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Abstract. Emergency departments are an important area of a hospital, being the 

major entry point to the healthcare system. One of the most important issues re-

garding patient experience are the emergency department waiting times. In order 

to help hospitals improving their patient experience, the authors will perform a 

study where the Random Forest algorithm will be applied to predict emergency 

department waiting times. Using data from a Portuguese hospital from 2013 to 

2017, the authors discretized the emergency waiting time in 5 different catego-

ries: “Really Low”, “Low”, “Average”, “High”, “Really High”. Plus, the authors 

considered as waiting time, the time from triage to observation. The authors ex-

pect to correctly evaluate the proposed classification algorithm efficiency and 

accuracy in order to be able to conclude if it is valuable when trying to predict 

ED waiting times. 
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1 Introduction 

Emergency departments (ED) are an important and complex area of a hospital and are 

the major entry point to the healthcare system [1]. With the increase of life expectancy, 

population aging and bigger amount of health issues, ED tend to have greater demand 

[2]. If hospitals and more specifically, ED, are not ready, this will increase emergencies 

crowding, creating a big problem to authorities and hospital management since re-

sources are limited. According to the American College of Emergency Physicians 

(ACEP) “Crowding occurs when the identified need for emergency services exceeds 

resources for patient care in the emergency department, hospital or both” [3]. Lack of 

beds, patients in hallways, greater amount of people in the waiting rooms, longer wait-

ing times, greater patient length of stay and general patient dissatisfaction are some of 

the consequences of this phenomenon. It is an international problem and it is vital for 

hospitals [3] to solve it due to the life-threatening context of the area.  
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ED wait times are the second most referred theme regarding patient experience [4] 

which indicates that this area requires intervention to increase care quality and resource 

efficiency to achieve greater patient satisfaction. That can be achieved using Predictive 

Analytics (PA) which has the potential to improve the operational flexibility and 

throughput quality of ED services [5]. Waiting time prediction would help clinicians 

prioritize patients and adjust work flow to minimize time spent [6]. Predictive Analytics 

allows to predict future events or trends using retrospective and current data [7]. It could 

be applied in several healthcare areas, taking advantage of the big data in healthcare. 

According to [8], predictive analytics is a tactic that healthcare organizations should 

adopt, allowing the stratification of risk to predict outcomes, that in healthcare can be 

harmful to the patients. Other advantages would be the adoption of more sensor based 

technologies that would help patients to be more aware about their health, provide life-

style suggestions by determining some diseases that he could suffer if he kept the same 

lifestyle [9], help the management of high risk and high cost patients during hospital 

care and after discharge follow-up care [8], etc. 

In this research, the authors applied Predictive analytics grounded on data collected 

from a real ED and studied the performance of the Random Forest algorithm to predict 

patient waiting time. 

2 Related work   

The authors started by searching about big data in healthcare and predictive analytics 

applications in healthcare industry. Later, the authors focused on ED waiting time, to 

understand the variables that can have the most influence on the patient waiting time, 

plus the used algorithms. 

Regarding predictive analytics in the healthcare industry, some authors studied its 

advantages and possible applications, like M. M. Malik et al [10] that reviewed and 

analyzed applications of predictive analytics and data mining in the healthcare industry 

or R. Chauhan and R. Jangade [9] that claim that predictive analytics in healthcare can 

be beneficial as it would allow for patient disease prediction, fraud detection and cost 

management initiatives. 

Another author that defends predictive analytics importance in the healthcare indus-

try is G. Palem [11], defending that predictive analytics can be helpful on various areas 

of the healthcare industry like “life-sciences, healthcare providers, insurance providers, 

public health, individuals”. A. T. Janke et al. [5] also defend that predictive systems 

can be beneficial to the ED. They studied big data and predictive analytics implemen-

tation challenges and opportunities and how it could improve the ED patient flow. 

The aforementioned models are defined by C. Kaul et al. [12], that defined predictive 

models as models that “concentrate upon analyzing a set of relevant data and predict a 

future implication or a meaningful pattern”, analyzing how they can be applied in 

healthcare, for example, providing alerts about disease outbreaks. They have studied 

healthcare data stating that 80% of it is unstructured and difficult to analyze. 

Some of the authors also analyzed the advantages of predictive analytics but focus-

ing on some specific areas. One of those cases is D. W. Bates [8] that provided some 
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use cases of predictive analytics application on high risk and cost patient management, 

defining predictive systems as “software tools that allow the stratification of risk to 

predict an outcome”, defending that, in the future, healthcare organizations will use 

predictive analytics. 

Focusing on ED waiting times, M. Barad et al. [3] studied the ED of an Israeli hos-

pital in order to find the reasons for ED crowding. Started by conducting interviews 

with the clinicians and analyzed the communication between departments. In the re-

search, they used the American College of Emergency Physicians definition of ED 

crowding, “Crowding occurs when the identified need for emergency services exceeds 

resources for patient care in the emergency department, hospital or both”. 

Some authors focused on predicting the ED waiting times, like E. Bruballa et al. [2] 

that created an agent based simulation to study the patient length of stay, considering it 

as a major problem for the healthcare system worldwide. They also defend that the 

existence of information or a recommendation system showing emergency department 

state information would help avoiding long waiting times in the services.  

M. Chong et al. [13] developed a system dynamic model to study the patient flow in 

the emergency department of a hospital in Hong Kong. They concluded that by increas-

ing staff and the amount of beds, the time spent by patients in the ED could be reduced. 

Others studied the ED waiting times, using machine learning techniques, like quan-

tile regression, Q-Lasso or expectation maximization. 

Y. Sun et al. [6] were some of the authors that used quantile regression to develop a 

model to predict emergency department waiting time, based on triage information. Did 

not use the predicted mean waiting time since it is affected by possible outliers, instead, 

predicted “a range of the 50th percentile to the 95th percentile”. They defined waiting 

time as the “interval from triage end time to the physician’s consultation time”, and 

considered that the patient flow rates of other acuity levels could impact on other levels 

since clinicians could move between queues. This developed model ignored patient 

characteristics which could be a limitation. Other authors that used quantile regression 

were R. Ding et al. [14] that created a system to predict length of stay in ED. They 

claim that “providing patients with an expected LoS at triage may result in increased 

patient satisfaction”. They considered three phases for the length of stay: waiting time, 

treatment time and boarding time, and used “acuity level, arrival day and time, arrival 

mode, chief complaint and patient characteristics.” as variables. 

Q-Lasso was used by E. Ang et al. [15] to predict ED waiting time, using data from 

four different hospitals from the United states of America. They defined Q-Lasso as an 

algorithm that is a combination of the “queueing theory and the lasso method, that uses 

a penalty to correct estimation errors”. 

3 Work Methodology  

The work methodology can be divided in three different processes: Data Collection, 

where the dataset and the correspondent ED is described and analyzed, Data Pre-Pro-



4 

cessing, which is the process the data is manipulated towards the waiting time predic-

tion and finally, Data-Mining, where the Random Forest algorithm is applied to the 

previously processed data in order to predict the ED waiting time. 

3.1 Data Collection 

In this process, the authors describe the data used in this research, that was provided by 

an ED of a Portuguese hospital and includes registers from January 1 of 2013 to De-

cember 31 of 2017. Before the data was provided to the authors of this research, infor-

mation that could identify the patient, doctor or nurse of each record was anonymized 

due to privacy regulations. 

This hospital’s ED flow has five main processes: Admission, Triage, Observation, 

Discharge and Administrative Discharge (Fig 1). The first step occurs when the patient 

is admitted to the ED, then, in the second process is when the patient is submitted to 

testing, being categorized according to the Manchester Triage Protocol (MTP) (Table 

1). The third step corresponds to the observation, where the patient will be observed by 

a doctor and treated. The last two steps of this ED flow are correlated, the discharge 

occurs when a doctor, after evaluating the patient, considers that he is ready to be moved 

to another hospital, department or even to go home, and finally, the administrative dis-

charge, occurs when all the documentation necessary for the patient to leave is approved 

and the patient leaves the ED. 

As aforementioned, this ED is compliant with the MTP, a protocol for hospital triage 

system, that defines the advisable time limit patients must wait to be treated. Following 

this, all patients are categorized on five different triage colors: “red”, “orange”, “yel-

low”, “green” and “blue”, from the most urgent to the least urgent respectively. In this 

ED, there is also another category called “others” for the other cases, where the patient 

doesn’t follow the usual triage system. In this ED, most of the patients are either in 

green, yellow or “others” categories and on 50% of the cases, the advisable time was 

exceeded. 

 

Fig. 1.   ED flow, in a five strae process 

Table 1.   Manchester Triage Protocol standards 

Class Treatment Target Time (minutes) 

Red Immediate 0 

Orange Very urgent 10 

Yellow Urgent 60 

Green Standard 120 

Blue Non-urgent 240 

The ED is divided in three departments: general department (GD), pediatric depart-

ment (PD) and obstetrics department (OD). 

In those four years of records, 672720 patients attended the ED on that hospital. Each 

record on this dataset contains 20 attributes represented on Fig. 2 with the respective 
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acronyms. The first 10 are the dates and times for each step of the previously mentioned 

ED flow, so the date (dd/mm/yyyy) and time (hh:mm:ss) for the admission (D1 and T1 

respectively), the triage (D2 and T2 respectively), observation (D3 and T3 respec-

tively), discharge (D4 and T4 respectively) and administrative discharge (D5 and T5 

respectively). Other attributes are the patient triage color according to the MTP (defined 

as TC in Fig.2), ED sub-department (DEP in Fig.2), discharge status, discharge desti-

nation, readmission flag and an anonymized patient id, doctor id and nurse id. 

 

Fig. 2. Attributes used in this research 

3.2 Data Pre-Processing Process  

In this process, the authors manipulated the data to analyze it and apply the Random 

Forest algorithm in order to predict the ED waiting time (section 3.3). 

The authors started by removing the attributes that would not be needed according 

to the goals of the project, like patient, doctor and nurse ids and readmission flag. Rec-

ords with null values were also removed, resulting in a cut of 5.1% of the original data. 

Then, the authors calculated the weekday where the event took place, based on the 

admission date (D1 as described in Fig. 2), using the weekday function from excel. 

Another important step was to discretize the hour of the day where the event took 

place, based on the admission time (T1). The authors created six different day periods: 

21-3h, 3-7h, 7-12h, 12-15h, 15-19h and 19-21h and then aggregated the events based 

on those intervals. This allowed to ease the analytical process.  

Another calculated attribute was the waiting time. The authors defined patient wait-

ing time as the time from admission to observation (T3 – T1 from Fig.2). As expected, 

the minimum time is 00:00:00h, since the MTP defines that patients classified with red 

color category should be attended immediately. The maximum waiting time was 

9:50:55h and it corresponds to a patient that was has with the green color, while the 

average waiting time was 00:56:02h. 
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Then, this calculated time was discretized on five different custom waiting time cat-

egories: “really low”, “low”, “average”, “high”, “really high”. This process of discreti-

zation started with the calculation of the total average waiting time, that was used as 

reference in order to categorize all the time events. The events that fit the first 20% of 

the average waiting time (00:00:00 to 00:11:12) were categorized as “really low”. Then, 

for the second category (“low”) the author categorized the events between 20% and 

70% of the average (from 00:11:12 to 00:50:26). For the “average” category, the author 

used the 20% around the average waiting time, 10 % under and 10% above (00:50:26 

to 1:01:38). For the next category, “high”, added 70% of the average waiting time to 

the average waiting time (01:01:38 to 1:40:51). Finally, the last category, “really high”, 

was based on the maximum waiting time, since all the events had to be covered. This 

discretization process is described on Fig. 1. These discretization processes were made 

using Microsoft Excel 2016. 

 

Fig. 3.   ED Waiting time classification 

The “Low” category is the category where there are more occurrences on every depart-

ment. As expected, on the pediatric department, most of the patients have short waiting 

times, around 81% of the entries are either “low” or “really low” category. On the other 

hand, the obstetric department also has a lot of entries with the “low” category (41%), 

but it is the department where the patients have to wait the most since the “high”, and 

the “really high” categories represent 46% of the entries. 

In terms of triage color, as expected, the most urgent colors have smaller waiting 

times, for example, on red, which is the most urgent color, 94% of the entries fit into 

the “low” or “really low” categories. For the blue triage color, the non-urgent cases, 

61% of the entries fit on the higher waiting times categories, “high” and “really high” 

categories. 

About the time periods, the “Low” category is the category with more occurrences 

of every period. During the night periods, 21-3h and 3-7h, there is an increase of the 

“really high” category events, reaching 25% of the occurrences on the 3-7h period. 

The “low” category is also the category with more occurrences on all of the days of 

the week. During the whole week, the “high” and “really high” categories have more 

events than the “average” and “really low” categories. On Sundays, there is a clear 

increase of “really high” category events, covering 28% of all the occurrences. 

3.3 The Data Mining Process 

The goal was to analyze the waiting times in the ED and to do so, the authors applied 

Random Forest (RF), using R in R-Studio. The library “rminer” was used to compute 
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evaluation metrics like accuracy, precision, true positive rates and F1. The varimp func-

tion from R was used to analyze the input variables importance. 

The Random Forest algorithm builds several decision trees and calculates the mean 

or majority class for all decision trees. Random Forests are better than decision trees 

because it will help avoiding overfit by creating smaller subsets of trees, while the de-

cision tree algorithm has a unique decision tree, making it denser and deeper, which 

might cause overfitting. 

This algorithm achieved an accuracy of 50.09% (see table 2 for full results). The 

classes that had more events, “Really low” and “low”, were the ones with better preci-

sion. In general, all the classes had low true positive rate except for the “low” category. 

Since the category “really low” has a good precision, but low true positive rate, we can 

assume that this low true positive rate is being caused by a big number of false nega-

tives, because true positive rate or recall is the number of true positives divided by the 

sum of true positives and false negatives. The “average” category was expected to per-

form the worst since it is the category with the smallest number of events (6.08%). 

Analyzing the input variables importance, triage color stands as the most important for 

the desired prediction, reaching an overall of 317, followed by weekday (176.8), day 

period (161.4) and department (151.8). 

Table 2. Random forest results with total average waiting time 

Class Precision True positive rate F1-score 

Really Low 66.67 1.34 2.62 
Low 51.97 88.72 65.55 
Average 50 0.34 0.68 
High 28.16 4.23 7.36 
Really high 43.60 33.29 37.75 

4 Conclusion 

The authors conclude that the success of the RF on predicting ED wait times is highly 

dependent on the amount of available data and how it is discretized. This can be proven 

by the fact that the categories with the highest number of events have better precision, 

while the ones with less events have lower precision. Discretizing some of the fields 

with different methods, like equal areas, should also be explored, since all the possible 

classes of a certain input, would have the same amount of events, which would avoid 

having some classes with a low number of events, that as mentioned before can cause 

low precision results. 
Complementing the data with other variables could also improve the predictive ca-

pability. For example, it could be useful to add weather information like temperature, 

precipitation rate or humidity, since those factors can have impact on the ED adherence. 

Other algorithms like Naïve Bayes or Neural Networks could also be applied, allow-

ing to compare the algorithms efficiency and possibly getting better results. 
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