

elements like doors and windows, which is crucial to produce a

fully automated design system. Such a tool can be integrated into

an appropriate user interface allowing future owners to customize

their own house or construction companies to answer client's'

requirements while complying with a language of design.

As a final note, this study in object placement constrained by

relative positioning rules could be used for the development of an

evolutionary approach for chip layout design.

REFERENCES
[1] A. Vogler, M. Eekhout, and IOS Press., The house as a product. .

[2] K. Mrkonjic, “Environmental Aspects of Use of Aluminium for

Prefabricated Lightweight Houses: Dymaxion House Case Study,” J.

Green Build., vol. 2, no. 4, pp. 130–136, Nov. 2007.

[3] K. Kwiecinski and J. Slyk, “System for customer participation in the design

process of mass-customized houses,” Fusion Data Integr. its Best, Vol 2,

vol. 2, pp. 207–215, 2014.

[4] K. Kwiecinski, F. Santos, A. De Almeida, B. Taborda, and S. Eloy, “Wood

Mass-Customized Housing A dual computer implementation design

strategy,” Complex. Simplicity - Proc. 34th eCAADe Conf., vol. 2, pp. 349–

358, 2016.

[5] H. S. Gerhard Wäscher, Heike Haußner, “An improved typology of cutting

and packing problems,” Eur. J. Oper. Res., vol. 183, no. 3, pp. 1109–1130,

2007.

[6] A. De Almeida, B. Taborda, F. Santos, K. Kwiecinski, and S. Eloy, “A

genetic algorithm application for automatic layout design of modular

residential homes,” Proc. 2016 IEEE Int. Conf. Syst. Man Cybern., pp.

2774–2778, 2016.

[7] A. Bortfeldt, “A genetic algorithm for the two-dimensional strip packing

problem with rectangular pieces,” Eur. J. Oper. Res., vol. 172, no. 3, pp.

814–837, 2006.

[8] J. Thomas, “Advances in Computational Intelligence,” vol. 7902, no.

November, 2013.

[9] S. M. Maxence Delorme, Manuel Iori, “Bin packing and cutting stock

problems: Mathematical models and exact algorithms,” Eur. J. Oper. Res.,

vol. 255, no. 1, pp. 1–20, 2016.

[10] A. Lodi, S. Martello, and M. Monaci, “Two-dimensional packing

problems: A survey,” Eur. J. Oper. Res., vol. 141, no. 2, pp. 241–252,

2002.

[11] $ María, C. Riff, X. Bonnaire, and B. Neveu, “A revision of recent

approaches for two-dimensional strip-packing problems.”

[12] J. F. Oliveira et al., “A SURVEY ON HEURISTICS FOR THE TWO-

DIMENSIONAL RECTANGULAR STRIP PACKING PROBLEM,”

Pesqui. Operacional, vol. 36, no. 2, pp. 197–226, Aug. 2016.

[13] E. Hopper and B. C. H. Turton, “A Review of the Application of Meta-

Heuristic Algorithms to 2D Strip Packing Problems,” Artif. Intell. Rev., vol.

16, no. 4, pp. 257–300, 2001.

[14] C. Salto, G. Leguizamón, and E. Alba, “Parallel ACO algorithms for 2D

Strip Packing.”

[15] V. Southern African Institute for Industrial Engineering, T. I. SPARC

(Organization), and T. Hua, A genetic algorithm for two dimensional strip

packing problems, vol. 20, no. 2. The Southern African Institute for

Industrial Engineering, 2009.

[16] H. Gharsellaoui and H. Hasni, “An hybrid genetic algorithm for two-

dimensional cutting problems using guillotine cuts AND LITERATURE

RE-,” no. February 2014, 2012.

[17] V. Ayala-ramirez, A. Ponce-Pérez, A. Perez-Garcia, A. Pérez-Garcia, A.

Ponce-p, and P. Arturo, “Bin-Packing Using Genetic Algorithms,”

Electron. Commun. Comput. Int. Conf., vol. 0, no. Conielecomp, pp. 311–

314, 2005.

[18] S. Jakobs, “On genetic algorithms for the packing of polygons,” Eur. J.

Oper. Res., vol. 88, no. 1, pp. 165–181, 1996.

[19] A. D. S. Curriculum, “High-rise Building Optimization,” vol. 1, pp. 305–

314, 2012.

[20] L. Li, “The optimization of architectural shape based on Genetic

Algorithm,” Front. Archit. Res., vol. 1, no. 4, pp. 392–399, 2012.

[21] J.H. Holland, Hidden Order: How Adaptation Builds Complexity. 1995.

[22] H.-G. Beyer, H.-G. Beyer, H.-P. Schwefel, and H.-P. Schwefel, “Evolution

strategies – A comprehensive introduction,” Nat. Comput., vol. 1, no. 1,

pp. 3–52, 2002.

0,00E+00

2,00E-02

4,00E-02

6,00E-02

8,00E-02

1,00E-01

1,20E-01

1,40E-01

1,60E-01

1 200
000

400
000

600
000

800
000

100
0000

A
ve

ra
ge

 f
it

n
e

ss

Generation

RfB version

100 RRC - Elitism RfB 100 RRC - Ranking RfB

100 RRC - Elitism & Ranking RfB

Figure 4: Average fitness values for the RfB version

