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ABSTRACT 

This work presents a Genetic Algorithm (GA) approach to produce 

automatic designs for modular houses: Shaper-GA. A set of 

architectural design rules defining a language of design is 

incorporated into the GA fitness function. When possible genetic 

drift or local convergence might be occurring, the method starts an 

adaptive mutation rate to overcome fitness stagnation. The GA tool 

efficiently produces several layout solutions obeying the design 

rules and further placement constraints. Such a tool can be 

integrated into an appropriate user interface allowing future house 

owners to customize their own house or construction companies to 

answer client's' requirements while complying with a language of 

design. 
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1 INTRODUCTION 

Mass fabrication of houses seems to have started in the mid-19th 

century with the establishment of colonial settlements and, since 

then, prefabricated houses have been successfully used [1]. 

However, modular construction, i.e., to build using modules, 

emerged with the Fuller experimentation, in last century’s 20s and 

30s, and the Dymaxion House, which incorporated prefabricated 

bathroom modules. In fact, house modules, more than individual 

elements (like doors or walls) but rather self-enclosed dwelling 

spaces, are often fabricated off-site [2].  With recent advances in 

mass construction and the urge of vast developing urban dwellings, 

mass construction has been making the headlines, like with the 461 

Dean Street modular skyscraper in Brooklyn, NY, USA. However, 

architectural evolution resulted mainly in the development of design 

processes in which the end user influence on the design has been 

very limited. Kwiecinski and Slyk presented a formal language of 

design for the development of a mass customized system allowing 

for Polish costumers to participate in the design of their homes [3]. 

Two different approaches have been taken to meet the automation 

of this language of design and providing a good technical solution 

satisfying users' needs: one based in shape grammars [4] 

supplemented with processes and the other based in genetic 

algorithms. 

This work introduces the latter, Shaper-GA, which is an 

automated shaper floor planning application, implemented via a 

genetic algorithm (GA) and able to generate rectangular houses 

obeying a predefined architectural language of design. 

The remainder of the paper is organized as follows. In section 2 

the problem formulation can be found. A summary of the most 

relevant literature review is presented on section 3. Section 4 

describes the proposed genetic algorithm, Shaper-GA. Results and 

are discussed in section 5, where a summary of the experiments is 

also presented. Section 6 presents conclusions and possible 

directions for future work. 

https://doi.org/10.1145/3205455.3205609
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2 PROBLEM FORMULATION 

A house layout can be viewed as a set of positions that represent 

the spatial relations between rooms – a floor plan. Each house has a 

predetermined number of rooms, total width and depth, and a central 

axis that equally divides the width in two, allowing for a central 

corridor to access all the rooms.  

The rooms (smaller rectangles) must be placed such that all the 

architectural design rules [3] are fulfilled and without rotating any 

of the rectangles. An optimal solution, or proper layout, is one that 

obeys all the rules and further positioning constraints derived from 

the transposition of the design, and is free of room overlaps. Thus, 

the rooms should be assigned into the floor (larger enclosing 

rectangle) such that the positioning constraints are met. The problem 

to be solved may be looked at as a Two-Dimensional Single Large 

Object Placement Problem (2SLOPP) [5], where the overall 

dimensions are both fixed and there are further positioning 

restrictions to be obeyed.  

The number of possible arrangements for the rooms’ placement 

in the given floor is combinatorial. Almeida et al. present  a small 

example, with 6 different rooms of fixed dimensions and a fixed 

entrance module [6], having 2 ×  1012 possible combinations for 

the rooms positioning, that is, different floor plans. Naturally, the 

fact that some of the rooms have relative positioning design rules to 

fulfill restricts the total number of free possibilities. However, the 

combinations remain combinatorial in nature. If we add the 

possibility of dynamic adjustments of rooms depth, the search space 

dimension for a 𝑑 × 𝑤 rectangular house with 𝑅 rooms, each with 

dimensions 𝑑𝑖 × 𝑤𝑖   and 𝑚ℎ 𝑖
≤ 𝑑 𝑖 ≤ 𝑀ℎ 𝑖

, (𝑑 𝑖 , 𝑤𝑖 , 𝑚ℎ 𝑖
, 𝑀ℎ 𝑖

∈ ℕ, 

= 1,2 … , 𝑅) is given by 

 

∏ (𝑤 − 𝑤𝑖)(𝑑 − 𝑑𝑖)(𝑀ℎ𝑖
− 𝑚ℎ 𝑖

)𝑅
𝑖=1              (1) 

 

In fact, if a variable dimension is allowed, the problem may be 

considered as  a Two-Dimensional Strip Packing Problem (2D-SPP) 

[7][8], where the objects have fixed width and variable depth. Either 

way, both mathematical formulations involved in the problem of 

finding the optimal house layout are NP-hard combinatorial problem 

formulations [9][7][8], establishing Genetic Algorithms as a suitable 

method to tackle the layout design search. Moreover, the open 

possibility of emergence of design layouts from the architectural 

shape grammar through evolutionary strategies is especially 

appealing, further motivating this explorative study. 

3 LITERATURE REVIEW 

Cutting & Packing (C&P), general field that encompasses 

2SLOPP and 2D-SPP, refers to combinatorial optimization 

problems with diverse real applications. Several methods  and 

approaches have already been proposed to tackle the  computational 

complexity usually involved [10]–[13]. Applications using 

evolutionary algorithms have also been proposed to address C&P 

problems [14]–[17]. According to Wäscher et al. [5], 2SLOPP is a 

particularization of a C&P problem where the main goal is to place 

smaller objects on larger ones, leaving as little free space as possible. 

2D-SPP is a specific case of Strip Packing where a set of rectangular 

objects should be inserted into one container without overlaps, in  

such a way that the strip is minimized [9][10]. In this case, the 

rectangles have fixed width but variable depth. Although being a 

slightly more recent variant of the C&P problem, a handful of 

publications can also be found [7], [11]–[15].  To solve a 2-D Bin 

Packing Problem (2BPP) of polygonal shapes on a rectangular 

canvas, a genetic algorithm whose main feature is the definition of 

each figure based on an orthogonal axis was implemented [17]. The 

orthogonal axis has as parameters 𝑥, 𝑦, and 𝜃 (Euclidian coordinates 

and rotation angle of the figure). Also for the Bin Packing Problem 

(BPP), a GA method has been proposed to brand polygonal figures 

in a rectangular piece [18]. 

In terms of applications for architecture and buildings, GA 

strategies are recently appearing as an optimization tool of interest, 

due to its robustness and simplicity [19].  GAs have been employed 

to find the best exterior building architectural solutions and to solve 

complex architectural problems [20]. A GA approach aiming at the 

generation of automatic designs for modular houses production, G-

Shaper [6], was the first attempt to find an optimal house layout 

incorporating a language of design. This version considered both 

rooms’ dimensions as previously fixed. 

4 METHODOLOGY 

4.1 Classic genetic algorithm 

Over 30 years ago, John Holland proposed Genetic Algorithms 

(GA) as a paradigmatic method to tackle computationally complex 

search spaces [21]. The classic approach for genetic algorithms [22] 

can be described by Algorithm 1. 

Algorithm 1: Classic genetic algorithm 

1. Randomly generate an initial population 

2. Select 𝑁 best fitted individuals 

3. While stop criterion not met: 

4.     Select parents for reproduction 

5.     Crossover 
6.     Mutation 

7.     Select 𝑁 individuals for a new generation 

 

Defining the right quantity of individuals (N) for the 

evolutionary population is an important GA parameter. If there is a 

huge number of individuals in the population, the generational 

chromosomic diversity tends to be large and consequently the 

exploration of the search space is higher. The lack of diversity may 

hinder a broader exploration and the algorithm might easily get stuck 

in a local solution. 

4.2 Shaper-GA 

This section describes an evolution of the previously referred G-

Shaper algorithm [6], Shaper-GA. In the previous version, only one 

final optimal solution based on the rules of  Kwiecinski and Slyk  [3] 

is found and the rooms’ side dimensions, width and depth, are both 

fixed. Shaper-GA primal difference is that rooms’ depths are not 

fixed: the algorithm may adjust depths within a pre-defined range. 

Another difference is that several proper house layouts should be 

found before the algorithm terminates its evolution. Finally, when 
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possible genetic drift or local convergence might be occurring, the 

method starts an adaptive mutation rate to overcome fitness 

stagnation. The next subsections describe the operators used in 

Shaper-GA in more detail. 

 

4.2.1  Chromosome and Gene representation. The encoding for a 

chromosome representing a house layout is an array X of R genes 

(where R is the predefined number of rooms). Each gene represents 

a room Xi, whose position in the layout can be represented by 

assigning a 1 to each of di × wi sequential cells in a d × w 

rectangular binary grid representing the house, where d (depth) and 

w (width) are the ceiling or integer values for the given house side 

dimensions.  

 

 

Figure 1 : Multiple gene representation visualization 

 

The encoding of one room is described by: 

Table 1: Room (gene) encoding  

Parameter Description 

Name Name of room i (e.g.: living room) 

x x=1 or x=w 2 + 1⁄  
y y ∈ [1, d − di] 
Width wi (fixed) 

Depth di ∈ [mi, Mi] (predefined range) 

 

In Table 1, x and y are the grid cell coordinates (row and column) 

of the up-left vertex of a rectangular shape representing the 

positioning of the room in the grid. Since the house divisions must 
be placed on either one of the sides of a central axis that divides the 

weight of the layout into two equal subrectangles, the vertical is 

either 1 or w/2+1. 
 

4.2.2 Fitness. Embodiment of the rules of design. The 

architectural rules to be obeyed by the optimal house layout 

chromosome are the following:  

1. The vestibule must be placed next to the garage; 

2. The toilet and technical room must be placed next to the 

garage; 

3. The kitchen must be placed either at the front of the house 

or next to the living room;  

4. The dining room must be placed at front or next to the 

kitchen; 

5. The living room must be placed next to the kitchen or 

dining room; 

6. The single bedroom must be placed next to another single 

bedroom or a bathroom; 

7. The bathroom is placed next to a single bedroom; 

                                                                   
1 Note that the size of the evolutionary population is fixed (Section 4.2.3). 

8. The double bedroom must be placed at the back. 

The rooms are to be positioned into a compact rectangular floor 

plan according to the rules, having only the garage sticking out of 

the rectangular area at a predetermined position [4] (Figure 2). 

The fitness function penalizes non-compliance with the rules in the 

chromosome’s layout representation. Harder penalties are assigned 

for overlaps found between rooms. While non-compliance implies 

a penalization of 100 per rule, overlaps penalization is 100 × no, 

where no is the number of cells that overlay. Considering F(i) as 

the fitness of individual i and P(i) as the sum of all penalties for i, 

F is calculated by Equation 2: 

 

F(i) = {
1, P(i) = 0

−
1

P(i)
, P(i)  ≠ 0

   (2) 

 

The higher the fitness the most adapted the house is. A fitness value 

of 1 implies that the house represented by the chromosome is an 

optimal solution (obeys all the rules and there are no overlaps).  

 

4.2.3 Population. An initial population is generated with M 

different individuals, each representing a house layout.  Note that 

unfeasible layouts, that is, layouts with overlapping room’s 

positions may be generated. The rationale behind is that a non-

expected layout might emerge, defining an alternative placement of 

the rooms not foreseen by the architect but still satisfying the design 

rules. The individuals are evaluated and sorted in decreasing order 

of fitness value. The M × 0,1 individuals with higher fitness values 

are selected for the first evolutionary population (that will evolve 

until the stop criterion is met). 

 

4.2.4 Selection. There are two different selection moments: 

parent selection and next generation selection. The selection of the 

individuals (parents) that will be allowed to reproduce generating 

offspring was implemented using the Roulette Wheel Selection 

(RWS). This method is the most efficient operator for 

recombination within this domain of application as shown in the 

extensive study developed for the previous version [6]. The 

probability of an individual i being selected for crossover in a 

population with N individuals having F(i) as the fitness function is 

described in Equation 3: 

 

Pselect(i) = F(i)/ ∑ F(j), i ∈ {1,2, . . , N}N
j=0    (3) 

 

In the case of the selection of individuals1 that will survive for the 

next generation, three different methods are tested:  

o Elitism: half of the most adapted offspring joins with half 

of the most adapted individuals from the actual 

evolutionary population (parents) to create the new 

evolutionary population.  

o Ranking: selection of the N most fitted individuals 

between the current evolutionary population and its 

offspring.  
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o Elitism plus ranking: the best 10% of the current 

population transfer to the new evolutionary population, 

which is completed by the most fitted individuals 

between the remaining parental population and offspring. 

The reason not to choose only one selection mechanism comes from 

the fact the test results have not distinguished any operator (Section 

5). 

 

4.2.5 Crossover and Mutation. The crossover method used in 

Shaper-GA is Random Respectful Crossover (RRC) since it has 

shown the best results for the previous G-Shaper version [6]. If both 

parents share the same gene (i.e., the same room’s position), it will 

be copied for the offspring, otherwise a new gene (new positioning) 

is randomly created. 

The mutation operator may modify one room for a new offspring 

chromosome. The probability for a mutation to occur is of 2%. This 

operator was implemented in Shaper-GA using the two different 

approaches presented in Section 4.3 that tackle the issue of depth 

dimension variability, and, in fact, are a first strategy to enable the 

possible emergence of solutions. 

4.3 Variability and Emergence of solutions 

Shaper-GA as a house layout automatic generator has the 

following objectives: produce several proper (optimal) layout 

solutions and optimize performance. Within the several solutions, 

the architectural main challenge is that of visualizing layouts that are 

somehow unexpected.  

 

4.3.1 Optimization. The evolution of a GA may slower down due 

to genetic drift. Trying to overcome this issue, an adjustable 

mutation rate is explored. Considering 𝐺 as the current population, 

if the average generational fitness doesn't increase at least 0.5% 

between generation 𝐺 − 1 and 𝐺, the probability of mutation 

duplicates. An upper limit of 20% was defined for the maximal 

probability of mutation. Once the average fitness unlocks the 

situation above, the mutation probability goes back to 2%. 

 

4.3.2 Production of several solutions. Shaper-GA aims to provide 

different optimal solutions, i.e. different room arrangements 

obeying all the positioning constraints. Even when the internal 

structure of the house remains the same, rooms vary its depth, 

making the arrangements define different houses (Erro! A origem 

da referência não foi encontrada.2).  

The question of parametric depth was implemented using a resize 

function (Algorithm 2) that allows for a mutation in a gene to affect 

only the depth of the room. When a resize mutation is decided, the 

room may either increase or decrease its depth.  Otherwise, a 

completely new random positioning is generated to fulfill the 

mutation decision. 

Resizing can also occur in the crossover operator. Since we are 

using RRC recombination, when parents have different genes 

(positions) for a given chromosome index, the new room for the 

offspring has equal probability of being assigned to a new random 

position or keeping the position and being resized. 

Algorithm 2 - Resize function 

1. Randomly generate r ∈ [0, 1]; 
2. If r < 0,5  

3.     If 𝑑𝑖 > 𝑚𝑖 then 𝑑𝑖  ← 𝑑𝑖  –  1; 
4. Else 

5.     If 𝑑𝒊 < 𝑀𝑖  then 𝑑𝑖  ← 𝑑𝑖 + 1;  

 

Shaper-GA implements and tests two different GA versions: 

Standard and Resizable from Beginning (RfB) version. While in 

the Standard version, for the initial population, each house is 

generated with all the rooms having a given (standard) depth (Table 

3), RfB version generates each random room with depth in the 

allowed range for each type of division (Table 2). Thus, in RfB the 

initial population has individuals with the same type of rooms but 

with different depths. More explicitly, each gene 𝑋𝑖 will be 

generated with a (random) depth 𝑑𝑖 ∈ {𝑚𝑖 , 𝑀𝑖} for given 𝑚𝑖 and 

𝑀𝑖 .  

In either of the versions, when a chromosome representing a proper 

house is selected for gene mutation, it can only suffer a resize. In 

case the respective layout is not optimal, a room mutation has equal 

probability of generating a new position for the room or resize it 

(Algorithm 3). 

Algorithm 3 - Mutation operator 

1.  Randomly generate a value 𝑐 ∈  [0, 1]; 
2.  If 0.001 ≤ 𝑐 ≤ 𝑃  (𝑃 ∈ [0.02, 0.2])  

3.      Pick a random room, 𝑑; 

4.     If fitness of 𝑑 = 1.0 

5.         Resize 𝑑; 
6.      Else 

7.          Randomly generate 𝑟 ∈  [0, 1]; 
8.          If 𝑟 < 0,5 

9.              Generate new position for 𝑑; 
10.        Else: 

11.            Resize 𝑑; 

5 Results and discussion 

Both Shaper-GA versions – Standard and RfB - were 

implemented using Java.  

The modular layout design rules for a house are the ones 

previously referred to (subsection 4.2.2) and described on previous 

works [6][4]: a detached one-store house, with a garage sticking out 

of the rectangular perimeter. The house’s width and depth are 

14 × 17 grid units (usually a grid unit stands for one square meter 

(1𝑚 × 1𝑚) area). There is also a central axis dividing the floor plan 

into identical left and right sides. This imposition allows for the 

insertion of a central communication area – a corridor.  

Table 2: Depth (in grid units) for each room 

Room i Minimum 
depth: mi 

Maximum 
depth: Mi 

Kitchen 2 8 

Living room 4 9 

Dining room 4 6 

Double bedroom 5 7 
Single bedroom 4 7 

Bathroom 3 5 
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Table 3: Standard depth (in grid units) for each room 

Room Standard depth 

Kitchen 2 

Living room 5 
Dining room 4 

Double bedroom 6 

Single bedroom 4 

Bathroom 3 

 

Four of the rooms (vestibule, toilet, garage, and tech room) 

positions are previously fixed by the design and, thus, only the 

remaining 6 rooms are to be positioned (bathroom, kitchen, living 

room, double bedroom, 2 single bedrooms and dining room). The 

rooms’ side dimensions are measured in grid units (Table 2 and 

Table 3). Although the final rooms’ width might have to be adjusted 

at the end of the evolution to insert the corridor, during the evolution 

the width is fixed to 7 grid units, i.e. w/2.  This implies that each one 

of the rooms can be placed either at the left side (the correspondent 

left column coordinate is 𝑥 = 1) of the axis, or at the right side (𝑥 = 

w/2+1).  

Shaper-GA evolution for this example stops when a minimum 

of five different optimal solutions are found. Two houses are 

different if there is, at least, one room that differs between the two 

houses. As an example, the solutions shown in Figure 2 have either 

different depths or arrangements. In the layout at the top-left, the 

living room is 4 × 7 grid units. On the solution at the top-right, the 

living room area is larger (5 × 7). In contrast, this kitchen’s area is 

smaller (in fact, it stands out as a kitchenette). Different layout 

arrangements may also be found, like the one at the bottom of  

Figure 2. 

 

Figure 2: Three different solutions from Shaper-GA 

 

The following figures (Figure 3 and Figure 4) show averaged 

results of 30 runs with 1 million generations each and 100 

individuals in the evolutionary population. While for the standard 

version the selective schemas performance is rather similar, the 

same cannot be said for the RfB version, where the Elitism & 

Ranking schema clearly outperforms the other two. In general, 

Elitism & Ranking produces the best average results for both 

versions. Interestingly, comparing the average fitness values in the 

population for both versions it is visible that, for the same amount 

of generations, the Standard version reaches higher averaged 

values, 0.203 (approx.) against 0.139 (approx.) with the RfB 

version, showing the latter to evolve rather slower than the former. 

6 Conclusions 

Shaper-GA employs a classic genetic algorithm approach that 

returns at least five different house layouts compliant with the 

language of design proposed by Kwiecinski et al. [4] in the form of 

a shape grammar.   

Related to a previous and less dynamical version, Shaper-GA 

encloses several differences. A new encoding for the gene (room) 

has been used allowing for a more efficient search in terms of 

running time. To prevent larger generation drift, a new mechanism 

for spatial search space exploration increase was introduced, that 

adjusts the mutation probability in function of the average of the 

evolutionary population fitness values variation. The crossover 

operator, RCC, also has been modified to allow for a recombination 

that incorporates the possibility of a random gene (room) depth 

resize, instead of using only random gene generation. Finally, this is 

the first GA approach for this specific problem that deals with 

variable room side dimensions and can return several different 

solutions. 

 

 

Figure 3: Average fitness values for the Standard version 
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A deeper exploration of this method is still needed to produce 

an operational software prototype to be tested by real users: a) to 

reduce the number of generations required to obtain several different 

solutions; b) to work with more complex layouts. Namely, the 

mutation operator can be further adjusted so that, when the average 

population fitness starts to smooth its increase, it favors specially 

fitted alterations that effectively reduce the penalizations, thus 

increasing fitness values.  

Another interesting challenge is that of evolving communication 

elements like doors and windows, which is crucial to produce a 

fully automated design system. Such a tool can be integrated into 

an appropriate user interface allowing future owners to customize 

their own house or construction companies to answer client's' 

requirements while complying with a language of design. 

As a final note, this study in object placement constrained by 

relative positioning rules could be used for the development of an 

evolutionary approach for chip layout design. 
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