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Co-Orientador:
Doutor Augusto Afonso de Albuquerque,
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Abstrat
Video oding has been under intense srutiny during the last years. The published internationalstandards rely on low-level vision onepts, thus being �rst-generation. Reently standardiza-tion started in seond-generation video oding, supported on mid-level vision onepts suh asobjets.This thesis presents new arhitetures for seond-generation video odes and some of the re-quired analysis and oding tools.The graph theoreti foundations of image analysis are presented and algorithms for generalizedshortest spanning tree problems are proposed. In this light, it is shown that basi versionsof several region-oriented segmentation algorithms address the same problem. Globalization ofinformation is studied and shown to onfer di�erent properties to these algorithms, and to trans-form region merging in reursive shortest spanning tree segmentation (RSST). RSST algorithmsattempting to minimize global approximation error and using aÆne region models are shownto be very e�etive. A knowledge-based segmentation algorithm for mobile videotelephony isproposed.A new amera movement estimation algorithm is developed whih is e�etive for image stabiliza-tion and sene ut detetion. A amera movement ompensation tehnique for �rst-generationodes is also proposed.A systematization of partition types and representations is performed with whih partitionoding tools are overviewed. A fast approximate losed ubi spline algorithm is developedwith appliations in partition oding.

Keywords: visual oding, seond-generation video oding, image analysis, image segmentation,temporal oherene, motion estimation. v



vi ABSTRACT



Resumo
A odi�a�~ao de v��deo tem sido intensamente estudada nos �ultimos anos. As normas internaio-nais j�a publiadas baseiam-se em oneitos da vis~ao de baixo n��vel, sendo portanto de primeiragera�~ao. Come�ou reentemente a normaliza�~ao de t�enias de odi�a�~ao de segunda gera�~ao,suportada em oneitos da vis~ao de m�edio n��vel tais omo objetos.Esta tese apresenta novas arquiteturas para odi�adores de v��deo de segunda gera�~ao e algu-mas das orrespondentes ferramentas de an�alise e odi�a�~ao.Apresentam-se fundamentos de teoria dos grafos apliada �a an�alise de imagem e prop~oem-se al-goritmos para generaliza�~oes do problema da �arvore abrangente m��nima. Mostra-se que vers~oesb�asias de v�arios algoritmos de segmenta�~ao orientados para a regi~ao resolvem o mesmo pro-blema. Estuda-se a globaliza�~ao de informa�~ao e mostra-se que onfere propriedades diferentesa esses algoritmos, transformando o algoritmo de fus~ao de regi~oes no algoritmo de �arvoresabrangentes m��nimas reursivas (RSST). Mostra-se a e��aia de algoritmos RSST que tentamminimizar o erro global de aproxima�~ao e que usam modelos de regi~ao a�ns. Prop~oe-se umalgoritmo baseado em onheimento pr�evio para segmenta�~ao em v��deo-telefonia m�ovel.Desenvolve-se um um algoritmo de estima�~ao de movimentos de âmara e�az na estabiliza�~aode imagem e na dete�~ao de mudan�as de ena. Prop~oe-se tamb�em uma t�enia de ompensa�~aode movimentos de âmara para odi�adores de primeira-gera�~ao.Sistematizam-se os tipos e as representa�~oes de regi~oes, revendo-se depois t�enias de odi�a�~aode parti�~oes. Desenvolve-se um algoritmo r�apido e aproximado para �alulo de splines �ubiasfehadas.

Palavras have: odi�a�~ao visual, odi�a�~ao de v��deo de segunda gera�~ao, an�alise de ima-gem, segmenta�~ao de imagem, oerênia temporal, estima�~ao de movimento.vii
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Chapter 1
Introdution

\The time has ome," the Walrus said,\To talk of many things:" Lewis Carroll
The performane of lassial video oding algorithms, in terms of the lassial oding riteria(bitrate, distortion, and ost), seems to be reahing a plateau [161, 3℄. That is, the marginalperformane gains of tuning these algorithms are now nearly negligible. Aording to Adelsonet al. [3, 195℄, the lassial approahes use onepts usually related to low-level vision, suhas luminane, olor, spatial frequeny, temporal frequeny, loal motion, and low-level opera-tors suh as linear �ltering and transforms. New approahes, using mid-level visual onepts,suh as regions, textures, surfaes, depth, global motion, and lighting, are deemed neessaryfor a breakthrough in video oding performane. This need has been reognized for some timenow [144, 141, 96℄, though limited omputing apabilities have hindered somewhat the advanestowards the implementation of omplete mid-level vision video (seond-generation) oding al-gorithms.During the last years, and following the ever inreasing advanes of tehnology, the use of imageand video in everyday life has been growing ontinuously. This has sparkled new needs amongusers: interativity, ontent editing, and ontent based indexing are just a few examples. Theseneeds require the aess to the ontent of video sequenes. This aess may, in some ases, bedone after enoding and deoding, i.e., by performing analysis at the reeiver side. In mostases, though, it is essential to have this apability diretly at bit stream level. Content aessshould thus be done with a minimum of e�ort: a \fourth [oding℄ riterion" has been identi�ed,oined by Piard [162℄ as \ontent aess e�ort." This riterion is related to the omplexity ore�ort required to aess the video ontent, and hene to provide ontent-based failities.The results obtained until now by mid-level vision video oding algorithms, though extremelyimportant, do not show performane improvements as large as initially expeted [177, 40, 30℄.
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2 CHAPTER 1. INTRODUCTION
However, this apparent lak of suess is truly a misjudgment, sine the performane has beenmeasured, until now, using only the bitrate, distortion, and ost riteria. When the fourthriterion is introdued, the newly developed algorithms ertainly have a leading edge over thelassial ones: objets and regions, rather than square bloks, are what an user wants to interatwith.The new users' needs have also been reognized by MPEG-4. These ideas were introduedin MPEG-4 [138℄ by asking for some \new or improved funtionalities" [139℄: ontent-basedmanipulation and bit stream editing, ontent-based multimedia data aess tools, and ontent-based salability.This thesis summarizes a series of proposals towards oding of visual objets. The work hasprogressed over a number of years and an be seen as a ontribution to the development ofseond-generation visual oding standards of whih MPEG-4 is an example.
1.1 Struture of the thesis
Chapter 2, \Video and multimedia ommuniations", ontains a brief overview of multimedia,the Internet and video ommuniations. It an be seen as a motivation for the work developed.Video odes are lassi�ed as �rst-, seond-, or third generation aording to the analysis toolsrequired: �rst-generation for low-level vision analysis, seond-generation for mid-level visionanalysis, and third-generation for high-level vision analysis. A brief summary of the analysisand oding tools proposed in this thesis, organized aording to the presented struture, an befound in Setion 2.6.Chapter 3, \Graph theoreti foundations for image analysis", de�nes most of the theoretialonepts that are used throughout. In this hapter the important theory of spanning trees,a branh of graph theory, and related onepts using seeds, is disussed together with theorresponding algorithms. An amortized linear time algorithm is also presented for an importantlass of spanning tree problems.Chapter 4, \Spatial analysis", ontains proposals for a knowledge-based mobile videotelephonysegmentation algorithm, an extended RSST (Reursive SST) segmentation algorithm using anaÆne region model, a supervised RSST segmentation algorithm, i.e., a RSST algorithm usingseeds, and a time-reursive version of the RSST algorithm providing time oherent segmentationof moving images. The lassial segmentation algorithms, suh as region growing, region merg-ing, edge detetion followed by ontour losing, are all desribed in the framework of the theoryof spanning trees introdued in the previous hapter. The relations between these algorithmsis disussed in the ommon framework of spanning trees. The e�ets on these algorithms ofglobalization of information are also disussed.Chapter 5, \Time analysis", proposes a simple algorithm for estimating amera movement inmoving images and a method for its anellation (image stabilization) to improve image qualityin hand-held or ar-mounted ameras. The algorithm is based on a motion vetor �eld obtainedthrough blok mathing. Several results are shown whih demonstrate its e�etiveness.
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Chapter 6, \Coding", proposes a method of enoding amera movement information usinga simple extension to the H.261 standard (the disussions on quantization are general andtransposable to any other ode using motion vetor �elds with redued resolution relative tothat of the underlying images) and reviews the important issue of partition representation andoding. A fast approximation to the alulation of losed ubi splines is also proposed. Theanalysis and oding tools presented in this and the previous two hapters an be seen as stepstowards the building of tools for a new ode arhiteture.Chapter 7, \Conlusions: Proposal for a new ode arhiteture", proposes a new seond-generation ode arhiteture, makes some suggestions for future work, and lists the thesisontributions.Finally, Appendix A desribes the test sequenes used and their formats, and Appendix Bontains a very brief desription of the Frames video oding library, whih was developed by theauthor as the basis for the implementation of all the algorithms.
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Chapter 2
Video and multimediaommuniations

It is supposed that beause a thing is the rule itis right. Osar Wilde

2.1 Trends of multimedia ommuniations
\Medium" literally means \middle". Aording to the OALDCE (Oxford Advaned Learner'sDitionary of Current English) [71℄, it means \that by whih something is expressed," i.e., thatby whih a message is expressed, sine, aording to Negroponte [142℄, \the medium is not themessage." Messages an be expressed using a variety of media. Multimedia is the proess ofexpressing a message using several media. In this sense, multimedia is not new. Multimediaexists sine there are books with images,1 atually even before that, sine humans ommuniateby speeh and gestures.Until last entury our ability to store and transmit messages was very limited. Only text and stillimages and diagrams ould be stored for future use (e.g., in books), and long range transmissionwas limited to physial transport of printed or handwritten material, with rare exeptions. Thetelegraph, for long range transmission of text, the telephone, for long range transmission ofvoie, the radio, for long range transmission of sound, hanged that piture onsiderably. Butperhaps the most important inventions of the last entury were the phonograph, for storingsounds, and the inematograph, by whih storing of moving images beame possible.1Di�erent media an share the same sense (or \hannel") into the human brain. Text and imagery, thoughdi�erent media, are both sensed using vision. 5
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In the beginning of this entury it was possible, at least in priniple, to express messages usingmultimedia as we know it today and store them for future use. In pratie, this happenedonly in the thirties, with the introdution of sound synhronized with image in the inema.Stereosopi imagery was also available at that time.
2.1.1 Distribution methodsA message, as expressed through moving images and sound in a �lm, is meant to be onveyedto a reeptor. Although movie theaters are still a very suessful and pro�table way of doingit, they involve onsiderable delay and trouble. Using Negroponte's [142℄ \bits" and \atoms"de�nitions, the produer distributes the �lm artridges (atoms) ontaining enoded images andsounds (bits) whih are then broadasted from a sreen and speakers to a restrited audiene.2A new distribution paradigm was learly neessary.TV (Television) partially solved the distribution problem, by using radio broadast of analog-ially enoded moving images and sound. However, TV also introdued some new problems:being broadasted, anybody with a TV set ould enjoy it. Who (and how) should then pay forthe ontent onveyed? From TV taxes (virtually unhargeable), to inome taxes (in the aseof subsidized television), through advertisements and mixtures thereof, several solutions havebeen proposed, most of whih are still being used to this day. These solutions were not enough.Point-to-point ommuniation, suh as that provided by the telephone, was neessary.Computer networks, providing point-to-point ommuniations in a di�erent framework, werealso an important development. In the 1970's the TCP (Transmission Control Protool)/IP (In-ternet Protool) protools were developed and put to use mostly by the government and edua-tional institutions in the USA. By the eighties it was spread all over the world, though mostlyrestrited to the aademi world. In the beginning of the nineties, following the development bythe CERN (Conseil Europeen pour la Reherhe Nuleaire) of the suite of WWW (World WideWeb) protools and formats, viz. UR*,3 HTTP (Hypertext Transfer Protool), and HTML (Hy-pertext Markup Language), the Web exploded: it beame attrative to the ommon user, andhene eonomially viable.In the late forties, TV started to be distributed by able in areas where the broadast signalould not be reeived with normal antennas (ommunity antenna television). Cable televisionwas soon found to o�er onsiderable advantages relative to broadast television: inreasedquality, inreased number of hannels through a larger available bandwidth, no need for antennasand thus lower visual impat (important in ertain urban areas), et. Reently, CATV (CableTelevision) operators, typially di�usion oriented, realized they had deployed over the yearsan almost ubiquitous broadband network whih ould be improved with small investments toprovide up-links to the user. Thus, with the help of able modems, providers started building asort of \residential area networks", onneting users in the neighborhood to the able head-end2Images and sounds in �lm are mostly enoded in an analog format, even though digital sound is expandingquikly. These images and sounds ontain information, whih an be measured in bits, even if digital enodingis not used.3E.g., URC (Uniform Resoure Charateristis), URI (Uniform Resoure Identi�er), URL (Uniform ResoureLoator), and URN (Uniform Resoure Name).
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and thene to the world.The explosion of the Web in the nineties, together with the personal omputer and the almostubiquitous wide band CATV networks, suddenly allowed di�erent ontent to be delivered todi�erent onsumers. Consumers ould now hoose and even interat with the material delivered(and pay aordingly): the age of the Web, teleshopping, PPV (Pay-Per-View), VOD (Video-On-Demand) and WebTV was born.
2.1.2 Ativity paradigms
There are essentially two ativity paradigms for information provided to the onsumers. Thepush paradigm, when the information provider pushes the information to a passive user, andthe pull paradigm, when the ative user requests information from the servie provider.TV broadast is push, sine the information is pushed to the onsumer without requiring anyation on his part (besides turning the TV on and hoosing a hannel). However, VOD is pull,sine the user requests whatever interests her.The Web, until reently, exhibited only the pull behavior. All the ation was on the part of theend user, whih would always make spei� requests as to what information should be deliveredto him. Nowadays, the push paradigm has been implemented by most browsers, through theonept of automatially updated hannels, in a lear parallel with TV di�usion.
2.1.3 Convergene tendenies
Convergene of distribution methods and tehnologies
A wealth of ommuniation servies exist today. Most of the hannels involved in these ser-vies are slowly being enhaned to provide bidiretional ommuniations and improved band-width. For instane, CATV networks now provide bidiretional data hannels through ablemodems, satellite onstellations are being deployed for personal mobile ommuniations, and theUMTS (Universal Mobile Teleommuniation Servie), providing a wider bandwidth than to-day's ellular phones, is expeted in the near future. Also, the analog hannels o�ered by the oldPSTN (Publi Swithed Telephone Network) are slowly being digitized to provide ISDN (In-tegrated Servies Digital Network). Reently, ADSL (Asymmetri Digital Subsriber Line)started to be used to establish wideband data hannels on the telephoni opper loop.At the same time, all �elds of multimedia and ommuniations are being enhaned throughthe use of digital tehnology. Digital reorded sound is already used in the movie theaters(probably to be followed soon by digital moving images) and digital TV will soon be available,and a�ordable, in all developed ountries. There is, thus, a lear onvergene towards bothwideband (exept where physially impossible) and bidiretionality.
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Convergene of servies and ativity paradigms
The servies available are also onverging. There is a tendeny to support both broadast andpoint-to-point distribution, di�erent media, and both push and pull paradigms. Cable modemsallow point-to-point ommuniations where formerly broadast was the rule, and modems overPOTS (Plain Old Telephone Servie) allow broadast (or at least the Web equivalent of broad-ast, multiast) where formerly only point-to-point ommuniations was used. Videotelephoneover POTS is now possible (and soon will be also possible on ellular phones), and the TVservie was long ago upgraded to inlude teletext. Videotelephony, on the other hand, is alsopossibly on the Web, and supplements the old pear-to-pear ommuniations servies of theInternet suh as email and (eletroni) talk, and, more reently, IRC (Internet Relay Chat).
Convergene of ontents
On the demand side, onsumers require high quality ontent. The prodution of multimediaontent, in whih the entertainment industries (TV, inema and games) exel, is thus thriving.Consumers are also demanding more and more interative ontrol over the information theyreeive, an issue whih is a speialty of the informatis (software/omputer) industries. Thusthe tendeny for mergers and aquisitions between ompanies in the entertainment, informatisand network businesses.Consumers also require mobility and ompatibility. Thus large informatis ompanies are alsoinvesting on global, satellite based, mobile networks, and more and more are is taken nowadayswith standardization and ompatibility by ontent providers, TV ompanies, and informatisompanies.
2.1.4 A distributed database
It seems reasonable to expet that the onvergene proess will lead to universal aess to infor-mation. There will probably be little di�erene between TV, phone, fax, and the PC (PersonalComputer). In fat, the PC is already doubling as TV, a phone, and a fax. The Web will on-net almost everything and everyone. It is expeted to provide people with a omplete leisure,work, and soial environment, aessed through a wealth of di�erent interfaes, suh as sreenstogether with remote ontrols, desktop sreens, keyboards, pointing devies, mirophones andspeakers, voie ontrolled hand-held devies with handwritten harater reognition (e.g., evo-lutions of the PalmPilotTM), data-gloves, et. Suh a network of information an be seen ahuge distributed, haoti, database. Even today, the amount of information is suh that speialpurpose indexing mehanisms and searh engines are being developed.
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2.2 Media representation
Take a CD (Compat Disk) of an orhestra playing Mozart's symphony 41, Jupiter. What isthe essential part: the sore or the sound (a unique interpretation)? Although 600 megabytesare used in a typial CD to store the sound, the orresponding sore may be stored in muh lessspae. CD audio does not enode the struture: it enodes, as faithfully as possible, a opy ofthe original sound. The same thing happens with fax: I still �nd it frustrating to explain to usersof fax modems why it is they an not import the reeived faxes (mostly text) diretly into theirword proessors, without using the (still) error prone OCR (Optial Charater Reognition)software.Consider, however, that faxes were made intelligent: they would analyze the input page, detettext zones, reognize the text, and enode it as text, instead of blak and white raster imagesof haraters.4 This would learly lead to improved usability, if not also to a redution oftransmission time.Visual data, espeially video (taken here as sequenes of images sampled from the natural worldsene), is a very important part of today's multimedia, and its importane tends to inrease withthe onvergene of entertainment and informatis industries. However, video is still enodedwith the same \blindness" that a�ets fax and CD sound: the strutured ontents of videosenes are simply ignored in the enoding proess, leading to a representation whih is not atall strutural [142℄, faithful as it may be to the original.Visual analyzers would do the same for video as the hypothetial fax analyzer for a blak andwhite image: from a sequene of video images, they would extrat a strutural representation ofthe sene therein, the sene's \sore" plus \interpretation nuanes". Suh a strutural represen-tation, aside from the expeted eonomies in enoded size, would allow the user to manipulatethe sene at will: a big step towards omplete interativity.The exponential growth of digital tehnology, where lok frequenies dupliate almost everyyear and memory densities (bits per volume) almost tripliate in the same period of time, hasled to an ever inreasing use of omputers by ontent providers (suh as �lm produers andTV ompanies). Syntheti imagery orresponds nowadays to an important part of the bitsexhanged worldwide. However, not muh e�ort was put until now into the eÆient (soon tobe de�ned) representation of syntheti data, whih is inherently strutural.Hene, two important problems must be solved urgently: how to obtain strutural representa-tions from natural data (the sore and the interpretation nuanes from a symphony reording,the text from a printed doument, the desription of the sene seen in a video sequene) andhow to eÆiently enode strutural representations, either syntheti or obtained from naturaldata.The �rst of these problems is analysis. In the ase of visual data, analysis is addressed byomputer vision whih, aording to [68, Haralik and Shapiro℄, is \the siene that developsthe theoretial and algorithmi basis by whih useful information about the world an be auto-4When the original text is omposed using a word proessor, sending it by fax to a remote omputer is a bitof a paradox, even though it is still quite ommon.
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matially extrated and analyzed from an observed image, image set, or image sequene fromomputations made by speial-purpose or general-purpose omputers."The seond problem is related to the enoding of the strutural desription of the data. Inthe ase of visual data, several enoding methods have been devised in the past, ranging fromthe analog television standards suh as NTSC (National Television Systems Committee) andPAL (Phase Alternating Line), to the digital video oding standards ITU-T (ITU Teleom-muniation Standardization Setor) H.261 [62℄, ISO (International Organization for Standard-ization)/IEC (International Eletrotehnial Commission) MPEG-1 [136℄, and, more reently,ITU-T H.263 [63℄ and ISO/IEC MPEG-2 [137℄ (also ITU-T H.262). These standards havetypially dealt with non-strutural representations of imagery. The �rst standard to addressstrutured moving image representations will be ISO/IEC MPEG-4.
2.3 Visual analysis
Even though syntheti data amounts to a relevant part of the available multimedia material,natural data will always be present. Natural data orresponds to data whih is obtained, usuallythrough sampling, from the real world. While it is reasonable to expet that sensors, suh asvideo ameras, will inrease in omplexity over the years, for instane by inorporating distaneor depth sensors, it is unlikely that they will ever provide a strutural representation of thesampled data at their output.Hene, analysis, that is, the deomposition of the input data into a meaningful set of somemodel parameters, is a very important task. Automati visual analysis, as stated before, isalmost the same as omputer vision: \building a desription of the shapes and positions ofthings from images" [107℄. With one di�erene, however. The purpose of omputer vision isultimately the omprehension of the sene aptured by the amera, through an emulation ofthe HVS (Human Visual System), while analysis usually has more modest objetives.Analysis, as stated, is the identi�ation of some model parameters. This makes modeling one ofthe most important tasks in researh leading to automati analysis of video sequenes, sine itseems lear that sophistiated models an lead to a very aurate representation of the world,but only at the ost of a very sophistiated, or even impossible, analysis: visual analysis is oftenan ill-posed problem [187, 9℄.Visual analysis an have several purposes [29℄:
Analysis for odingThe obtaining of a parametri desription of the observed sene. The desription an laterbe used to reonstrut the sene so that little or no information is lost. The desription analso be enoded and deoded eÆiently (analysis for bandwidth saving), and an also bemanipulated (analysis for easy aess), so that the user an interat with the representedworld. The analogy with fax helps here. With \blind" fax, suh as exists today, to edittext just reeived is a nightmare. With intelligent fax, however, text would be reeived assuh, and thus be fully editable. The same applies to video.
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Analysis for desription or indexingThe obtaining of a parametri desription, though in this ase it is not neessary to beable to reonstrut the observed sene or at least the original sampled (or sensed) data.The parameters of the desription have mostly a semanti meaning, whih may help thetask of searhing visual data in a database. The model parameters, or features, estimatedor identi�ed, will be used as keys of the database.Analysis for understandingThe proess leading to understanding of the observed sene. While visual analysis toolsin general are tools leading to arti�ial intelligene, or so one expets, analysis for under-standing is arti�ial intelligene proper.
Analysis an be manual, automati, or partially automati, when an automati algorithm isguided by user input (hints). An usual path in the researh in this area, whih, though itprogresses very quikly, has still a long way to go, is to allow the algorithms to be supervisedand then attempt to make them automati. This is a polemi issue, however, as an be seenin the artile \Ignorane, myopia, and naivete in omputer vision systems" [81℄ and in thesubsequent dialogue in [7℄ and [94℄.
2.3.1 Levels of visual analysisSome authors divide the vision proess into levels [107, 195℄ whih are related to the types ofmodels or primitives assumed:
Low-level5 visionThe model is a sequene of pixel matrixes. The orrelation between pixels is assumedto be high. Evolution from one image to the next is desribed by a simple motion �eld,uniform almost everywhere.Mid-level6 visionThe model is a possibly hierarhial set of edge segments, blobs, uniformly textured regions(or equivalently boundaries) or regions of uniform motion. Surfaes and their relativeposition may also be used. Motion an be assoiated with segments and/or edges orboundaries.High-level7 visionThe model is a set of 3-D objets arranged hierarhially. Objets are semantially iden-ti�ed. Eah objet has an assoiated omplex motion.UnderstandingThe role, lass or identity of (almost all of) the objets is known.5Or image.6Or primal plus 2 1=2-D skethes.7Or 3-D model representation.
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This division is here a mere matter of onveniene. It is also somewhat arbitrary, sine feedbakmehanisms seem to exist between the upper and the lower levels of the vision proess. Visualanalysis will be lassi�ed in the following aording to the �rst three levels, sine understandingis not one of the purposes here. The terms low-level, mid-level and high-level analysis will beused throughout this thesis.
2.3.2 Tools for visual analysis
Analysis an be seen as being done at three levels: low-, mid-, and high-level. Di�erent imageanalysis tools have been developed over the years whih an be lassi�ed as belonging to eahof these levels. Restriting attention to those tools more losely related to analysis for oding,the following (rather inomplete) lassi�ation an be used:
Low-level vision analysisLinear transformations (transforms), frequeny analysis, motion estimation (optial ow,blok mathing), et.Mid-level vision analysisEdge detetion, ontour detetion, segmentation into syntatially uniform regions, motionestimation (motion of edges and regions), et.High-level vision analysis3D (Three-dimensional) struture from shading and motion, 3D struture from disparity(stereo vision), et.
2.4 Visual oding
Coding8 is the proess of translating a sequene of symbols belonging to a given alphabet, themessage,9 into a sequene of symbols of a di�erent alphabet (usually the binary alphabet).Coding is said to be lossless if the original message an be reovered exatly from the enodedone.Visual oding is the proess by whih the parameters of the strutural representation of a visualsene obtained either by analysis or diretly, in the ase of syntheti imagery, are enoded.When the representation is obtained by analysis of natural data, the term video oding if oftenused.8Coding should always be understood as referring to soure oding throughout this thesis, as opposed tohannel oding.9Note the di�erent meanings of the word \message". In a ommuniations framework, it is the set of ideasexpressed using a given medium or ensemble of media. In the ontext of information theory, it is a sequene ofsymbols, to whih a measure of information an be assoiated [183℄.
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2.4.1 ObjetivesEnoding, the translation between one alphabet and another, an have several objetives. Itan be seen as the proess of minimizing a ost funtional given some onstraints. There areseveral measures whih an be used to express both the ost funtional and the onstraints, andwhih, weighted di�erently, reet the objetives of eah partiular oding sheme:
Compression ratio (or, inversely, bitrate)The size of the original message divided by the size of the enoded message, both expressedin bits. By maximizing ompression, the bandwidth or spae requirements are redued,aording to whether the data is transmitted or stored.Quality (or, inversely, distortion)A measure of the di�erene between the original message and the one obtained by deodingthe enoded message. Error resiliene is aounted for in this measure by allowing errorsto a�et the enoded data.CostThe ost of the enoder and deoder (weighted appropriately).Content aess e�ortA measure of the easiness with whih only spei�ed parts of the original message anbe reovered from the enoded message. By maximizing ease of aess, simple terminalsan still allow the user to manipulate the sene. Video trik modes an also be seen asrequiring easy aess to ontents (in this ase to single video images).DelayThe interval between the instant a symbol of the original message is input to the enoderand the orresponding symbol is output from the deoder, assuming no hannel delay.
Quality is perhaps the most diÆult measure to make, in the ase of visual oding. How anan objetive measure of quality reet the quality of the reonstruted sene as pereived byhumans? Even though studies have been onduted over the years to develop suh a measure,based on the properties of the HVS, no single universally aepted measure exists. Two measuresof quality are typially used today in the ase of video oding: a simple objetive measure, alledPSNR (Peak Signal to Noise Ratio), and subjetive quality measures based on evaluation by asigni�ant set of persons.Cost is related mostly to implementation of enoders and deoders, though it an be relatedalso to the required bandwidth, whih is dependent on the ompression ratio, and thus alreadyonsidered through that measure. Implementation osts an be related to the memory andCPU (Central Proessing Unit) power required for both enoders and deoders.The ost funtional and onstraints an be onstruted from the measures above so as to reetthe di�erent requirements of an appliation. Some appliations may require quality as highas possible for a minimum allowed ompression ratio, others the highest possible ompressionfor a minimum allowed quality. The ost of oders and deoders may be weighted di�erently:
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appliations where ontent is enoded one and deoded many times put a larger weight on theost of deoders.

2.4.2 Main ode bloks
Figure 2.1 shows a typial blok struture of a ode. The enoder part onsists of an analysisblok, whih obtains a strutural sene representation from given natural data, followed by theenoder, whih enodes this representation so as to be sent down a logial hannel (either a realhannel or some physial storage medium). If syntheti data is available, it is input diretlyto the enoder without being analyzed, provided it is already desribed in an appropriatelystrutured way. The deoder performs the opposite tasks. The enoded data is deoded soas to obtain the strutural sene representation whih is then used by the renderer to reateappropriate stimuli to the human reeivers, whih an have di�erent levels of interativity withthe system.Often some proessing is performed on the natural data before the analysis proper. This pro-essing usually intends to �lter or ondition the data so as to render the analysis simpler ormore e�etive. Sine it takes plae before analysis and enoding, it is alled pre-proessing. Itis often taken as being part of the analysis itself.The word enoder is used here with two di�erent meanings: in the ase of natural data, whihrequires analysis, enoder an both mean the omplete system, from natural data representationto the resulting enoded message, or simply the blok whih translates the strutural represen-tation into the enoded message, whih is the strit meaning. In the sequel the exat meaningwill be evident from the ontext.An enoder, in the broad sense of the word, serves two main purposes. Firstly, it is supposed tostrip irrelevant information (from the point of view of the assumed reeiver of the information,usually the HVS) from the input. Irrelevany removal is done by the analysis blok, sine,aording to Marr [107℄, \vision is a proess that produes from images of the external worlda desription that is useful to the viewer and not luttered with irrelevant information [ouremphasis℄," and to emulate vision is the ultimate purpose of analysis. Seondly, the enoder,again in the broad sense, is supposed to remove redundany. This is a role whih is sharedby the analysis and the enoder bloks, though the kind of redundany removed is di�erent.The analysis blok removes representation redundany by �tting the input data to a struturalmodel. For instane, the highly redundant image of a sphere an be desribed, with an ap-propriate model, by the position and size of the sphere, its surfae harateristis, and a setof light soures. Suh a desription is muh less redundant than the original array of pixels.The enoder blok, on the other hand, removes statistial redundany from the sequene ofsymbols orresponding to the strutural representation. It must be stressed here that removalof redundany is a reversible proess, while removal of irrelevany is not. In a sense, thus, it isdesirable that losses in oding orrespond as muh as possible to removal of irrelevany.
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Figure 2.1: Basi blok struture of a ode.

2.4.3 GenerationsIn the ase of natural senes, i.e., video oding, analysis is performed before enoding proper, asan be seen in Figure 2.1. Video enoding tehniques an thus be lassi�ed aording to the levelof analysis typially required. The terms �rst- and seond-generation video oding were oinedby Kunt et al. [96℄, and orrespond approximately to the two �rst levels of analysis presentedbefore. The requirements in terms of analysis of these two generations of video oders, plus athird one related with high-level analysis are as follows:
First-generationCoders whih require low-level analysis. Hybrid oders [64℄ and motion ompensatedhybrid oders [145℄ belong to this generation. The fundamental tools used in these oders,DCT (Disrete Cosine Transform) and blok mathing motion ompensation, were alreadydeveloped in the beginning of the eighties. All the already issued video oding standards
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belong to this generation.Seond-generationCoders whih require mid-level analysis. This type of analysis is typially more omplexthan low-level analysis. Even though a lot of e�ort has been put into this �eld, a trulyreliable set of mid-level analysis tools is not yet mature. This thesis ontributes mainlyto the problem of developing tools at this level.Third-generationCoders whih require high-level analysis. No truly reliable automati analysis set of toolsexists at this level. Most tools still rely on human supervision, and it probably will remainso for a few more years: most of the semanti features/desriptors an only be extratedby humans at the present time [29℄.This lassi�ation, though useful, is somewhat arti�ial. For instane, a mid- or high-levelanalysis tool an be used to enhane a �rst-generation video enoder. This often happens whenvideo enoding algorithms are being enhaned.

2.5 Standards
Standards are fundamental for universality of servie and interworking, both of whih are ofparamount importane for the end onsumer. Standardization, however, is a time-ritial pro-ess: if done too soon, it may not bene�t from the ongoing researh in the area, if done too late,it may have to fae proprietary solutions proposed by industries of suÆient weight to makethe standard useless.Standards may be of two very di�erent natures. English is a de fato language standard in mostof the western world. Frenh, on the other hand, is a de jure standard, at least in Frane: it isstandardized by the Aademie Fran�aise and imposed by the Frenh state in oÆial douments.The ase with tehnologies is similar.Standards, whether de fato or de jure, an be reated in di�erent ways. Some are developedby an open group of ompanies, universities and individuals whih work towards the standardunder some national, e.g., ANSI (Amerian National Standards Institute), or international, e.g.,ISO, standardization body. Others are developed by similar groups, though working on theframework of non-oÆial organizations suh as the W3C (World Wide Web Consortium) or theIETF (Internet Engineering Task Fore). Others still are developed by single institutions andtheir spei�ation made publi and aepted as de fato standards by the rest of the membersof the market. Often de fato standards are later aepted as de jure standards by oÆialstandardization bodies.In the world of multimedia, examples an be found in eah of these ases. The video odingstandards MPEG-1 and MPEG-2, and H.261 and H.263, were developed under internationalstandard organizations, viz. ISO and ITU (International Teleommuniation Union), and thusare de jure standards. The JavaTM language, on the other hand, was developed by a singleompany, Sun Mirosystems, and is being aepted quikly as a de fato standard (it has also
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been proposed to ISO to beome a de jure standard). The Web standards, suh as HTTP andHTML, are being developed in the framework of the IETF and W3C non-oÆial organizations.Convergene an also be found in the world of standards: the MPEG (Moving Piture ExpertsGroup) ommunity, traditionally video-oriented, and the WWW ommunity, more multimediaoriented, are onverging. The MPEG ommunity is �nalizing the �rst version of MPEG-4.MPEG-4 version 1 will be muh more than video and audio oding with a multiplexing layer,as MPEG-1 and MPEG-2 were: MPEG-4 will standardize audio-visual 3D sene desriptionmethods, by inlusion of the ISO/IEC 14772 VRML (Virtual Reality Modeling Language)standard. The WWW ommunity, on the other hand, is issuing douments, whih will probablybeome de fato standards, that address similar subjets: PNG (Portable Network Graphis)for enoding of still images, support of VRML for 3D virtual worlds (whih inludes videonodes), and SMIL (Synhronized Multimedia Integration Language) for synhronizing di�erentmultimedia objets in a single presentation. More than a onvergene, what is being witnessedis an overlap, a ompetition. The future will tell whether the minimalist, text-based, W3Cand IETF standards or the overwhelming MPEG standards will win. Market does not alwayshoose the best tehnology: often timing, as mentioned before, is the ritial fator.
2.5.1 Standardization hallengesNowadays standardization of multimedia ommuniations faes several hallenges. Di�erenttehnologies (some of them standards), by di�erent organizations, will address distint subsetsof the hallenges listed below:
ContentInteresting ontents will soon inlude omplex 3D senes, ontaining a mixture of synthetiand natural dynami objets, whih an be manipulated by the end user. Who will providethis type of information or ontent? How? I.e., using what tools?BandwidthNetwork bandwidth and mass storage apaities both ontinue to grow exponentially.Even in the unlikely event that they will ontinue to inrease exponentially forever, \teh-nologial malthusianism" tells us that the bandwidth/apaity will never be enough, sineontent will always grow at a faster pae. Hene, there will always be money to be gained,or spared, through ompression of the multimedia data transmitted or stored.The issue of ompression has typially been muh more of a onern for the video ratherthan the multimedia people. A number of standards, aiming at di�erent appliations, havebeen developed for the ompression of video and still images: H.261 and H.263, MPEG-1,MPEG-2, MPEG-4 (soon to be born), and ISO/IEC JPEG (Joint Photographi ExpertsGroup). From the multimedia world, less onerned, unfortunately, with bandwidth waste,little more than the W3C PNG exists today.AessHow should the information be stored/transmitted to be easily aessible, and henemanipulated? This is a subjet in whih the multimedia people exel, but the video
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ommunity has only reently started to address in a thorough way, in MPEG-4. There aregood reasons for the late onvergene: ompression and easy aess are quite inompatible,and for some time bandwidth was more important than interativity. The balane is likelyto hange.Classi�ationThe Web is a huge, distributed database, whose size tends to inrease exponentially. Howan users navigate through this apparent haos in a useful way? How an multimediainformation suh as text, 2D (Two-dimensional) pitures, 2D drawings, 2D videos, soundlips, movies, TV programs, 3D objets, and mixtures thereof, be indexed, searhed, andretrieved in a meaningful way? Will the indexing, or lassi�ation, be done automatially?This is an issue whih is being simultaneously addressed by W3C and MPEG, throughthe reently born MPEG-7 e�ort. W3C is working on Metadata, or information aboutinformation, while MPEG-7 aims at standardizing multimedia indexing methods.Rights protetionProviders of interesting ontent, individual authors or ompanies, will be interested ingetting paid. How an IPR (Intelletual Property Rights) be proteted on the Web?What will the network eonomis be like? How will IPR information be inluded onmultimedia objets?Aess ontrol and ratingShould all information on the Web be available to all? Who should ontrol? How toontrol? How to rate information? How to ipher sensitive information?W3C has addressed this question through a type of Metadata alled PICS (Platform forInternet Content Seletion), whih aims at standardizing the method of inluding ratinginformation (labels) into Web ontent.TrustIs the information available on the Web trustworthy? How to asertain its real origin?How an information be erti�ed? How an one assure that a signature erti�es a givenpiee of information and that this information has not hanged in any way?W3C is also working on DSig (Digital Signatures), and there are some CEC (EuropeanCommunity Commission) funded projets working on watermarking of visual information.InterworkingHow to avoid needless dupliation of hardware/software needed to aess information ofthe same type stored in di�erent formats? This is the basi objetive of standardizatione�orts.EvolutionHow to produe standards that enourage, rather than prevent, ompetition and tehnialevolution?MPEG-4 had the provision for evolution as one of its objetives. However, due to timingproblems, MPEG-4 was divided into two phases. Phase 1, whih is sheduled for thelate 1998, will not provide for muh evolution. Only phase 2 will inlude provision forprogrammable terminals, and hene allow, or even enourage, evolution.
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2.5.2 Evolution of visual oding standardsSetion 2.4.1 presented the various measures whih an be used to onstrut the ost funtionalthat video oders minimize (or at least attempt to minimize). Most of them have been used inone form or another by enoders ompliant with the available video oding standards. However,easiness of aess to ontent was �rst onsidered only in MPEG-1 and MPEG-2, in the formof provision for quik aess to anhor images. These images, known as I images (I of Intra),are independently enoded and spread evenly in time, thus allowing the so-alled trik modesof video reorders: fast-forward, baktrak, et. This allowed only for a rather terse aess toontent. It was only MPEG-4 whih started to onsider a more useful form of ontent, objets,and whih provided means for expressing omplex 3D audio-visual senes with mixtures of2D and 3D objets, natural or syntheti. The real revolution was from MPEG-2 to MPEG-4. MPEG-2 was essentially a revamped version of MPEG-1, using the same basi tools, butallowing for inreased resolution [95℄: HDTV (High De�nition Television) required it. Truebreakthroughs in the video oding area have been quite rare. Most of the tools used by enodersompliant to MPEG standards, even MPEG-4, are small variants, however well-engineered,of tools developed deades ago [149℄, e.g., DCT and blok mathing motion ompensation.However, the integral of all the inremental hardware and software tehnology advanes overthe last deades orresponds to an impressive evolution.
2.5.3 Consequenes of standardizationStandards don't speify enoders: they speify a bit stream syntax and a deoder. Hene, theyimpliitly de�ne a model for the strutural data to be enoded. In this sense, video odingstandards an also be lassi�ed as belonging to one of the three generations presented before.In a slightly more formal way, let B be the spae of bit streams ompliant with a given standard.Let E be the spae of the enoders ompliant with the same standard. Then, a given enodere(�), in the broad sense, is a funtion from the spae R, of sene representation, to B, i.e.,e(�) : R ! B. Spae E is thus learly limited by the nature of B. Standards speify deoders,that is, they speify a funtion d(�) from B bak to R. Typially, spae E, though restritedby the nature of B, is very large. Even if one restrits it to the spae of ompliant enodersproviding appropriate reonstrution, that is, suh that d(e(�)) is approximately the identity,the spae is too large.One an pose the enoding problem mathematially, though the omplexity of the solutionusually leads to heuristi solutions: how to enode a given sene representation r? This questionan be answered by �nding argminb2B z(d(b); r), where z is a distortion measure. However,this inludes only a distortion, or quality, measure. One may be interested in minimizing othermeasures. The generi problem is to �nd a generi enoder, i.e., an enoder leading to gooddeoding. A possibility is to �nd argmine2E maxr2R z(d(e(r)); r).Whatever the approah taken, heuristi or optimizing, it is lear that standards introduerestritions into the spae of possible enoders. It also lear that they also leave a lot of roomfor ompetition, espeially if error resiliene is taken into aount when designing enoders.Also, standards do de�ne a deoder, but a deoder whih operates only with error free enoded
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data. The design of deoders with good error onealment strategies and the design of enodersproviding for good error resiliene at the deoder is open to ompetition.
2.5.4 Standards and generationsStandards an be lassi�ed as �rst-, seond- or third- generation, aording to the haraterof the ompliant enoders. However, nothing prevents the building of a seond generationenoder (i.e., an enoder using mid-level analysis) whih generates bit streams ompliant with�rst-generation standards. For instane, MPEG-1 and MPEG-2 belong learly to the �rstgeneration, while MPEG-4, whih requires more sophistiated analysis tools but still uses alassial approah to enode the texture of the objets, an be said to be a step towards seond-generation standards. Atually, this has been the typial road of evolution, as some of the workin this thesis demonstrates. When tools aimed at being used in one of these transition enodersare developed, one may lassify them as belonging to transitions between generations.
2.6 Analysis and oding tools
Figure 2.2 shows the analysis, pre-proessing and oding tools proposed or disussed in thisthesis. The �gure lassi�es these tools into the three generations, with two transition layersadded. The tools are also listed below, together with pointers to the setions where they aredesribed:� Analysis tools:{ Transition to seond-generation:1. Knowledge-based segmentation [123, 125, 124℄ (Setion 4.4).2. Camera movement estimation [129, 127, 130, 128, 113, 122℄ (Setion 5.3).{ Seond-generation:1. RSST segmentation [32, 33℄ (Setion 4.5).2. TR-RSST (Time-Reursive RSST) segmentation [119℄ (Setion 4.7).{ Transition to third-generation:1. RSST with human supervision [33℄ (Setion 4.6).� Pre-proessing tools:{ Transition to seond-generation:1. Image stabilization [127, 130, 128, 113, 122℄ (Setion 5.5).� Coding tools:{ Transition to seond-generation:1. Camera movement ompensation for improved predition [129, 127, 130, 128,113, 122℄ (Setion 6.1).
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{ Seond-generation:1. Shape oding: a taxonomy and an overview of oding tehniques [120, 121℄ (Se-tions 6.2 and 6.3), parametri urve oding tools [116, 114, 79, 78℄ (Setion 6.4).
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Figure 2.2: Analysis, pre-proessing tools and oding tools proposed or disussed.
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Chapter 3
Graph theoreti foundations forimage analysis

N~ao devemos nuna prourar ser mais preisose exatos do que o problema em ausa requer.Karl Popper
This hapter de�nes the main onepts used throughout this thesis. It is divided into setionsdealing with images, image latties, image graphs, et. Conepts are introdued, wheneverpossible, in a bottom-up manner: onepts are de�ned by using previously de�ned onepts.Often the eÆieny of algorithms known to solve problems related to the de�nitions given hereis disussed: the usual O(�) notation of algorithmis is used [28℄.
3.1 Color pereption
There are two types of light sensor ells in the retina: rods and ones. Rods are used for night(sotopi) vision, while ones are used for daylight (photopi) vision. Both are known to beused in twilight (mesopi) vision.Rods greatly outnumber ones. However, the distribution of the rod ells is suh that itsdensity is nearly zero in the fovea, that is, the zone on the retina orresponding to the enterof attention. In this zone ones are densely paked.1 Rods are muh more sensitive to lightthan ones: a single quantum is known to be suÆient to exite a rod. The di�erent densitydistribution of rods and ones seems to be an evolutionary ompromise between auray of1A simple experiment on�rms the absene of rods in the fovea. Look diretly at a dim star and then lookslightly to its side: its apparent lightness will inrease.23
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vision (fundamental during daytime) and ability to detet threats (fundamental during dusk).While rods are sensitive to a wide range of light frequenies, they all have the same type ofresponse, hene sotopi vision is essentially \blak and white": olors are not disriminated.Cones, on the other hand, are really three di�erent types of ells with di�erent frequenyresponses. One type of ones, say \red" ones, is espeially sensitive to frequenies around purered, another, \green" ones, to frequenies around pure green, and the last, \blue" ones, tofrequenies around pure blue, where \pure" means onsisting of single frequeny. The overallresponse of the ones spans the visible light spetrum. However, the maximum sensitivity ofthe ombined ation of ones ours at a slightly higher wavelength (towards red) than that ofrods (towards blue): it is the so-alled Purkinje wavelength shift. This seems to be related tothe fat that during twilight light is more bluish than during daytime, sine it is mostly indiretlight di�rated by the atmosphere partiles.In the framework of image ommuniations and multimedia, photopi (daytime) vision is therule, so that the response of rods an be mostly ignored. The response of ones an be modeledas a nonlinear funtion of the inner produt of a spetral sensitivity funtion, whih is a har-ateristi of the given type of sensor ell in a Standard Observer, and the power spetrum ofthe light attaining the sensors (see for instane [189℄). \Red", \green", and \blue" ones havedi�erent spetral sensitivity funtions whih partially overlap in frequeny.Further information on olor pereption may be found in [164, 1, 27℄.
3.1.1 Color spaesColor reprodution uses the fat that the HVS has only three types of ones. In order for twolight soures to be pereived as having equal olor it is not neessary for their power spetrato be equal: they only have to produe the same response for eah of the three types of ones.Hene, most image data is available in a three omponent format.Color data is often presented in a CRT (Cathode-Ray Tube). Sine the power emitted by suhsreens is typially proportional to a (arithmeti) power of the input voltage (the exponent beingthe so-alled gamma value), ameras are usually designed to perform gamma orretion. Theorretion spei�ed by ITU-R (ITU Radioommuniation Setor)2 Reommendation BT.709-2 [80℄ follows

I 0 = (4:5I if 0 � I � 0:018, and1:099I0:45 � 0:099 if 0:018 < I � 1, (3.1)
whih is the inverse of the ideal monitor power funtion

I = 8<: I04:5 if 0 � I 0 � 0:081, and� I0+0:0991:099 � 10:45 if 0:081 < I 0 � 1,2Formerly CCIR (Comit�e Consultatif Internationale des Radio Communiations).
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where I is the light intensity and I 0 is the video signal, both linearly saled so that they spanthe interval from zero to one (for the intensity range of interest).It should be noted that the response of the HVS to intensity is approximately the inverse of thetypial CRT nonlinearity [164℄. Hene, sine image analysis attempts to emulate the HVS, thenonlinear version of the olor signals at the output of gamma orreted ameras an and shouldbe used diretly.
RGBThe power spetrum of the light input into the amera at eah point in the image is transformed,by three di�erent sensors, into a trio of values. The transformation an be modeled again asthe inner produt of the sensor spetral sensitivity funtion (whih an atually depend on aset of �lters) by the inident power spetrum. These three values, with appropriate sensorsand possibly after a linear transformation, are R, G and B (for red, green, and blue): thelinear RGB (Red, Green, and Blue) olor spae, where eah value is linearly saled to span theinterval from zero to one. Eah of the three linear RGB signals then undergoes the gammaorretion nonlinear transformation in equation (3.1). The resulting olor spae is nonlinearRGB, or R0G0B0, where the prime stands for nonlinear.DigitalRGB video usually deals with a digitized version of the R0G0B0 olor spae. Sine R0G0B0has an analog unity exursion for eah omponent, appropriate saling and quantization mustbe used. Aording to the ITU-R Reommendation BT.601-2 [20℄, the R0G0B0 digital videoolor spae omponents take integer values between 16 and 235 (exursion of 219), and thus areodable with eight bits, R0219 = round(219R0) + 16;G0219 = round(219G0) + 16, andB0219 = round(219B0) + 16:
This olor spae will heneforth be known as R0G0B0219.In digital omputers, however, an exursion of 255 is often used, resulting in the R0G0B0255olor spae, whih leads to smaller quantization errorsR0255 = round(255R0);G0255 = round(255G0), andB0255 = round(255B0):
Y 0CBCRLuma is a signal whih is related to brightness, and whih is usually, though wrongly, referredto as luminane. Luminane, Y , is de�ned by CIE (Commission Internationale de l'�Elairage)
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as radiant power weighted by a spetral sensitivity funtion that is harateristi of vision [164℄.It an be expressed as a weighted sum of the linear RGB omponents. Luma, Y 0, on the otherhand, is a weighted sum of the non-linear, gamma orreted, R0G0B0omponents. Hene, Y 0annot be obtained from Y by gamma orretion, as in (3.1).In order to save bandwidth or storage spae, video data is often provided in a format in whiholor is subsampled relative to luma. This owes to the fat that the HVS is less sensitiveto spatial detail in olor than in brightness. The orresponding olor spae separates olorinformation from luma by subtrating luma from the R' and B' signals. The olor signals,known as CB and CR, are then obtained by saling, o�setting and quantizing. This olorspae, known as Y 0CBCR, and the sampling format, are spei�ed in ITU-R ReommendationBT.601-2 [20℄. The omponents of Y 0CBCR an be omputed from R0G0B0 byY 0 = round(16 + 65:481R0 + 128:553G0 + 24:966B0);C 0B = round(128� 37:797R0 � 74:203G0 + 112:000B0), andC 0R = round(128 + 112:000R0 � 93:786G0 � 18:214B0);
where Y 0 has an exursion from 16 to 235, and CB and CR have and exursion from 16 to 240(with zero orresponding to level 128). Y 0 is usually known as the luma signal, and CB and CRare known as the hroma signals.
3.2 Images and sequenes
3.2.1 Analog imagesDe�nition 3.1. ([still℄ analog image) A 2D funtion f(�) : R ! R n de�ned in a boundedregionR � R 2 and taking values in R n . It is assumed that the oordinate sx in s = �sx sy� 2 R 2grows rightwards and the oordinate sy grows upwards.
A still image usually orresponds to the projetion of a 3D sene onto a 2D plane (e.g., theprojetion plane of a amera) at a given time instant.3 The dimension n of the spae where thefuntion takes values is the number of olor omponents of the olor spae used. Usual valuesof n are n = 3 for RGB, R0G0B0, or any other olor spaes adapted to the trihromati HVS,and n = 1 for grey sale images.When time is allowed to ow, the previous de�nition must be extended to enompass movingimages:De�nition 3.2. (moving analog image) A 3D funtion f(�) : R � T ! R n de�ned in atime interval T � R and in a bounded spae region R � R 2 .3Atually, besides being the result of an integration over a short period of time, it is not a true projetion,sine the image is formed through a lens, and there is the question of fousing to onsider.
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3.2.2 Digital imagesStill or moving analog images must be sampled and quantized, i.e., digitized, before they anbe manipulated by digital omputers. The result of sampling and quantizing is a digital image:De�nition 3.3. (image) A 2D funtion f [�℄ : Z ! Zn de�ned in a bounded disrete spaeregion Z � Z2 and taking values in Zn (quantized omponent spae).De�nition 3.4. (moving image or video [or image℄ sequene) A 3D funtion f [�℄ :N� Z ! Zn de�ned in a disrete time interval N � Z and in a bounded disrete spae regionZ � Z2 .De�nition 3.5. (pixel) Eah of the elements of v = �vi vj� 2 Z in the domain of a digitalimage. The name \pixel" stems from \piture element".
In the ase of moving images, pixels are extended with a, often impliit, time oordinate in thedisrete time domain N of the image. Those 3D pixels are also known as voxels (from \volumeelement").There is a speial lass of digital image or moving image whih is often of interest: binary orblak and white images. These images take values on a set with only two values, whih an beinteger values (usually 0 and 1, but often 0 and 255, for eight bits oding), or, for instane, theboolean values \false" and \true".
3.2.3 Latties, sampling latties and aspet ratioUsually analog images are periodially sampled in spae and time. The set of sample positionsde�nes a sampling pattern, normally in the form of a lattie (a sampling lattie):De�nition 3.6. (lattie [181℄) Let uj, with j = 0; : : : ;m, be a set of linearly independentvetors in Rm (the lattie basis). The set of sites s 2 Rm suh that s = s[v℄ =Pm�1j=0 vjuj, withv = �v0 : : : vm�1� 2 Zm , is a lattie L in Rm .
A digital image f [�℄ an be obtained by sampling and quantizing an analog image f(�) aordingto a 2D sampling lattie f [v℄ = q� ~f(s[v℄)� with v 2 Z,where ~f(�) is an anti-aliased, �ltered version of the analog original f(�), and q(�) : R n ! Zn isa quantization funtion. Notie that anti-alias �ltering and quantization are usually performedindependently on eah olor omponent.Similarly, a digital sequene f [�℄ an be obtained by sampling and quantizing an analog sequenef(�) aording to a 3D sampling lattiefn[v℄ = f [n; v℄ = q� ~f(s[n; v℄; t[n; v℄)� with n 2 N and v 2 Z,
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where ~f(�) is an anti-aliased, �ltered version of the analog original f(�), and q(�) : R n ! Zn is aquantization funtion. Notie that usually the anti-aliasing �lter is separable between the spaeand time dimensions.Hene, a sampling lattie relates the pixels with the orresponding positions in the original,analog image.
Usual 2D sampling latties
The most ommon 2D sampling latties are the retangular, generated by u0 = �0 �b�T andu1 = �a 0�T (square when a = b), and the hexagonal, generated by u0 = �a=2 �ap3=2�T andu1 = �a 0�T , as an be seen in Figure 3.1. The names for these latties stem from the shape ofthe regions in a Voronoi tessellation orresponding to the lattie sites.4 Often the term pixel isapplied to these regions, instead of to the oordinates of the lattie sites. The meaning shouldbe lear from the ontext. Notie that the lattie vetors invert the meanings of x and y (inthe ase of the retangular lattie) and invert the diretion of the y axis. This is to maintainthe usual onvention of thinking of a digital image f as a matrix with elements f [i; j℄, where igrows downwards and j rightwards.

u0
u1

(a) Retangular lattie.

u1
u0

(b) Hexagonal lattie
Figure 3.1: Examples of 2D latties (u0 and u1 are the lattie basis vetors). Lattie sites arerepresented by dots.In the ase of retangular latties, � = a=b is the pixel aspet ratio. Even though the pixelaspet ratio rarely has the value 1 (orresponding to square pixels), this fat is often negleted.For instane, the soon to be issued MPEG-4 standard, the �rst in the MPEG family to speifya sene struture, and hene to mix video with omputer graphis objets, seems to have4Given a set of sites in spae, the Voronoi tessellation surrounds eah site with a region of inuene orre-sponding to those points of the spae whih are loser to the given site than to any other site. If the spae is R2and the number of sites is �nite (a suÆient, though not neessary, ondition), the Voronoi tessellation will havepolygonal, possibly unbounded regions. The dual onept is the Delaunay triangulation.
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negleted this issue, at least in its �rst version.5 The result is distorted renderings of videomaterial whenever � 6= 1.A single lattie an be generated by di�erent bases. The bases orresponding to the smallestpossible vetors are said to be redued [69℄. The bases presented above for the retangular andhexagonal latties in R 2 are redued.
Usual 3D sampling lattiesIn pratie there are two sampling latties used for moving, 3D images: progressive (or retangu-lar) and interlaed. The progressive lattie is generated by u0 = �0 0 ��T , u1 = �0 �b 0�Tand u2 = �a 0 0�T (spatially square when a = b). The interlaed lattie is generated byu0 = �0 �b=2 ��T , u1 = �0 �b 0�T and u2 = �a 0 0�T (spatially square when a = b).In both ases � is the sampling time period. The interlaed sanning used in analog amerasintrodues a time delay between the �rst and the last lines in a �eld. The digitized version ofan analog interlaed signal thus has a more omplex struture than the one presented here.Notie that the lattie vetors, in the ase of the retangular lattie, again invert the meaningsof x, y, and now also z (time), and invert the diretion of the y axis. This is to maintain theusual onvention of thinking of a digital moving image f as a sequene fn, with n 2 N, ofmatries with elements fn[i; j℄, where i grows downwards and j rightwards. Using the notationabove, fn[i; j℄ = f [n; i; j℄.This notation is usually violated in the ase of interlaed 3D latties. This is beause the spatialdomain of moving analog images is usually a retangle in a �xed loation. Hene, it is ommonto hange the meaning of i in the notation fn[i; j℄ into: The number of the row, assuming thatat eah time instant row zero is the �rst row inside the given retangular spatial domain.In this thesis all moving images are assumed to have been sampled using a progressive lattie.Methods for onverting digital images from interlaed to progressive sampling latties are easilyonstruted, but outside the sope of this thesis.
3.3 Grids, graphs, and trees
This setion presents some de�nitions and results regarding grids and graphs. Sine some ofthe material on graphs an be found in good monographes on graph theory, suh as [186℄,several results are presented informally and without proof. A good referene for engineeringappliations of graph theory is [23℄.De�nition 3.7. (grid [181℄) A grid G(V;E) in Zm is de�ned by two sets:

1. V � Zm { the set of verties.5Atually the aspet ratio an now be spei�ed in the VOL (Video Objet Layer). A fortunate last-minuteaddition to the standard.
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2. E { a set of unordered pairs of points fva; vbg with va 6= vb 2 V, i.e., a neighborhoodsystem or the set of the edges in the grid.suh that (see [181℄ for further details):1. the sets V and E are invariant with respet to some sub-group t of translations in Zm(t-invariane ondition).2. the edges (elements of E) do not ross (non-rossing ondition).Figure 3.2 shows a shemati representation of the usual square and hexagonal grids in Z2 , bothwith V = Z2 . The names for the grids are related to the number of neighbors of eah vertex.The geometrial representation with squares is a mere matter of onveniene.

(a) Retangular grid. (b) Hexagonal grid.
Figure 3.2: Examples of grids. Verties are represented by dots and edges by lines.A grid an be seen as a simple graph. Additionally, beause of the non-rossing ondition, gridsin Z2 an be seen as planar simple graphs. Edges in grids orrespond to ars in graphs.De�nition 3.8. (simple graph [172℄) A simple (undireted) graph G(V;A) onsists of anonempty set V of verties and a set A of unordered pairs of distint elements of V alled ars.Sine A is a set, there are no repeated ars. Sine the ars onsist of unordered pairs of distintelements, no ar onnets a vertex to itself.Often it may be important to allow the existene of multiple or parallel ars. Sine simplegraphs disallow them, a more generi de�nition may be needed:De�nition 3.9. (multigraph [172℄) A multigraph G(V;A) onsists of a nonempty set V ofverties, a set A of ars, and an ar funtion g(�) : A ! �fu; vg : u 6= v 2 V	. Two ars a1and a2 are multiple or parallel if g(a1) = g(a2). Hene, if g(�) is injetive, then the multigraphhas no parallel ars, and hene is a simple graph. By a slight abuse of notation, fu; vg 2 A willbe taken to mean 9a 2 A : g(a) = fu; vg.Still another generalization allows the existene of ars onneting a vertex to itself:
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De�nition 3.10. (pseudograph [172℄) A pseudograph G(V;A) onsists of a nonempty setV of verties, a set A of ars, and an ar funtion g(�) : A ! �fu; vg : u; v 2 V	. Thepseudograph an thus ontain ars a suh that g(a) = fug, i.e., ars between a vertex and itself.A pseudograph without suh self-onneting ars is, of ourse, a multigraph.
Properties whih are true for pseudographs are also true for multigraphs. And properties whihare true for multigraphs are also true for simple graphs. Hene, throughout this thesis, the wordgraph will be taken to mean pseudograph unless it is quali�ed with \multi-" or \simple". Forsimple graphs, the funtion g(�), whih is injetive, is also taken to exist.De�nition 3.11. (simpli�ation) The proess of suessively eliminating (or merging) mul-tiple ars from a multigraph until a simple graph is obtained. In the ase of pseudograph, thisproess is preeded by the elimination of self-onneting ars. Hene, simpli�ation onverts apseudo- or multigraph into a simple graph.De�nition 3.12. (planar graph [172℄) A graph is planar if it an be drawn in the planewithout rossing ars.
A multigraph is planar if its simpli�ation is planar. The same is true for a pseudograph. Planargraphs are espeially important for image proessing. Hene, results onerning planar graphsare given in a separate setion.De�nition 3.13. (vertex adjaeny or neighborhood and degree [172℄) Two vertiesu; v 2 V of a graph G(V;A) are alled adjaent or neighbor verties if there is an ar a suhthat g(a) = fu; vg 2 A. In that ase, a is said be inident with (or to onnet) verties u and v,and u and v are alled the end verties of a. The degree d(v) of a vertex v is simply the numberof ars inident with it. The degree d(u; v) of a pair of verties u and v is the number of arsinident on both verties, i.e., d(u; v) = #�a 2 A : g(a) = fu; vg	.6
Hene, d(u; v) is either zero or one in a simple graph and d(u; u) is always zero on multi- orsimple graphs, i.e., on graphs without self-onneting ars. Also, the relations d(u; v) � d(u)and d(u; v) � d(v) always hold. Additionally, it an be easily proven that Pv2V d(v) = 2#Afor any simple, multi-, or pseudograph.
3.3.1 Graph operationsBasi graph operationsGiven a graph G(V;A), then:
� If a 2 A, then G � a means the graph G(V;A n fag).� If a is suh that g(a) = fu; vg with u; v 2 V, then G + a means the graph G(V;A [ fag).6#S is the number of elements, i.e., the ardinality, of the set S.
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� If v 2 V, then G � v means the graph G(V n fvg;A nA0), where A0 = �a 2 A : v 2 g(a)	,the set of ars inident on v.� G + v means the graph G(V [ fvg;A).

Subdivisions, mergings, short-iruits, and redutionsDe�nition 3.14. (ar subdivision [172℄) A transformation of graph G(V;A) to graphG0(V0;A0) onsisting in removing an ar a 2 A inident on u; v 2 V and inserting a newvertex w and two ars b and  suh that g(b) = fu;wg and g() = fv; wg. That is, the proessof dividing an ar into a sequene of two ars. The resulting graph has A0 = Anfag[fg[fdgand V0 = V [ fwg.De�nition 3.15. (ar ontration or merging of adjaent verties [186℄) A transforma-tion of a graph G(V;A) to a graph G0(V0;A0) suh that an ar a with g(a) = fu; vg is removedand the two adjaent verties u; v 2 V (whih may be the same vertex) are replaed by a singlenew vertex w 2 V0. Ars with end verties u or v are hanged so that they are inident on w.
In the ase of multi- or simple graphs, all ars a suh that g(a) = fu; vg are removed in thetransformation, for otherwise self-onneting ars would be introdued. In the ase of simplegraphs, pairs of ars between some vertex x 6= u; v 2 V and u and v are merged into a singlear, so that no multiple ars are introdued.A related onept is that of short-iruiting:De�nition 3.16. (vertex short-iruiting) A transformation of a graph G(V;A) to a graphG0(V0;A0) suh that two arbitrary verties u; v 2 V are replaed by a new vertex w 2 V0. Arswith end verties u or v are hanged so that they are inident on w.
The same onsiderations as for vertex mergings apply with respet to multi- and simple graphs.De�nition 3.17. (ontration) A graph G0 that an be obtained by a sequene of ar on-trations performed on graph G is alled a ontration of G. The ontration G0 is maximal if itontains no ars.
The inverse of an ar subdivision is often of interest. It will, however, be de�ned only forpseudographs, sine for pseudographs it does maintain the graph iruits (and hene is invariantwith respet to homeomorphism, see De�nitions 3.23 and 3.43):De�nition 3.18. (ar redution) A transformation of graph G(V;A) to pseudographG0(V0;A0) onsisting in removing a vertex v 2 V with d(v) = 2 and suh that 9a; b 2 Awith a 6= b inident on v. I.e., the (two) ars inident on v are not self-onneting (otherwised(v) = 4). Let g(a) = fv; ug and g(b) = fv; wg (v 6= u;w, of ourse). The removal of v isthen followed by the removal of ars a and b and by the insertion of a new ar  suh thatg() = fu;wg (whih may be a self-onneting ar).
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Thus, an ar redution an be seen as an ar ontration performed on one of the two distintars onneting to the hosen vertex, whih must be of degree two. Unlike ar ontrations,however, it is easy to prove that ar redutions do not introdue nor remove iruits (seeDe�nition 3.23) from the graph.De�nition 3.19. (redution) A graph G0 that an be obtained by a sequene of ar redutionsperformed on graph G is alled a redution of G. The redution G0 is maximal if no further arredutions are possible.
The verties that remain after the maximal redution of a graph depend in general on the orderof the ar redutions. However, the resulting maximal redutions, while possibly di�erent, arealways isomorphi (see De�nition 3.42).
3.3.2 Walks, trails, paths, iruits, and onnetivity in graphsDe�nition 3.20. (walk [186℄) A �nite alternating sequene of verties and ars v0; a1; v1; : : : ;vk�1; ak; vk, with vi 2 V for i = 0; : : : ; k and ai 2 A suh that g(ai) = fvi�1; vig for i = 1; : : : ; k,of a graph G(V;A), is a walk of length k between its end or terminal verties v0 and vk (theother verties are internal verties). If v0 = vk the walk is losed; otherwise it is an open walk.A walk with end verties v0 and vk is alled a v0; vk-walk.De�nition 3.21. (trail [186℄) A trail is a walk with all ars distint. It is an open trail if itsend verties are distint; otherwise it is losed.De�nition 3.22. (path [186℄) A path is an open trail with all verties distint. A path withend verties v0 and vk is alled a v0; vk-path.
It an be proved easily that all open walks or trails ontain a path between their end verties.De�nition 3.23. (iruit [186℄) A iruit is a losed trail with all verties distint exept theend verties.
The shortest iruit in a pseudograph has length one, in a multigraph has length two, and in asimple graph has length three.Sine paths and iruits have no repeated ars or verties (exept the end verties of a iruit),both an be spei�ed uniquely from their set of ars (in the ase of a iruit the terminal vertexwill remain ambiguous, though). Hene, if P is a path and C is a iruit, then P and C willoften be interpreted as the set of ars in the path and the set of ars in the iruit, respetively.It should be lear that all verties in a iruit have degree 2 on that iruit, the same thinghappening to the all verties in a path exept the end verties, whih have degree 1. Also, eventhough paths of length zero are preluded by the de�nition of path, they will sometimes beof use, in whih ase they will be assumed to onsist of a single vertex and represented by anempty set of ars (in this ase the representation by the ars is not suÆient, but this is rarelyproblemati).
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A u; v-path is in general not unique in a graph. It is unique, if it exists, only in the ase ofayli graphs (graph with no iruits, see below). In these ases of uniqueness, it makes senseto write P = u; v-path.De�nition 3.24. (iruit ar [186℄) An ar a is a iruit ar of graph G if there is a iruitin G whih inludes a.De�nition 3.25. (onnetivity) Two verties u; v 2 V of graph G(V;A) are onneted ifthere is a u; v-path (or walk or trail) in the graph. A subset V0 of verties of graph G(V;A) isonneted if for all pairs of verties u; v 2 V0 there is a u; v-path (or walk or trail) ontainingonly verties of V0. A single vertex is onneted by de�nition. A graph G(V;A) is said to beonneted if V is itself onneted, i.e., if there is a path (or walk or trail) between any pair ofverties.
It an be easily proved that the removal of a iruit ar from a onneted graph leads to a graphwhih is still onneted. If there are no iruit ars in a graph, then the graph has no iruitsand is said to be an ayli graph.De�nition 3.26. (n-ar-onnetivity) A onneted graph is n-ar-onneted if at least nars must be removed to disonnet it.
If all ars in a graph are iruit ars, then learly that graph is 2-ar-onneted.De�nition 3.27. (bridge) An ar in a graph G is a bridge if its removal from G augmentsthe number of onneted omponents of G (see De�nition 3.34).
Notie that if a graph has a bridge, then it is 1-ar-onneted, and that the number of onnetedomponents always augments by one when a bridge is removed.
3.3.3 Euler trails and graphsDe�nition 3.28. (Euler trails) An Euler trail is a losed trail ontaining all the ars of agiven graph. An open Euler trail is an open trail ontaining all the ars of a given graph.De�nition 3.29. (Euler graph) A graph with all verties of even degree is an Euler graph.
It is known from graph theory [174℄ that a onneted graph G(V;A) has an Euler trail i� (ifand only if) 8v 2 V d(v) is even, i.e., i� it is an Euler graph. Also, it has an open Euler trail,but not a (losed) Euler trail, i� there are exatly two verties with odd degree.Another interesting result is that Euler graphs, onneted or not, an be expressed, exept forisolated verties, as the union of ar-disjoint iruits.A more general de�nition is:De�nition 3.30. (postman walk) A postman walk is a losed walk ontaining all the ars ofa given graph. An open postman walk is an open walk ontaining all the ars of a given graph.
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The Chinese postman problemLet w(�) : A! R+0 be a weight funtion de�ned on the ars A of graph G(V;A). The Chinesepostman problem is then to �nd a postman walk v0; a1; v1; : : : ; vk�1; ak; vk suh thatPki=1w(ai)is minimum (the path length k is k >= #A). Of ourse, if an Euler trail exists, it is also asolution of the Chinese postman problem.The Chinese postman problem is solvable in polynomial time (i.e., it is not NP-omplete) inthe ase of undireted, simple graphs. See [186℄ and [51℄ for details.
3.3.4 Subgraphs, omplements, and onneted omponentsDe�nition 3.31. (subgraph [174℄) A graph G(V0;A0) is a subgraph of G(V;A) if V0 � Vand A0 � A. It is a proper subgraph if either V0 � V or A0 � A.The onept of maximal subgraph is also important, and will be useful for de�ning onnetedomponents:De�nition 3.32. (maximal subgraph [172℄) A subgraph G(V0;A0) of graph G(V;A) is max-imal if there is no ar fva; vbg 2 AnA0 suh that va; vb 2 V0, that is, if all ars in A onnetingverties of V0 also belong to A0. The maximal subgraph G(V0;A0) is said to be vertex-induedby V0 � V.Hene, eah subset V0 of verties from V indues a single maximal subgraph G(V0;A0) ofG(V;A), whih an be onstruted by inluding in A0 all ars with both end verties in V0.A maximal subgraph an also be de�ned as a subgraph to whih no further ars of the originalgraph an be added without also adding some verties.Notie that a subgraph G(V0;A0) of G(V;A) may also be ar-indued by some A0 � A. Theset of verties V0, in this ase, is suh that it ontains only end verties of ars in A0.De�nition 3.33. (omplement [23℄) The omplement G0(V00;A00) of a subgraph G0(V0;A0)of graph G(V;A) is the subgraph ar-indued by A00 = A nA0 plus the verties in V nV0.Hene, a subgraph and its omplement never have ommon ars, but may have ommon verties.De�nition 3.34. (onneted omponent) A maximal subgraph G(V0;A0) of G(V;A) is aonneted omponent of G(V;A) if:V0 is onneted, and8fu; vg 2 A either u; v 2 V0 or u; v 2 V nV0.
AlgorithmsThe onneted omponents of a graph an be identi�ed using the DFS (Depth First Searh)algorithm, whose running time for a generi graph G(V;A) is O(#V+#A) [28℄. If the graph
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is simple and planar, then the running time is also O(#V), i.e., it is linear on the number ofverties, see Setion 3.4.1.Even though this is not appropriate to an algorithm, the number of onneted omponents ofa graph an be seen to be equal to the number of verties in its maximal ontration.
3.3.5 Rank and nullityDe�nition 3.35. (rank) The rank �(G) of a graph G(V;A) is de�ned as �(G) = #V � ,where  is the number of onneted omponents of G.De�nition 3.36. (nullity) The nullity �(G) of a graph G(V;A) is de�ned as �(G) = #A�#V +  = #A� �(G), where  is the number of onneted omponents of G.
3.3.6 Cut verties, separability, and bloksDe�nition 3.37. (ut vertex [23℄) If in a onneted graph G there is a proper subgraph G0,with at least one ar, suh that it has only one vertex v in ommon with its omplement G0, thenvertex v is said to be a ut vertex of G. A vertex of an unonneted subgraph is a ut vertex ifit is a ut vertex of one of its onneted omponents.If the removal of a vertex and all inident ars leads to an inrease (of at least one) in the numberof onneted omponents, then that vertex is a ut vertex. For multi- and simple graphs, theonverse is also true. For pseudographs, verties whih are self-onneted and whih belong toa onneted omponent with at least another vertex are also ut verties regardless of whethertheir removal inreases the number of onneted omponents.De�nition 3.38. (separability [23℄) A disonneted graph is separable. A onneted graphis separable if it ontains ut verties.De�nition 3.39. (blok [23℄) A blok of graph G is a non-separable subgraph of G suh thatadding any further ar will make it separable.A graph an always be deomposed into its bloks. Notie that isolated verties (i.e., vertieswithout inident ars, not even self-onneting ars), are bloks, even though they annot beobtained by deomposition of any graph into bloks. The bloks of a graph are always 2-ar-onneted, exept for the trivial blok with two verties onneted by a single ar, as an beproved easily.
3.3.7 Cuts and utsetsDe�nition 3.40. (ut) Given two proper subsets of verties V1;V2 � V of a graph G(V;A)suh that V1 [V2 = V and V1 \V2 = ;, the ut hV1;V2i is the set of ars �a 2 A : g(a) =fu; vg with u 2 V1; v 2 V2	.
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De�nition 3.41. (utset) A minimal set of ars of graph G suh that its removal inreasesthe number of onneted omponents (of exatly one).
Hene, a ut hV1;V2i of a onneted graph G is also a utset if V1 and V2 are onneted. Ingeneral, it an be proved that uts are either utsets or unions of ar-disjoint utsets.
3.3.8 Isomorphism, 2-isomorphism, and homeomorphismAn important onept, whih tells when two graphs an be seen as \equivalent", is that ofisomorphism:De�nition 3.42. (isomorphi graphs) Two graphs G1(V1;A1) and G2(V2;A2) are isomor-phi if there is a bijetive funtion g(�) : V1 ! V2 suh that d(u; v) = d(g(u); g(v)) for allu; v 2 V1.The onept of homeomorphism will be useful for de�ning a few onepts related to the bordersin 2D maps:De�nition 3.43. (homeomorphi graphs) Two graphs G1 and G2 are homeomorphi if bothan be obtained by suessive ar subdivisions performed on a pair of isomorphi originatinggraphs. Or, if the their maximal redutions are isomorphi.
Finally, the onept of 2-isomorphism will be of paramount importane when dealing with graphduality:De�nition 3.44. (2-isomorphism [186, 23℄) Two graphs G1 and G2 are 2-isomorphi if theyan be made isomorphi to one another by performing series of the following operations on anyof them:1. Deompose a separable graph into disonneted bloks and reonnet them suessively byshort-iruiting pairs verties belonging to di�erent onneted omponents.2. If G0 is a proper subgraph of either G1 or G2, with at least one ar, suh that it has onlytwo distint verties u and v in ommon with its omplement G0, deompose the originalgraph (G1 or G2) into G0 and G0 by splitting the verties u and v and then reonnet thesame verties after turning around one of the subgraphs.
Step 1 above does not introdue nor remove iruits from the original graph: the short-iruitedverties thus beome ut verties, exept if one of the omponents being onneted is an isolatedvertex (in whih ase it simply \disappears"). Step 2 also does not introdue nor remove iruitsfrom the original graph. The importane of these fats an be seen from the theorem statingthat two graphs are 2-isomorphi i� there is a bijetive orrespondene between their sets ofars suh that iruits in one graph orrespond to iruits in the other [186℄, though the orderof the ars in the iruits may be di�erent.Step 1 does not hange the number of ars in the graph, and, when a blok is separated bysplitting a ut vertex or two onneted omponents united by short-iruiting two verties,
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both number of verties and number of onneted omponents either inrease or derease byone. Step 2 does not hange the number of verties, ars and onneted omponents of the graph.Hene, neither the rank nor the nullity of the graph hange. As a onsequene, 2-isomorphigraphs must have the same rank, the same nullity, and the same number of ars.
3.3.9 Trees and forestsTheorem 3.1. (tree) The following statements about graph T (V;A) are equivalent:1. T is a tree.2. T is onneted and ayli.3. T is onneted and #A = #V � 1 = �(T ).4. There is a unique path in T between any pair of distint verties.5. Adding a new ar (inident on existing verties) to T will reate a single iruit.Theorem 3.2. (forest) The following statements about graph F(V;A) are equivalent:1. F is a forest.2. F is ayli.3. If there is a path in F between a pair of distint verties, then that path is unique.4. F has  onneted omponents and #A = #V �  = �(F).5. Adding a new ar (inident on existing verties) to F will either redue the number ofonneted omponents by one or reate a single iruit.Theorem 3.3. (k-tree) The following statements about graph kT (V;A) are equivalent:1. kT is a k-tree.2. kT is a forest with k onneted omponents (trees).3. kT is ayli and has k onneted omponents.4. kT has #A = #V � k = �(kT ).5. Adding a new ar (inident on existing verties) to kT will either redue the number ofonneted omponents by one or reate a single iruit.Eah onneted omponent of a forest or a k-tree is a tree. A forest with a single onnetedomponent is a tree. A 1-tree is a tree.If a tree T , a k-tree kT or a forest F are subgraphs of some graph G, the phrases \T is a treeof G", \kT is a k-tree of G", \F is a forest of G", will be used.For a k-tree kT (V;A), kTi(Vi;Ai), with i = 1; : : : ; k, refer to eah of its omposing trees(onneted omponents). Obviously, [ki=1Vi = V while Vi\Vj = ; for i 6= j, and [ki=1Ai = Awhile Ai \Aj = ; for i 6= j.
Spanning trees and forestsDe�nition 3.45. (spanning tree) A subgraph T (V0;A0) of simple graph G(V;A) is a span-ning tree of G if T is a tree and it overs G, i.e., V0 = V.
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A onneted graph G(V;A) an be overed by a spanning tree T (V;A0) with #A0 = #V�1 =�(G). The onverse is true: if T (V;A0) is a tree whih is a subgraph of G(V;A), then T is aspanning tree i� #A0 = #V � 1 = �(G).De�nition 3.46. (spanning forest) Let G be a graph with  onneted omponents. Let Fbe a forest whih is also a subgraph of G. If F onsists of a union of spanning trees for all the onneted omponents of G, then F is a spanning forest of G.
A spanning forest of a onneted graph is a spanning tree. All spanning forests F(V;A0) ofa graph G(V;A) with  onneted omponents have #A0 = #V �  = �(G). The onverse isalso true: if F(V;A0) is a forest whih is a subgraph of G(V;A), then F is a spanning foresti� #A0 = #V �  = �(G), where  is the number of onneted omponents of G.De�nition 3.47. (ospanning forest and tree) Let F(V;A0) be a spanning forest of graphG(V;A). Then the subgraph F 0(V;A nA0) will be alled the ospanning forest of forest F . IfG is onneted, F is really a spanning tree and F 0 will be alled its ospanning tree.
Branhes and hordsDe�nition 3.48. (branh and hord) The ars in a spanning forest are alled branhes ofthe spanning forest. The ars in the orresponding ospanning forest are alled hords of thespanning forest.
Notie that self-onneting ars annot be part of any spanning forest. Hene, self-onnetingars are always hords. Also notie that bridges must be part of all spanning forests, and henethey are always branhes.
Fundamental iruits and utsetsSpanning trees have some interesting properties. For instane, removing a branh from a span-ning tree results in two onneted omponents (eah one a tree on its own), i.e., every branhis a utset of the tree (trees are 1-ar-onneted). The set of ars in the original graph with oneend vertex in eah of these two omponents is a fundamental utset of the graph:De�nition 3.49. (fundamental utset) Let V1 and V2 be the two sets of (onneted) ver-ties obtained by removing branh a from the spanning tree T of graph G. The utset hV1;V2iin G is alled a fundamental utset of graph G in relation to the spanning tree T .
Obviously, there is a single branh in every fundamental utset.Fundamental utsets may also be de�ned for spanning forests, if attention is restrited to theonneted omponent of the removed branh.If T (V;A0) is a spanning tree of a given graph G(V;A), then adding a hord to the tree reatesa fundamental iruit:
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De�nition 3.50. (fundamental iruit) Given a graph G and a spanning tree T , the iruitthat is reated by adding a hord to T is alled a fundamental iruit of graph G relative to thespanning tree T .
Similarly, there is a single hord in every fundamental iruit.Fundamental iruits may also be de�ned with relation to spanning forests. Again, adding ahord to a spanning forest reates a single iruit.It an be proved that any utset of a graph G ontains at least one branh of every spanningforest of G. Similarly, a iruit of a graph G ontains at least one hord of every spanning forestof G. For onneted graphs, replae \forest" with \tree" in the preeding text.It an also be proved that the branhes in a fundamental iruit are exatly those branhes whosefundamental utsets ontain the hord of the iruit. Conversely, the hords in a fundamentalutset are exatly those hords whose fundamental iruits ontain the branh of the utset.Let F be a spanning forest of graph G. Let  be a hord of F and C its assoiated fundamentaliruit. If a branh b of F in C is ut, the orresponding onneted omponent of F is splitinto two omponents. The ars of G with end points in eah of these two omponents are thefundamental utset relative to branh b.  is part of this utset, by the result in the previousparagraph. Hene  onnets two di�erent onneted omponents of F � b, thus it is not partof any iruit. The onlusion is that if in a spanning forest F a hord  is introdued and anybranh b in its fundamental iruit is removed, a new spanning forest F +  � b will result. Itan also be shown, using the results of the previous paragraph, that if in a spanning forest F abranh b is removed and any hord  in its fundamental utset is introdued, a new spanningforest F + � b will still result.Of ourse, there are trivial versions of fundamental iruits and utsets. In the ase of self-onneting ars, whih are always hords, the orresponding fundamental iruit onsists ofthat single self-onneting ar, and thus does not ontain any branhes. On the other hand,bridges, whih are always branhes, orrespond to fundamental utsets onsisting of that singlebridge, and thus ontain no hords.
Spanning k-treesSpanning k-trees are an important theoretial framework for segmentation algorithms, sinethey partition a graph into k omponents:De�nition 3.51. (spanning k-tree) A k-tree kT (V0;A0) of a graph G(V;A) is a spanningk-tree of G if it overs G, i.e., V0 = V.
Sine a spanning k-tree kT (V;As) of a graph G(V;A) has the same number of verties as Gand As � A, it follows that it has at least as many onneted omponents. Hene, if  is thenumber of onneted omponents of G, then k � . If k = , then kT = T is also a spanningforest of G. Also, by Theorem 3.2, #As = #V � k.
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Theorem 3.4. There is a spanning k � 1-tree of a graph ontaining any spanning k-tree ofthe same graph, provided k > , where  is the number of onneted omponents of the graph.
Proof. Let kT (V;As) be a spanning k-tree of a graph G(V;A), suh that k > ,  being theonneted omponents of G. The set A nAs is not empty, sine otherwise kT = G, and henek = , whih is not true by hypothesis. The set A n As has at least one ar whih onnetstwo di�erent onneted omponents of kT , sine otherwise all the ars of G not already in kTould be introdued into kT , e�etively transforming it into G, without hanging the numberof onneted omponents, i.e., k = , whih is not true by hypothesis. Let then a 2 A n Asonnet two onneted omponents of kT . Clearly a annot introdue any iruit in kT . Hene,the new onneted omponent obtained by adding a is a tree, and the resulting subgraph of Ghas k � 1 trees and still overs G: it is a spanning k � 1-tree.
The same way that inserting a onnetor (see De�nition 3.52) to spanning k-tree resulted in aspanning k� 1-tree, removing a branh from a spanning k-tree results in a spanning k+1-tree:Theorem 3.5. Any spanning k-tree of a graph G(V;A) ontains a spanning k+ 1-tree of thesame graph, provided that k < #V.
Proof. Let kT (V;As) be a spanning k-tree of graph G(V;A), suh that k < #V. The setAs is not empty, sine #As = #V � k. Consider an ar a 2 As. The removal of a does nota�et the number of verties in kT . Hene, kT � a is still spanning. Sine removal of a annotintrodue any iruit, kT remains a forest. Hene, the number of onneted omponents ofkT � a is  = #V � #As + 1 = k + 1. Hene, kT is a spanning forest with k + 1 onnetedomponents: it is a spanning k + 1-tree.
Branhes, hords and onnetorsDe�nition 3.52. (Branh, hord and onnetor) Let kT (V;As) be a spanning k-tree ofgraph G(V;A) with  onneted omponents. The ars of G will be named branhes of kT ifthey belong to As, hords of kT if they do not belong to As but their end verties belong to thesame onneted omponent of kT , and onnetors if they also do not belong to As but their endverties belong to di�erent onneted omponents of kT .
Fundamental iruits and utsetsA hord of a spanning k-tree kT of a graph G is also a hord of one of its omponents, saykTi. Hene, introdution of a hord into the k-tree reates a iruit. This iruit is also afundamental iruit of Gi, the subgraph of G indued by the verties of kTi.De�nition 3.53. (fundamental iruit of a k-tree) The iruit reated in a k-tree byintrodution of one of its hords.
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If a hord of a spanning k-tree is inserted into the spanning k-tree and any of the branhes inthe resulting iruit is removed, a spanning k-tree still results. This stems from a similar resultfor trees.Notie that self-onneting ars are hords of any spanning k-tree, their orresponding funda-mental iruit ontaining only the self-onneting ar.A branh of a spanning k-tree kT of a graph G is also a branh of one of its omponents, saykTi. Hene, removal of a branh from a k-tree disonnets the orresponding kTi. The hords ofGi relative to kTi with end verties in eah of the omponents thus obtained form a fundamentalutset of Gi relative to kTi:De�nition 3.54. (fundamental utset of a k-tree) The utset assoiated to the two om-ponents obtained by removal of a branh of a k-tree from one of its omponents.
If a branh of a spanning k-tree is removed from the spanning k-tree and any of the hords inthe assoiated fundamental utset is inserted, a spanning k-tree still results. This stems from asimilar result for trees.Sine removal of any branh in a k-tree inreases the number of onneted omponents, insertinga onnetor to a spanning k-tree and removing one of its branhes still results in a spanningk-tree.Connetors of a k-tree onnet distint trees of the k-tree, and thus their introdution to thek-tree redues the number of onneted omponents. Sine removal of any branh in a k-treeinreases the number of onneted omponents, inserting a onnetor to a k-tree and removingone of its branhes still results in a k-tree.A bridge an either be a branh or a onnetor of a spanning k-tree, but it an never be a hord.If it is a branh, its orresponding fundamental utset onsists of only itself.Notie that, after inserting a onnetor into a k-tree, thereby reating a k� 1-tree, some of theonnetors of the k-tree may beome hords of the new k � 1-tree. This is guaranteed not tohappen when the onnetor is a bridge.
Seeded spanning k-treesDe�nition 3.55. (n-seed respeting spanning k-tree) Given a graph G(V;A) and a setS � V of n vertex seeds, a spanning k-tree whih inludes at most one seed in eah of itsomponent trees is a n-seed respeting spanning k-tree.
In the following, the term seeded spanning k-tree will be used often instead of n-seed respetingspanning k-tree.Obviously, a n-seed respeting spanning k-tree of a graph G(V;A) must have n � k � #V.De�nition 3.56. (smallest n-seed respeting spanning k-tree) Given a graph G(V;A)and a set S � V of n vertex seeds, a spanning k-tree whih inludes at most one seed in eah
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of its omponent trees, where k is as small as possible, is a smallest n-seed respeting spanningk-tree.Theorem 3.6. A smallest n-seed respeting spanning k-tree of a graph with  onneted om-ponents has k = n+ 0, where 0 is the number of onneted omponents of the graph whih donot ontain any seed.
Proof. Let Gi, i = 1; : : : ;  be the omponents of the graph G to span. If Gi ontains no seeds,it an be spanned by a single omponent of the k-tree. If it ontains ni seeds, it an be spannedby ni omponents of the k-tree. Hene, k = 0 +Pni = 0 + n.Corollary 3.7. A smallest n-seed respeting spanning k-tree of a graph with  onneted om-ponents, eah ontaining at least one seed, has k = n.
Branhes, hords, onnetors and separatorsBranhes, hords, and onnetors are de�ned for seeded spanning k-trees as for spanning k-trees.However, onnetors between seeded trees, whih annot be inserted into seeded spanning treeswithout violating seed separation, will be named separators:De�nition 3.57. (separator) Separators are ars onneting two di�erent omponents bothontaining seeds.
Hene, in seeded spanning k-trees the term onnetor will be reserved for simple, non-separatingonnetors, all other onnetors being separators.Theorem 3.8. A seeded spanning k-tree is smallest i� it has no onnetors, only separators.
Proof. Let kT be a seeded spanning tree of G. It will be proved �rst that if kT is smallest,then it has no onnetors. Then it will be proved that if kT has no onnetors, then it must besmallest.If there is a onnetor, that is, a onnetor between a seedless omponent of the k-tree andany other omponent, then that onnetor an be inserted into the k-tree, thereby transformingit into a spanning k � 1-tree whih is still respets the set of seeds, sine at most one of theomponents onneted through that onnetor has a seed. Hene, the spanning k-tree an notbe smallest.If kT is not smallest, then, sine eah seed in S = fs1; : : : ; sng is ontained in a single omponentkTi of the spanning k-tree and all suh seeded omponents are separated, there must be atleast one seedless omponent of kT in a seeded onneted omponent Gm of G or two seedlessomponents of kT in a seedless onneted omponent Gm of G. Otherwise, by Theorem 3.6,kT would indeed be smallest. In both ases, there must be a onnetor between one of theseedless omponents and another omponent of the same onneted omponent Gm, sine Gm isonneted. Hene, there are onnetors.
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Theorem 3.9. All seeded spanning k-trees whih are not smallest are subgraphs of some seededspanning k � 1-tree of the same graph for the same set of seeds.
Proof. Let kT be a seeded spanning k-tree of some graph G. Assume kT is not smallest. ByTheorem 3.8, kT must have at least one onnetor. Take any onnetor  of kT and build thegraph kT + . Sine  is a onnetor, it onneted two onneted omponents of kT , and heneit introdued no iruits. Sine the number of onneted omponents in kT +  redued by one,it is obvious that it is a k � 1-tree. Sine at least one of the omponents onneted by  isseedless, kT +  also respets seed separation. Hene, kT +  is a seeded spanning k� 1-tree ofwhih kT is a subgraph.
Theorem 3.10. All seeded spanning k-trees with at least one branh have subgraphs whih areseeded spanning k + 1-trees of the same graph for the same set of seeds.
Proof. Let kT be a seeded spanning k-tree of some graph G. Assume kT has at least onebranh. Take any branh b of kT and build the graph kT � b. Sine b is a branh, its removalseparates a omponent of kT into two omponents, only one of whih may have a seed. Hene,the resulting graph is a seeded spanning k + 1-tree and a subgraph of kT .
Fundamental iruits, utsets, and paths
Fundamental iruits and utsets are de�ned for seeded spanning k-trees as for spanning k-trees.De�nition 3.58. (fundamental path) Let  be a separator of a seeded spanning k-tree kT .Let separator  separate two omponents kTi and kTj with seeds si and sj, respetively. The onlysi; sj-path in the tree kTi [ kTj [ fg is the fundamental path of kT relative to separator .
As happened with spanning k-trees, in seeded spanning k-trees any branh an be exhangedwith a hord in its fundamental utset and any hord an be exhanged with a branh in itsfundamental iruit: none of these operations violates the seeds separation, sine the set ofverties in eah onneted omponent of the k-tree does not hange, only the ars hange.Again as happened with spanning k-trees, in seeded spanning k-trees any onnetor an beexhanged with any branh. This operation does not violate the seed separation, sine insertinga onnetor (by de�nition of onnetor) does not onnet two seeds and removing any branhan only result in an extra, seedless omponent. The �nal number of omponents is the same.A similar result an be proved for separators. In a seeded spanning k-tree any separator anbe exhanged with any branh in its fundamental path. This is so beause, after insertion ofthe separator into the k-tree, the two omponents plus the separator form a new tree and thefundamental path is the only path in this new tree between its two seeds. Hene, if any branhin this path is removed, the seed separation is again valid and the number of omponents of thek-tree is the same.
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Graphs and vetor spaesDe�nition 3.59. (iruit vetor [186℄) Ciruits and unions of ar-disjoint iruits of a graphare alled iruit vetors of a graph.De�nition 3.60. (utset vetor [186℄) Cutsets and unions of ar-disjoint utsets of a graphare alled utset vetors of a graph.
Hene, ut and utset vetor are one and the same onept.The names iruit and utset vetors stem from the fat that the set of ar indued subgraphsof a graph G(V;A) with  onneted omponents, equipped with the ring sum of sets operator,7is a vetor spae of dimension #A over the Galois �eld GF(2) (see [186℄ for details8) wheretwo orthogonal subspaes an be de�ned: the subspae of all iruits and unions of ar-disjointiruits and the subspae of all utsets and unions of ar-disjoint utsets.It an be proved that, given a spanning forest F(V;As) of a graph G(V;A), the set of itsfundamental iruits (dimension #A � #As = #A � #V +  = �(G)) and the set of itsfundamental utsets (dimension #As = #V �  = �(G)) are bases of the subspae of iruitsand unions of ar-disjoint iruits and of the subspae of utsets and unions of ar-disjointutsets, respetively. Hene, any iruit vetor an be written as a ring sum of fundamentaliruits and any utset vetor (or ut) an be written as a ring sum of fundamental utsets.Let F(V;As) be a spanning forest of a graph G(V;A). Given a iruit onsisting of theset of ars C, deompose it into two disjoint sets Cb � As and C � A n As, ontainingits branhes and its hords, respetively. Then, it an be proved that C is the ring sumof the fundamental iruits (relative to F) orresponding to the hords in C (and no otherombination of fundamental iruits results in C). It is straightforward to prove additionallythat the branhes in Cb our in an odd number of suh fundamental iruits, sine branheswhih do our an even number of times disappear in the ring sum.The same thing an be proved for uts relative to fundamental utsets, if branhes and hordsare exhanged in the previous paragraph.
Shortest spanning trees and forestsLet w(�) : A ! R be a weight funtion de�ned on the ars A of graph G(V;A). Let W (�) bede�ned as W (A; w) = Xa2Aw(a):De�nition 3.61. (shortest [or minimal℄ spanning tree) A subgraph T (V;As) of on-neted graph G(V;A) is a SST (Shortest Spanning Tree) of G if T is a spanning tree and noother spanning tree T 0(V;A0s) exists suh that W (A0s; w) < W (As; w).7The ring sum of two sets A and B is A�B = (A [B) n (A \B).8Multipliation of a set by 1 results in the same set, multipliation by 0 results in the empty set ;.
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LST (Longest Spanning Tree), SSF (Shortest Spanning Forest), and LSF (Longest SpanningForest) are de�ned similarly.Theorem 3.11. (hord and branh ondition) Let F(V;As) be a spanning forest of graphG(V;A). The following are equivalent:1. F is a SSF of G.2. (branh ondition) w(b) � w() for any branh b of F and for any hord  in the orre-sponding fundamental utset relative to F .3. (hord ondition) w() � w(b) for any hord  of F and for any branh b in the orre-sponding fundamental iruit relative to F .
Proof. It will be shown that 1) 2) 3) 1.1) 2: Assume 2 does not hold for F , i.e., there is a branh b and a hord  in the fundamentalutset of b suh that w(b) > w(). It was shown before that F + � b is still a spanning forest.But W (As [ fg n fbg; w) = W (As; w) + w()� w(b) < W (As; w). Hene, F annot be a SSFof G, that is, :2) :1, whih is the same as 1) 2.2) 3: Assume 2 holds for F . Take any hord  of F and its orresponding fundamental iruitC. From a result before,  belongs to the fundamental utsets of all branhes b in C. Hene,sine the branh ondition holds, w() � w(b) for all branhes in C and 3 holds.3) 1: Assume 3 holds for F(V;As). Let F 0(V;A0s) be a SSF of G, for whih, as was alreadyproven, 3 holds (1) 2 and 2) 3). It will be shown that F 0 an be made equal to F througha series of simple operations whih neither inreases nor dereases the total weight W (A0s; w).This proves that F is indeed a SSF, sine W (As; w) =W (A0s; w).If F and F 0 are equal, then F is also a SSF. Suppose then that F and F 0 are di�erent. SineF and F 0 are both spanning forest, both ontain the same number of ars of G: #As = #A0s.Hene, there is an equal non-zero number of ars in As nA0s and A0s nAs. The ars in A0s nAsare hords of F and vie versa.Take a hord  of F whih is also a branh of F 0. Let C be the orresponding fundamentaliruit in F . C an be written as the ring sum of the fundamental iruits of F 0 orrespondingto the hords of F 0 in C. Sine  2 A0s, it must our in an odd number of these fundamentaliruits, orresponding to an odd number of hords of F 0 in C. Let then b be a hord of F 0 iniruit C suh that its fundamental iruit in F 0 inludes . Then w() � w(b), sine b and are respetively branh and hord of the same fundamental iruit in F (3 holds for F), andw(b) � w(), sine b and  are also respetively hord and branh of the same fundamentaliruit in F 0 (3 holds for F 0). Hene, w(b) = w(). Sine F 0 �  + b is also a spanning forestand it has the same weight as F 0, the hord  of F an be substituted by the branh b of F inF 0. Repeating this proess while there are branhes of F 0 whih are hords of F , suh ars anbe suessively eliminated from F 0 without hanging its global weight W (A0s; w). The proessterminates when A0s n As is empty, i.e., when A0s = As. Hene, W (As; w) = W (A0s; w) andthus F is also a SSF.
For LSF, simply invert the weight relations in the hord and branh onditions.
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Lemma 3.12. Let T 0(V0;A0s) be a onneted subgraph of a spanning forest F(V;As) of agraph G(V;A). Let G0(V0;A0) be the subgraph of G indued by the verties V0 in T 0. IfT 00(V0;A00s) is a spanning tree of G0, then the graph F 00(V;As n A0s [ A00s) is also a spanningforest of G.
Proof. The subgraph T 0 is ayli, sine it is a subgraph of the ayli graph F . Sine it isalso onneted, T 0 is a tree. Sine it spans the verties of G0, it is a spanning tree of G0.Notie that, sine A0s � As, then #�As nA0s� = #As �#A0s. Also notie that #A0s = #A00s ,sine both T 0 and T 00 span G0.Suppose As nA0s and A00s have a ommon ar a. This implies, of ourse, that a belongs to Asand A00s but not to A0s. Sine a 2 A00s , a is inident on two verties of G0. These two verties,by de�nition of tree, are onneted through a unique path in T 0. Hene, there are two di�erentpaths in F between these two verties (viz. a and the path in T 0), whih is a ontradition,sine F is a forest. Thus, As n A0s and A00s have no ommon ars, i.e., #�As n A0s [ A00s� =#As �#A0s +#A00s = #As.Sine F has the same number of onneted omponents  as G, and sine F 00 has only ars ofG, it is lear that F 00 annot have less onneted omponents than F . It will be shown that itneither an have more onneted omponents.Consider the path P between any two onneted verties v1 and v2 in F .If P does not inlude any ars of A0s, then learly v1 and v2 are also onneted in F 00. Ifit ontains ars of A0s, these ars onnet verties of G0 whih are onneted by a path in T 00.Hene, all ars of A0s in P an be substituted by a path in T 00, ontaining only ars in A00s . Thus,a walk between the two verties v1 and v2 exists in F 00. Hene, v1 and v2 are also onneted inF 00.Thus, F and F 00 have the same number of onneted omponents . Sine they also have thesame number of ars #As = #A00s = #V � , F 00 is indeed a (spanning) forest of G.Theorem 3.13. Let F 0(V0;A0s) be a subgraph of a spanning forest F(V;As) of a graph G(V;A).Let F 0i(V0i;A0si) be a onneted omponent of F 0 and Gi(V0i;A0i) the subgraph of G indued byV0i. If F is a SSF, then F 0i is a SST of the onneted graph Gi.
Proof. Suppose there is an i for whih F 0i is not a SST of Gi. Then, there is a lighter wayto over Gi. Let F 00i be a lighter overing of Gi. Clearly, the branhes of F whih are in F 0iould then be substituted by the branhes in F 00i , thus reduing its overall weight. Sine thissubstitution, by Lemma 3.12, still results in a spanning tree, F annot be a SSF, whih is aontradition. Thus, F 0i is indeed a SST of Gi.Corollary 3.14. If F is a SSF of graph G and Fi one of its onneted omponents, then Fiis a SST of the orresponding onneted omponent Gi of G.
Proof. The result is immediate from Theorem 3.13.
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AlgorithmsThere are two lassi algorithms for omputing the SST of a onneted graph G(V;A): Kruskaland Prim [28℄. Both work by suessively adding to A0 ars from A nA0 that are safe for A0.An ar a is safe for A0, where A0 is a subset of the ars on some SST of G, if A0 [ fag is also asubset of the ars of some SST of G. The set A0 is initially empty. Thus A0 is kept always as thesubset of the ars in some SST of G, this being the algorithm's invariant. Hene, the subgraphF(V;A0) is an ayli graph, i.e., a forest. The algorithm �nishes after exatly #V� 1 = �(G)ar insertions, when the forest F(V;A0) beomes a SST of G(V;A).Kruskal's algorithm [28℄ simply adds to A0 one of the lightest of the ars onneting any twotrees in the forest F . It runs, with an appropriate implementation, in O(#A lg#A). In thease of planar, simple graphs, it runs in O(#V lg#V) (see Setion 3.4.1).Prim's algorithm [28℄ also suessively adds ars to A0, though the ar added at eah step ishosen as one of the ars having minimum weight with a single end vertex in the subgraphindued by A0. When A0 is empty, the subgraph onsists of an arbitrarily hosen vertex,whih is the \seed" of the algorithm. Hene, the subgraph G0(V0;A0) indued by A0 on G is atree at all steps of the algorithm. An implementation using Fibonai priority queues runs inO(#A+#V lg#V), whih, in the ase of planar, simple graphs, is asymptotially the same asO(#V lg#V) (see Setion 3.4.1).Both algorithms an be proven orret through the use of the following theorem from [28,Corolary 24.2℄, reprodued here without proof:Theorem 3.15. Let G(V;A) be a onneted graph with ar weight funtion w(�) : A ! R .Let A0 be a subset of the ars in some SST of G. Let Fi be a onneted omponent in the forestF(V;A0). If a is one of the lightest ars onneting Fi to some other onneted omponent ofF , then a is safe for A0, i.e., A0 [ fag is also a subset of the ars in some SST of G.
These algorithms are also appliable to disonneted graphs, and hene also solve the SSFproblem. The Kruskal algorithm works without hange. As for the Prim algorithm, eah runof the basi algorithm builds the SST of a onneted omponent of the graph. Hene,  runsof the basi algorithm are neessary in a graph with  onneted omponents. Sine vertiesalready in some tree may be marked in onstant time at eah step of the algorithm, thus nothanging its asymptoti performane, the seeds may be searhed in linear time, by searhingthe next unmarked vertex in a list of graph verties. Alternatively, both the Prim and Kruskalalgorithms may be applied in parallel to eah of the  graph omponents.
Shortest spanning k-treesSSkTs are an important framework in whih to desribe some segmentation algorithms:De�nition 3.62. (shortest [or minimal℄ spanning k-tree) A spanning k-tree of a graphis a SSkT (Shortest Spanning k-Tree) of that graph if no other spanning k-tree exists with asmaller weight.
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Theorem 3.16. The onneted omponents kTi(Vi;Asi), with i = 1; : : : k, of a SSkTkT (V;As) of a graph G(V;A), are SSTs of the subgraphs Gi indued in G by the orrespondingset of verties Vi.
Proof. Let Gi(Vi;Ai) be the subgraph of G indued by the verties Vi of a tree kTi of kT .Suppose kTi is not a SST of Gi. Then it is possible to hose another tree spanning Gi with asmaller weight than kTi (hoose a SST of Gi), without hanging the weight assoiated to theother omponents of kT and thereby reduing the weight of kT . But this is a ontradition,sine Tk is a SSkT of G. Hene, kTi is indeed a SST of Gi, for i = 1; : : : ; k.
The onverse of this theorem is not true. Not all spanning k-trees of a graph G with the propertythat eah tree is a SST of its orresponding subgraph of G are SSkT of G. Counter examplesare easy to ontrive.Lemma 3.17. Let kT be a spanning k-tree of G. If C is a iruit in G ontaining only branhesand hords of kT , then C an be expressed as a ring sum of fundamental iruits of kT , and allbranhes of kT in C our in an odd number of these fundamental iruits.
Proof. First it will be proved that iruit C is ontained in the subgraph Gi indued by theverties of a omponent kTi of kT . Then, using Theorem 3.16 and the fat that iruits in agraph an be expressed as ring sums of its fundamental iruits relative to some SSF, the resultis immediate.Let iruit C, of length l > 0, onsist of v0; a1; v1; : : : ; vl�1; al; vl. Sine the trees kTi of thespanning kT partition the set of verties into disjoint sets, one for eah kTi, v0 belongs to somekTi, with i 2 f1; : : : ; kg. Suppose now that vn, with 0 � n < l, also belongs to kTi. The aran+1 is not a onnetor. If it is a branh, it onnets two verties from the same omponent ofkT . The same thing happens if an+1 is a hord. Hene, vn+1 also belongs to kTi. Hene, byindution, all verties in the iruit belong to the same omponent of kT . Sine all the ars inG inident on verties of the same omponent kTi of kT belong to the orresponding Gi, it islear that iruit C is ontained on some Gi.Theorem 3.18. (branh, hord, and onnetor onditions) Let kT (V;As) be a spanningk-tree of graph G(V;A). Consider the following statements:1. kT is a SSkT of G.2. (branh ondition) w(b) � w() for any branh b of kT and for any hord  in theorresponding fundamental utset relative to kT .3. (hord ondition) w(b) � w() for any hord  of kT and for any branh b in the orre-sponding fundamental iruit relative to kT .4. (onnetor ondition) w() � w(b) for any branh b and for any onnetor  of kT .The fat that a spanning k-tree is also a SSkT implies that branh, hord, and onnetor on-ditions are true for kT , i.e., 1) 2 ^ 3 ^ 4:



50 CHAPTER 3. GRAPH THEORETIC FOUNDATIONS FOR IMAGE ANALYSISOn the other hand, the onnetor ondition together with either the branh or the hord ondi-tions are suÆient to guarantee that a spanning k-tree is a SSkT, i.e.,2 ^ 4) 1, and3 ^ 4) 1:
Proof. It will �rst be shown that 3 , 2. Then, it suÆes to show that 1 ) 3, 1 ) 4, and3 ^ 4) 1.Let Gi be the subgraphs of G indued by the verties of the onneted omponents kTi of kT .3, 2: Both 3 and 2 apply to hords and branhes of the same omponent kTi of kT . Sine eahomponent kTi of kT is a spanning tree of Gi, and sine, aording to Theorem 3.11, hord andbranh onditions are equivalent for spanning forests (of whih spanning trees are partiularases), 3 and 2 must also be equivalent for the whole spanning k-tree kT .1 ) 3: Let  be a hord of kT and C its fundamental iruit. If there is any b 2 C suh thatw(b) > w(), then kT � b+ , whih is learly still a spanning k-tree of G, has a smaller weightthan kT , whih is a ontradition, sine kT is a SSkT. Hene, 3 must hold.1 ) 4: Let  be a onnetor of kT . If there is any b 2 As suh that w(b) > w(), thenkT � b+ , whih is learly still a spanning k-tree of G, has a smaller weight than kT , whih isa ontradition, sine kT is a SSkT. Hene, 4 must hold.3 ^ 4) 1: Assume 3 and 4 hold for kT (V;As). Let kT 0(V;A0s) be a SSkT of G, for whih, aswas already proven, 3 and 4 hold. It will be shown that kT 0 an be made equal to kT througha series of simple operations whih neither inreases nor dereases the total weight W (A0s; w).This proves that kT is indeed a SSkT, sine W (As; w) =W (A0s; w).If kT and kT 0 are equal, then kT is also a SSkT. Suppose then that kT and kT 0 are di�erent.Sine kT and kT 0 are both spanning k-trees, both ontain the same number of ars of G:#As = #A0s. Hene, there is an equal non-zero number of ars in As nA0s and A0s nAs. Thears in A0s nAs are hords or onnetors of kT and branhes of kT 0 and vie versa.Suppose there is a hord  of kT whih is also a branh of kT 0. Let C be the orrespondingfundamental iruit in kT . C annot onsist solely of branhes of kT 0, sine otherwise kT 0 wouldnot be a k-tree. Hene, there are ars of C whih are not branhes of kT 0.Suppose that, of these ars, there is one ar b whih is a onnetor of kT 0. Then w() � w(b),sine  is the hord of a fundamental iruit ontaining b in kT (3 holds for kT ), and w() � w(b),sine  is a branh of kT 0 and b is a onnetor of kT 0 (4 holds for kT 0). Hene, w() = w(b).Sine kT 0� + b is also a spanning k-tree and it has the same weight as kT 0, the hord  of kTan be substituted by the branh b of kT in kT 0.If there is no onnetor of kT 0 in C, then C onsists solely of branhes and hords of kT 0. ByLemma 3.17, it an be expressed as the a ring sum of fundamental iruits of kT 0. Sine  2 A0s,it must our in an odd number of these fundamental iruits, orresponding to an odd numberof hords of kT 0 in C. Let then b be a hord of kT 0 in iruit C suh that its fundamentaliruit in kT 0 inludes . Then w() � w(b), sine b and  are respetively branh and hord of
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the same fundamental iruit in kT (3 holds for kT ), and w(b) � w(), sine b and  are alsorespetively hord and branh of the same fundamental iruit in kT 0 (3 holds for kT 0). Hene,w(b) = w(). Sine kT 0 � + b is also a spanning k-tree and it has the same weight as kT 0, thehord  of kT an be substituted by the branh b of kT in kT 0.In either ase, a branh  of kT 0 an be substituted by a branh b of kT in kT 0. Repeating thisproess while there are branhes of kT 0 whih are hords of kT , suh ars are eliminated fromkT 0 without hanging its global weight W (A0s; w).If kT 0 = kT after the above proess, then kT is indeed a SSkT. If not, then there must be somebranh b of kT whih is not in kT 0.Suppose that b is a hord of kT 0 and C0 is its orresponding fundamental iruit in kT 0. C0annot onsist solely of branhes of kT , sine otherwise kT would not be a k-tree. Let then be an ar of C0 whih is not in kT . Sine all branhes of kT 0 whih are also hords of kT havealready been removed from kT 0,  must be a onnetor of kT . Then w(b) � w(), sine b and are respetively branh and onnetor of kT (4 holds for kT ), and w(b) � w(), sine b and are also respetively hord and branh of the same fundamental iruit in kT 0 (3 holds for kT 0).Hene, w(b) = w(). Sine kT 0 � + b is also a spanning k-tree and it has the same weight askT 0, the hord  of kT an be substituted by the branh b of kT in kT 0.Suppose now that b is a onnetor of kT 0. Sine there is a branh b of kT not in kT 0, theremust be a branh  of kT 0 not in kT . Sine all hords of kT whih are branhes of kT 0 havealready been removed,  must be a onnetor of kT . Then w(b) � w(), sine b and  arerespetively branh and onnetor of kT (4 holds for kT ), and w(b) � w(), sine b and  arealso respetively onnetor and branh of kT 0 (4 holds for kT 0). Hene, w(b) = w(). SinekT 0 � + b is also a spanning k-tree and it has the same weight as kT 0, the hord  of kT anbe substituted by the branh b of kT in kT 0.In either ase, a branh  of kT 0 an be substituted by a branh b of kT in kT 0. Repeatingthis proess while there are branhes of kT whih are either hords or onnetors of kT 0, suhars are introdued into kT 0 without hanging its global weight W (A0s; w). When the proessends, As nA0s is empty. Sine #As = #A0s, this implies that As = A0s. Sine the substitutionsperformed on kT 0 did not hange its global weight, then one must onlude that kT 0 is still aSSkT and kT = kT 0 is indeed a SSkT.Theorem 3.19. If kT (V;As) is a SSkT of graph G(V;A) and  is a onnetor of kT withminimum weight, then kT +  is a SSk � 1T of G.
Proof. Let C be the set of all onnetors of kT , whih by hypothesis is not empty (otherwisethere would be no ). Let  = argmin2Cw(). Then w() � w(0) 80 2 C.It is lear, from the proof of Theorem 3.4, that k�1T 0 = kT +  is a spanning k � 1-tree of G.Hene, by Theorem 3.18, it suÆes to show that the branh and onnetor onditions hold fork�1T 0 in order to prove that k�1T 0 is indeed a SSk � 1T.Sine  is a onnetor of kT , it has end verties in two di�erent omponents of kT , say kTi andkTj , with i 6= j. Let Cij be the set of onnetors between these two omponents. Let k�1T 0ij
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be the union of kTi with kTj though  in k�1T 0. The set Cij is learly the fundamental utsetorresponding to the branh  in k�1T 0. Sine  is a minimum weight onnetor of kT and allars in Cij are onnetors of kT , it is lear that the branh ondition is valid for branh  ink�1T 0.The ars in Cij n fg are learly all hords of k�1T 0, in partiular of omponent k�1Tij . Sinethese ars are also onnetors of kT , whih is a SSkT, then w() � w(b) 8 2 Cij and 8b 2 As,and hene also for all branhes b in kTi and kTj . It is lear, then, that the fundamental utsets ofk�1T 0ij also ful�ll the branh ondition, sine all the new hords are heavier than all branhes ofk�1T 0ij , and the old hords already ful�lled the branh ondition in kT , given that it is a SSkT.All the other omponents of kT are una�eted, and hene also ful�ll the branh ondition.The onnetor ondition is also ful�lled for k�1T 0, sine there is only one new branh, , whihwas hosen a minimum weight onnetor of kT , and the onnetors of k�1T 0 are C nCij .Theorem 3.20. Every SSkT of a graph with  onneted omponents is a subgraph of someSSk � 1T, provided that k > .
Proof. Sine k is larger than the number of onneted omponents of G, there must be at leastone onnetor of kT in G. Hene, it suÆes to hoose the onnetor with minimum weight andadd it to the original SSkT. The result, by Theorem 3.19, is a SSk � 1T.Theorem 3.21. Every SSkT kT of a graph G is a subgraph of some SSF of that graph.
Proof. Let  be the number of onneted omponents of G. While k > , it is possible,by Theorems 3.20 and 3.19, to onstrut a sequene of shortest spanning n-trees nT , withn = k; : : : ; , where  is the number of onneted omponents of the graph. It is lear that nT isa subgraph of mT whenever n � m. But T is a SSF of G (a spanning -tree of G is a spanningforest of G). Hene kT is a subgraph of T .Theorem 3.22. If kT (V;As) is a SSkT of graph G(V;A) and b is a branh of kT withmaximum weight, then kT � b is a SSk + 1T of G.
Proof. By hypothesis As is not empty (otherwise there would be no b). Sine b is maximum,i.e., b = argmaxa2As w(a), it is lear that w(b) � w(b0) 8b0 2 As.It is also lear, from the proof of Theorem 3.5, that k+1T 0 = kT � b is a spanning k + 1-tree ofG. Hene, by Theorem 3.18, it suÆes to show that the branh and onnetor onditions holdfor k+1T 0 in order to prove that k+1T 0 is indeed a SSk + 1T.Let C be the fundamental utset of kT relative to b. It onsists of one branh, b, and theremaining ars C n fbg are hords. When b is removed from kT , the ars in C, inluding thebranh b, hange their role to onnetors. The branh ondition must still be true, sine theonly hange to remaining branhes is that they may have lost some hords in their fundamentalutsets.The onnetor ondition holds for the onnetors of kT , whih are also onnetors of k+1T 0,sine the only hange was the disappearane of b. Sine b, now a onnetor, was hosen as
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a maximum weight branh of kT , the onnetor ondition holds for b. It remains to be seenthat the hords in C n fbg are indeed not lighter than any remaining branh. Sine the branhondition holds for kT , w(b) � w() 8 2 C n fbg. But b was hosen suh that w(b) � w(b0)8b0 2 As. Hene, w() � w(b) 8b 2 As and 8 2 C n fbg, and the onnetor ondition holds fork+1T 0.Theorem 3.23. Every SSkT of a graph G(V;A) has a subgraph whih is a SSk+1T, providedthat k < #V.
Proof. Sine k is smaller than the number of verties of G, there must be at least one branhin kT . Hene, it suÆes to hoose the branh with maximum weight an remove it from theoriginal SSkT. The result, by Theorem 3.22, is a SSk + 1T.Theorem 3.24. Given a SSF F(V;As) = T (V;As) of a graph G(V;A) with  onnetedomponents, a SSkT may be obtained, provided that k � #V, by removing from F a set B ofk �  branhes hosen so that w(b) � w(b0) 8b 2 B and 8b0 2 As nB.
Proof. Apply Theorem 3.22 repeatedly.
AlgorithmsTheorem 3.19 proves that, at step n of the Kruskal algorithm, the forest of seleted branhes isa SS#V�nT of the graph G(V;A).9 This is so beause, in Kruskal's algorithm, the ars enterthe forest in non-dereasing weight order, and only if they are onnetors, i.e., if they onnettwo trees in the forest (hords are disarded). Hene, Theorem 3.19 is appliable at eah step.Sine the spanning #V-tree with no ars is indeed a SS#VT, it is obvious, by indution, thatat eah step of the Kruskal algorithm one has a SSkT.Also, if a SSF F of a graph G is available, one an ut forest branhes suessively, aording toTheorem 3.24, and thus obtain a sequene of SSkT, with inreasing k. Even though this methodis not very eÆient, it has a nie parallel with a similar algorithm whih an be used to obtainSSSSkTs (to be de�ned later) of a graph. This type of algorithms will be alled destrutive,sine they ahieve the desired result by removing branhes from a SSF, i.e., by destroying aSSF. The Kruskal algorithm, on the other hand, will be termed onstrutive.
Shortest seeded spanning k-treesDe�nition 3.63. (shortest seeded spanning k-tree) A n-seed respeting spanning k-tree ofa graph is a SSSkT (Shortest Seeded Spanning k-Tree) of that graph if no other seeded spanningk-tree exists with a smaller weight.9At step 0, i.e., before the �rst branh is inserted, the forest has no ars and hene has #V omponents(trees).
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De�nition 3.64. (smallest shortest seeded spanning k-tree) If a SSSkT is also smallest,i.e., k is as small as possible, then it will be alled a SSSSkT (Smallest Shortest Seeded Spanningk-Tree).Theorem 3.25. The onneted omponents kTi(Vi;Asi), with i = 1; : : : k, of a SSSkTkT (V;As) of a graph G(V;A), are SSTs of the subgraphs Gi indued in G by the orrespondingset of verties Vi.
Proof. Let Gi(Vi;Ai) be the subgraph of G indued by the verties Vi of a tree kTi of kT .Suppose kTi is not a SST of Gi. Then it is possible to hose another tree spanning Gi with asmaller weight than kTi (hoose a SST of Gi), without hanging the weight assoiated to theother omponents of kT and thereby reduing the weight of kT . But this is a ontradition,sine Tk is a SSSkT of G. Hene, kTi is indeed a SST of Gi, for i = 1; : : : ; k.Lemma 3.26. Consider two (unique) paths P = v0; vf -path � A and P0 = v00; vf -path � A ina tree T (V;A). If v0 6= v00, then the ring sum P�P0 of P and P0 is a v0; v00-path in T .
Proof. Let v be the �rst vertex in ommon betweenP and P0, starting in v0 and v00, respetively.Let P1 and P2 be the segments of P before and after v, respetively, i.e., P1 = v0; v-path andP2 = v; vf -path. De�ne P01 and P02 similarly.10 Clearly, P = P1 [P2 and P0 = P01 [P02. Sinein a tree there is a single path between any two verties, see Theorem 3.1, it is obvious thatP2 = P02. On the other hand, by onstrution, P1 \P01 = ;. Hene, P�P0 = P1 [P01, that is,a path between v0 and v00.Lemma 3.27. If P � A is a v0; vf -path and P0 � A is a v0; vf -path, i.e., both are pathsbetween the same end verties in a graph G(V;A), then the ring sum P � P0 of P and P0 iseither empty, a iruit, or a union of ar-disjoint iruits of G. Moreover, P�P0 is empty onlyif P = P0 and all iruits in P�P0 ontain ars from both paths.
Proof. Consider the subgraphs GP(VP;P) and GP0(VP0 ;P0) of G indued by P and P0, respe-tively. Let GP�P0(VP�P0 ;P�P0) be the subgraph of G indued by P�P0. Let v 2 VP [V0P.If v = v0, then its degree in GP�P0 will either be 0, if both paths share the same ar inident onv0, or 2 otherwise. The same goes for v = vf . If v 6= vo; vf , then its degree will either be 0, ifboth paths share the same pair of ars inident on v, 2 if both paths share a single ar inidenton v, or 4, if the ars on both paths whih are inident on v are all di�erent. Clearly, vertiesof degree 0 do not belong to GP�P0 . Hene, graph GP�P0 is either empty or it ontains onlyverties with degrees 2 and 4, i.e., it is either a iruit or a union of ar-disjoint iruits.That the iruits ontain ars from both paths is obvious, for otherwise one of the paths wouldontain a iruit, whih annot happen by de�nition.Lemma 3.28. Let kT be a seeded spanning k-tree of graph G. Let C be a iruit in G. IfC ontains no onnetors, then C either ontains no separators or it ontains at least twoseparators.10The fat that one of these paths an be empty in no way invalidates the rest of the arguments.
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Proof. Let iruit C in graph G(V;A) onsist of the sequene v0; a1; v1; : : : ; vk, with v0 = vk.Let v0 belong to omponent kTi(Vi;Asi) of kT (V;As). This iruit onsists of branhes, hords,and separators of kT . Only the separators onnet verties of di�erent omponents of kT .Hene, if al is the �rst separator in the sequene above, vi 2 Vi with i < l. The separator alonnets omponent kTi with some omponent kTj , with i 6= j. If there is no other separatorin the sequene, then one similarly has to onlude that vi 2 Vj with i � l. But in that asev0 = vk 2 Vj , whih is a ontradition, sine v0 2 Vi, and Vi \Vj = ; for i 6= j. Hene, theremust be another separator in the sequene.Lemma 3.29. Let C be a iruit in graph G. Let kT be a seeded k-tree of G. If b 2 C is abranh of kT , then either:1. there is a onnetor  of kT in C; or2. b belongs to a fundamental path of some separator  of kT in C; or3. b belongs to the fundamental iruit of some hord  of kT in C.
Proof. The iruit C annot onsist solely of branhes of kT , sine a k-tree does not ontainany iruits. Hene, C must ontain at least one onnetor, separator or hord of kT .If C ontains at least one onnetor of kT , then 1 holds.If C does not ontain any onnetor of kT , then it must ontain at least one separator or hord.If it ontains a separator, then, by Lemma 3.28, it ontains at least two suh separators. Let kTibe the omponent of kT ontaining b. Let b belong to a path P between two separators in C (itis lear that b must belong to one suh paths). Let 1 and 2 be the orresponding separatorsand let v1 and v2 be the two verties in kTi whih are end verties of 1 and 2, respetively.Clearly, P is a v1; v2-path. If P1 and P2 are the restritions to kTi of the fundamental pathsassoiated to 1 and 2, then it is lear that P1 = v1; si-path and P2 = v2; si-path, where si isthe seed of kTi in kT . Hene, by Lemma 3.26, P12 = P1 �P2 = v1; v2-path is a path betweenv1 and v2 in kTi. Now either b belongs to P1 or P2, and 2 holds, or it does not. Suppose it doesnot. Then paths P and P12 between v1 and v2 are di�erent, given that b belongs to the formerbut not to the latter. By Lemma 3.27, P � P12 is a iruit or a sum of ar-disjoint iruits ofGi, the subgraph of G indued by the verties of kTi. Moreover, b 2 P�P12, sine it does notbelong to P12. It is lear that b belongs to one of the ar-disjoint iruits in P�P12. Let it beiruit C0 in Gi. C0 an be written as the ring sum of the fundamental iruits orresponding tothe hords of kTi in C0 and b ours in an odd number of these fundamental iruits. Notie thatthe hords of these fundamental iruits all belong to P, and hene to C, sine P12 ontainsonly branhes of kTi. That is, 3 holds.If C does not ontain any separator, then it onsists solely of branhes and hords. Hene, byLemma 3.17, it an be expressed as a ring sum of the fundamental iruits of kT orrespondingto the hords of kT in C and b ours in an odd number of these fundamental iruits. Thatis, 3 holds.Lemma 3.30. Let kT be a seeded k-tree of a graph G. Let P be a path in G onneting twoseeds s1 and s2, i.e., P is a s1; s2-path. If P ontains no onnetors of kT , then it must ontainat least one separator.
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Proof. Suppose P, whih has no onnetors of kT , also does not have separators of kT . ThenP onsists only of hords and branhes of kT . Hene, by a reasoning similar to the one in theproof of Lemma 3.28, one has to onlude that s2 belongs to the same omponent of kT as s1.But this is a ontradition, sine kT respets seed separation by hypothesis. Hene, there mustbe separators in P.
Lemma 3.31. Let kT be a seeded k-tree of a graph G. Let P be a path in G onneting twoseeds s1 and s2, i.e., P is a s1; s2-path. If b 2 P is a branh of kT , then either:1. there is a onnetor  of kT in P; or2. b belongs to a fundamental path of some separator  of kT in P; or3. b belongs to the fundamental iruit of some hord  of kT in P.
Proof. If P ontains at least one onnetor of kT , then 1 holds.If P does not ontain any onnetors, then, by Lemma 3.30, it must ontain at least oneseparator of kT . Removal of the separators of kT from P segments the path into a series ofshorter paths eah inside a single omponent of kT . Branh b belongs to one of these segments.If branh b belongs to a segment of path P12 between two separators 1 and 2 of kT , then,using the same arguments as in the proof of Lemma 3.29, either b belongs to a fundamentalpath of one of the separators 1; 2 2 P, and 2 holds, or b belongs to a fundamental iruit ofsome hord  2 P12 � P, and 3 holds.Otherwise, b belongs to a segment P0 of path P between a seed si and a separator 0. Thissegment ontains only branhes or hords of kT . Hene, it is ontained in the omponentkTi of kT to whih si belongs. Consider the restrition P00 of the fundamental path of kTorresponding to 0 to the omponent kTi. Clearly, P00 ontains only branhes of kT . It is alsolear that both paths onnet si and the end vertex vi of 0 inside kTi. If b belongs to P00, then2 holds. Otherwise, b is in P0 � P00, whih, aording to Lemma 3.27, is a iruit or a sum ofiruits. Hene, b must be in the fundamental iruit of some hord  in P0 � P00. Sine P00ontains only branhes of kT ,  must belong to P0 and hene to P. That is, 3 holds.
Theorem 3.32. (branh, hord, onnetor, and separator onditions) Let kT (V;As)be a spanning k-tree of graph G(V;A) respeting the set S = fs1; : : : ; sng � V of n seed vertiesof G. Consider the following statements:1. kT is a SSSkT of G.2. (branh ondition) w(b) � w() for any branh b of kT and for any hord  in theorresponding fundamental utset relative to kT .3. (hord ondition) w(b) � w() for any hord  of kT and for any branh b in the orre-sponding fundamental iruit relative to kT .4. (onnetor ondition) w() � w(b) for any branh b and for any onnetor  of kT .5. (separator ondition) w() � w(b) for any separator  of kT and for any branh b in theorresponding fundamental path relative to kT .If a seeded spanning k-tree kT is also a SSSkT, then branh, hord, onnetor, and separator
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onditions are true for kT , i.e., 1) 2 ^ 3 ^ 4 ^ 5:On the other hand, the onnetor and separator onditions together with either the branh orthe hord onditions are suÆient to guarantee that a spanning k-tree is a SSSkT, i.e.,2 ^ 4 ^ 5) 1, and3 ^ 4 ^ 5) 1:
Proof. It will �rst be shown that 2 , 3. Then, it suÆes to show that 1 ) 3, 1 ) 4, 1 ) 5,and 3 ^ 4 ^ 5) 1.Let Gi be the subgraph of G indued by the verties of the onneted omponent kTi of kT .2, 3, 1) 3, 1) 4: The arguments are similar to the ones used in the proof of Theorem 3.18.Notie that the derived spanning k-tree is still respeting of the set of seeds in all ases.1) 5 (or :5) :1): Let  be a separator of a seeded spanning k-tree kT andP its orrespondingfundamental path. If there is any b 2 P suh that w(b) > w(), then kT � b+ , whih is learlystill a seeded spanning k-tree of G, has a smaller weight than kT . Hene, kT annot be a SSSkT.3 ^ 4 ^ 5 ) 1: Assume 3, 4, and 5 hold for kT (V;As). Let kT 0(V;A0s) be a SSSkT of G, forwhih, as was already proven, 3, 4 and 5 hold. It will be shown that kT 0 an be made equal tokT through a series of simple operations whih neither inreases nor dereases the total weightW (A0s; w). This proves that kT is indeed a SSSkT, sine W (As; w) =W (A0s; w).If kT and kT 0 are equal, then kT is also a SSkT. Suppose then that kT and kT 0 are di�erent.Sine kT and kT 0 are both spanning k-trees, both ontain the same number of ars of G:#As = #A0s. Hene, there is an equal non-zero number of ars in As nA0s and A0s nAs. Thears in A0s nAs are hords, onnetors or separators of kT and branhes of kT 0 and vie versa.
i. Suppose there is a hord  of kT whih is also a branh of kT 0. Let C be the orrespondingfundamental iruit in kT . Sine 3 holds for kT , w() � w(b) for all b 2 C. By Lemma 3.29,either:1. there is a onnetor b of kT 0 in C, in whih ase, sine 4 holds for kT 0, w(b) � w();2.  belongs to the fundamental path of some separator b of kT 0 in C, in whih ase,sine 5 holds for kT 0, w(b) � w(); or3.  belongs to the fundamental iruit of some hord b of kT 0 in C, in whih ase, sine3 holds for kT 0, w(b) � w().In either ase, both w() � w(b) and w() � w(b), that is, w(b) = w() and kT 0 �  + b isstill a seeded spanning tree respeting the same set of seeds. That is, in either ase, thebranh  of kT 0 an be substituted by the branh b of kT in kT 0. Repeating this proesswhile there are branhes of kT 0 whih are hords of kT , suh ars are eliminated from kT 0without hanging its global weight W (A0s; w).If kT 0 = kT after this proess, then kT is indeed a SSSkT. If not, then there must be somebranh b of kT whih is not in kT 0 and vie versa.
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ii. Suppose there is a branh b of kT whih is also a hord of kT 0. Let C0 be its orrespond-ing fundamental iruit in kT 0. Sine 3 holds for kT 0, w(b) � w() for all  2 C0. ByLemma 3.29, either:1. there is a onnetor  of kT in C0, in whih ase, sine 4 holds for kT , w() � w(b);2. b belongs to the fundamental path of some separator  of kT in C0, in whih ase,sine 5 holds for kT , w() � w(b).Notie that ase 3 of Lemma 3.29 annot happen, sine all branhes of kT 0 whih are hordsof kT have already been removed (see step i. above).In either ase, both w(b) � w() and w(b) � w(), that is, w(b) = w() and kT 0 �  + b isstill a seeded spanning tree respeting the same set of seeds. That is, in either ase, thebranh  of kT 0 an be substituted by the branh b of kT in kT 0. Repeating this proesswhile there are branhes of kT whih are hords of kT 0, suh ars are introdued into kT 0without hanging its global weight W (A0s; w).If kT 0 = kT after this proess, then kT is indeed a SSSkT. If not, then there must be somebranh b of kT whih is not in kT 0 and vie versa.iii. Suppose there is some separator  of kT whih is also a branh of kT 0. Let P be itsorresponding fundamental path in kT . Sine 5 holds for kT , w() � w(b) for all b 2 P.By Lemma 3.31, either:1. there is a onnetor b of kT 0 in P, in whih ase, sine 4 holds for kT 0, w(b) � w();2.  belongs to the fundamental path of some separator b of kT 0 in P, in whih ase,sine 5 holds for kT 0, w(b) � w().Notie that ase 3 of Lemma 3.31 annot happen, sine all branhes of kT whih are hordsof kT 0 have already been removed (see step ii. above).In either ase, both w() � w(b) and w() � w(b), that is, w(b) = w() and kT 0 �  + b isstill a seeded spanning tree respeting the same set of seeds. That is, in either ase, thebranh  of kT 0 an be substituted by the branh b of kT in kT 0. Repeating this proesswhile there are branhes of kT 0 whih are separators of kT , suh ars are eliminated fromkT 0 without hanging its global weight W (A0s; w).If kT 0 = kT after this proess, then kT is indeed a SSSkT. If not, then there must be somebranh b of kT whih is not in kT 0.iv. Suppose there is some branh b of kT whih is also a separator of kT 0. Let P0 be itsorresponding fundamental iruit in kT 0. Sine 5 holds for kT 0, w(b) � w() for all  2 P0.By Lemma 3.31:1. there is a onnetor  of kT in P0, in whih ase, sine 4 holds for kT , w() � w(b);Notie that ase 3 of Lemma 3.31 annot happen, sine all branhes of kT 0 whih are hordsof kT have already been removed (see step i. above). Also, ase 2 of Lemma 3.31 annothappen, sine all branhes of kT 0 whih are separators of kT have already been removed(see step iii. above).In either ase, both w(b) � w() and w(b) � w(), that is, w(b) = w() and kT 0 �  + b isstill a seeded spanning tree respeting the same set of seeds. That is, in either ase, thebranh  of kT 0 an be substituted by the branh b of kT in kT 0. Repeating this proess
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while there are branhes of kT whih are separators of kT 0, suh ars are eliminated fromkT 0 without hanging its global weight W (A0s; w).If kT 0 = kT after this proess, then kT is indeed a SSSkT. If not, then there must be somebranh b of kT whih is not in kT 0.v. At this point, if b is a branh of kT whih is not in kT 0, then b is a onnetor of kT 0, sineall branhes of kT whih were hords and separators of kT 0 have been eliminated in steps ii.and iv. Conversely, if  is a branh of kT 0 whih is not in kT , then  is a onnetor of kT ,sine all branhes of kT 0 whih were hords and separators of kT have been eliminated insteps i. and iii. Moreover, for eah b as stated, there is a  (remember that kT and kT 0 havethe same number of ars). Thus, both w() � w(b) and w(b) � w(), i.e., w() = w(b).Also, kT 0 �  + b is still a seeded spanning tree respeting the same set of seeds. That is,the branh  of kT 0 an be substituted by the branh b of kT in kT 0. Repeating this proesswhile there are branhes of kT whih are onnetors of kT 0, suh ars are eliminated fromkT 0 without hanging its global weight W (A0s; w).

After all the above steps, it is obvious that kT 0 = kT . Hene, sine the weight of kT 0 neverhanged along the proess, kT is indeed a SSSkT of G.Corollary 3.33. A SSSkT is also a SSSSkT i� it has no onnetors and the hord (or branh)and separator onditions hold (see Theorem 3.32).
Proof. The result is immediate from Theorems 3.8 and 3.32.Theorem 3.34. If kT (V;As) is a SSSkT of graph G(V;A) and  is a onnetor of kT withminimum weight, then kT +  is a SSSk � 1T of G.
Proof. Let C be the set of onnetors of kT , whih by hypothesis is not empty (otherwise therewould be no ). Sine  is a minimum weight onnetor, then w() � w(0) 80 2 C n fg.It is lear, from the proof of Theorem 3.9, that k�1T 0 = kT +  is a seeded spanning k � 1-treeof G respeting the same set of seeds. Hene, by Theorem 3.32, it suÆes to show that branh,onnetor, and separator onditions hold for k�1T 0 in order to prove that k�1T 0 is indeed aSSSk � 1T.Sine  is a onnetor of kT , it has end verties in two di�erent omponents of kT , say kTi andkTj , with i 6= j. Let Cij be the set of onnetors between these two omponents. Let k�1T 0ijbe the union of kTi with kTj through  in k�1T 0. The set Cij is learly the fundamental utsetorresponding to the branh  in k�1T 0. Sine  is a minimum weight onnetor of kT and allars in Cij are onnetors of kT , it is lear that the branh ondition is valid for branh  ink�1T 0.The ars in Cij n fg are learly all hords of k�1T 0, in partiular of omponent k�1Tij . Sinethese ars are also onnetors of kT , whih is a SSSkT, then w() � w(b) 8 2 Cij and 8b 2 As,and hene for all branhes b in kTi and kTj . It is lear, then, that the fundamental utsets ofk�1T 0ij also ful�ll the branh ondition, sine all the new hords are heavier than all branhes of



60 CHAPTER 3. GRAPH THEORETIC FOUNDATIONS FOR IMAGE ANALYSISk�1T 0ij , and the old hords already ful�lled the branh ondition in kT , given that it is a SSSkT.All the other omponents of kT are una�eted, and hene also ful�ll the branh ondition.The onnetor ondition is also ful�lled for k�1T 0, sine there is only one new branh, , whihwas hosen a minimum weight onnetor of kT , and the onnetors of k�1T 0 are C nCij minuspossibly some new separators (see below).It remains to hek whether the separator ondition still holds. It is lear that separators ofkT are also separators of k�1T 0 with the same fundamental paths. Sine kT is a SSSkT, theseparator ondition holds for the separators of k�1T 0 whih already were separators of kT .However, the union of kTi with kTj through  may have reated some new separators.If both kTi and kTj are seedless in kT , then no new separators were reated, and hene theseparator ondition holds for k�1T 0.Otherwise, only one of kTi and kTj may have ontained a seed. Without loss of generality,suppose it is kTi. Then all onnetors of kTj , whih is seedless in kT , to some seeded omponentof kT will beome separators. But, sine these onnetors of kT ful�ll the onnetor ondition,they are heavier than any branh in kT . Hene, they are also heavier than any branh in theirorresponding fundamental paths in k�1T 0. Hene, the separator ondition holds for k�1T 0.Corollary 3.35. All SSSkT whih are not smallest are subgraphs of some SSSk � 1T.
Proof. By Theorem 3.8, there must be at least one onnetor in kT . The result is immediatefrom Theorem 3.34.Theorem 3.36. If kT (V;As) is a SSSkT of graph G(V;A) and b is a branh of kT withmaximum weight, then kT � b is a SSSk + 1T of G for the same set of seeds.
Proof. By hypothesis As is not empty (otherwise there would be no b). Sine b is maximum,i.e., b = argmaxa2As w(a), it is lear that w(b) � w(b0) 8b0 2 As.It is also lear, from Theorem 3.10, that k+1T 0 = kT � b is a seeded spanning k+1-tree of G forthe same set of seeds. Hene, by Theorem 3.32, it suÆes to show that the branh, onnetor,and separator onditions hold for k+1T 0 in order to prove that k+1T 0 is indeed a SSSk + 1T.Let C be the fundamental utset of kT relative to b. It onsists of one branh, b, and theremaining ars C n fbg are hords. When b is removed from kT , the ars in C, inluding thebranh b, hange its role to onnetors, sine at most one of the resulting onneted omponentsis seeded. The branh ondition must still be true, sine the only hange to remaining branhesis that they may have lost some hords in their fundamental utsets.The onnetor ondition holds for the onnetors of kT , whih are also onnetors of k+1T 0,sine the only hange was the disappearane of b. Sine b, now a onnetor, was hosen asa maximum weight branh of kT , the onnetor ondition holds for b. It remains to be seenthat the hords in C n fg are indeed not lighter than any remaining branh. Sine the branhondition holds for kT , w(b) � w() 8 2 C n fbg. But b was hosen suh that w(b) � w(b0)8b0 2 As. Hene, w() � w(b) 8b 2 As and 8 2 C n fbg.
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The only further hange to the lass of ars is that some separators in kT may have hanged toonnetors in k+1T 0. Let k+1T 0i and k+1T 0j be the two omponents whih resulted from removingb from its omponent kTl in kT .If kTl is seedless, so are k+1T 0i and k+1T 0j , and no separators hanged to onnetors.Otherwise, suppose, without loss of generality, that k+1T 0i ontains the seed of kTl. Then,separators onneting to verties in k+1T 0j are now onnetors. The fundamental paths of theseseparators all inluded the branh b, sine there is only one path between two verties in a treeand the seed is on k+1T 0j . Sine these separators ful�lled the separator ondition, and sine bis a maximum weight branh of kT , it is obvious that the new onnetors are heavier than anybranh in k+1T 0. Hene, the onnetor ondition holds for k+1T 0.The separators of kT whih are also separators of k+1T 0 maintain their fundamental paths.Hene, the separator ondition holds for k+1T 0.Corollary 3.37. Every SSSkT of a graph G(V;A) has a subgraph whih is a SSSk+ 1T of Gwith the same set of seeds, provided that k < #V.
Proof. Sine k is smaller than the number of verties of G, there must be at least one branhin kT . Hene, it suÆes to hoose the branh with maximum weight and remove it from theoriginal SSSkT. The result, by Theorem 3.36, is a SSSk+1T of G with the same set of seeds.Theorem 3.38. All SSSkT of a graph are subgraphs of some SSSSk0T of the same graph withthe same set of seeds.
Proof. Let kT be a SSSkT of a graph G with  onneted omponents and 0 seedless onnetedomponents. Let kT respet a set of n seeds. Aording to Theorem 3.6, any SSSSk0T of G hask0 = n+0. Clearly, k � k0. If Theorem 3.34 is applied suessively to kT , thereby onstruting asequene kT ; k�1T ; : : : ; n+0T by insertion at eah step of a lightest onnetor, the �rst elementof the sequene, kT , is a subgraph of the last element of the sequene, n+0T = k0T , whih is aSSSSk0T.Theorem 3.39. All SSSSkT of a graph G(V;A) have subgraphs whih are SSSk0T of G withthe same set of n seeds, provided that k � k0 � #V.
Proof. From a SSSSkT kT , it is obvious that, by suessive removal of a heaviest branh, onean build a sequene kT ; k+1T ; : : : ; k0T whose elements are all subgraphs of kT , and all shortest,aording to Theorem 3.36. Hene, element k0T is a SSSk0T as required.Lemma 3.40. Let F be a spanning forest of a graph G. Let v1 and v2 be two di�erent butonneted verties of G. Let P be the v1; v2-path in F . If b is a branh of F whih is also inP and  a hord in its fundamental utset, then the ring sum of the ars in P with the arsin the fundamental iruit C assoiated with  is the unique v1; v2-path in the spanning forestF � b+ .
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Proof. First notie that b belongs to both P and C, and that  belongs to C but not to P,sine P ontains only branhes of F . Also notie that F � b+  is still a spanning forest of G.Let va be the �rst vertex in C found when sanning all verties of P starting from v1. Similarly,let vb be the �rst vertex in C found when sanning all verties of P starting from v2.Suppose va = vb. Sine paths have no repeated verties, this implies that P and C touh onlyat a single vertex, and hene do not have ommon ars, whih annot happen by hypothesis,sine b is a ommon ar. Hene, va 6= vb.The two verties va and vb divide iruit C into two segments C1 and C2, eah a disjointva; vb-path. The hord  either belongs to C1 or C2. Suppose, without loss of generality, thatit belongs to C2. Then, C1 is omposed solely of branhes of F : it is the va; vb-path in F .Similarly, the two verties va and vb divide path P into three segments, all ar-disjoint pathsin F : the v1; va-path P1a, the va; vb-path Pab, and the vb; v2-path Pb2. It is obvious, then, thatPab = C1, sine paths are unique in forests, by Theorem 3.2. It is also lear that P1a \C2 =P2b \C2 = ;, by seletion of v1 and v2. Thus, P \C = C1 and b 2 C1.The ring sum of P and C is thus,P�C == (P [C) n (P \C)= (P1a [Pab [Pb2 [C2) n (Pab)= P1a [Pb2 [C2;whih is obviously a v1; v2-path. This path is omposed solely of branhes of F exept for onehord,  2 C2, and it does not ontain branh b 2 C1. Hene, this path belongs to the spanningforest F � b+ .Theorem 3.41. Let F(V;As) = T (V;As) be the SSF of a graph G(V;A) with  onnetedomponents, and let S be a set of n seed verties. Suppose there are 0 seedless and 00 seededonneted omponents of G, i.e.,  = 0 + 00. A SSSSkT, with k = n + 0, may be obtained bysuessively removing from F a set of k �  = n+ 0 �  = n� 00 branhes hosen so that eahis, at its step, the heaviest branh on all possible paths in the k-tree between pairs of di�erentseeds.
Proof. It will be proved that the hosen branhes lead to a set of separators whih ful�ll theseparator ondition.If 00 = n, then the seeds are already separated, and the SSF F is indeed a SSSSkT of G, sinethere is no spanning k0-tree with a smaller k0 nor a spanning k tree with a smaller weight.Assume that the set of seeds S is initially partitioned into subsets S = S1 [ � � � [ S, eahontaining the seeds in onneted omponent Gi of G. Clearly Si = ; if Gi is a seedless omponentof G, and hene there are 0 empty sets Si. Let Fi be the onneted omponent of F overingGi. When the heaviest branh in any path between two seeds is removed from F , it is removedfrom one of its omponents, say Fi. Hene, Fi is separated into two onneted omponents,eah ontaining a non-empty set of seeds. The subset Si of S an be split into the orresponding
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seeds. This proess ends when all sets in the partition of S, eah orresponding to a tree, ontaineither zero or one seed. The number of seedless Si does not hange while branhes are removed.Hene, the �nal number of trees is 0 + n, as required. Sine initially there were  onnetedomponents and a onneted omponent is added for eah removed branh, the total numberof removed branhes is 0 + n�  = n� 00. For eah omponent Fi of F with ni seeds, exatlyni � 1 branhes are removed so as to separate its seeds. Hene, attention an be onentratedon eah omponent at a time. The removal of the branhes as stated indeed leads to a n-seedrespeting spanning 0 + n-tree of G. It remains to be seen whether it is shortest.Let Fi be a omponent of F ontaining ni > 1 seeds. Clearly, ni � 1 branhes will be removedfrom Fi. Sine Fi is a SST of the orresponding onneted omponent Gi of G, see Corollary 3.14,the hords of Fi in Gi ful�ll the hord ondition. When the heaviest branh b in any path betweenseeds in Fi is removed, it beomes a onnetor of the spanning 2-tree obtained, the same thinghappening with all the hords in the orresponding fundamental utset. All these onnetorsonnet seeded trees, and hene, even though eah of the resulting trees may have more thanone seed, they are separators. Atually, they will be separators in the �nal ni-tree overingFi. Sine b is the heaviest branh in any path between two seeds in Fi, it ful�lls the separatorondition for whatever resulting �nal partition of seeds among the trees.Consider now a hord  in the fundamental utset of b, C its fundamental iruit, and onsideralso any path P between two seeds of Fi whih ontains b. By Lemma 3.40, C�P is the pathbetween the same two seeds in F � b + . Sine w() � w(b0) for all b0 2 C (hord onditionis ful�lled for Fi), w(b) � w(b00) for all b00 2 P (by seletion of b), and b is ommon to C andP, then w() � w(b00) for all b00 2 P. Sine this happens for all paths,  ful�lls the separatorondition for whatever resulting �nal partition of seeds among the trees.Hene, by repeating the above arguments for any omponent trees with more than two seeds, itis lear that the removal of the seleted branhes leads to a n-seed respeting spanning 0 + n-tree whih ful�lls the hord, onnetor and separator onditions (the onnetor ondition isful�lled trivially sine there are no onnetors in the �nal seeded 0 + n-tree), and hene, byCorollary 3.33, it is a SSSS0 + nT.
Theorem 3.42. Let kT (V;As) be the SSSSkT of a graph G(V;A) with  onneted om-ponents, respeting the set S of n seed verties. Suppose there are 0 seedless and 00 seededonneted omponents of G, i.e.,  = 0+ 00. A SSF of G may be obtained by suessively addingto kT a set of k �  = n + 0 �  = n � 00 separators hosen so that eah is, at its step, thelightest onnetor of any two trees in the urrent forest.
Proof. It is lear that after k �  insertions of new branhes into the forest whih initially iskT , with k omponents, the resulting forest has k � k +  =  omponents as required. Thatthis is possible is evident, sine G has  omponents and thus is spannable by a forest with omponents.It remains to be seen whether the �nal spanning forest F ful�lls the hord ondition.The hords of kT are learly also hords of F with the same fundamental iruit. Sine, byTheorem 3.33, they ful�ll the hord ondition in kT , they also ful�ll it in F .
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Eah time a separator  is introdued to the forest, it beomes a branh whose fundamentalutset orresponds to the other separators 0 onneting the two trees onneted by . Byseletion, w(0) � w(). Let P and P0 be the fundamental paths assoiated to  and 0 in kT .Then, w() � w(b) for all b 2 P and w(0) � w(b) for all b 2 P0. By Lemma 3.27, P � P0,whih annot be empty sine 0 62 P and  62 P0, is a iruit or a sum of ar-disjoint iruits.Sine P�P0 ontains a single hord, it an only ontain one iruit, sine otherwise there wouldbe a hordless iruit in the forest. This iruit is the fundamental iruit of 0 and, from therelations above, w(0) � w(b) for all b 2 P � P0. Hene, when a new branh is introdued asspei�ed, the orresponding new hords ful�ll the hord ondition. Hene, by Theorem 3.11,the �nal spanning forest is indeed a SSF of G.
AlgorithmsThere are essentially two types of algorithms for �nding a SSSkT of a graph, as was hintedbefore: onstrutive algorithms and destrutive algorithms. The problem of �nding a SSSSkTof a graph is a partiular ase where k = n+ 0, 0 being the number of seedless omponents ofthe graph and n the number of seeds.
Construtive algorithmsTwo basi onstrutive algorithms an be developed for �nding the SSSSkT of a graph. Bothare based on Kruskal and Prim, and an be proven orret using the following theorem:Theorem 3.43. Let G0(V0;A0) be the extension of a graph G(V;A) with an assoiated setof n > 0 seed verties S = fs1; : : : ; sng, suh that V0 = V [ fveg and A0 = A [ Ae, withAe = Sni=1faeig, where ve is an extra, external vertex, and aei are extra ars, onneting theextra vertex to eah seed vertex, i.e., g(aei) = fve; sig. Let the weight of the extra ars be stritlysmaller than any other ar in the graph, i.e., w(aei) < w(a) for all a 2 A with i = 1; : : : ; n. Ifthe forest F 0(V0;A0s) is a SSF of G0, then F 0 � ve is a SSSSkT of G for the given set of seeds.
Proof. The ars of G0 in Ae, i.e., the extra ars, must be branhes of F 0. Suppose that there isan ar aei whih is not a branh of F 0, i.e., it is a hord of F 0. Let C be its fundamental iruit.C annot onsist only of ars in Ae, sine by onstrution all ars in Ae onnet to a di�erentseed. Let then b be a branh of F 0 in C whih is an ar of G. By hypothesis w(b) > w(aei),and, by the hord ondition for SSF in Theorem 3.11, w(b) � w(aei). This is a ontradition.Hene, aei is a branh of F 0.The removal of ve from F 0 also removes all branhes of F 0 that are inident on ve, i.e., the nars in Ae. Hene, F 0� ve ontains only verties and branhes of G. Sine V0 = V[ ve, F 0� veontains all verties of G, hene, F 0�ve spans G. Sine F 0 is a forest, and hene ayli, F 0�vemust also be ayli. Hene, F 0 � ve is a spanning forest of G.It is lear that, if G has  = 0 + 00 onneted omponents, of whih 0 are seedless and 00 areseeded, G0 has 0+1, sine all seeded onneted omponents are onneted through the extra arsin Ae to one another. By de�nition of spanning forest, F 0 has also 0+1 onneted omponents.
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The removal of eah ar in Ae from F 0 inreases the number of onneted omponents by one,hene F 0 � ae1 � � � � � aen has + 1 + n onneted omponents. Finally, removal of ve reduesthe number of onneted omponents by one, that is, F � ve has 0 + n onneted omponents,and spans the graph G. Hene, it is a spanning n+ 0-tree of G.Suppose there is a si; sj-path P between to seeds si and sj of S in F 0 ontaining only ars ofG. Then, P; aej ; ve; aei ; si is learly a iruit in F 0, whih is a ontradition, sine F 0 is a forestand hene ayli. This proves that all paths between seeds must pass though the vertex ve andtwo extra ars. That is, F � ve respets seed separation. Hene, F � ve is a n-seed respetingspanning n + 0-tree of graph G with seeds S. It is also smallest, by Theorem 3.6, sine it hasthe right number of onneted omponents, and thus, by Theorem 3.8, it has no onnetors.It remains to be seen whether it is a SSSSkT. By Corollary 3.33, if F 0 � ve ful�lls the hordand separator onditions, then indeed it is a SSSSkT.Let  be a hord of F 0. If its fundamental iruit inludes only ars of G, this iruit will remainunaltered in F � ve. Hene,  is also a hord of F 0 � ve. Sine, by Theorem 3.11 the hordondition holds for all hords of F 0, it also holds for .Let  be a hord of F 0. If its fundamental iruit inludes any of the extra ars, then it annotbe a hord of F 0 � ve. Hene, it must be a separator. Let C be the fundamental iruit of  inF 0. It is straightforward to see that iruit C inludes exatly two ars of Ae, whih besides arein suession. Hene, iruit C orresponds in F 0� ve to the fundamental path of , onnetingtwo di�erent seeds. Sine the hord ondition holds for F 0, again by Theorem 3.11, w() � w(a)for all a 2 C and hene also in the fundamental path of  in F 0 � ve.Sine both hord and separator onditions hold for F 0 � ve, it is indeed a SSSSkT.
Suppose this theorem is used to develop a simple algorithm: build the SSF of the extendedgraph, using Kruskal's or Prim's algorithms, and then remove the extra vertex ve. Assume theinitial vertex in Prim's algorithm is the extra vertex ve. In both ases, it is straightforward tosee that the �rst n ars introdued into the forest are the extra ars. Sine all seeds, after the�rst n steps of eah algorithm, are onneted through ve, branhes whih would onnet twoonneted omponents with di�erent seeds in F � ve are automatially forbidden, sine theyare hords of F 0, i.e., they would introdue iruits in F 0.In the ase of the Kruskal algorithm, this amounts to extending the basi algorithm so that onlyonnetors, and not separators, are onsidered as andidate branhes. At eah step, the forestobtained is a SSSkT of the graph, by Theorem 3.34. This, of ourse, requires that separatorsare somehow distinguished from onnetors. This an be done by labeling the verties aordingto the seed of the omponent they belong to. It simply requires running a DFS (linear in thenumber of verties) to label the unlabeled omponent of two omponents onneted through anew branh. If the two omponents onneted are unlabeled, nothing needs to be done. Theoverall time spent in labeling is asymptotially linear on the number of branhes, and heneon the number of verties, i.e., O(#V). In total, sine only unlabeled verties are labeled, #Vverties are labeled. The running time of the algorithm thus does not hange asymptotially.
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In the ase of the Prim algorithm, this amounts to extending the basi algorithm so that initiallythere are n seeds instead of a single one. Sine the forest grows from seeds one vertex at a time,it is a simple matter to propagate seed labels along the verties of eah onneted omponent(a di�erent label for eah seed) so as to eliminate from onsideration ars onneting vertieswith di�erent labels. The reason for the use of the name \seed" for the verties that must bekept separate should now be lear. In this extension of the Prim algorithm, the set of seletedbranhes at eah step onstitutes a forest with n trees. Hene, 0+1 iterations of the algorithmare required, 0 using the simple version of the algorithm for eah seedless omponent of thegraph and another using the n seeds whih over the remaining seeded omponents. The sameresult may be obtained in a single iteration by inserting one �titious seed in eah seedlessomponent of the graph. Unlike what happens with the Kruskal extension for seeded k-trees,this extension of the Prim algorithm, though leading to a SSSSkT of the graph, does not havethe nie property of all intermediate forests being SSSkTs.Both algorithms are important beause of their uses in segmentation. Even though the issueof segmentation will be dealt with within Chapter 4, it may be advaned here that Prim'salgorithm is used mostly in region growing segmentation algorithms and Kruskal' algorithm isused mostly in region merging with seeds segmentation algorithms, and that, although bothalgorithms lead to SSSSkTs, their extensions by globalizing information have vastly di�erentproperties.
Destrutive algorithms
Destrutive algorithms start by building a SSF of the graph. Then, following Theorem 3.41,a SSSSkT an be obtained by utting appropriately hosen branhes of the forest. Curiouslyenough, the same method an be used, aording to Theorem 3.24, to obtain a SSkT of thegraph. The only di�erene between destrutive algorithms for �nding SSSSkTs or SSkTs iswhih branh to ut at eah step of the algorithm: for unseeded trees the heaviest among allforest branhes is hosen, while for seeded trees the heaviest of those branhes whose removalseparates seeds is hosen. Sine destrutive algorithms suessively remove branhes from aforest, eah time separating a onneted into two new onneted omponents, these algorithms,in the framework of image segmentation, are some times alled region splitting algorithms, seeChapter 4.If the Kruskal algorithm is used to build the SSF, sine it inserts forest branhes of non-dereasing weight, a list of the branhes of the forest sorted by non-inreasing order may be builtwithout hanging the asymptoti behavior of the algorithm. Hene, it will run in O(#A lg#A).Seletion of the heaviest branhes then takes linear time, that is O(k� ), sine k�  branhesmust be removed from the sorted list, eah removal taking a onstant time.If the Prim algorithm is used, a priority queue an be used to insert the branhes of the forest.If Fibonai priority queues are used, then eah insertion requires O(1) amortized time, so thatthe queue takes linear time, on #As = #V � , to build (see [28℄ for details). Hene, runningPrim and building the queue still takes O(#A+#V lg#V). Seletion of the heaviest branhesthen takes O�(k � ) lg(#V � )�, sine k �  branhes must be removed, one at a time, fromthe queue, eah removal taking O�lg(#V� )�, #V �  being the size of the queue.
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This was in the ase of the SSkT. The seletion of the branhes to remove in the ase of theSSSSkT is more involved, sine only those branhes whih stand in the path between two seedsshould be taken into aount. The following theorem will be used to build an algorithm whihsolves the problem in linear time, provided a list of branhes sorted by non-dereasing weight isavailable, as in the ase of the Kruskal algorithm for the destrutive onstrution of a SSkT froma SSF above. Even though there may be more eÆient algorithms, this proves that linear timealgorithms do exist, whih means that, if several di�erent sets of seeds are to be experimentedin building SSSSkTs, the SSF an be built one, followed by suessive appliations of anasymptotially linear time algorithm. If the number of experiments with sets of seeds is highenough, the overall eÆieny approximates linear time asymptotially. That is, the algorithmruns in asymptotially linear amortized time.Theorem 3.44. Let F be the SSF of a graph G. If kT is a SSSSkT of F , then kT is also aSSSSkT of G.
Proof. Clearly, kT has no hords in F , sine F is ayli. But kT may have separators (notonnetors, sine it is smallest). Suppose F has #V verties and  onneted omponents.Suppose 0 of them are seedless. It is known that k = n + 0, where n is the number of seeds.Also, the number of ars in kT is #V� n� 0 and the number of ars in F is #V� . Hene,there are n+0� = n�00 separators of kT in F , where 00 is the number of seeded omponentsof F .It is also lear that kT spans G, is ayli, does not violate seed separation, and has the rightnumber of onneted omponents to be smallest.The separators of kT in F are also separators of kT in G. Hene, they ful�ll the separatorondition. The ars of G whih are not branhes of F , i.e., hords of F , are either hords orseparators of kT .If their fundamental iruit C in F inludes a branh of F whih is a separator of kT , thenthey are themselves separators, sine they introdue no iruit in kT .Take one suh separator  of kT . Sine it is also a hord of F , it must ful�ll the hord onditionfor SSFs, that is w() � w(b) for all branhes b of F in C, inluding the separators of kT . Thefundamental path of  in kT is, by Lemma 3.40 (remember that  is in the fundamental utsetsof all branhes of its iruit), the ring sum of the path P between the two seeds in F and theiruit C. Sine the fundamental path inludes a single separator, , all branhes of F whihare separators of kT in C must also be in P. Hene, using Lemma 3.31, it must be onludedthat all ars in P are lighter than the heaviest separator in P, and hene  is heavier than anybranh of kT in its fundamental path. Hene, kT ful�lls the separator ondition.Let  now be a hord of F suh that its fundamental iruit does not inlude any separator ofkT . Then  is also a hord of kT and obviously ful�lls the hord ondition.Hene, kT is indeed a SSSSkT of G.
The Kruskal algorithm, with the seed extensions desribed previously, an thus be used toalulate the SSSSkT of the SSF, and onsequently of the graph. However, notie that:
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1. there is no need to initially sort the branhes of F , sine, by hypothesis, a sorted list isalready available.2. there is no need to test whether an ar introdues a iruit or not, sine F has no iruits.The analysis of the Kruskal algorithm with the above simpli�ations reveals that it runs indeedin linear time, i.e., O(#V).

Further notes on trees and algorithmsThere are some issues regarding shortest spanning (k-) trees and forests whih should be men-tioned here. The �rst has to do with the uniqueness of the solutions. In general, none of theproblems disussed so far (SSF, SSkT, SSSkT, SSSSkT) has a unique solution. It an be provedthat, if all ar weights are di�erent, then solutions are always unique, but this is a rather on-servative ondition. Less onservative onditions of uniqueness an be developed in eah ase,but this will not be attempted here. The onsequenes of non-uniqueness and ways of dealingwith the issue will be disussed in Chapter 4, in the framework of a partiular appliation:segmentation for image analysis.Seondly, it must be pointed out that in all onstrutive algorithms the addition of a branh tothe growing forest an be followed by a ontration of that branh in the original graph, followedpossibly by removal of self-onneting ars (whih in the unontrated graph are hords). Thisresults in ontration of the verties onneted by a tree in the evolving forest to a singlerepresentative vertex. The remaining ars of the graph retain their properties, and hene thealgorithms run exatly in the same manner with and without ontration. The proof of this fatis simple and will not be given here. Suh ontrations may be very useful, sine they allow eahomponent of the evolving forest, a segment or lass or region in the framework of segmentation,to be represented by a single vertex, hene simplifying possible region globalization proesses. Inthe ase of 2D maps, as will be seen in Setion 3.5, suh simpli�ations of the map graph an beaompanied by dual hanges in the border pseudograph, whih may be useful for globalizationof border information and even for ontour oding.
3.3.10 Graphs and lattiesThe oordinates vk of any site of a lattie L in Rm belong to Zm . A grid an thus be assoiatedwith a 2D lattie: eah vertex in the grid orresponds to a site in the lattie and vie versa.Lattie sites an be assoiated with grid verties through a site funtion: all sites s of a lattiean be written s = s[v℄ =Pm�1j=0 vjuj where v = [v0 : : : vm�1℄T 2 V = Zm . Figure 3.3 shows the2D retangular and hexagonal R 2 latties with the orresponding Z2 grids superimposed.Hene, a grid and a lattie are usually assoiated with a digital image: the latter spei�es thepositions of eah pixel in the original ontinuous image, while the former introdues a struture,or neighborhood system, into the set of image pixels. The type of grid seleted usually dependson the spatial arrangement of the sampling lattie sites: the hexagonal grid in Z2 is normallyassoiated with a hexagonal lattie in R 2 , i.e., when digitalization is performed through a
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(a) Retangular grid over ret-angular lattie. (b) Hexagonal grid overhexagonal lattie.
Figure 3.3: Examples of 2D latties with superimposed grids. Grid verties and lattie sitesare represented by dots and grid edges are represented by lines. The Voronoi tessellationorresponding to the lattie sites is shown using dotted lines.
hexagonal sampling lattie, it is natural to use a hexagonal grid for representing the relationsbetween the pixels.When digitizing, Z must be hosen suh that s[v℄ 2 R. Sine R is usually a bounded region(mostly a retangle), Z will also be bounded. The de�nition of grid given previously preludesthe use of a bounded set of verties, sine grids must be t-invariant. However, it is possibleto restrit the simple graph orresponding to an unbounded grid to the verties Z of interest.Hene, the graphs assoiated with digital images are usually not only simple, but also limited.From here on, the stress will be put on graphs, rather than grids, and thus G(Z;A) will alwaysrefer to a graph, usually a simple graph assoiated to either an image or a sequene of imagesde�ned either on Z � Z2 or on N� Z � Z3 .De�nition 3.65. (image graph) A graph where the verties orrespond to the image pixelsand there are ars between pixels whih are geometrial neighbors in the impliit sampling lattie.Often a single extra external vertex is added to represent the outside of the image whih isadjaent to all pixels in the boundary of the image. It may be neessary to allow the imagegraph to be a multigraph. This happens when it is important to establish a orrespondenebetween its ars and the edges (to be de�ned later) between pixels. In this ase, the orner pixelsin a retangular lattie on a retangular domain may have two ars onneting them to the extraexternal pixel.
In image graphs there is an impliit neighborhood system. The retangular 2D graph, obtainedfrom the retangular grid, de�nes a N4 neighborhood system,11 where eah vertex has fourneighbors, as shown in Figure 3.4(a). Similarly a N6 neighborhood system is assoiated with the11A neighborhood system is Nn if eah vertex in the graph has n neighbors, exept possibly at the limits ofthe graph.
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hexagonal grid, see Figure 3.4(). Another type of neighborhood system, N8 in Figure 3.4(b), anbe assoiated with images digitized using a retangular 2D lattie. This type of neighborhoodsystem an be very useful, even though it annot orrespond to any possible grid, sine it failsthe non-rossing ondition for grids (this neighborhood system is assoiated with a non-planargraph).

(a) N4 on a retangu-lar lattie. (b) N8 on a retangu-lar lattie.

() N6 on a hexagonal lat-tie.
Figure 3.4: Examples of 2D image graphs with di�erent neighborhood systems. Graph vertiesare represented by dots and graph ars are represented by lines.In the ase of a progressive (3D) sampling matrix, the natural neighborhood system, and henegraph, to assoiate with the digital pixel sequene is N6, where eah vertex has six neighbors,as shown in Figure 3.5.
Pixel neighborhoods and onnetivityOn a retangularly sampled digital image f [�℄ de�ned on Z � Z2 , the terms N4(v) (or 4-neighborsof v), Nd(v) (or d-neighbors of v) and N8(v) (or 8-neighbors of v), v being a 2D pixel v = [i; j℄,will be taken to meanN4(v) = f[i� 1; j℄; [i; j � 1℄; [i; j + 1℄; [i+ 1; j℄g \ Z; (3.2)Nd(v) = f[i� 1; j � 1℄; [i� 1; j + 1℄; [i+ 1; j � 1℄; [i+ 1; j + 1℄g \ Z, and (3.3)N8(v) = N4(v) [ Nd(v): (3.4)
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Figure 3.5: The 3D progressive sampling lattie with the N6 neighborhood system.
Two pixels v1 and v2 are 4-onneted if v2 2 N4(v1), d-onneted if v2 2 Nd(v1), and 8-onnetedif v2 2 N8(v1).Mixed onnetivity is de�ned with respet to a given property P (:) of the values of the pixels ofan image f . Two pixels v1 and v2 suh that P (f [v1℄) = P (f [v2℄) are m-onneted if v2 2 N4(v1)or if v2 2 Nd(v1) and 8v 2 N4(v1) \ N4(v2); P (f [v℄) 6= P (f [v1℄). Mixed onnetivity is amodi�ation of 8-onnetivity whih eliminates multiple path onnetions in sets of pixels whenthe N8 image graph is used [56℄.
3.4 Planar graphs and duality
Planar graphs have a series of interesting properties. If a graph is planar, so is any of itsontrations, any of its redutions, and, in general, any homeomorphi graph. Notie, however,that if the ontration of a graph is planar, nothing an be said about the planarity of theoriginal.
3.4.1 Euler theoremWhen a planar graph is drawn without rossing ars, its ars divide the 2D plane into regions(or faes), all but one of whih are bounded. Drawing a graph on a plane an be seen to beequivalent to drawing it on a sphere (see [186℄), and, on a sphere, all regions are bounded. Letr be the number of regions in a planar embedding of a onneted planar graph G(V;A). Then,by Euler's theorem [44℄, #V + r �#A = 2. This formula an be extended to enompass alsodisonneted graphs. Let  be the number of onneted omponents in the planar graph. Then,#V + r �#A = 1 + . Or, whih is the same, �(G) = r � 1 or even �(G) = 1 + #A� r.An ar subdivision performed on a planar graph removes one ar, adds other two ars, and anextra non-isolated vertex: the number of onneted omponents and the number of regions donot hange. The same thing happens for an ar redution, where the net result is one less vertex
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and one less ar.A nie orollary of Euler's theorem is that in any planar, simple graph G(V;A) with #V >2, the relation #A � 3#V � 6 always holds [44℄. The importane of this relation, in theframework of this thesis, stems from the fat that graph algorithms whose eÆieny is boundedabove by some polynomial funtion f(�) of A, that is, algorithms whih run in O(f(#A)), arealso O(f(#V)) in the ase of planar, simple graphs. The result is also valid if some of theterms in f(�) are logarithms. Notie that, for simple graphs in general, one an only say that#A � #V(#V� 1)=2, whih is an equality for a omplete simple graph.No simple relations exist between the number of ars and the number of verties in the generalase of pseudo- or multigraphs, even if planar.
3.4.2 Duality
De�nition 3.66. (duality [186℄) A graph G2(V2;A2) is a dual of a graph G1(V1;A1) if thereis a bijetive mapping between A2 and A1 suh that a set of ars in A2 is a iruit vetor of G2i� the orresponding set of ars in A1 is a utset vetor of G1.
For questions of eonomy of notation, it will be assumed that dual graphs share the same setof ars, i.e., the bijetive mapping is the identity funtion. In this ase, it is the ar funtionsof the dual graphs whih are di�erent and whih map the same set of ars to pairs of vertiesfrom the two di�erent graphs.It an be proved that if graph G2 is a dual of graph G1, then graph G1 is a dual of graph G2.Hene, it may be said that two graphs are dual. If two graphs are dual, then iruits in oneorrespond to utsets in the other. Two dual graphs always have the same number of ars, byde�nition.But perhaps the most important fat about duals is that a graph has a dual i� it is planar.Hene, dual graphs are always planar. Notie that duals, in general, are not unique. However,it an be proved that all duals of a graph G are 2-isomorphi, and that every graph 2-isomorphito a dual of G is also a dual of G.Given an arbitrary disonneted planar graph, by the de�nition of 2-isomorphism, it is alwayspossible to �nd a onneted 2-isomorphi graph. Hene, any planar graph, disonneted or not,has a onneted dual.Given a 2D embedding of a planar graph, a dual graph an be derived as follows:De�nition 3.67. (geometrial dual of a planar embedding) Let G(V;A) be a planargraph with a given graphial representation without rossing ars (a planar embedding). Let Fbe the set of the regions in its graphial representation (inluding the outer, unbounded region).Then, the planar graph Gd(F;A) with eah ar a 2 A suh that gd(a) = fr1; r2g, where r1 andr2 are the regions whih ar a separates in the original graph, is the geometrial dual of thegiven planar embedding of graph G(V;A).
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It an be proved that the geometrial dual of a planar embedding of a planar graph is indeeda dual of the planar graph. Also, by onstrution, all geometrial duals are onneted.Let Gd(Vd;A) be the geometri dual of a planar embedding of the planar onneted graphG(V;A). Clearly, by onstrution of geometri duals, #Vd = r, where r is the number ofregions of G. Then, by Euler's theorem, #V = rd, where rd is the number of regions in Gd.Hene, given two onneted dual graphs, the number of verties in one is equal to the numberof regions in the other.Sine 2-isomorphi graphs have the same rank and the same number of ars, then, by Euler'sformula, all duals of a planar graph have the same number of regions.Theorem 3.45. If two graphs are dual, the nullity of one is equal to the rank of the other.
Proof. Let G(V;A) and Gd(Vd;A) be two planar graphs. Let G0(V0;A) and G0d(V0d;A) be 2-isomorphi to G and Gd, respetively, but onneted. Hene, G0 and G0d are duals. If two graphsare 2-isomorphi, they have the same rank. Hene, �(G) = �(G0) and �(Gd) = �(G0d). By Euler'sformula, �(G) = �(G0) = 1 + #A � r0 and �(Gd) = �(G0d) = 1 + #A � r0d, where r0 = r is thenumber of faes of G and G0 and any 2-isomorphi graphs, and r0d = rd is the number of faesof Gd and G0d and any 2-isomorphi graphs. But r0 = #V0d. Hene �(G) = 1 + #A � #V0d =#A� �(G0d) = #A� �(Gd) = �(Gd).
It will be seen in the following that duality an be used to relate two types of information foundin 2D maps: information about adjaeny between regions and information about the bordersbetween regions.
Dual operationsGiven two dual graphs G and Gd, it is possible to de�ne an algebra of dual operations on bothgraphs whih still result in dual graphs.Let a be an ar in the dual graphs G and Gd. Let G0 be the graph obtained by ontrating ara in G, and G0d the graph obtained by removing a from Gd. Then G0 and G0d are also duals withthe same orrespondene between the ars. Hene, ontration and removal of ars are dualoperations.Let a be an ar in the dual graphs G and Gd. If a is self-onneting in G, then it is a iruitvetor in G. By duality, it is also utset vetor in Gd, i.e., it is a bridge in Gd. Hene, removalof a self-onneting ar and removal of the orresponding bridge are dual operations.Consider a vertex v with d(v) = 2 and two di�erent ars a1 and a2 of G inident on v. Performingan ar redution of v is the same as ontrating one of its ars, say a1. The two ars are learlya utset vetor of G. This utset vetor either onsists of a single utset or it onsists of twoutsets. The �rst ase ours only if a1 and a2 are iruit ars. The seond ase ours whenboth a1 and a2 are bridges. In the dual graph the �rst ase orresponds to a1 and a2 forminga iruit, that is, to a1 and a2 being parallel or multiple ars. The seond one, to a1 and a2
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being self-onneting ars. Hene, performing an ar redution on two iruit ars is the sameas merging (or simplifying) the two orresponding parallel ars in the dual.
Spanning trees and forestsOne of the most important results relating duality and spanning trees is the following theorem:Theorem 3.46. The hords of a spanning forest of a graph indue a spanning forest in thedual graph, assuming it exists.
Proof. Let G(V;A) and Gd(Vd;A) be two dual (planar) graphs. Let F(V;As) be a spanningforest. We want to prove that Fd(Vd;Asd), with Asd = A n As, is a spanning forest of Gd.First we prove that Fd is ayli. Then we prove that it has exatly #Asd = #A � #As =#Vd � d = �(Gd), where d is the number of onneted omponents of Gd. It is also lear thatFd is a subgraph of Gd. Together, these fats prove that Fd is indeed a forest of Gd.Fd is ayli: Suppose that Fd has a iruit C. Ciruit C is also a iruit of Gd, obviously. Thears in C are a utset in G. This utset must ontain at least one branh b of F . But thenb 2 As and b 2 Asd = A nAs, whih is a ontradition. Hene, Fd is ayli.#Asd = �(Gd): By Theorem 3.45 �(G) = �(Gd), i.e., �(G) = #A � �(Gd). But, sine F is aspanning forest, #As = �(G). Hene, #Asd = #A�#As = �(Gd).De�nition 3.68. (dual spanning forest) Given a spanning forest F(V;As) of graphG(V;A) with dual G(Vd;A), the subgraph Fd(Vd;A nAs) is the dual spanning forest of F .12Corollary 3.47. Given a spanning forest in a graph and its dual spanning forest in the dualgraph, the fundamental iruits in one graph orrespond to the fundamental utsets one theother.
Proof. Let F(V;As) be a spanning forest of G(V;A) with dual Gd(Vd;A), and Fd(Vd;AnAs)its dual spanning forest. Let b be a branh of F . Let C be its orresponding utset in G. Sinefundamental utsets ontain only one branh, C n fbg onsists solely of hords. But C, byduality, is a iruit in Gd. The hords of F are the branhes of Fd, and vie versa. Hene, C is airuit in Gd whih ontains only one hord of Fd. Hene, it is a fundamental iruit. The proofthat fundamental iruits orrespond to fundamental utsets follows the same reasoning.
Given a spanning forest F of a onneted graph G with geometrial dual Gd, let Fd be thedual spanning forest of F . If a branh is removed from F , the number of trees, or onnetedomponents, in the forest will inrease by one. If the same branh of F is inserted into Fd,a iruit is reated, or, using Euler's theorem, a region is introdued by splitting an existingregion in two. This proess an be ontinued as long as there are branhes to remove from Fand insert into Fd, inreasing suessively the onneted omponents of F and the number ofregions in Fd. When a region is split in two in Fd, those two regions are limited by a iruit12Note the subtlety: a dual spanning forest is not the dual of a spanning forest!
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whih, in the geometrial representation, envelops the verties of the two onneted omponentsobtained in F .It is lear that the proess of removing k�  branhes from a spanning forest with  onnetedomponents leads to a spanning k-tree of the same graph. The orresponding operation in thedual spanning forest is the reation of iruits. Hene, the dual of a k-tree is a pseudo-forest inwhih some ars are allowed to be iruit ars.
Shortest spanning trees and forests
It was shown in the previous setion that the hords of a spanning forest of a graph indue aspanning forest in the dual graph. A stronger result is proved here:Theorem 3.48. The dual spanning forest of a SSF is a LSF (and vie versa).
Proof. Let F(V;As) be an SSF of graph G(V;A) with dual Gd(Vd;A). Let Fd(Vd;A nAs)be the dual spanning forest of F . Take any branh b of F and its orresponding fundamentalutset C in G relative to forest F . Aording to Theorem 3.11, w(b) � w() with  2 C. ByCorollary 3.47,C is also a fundamental iruit of Fd with hord b. Hene, given that w(b) � w()with  2 C, and again by Theorem 3.11, Fd is a LSF.
3.4.3 Four-olor theorem
In mathematial terms, a graph G(V;A) is k olorable if there is a olor funtion (�) : V !f1; : : : ; kg suh that (v1) 6= (v2) whenever fv1; v2g 2 A. Notie that, while multi- and simplegraphs G(V;A) are always #V olorable, pseudographs are only olorable if they possess noself-onneting ars, i.e., if they are multi- or simple graphs.The problem of asserting whether a general graph is k � 3 olorable is NP-omplete [51℄. Thatis, there is no deterministi algorithm able to solve the problem in polynomial time [51℄.13An interesting property of multi- or simple planar graphs is that they an be olored usingfour olors. That is, it is possible to assign one of four di�erent olors to eah vertex of thegraph suh that verties whih are end verties of the same ar have di�erent olors. This wasonjetured in 1852 by Franis Guthrie, a student of De Morgan, and remained a onjetureuntil 1976, when Appel and Haken published the proof of the FCT (Four-Color Theorem) whihinvolved thorough omputer assisted proofs, impossible to verify by hand. In 1996, Robertsonet al. [170℄ published a simpler proof, even though using similar methods, and, in passing, alsoobtained a quadrati algorithm for oloring a planar graph with four olors, i.e., a O(#A2)algorithm, A being the set of ars of the planar graph to be olored.13If P6=NP, see [51℄.
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3.5 Maps
What are maps? How an the relations between their regions be represented? What is peuliarin disrete maps? Maps an be de�ned over ontinuous or disrete spaes, of any dimension, justlike images. All funtions from suh a spae into a �nite set an be though of as a (funtion)map. The elements in this �nite set an be interpreted as labels of a ertain lass. In asense, thus, maps and partitions, to be de�ned in Setion 3.6.1, are one and the same onept.However, the term partition will often be more spei�ally assoiated to a map whih resultsfrom a segmentation proess (see De�nition 3.71).A map was de�ned above as a funtion from a spae to a set of labels. It an also be seenas a partition of the spae into disjoint subsets of the spae (lasses), eah orresponding to alabel. The study of the spatial relations between these disjoint subsets is the subjet of topol-ogy. In the ase of a disrete and �nite spae, whih is of paramount interest in the �eld ofautomati analysis of images, �nite topology an be used. Kovalevsky, in two exellent paperson �nite topology [91, 92℄, demonstrated that ellular omplexes, a �nite topology onstrut,allow to unambiguously represent neighborhood relations between the subsets of a map, andthis independently of the spae dimension. More than that, his results demonstrate that pixelrelationships are insuÆient for this purpose. The edges and verties of the pixels (see De�ni-tion 3.79), in the ase of a 2D disrete spae, are fundamental. This had already been reognizedintuitively by several generations of image analysis theorists, though it had never before beendemonstrated formally.This thesis uses a related but not equivalent onept. By the use of duality, the relationshipsbetween the lasses, or better, between the regions in a map are represented simultaneouslyby two graphs: the RAMG (Region Adjaeny MultiGraph) and the RBPG (Region BorderPseudoGraph) (see De�nitions 3.85 and 3.92).14 Even though this representation works well for2D maps, for 3D maps the notions must be extended: the borders no longer form a graph, andduality must be rede�ned. Also, the proposed method of representation does not fully solvethe ambiguity problems of whih ellular omplexes are free. The solution of both problems,through a reformulation of the results on graphs for the broader theory of ell omplexes, hasbeen left for future work on the subjet. However, unlike the RAG [154℄, this pair of graphs,RAMG and RBPG, retains information about the ontinuity of the borders.
3.5.1 Operations on the dual RAMG and RBPG graphsConsider a 2D image and the orresponding 2D embedding of its orresponding planar imagegraph. Consider also the geometrial dual graph of this embedding. These graphs togetherrepresent the spatial relationships between the pixels, regarded as individual regions. The �rstgraph is the RAMG, and the seond is the RBPG, if all lasses in the map have a single pixel.What happens when two adjaent regions, that is, adjaent in the RAMG, are merged together?14RAMG is used even though the word graph, in this thesis, refers by default to a pseudograph (and hene alsoto multigraphs). This was done to distinguish it from the RAG (Region Adjaeny Graph), whih is a simplegraph. For reasons of oherene, the border graph was named aordingly.
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Clearly, the orresponding verties of the RAMG are short-iruited. But this results in at leastone self-onneting ar. Suh self-onneting ars have no role to play in the RAMG, sine theysay nothing about relations between regions. Hene, they must be eliminated. What are theorresponding operations in the dual graph? Sine short-iruiting of two adjaent verties andremoval of one of the ars between them is atually a ontration of this ar, its dual operationis simply the removal of the orresponding ar from the RBPG. The removal of the other nowself-onneting ars of the RAMG an also be seen as speial ases of ontration, its dualoperations also being removal from the RBPG. But after removing suh ars, the RBPG mayhave been left redundant, in the sense that it may ontain some redundant vertex, that is, avertex of degree two whih has not a self-onneting ar. If this happens, ar redution anbe performed on this vertex. Sine ar redution is the same as ontration of one of the arsinident on the vertex of degree two, the orresponding operation on the RAMG is removal ofthat ar.Contration and removal of a self-onneting ar have the same result for the RAMG, butaltogether di�erent results in the ase of the dual. Contration orresponds to removal in thedual and vie-versa. The appropriate operation is thus ontration in the RAMG and removalin the RBPG, sine otherwise an arti�ial onnetion of two disonneted border sets would beintrodued. The result would still be a valid map, atually it would be a 2-isomorphism of theresult obtained as suggested. However, it would not have a orrespondene in the real map,de�ned as a partition of the spae.
3.5.2 De�nition of mapIt is important to realize two fats about the RAMG. First, it must be a onneted graph: evenin the unlikely event that the 2D image is de�ned on several non-ontiguous subsets of the spae,one an always add a bakground region to the map and thus render the RAMG onneted. Ifthe 2D image is de�ned on a subset of the spae whose pixels are onneted in the orrespondingimage graph, the result is obvious. Seondly, there annot be any bridges in the RBPG, sineotherwise that ar would not separate two regions. Equivalently, the RAMG annot have anyself-onneting ars (whih are the duals of bridges). As an immediate onsequene, the RBPGis 2-ar-onneted.To sum up:1. Self-onneting ars play no role in the RAMG. This explains why the RAMG is a multi-graph.2. All verties of degree two in the RBPG are onneted to themselves by a self-onnetingar.3. The operation of merging two regions in a map15 orresponds to short-iruiting the twoorresponding verties in the RAMG, removing the self-onneting ars reated in theproess, and �nally ar-reduing the verties of degree two in the RBPG whih are notisolated, if any.15Annexation or invasion, in geopolitis parlane.
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Hene, the operations on the dual adjaeny and border graphs an be though of as the mergingitself, followed by the dual operations neessary to render this pair of graphs proper. It is nowpossible to de�ne the onept of a map and a proper map:De�nition 3.69. (map) A pair of dual graphs, the RAMG and the RBPG, suh that theRAMG is the geometrial dual of a given embedding of the RBPG (and hene is onneted).De�nition 3.70. (proper map) A pair of dual graphs, the RAMG and the RBPG, forminga map, suh that the RAMG has no self-onneting ars (redundant adjaeny information) andthe RBPG has no verties of degree two, exept if isolated (that is, there is no homeomorphigraph of the RBPG whih is smaller than the RBPG).In maps, region inlusion relations orrespond to ut verties in the RAMG. These vertiesorrespond to regions with, if eliminated, lead to two disonneted maps. A ut vertex in aplanar graph without self-onneting ars de�nes a ut (the ars whih inident on it), omposedof utsets (eah utset is omposed of the ars with onnet the vertex to a di�erent blok).These utsets are disjoint. In the dual they orrespond eah to ar-disjoint iruits. But theverties orrespond, in the dual, to a region or fae (by onstrution, there is a single vertexof the RAMG in eah region of the RBPG). Hene, that region is limited by more than oneiruit, that is, it has \holes". If there are n utsets in the ut, there are n � 1 holes in theregion, whih is limited, in the planar embedding, by the remaining iruit (1 + n� 1 = n).For verties whih are not ut verties, the set of their ars is a utset, and hene orresponds,in the dual, to a single iruit. Hene, suh regions have no \holes".
3.5.3 AlgorithmsGiven a funtion map, the orresponding map an be obtained by building �rst a �titious mapwhere eah pixel orresponds to a di�erent region. As seen above, this �titious map is simplythe image graph and its geometrial dual. The map an be obtained by merging suessivelyadjaent regions with the same label, using the operations de�ned above. Alternatively, onemight start with a single region, enompassing all pixels, and suessively split non-uniformregions, i.e., regions ontaining di�erent labels.Often the funtion map is de�ned impliitly by the values of the pixels of an image. This isthe ase before a segmentation proess is performed. In this ase, the map an be built onthe y, while the segmentation proeeds. Atually, most segmentation algorithms rely on themap struture to store information about regions and borders. Regions an ontain the set oforresponding pixels and statistis of their values, just as borders an ontain sets pixel bordersand statistis of their values.
3.6 Partitions and ontours
In this setion the notions of segmentation as the proess leading to a partition, and the notionsof lass, region and borders are de�ned.
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3.6.1 Partitions and segmentationDe�nition 3.71. (segmentation) Proess of lassifying eah pixel in a digital image or se-quene as belonging to a ertain lass with ertain properties. The lass properties are assumedto be representable by vetors of parameters (or statistis). Hene, after segmenting an imagef [�℄ one obtains:1. the number l of lasses that were found (this value may be �xed a priori);2. the partition, i.e., a funtion p[�℄ : Z! L whih lassi�es eah pixel (see de�nition below);and3. possibly a sequene pi, with i = 0; : : : ; l � 1, of parameter vetors.This de�nition of segmentation is generi. Striter de�nitions will be given as needed in Chap-ter 4.De�nition 3.72. (partition) A digital image p[�℄ : Z ! L (or p[�℄ : N � Z ! L in the aseof 3D partitions) taking values in L = f0; : : : ; l � 1g, where the value of eah pixel is a labelidentifying the lass to whih the pixel belongs.De�nition 3.73. (binary partition) A partition with l = 2 is said to be a binary partition,sine it is a binary image taking only values 0 and 1.De�nition 3.74. (mosai partition) A partition with l > 2 is a mosai partition.
3.6.2 Classes and regionsDe�nition 3.75. (lass) The set of all pixels in a partition, or verties of the assoiatedimage graph, having a spei� label. Class , i.e., the set V, of a partition de�ned in Z is givenby: V = fv 2 Z : p[v℄ = g (or V = fv 2 N� Z : p[v℄ = g in the ase of a 3D partition).De�nition 3.76. (lass graph) The maximal subgraph of the image graph G(V;A) (whereV = Z for 2D partitions and V = N � Z for 3D partitions) indued by a lass , i.e., by theset of verties V � V.De�nition 3.77. (region graph) A onneted omponent of a lass graph.De�nition 3.78. (region) A set of pixels in a partition whih are the verties of a regiongraph. Regions are thus omponents of lasses.The terms lass and lass graph (and also region and region graph) will be used interhangeably.The meaning should be deduible from the ontext.The main di�erene between lasses and regions, both ontaining pixels with the same label, isthat the latter are always onneted while the former an be disonneted, see Figure 3.6. If alass is onneted, then it onsists of a single region. Notie that no onnetivity restritionswere imposed to the lasses in the de�nition of segmentation. Several striter de�nitions ofsegmentation impose onneted lasses. If suh is the ase, and if this is lear from the ontext,the term region will be used instead of lass.
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(a) Partition and the orrespondingimage graph.

Class 1:
Class 2:
Class 3:(b) Class graphs.

Region A:
Region B:
Region C:
Region D:() Region graphs.

Figure 3.6: Example of a partition on a retangular lattie with an assoiated N4 graph. Thepartition has three lasses (and hene three lass graphs) and four regions (and thus four regiongraphs).
Edges, borders, boundaries, and ontoursThe trivial way to represent a partition is by speifying the labels of eah of its pixels: this isatually what De�nition 3.72 says. However, it is often more natural to represent a partition byspeifying the boundaries of its regions. Suh a representation is suÆient if region equivaleneis suÆient (see Setion 3.6.4). If lass equivalene is desired, then, in the ase of partitionswith disonneted lasses, further information is required, namely whih regions belong to eahlass.De�nition 3.79. (border, edge and fae) A border is a ontinuous line between two ad-jaent regions, in the ase of 2D partitions. The borders do not ontain points of departure ofany other borders (see Figure 3.7). If both regions orrespond to a single pixel, the border isan edge. In the ase of 3D partitions, a border is a ontiguous surfae between two adjaentregions. The 3D onept orresponding to the 2D edge is the fae.
Edges have a (relative) length whih depends on their orientation and on the shape of the pixelin the assoiated sampling lattie, if there is one. In the ase of retangular sampling latties,this dependene an be written in terms of the pixel aspet ratio. The measure assoiated withborders in the 3D ase is an area. However, sine one of the dimensions of the 3D partition isusually time, this area does not have an immediate physial interpretation.De�nition 3.80. (boundary) The union of the borders of a lass or region. The length ofthe boundary is a length proper (atually a perimeter, sine boundaries are always losed) for2D partitions and an area for 3D partitions.De�nition 3.81. (ontour) The union of all lass boundaries in a partition. Notie that the
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(a) Partition.

(b) An edge. () A border. (d) A boundary. (e) The ontour.
Figure 3.7: A partition, its ontour, and examples of an edge, a border, and a boundary.

length of the ontour of a partition is half the sum of the boundary lengths of all lasses, sineadjaent lasses share, by de�nition, the ommon borders.
A partition an thus be (partially) represented by speifying the boundaries of its regions.
3.6.3 Region and lass graphsTwo types of graphs, besides image graphs, an be de�ned over partitions: the RAG and theCAG (Class Adjaeny Graph). The de�nition of both makes use of the onept of adjaeny:De�nition 3.82. (adjaeny) Two sets of verties V0;V00 � V of graph G(V;A) suh thatV0 \V00 = ; are said to be adjaent if there is at least one ar fv0; v00g 2 A suh that v0 2 V0and v00 2 V00.De�nition 3.83. (RAG) A simple graph with as many verties as regions in a given partition,plus an extra region representing the outside of the partition domain Z � Z2 (or N� Z � Z3).There is a single ar between any pair of verties orresponding to adjaent regions in thepartition, i.e., there is a single ar between any two regions sharing at least one border in thepartition.
The RAGs of partitions assoiated with N4 and N6 graphs are always planar. A RAG an beobtained from the image graph of a partition by suessively performing ar ontrations onars inident on verties belonging to the same lass.
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De�nition 3.84. (CAG) A simple graph with as many verties as lasses in a given partition,plus an extra lass representing the outside of the partition (as above). There is a single arbetween any pair of verties orresponding to adjaent lasses in the partition, i.e., there is a(single) ar between any two lasses sharing at least one border in the partition.
The CAGs of partitions assoiated with N4 or N6 graphs may be non-planar. If lasses areonneted, the CAG is equal to the RAG (and hene planar). The CAG an be obtained fromeither the image graph of the partition or from the RAG by suessively short-iruiting pairsof verties belonging to the same lass and removing the resulting self-onneting ars.

A B
C D

Out

(a) RAG.

1 2
3

Out

(b) CAG.
Figure 3.8: RAG and CAG orresponding to the partition in Figure 3.6(a). The irles are thegraph verties and orrespond to regions and lasses, respetively. The irle labeled \Out" isthe external region or lass.
A more powerful graph, whih, together with the RBPG, de�nes the map of a partition, is theRAMG:
De�nition 3.85. (RAMG) A multigraph with as many verties as regions in a given parti-tion, plus an extra region orresponding to the outside of the partition domain. There is an arfor eah border between regions in the partition. The ars onnet the two regions whih areadjaent through the orresponding border. Hene, two regions an be onneted by more thanone ar, if they are adjaent through more than one border.
Unlike the ase of the RAGs, RAMGs annot be built ignoring the topology of the boundaries.They an, though, be built as indiated in Setion 3.5.3.
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(a) Partition and the orresponding im-age graph. (b) RAG. () RAMG.
Figure 3.9: RAG and RAMG orresponding to a given partition. The white vertex is theexternal region.
3.6.4 Equivalene and equality of partitionsAn important onept when dealing with partition oding is that of equivalene between parti-tions:De�nition 3.86. (lass and region topologial equivalene of partitions) Two par-titions p1[�℄ and p2[�℄ with the same labels are lass (region) topologially equivalent if theirorresponding CAGs (RAGs) are isomorphi through the identity funtion on labels.
A striter form of topologial equivalene an be used in whih the RBPG graphs16 of the propermaps of the two partitions are required to be isomorphi.De�nition 3.87. (lass and region equivalene of partitions) Two partitions are lass(region) equivalent if they divide an image into equal lasses (regions). Mathematially, parti-tions p1[�℄ : Z ! L1 and p2[�℄ : Z ! L2, de�ned in Z, are said to be lass equivalent if it ispossible to �nd a funtion f [�℄ : L1 ! L2 whih is bijetive between the lasses used in partitionsp1[�℄ and p2[�℄. That is: f(p1[v℄) = p2[v℄ 8v 2 Zf�1(p2[v℄) = p1[v℄ 8v 2 ZA lass is used in a partition if there is at least one pixel in the partition with the orrespondinglabel.16Or the RAMG, for that matter.
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Equality is de�ned trivially:De�nition 3.88. (equality of partitions) Two partitions are said to be equal if, apart frombeing lass equivalent, the labels of eah lass are equal in both partitions. Or, whih is thesame, if the orresponding digital partition images are equal.
Line, edge, and border graphsIn 2D, ontours an be onveniently de�ned over a line graph, whih is the dual of a planarimage graph. For 3D partitions more ompliated strutures are required. This issue will notbe disussed here, sine often the 3D partitions are taken as sequenes of 2D partitions, whihis even more natural in the ase of partitions of moving images.De�nition 3.89. (line graph) Planar simple graph obtained by geometrial duality from the(natural) embedding of the (onneted) planar image graph (with an extra external pixel).Figure 3.10 shows an N4 image graph (on a retangular lattie) and the orresponding line graph,whih is also N4. The line graph orresponding to the N6 image graph, e.g., on a hexagonallattie, is N3, as an be easily veri�ed.

(a) Image graph. (b) Line graph.
Figure 3.10: A N4 image graph and its dual line graph, also N4.The line graph of a 2D partition is thus obtained by duality of its planar image graph. Theontour of a partition an be represented by the subgraph of the line graph ontaining all vertiesand ars standing between pixels with di�erent labels (i.e., belonging to di�erent lasses). Thisis the edge ontour graph:De�nition 3.90. (edge ontour graph) A subgraph (planar and simple) of the line graphorresponding to the boundaries of the lasses in the partition. An ar in the line graph belongsto the edge ontour subgraph if its orresponding ar in the dual partition image graph onnetspixels with di�erent labels, i.e., whih belong to di�erent lasses.
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All edge ontour graphs are 2-ar-onneted, sine bridges annot stand between two lasses.An edge ontour graph, i.e., a ontour de�ned on the edges, an thus be onstruted as follows:

1. mark the ars of the (planar) image graph whih stand between pixels belonging to dif-ferent lasses (the exterior extra pixel an be assumed to belong to a non-existent lass);2. mark the orresponding ars in the dual line graph, also mark the end verties of thesears;3. the edge ontour graph is omposed of the marked ars and verties in the line graph.De�nition 3.91. (ontour) A funtion [�℄ : A ! 0; 1 marking the ars of a line graphG(F;A) as belonging or not to the edge ontour graph.
Notie that the edge ontour graph, and hene the partition (up to region equivalene), an beobtained from [�℄. The same observation would not be true for a funtion marking the edgeontour graph verties, sine ambiguity might our, as shown in Figure 3.11.

Figure 3.11: Example of ambiguity for vertex based ontour de�nitions on edge ontour graphs.Two partitions with the same edge ontour graph verties.Contours may also be de�ned in the image graph itself, that is, with its verties orrespondingto the pixels of the image. In this ase, a ontour might onsist of a funtion marking all thosepixels with neighbors belonging to a di�erent lass. However, this leads to thik ontours, sinepixels at both sides of a border between two regions are marked. This problem may be solvedby marking only one side of eah border.In the ase of ontours de�ned on pixels, a graph an also be assoiated with the ontour. Thisgraph will be alled the pixel ontour graph, to distinguish it from the edge ontour graph. Thepixel ontour graph orresponds to the maximal subgraph of the image graph whose vertieshave been deemed to belong to a border, i.e., to belong to the ontour. Notie, however, thatif a ontour is de�ned on pixels over a N8 graph, it may be neessary to purge some of theontour pixels, obtained using the riterion above, and also some of the ontour graph ars(see [133℄). Contours on pixels are plagued by many inonsistenies, whih are not disussed inthis thesis [181, 91, 92, 31℄.
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Generally, the ontour information allows only for a representation of partitions up to regionequivalene. If lass equivalene, or equality, is required, then information about whih regionsbelong to whih lasses (region-lass information) is neessary.The ontour graphs, edge- or pixel-based, an ontain several types of ontour verties, aordingtheir degree (see Figure 3.12):Degree 1Dead end vertex; these verties exist only for ontours de�ned on the pixels.17Degree 2Normal verties.Degree 3Juntion verties.Degree 4Crossing verties.

normal juntion
rossing

(a) Edge ontour graph.

dead end
juntion

(b) Pixel ontour graph.
Figure 3.12: Types of verties on ontour graphs.The maximal redution of the edge ontour graph is the RBPG (of whih the RAMG is thegeometrial dual):De�nition 3.92. (RBPG) A graph having has many verties as there are verties of degreelarger than two in the edge ontour graph plus as many verties as there are omponents of theedge ontour graph onsisting of a single iruit. Eah ar orresponds to a path (possibly losed)in the edge ontour graph ontaining only verties of degree two (i.e., to sets of ontiguous edgesforming borders).17However, in a more general de�nition of ontours, where ontours are not the dual of some partition, theseverties do our even for ontours de�ned on the line graph. Suh tehniques whih use a more general de�nitionof ontour may be used for the \edge-based desription of olor images," see [37, 19, 58℄.
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Sine the RBPG is the maximal redution of the edge ontour graph, it obviously ontains noverties of degree two, exept possibly isolated verties with a self-onneting ar.
3.7 Conlusions
The graph theoretial foundations of image analysis were presented. A thorough disussion ofseeded SST onepts and algorithms, namely for �nding the SSF, the SSkT, the SSSkT, orthe SSSSkT of graph, has been done. From this work resulted a new asymptotially linearamortized time algorithm for �nding multiple SSSSkTs, for di�erent sets of seeds, of the samegraph. The relation between the SST and dual graphs, whih plays an important role in provingthat basi region merging and basi ontour losing are one and the same algorithm, solvingthe same problem (see Chapter 4), has been established.



88 CHAPTER 3. GRAPH THEORETIC FOUNDATIONS FOR IMAGE ANALYSIS



Chapter 4
Spatial analysis

The best way of �nding out the diÆulties ofdoing something is to try to do it. David Marr
This hapter deals with spatial analysis, whih, stritly speaking, is the analysis of still images.However, moving images will also be taken into aount. Time analysis proper, or motionanalysis, is the subjet of the next hapter.Even though there has been intense researh in this area of knowledge, results are still farfrom the �nal goal: the onstrution of a model of reality and its full understanding. Thegoal attainable, for the time being, is to extrat mid-level vision primitives. Most of the workpresented here, and most of the ontributions of this thesis, an be lassi�ed as pertaining toseond-generation video oding.Segmentation is a very important step in analyzing a sene, i.e., in obtaining a strutureddesription for it. Setion 4.1 introdues briey the subjet of segmentation and Setion 4.2presents a hierarhy of the tools involved in segmentation proess and an overview of some spe-i� segmentation tools, espeially those related to ontour-oriented segmentation. Setion 4.3then deals with several lasses of region-oriented segmentation algorithms and attempts toframe them within the same theoretial framework. The dual relation between region- andontour-oriented segmentation is also explained within the same framework.The evolution path in spatial analysis, in the framework of video oding, has passed throughtransition zones, when going from �rst-generation, low-level analysis tehniques, to seond-generation, mid-level analysis tehniques. Setion 4.4 presents a knowledge-based segmentationtehnique for videotelephony appliations, apable of dealing with mobile environments. It at-tempts to make a oarse segmentation of head-and-shoulders mobile videotelephony sequenesinto three disjoint regions: head, body, and bakground. Di�erent qualities, and thus di�erent
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bitrate assignments, an be attributed to eah region. This may improve subjetive qual-ity of �rst-generation enoders by inorporating simple seond-generation, mid-level analysistehniques. These revamped enoders maintain ompatibility with existing deoders, thoughproviding better subjetive quality. Suh enoders an be said to belong to the transition layerbetween �rst- and seond-generation.Setion 4.5 presents ontributions in the area of generi olor (or texture) segmentation. Theseontributions belong to the area of mid-level analysis, seond-generation video oding. One ofthe segmentation algorithms proposed, whih is related both to split & merge and to RSSTsegmentation, is then extended in Setion 4.6 to support supervised segmentation. The impor-tane of supervision stems from the fat that, as stated before, supervision an be seen as a�rst, pragmati step towards third-generation, high-level analysis.Finally, in Setion 4.7, the RSST tehniques presented before are extended to allow segmentationof sequenes of (moving) images in a reursive way, so as to maintain the time oherene of theattained segmentation. The resulting tehnique has been oined TR-RSST. It an be seen as astep in the diretion of the integration of time and spae analysis.
4.1 Introdution to segmentation
The identi�ation of regions (or objets) within an image or sequene of images, i.e., imagesegmentation, is one of the most important steps in seond-generation (objet- or region-based)video oding, and hene in mid-level analysis.If a partition of a set S is de�ned as a set R of subsets of S suh that the union of all theelements of R is S and suh that, for all r1 6= r2 2 R, r1 \ r2 = ;, then the de�nition ofsegmentation is apparently simple: produe a partition of the set of image pixels so that eahset (lass or region) in the partition is uniform aording to a ertain riterion and so that theunion of any two sets in the partition is non-uniform.In the words of Pavlidis [156℄ \segmentation identi�es areas of an image that appear uniform toan observer, and subdivides the image into regions of uniform appearane," where uniformityan be de�ned in terms of grey level (or olor) or texture. One an, however, envisage anotherkind of segmentation where one expets to identify ertain known objets in an image. Aordingto Haralik [68℄, \image segmentation is the partition of an image into a set of non-overlappingregions whose union is the entire image (...) that are meaningful with respet to a partiularappliation."These de�nitions are more or less equivalent, though quite vague. Even if an appropriateuniformity riterion is given, they establish no onstraint as to the number or onnetivity ofthe regions. Hene, another, possibly more useful, de�nition may be: produe a partition of theimage into a minimum set of onneted regions suh that a ertain global uniformity measureis above a given threshold. Or: produe a partition of the image into a ertain number ofonneted regions suh that a ertain global uniformity measure is maximized. But the exatde�nition and the homogeneity riteria are still dependent on the appliation.
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Instead of using uniformity riteria, dissimilarity riteria may also be used. They are in theorigin of the edge detetion methods, leading to ontour-oriented segmentation, but they analso be used in region-oriented segmentation. Segmentation, onsidering dissimilarity instead ofuniformity riteria, requires that all pairs of sets (regions) in the image partition are dissimilar.This type of segmentation is oneptually dual to region-oriented segmentation. Furthermore, itwill be shown that there are region-oriented segmentation algorithms whih are in fat formallydual to ontour-oriented algorithms, in the sense that both produe the same segmentation.The existene of a wide variety of natural image features (e.g., shadows, texture, small ontrastzones, noise, objet overlap) makes it very diÆult to de�ne robust and generi homogeneityor similarity riteria. A large number of di�erent riteria appears in the literature. The hoieof appropriate uniformity riteria depends on the task at hand. If the segmentation aims atidentifying the real life objets in the image automatially, e.g., if the image is to be easilymanipulated or edited by a human, then riteria will have to be related to the semanti ontentof the represented sene. Developing suh riteria is a daunting task that implies modeling withdetail all the levels of the human visual system. It is a high-level vision problem. However, byusing simpler riteria, one may render the problem tratable and still hope the results to be ofsome use for human manipulation. Also, one may envisage mid-level tools attaining high-levelresults with appropriate supervision. As a �rst approah, the supervision may be performed bya human, but evolution may render it possible to build automati supervision tools.One an appropriate uniformity riterion or measure has been established, there are manydi�erent algorithms for ahieving the desired segmentation.
4.2 Hierarhizing the segmentation proess
This setion intends to hierarhize the possible ators in a segmentation proess, from low-level operators to high-level algorithms, and to desribe some of the main tools used at thevarious hierarhial levels. The segmentation methods approahed here will be restrited to themid-level vision level, and hene with little or no semantial ambitions.In a segmentation proess three hierarhial levels may be onsidered (although the division ismore or less arbitrary):1. The lower level is the operator level. Usually the segmentation operators have one or twoimages of a sequene as input. The result usually maps eah pixel into one of several ate-gories, serving has a basis for the segmentation of the urrent image into non-overlappingregions. The result is either a primary division of the image into several non-overlappingregions (for region segmentation operators) or a primary lassi�ation of eah pixel or ofeah edge as belonging to a boundary or not (for edge detetion segmentation operators).In [108℄ and [18℄ examples of the later lass of operators an be found.Notie that in this ontext edge means the physial edge of some objet in the representedsene, and not an edge in the sense of De�nition 3.79. Furthermore, more often than notedge detetors aim at deteting strong transitions in image olor, even if not orrespondingto physial edges. The wording edge detetion is thus used mainly for historial reasons.
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2. The middle level is the tehnique level. Eah segmentation tehnique uses one or several ofthe segmentation operators to produe an intermediate step of the segmentation proess.Usually, e.g., in edge detetion segmentation tehniques, �rstly one or more of the low-level segmentation operators are applied, and �nally some proessing is performed usingtopologial onsiderations (like ontour losing and learing of isolated ontour pixels).3. The higher level is the algorithm level. At this level, segmentation algorithms integrateone or more segmentation tehniques (and eventually also segmentation operators) toahieve the �nal segmentation. In the ase of algorithms using edge detetion tehniques,onneted omponent labeling may be used to identify the regions orresponding to thedeteted ontours (if the physial edges deteted orrespond to losed ontours). It alsotries to assess and ontrol the overall segmentation quality attained.

Notie that this hierarhial division of segmentation into levels is not related to the levelsof vision, and analysis, already mentioned: the operator level, in the ase of edge detetionoperators, is learly a low-level vision mehanism, while region operators are learly related tomid-level vision onepts. Also notie that this hierarhizing is not always learut. In the aseof region-oriented segmentation, for example, only two levels, or even only a single level, areoften used.
4.2.1 Operator levelThe lower level in the segmentation proess is the operator level. There are a wealth of imageoperators available in literature for use in ontour-oriented segmentation tehniques. For om-putational eÆieny reasons, these operators usually have a limited region of support, i.e., theyorrespond, if linear, to 2D FIR (Finite Impulse Response) �lters. If G is an operator, and f isthe original image, this means that g = G(f), the result of the operator, is suh that g[n;m℄ anbe written as a funtion of the values of f [�℄ in a limited region, the region of support, enteredin f [n;m℄.In general, large regions of support orrespond to a large omputational e�ort. However, as [179℄points out, some IIR (In�nite Impulse Response) �lters an be implemented reursively, with aonsequent redution of the assoiated omputational e�ort.
Spatial featuresSegmentation operators usually have one or two images of a sequene as input and produeas output a mapping of eah pixel into one of several ategories. These ategories usuallyorrespond to:1. a primary division of the image into several non-overlapping regions, for region segmen-tation operators (the framework is region-oriented segmentation); or2. a primary lassi�ation of eah pixel or edge as belonging to a boundary, for edge detetionsegmentation operators (the framework, in this ase, is ontour-oriented segmentation).
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Vetorial vs. salar
Segmentation operators an be lassi�ed aording to the number of image omponents theyoperate on:1. salar operators operate on a single olor omponent; and2. vetorial operators operate on more than one olor omponent.By far the most ommon operators in the literature are of the salar type. However, severalauthors proposed vetorial operators as a good way to ope with error and to detet somefeatures whih may be impossible to detet using a single omponent [35℄. Lee and Cok [98℄have shown that, if (physial) step edges are highly orrelated in all the olor omponents ofan image and if noise in eah omponent is unorrelated (whih seems a plausible assumption),then vetorial edge detetion operators are less sensitive to noise than the salar ones. If, on theother hand, the olor omponents of an image are less orrelated, some important physial edgesmay appear in some of the omponents whilst missing in others. The use of vetorial operatorsallows the detetion of physial edges that would otherwise be missed by salar operators.
2D vs. 3D operators
Segmentation operators whih have only one image as input are 2D operators. On the otherhand, image operators that have two or more suessive images of a sequene as operands are3D operators. They operate, thus, on more than one image, and hene may make use of timeand motion information in the image sequene.
2D edge detetion operators
Most edge detetion operators attempt to detet the pixels or edges where the image gradienthas a loal maximum in at least one diretion or where some seond derivative of the image hasa zero rossing [108℄. Most of these operators were developed in order to detet a partiulartype of transition optimally, suh as step, roof or ridge transitions, in the hope that they alsodetet reasonably well other types of transitions, hopefully orresponding to physial edges.Also, most of them were developed initially for detetion of transitions on pixels. However,most of them an be easily adapted to detet transitions on edges.Sine digital images usually possess noise, most of the operators use thresholding tehniquesand/or �ltering in order to ondition the derivative estimation problem (Torre and Poggioin [187℄ show that numerial di�erentiation is an ill-posed problem in the sense of Hadamard1).Canny [18℄ proposed that the design of an edge detetion segmentation operator should attemptto optimize a funtional involving three riteria:1A problem is well posed in the sense of Hadamard if its solution: exists, is unique, and depends ontinuouslyon the initial data.
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Good detetionLow probability of deteting false physial edges and of not deteting true physial edges.Both derease monotonially with the image signal to noise ratio.Good loalizationThe estimated physial edges should be as spatially lose as possible to the true (projeted)physial edges.Single responseThere should be only one response to a single physial edge.
Canny [18℄ minimized numerially the produt of the �rst two riteria with the single responseas a onstraint. This was only done for one dimensional physial edges, resulting in a �ltervery similar to the �rst derivative of a Gaussian. The expansion to two dimensions is doneby onvolving the one-dimensional edge detetor with an appropriate perpendiular projetionfuntion. The proposed projetion funtion is a Gaussian with the same standard deviation �.This operator should be oriented suh that the one-dimensional edge detetor is normal to theestimated physial edge diretion, i.e., parallel to the Gaussian smoothed gradient diretion.Sarkar and Boyer, in [179℄, extended Canny's optimization to an unlimited region of support�lter, and proposed the implementation of suh �lter using a reursive approah (i.e., using IIR�lters instead of FIR �lters). The main advantage of this sheme is that the omputationale�ort is the same regardless of the size of the operator (i.e., the standard deviation �).Marr and Hildreth [108℄ proposed to use the zero rossings of the LoG (Laplaian of Gaussian),desribed below. Their method, as opposed to the one proposed by Canny [18℄, is not diretional.Besides, as pointed out in [200℄, zero rossing operators basially divide the image pixels intothree lasses (+, �, and 0) whih an be thought to olor the image plane. However, it is knowthat, in general, four olors are required to represent arbitrary 2D partitions. So, zero rossingoperators have an inherent diÆulty in segmenting arbitrary images.Haralik, in [66℄, proposed a tehnique whih is similar to Canny's, the main di�erenes beingthat the loalization uses the zero rossings of the seond derivative in the gradient diretion,and that the derivatives are alulated using interpolation.In the literature one an rarely �nd preise desriptions of the various operators (e.g., in [108,18℄). This has led to onsiderable diÆulty in repeating the results presented by the authors,as an be seen by the debate aroused in the mid eighties by [66℄ (see [60℄ and [67℄).Several issues have systematially been laking preise desriptions:
� Sine most of the edge detetion theories were �rst built assuming analog images, howshould digital �lters be build from the orresponding analog ones?� How to reondition the digital oeÆients of the obtained �lter so that inonsisteniesintrodued by the digitalization proess are eliminated?� How exatly are zero rossings deteted in seond derivative edge detetion methods?
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� How exatly are gradient loal maxima deteted in �rst derivative edge detetion methods?� Where are transitions deteted? On the pixels, on the edges, or on both?

These issues are very important and an hange quite dramatially the results obtained byapplying the same operator to the same images. The mentioned ambiguities and impreisionshave been partially addressed by two review papers on edge detetion methods: [8℄ and [47℄.A good review of the most ommon edge detetor operators an be found in [8℄, where a methodis proposed for the fair omparison of several operators (this method is an improvement of theone proposed by Haralik in [66℄). Another good review, whih also dwells on the ill-posednessharater of edge detetion, an be found in [187℄.
Operator omponentsBernsen, in [8℄, proposes the division of the edge detetion operators into three omponents:
Transition strengthThe basis for the thresholding whih attempts to eliminate the false estimation of physialedges aused by noise.Edge loalizationAttempts to estimate the exat loalization of the physial edges deteted by thresholdingthe transition strength.Derivative omputationEstimates the derivatives.
Transition strengthTransition strength is used to separate between real physial edges and image olor transitionsdue to noise. It is usually omputed either as the magnitude of the gradient or as the slope ofthe zero rossings of the seond derivative. The latter, however, is muh more sensitive to noisethan the former, and hene less reliable [8℄. The reason for this is that the slope of the seondderivative is an approximation of a third order derivative, as opposed to the gradient, whihis a �rst order derivative. Sine numerial di�erentiation is an ill-posed problem, third orderderivative estimation is muh more sensitive to noise.
Edge loalizationMany solutions have been proposed for edge loalization. Usually pixels or edges whose transi-tion strength is above a given threshold are onsidered good andidates for estimated physialedges. However, Canny [18℄ proposed the use of adaptive thresholding with hysteresis. Thismethod redues the hanes of breaking a ontour (a ontiguous set of deteted pixels or edges),
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if the threshold of transition strength is set too high, and of estimating wrong physial edgesat strong transitions aused by noise, if the threshold is set too low. Two thresholds are used:Tl and Th, where Tl < Th. Pixels or edges with transition strength above Tl are onsideredtentative physial edge elements. If a set of onneted tentative physial edge elements has atleast one element whose transition strength is above Th, then all the elements of the set willbe onsidered good estimates of physial edges. Otherwise all the elements of the set will beonsidered not to belong to a physial edge.The threshold shemes have several problems. The �rst is the possibility of estimation ofphysial edges several pixels thik, the seond is the use of a threshold whih is often adjustedby hand. Other shemes, whih hopefully avoid these problems, lassify as belonging to aphysial edge all pixels or edges at a zero rossing of a seond order derivative. Marr andHildreth [108℄ proposed the use of the Laplaian, whih may be said to be an isotropi seondorder derivative. Haralik [66℄ proposed the use of the seond derivative in the diretion of thegradient, but deteting only zero rossings that have negative slope in the gradient diretion, soas to avoid detetion of false physial edges orresponding to minima, instead of maxima, of theslope. The �gure below shows an example. The upper line is a hypothetial luma pro�le, themiddle line and bottom lines orrespond to its �rst and seond order derivatives, respetively.The seond zero rossing ours at a point of minimum slope.

How the zero rossings should be deteted is not a trivial, espeially in the ase of detetion onpixels, and is rarely desribed preisely in the literature, albeit onsiderably di�erent tehniquesmay be used:1. lassify as physial edges those pixels with at least one neighbor pixel having a di�erentsignal in the estimated seond derivative (this method yields two pixels thik estimatedphysial edges);2. lassify as physial edges the pixels under the same onditions as before but only thosehaving a spei� sign (e.g., positive seond derivative); or
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3. use a set of prediates for the lassi�ation.This latter solution has been proposed by Huertas and Medioni [75℄. A set of prediates is usedfor the detetion of zero rossings in seond derivative edge detetion methods. They also pro-pose a method to loalize physial edges with subpixel auray with little extra omputationale�ort.However, note that the above tehniques are not ompletely spei�ed:1. Whih type of neighborhood should be used?2. How should \di�erent sign" be interpreted? Should some thresholding be used so thatsmall values of the seond derivative are onsidered as zeros?3. How should zeros be dealt with?Sine the Laplaian is independent of the oordinate axis hosen, it turns out that its valueis equal to the seond derivative in the diretion of the gradient plus the seond derivativeperpendiular to the diretion of the gradient. For linear physial edges, the later derivativeontributes only with noise, and, in the ase of a urved physial edge, introdues an o�setinto the seond derivative. This results in a higher sensitivity to noise and larger biases in theestimated physial edge position for the Laplaian methods.Another method is the so-alled \non-maximum suppression in the gradient diretion." Thismethod heks whether the magnitude of the gradient is a loal maximum in the diretion ofthe gradient.A further possibility would be to lassify tentatively as physial edges all pixels where themagnitude of the gradient is high enough, i.e., the simple thresholding mentioned before, andthen to use a thinning tehnique in order to obtain one pixel thik estimated physial edges.The hosen solution must take into aount the relative merits of eah tehnique both in terms ofphysial edge loalization and in terms of the assoiated omputational e�ort. Spei�ally, wheneÆieny is at a premium, simple solutions should always be onsidered as good andidates.

Derivative omputation
Aording to Bernsen [8℄, there are at least four types of methods to ompute the deriva-tive:1. onvolve the image with a kernel obtained by sampling the derivatives of the 2D Gaussianfuntion (e.g., LoG [108℄);2. use instead the sampled derivatives of the 2D symmetri exponential funtion (thismethod is similar to the �rst one, the only di�erene being the kind of smoothing appliedto the image prior to derivative alulation);3. use the derivatives of a tilted-plane approximation to the image in a n�n window aroundthe given loation|up to �rst order derivatives only; or4. use instead the derivatives of a third order bivariate polynomial approximation in a n�nwindow around the given loation|up to third order derivatives only (e.g., [66℄).
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Bernsen [8℄ showed that the last method is very similar to the �rst one for least squares poly-nomial approximations with Gaussian weights.
Seletion of omponentsAording to Bernsen's evaluation [8℄, the best operators are those that use a gradient magnitudetransition strength omputation, the zero rossings of the seond derivative in the diretion ofthe gradient for edge loalization and the sampled derivatives of the 2D Gaussian funtion.
ExamplesIn order to illustrate the division into omponents proposed in [8℄, two simple and well known2D salar edge detetion operators are presented in the next setion.
Sobel operatorOne of the most ommon 2D salar edge detetion segmentation operators is the Sobel op-erator [55℄. This operator alulates transition strength of an image f from an estimateG = Sobel(f) of the magnitude of the gradient in eah pixel. The gradient is estimated usingaveraged �rst order di�erenes in the horizontal and vertial diretions, whih an be provedto be equivalent to using the derivatives of an appropriately weighted tilted-plane least squaresapproximation of the image in a 3� 3 window around eah pixel

rf [i; j℄ = 264 Æf [i;j℄ÆxÆf [i;j℄Æy
375 ;

with Æf [i; j℄Æx � 18afx[i; j℄ = 18a� f [i� 1; j + 1℄ + 2f [i; j + 1℄ + f [i+ 1; j + 1℄� f [i� 1; j � 1℄� 2f [i; j � 1℄� f [i+ 1; j � 1℄� (4.1)
and Æf [i; j℄Æy � 18bfy[i; j℄ = 18b� f [i� 1; j � 1℄ + 2f [i� 1; j℄ + f [i� 1; j + 1℄� f [i+ 1; j � 1℄� 2f [i+ 1; j℄� f [i+ 1; j + 1℄�; (4.2)
where a and b are the horizontal and vertial dimensions of the retangular pixels, i.e., � = abis the pixel aspet ratio.The magnitude of the gradient is estimated bykrf [i; j℄k � 18aG[i; j℄ = 18aqjfx[i; j℄j2 + �2jfy[i; j℄j2; (4.3)
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where the fator 18a is dropped from G beause the resulting values will later be ompared to athreshold, whih may be adjusted aordingly. Often the pixel aspet ratio � is also droppedfrom the expression, sine it is usually lose to the unity.Pixels for whih G[i; j℄ > t, where t is a given threshold, are onsidered andidate physial edgepixels.Edge loalization is based on a simple thinning algorithm [100℄: only andidate pixels whihare loal maxima in terms of the estimated gradient in the horizontal (i.e., G[i; j℄ > G[i; j � 1℄and G[i; j℄ > G[i; j + 1℄) or vertial (G[i; j℄ > G[i� 1; j℄ and G[i; j℄ > G[i+ 1; j℄) diretions areonsidered physial edge pixels. Besides that, in order to avoid \minor edge lines in the viinityof strong edge lines," the following additional onstraints are imposed:1. If G[i; j℄ is a loal maximum in the horizontal diretion, but not in the vertial diretion,[i; j℄ is a physial edge pixel when:jfx[i; j℄j > kjfy[i; j℄j (4.4)2. If G[i; j℄ is a loal maximum in the vertial diretion, but not in the horizontal diretion,[i; j℄ is a physial edge pixel when:jfy[i; j℄j > kjfx[i; j℄j (4.5)The value of k is usually set around 2.An example of appliation of the Sobel operator to the �rst image of the \Carphone" sequene(see Appendix A) an be seen in Figure 4.1.

Figure 4.1: \Carphone": appliation of the Sobel operator, with thresholding and thinning, tothe luma of the �rst image (using t = 40, k = 2, and � = 1).
Laplaian of the Gaussian operatorAnother ommon 2D salar edge detetion segmentation operator is the LoG operator [108, 100℄.This name is usually given to any operator using the LoG for edge loalization purposes. Some
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freedom remains about:1. transition strength;2. digitalization of the LoG; and3. zero rossing detetion method.The operator herewith presented alulates the transition strength using the estimate of the gra-dient magnitude as given by (4.3). Thus, this operator has two di�erent derivative omputationmethods: sampled derivatives of the two dimensional Gaussian funtion (for edge loalization),and tilted plane approximation (for transition strength omputation).Pixels for whih G[i; j℄ > t, where t is a given threshold, are onsidered andidate physial edgepixels.Edge loalization uses the zero rossings of the Laplaian (of the image smoothed by a Gaussian).A zero rossing is onsidered at eah andidate physial edge pixel having positive seondderivative and for whih any of its 4-neighbors has negative seond derivative. However, afteralulating the LoG and before loalization, pixels with seond derivative inferior to a giventhreshold t2 are set to zero.The �lter w[�℄ for the omputation of LoG has a 2n + 1 � 2n + 1 region of support, wheren = round(4:5�), and is alulated by

w[i; j℄ = round�K �2� i2 + j2�2 � exp�� i2 + j22�2 �� with i; j = �n; : : : ; n,
where K is a saling onstant. It an be hosen to provide appropriate approximation or suhthat Pni;j=�nw[i; j℄ = 0. If the sum, for a given K, does not yield zero, the values of w[�℄ anbe manipulated \by small amounts" [60℄.The sale of the operator is given by �, whih is the standard deviation of the Gaussian. In [60℄,n is alulated so that all non-zero sampled and quantized oeÆients of w[�℄ are inluded inthe �lter's region of support. The presented formula provides a deent approximation.The result of applying this operator to the �rst image of the \Carphone" sequene an be seenin Figure 4.2.
3D operators
3D operators, whih operate on more than one image, do not really aim at deteting physialedges. They an, however, help to detet regions that hanged from one image to another inan image sequene, and the largest hanges are usually loated near the physial edges of seneobjets. Thus, this information an be used to restrit the searh area of more preise 2D edgedetetion operators applied afterwards. This an be useful when deteting the boundaries ofmoving objets over a stati bakground [99℄.



4.2. HIERARCHIZING THE SEGMENTATION PROCESS 101

Figure 4.2: \Carphone": appliation of the LoG operator to the luma of the �rst image (t = 10,� = 2 and hene n = 9, K = 3208 and t2 = 5000).
Image di�erenesThe simplest of the 3D operators is the image di�erenes. Given two suessive images fn andfn�1, it alulates the di�erene image DnDn = Di�[fn; fn�1℄suh that Dn[i; j℄ = kfn[i; j℄� fn�1[i; j℄k: (4.6)
The di�erene operator is usually followed by some type of thresholding.This operator is useful as a �rst step in an edge detetion segmentation tehnique beause it anbe used to detet the zones that have hanged signi�antly from one image to the next. Thisassumes that the objets of interest move in front of a stati bakground. If the bakground alsomoves, then global motion, usually orresponding to amera movements, an be aneled outof fn�1 in order to stabilize the image before applying the di�erene operator. See Setion 5.5for a disussion of image stabilization methods.The result of the appliation of the image di�erene operator to the \Carphone" sequene, withand without image stabilization, an be seen in Figure 4.3.
Di�erent motionAnother interesting salar 3D operator was proposed by Ca�orio and Roa in [17℄. Thisoperator lassi�es eah pixel of an image as belonging to one of \n moving areas with di�erentdisplaements and a [�xed℄ bakground area" using \a Viterbi algorithm with n+1 states" [48℄.
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(a) Without image stabilization.

(b) With image stabilization.
Figure 4.3: \Carphone": appliation of the image di�erenes operator (without thresholding)to the luma of images 26 and 27 (di�erenes multiplied by 5 and inverted for display purposes).
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It an also be useful when trying to obtain the boundaries of moving objets in front of a �xedbakground.
4.2.2 Tehnique levelThe middle level in a segmentation proess is the tehnique level. Eah segmentation tehniquemay use several low-level segmentation operators and integrate their results into a oherent par-tition of the image. Topologial onsiderations are used often at this level: boundary detetiontehniques, for example, an use edge detetion operators followed by ontour losing, learingof isolated edge pixels, et.Segmentation tehniques an be lassi�ed aording to several attributes, whih will be pre-sented in the next setions.
Spatial primitivesThe �rst attribute onsidered is the kind of primitives addressed by the tehnique. There arebasially three types of segmentation tehniques:1. tehniques aiming at boundary detetion, i.e., tehniques attempting to detet objetor region boundaries from the plaes where there are sudden hanges of illumination,texture, et. (framework is ontour-oriented segmentation);2. tehniques aiming at region detetion, i.e., tehniques deteting regions with uniformharateristis, suh as intensity, olor, texture, et. (framework is region-oriented seg-mentation); and3. tehniques whih aim at deteting both boundaries and regions (see for instane [65℄).
MemorySegmentation tehniques may also be divided aording to the use of memory:1. tehniques with memory use information from previous images; and2. memoryless tehniques do not use information from previous images in the image se-quene.Tehniques with memory typially use 3D operators, i.e., operating on more than one image,possibly together with 2D operators. Memoryless tehniques use only 2D operators.
Features usedIf tehniques with memory are being used and the previous image is available, then it is possibleto estimate whih parts of the image su�ered di�erent movements (see [17℄ for an early example).Stritly speaking, this is motion-based segmentation, and thus ould also be lassi�ed as a tool



104 CHAPTER 4. SPATIAL ANALYSIS
towards time analysis of image sequenes. This kind of tehniques is assoiated with a di�erenttype of segmentation whih was not mentioned in the introdution: segmentation into regionsof uniform motion.Thus, there are:1. motion-based tehniques, when segmentation is based on motion; and2. olor-based tehniques, when segmentation is based on spatial features suh as olor ortexture.
Vetorial vs. salarSegmentation tehniques will be designated aording to the number of olor omponents theywork with:1. salar tehniques make use of a single olor omponent, regardless of whether more areavailable; and2. vetorial tehniques use several olor omponents.
Knowledge-basedAnother feature of segmentation at tehnique level is the availability of a priori knowledgeabout the images to be segmented, that is, information about the image model that an beused:1. if a priori knowledge is available, segmentation tehniques are knowledge-based;2. otherwise segmentation tehniques are generi.
4.2.3 Algorithm levelThe highest level in a segmentation proess is the algorithm level. Segmentation algorithmsintegrate the results obtained by the lower level segmentation tehniques (and possibly alsooperators) and attempt to assess and ontrol the attained segmentation quality. There areseveral features distinguishing the di�erent segmentation algorithms. A few are desribed inthe next setions.
Segmentation qualitySegmentation quality is an important feature of segmentation algorithms. There are three mainissues related to quality:
Quality estimationHow is the attained segmentation quality estimated?
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Quality estimation objetivesWhat will the estimated segmentation quality be used for?Quality ontrolHow is the segmentation quality ontrolled?
Quality estimationThe estimation of the quality attained depends on the tehniques used, and is still, to a ertainextent, an unsolved issue, at least if done in an automati way. Of ourse, it is possible toestimate the quality of a given segmentation if the struture of the image is known beforehand.This is what is done in the papers whih attempt to evaluate segmentation algorithms, or evensegmentation operators suh as edge detetors: see [187, 8, 47℄. This is not possible, however,when the orret or desired segmentation is not known before hand (otherwise why should onewaste time reproduing a known result?).
Quality estimation objetivesThe estimation of the segmentation quality an be used:1. for hanging the parameters of the segmentation so that a desired segmentation qualityis attained, i.e., quality estimation for (feedbak) ontrol; or2. for deiding whether the segmentation results should be aepted or rejeted.
Quality ontrolThe measure of segmentation quality may be used to adjust segmentation parameters (e.g., oper-ator thresholds) in order to improve, through feedbak, the segmentation quality of:1. the next image, in the ase of delayed segmentation quality ontrol; or2. the urrent image, in the ase of immediate quality ontrol.Delayed segmentation quality ontrol has a delayed response to hanges in the sequene tosegment. Hene, it an only be applied if these hanges are expeted to be slow. On the otherhand, immediate segmentation quality ontrol an only be used if the segmentation algorithmbeing used is not too omputationally demanding.
Sale and resolutionOne of the features of segmentation algorithms onsidered is the sale or sales at whih theyoperate. That is, the sale at whih di�erenes in the properties that haraterize the segmentedregions are deteted. A small sale segmentation algorithm will be able to detet and segmentdetailed regions, e.g., the details of a textured surfae, while a large sale segmentation algorithmwill be able to detet only less detailed hanges in the properties of the regions.
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The sale of an algorithm is usually ontrolled by adjusting sale parameters in the low-leveloperators used. For instane � in the LoG operator of Marr and Hildreth [108℄. An algorithmmay use tehniques at di�erent sales and integrate them into a many-sale desription of thesene [18℄. Jeong and Kim [85℄ proposed a method for adaptively seleting the sale along theimage.Resolution is another feature of segmentation algorithms. It is related to the resolution ofthe segmentation of the image. The resolution usually depends on the appliation at hand.Segmentation an be done at pixel resolution or, for instane, at MB (MaroBlok) resolution(16� 16 pixels).Even though segmentation sale and resolution are related, there are a few di�erenes betweenthe two, the most important being that sale is onerned with the level of detail taken intoaount during the segmentation while resolution is onerned with the level of detail neessaryafter the segmentation. The di�erene an be made lear by means of an example. Suppose thatsegmentation is to be used in a H.261 enoder merely by hanging the quantization step (whihis �xed for eah MB). Then, a MB resolution for the segmentation is learly enough. However,in order to learly determine the speaker's position against the bakground, a segmentationsale muh smaller than MB will obviously be needed (see Setion 4.4).
MemoryA segmentation algorithm may also be lassi�ed aording to its use of the temporal informationbetween adjaent images in an image sequene. This use an be done at the tehnique or evenoperator level, for instane by using 3D operators, or only at algorithm level, for instane byrestriting the searh of the edges of physial objets to a small region around their previouspositions, possibly by using motion information extrated from the image sequene. Other usesof memory will be seen in Setion 4.7.1, where a region-oriented segmentation algorithm makinguse of memory is proposed. The segmentation algorithm an thus be:1. memoryless if temporal information is not used; and2. with memory if temporal information is used.
Knowledge-basedSegmentation at algorithm level, as happened at tehnique level, an be lassi�ed aording tothe availability of knowledge:1. if a priori knowledge is available, segmentation algorithms are knowledge-based;2. otherwise segmentation algorithms are generi.
4.2.4 ConlusionsIn summary, the various levels in the segmentation proess an be lassi�ed aording to:
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Operator level1. Spatial features deteted (edge or region detetion or both).2. Number of omponents used (vetorial or salar).3. Number of images operated on (2D or 3D).Tehnique level1. Segmentation operators used.2. Spatial features deteted (boundary or region detetion or both).3. Use of temporal information (with memory or memoryless).4. Features used (motion or olor).5. Number of omponents used (vetorial or salar).6. Use of a priori information (knowledge-based or generi).Algorithm level1. Segmentation tehniques (and eventually segmentation operators) used.2. Quality estimation objetives (ontrol or aeptane/rejetion deision).3. Quality estimation method.4. Type of quality ontrol (immediate or delayed or none).5. Sale of the segmented features.6. Resolution of the resulting lassi�ation.7. Use of temporal redundany (with memory or memoryless).8. Use of a priori knowledge (knowledge-based or generi).
A diagram with the proposed segmentation proess hierarhy and the lassi�ation riteria foreah of its levels is show in Figure 4.4.
4.2.5 Pre-proessing
Pre-proessing an be an important step in a video enoder, where it is often seen as a part ofimage analysis. It an our in two di�erent positions:

1. before analysis proper, pre-proessing an be used used to emphasize important imagefeatures and to eliminate details whih are irrelevant to the subsequent analysis; and2. before enoding (after analysis2), pre-proessing an be used to hange the input se-quene's harateristis, aording to the analysis results, so that the oding an be mademore eÆient (e.g., in the framework of videotelephony, by low-pass �ltering the bak-ground of the images after having deteted the speaker's position through knowledge-basedsegmentation, or by manipulating oding parameters suh as the DCT quantization step,in the ase of lassi odes).2It is atually post-proessing relative to analysis.
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algorithm:

technique:

operator:

region / edge detection
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Figure 4.4: Segmentation proess hierarhy and lassi�ation for operator, tehnique, and algo-rithm level.
4.3 Region- and ontour-oriented segmentation algo-rithms
This setion overviews several well-known segmentation algorithms and attempts to frame themwithin the ommon theory of SSTs. First, the basi versions of region merging and region grow-ing algorithms are shown to be really algorithms solving di�erent graph theoretial problems,all involving SSTs. Then, it will be shown that the distintion between region- and ontour-oriented segmentation is not as lear-ut as it may seem at �rst: the basi ontour-losingalgorithm is shown to be the dual of the basi region merging algorithm, both being desribableagain reurring to SSTs. Finally, the problem of globalization of the information along thesegmentation proess is introdued, along with the problem of hoosing appropriate homogene-ity riteria for the regions, i.e., the problem of hoosing an appropriate region model. It willalso be shown that, in this framework, segmentation algorithms an be seen as non-optimalalgorithms whih attempt to minimize a ost funtional, typially related to an approximationerror. Globalization methods, region models, and ost funtional, are what really distinguishesall the algorithms desribable in the SST framework.
4.3.1 Contour-oriented segmentationAs said before, two di�erent approahes an be used for segmentation. The �rst approahaims at identifying transitions in the image features whih are relevant to the task at hand,
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and whih may be transitions in gray level, olor, texture, motion, et. Most of the availabletransition detetion methods were developed as �rst steps toward identi�ation of objet edgesin the sensed 3D natural world of whih the image is a projetion (e.g., [108℄). Hene, the termedge detetion, used in all the literature and throughout this thesis, stuk in onnetion to thelow-level transition detetion operators.Contour-based segmentation algorithms typially inlude edge detetion at operator level. Mostedge detetion operators lassify pixels or edges as either deemed to belong to a physial objetedge or not, and this deision is made by looking at a small neighborhood of the given pixelor edge, alulating a few parameters, and omparing them to thresholds. Even though somethresholding methods introdue, to a ertain extent, more global information, e.g., the hysteresisthresholding for edge loalization proposed by Canny [18℄, edges are mostly deteted in a ratherloal form, and hene do not usually form losed boundaries.A further problem with edge detetion operators is that they often require the tuning of anumber of parameters. A typial parameter is the transition strength threshold (or thresholds,in the ase of hysteresis), whih if set too high leads to edges far from onstituting losedontours, and if set to low leads to many erroneously deteted edges. The seletion of theoperator parameters is thus not trivial. Some solutions have been proposed in the past forautomating parameter seletion [85, 151℄.
Contour losingThe result of edge detetion is a mapping of pixels or edges into one of two lasses: elementsorresponding to large transitions and elements orresponding to smooth, uniform zones (interms of the image features of interest). Clearly, suh approahes do not diretly lead to apartition of the image|the deteted edges may not form losed boundaries. Hene, edge dete-tion operators are usually followed by ontour losing tehniques and then by algorithms whihlassify as di�erent regions the onneted omponents separated by the estimated ontours.Assuming that the transitions are deteted at edges (boundaries of the pixels), perhaps theoneptually simplest method of obtaining losed ontours is to apply a threshold to the resultof some transition strength omponent, to build the subgraph of the image line graph induedby the deteted edges, and �nally to remove all the bridges in this subgraph, thus obtaining a2-ar-onneted graph, whih indeed segments the image into several regions. If the transitionstrength threshold is dereased suessively, so that edges are deteted with non-inreasingstrength, then a suession of partitions of the image an be obtained, ranging from a singleregion overing the whole image, to a region per pixel, when all the edges are deteted. Thisalgorithm will be alled the basi ontour losing whenever the transition strength of an edgeis alulated simply as the distane between the olors of the two pixels it bounds.
4.3.2 Region-oriented segmentationThe seond approah to segmentation attempts to deal with homogeneity instead of dissimi-larities (i.e., transitions). Suh methods usually lead diretly to a partition of the image, and
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hene the aforementioned division of the segmentation proess into operator, tehnique, andalgorithm level is not as lear as for ontour-oriented segmentation.Two of the most referened segmentation methods in the literature [154, 68℄ are region growingand split & merge. Other more reent ontenders in this �eld are watershed segmentation, basedon mathematial morphology theory, and SST segmentation. These segmentation algorithms,all region-oriented, will be briey overviewed in the following setions, and their basi versionswill be desribed and ompared. But before that, region segmentation will be de�ned formally.
A formal de�nition of segmentation
Segmentation an be seen as an optimization problem. Assuming a uniformity measure has beenestablished for eah lass in a partition and for the partition as a whole, the optimal partitionan be de�ned as that whih:1. for a given maximum number of lasses, maximizes the overall uniformity; or2. for a given minimum overall uniformity, minimizes the number of lasses.This de�nition of segmentation laks a very important onept: the spatial relation of the pixels.Granted, suh onerns may be partially embedded into the uniformity measure, but it wouldbe useful if they ould be made more expliit. Without suh spatial onepts, all permutationsof the pixels values in a given image lead to essentially the same segmentation: a segmentationwhih is based solely on the pixel olors. Without spatial relationships taken into aount (i.e.,using only the measurement spae [68℄) segmentation is essentially a lustering problem.A more restritive and interesting de�nition uses onneted lasses instead of possibly dison-neted lasses. The optimal partition an thus be de�ned as that whih:1. for a given maximum number of onneted lasses, maximizes the overall uniformity; or2. for a given minimum overall uniformity, minimizes the number of onneted lasses.With this de�nition, by taking into aount also the spatial relationships, segmentation an beseen as lustering in both spatial and measurement spae [68℄. It is also quite an intratableproblem beause the solution spae is huge. For an image with 100� 100 pixels, and assuminga partition into 4 disonneted lasses, the total number of possible partitions to onsider is410000 � 106021. When onneted lasses are required, the solution spae is onsiderably smaller,but still too large to onsider a brute fore searh for the optimum. Thus, most segmentationalgorithms are atually non-optimal solutions of the stated problem.Considerable latitude exists in the hoosing of appropriate uniformity measures for eah lassand for the whole partition. While some may be so simple as the range of grey levels inside agiven lass, others may reur to more or less sophistiated models for the olor variation insideeah lass, an thus to an uniformity measure whih is essentially the inverse of the modelingerror. Both the problems of non-optimal approximations to the optimal segmentation and ofregion modeling will be disussed at more length in Setion 4.3.4.
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Region growing
Region growing algorithms start with an initial set of seeds or markers (small sets of pixels,possibly disonneted) to whih adjaent pixels are suessively merged if this merging leads toan homogeneous region aording to some riterion. Regions stemming from di�erent seeds arenever merged. The proess is omplete when every pixel is assigned to one of the regions andthere are no pairs of adjaent regions stemming from the same seed. Stritly speaking, regiongrowing does not attempt to solve the segmentation problem. The problem solved is atually arestrition of the original problem, where pixels from di�erent seeds are not allowed to belongto the same lass. Notie that the number of seeds is a lower bound to the number of lasses,but the two are not always equal: a seed may lead to several non-adjaent lasses.The use of seeds is both a urse and a blessing. On the one hand, suh algorithms by themselvesare unable to perform automati segmentation. However, several methods have been proposedin the literature to automatially identify appropriate seeds, espeially in the ase of watershedsegmentation, a partiular breed of region growing segmentation algorithm whih will be dis-ussed below. On the other hand, region growing segmentation algorithms lend themselves veryeasily to supervised segmentation, in whih a (human or not) supervisor lassi�es some pixelsof the image as belonging to di�erent lasses, and then the segmentation algorithm attempts tohonor these hints.The basi version of the region growing algorithm starts by labeling the pixels in eah seed witha label whih is unique for that seed. All other pixels are initially unlabeled. Then, of all theunlabeled pixels whih are adjaent to at least one labeled pixel, the one with the smallest olordistane to an adjaent labeled pixel is labeled with the label of that pixel. When all pixels arelabeled, the labels represent the partition of the original image. Hene, the �nal partition hasas many lasses as there are seeds, some of whih may have more than one region.
Watershed segmentation
Watershed segmentation has its roots in a topographi problem: given a digitized topographisurfae, how an draining basins be identi�ed? Or, by duality, where are the watersheds of thebasins loated? The solution to this problem involves identifying loal minima, piering theseminima, and slowly immersing the topographi surfae in some (virtual) liquid. Whenever liquidowing from di�erent soures is about to mix, a dam is built. After total immersion the damsidentify the watersheds of the basins, and eah basin orresponds to a loal minimum. Thisproess is very niely desribed in [132℄. This method of identifying basins in a topographisurfae an be seen as a form of segmentation. The problem with the method is that it leads toover segmentation. This stems from the fat that eah loal minimum is onsidered to give riseto an individual basin, no matter how small. The standard solution to this problem involvespiering the topographi surfae at those loations deemed to represent individual basins andapply the algorithm without further hanges. Sine the number of liquid origins is redued, so isthe �nal number of basins. In a sense, as was reognized in [132℄, suh solution merely shifts theproblem: how to selet where to piere the topographi surfae? However, the analogy betweenwatershed segmentation and region growing segmentation is immediate, and the same omments
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apply as in the ase of region growing: watershed segmentation may be a good tehnique forinlusion in some omplete algorithm whih either (a) deides by itself or (b) asks some humansupervisor where to piere the surfae (where to loate the seeds, in the ase of region growing).This method of identi�ation of basins in digitized topographial surfaes was soon reognized tohave a high potential in image segmentation [132℄. However, two problems had to be solved: (a)typial images have values in Z3 , so that the analogy with heights of terrains is not immediate,and (b) even in the ase of grey sale images, taking values in Z, the basins of the grey levelstaken arti�ially as heights of some imaginary terrain are hardly what image segmentationaims at. This latter problem was solved by reognizing that, if segmentation aims at detetingreasonably uniform regions, then watersheds should be loated in pixels where the gradient ishigh. Hene, the watershed segmentation started to be applied to the absolute value of theimage gradient. The gradient, in the original papers [132℄ and [193℄ was usually alulatedreurring to morphologial �lters. Estimating derivatives, however, is an ill posed problem,hene other solutions working diretly on the original image were neessary.The above problems are addressed in [131℄ (see also [177℄), whih presents a generi watershedsegmentation algorithm of whih the already desribed (lassial) watershed segmentation algo-rithm, working on a topographial surfae, and the basi region growing algorithm are partiularases. This paper also disusses briey the problem of seleting an appropriate olor distane,whih is losely related to the problem of seleting a olor spae. Its proposal is to selet theHSV (Hue, Saturation, and Value) olor spae. However, see disussion in Setion 3.1.1.Atually, the region growing version of the generi watershed segmentation algorithm is notexatly the basi region growing algorithm as desribed in the previous setion. The regiongrowing version of watershed segmentation does take into aount that, when at a ertain stepof the algorithm there is a tie, that is, several di�erent pixels may be aggregated to di�erentregions, there are solutions whih are better than others. In analogy with the lassial watershedsegmentation, whih tried to ood plateaus with liquid owing at a onstant speed from eahsoure, thus loating the watersheds in their \natural" loation in the middle of the plateaus,the region growing version of watershed segmentation solves the problem in a similar way: inase of a tie, hoose the oldest andidate pixel for merging. If, as will be seen shortly, basiregion growing an be implemented using the simple extension of Prim's onstrutive algorithmfor SSSSkT, then the region growing version of watersheds, with its nie treatment of ties, anbe implemented by the same algorithm with a further restrition: the pixel queue must be notonly hierarhial but also ordered: pixels in the same hierarhial level should be organized in aqueue (�rst ame �rst served). In the partiular ase of digital images where the image valuestake only a relatively small set of values (whih atually is the ase in most situations, sineusually 8 and at most 10 bits are used to enode the olor omponents of eah pixel), veryeÆient algorithms an be developed [193℄.There are a few reasons why ties should not worry us too muh, though. First, it is probable thatin the future more and more bits are used to represent images in intermediate steps of proessing.As a onsequene, when some sort of �ltering is performed on images before segmentation, thelikelihood of ties dereases and the e�ets of handling them blindly will probably not be severe.But the best of all reasons is that it will allow us to niely ompare several di�erent segmentationalgorithms under the ommon framework of SSTs.
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Region mergingRegion merging algorithms, unlike region growing algorithms, do not reur to seeds. A partitionof an image is input to the algorithm, typially the trivial partition where eah pixel is a singlelass, and at eah step of the algorithm pairs of adjaent regions are examined and mergedinto one if the result is deemed homogeneous. This version of the algorithm is essentially theRAG-MERGE of [154℄. This algorithm an be improved if the pair of regions to be merged ateah step is seleted as the one leading to the greater uniformity. In this ase, the algorithm isalled RSST [134℄, for reasons whih will be shown later.The basi version of the region merging algorithm merges pairs of regions aording to the olordistane between adjaent pixels eah belonging to eah of the two adjaent regions andidate formerging. Needless to say, there an be several suh pairs of pixels for a given pair of adjaentregions. The smallest olor distane of all pairs of pixels in the above onditions is takenas representative of the uniformity of the union of the two regions. Granted, this algorithmis learly poorer than RSST and RAG-MERGE above. Its interest will be seen later, whendisussing methods of globalizing the deisions taken in the basi algorithms that lead to thementioned RSST and RAG-MERGE algorithms.
Split & mergeIn 1976, Horowitz and Pavlidis [72℄ developed an image segmentation algorithm ombiningtwo methods used independently until then: region splitting and region merging. In the �rstphase, region splitting,3 the image is initially analyzed as a single region and, if onsiderednon-homogeneous aording to some riterion, it is split into four retangular regions. Thisalgorithm is reursively applied to eah of the resulting regions, until the homogeneity riterionis ful�lled or until regions are redued to a single pixel. At the end of the split phase, theregions orrespond to the leaves of a QPT (Quarti Piture Tree).4 If split were the only phaseof the segmentation algorithm, the segmented image would have many false boundaries, sinesplitting is done aording to a rather arbitrary struture, the quad tree. The seond phase ofthe algorithm is region merging,5 where pairs of adjaent regions are analyzed and merged iftheir union satis�es the homogeneity riterion.Several problems may our in split & merge algorithms, namely arti�ial or badly loatedregion boundaries. These problems usually stem from the split riterion used, whih is thusdeterminant for the �nal segmentation quality.In 1990, Pavlidis and Liow [158℄ presented a method that uses edge detetion tehniques to solvethe typial split & merge problems (e.g., boundaries that do not orrespond to edges and thereare no edges nearby; boundaries that orrespond to edges but do not oinide with them; edgeswith no boundaries near them). The method is applied to the over-segmented image resulting3Horowitz and Pavlidis atually de�ne the �rst phase as the split & merge phase and the seond as thegrouping phase. However, the �rst one an be simpli�ed (though this an make it less omputationally eÆient)to a simple split if one starts by onsidering the entire image (level 0).4This aronym is the one used in [154℄. QPTs are also know as quad trees.5The grouping phase in [72℄ and RAG-MERGE in [154℄.
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from the split & merge algorithm. It is based on [158℄: \riteria that integrate ontrast withboundary smoothness, variation of the image gradient along the boundary, and a riterion thatpenalizes for the presene of artifats reeting the data struture used during segmentation."Some ideas along these lines will be disussed later.One of the main bottleneks in typial segmentation algorithms is memory, even more so thanomputation time. The data strutures representing the images, and the assoiated graphs,whih algorithms typially use, an easily require hundreds of megabytes. The memory usagegrows with the initial number of regions onsidered, partiularly in the ase of region merging.Split & merge an be seen as a good method for trading a redution of memory usage foran inreased omputation time, sine after splitting the number of regions is typially smallerthan the number of pixels and splitting an be a time onsuming task. Inidentally, this isthe reason why in [72℄ there is a merging phase within the quad tree struture, whih allowsthem to start the proess at a lower level in the tree. But there are other reasons whih maylead to the splitting proess. If the homogeneity is based on how well a region model onformsto the atual olor variations along the union of two adjaent regions, and if this model isomplex, estimating its parameters for small regions tends to be an ill-de�ned problem. Sineestimation for small regions an be very sensitive to noise, a tradeo� is thus required betweennoise immunity and auray in the loation of region boundaries. This tradeo� is typial ofthe \unertainty priniple of image proessing" [199℄.
4.3.3 SSTs as a framework of segmentation algorithmsThe �rst attempt to desribe several segmentation algorithms within the ommon framework ofSSTs was made by Morris et al. [134℄. Region merging and edge detetion were both put intothe SSTs framework, even though the desription of edge detetion with SSTs was not omplete.This setion will elaborate on the results of [134℄, by desribing region merging, region growing,and ontour losing, all within the framework of SSTs. Notie that, even though the results inChapter 3 are usually given for graphs in general, whih may be disonneted, in this hapterour attention is onentrated in typial images, whose image graphs are onneted. Hene,SSTs are used instead of SSFs.
Region growing as a solution to the SSSSkT problemConsider the basi region growing algorithm, as desribed before. If all seeds are restrited to nomore than one pixel, then this algorithm is exatly the onstrutive extended Prim algorithmfor solving the SSSSkT problem. What happens when seeds are allowed to have more thanone pixel? For the sake of larity, eah seed pixel will be onsidered to have a label identifyinguniquely the pixels in the orresponding seed: seed pixels of the same seed have the same labelwhile seed pixels from di�erent seeds have di�erent labels. In this ase, it an be proved that theextended Prim algorithm results in a SSSSkT whih is a subgraph of the required (say) multiseeded k-tree. Some separators of the SSSSkT do not onnet trees with seed pixels of di�erentlabels, and thus may be part of the solution. If the branhes of the SSSSkT are ontrated inthe original graph and the true separators (separators of seed pixels with di�erent labels) are
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removed, then the branhes of any SSF of the resulting graph an be added to the SSSSkTto obtain a solution to the multi seeded problem. It an also be proved easily that a solutionan be obtained if Prim's algorithm is hanged so as to allow insertion of branhes onnetingtrees orresponding to seed pixels with the same label. That is, by hanging the de�nition ofseparator and onnetor to aount for the possible existene of multiple pixels in a seed.An immediate onlusion of the preeding lines is that region growing is indeed �nding a solutionto the (multi seeded) SSSSkT problem, not a solution to the segmentation problem. The mainreason for this is that the deision about whether or not a pixel should be merged to one ofthe growing regions is based solely on the di�erene between that pixel and another pixel inthe region, not the omplete region. This means that through small hanges at eah regiongrowth, the regions an turn out to be far from uniform. This problem an be addressed byglobalization methods, whih will be addressed later.Destrutive algorithms may also be used to obtain the desired segmentation. Use any algorithmto obtain the SST of the image and then ut suessively the heaviest branhes in the treestanding between seeds of di�erent markers. Or, whih is the same, apply Kruskal's extensionto solve the (multi seeded) SSSSkT problem over the SST. The advantage of this last algorithmonly omes about when multiple segmentations with di�erent markers have to be performedover the same image, as for instane in supervised segmentation. Calulation of the SST isO(#V lg#V) for planar graphs, but it is done only one. On the other hand, solving theSSSSkT problem over the SST runs in linear time. Hene, when the number of segmentationsof an image grows, the amortized omputation time of eah segmentation tends to linearity onthe number of pixels.The watershed algorithm an be seen as a speial ase of the region growing algorithm wherethe pixel queues are not only hierarhial but also ordered. This hanges the way the algorithmworks in ases of ties, as will be disussed later. It does not hange the asymptoti running timeof the algorithms. What does hange it however, is if the hierarhial queues are hierarhizedbased on a weight whih an only take a small number of values. In this ase, as was reognizedin [193℄ and [131℄, faster hierarhial (and ordered) queues an be devised, taking the form ofarrays of queues, one queue for eah possible distint weight.
Region merging as a solution to the SSkT problem
The basi version of the region merging algorithms is immediately reognizable as the Kruskalalgorithm for �nding a shortest spanning k-tree of a graph, in this ase the image graph. Thiswas realized by [134℄, whih labeled this type of segmentation SST segmentation. Eah of the komponents of the attained k-tree is hene a region of the partition obtained by the algorithm.Two interesting onlusions may be drawn out of this fat.Firstly, this tells us that region merging is indeed �nding a solution to the SSkT problem, not asolution to the segmentation problem. The main reason for this is that deision about whetheror not two regions should be merged together is based solely on the di�erene between twopixels of the two di�erent regions, not on the omplete regions. This means that two regionswhih have totally di�erent global properties an be united by a narrow strip of slowly varying
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pixels. This problem an be addressed by using globalization methods, to be disussed later.Seondly, it is now evident that destrutive algorithms may also be used to obtain the desiredsegmentation. Use any algorithm to obtain the SST of the image and then ut the heaviestk � 1 branhes in the tree. Unlike the destrutive algorithms for region growing mentioned inthe previous setion, uts are now done irrespetive of the position of the branhes within thetree.
Region merging with seedsIt is possible to extend region merging so as to use seeds. In this ase, the algorithm simplyprevents regions with di�erent seeds from being merged. This an also be seen easily to be theonstrutive algorithm for SSSSkT based on the Kruskal algorithm. As before, the de�nitionsof separator and onnetor may have to be adjusted to aount for the existene of seeds withmore than one pixel. But this algorithm is solving the SSSSkT problem, whih was shown inthe previous setion to be also solved by the basi version of the region growing algorithm.Hene, region merging with seeds solves the same problem as region growing: the SSSSkTproblem. The region growing algorithm follows Prim's approah while the region mergingapproah follows Kruskal's. Notie that the result of both algorithms, in terms of the attainedk-tree, is guaranteed to be the same only if there is a single solution to the SSSSkT problem.However, the results may be equal in terms of the identi�ed regions even if the k-trees attainedare di�erent.By using hierarhial ordered queues, Prim's approah to the SSSSkT an deal with ties (theso-alled plateaus in the watershed terminology) in a strutured way. This is muh harder, ifat all possible, with Kruskal's approah. However, Kruskal's approah is suh that at eah stepof the algorithm the already seleted ars form a SSSkT of the graph. Hene, the algorithmmay be stopped before all seedless regions have been removed. This gives some autonomy tothe algorithm, sine it may deide that some seedless regions are to be treated as indepen-dent regions. The Prim's approah does not allow suh regions to form, at least when usingonstrutive algorithms. When using destrutive algorithms both approahes are appropriate.
Region merging and ontour losing as dualsContour losing operates on the line graph, the dual of the image graph. The ars of the linegraph are inserted into a tentative edge ontour graph in non-inreasing weight order. At eahstep of the algorithm the edge ontour graph an be obtained from the tentative graph byeliminating all bridges, thus leaving a 2-ar-onneted planar graph whih separates the imageinto several onneted regions.Suppose that the previous algorithm is modi�ed slightly: eah time an ar is to be inserted intothe tentative graph, it is �rst heked whether it would introdue any iruits; if it would, it isput into a queue an left out of the tentative graph. After all ars having been onsidered, thears whih are in the queue are inserted one by one into the tentative graph. If the insertionshedule for ars in ase of ties is the same, both algorithms yield exatly the same result. This
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an be proved easily. First, observe that the �rst part of the modi�ed algorithm is atually theKruskal algorithm for the LST. Hene, after onsideration of all ars, the ars in the tentativeedge ontour graph are the branhes of a LST of the line graph, and the ars in the queue areits hords. What is the onstitution of the tentative edge ontour graph after insertion of theith hord, say i? It ontains all branhes of the LST and hords  whih preeded i in theinsertion shedule, and hene are not lighter than i. Eah suh hord  as a orrespondingfundamental iruit ontaining no further hords, suh that all its branhes b preeded  in theinsertion shedule, and hene are not lighter than . Hene, it is lear that all iruit ars inthe tentative edge ontour graph preeded i in the insertion shedule or, whih is the same,all ars following i in the insertion shedule are either bridges of the tentative edge ontourgraph, or hords whih still haven't been inserted. Removing suh bridges leaves us with thesame tentative edge ontour graph as after insertion of i using the �rst algorithm (and thesame insertion shedule), so that the two are e�etively equivalent.It has been proved, thus, that the basi ontour losing algorithm is in fat the Kruskal algorithmfor �nding the LST of the line graph followed by suessive insertion of hords into the tree.Eah suh hord introdues a iruit. Sine the emphasis here is on planar graphs, eah suhinsertion reates a further fae in the graph. But the dual spanning tree of the LST is a SST ofthe image graph. The insertion of hords of non-inreasing weight into the LST of the line graphorresponds thus to the removal of non-inreasing ars from the SST. For eah suh operation,a fae is split in two in the line graph and the orresponding onneted omponent is divided intwo in its dual, the image graph. Hene, the modi�ed ontour losing algorithm orresponds inthe dual graph to the destrutive algorithm for obtaining a SSkT from the SST, that is, it is theregion merging algorithm. Region merging and ontour losing are thus two algorithms whihsolve the same problem. It is a ase where the duality between region- and ontour-orientedsegmentation is an atual fat.The �rst attempt to formalize this interesting fat was made in [134℄, but the authors failed toreognize that ars should be inserted into the LST, thereby reating iruits, and not removed,whih is a pointless operation to perform on the LST of the line graph, even though the rightone in the SST of the image graph.It should be notied, however, that globalization makes region merging and ontour losingdiverge, i.e., produe di�erent results, as will be disussed later.
The problem of ties or plateaus
A few notes are in order regarding the problem of ties mentioned before. Knowing that thebasi algorithms an all be desribed in terms of SSTs, it should be lear that, when multipleequivalent solutions exist, this is related to the fat that there are usually no unique solutionsto the SSF, SSkT, SSSkT, or SSSSkT problems. However, two di�erent spanning k-trees ofan image graph an lead to the same partition, sine two regions are equal even if overed bydi�erent trees. The issue of multiple solutions, its relation with the multiple solutions of thespanning trees problems, and its relation with mathematial morphology (through watersheds),remained as an issue for future work.
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4.3.4 Globalization strategies
The basi versions of the region growing, region merging, and ontour losing algorithms allmake deisions about when to merge or split two regions using loal information, namely theolor di�erene between pairs of pixels. Information is globalized in those algorithms onlyinsofar as they disard ars between pixels already at the same region of the evolving partition.Regions of onsiderable size an thus be merged, namely in the ase of region merging, justbeause they happen to have two adjaent pixels whih are similar, even if the regions themselvesare quite di�erent globally. This is a problem of sale: as the size of the regions inreases, thesale at whih their are onsidered should also inrease. But it is also a problem of noiseimmunity: if whole regions are taken into aount, the noise tends to be \averaged out", thusrendering the algorithms more robust. There is thus the need to globalize the information overwhih deisions are made. Another way of seeing this problem is to reognize that the use ofloal information leads the algorithms away from the optimum segmentation.It is through globalization that the algorithms really tend to diverge and to gain new interestingproperties. In the previous setions it was shown that region merging and ontour losingwere really solving the same problem, they were, as a matter of fat, dual algorithms. It wasalso shown that region merging with seeds and region growing also solve the same problem.This only happens in the ase of the basi algorithms. When globalization is enfored, byestablishing region and/or boundary models, for instane, the algorithms gain individuality.The next setions will overview the issues of modeling and globalization and disuss brieytheir inuene on the basi algorithms.As the di�erent basi algorithms are globalized, they no longer solve the same problem, whihmight be to �nd a SSkT, a SSSkT, or a SSSSkT. However, they do attempt to ahieve asegmentation whih is loser to the optimal segmentation. Hene, most of the globalizationmethods are atually heuristis towards solving the intratable problem of optimal segmentation.
Region modeling
As de�ned, segmentation searhes for regions whih are uniform aording to ertain riteria.In the past, several suh riteria have been used, suh as onsidering a region uniform whenthe dynami range or the variane of its gray level is small, or when the maximum distanebetween olors in the region is also small. These are, in a sense, statistial riteria. Another,more interesting, lass of homogeneity riteria states that a region is uniform if the error be-tween the atual pixel values and a model for the region, with estimated parameters, is small.Segmentation into regions whih provide the best possible approximation to an image, using agiven region model, is atually the same as �tting a faet model to the images [68℄. In faetmodels, eah image omponent is thought to onsist of a pieewise ontinuous surfae, whihan be onstant (the at faet model), linear or aÆne (sloped faet model), quadrati, ubi,et. It is also possible to envisage the use of texture models, for instane.By far the most ommonly used model in segmentation is the at region model. Most of thealgorithms desribed in the literature (see next setions), use this simple model. It is the ase of
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the watershed and RSST algorithms, and it is also the ase of some of the algorithms proposedin this thesis.As to the error alulation, it is typial to use the root mean square error (related to theEulidean distane) as the value whih should be minimized, sine it both averages the erroralong the region and has nie algebrai properties: the estimates of parameters of linear modelsare obtained through statistis suh as the mean and the variane. The maximum absoluteerror, on the other hand, worries too muh about the deviation of a single pixel, while the sumof absolute errors has algebrai properties whih are less amenable to eÆient implementation,sine the estimated values are obtained through statistis suh as the median, whih is harderto alulate than the mean value.As to the distane between olors, even though some authors [112℄ use the maximum absoluteomponent di�erene of the vetorial di�erene between R0G0B0 or HSV olor spaes andsome others suggest CIE L*a*b* and L*u*v* olor spaes beause of their improved pereptualuniformity [194℄, the most ommonly used metri is the Eulidean distane in the R0G0B0 spae,whih generally leads to reasonable results (see [164℄).The next setions derive the equations for the at and aÆne region models and show how theapproximation parameters for the union of two regions an be obtained from a redued set ofstatistis for eah of the individual regions.
The at region model equationsLet R be a region in the domain of a digital image f . The at region model states that f̂ , theapproximation of f , is f̂ [v℄ = a 8v 2 R, i.e., the approximate image olor is onstant insidethat region. Let e(f; f̂ ;R) be the approximation error between f and f̂ inside R. Then

e(f; f̂ ;R) =sPv2R d2(f [v℄; a)#Rwith the distane
d(x; y) = kx� yk =q(x� y)T (x� y) =vuutn�1Xl=0 jxl � ylj2 (4.7)

where n is the number of olor omponents of the image.Di�erentiating the error relative to the olor vetor a, the minimum of the error is
e(f; ~f;R) =sB(f;R)�#R~aT ~a#R (4.8)

where B(f;R) =Pv2R f [v℄T f [v℄, and it is obtained for~f [v℄ = ~a = A(f;R)#R ;



120 CHAPTER 4. SPATIAL ANALYSIS
where A(f;R) =Pv2R f [v℄.Suppose now that two disjoint regions Rj and Rk are to be merged into a single region R, i.e.,R = Rj [Rk.Before merging, the image is approximated by

~f [v℄ = (~aj = A(f;Rj)#Rj if v 2 Rj , and~ak = A(f;Rk)#Rk if v 2 Rk;and the total approximation error before merging is
E =sPr�1l=0 #Rle2(f; ~f;Rl)Pr�1l=0 #Rlwhere r is the total number of regions.After merging, the total error is

E0 =s#Re2(f; ~f 0;R)�#Rje2(f; ~f;Rj)�#Rke2(f; ~f;Rk) +Pr�1l=0 #Rle2(f; ~f;Rl)Pr�1l=0 #Rland the image is approximated, inside R, by~f 0[v℄ = ~a = A(f;R)#R :
Sine A(f;R) = A(f;Rj) +A(f;Rk);B(f;R) = B(f;Rj) +B(f;Rk), and#R = #Rj +#Rk; (4.9)
the approximation of the image inside R an be written in terms of its approximation insideRj and Rk, i.e., ~a = A(f;Rj) + A(f;Rk)#Rj +#Rk = #Rj~aj +#Rk~ak#Rj +#RkThus, if the pair of regionsRj andRk to merge, usually restrited to being adjaent, is supposedto minimize E0, it must be hosen so as to minimize the squared error ontribution to the totalerrorD(Rj;Rk) = Djk = #Re2(f; ~f 0;R)�#Rje2(f; ~f;Rj)�#Rke2(f; ~f;Rk). But, using (4.8)and (4.9) (f. with Appendix B of [194℄),D(Rj ;Rk) = Djk =B(f;R)�#RaTa�B(f;Rj) + #RjaTj aj �B(f;Rk) + #RkaTk ak= #Rj#Rk#Rj +#Rk (~aj � ~ak)T (~aj � ~ak) = #Rj#Rk#Rj +#Rk d2(~aj ; ~ak): (4.10)
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It should be notied that quantity Djk for a pair of (adjaent) regions Rj and Rk does nothange unless one of the two regions has been merged to another. Hene, if these quantitiesare stored for eah pair of adjaent regions, the onsequenes of merging two regions remainrelatively loalized.Finally, it should be notied that, if the at region model is to be used during region-orientedsegmentation (either region growing or region merging), then the only quantities whih mustbe stored inside the data struture representing the regions are #R, the number of its pixels,a, whih is the approximation parameter, and perhaps R, the set of region's pixels, in the formof a pixel list, for instane.
The aÆne region modelThe ase of the aÆne region model is simply a generalization of the at region model. In eahregion R the image is approximated byf̂ [v℄ = a+ bv 8v 2 R (4.11)where b is a n �m parameter matrix, n is the olor spae dimension, and m is the dimensionof the spae over whih the image is de�ned (2 for 2D images, 3 for 3D images). Hene, nowm+ 1 n-dimensional parameters have to be estimated.Let � stand for �a b�. Then, equation (4.11) an be written

f̂ [v℄ = � �1v� (4.12)
Again the objetive is to hoose � so as to minimize the approximation error

e(f; f̂ ;R) =sPv2R d2(f [v℄; f̂ [v℄)#Ror, given the de�nition of distane in (4.7),
e(f; f̂ ;R) =sPv2R(f [v℄� f̂ [v℄)T (f [v℄� f̂ [v℄)#R :

Sine f [v℄ and f̂ [v℄ are n-dimensional vetors for eah v, it is obvious that
e(f; f̂ ;R) =sPv2RPn�1l=0 (fl[v℄� f̂l[v℄)2#Rand, exhanging the summation order
e(f; f̂ ;R) =sPn�1l=0 Pv2R(fl[v℄� f̂l[v℄)2#R
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Let the sites v in region R be arranged in a sequene vk with k = 0; : : : ;#R� 1 (the order ofthe site vetors in the sequene is irrelevant). Then

e(f; f̂ ;R) =sPn�1l=0 P#R�1k=0 (fl[vk℄� f̂l[vk℄)2#R ;or
e(f; f̂ ;R) =sPn�1l=0 kfl � f̂lk2#R ;

where fl = �fl[v0℄ : : : fl[v#R�1℄�T and f̂l = �f̂l[v0℄ : : : f̂l[v#R�1℄�T . Using (4.12),
e(f; f̂ ;R) =sPn�1l=0 kfl � V (R)�Tl k2#R ;

where �l is the lth line of matrix �, and
V (R) = 2641 vT0... ...1 vT#R�1

375
Sine the term l of the summation depends only on �l, minimization of e(f; f̂ ;R) is equivalentto minimization of eah term of the summation. Minimizing eah of these terms is the same as�nding the least squares solution to the equationsV (R)�Tl = fl for l = 0; : : : ; n� 1. (4.13)
It is well known that [15℄:1. eah equation V (R)�Tl = fl has a least squares solution;2. there is a unique least squares solution to eah of these equations i� rank(V (R)) = m+1;and3. a vetor ~�l is a least squares solution to V (R)�Tl = fl i� ~�l is a solution to V T (R)V (R)~�Tl =V T (R)fl.Given that

V T (R)V (R) = 24 #R P#R�1k=0 vTkP#R�1k=0 vTk P#R�1k=0 vkvTk
35 = 24 #R Pv2R vTPv2R v Pv2R vvT

35
and

V T (R)fl = 24 P#R�1k=0 fl[vk℄P#R�1k=0 fl[vk℄vk
35 = 24 Pv2R fl[v℄Pv2R fl[v℄v

35 ;
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the least squares solution to the set of equation in (4.13) an be written~�K(R) = L(f;R); (4.14)where K(R) = V T (R)V (R) = � #R DT (R)D(R) E(R) � ;

L(f;R) = 264 fT0 V (R)...fTn�1V (R)
375 = �A(f;R) C(f;R)� ;

C(f;R) = Xv2R f [v℄vT ;D(R) = Xv2R v, andE(R) = Xv2R vvT :Equation (4.14) is guaranteed to have a solution. It is also a good andidate for input to anumerial routine, sine, unlike the previous equations, it has a �xed dimension. The solutionsare obviously equivalent, given the properties of the least squares problem, with the advantagethat least squares routines usually provide a solution even in the ase of underdetermination.By simple algebrai manipulation, it is straightforward to see that the minimum error is
e(f; ~f;R) =sB(f;R)�Pn�1l=0 ~�lK(R)~�Tl#R :

As in the ase of the the at region model, if two disjoint regions Rj and Rk are united into asingle region R, the following results hold triviallyK(R) = K(Rj) +K(Rk);L(f;R) = L(f;Rj) + L(f;Rk);C(f;R) = C(f;Rj) + C(f;Rk);D(R) = D(Rj) +D(Rk), andE(R) = E(Rj) + E(Rk); (4.15)from whih ~��K(Rj) +K(Rk)� = ~�jK(Rj) + ~�kK(Rk)Finally, the ontribution of this union to the squared error is
Djk = B(f;R)� n�1Xl=0 ~�lK(R)~�Tl �B(f;Rj) + n�1Xl=0 ~�jlK(Rj)~�Tjl �B(f;Rk) + n�1Xl=0 ~�klK(Rk)~�Tkl
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whih, using (4.9), an be redued to

Djk = n�1Xl=0 ~�jlK(Rj)~�Tjl + ~�klK(Rk)~�Tkl � ~�lK(R)~�Tl (4.16)
Eah term of equation (4.16) represents the ontribution of eah olor omponent, and an befurther redued whenever K(R) is non-singular.For the sake of brevity, let K = K(R), Kj = K(Rj), Kk = K(Rk), � = ~�l, L = Ll(f;R),Lj = Ll(f;Rj), Lk = Ll(f;Rk), �j = ~�jl , and �k = ~�kl , where Ll(f;R) is the lth line of L(f;R).Then�jKj�Tj + �kKk�Tk � �K�T=�jKK�1Kj�Tj + �kKK�1Kk�Tk � �KK�1K�T=�j(Kj +Kk)K�1Kj�Tj + �k(Kj +Kk)K�1Kk�Tk � LK�1LT=�jKjK�1Kj�Tj + �jKkK�1Kj�Tj + �kKjK�1Kk�Tk + �kKkK�1Kk�Tk� (Lj + Lk)K�1(LTj + LTk )=�jKjK�1Kj�Tj + �jKkK�1Kj�Tj + �kKjK�1Kk�Tk + �kKkK�1Kk�Tk� (�jKj + �kKk)K�1(Kj�Tj +Kk�Tk )=�jKjK�1Kj�Tj + �jKkK�1Kj�Tj + �kKjK�1Kk�Tk + �kKkK�1Kk�Tk� �jKjK�1Kj�Tj � �jKjK�1Kk�Tk � �kKkK�1Kj�Tj � �kKkK�1Kk�Tk=�jKkK�1Kj�Tj + �kKjK�1Kk�Tk � �jKjK�1Kk�Tk � �kKkK�1Kj�Tj=(�j � �k)KkK�1Kj�Tj + �kKjK�1Kk�Tk � �jKjK�1Kk�Tk=(�j � �k)KkK�1Kj(�j � �k)T
where use has been made of the fat that A(A+B)�1B = B(A+B)�1A.6Hene

D(Rj;Rk) = Djk = n�1Xl=0(~�jl � ~�kl)K(Rk)K�1(R)K(Rj)(~�jl � ~�kl)T (4.17)
whih has the same role for aÆne region models that equation (4.10) had for at region models.As in the ase of the at region model, quantity Djk for a pair of (adjaent) regions Rj andRk does not hange unless one of the two regions has been merged to another. Hene, ifthese quantities are stored for eah pair of adjaent regions (for eah ar in the RAG), theonsequenes of merging two regions remain relatively loalized.Also, if the aÆne region model is to be used during region-oriented segmentation (either regiongrowing or region merging), then the only quantities whih must be stored inside the data6Assuming thatA+B is non-singular A(A+B)�1B = (A+B)(A+B)�1B�B(A+B)�1B = B�B(A+B)�1B =B �B(A+ B)�1(A+ B) + B(A+B)�1A = B(A+ B)�1A.
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struture representing the regions are K(R), �, and perhaps R, the set the region's pixels,in the form of a pixel list, for instane. Although not stritly neessary, L(f;R) may also bestored, at the expense of extra memory requirements, in order to inrease proessing speed.Notie that K(R) plays the role of #R in the at region model: it depends only on the regionshape, and not on its olor, the olor information being onentrated into the parameter �.Also notie that in this ase, instead of storing an integer (#R) and n oating points (n � 1vetor a), as in the ase of the at region model, (m + 1)2 integers (m + 1 � m + 1 matrixK(R)) and n(m+1) oating points (n�m+1 matrix �) have to be stored. Sine segmentationalgorithms have typially heavy memory requirements, the use of the aÆne region model for allbut the smallest images is still not pratial on typial workstations.Two important questions must still be answered if this model is to be applied with suess in thefuture. What should be done if the least squares solution is not unique, i.e., if rank(V (R)) <m+ 1? And what is the meaning of suh multiple solutions?
Conditions for uniquenessMultiple solutions our when r = rank(V (R)) < m+1. Matrix V (R) is a #R�m+1 matrix,and thus its rank is always r � m+ 1 and r � #R. If #R < m+ 1, then r < m+ 1, and thereare multiple solutions to the least squares problem. In this ase the problem is simply that thereisn't enough data to ompute the approximation parameters. If #R � m+1 (or #R > m) butnevertheless r < m+ 1 (or r � m), then there must be exatly r linearly independent rows ofV (R).7 Without loss of generality, let the �rst r rows of V (R) be linearly independent. Then,all other rows must be linear ombinations of those r rows. That is,� 1vj� = r�1Xk=0�jk � 1vk� ;for some set of �jk with j = r; : : : ;#R and k = 0; : : : r � 1. Separating the �rst row of thematrix equation

1 = r�1Xk=0�jkvj = r�1Xk=0�jkvkor
�j0 = 1� r�1Xk=1�jkvj = (1� r�1Xk=1�jk)v0 + r�1Xk=1�jkvk7Notie that r � 1, sine V (R) by onstrution annot onsist solely of null rows and sine R is non-emptyby assumption.
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that is,

vj = v0 + r�1Xk=1�jk(vk � v0): (4.18)
But (4.18) is the equation of a point, if r = 1, of a line, if r = 2, of a plane, if r = 3, an soon. Hene, the least squares solution is not unique whenever the set of sites is \aligned" alonga hyperplane of dimension r� 1 < m. In the ase of 2D images, with m = 2, there are multiplesolutions if the sites in R are aligned along a line. In the ase of 3D images, with m = 3, thereare multiple solutions if the sites in R are aligned along a line or \aligned" along a plane.The ase of r = 1, where all sites oinide, an only our if #R = 1, sine sets do not haverepeated elements. But sine #R > m by hypothesis, these ases are automatially ruled outin the ases of interest (m = 2 for 2D images and m = 3 for 3D images). These ases have beenlassi�ed above as ases without enough data.In onlusion, in the ase of 2D (3D) images, there is a unique least squares solution if thereare three (four) non-ollinear (non-oplanar) sites in R.
Dealing with non-uniquenessIf there is no unique least squares solution, whih of the possible solutions should be hosen?How will it a�et segmentation, in the ase of region oriented segmentation? If the initial regionsare all one-pixel wide, it is lear that the error ontribution of all possible mergings will be thesame (viz. zero). But this is learly undesirable. The problem stems from using a powerfulmodel for modeling regions whih are too small (with only two pixels, resulting from mergingany pair of adjaent one-pixel wide regions). This may be solved, in the ase of 2D images,by speifying that a at region model should be used for one and two-pixel wide regions, theaÆne model being reserved for regions with more than two pixels. Even though this does noteliminate the all the soures of non-uniqueness (see the previous setion), it does eliminate thoseases where non-uniqueness is really a problem.Other solutions may also be used. If the image is split initially into 2 � 2 square regions,then there is always a unique solution to the least square problem. However, the segmentationresolution will learly su�er. An alternative solution, without this drawbak, is to upsamplethe image by a fator of two in both diretions before splitting into 2� 2 square regions. Thiswill, however, lead to inreased memory requirements (by a fator of at least 4).Stritly speaking, the above problem does not have to do with non-uniqueness. It is related withthe steepest desent approah to obtaining the optimal segmentation used by most segmentationalgorithms: at eah step hoose the regions to merge so as to minimize the error. However, theseinremental minimizations are not guaranteed to onverge to a true global minimum. Atually,they seldom do. The problem above is atually one of over adjustment of the model to the data,whih leeds to some bad deisions by the segmentation algorithms. It seems that the model tobe used should always be insuÆient to represent general data aurately, if it is to have somemeaning. This, at least intuitively, is oherent with the knowledge that the \best" possible
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region model is the one whih spei�es independent values for the olors of all the pixels inthe image, whih an model without error the image segmented into a single region, but whihonveys no useful information.
Boundary modeling
Boundary modeling an be useful both for region- and ontour-oriented segmentation, as willbe seen in the following. Notie that, even though the issue is ertainly important enough todeserve separate treatment in Setion 6.2, boundary shape (region shape), will not be dealt withhere. As in the ase of region modeling, the problem is to model the image around a boundary.Unlike region model, where a region onsists of a �nite, well known set of pixels, boundaries areontiguous sets of edges. Images do not have values at edges. Two approahes are possible forboundary modeling. The �rst, whih may be said to be the lassial one, is onerned aboutthe derivatives of the image along a boundary. The seond attempts to model the image on amore or less narrow strip of pixels along a boundary.The lassial approah, whih estimates image derivatives, is typially used in straightforwardextensions of the basi ontour losing algorithm. What's more, the basi ontour losingalgorithm an be though of as using the roughest possible estimate of the image gradient in thediretion orthogonal to the edge diretion: the di�erene of the pixel olors. Hene, the edgemodel, in this ase, is simply a horizontal faet whih passes through the two pixels separatedby the edge. Modeling in this ase is the proess whih leads to estimation of derivatives, andthus is equivalent to the derivative omputation omponent of edge detetion operators. Aompliated issue, whih has not been dealt with in this thesis, is establishing the meaning ofderivatives in the ase of non-salar olor models [36℄.The seond approah has been typially used for image representation. Some artiles, no-tably [58, 19, 37, 43℄, reognized that, sine the HVS is espeially sensitive to rapid olor tran-sitions, usually orresponding to physial edges, images may be represented by edges withoutloss of semantial information, in very muh the same way artists an eonomially represent asene with a few strokes. In [37℄, for instane, the image in a setion orthogonal to the detetededge is modeled as a step edge blurred by a Gaussian �lter. Hene, three parameters have tobe estimated at eah suh setion: the mean point, the amplitude, and the sharpness of thetransition. In pratie, a fourth parameter is also estimated: the extent to both sides of the edgeover whih the model is a good approximation. Notie, however, that in [37℄ this image modelis used to represent the image, not to segment it.
Globalization of region growing
Globalization is simple, in the ase of region growing. Instead of basing the pixel aggregationorder on pairwise pixel olor distanes, the order is now based on how well the andidate pixels�t into the orresponding region model, whose parameters are estimated using the omplete setof pixels in the region at eah instant.
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For the at region model used on typial algorithms, the degree of �tness into a region may besimply the distane between the olor of the andidate pixel f [v℄ and the estimated parameter~a of the orresponding region R, i.e., d2(f [v℄; ~a), if the pixel is at site v. The squared distanewill be used in order to make the omparison between several globalization methods diret.It is immaterial to use the squared distane, sine the order relations are preserved by themonotonous funtion f(x) = x2 for x � 0.For the aÆne region model, the �tness may be alulated as the distane between the olorof the andidate pixel f [v℄ and ~� �1 vT �T , that is d2(f [v℄; ~� �1 vT �T ). In both ases, thedistane may be expressed more onisely as d2(f [v℄; ~f [v℄), where ~f is an approximation tof over the union of the pixel and region in onsideration but whose parameters have beenestimated without onsidering that pixel's value, i.e., it is the (squared) distane between thepixel's olor and the olor obtained by extrapolating the region model to the pixel's loation.Another possibility is to selet the pixel to aggregate as the one leading to the smallest inreaseof the global approximation error, as given by equations (4.10) and (4.17), aording to themodel used. These equations, assuming that Rj orresponds to the andidate pixel at site v,i.e., Rj = fvg, and Rk orresponds to the region with whih it may be merged, i.e., Rk = R,simplify respetively toD(fvg;R) = #R1 + #Rd2(f [v℄; ~a)and
D(fvg;R) = n�1Xl=0��fl[v℄ 0�� ~�l�K(R)�K(R) + �1v� �1 vT ���1 �1v� �1 vT � ��fl[v℄ 0�� ~�l�T ;
where ~a and ~� are the estimated parameters for region R using the at and aÆne region modelsrespetively, and where ~�jl = �fl[v℄ 0�, for l = 0; : : : ; n � 1, is the simplest solution to (4.13)when Rj = fvg.Notie that d2(f [v℄; ~� �1 vT �T ) may be written as

d2�f [v℄; ~��1v�� = n�1Xl=0��fl[v℄ 0�� ~�l� �1v� �1 vT � ��fl[v℄ 0�� ~�l�T :
Hene, minimizing the inrease in global approximation error tends to favor merging of pixelswith smaller regions, though in the ase of the aÆne region model the e�et of region size maybe ountered by e�ets of region shape.It should be notied that, after eah pixel aggregation, the parameters of the region are adjustedto reet the presene of that further pixel, but, even more important, the ontribution to theglobal error of all other pixels adjaent to that region also hange as well. The onsequenes ofthis fat are that:1. the ars whih are inserted into the tree do not in general form a SSSSkT of the imagegraph at the ompletion of the algorithm; however, sine at eah step the ars are hosen\the right way", this may be said to be a reursive SSSSkT algorithm; and
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2. the algorithm omplexity inreases, sine several ars in the priority queue have theirweight updated after eah step, whih requires reorganization of the queue.Notie that the appliable algorithms are adjustments of onstrutive SSSSkT algorithms. Thedestrutive algorithms annot be hanged in any simple way to ahieve the same result. Also,even though the omplexity of the onstrutive algorithm inreases, hierarhial queues stillseem to be the best possible strutures to use. Both these issues have been left for future work.

WatershedsIn order to avoid the inreased algorithm omplexity whih results from realulating weightsof ars already in the priority queue, [177℄ proposed to reestimate the region model parametersafter pixel aggregation but to leave unhanged the weight of pixels already in the priority queue(this problem is not aknowledged in [177℄). This means that, at eah moment, the ars inthe queue have weights orresponding to region model parameters estimated at di�erent timeinstants. The onsequenes of this fat, however, do not seem to be tragi, sine for regions ofreasonable size the parameters do not hange muh after eah pixel aggregation.This algorithm is essentially the one used in Sesame [30℄, the segmentation-based andidate forVeri�ation Model during the development of MPEG-4. The region model used in Sesame isstill the at region model. However, a hierarhy of segmentation results is produed by enod-ing the results of segmentation, using a more powerful region model, and resegmenting withinreased detail those parts of the image where the approximation error is larger. The meritsof this idea are threefold: it allows for salability in a quite elegant way, it takes quantizatione�ets into aount during the segmentation proess (not during eah of the runs of the seg-mentation algorithm, but during the alulation of the segmentation hierarhy), and it leads toaeptable omputational omplexity. As omputer power inreases, however, the justi�ationfor not integrating more omplex region models (and maybe quantization e�ets), during thesegmentation algorithm tends to vanish.
Globalization of region mergingAs in the ase of region growing, region merging has been typially performed in two ways:either by omparing the region model parameters using some kind of metri, or by using theontribution of the merging to the global error. In both ases, in parallel with the regiongrowing ase, the onstrutive algorithms hange, sine there is the need to update the weight(priority) of several ars in the queue whenever two regions are merged. The solved problemthus eases to be the SSkT problem, though at eah step of the algorithm the \right" ar ishosen. Hene, these algorithms have both been labelled by [134℄ and [194℄, who �rst proposedthem, reursive SST algorithms, or RSST. Sine the weights of the ars not diretly involved ina merging operation an hange, it is not guaranteed that the ars of the resulting spanning tree(the reursive one), are inserted in inreasing order of weight. Hene, even though destrutivealgorithms an be applied afterwards, their meaning is less than lear.Notie that the �rst type of globalization, whih uses diret omparison of region model param-



130 CHAPTER 4. SPATIAL ANALYSIS
#Rj #Rk #Rj#Rk#Rj+#Rk1 1 0.51 100 0.99100 100 50

Table 4.1: The #Rj#Rk#Rj+#Rk fator for some region sizes.
eters, is well de�ned only for simple models, suh as the at region model, whih orrespondsto alulating the distane between the average olors of the two region andidate to a merging.In the ase of more ompliated models, appropriate metris may be hard to �nd. But, sinethis globalization method has an inherently worst behavior than the seond one, as will be seenin the sequel, the searh for suh metris seems to be a worthless task.The advantage of the seond type of globalization, namely the one using the ontribution to theglobal approximation error, stems from the inherent good treatment of small regions. Considerfor a moment the at region model. In the �rst ase, the weight attributed to the union of tworegions Rj and Rk is simply the (squared) distane between their average olors d2(~aj ; ~ak). Inthe seond ase, it is the ontribution to the global approximation error, i.e., #Rj#Rk#Rj+#Rk d2(~aj ; ~ak).The fator #Rj#Rk#Rj+#Rk aounts for the di�erent treatment of small regions, sine it is smallwhenever either (or both) of the regions are small (see Table 4.1 for three examples). Hene,small regions tend to grow faster than large regions, and the likelihood of small regions hangingaround is redued. Suh small regions an really be a plague if the �rst type of globalization isused. Most of them derive from the unfortunate fat that, when using 4-neighborhoods, thinlines with about 45 degrees of slope produe a series of disonneted regions of a singe pixel.This e�et will be shown in Setion 4.5, whih proposes an alternative way for dealing with thisproblem.If the aÆne region model is used, the same omments apply, even if in this ase the omparisonis hampered by the inuene of region shape in the ontribution to the global approximationerror (4.17) and by the absene of meaningful metris for diret parameter omparison. However,a straightforward metri orresponding toPn�1l=0 (~�jl�~�kl)(~�jl�~�kl)T may be used for omparisonpurposes.It should be stated here that, even though globalization of information allows the segmentationto get loser to the optimum, it an be shown easily, by a ounter example, that the algorithmis not guaranteed to attain the optimum. In the following example, a grey-sale (salar olor)1� 4 image is segmented into two regions by globalized region merging using the ontributionto the global error and the at region model (regions numbered from 0 at the left):

(a) 1 2.1 2.9 4(b) 1 2.5 4() 2 4(d) 1.55 3.45
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In the original original image (a), the ontributions to the global error are D01 = 0:605, D12 =0:32, and D23 = 0:605. In (b) the enter regions, whih ontribute less to the global error,have been merged, resulting in D01 = 1:5 and D12 = 1:5. Finally, in () the two �rst regionshave been merged (in this ase the hoie is irrelevant), leading to segmentation with a globalapproximation error of E = p0:455. This segmentation is worst than the optimum segmentationin (d), whih has a global approximation error of E = p0:3025.In a sense, the globalized segmentation algorithms work like steepest desent optimization, whihare known to lead to loal optima but in general not to global optima. Reviews of methodswhih attempt to solve this problem, at the expense of inreased omputational omplexity, anbe found in [104, 147℄.
Region merging with seedsGlobalization an be applied in muh the same way to region merging with seeds. While thenon-globalized, basi region growing and seeded region merging algorithms lead to equivalentresults, in the sense that both solve the SSSSkT, their globalizations have di�erent properties.Firstly, it should be notied that, unlike the ase of region growing, now arbitrary regions anbe merged, unless both ontain pixels of di�erent seeds, whih results in a faster globalization ofinformation, espeially in the ase of using the ontribution to the global approximation error asar weights, sine, as seen in the last setion, it tends to favor mergings of the smaller regions.One of the pratial results of this fat is that pixels of a seedless but uniform zone of the imagetend to be aggregated into a single region, whih at a later time will be merged to some seededregion. Suh seedless uniform zones are often split between two or more di�erent neighboringseeds in the ase of region growing, espeially in the ase of watershed segmentation, whih wasbuilt so as to expliitly divide those zones, plateaus, among various basins. But the division ofthese zones typially orresponds to splitting part of an objet, whih is undesirable in the aseof image analysis, whih aims at identifying whole objets.Another advantage of globalized region merging with seeds already existed in the basi algo-rithm: the intermediate segmentation results are meaningful. This means that the algorithmmay be stopped immediately if, for instane, the global approximation error exeeds a threshold,thereby produing a meaningful partition of the image whih inludes some seedless regions,whih were deemed unmergeable to neighboring seeded regions. This nie behavior of regionmerging with seeds is the reason why it was hosen as a good tool for supervised segmentation.
Globalization of ontour losingGlobalization of ontour losing is not easy. Sine the ars are seleted not for merging butfor splitting regions, it is not lear what data should be used to estimate the boundary modelparameters. That is why suh models are estimated in a somewhat arbitrary neighborhood ofedges. Suh is the ase of Sobel and related estimators of the image derivatives.Boundary information may be used to improve the results of region-oriented segmentation [194,
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158℄. The rationale for suh methods stems from the fat that segmentation often leads toboundaries in zones where there are really no strong transitions in the image. However, thereason for these false ontours, as they are alled, is the failure of models to represent faithfullythe olor of real regions. This is obviously the ase if the at region model is used to segment auniformly sloped region, whih would be perfetly represented by the aÆne region model. It isarguable that the best solution to the false ontours problem would be to devise better regionmodels, but in pratie this is often a hard task, fundamentally beause of the added algorithmomplexity. Besides, in order to produe meaningful segmentations, the region models annotbe so omplex as to represent every possible image: segmentation is well de�ned only if theregion models are not too powerful, and hene false ontours must be dealt with using othertehniques, suh as the ones in [194, 158℄.
Shape restritionsBoundary information may also be used to restrit region-oriented segmentation so as to produepartitions where the boundaries do not exhibit too muh busyness. The reasons for this derivefrom the fat that everyday objets often have regular boundaries,8 and, more importantly, fromthe fat that, if the partition is to be enoded, boundary busyness an lead to very expensiverepresentations. Instead of foring the enoder to use lossy tehniques, and thus to introdueboundary simpli�ations in a blind way, if image analysis and oding are more losely integrated,segmentation algorithms an attempt to redue boundary busyness themselves, thus ahievinga result whih is hopefully equivalent in terms of savings at the enoder. This idea has beensuggested in [30℄, where inreases in boundary omplexity, whih result from adding a pixel toa region, are used together with olor di�erenes to deide whih pixel to merge next in thewatershed segmentation algorithm.
4.3.5 Algorithms and the dual graphsAll the globalized algorithms, with the exeption of globalized ontour losing and of region-oriented algorithms making use of boundary information, require only information about theadjaeny of regions. A RAG in whih eah region ontains a list of its pixels is suÆientlypowerful to represent the partition at eah step of the algorithm. However, when boundaryinformation must be taken into aount, it is often of interest to distribute that informationthrough the piees of border that onstitute eah boundary. Also, sine partitions will oftenneed to be enoded, and some of the partition enoding shemes make use of ontour topology,it may be important to use the dual RAMG and RBPG graphs while performing segmentation.This, of ourse, assuming 2D partitions are the aim.For all onstrutive segmentation algorithms, it is possible to keep a pair of dual region (RAMG)and ontour (RBPG) graphs, that is, a map, representing the urrent partition. All that hasto be done is to perform region merging as indiated in Setion 3.5.1 as regions are merged,starting with the trivial graph in whih eah pixel is a region.8However, some boundaries in natural senes an have a fratal nature.
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The data struture implementing the pair of dual graphs representing the map, in this ase anevolving partition, may store information about borders, in eah region, in a hierarhial way. Itmay be useful to aess borders one by one, or bunhed together in super-borders onsisting ofall the borders between given pairs of adjaent regions. Suh super-borders orrespond obviouslyto ars of the underlying RAG.In order to save memory and to speed up aess to the borders of a region or to the regionsseparated by a border, the data struture an also make use of the fat that ars are sharedamong two dual graphs. Several data may be stored in region nodes, and in border ars, andeven in super-borders. Regions nodes typially store the region size (measured by the numberof pixels, whih is an area for 2D partitions and a volume for 3D partitions), the set of pixels inthe region, a set of statistis of these pixels, and parameters of a model adapted to the valuesof the image at the region pixels. Borders typially store the border size (a perimeter measuredin number of edges, in the ase of 2D partitions, and a surfae area measured in number offaes, in the ase of a 3D partition),9 a deque (double-ended queue) of their edges, whih maybe useful for traing the border later on, statistis of the transitions in image olor along theborder, and parameters of a boundary model adapted to the values of the image around theborder. Finally, super-borders typially store a weight whih has to do with the homogeneityof the region resulting from removal of the orresponding borders. This weight may ponderalso the harateristis of the orresponding borders, in the ase of region-oriented algorithmsmaking use of boundary information.
4.3.6 ConlusionsThis setion presented a strutured overview of various segmentation algorithms, whose basiversions are related to SST problems, and whose globalization, while making their propertiesdiverge, hopefully leads to algorithms whih are loser to the optimum in some sense.Using the lassi�ation in Setion 4.2, the presented algorithms are, stritly speaking, segmen-tation tehniques, whih may or may not be inluded into segmentation algorithms. They areregion-oriented (with the exeption of ontour losing), generi, memoryless (exept in the aseof 3D), and either vetorial or salar.
4.4 A new knowledge-based segmentation algorithm
After ITU-T10 issued H.261, aiming at bitrates p�64 kbit/s with p = 1; : : : ; 32, when ISO/IEChad already issued MPEG-1, for up to about 1:5 Mbit/s, and work on MPEG-2 was being�nalized, the need for very low bitrate oding tehniques and standards began to be felt. Themain appliation behind the expeted need for suh very low bitrate tehniques was the mobiletelephony. Eventually, the researh in this area gave birth to a new standard, H.263, and9Maps have not been de�ned for 3D partitions, so stritly speaking the surfae would be stored only insuper-borders of a RAG.10Then CCITT (Comit�e Consultatif Internationale de T�el�egraphique et T�el�ephonique).
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sparked work on MPEG-4, whih was later revamped to be muh more than a standard for verylow bitrate video oding, as seen in Chapter 2.Two parallel paths were taken towards the development of very low bitrate video oding teh-niques. One tried to make many small improvements to the existing tehniques, basially motionompensated hybrid oding, and another attempted to reah a breakthrough in ompression byusing tehniques whih, being related or based on mid-level vision onepts, may be termedseond-generation. The �rst path was quite suessful at squeezing more ompression out of oldtehniques: H.263 substantially outperformed H.261 at low bitrates and even above. For theseond path, however, there did not seem to exist mature enough tehnology. E�etive anal-ysis tehniques were required but unavailable. Without suh analysis tehniques, how ould astandard be developed for very low bitrate appliations on a tight agenda? Besides, in terms ofompression, though the researh investment seems learly worthwhile, the results attained didnot seem too good: in the framework of MPEG-4, ore experiments demonstrated either thesuperiority of the mature motion ompensated hybrid oding tehnology, or that improvementsusing other tehniques were not very signi�ant.The solution to this dilemma was found by reognizing the growing importane of the interationwith the visual sene. Mid-level vision onepts, suh as the objet, might still be useful, if notfor ompression at least for manipulation, or for added funtionalities. The objet thus beamethe enter of MPEG-4. Easy aess to ontent as one of the objetives of enoding was nolonger frame- or image-based, but beame objet-based. Granted, full-proof automati seond-generation analysis tehniques were, and still are, but a wish, but MPEG-4 will not standardizeanalysis, just syntax and deoding. Hene, it will be ready by the time those tehniques �nallyarrive. Expertise will grow meanwhile, through the use of supervised analysis tehniques, andMPEG-4 will still be usable, e.g. if objets are segmented using lassial TV tehniques suhas hroma-keying.In between the two stated paths, a few other paths were also taken towards very low bitrateoding and ultimately objet-based ontent aess. One of them was the improving of existingodes through slow integration of seond-generation tehniques. The knowledge-based segmen-tation proposed in this setion, and global motion estimation, anellation and ompensation,as desribed in Setions 5.5 and 6.1, an be seen as the result of this e�ort, and thus learlybelong to the so-alled transition towards seond-generation video oding tools.
4.4.1 IntrodutionKnowledge-based video oding algorithms an be applied to advantage in the path towardsseond-generation video oding and very low bitrate video oding. The main idea behind it isthat the observer of a videotelephone sequene, typially a head and shoulders sene, is parti-ularly sensitive to the image quality in areas suh as the speaker's eyes and mouth, less to thequality in the speaker's body, and even less to the quality in the bakground. Knowledge-basedvideo oding algorithms attempt to distribute the available bits so that quality is onentratedwhere it is really needed. This sheme, while keeping or even lowering the global objetive qual-ity measures (e.g., PSNR), improves the subjetive quality of the enoded sequene. What'smore, it an be easily integrated in existing �rst-generation enoders (e.g., H.261 ompati-
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ble [62℄) while maintaining full ompatibility with existing deoders.Segmentation is a fundamental step in knowledge-based video oding algorithms. Again usingPavlidis' words [156℄ \segmentation identi�es areas of an image that appear uniform to anobserver, and subdivides the image into regions of uniform appearane." As said before, theuniformity riterion an be hosen in many di�erent ways. One may, for instane, envisage atype of segmentation where one desires to identify ertain objets known to be in an imageor image sequene. This is knowledge-based segmentation. This setion presents a knowledge-based segmentation algorithm for videotelephony whih an ope with a wide range of sequenes,studio based or mobile.The objetive is the segmentation of eah image in a videotelephone sequene into three regions:head, body and bakground, eah having di�erent subjetive quality impat upon the observer.However, as a �rst approah, admitting that the head/body separation an be based solelyon geometrial reasoning, the objetive an be redued to the segmentation into two regions:speaker and bakground. This segmentation falls somewhere between the two de�nitions givenbefore:
� a spei� \known" objet should be identi�ed (the speaker);� the objet appearane is only know to a ertain extent (must ope with any humanspeaker); and� the position of the objet is known a priori with a high probability (entered, faingamera, neither too lose nor too far).

In spite of the fat that the segmentation of the typial videotelephone sequenes (e.g., \Claire",\Trevor", \Salesman" and \Miss Ameria") is relatively easy, see for instane [99, 160℄, the ex-peted emergene of mobile/hand-held videotelephone servies demand muh more robust seg-mentation algorithms. Plompen [163℄, for instane, desribes a simple method for segmentation.The rationale behind it is that, in studio or �xed amera videotelephone sequenes, the signi�-antly hanged bloks (e.g., in terms of the mean absolute di�erene) will very likely be loatedonly over the moving speaker. The omplete segmentation is then obtained through a splitand merge algorithm [55℄. For the head/body segmentation simple geometri onsiderationsare used, as in the method proposed below. However, this method is not appropriate for use inmobile sequenes, where the whole bakground is potentially moving. See also [123, 125, 126℄for preliminary versions of the algorithm.Typial mobile sequenes (e.g., \Foreman" and \Carphone") ontain a lot of bakground move-ment (originated by hand-held amera movement in \Foreman", and by amera vibration andthe passing landsape in \Carphone"), making it diÆult for tehniques using simple di�ereneoperators to produe aeptable results. These sequenes also usually ontain a highly detailedbakground, ompliating the task of edge detetion based segmentation algorithms.The algorithm presented here, whih is an evolution of the knowledge-based algorithms proposedby [160℄ and by [166℄, divides eah image into three distint areas, head, body and bakground,at the H.261 MB resolution (i.e., 16 � 16 pixels). The robustness of the algorithm stems fromits attempt to dynamially lassify the input sequene into one of four lasses, aording to
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the uniformity of the bakground and to the presene of bakground/amera motion. Eahvideotelephone sequene is dealt with using the segmentation tehniques appropriate for thedeteted lass. The robustness of the proposed algorithm has been laking in the knowledge-based segmentation algorithms available [99, 163, 160℄, whih ould only handle sequenes with�xed, or even uniform, bakgrounds.The neessary segmentation resolution depends on the video enoder to be used. For instane, ifthe ode is ompliant with H.261 and the quantization step is used to ontrol the quality of thedi�erent segmented regions, then a segmentation at a MB resolution, as proposed here, suÆes.It should be notied here that the algorithm was developed for CIF (Common IntermediateFormat) images. However, the algorithm is appliable, with adaptations, for other image sizesand at other resolutions.Two basi pixel level operators, namely Sobel and image di�erene, are used to onstrut anativity map for the urrent image, whih is subsequently deimated to MB resolution. Theremaining steps of the algorithm operate at this lower resolution, whih has the advantage thatmuh of the proessing deals with \images" of a muh smaller size (with 256 times less elementsthan the original input images), resulting in a redued omputational weight.The MB level proessing inludes the appliation of inertia to the results of segmentation, thustaking into aount the high probability of small hanges of the speaker position from imageto image in a typial videotelephone sequene. It also inludes knowledge-based geometritehniques whih orret the shape of the obtained segmentation, and a �nal knowledge-basedgeometrial oherene quality estimation step whose result is used to adapt the algorithm pa-rameters. The quality ontrol is delayed, as the hanges in the parameters take e�et only forthe next image in the sequene. The estimated quality is used as well for deiding whether toaept or rejet the urrent segmentation.
4.4.2 Algorithm desription
This setion desribes the main steps of the algorithm proposed. This algorithm an be lassi�edas:
� MB (16� 16 pixels) resolution, sine the result of the segmentation has MB resolution;� with memory, sine it uses information about the previous images (by using the imagedi�erene operator, by using inertia of segmentation, and by using the memory mehanism,all explained in the following setions);� knowledge-based, sine it uses the a priori knowledge that the images represent typialhead-and-shoulders videotelephone senes;� with knowledge-based, geometrial oherene quality estimation;� with quality estimation for quality ontrol and segmentation aeptane/rejetion; and
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� with delayed quality ontrol, sine the segmentation algorithm parameters are adjustedaording to the urrent quality estimate but this adjustment is e�etive only in the nextimage.

A ow hart of the algorithm is presented in Figure 4.5.
Edge detetion operators
Transition strength operators
At the low-level, the algorithm uses two di�erent transition strength operators. The �rst isthe Sobel transition strength operator, where the magnitude of the gradient, in order to redueomputational e�ort, is approximated here by the sum of the absolute values of the partialderivatives [56℄: krf [i; j℄k � Sobel(f [i; j℄) = G[i; j℄ = jfx[i; j℄j+ jfy[i; j℄jwhere fx and fy are given by (4.1) and (4.2). It an be lassi�ed as a transition strength, salar,2D operator.The seond operator is the image di�erene desribed in equation (4.6). It an be lassi�ed asa salar, 3D, transition strength operator, sine, when movements from one image to the nextare small, the image di�erene operator produes an approximation to the derivative in thediretion of the motion.
Edge loalization methods
The results of the low-level transition strength Sobel and image di�erene operators are thenused for loating edges in the images. Sine, as will be seen later, the results of this loalizationwill be understood more as ativity measures than as deteted edges, the edge loalizationmethods used are very simple:
Sobel operatorA pixel p = [i; j℄ is onsidered to be deteted (i.e., to belong to an edge) if the orrespond-ing transition strength G[p℄ is above a given threshold (see below) and if there is at leastone pixel q 2 N8(p) (in the 8-neighborhood of p) suh that 0:9G[p℄ � G[q℄ � 1:1G[p℄. Thelast ondition is used to redue isolated deteted pixels due to noise.Image di�erene operatorA pixel p = [i; j℄ is onsidered to be deteted (i.e., to belong to a hanged area) simplyif the orresponding value of the image di�erene operator Dn[p℄ = Di�(fn[p℄; fn�1[p℄) isabove a given threshold (see below).
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Knowledge-based thresholdingThe results of the low-level edge detetion operators, obtained by estimating transition strengthand then loalizing the edges, are afterwards used to measure the ativity of eah pixel, whihwill in turn be onverted from pixel to MB (16� 16 pixels) resolution.Sine the sequenes are assumed to onsist of a speaker reasonably entered within eah image(this is knowledge-based segmentation), the ativity measurements should be reinfored at thoseplaes where the speaker is more likely to be found in the image. This is done by using variablethresholding during edge loalization. The thresholds vary along the image as indiated inFigure 4.6.

Figure 4.6: Variable threshold patterns onsist of a entral plateau of onstant, low threshold,whih grows linearly towards the top orners of the image.Two variable threshold patterns are used: the �rst for the Sobel operator (with plateau level20 and top orners level 64), and the seond for the image di�erene (with plateau level 10 andtop orners level 40). In the ase of lass 4 image sequenes, however, the threshold patternindiated for the image di�erene is valid only for an image rate of 25 Hz (sequene lasses willbe de�ned later). For other image rates the thresholds are adjusted linearly with the inverse ofthe image rate. For instane, at 5 Hz the plateau level is 30 and the top orners level is 90. Thisadjustment is neessary in order to avoid deteting too muh ativity on a moving bakground,sine the range of the movements tends to inrease with an inreased time between suessiveimages.
Filtering the ativity measurementsBefore the resolution onversion takes plae, the ativity at eah pixel must be omputed.Though the exat method depends on the deteted lass of the urrent image, two �lteringoperators may be used: purge and �ll. Both operate on a binary image, e.g., obtained afteredge loalizing the results of Sobel or image di�erene:
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Purge operatorThe purpose of this operator is to eliminate isolated deteted pixels. All deteted pixelswith less than two deteted 8-neighbors are leared. Deteted pixels with two deteted8-neighbors are leared only if not both neighbors are m-onneted. The last onditionavoids the learing of pixels belonging to a ontinuous edge.Fill operatorThis operator sets as deteted all undeteted pixels whih have more than two deteted8-neighbors.
Sometimes the binary results of the desribed operators are \ored" together. A \ored" pixel isdeteted if at least one of the orresponding pixels of the two operands being \ored" is deteted.
Sequene lassesOf paramount importane for the development of the knowledge-based segmentation tehniqueproposed is the lassi�ation of the input videotelephony image sequenes into lasses. Eahof the onsidered lasses, by its own nature, requires di�erent proessing. Videotelephonesequenes an be lassi�ed aording to:1. the uniformity, in terms of texture or omplexity, of the bakground; and to2. the existene of movement in the bakground, whih may be due to movement of theamera, to movement of the bakground, to movement of objets seen in the bakgroundor to any ombination of the three.
Classes 1 and 3Sequenes having a uniform bakground (it is impossible to distinguish whether the bak-ground is �xed, lass 1, or has any movement, lass 3) suh as \Claire" and \Miss Amer-ia", whih are typial studio sequenes.Class 2Sequenes having non-uniform but �xed bakground, for instane, \Trevor" and \Sales-man", whih are typial in-house videotelephony sequenes.Class 4Sequenes having movement in a non-uniform bakground, for example, \Carphone",whih has movement in the bakground due to amera vibration and due to the pass-ing landsape seen through the windows, and \Foreman", whih has movement in thebakground due only to movements of the hand-held amera.
Segmentation of these lasses of sequenes has various degrees of diÆulty, and for eah onethere are preferred segmentation tehniques:
� Sequenes of lasses 1 and 3 an be segmented using both 2D and 3D segmentationtehniques [99, 160℄.
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� Sequenes of lass 2 pose more problems to 2D tehniques beause of the non-uniformbakground. It is not simple to distinguish the speaker from the omplex bakground.However, if the speaker is moving, and she usually is, 3D tehniques may be used to obtaina �rst approximation to the speaker's position [99, 160℄. This information may then beused to restrit the searh area for 2D tehniques [99℄.� Sequenes of lass 4 are more diÆult to segment. For these (typially mobile) sequenesspeial methods must be devised. The main ontribution of the proposed algorithm is itsability to ope reasonably with sequenes of this lass.

Eah lass is segmented here using di�erent low-level operators. For instane, sequenes oflasses 1 and 3 an be proessed using only 2D operators, whih have a very small responsein the uniform bakground, or a ombination of 2D and 3D operators, while lass 2 sequenesare better dealt with using only 3D operators, as they do not respond to a �xed bakground,however strutured it may be.It is very important for the algorithm to be able to detet the lass of the input sequeneautomatially. Note that lass detetion is applied to eah image in a sequene and thus thelass of a sequene may hange over time, as will be explained in the next setion.
Class detetionClass detetion is implemented in a very simple way in this algorithm. First, the two transitionstrength operators used in the algorithm, Sobel and image di�erene, are applied to the urrentimage. Eah result is then passed through the orresponding edge loalization proess, whihinvolves the use of a variable threshold. Notie that, for lass detetion purposes, the use of avariable threshold is not neessary. However, sine the results of thresholding Sobel and imagedi�erene are used in the steps of the algorithm following lass detetion, the omputationale�ort is thus redued. The results are �nally analyzed in three zones, shown if Figure 4.7, inwhih the probability of �nding some part of the speaker's head or body is low.If the ativity, measured as the perentage of deteted pixels of the edge loalized Sobel operator,is above 2% in any of the three zones, the sequene is assumed to have a non-uniform, struturedbakground. Similarly, if the ativity of the edge loalized image di�erene operator is above0:2% in any of the mentioned zones, the sequene is onsidered to have motion in the bakground.Three detetion zones of omparable size are used instead of a single one sine a very loalizedmovement or struture may be easily missed when a single large zone is used, and using a smallerthreshold might lead to erroneously detetion of apparent bakground motion or strutureaused by noise.This type of detetion leads to good results for typial videotelephone sequenes. It may howeverfail in images where the speaker moves into one of the analyzed zones. When this happens,some images of a lass 1, 2, or 3 sequene an be mistakenly deteted as belonging to lass 4.However, sine the tehniques used for the segmentation of lass 4 sequenes are more robustthan for any of the other lasses, this will very likely ause little problem.
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1 2
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Figure 4.7: Class detetion zones in a CIF image (divided into a MB spaed grid).
A ommon problem that ours with lass detetion, if no further proessing is done, is theoasional lassi�ation of an image, within a lass 4 sequene, as belonging to lass 2. Thisusually ours either when the amera instantly stops between two pan movements or at theapogee of a amera osillation. For reasons related to the use of memory in lass 2 sequenes,this oasional detetion of a lass 2 image may be problemati. Thus, the algorithm wasimplemented in suh a way that after two or more suessive lass 4 images, a hange into lass2 only ours after at least three suessive lass 2 images are deteted.
Ativity measures
The purpose of the low-level operators in the segmentation algorithm is not so muh to detetedges as to detet the ativity, hopefully the speaker ativity, within eah image. High ativ-ities should indiate the presene of the speaker, while low ativities should be found in thebakground. It is thus lear that the ativity measurement proess should vary aording tothe lass of the sequene.
Classes 1 and 3
In this ase, where the bakground is uniform, ativity may be obtained using solely 2D opera-tors. In this algorithm, however, 3D operators where also used, as a way to improve detetionwhen the speaker moves. Ativity is obtained as follows:1. apply the purge operator to the edge loalized image di�erene;2. apply the \or" operator to the matrix resulting from the previous step and to the edgeloalized Sobel; and3. apply the �ll operator to the result of the previous step.
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Class 2In this ase the bakground is strutured but it has no motion. Thus, only 3D operators areused. Ativity is obtained as follows:1. apply the purge operator to the edge loalized image di�erene; and2. apply the �ll operator to the result of the previous step.This proedure eliminates isolated deteted pixels but reinfores the di�erenes whenever theyare strong.
Class 4This lass annot be dealt with by using only one type of operator. Using only 2D operatorsmay make it diÆult to distinguish the speaker from the strutured bakground, while usingonly di�erenes may have the same problem whenever the bakground motion is omparable tothat of the speaker. It thus uses both kinds of operators, as lass 2 does, though the ativity isomputed di�erently:1. apply the purge operator to the edge loalized image di�erene (the variable thresholdapplied to the image di�erene now varies with the image rate, as mentioned before);2. apply the \or" operator to the matrix resulting from the previous step and to the edgeloalized Sobel; and3. apply the purge operator to the result of the previous step.The last step is to purge, instead of to �ll, as in lasses 1 and 2, beause moving struturedbakgrounds tend to produe a too dense ativity pattern.
Resolution onversionAfter lass detetion and ativity measurements, the next step is to onvert the pixel levelativity to a MB level ativity matrix. This onversion is make in two phases:1. the ativity matrix is deimated from pixel to MB resolution, and2. the resulting MB level ativity matrix is �ltered to eliminate spurious detetions.
DeimationFor lass 4 images, deimation is done simply by ounting the number of deteted pixels in eahMB. If the ount exeeds a given threshold, the MB is ative.For lass 1, 2 and 3 images, the deimation is �rst performed to blok level, using the samemethod as before, and then to MB level: a MB is ative if any of its bloks is deteted.The di�erene between lass 4 images and lass 1, 2, and 3 images is that the latter tend toprodue more onentrated ativities, whih might fail to be deteted if deimating diretly to
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MB level, unless the threshold would be set to a lower value. However, reduing the thresholdwould lead the erroneous detetion of regions with more sparsely distributed ativities.Di�erent thresholds are maintained for eah lass whih are also hanged adaptively, aordingto the quality ontrol, so as to math the urrent sequene harateristis, as will be seen later.
FilteringThe �ltering proess onsists in the appliation of a series of operators:1. Any inative MBs between two ative MBs in a line are hanged to ative. However, thisonly happens if the MB to be hanged is within the knowledge-based mask in Figure 4.8(b).2. Inative MBs with three ative 4-neighbors are set to ative. This �lling, however, avoids�lling the nek of the speaker, whih is the only onave part of the typial speaker'sontour: if the inative MB belongs to the left half of the image, hene probably also tothe left half of the speaker, and has its right, top and bottom neighbors ative, then itwill be �lled only if its left neighbor is also ative.3. Segments of lines of at least two ative MBs are leared, sine the speaker's silhouetterarely ontains suh features.4. Ative MBs without any ative 4-neighbors are leared.Only sequenes of lasses 1 to 3 undergo this �ltering phase. This type of �ltering is notonvenient for lass 4 sequenes sine these sequenes require more sophistiated geometrialmethods. For lass 2 sequenes the �ltering is applied only after imposing memory, sine oftento few MBs are seleted without reourse to memory.
InertiaIn typial videotelephone sequenes, even in mobile ones, there is usually onsiderable redun-dany in the evolution of the speaker's position: hanges are mostly relatively small from oneimage to the next. This fat an be used to advantage by building some inertia into the seg-mentation proess.A momentum matrix, with values between 0 and 1, is updated after the segmentation of eahimage. A matrix element whih is lose to 1 signals a MB whih has been ative often in theshort past. After resolution onversion to MB level, the momentum matrix is used to orretthe matrix of ative MBs.
Momentum orretionMomentum orretion is a very simple proess: all inative elements in the MB ativity matrixwith a momentum larger than a threshold are set as ative and marked as having been adjusted
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by this proess. The threshold value was hosen empirially as 0:39, whih gives good resultsin pratie.
Momentum realulationEah element Mn[i; j℄ of the momentum matrix at image n is updated aording to:Mn+1[i; j℄ = 0:7Mn[i; j℄ + 0:3vnwhere vn = 1 if the MB [i; j℄ is ative and has not been adjusted during momentum orretion,otherwise vn = 0.The use of the adjustment information avoids the arti�ial perpetuation of ative MBs. If aMB was ative in several images, and hene the orresponding momentum is approximately 1,it will remain deteted for at most the next two images, unless geometrial proessing hoosesto lear it.
MemoryFor lass 2 sequenes only the 3D image di�erene operator is used. Thus, if the speaker doesnot move enough, not enough MBs will be onsidered ative. The same thing may happen ifthe image rate is too high. In order to solve this problem, an extension to the inertia proessdesribed above was devised: memory.Memory is imposed during the proessing of lass 2 images right after the resolution onversion.There is a memory matrix ontaining the number of image periods (i.e., the time interval)during whih a MB should be arti�ially onsidered as ative after it has been found to belongto the speaker. This memory is dynamially adjusted so as to allow the segmentation to quiklyadapt (by reduing memory or even forgetting about the past) if the speaker starts movingenough and to keep a long memory if the speaker does not move enough.
Memory dynamisThe number of MBs set after the resolution onversion is ounted Nn and a moving average Anof it is kept aording to: An = 0:5An�1 + 0:5Nn
If Nn is above 120 (more than the minimum typial speaker size) and An is above 80, then thememory matrix is reset, sine the speaker's motion is strong enough to dispense with the useof memory.If An is below 100 (less than the minimum typial speaker size) and the number of MBs reduedby more than 10 from the previous image, then MBs having a memory larger than zero andsmaller than 10 images have their memory inremented by 10=r, where r is the ratio between
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25 and the urrent image rate. This will tend to prolong the memory of previously detetedMBs when the speaker's motion starts to derease.The memory matrix is then deremented, thereby reduing the memory of all MBs deteted.Finally, a memory is attributed to the urrent ative MBs aording to the value of An:

1. if An < 10, then memory is set to 100=r;2. otherwise, if An < 20, then memory is set to 80=r;3. otherwise, if An < 40, then memory is set to 50=r;4. otherwise, if An < 80, then memory is set to 30=r;5. otherwise, memory is set to 1=r;At the �nal stage the MB ativity matrix is substituted by the memory matrix. If an elementin the memory matrix has a non-zero memory, the orresponding element in the ativity matrixis onsidered ative.
Geometrial proessingAs intermediate steps between resolution onversion and quality estimation, several geometriknowledge-based operators are applied in order to build a segmentation matrix from the MBlevel ativity matrix. These operators aim at produing a segmented region whih \makessense", given that it should represent a human speaker in a normal head-and-shoulders framing.Some of these operators use heuristi knowledge-based masks having highest values where it ismore likely to �nd part of the speaker's body, see Figure 4.8.Di�erent operators are applied to sequenes of di�erent lasses.
Classes 1 to 3Four operators are applied in order:

1. All inative MBs having at least three ative 4-neighbors are set to ative. The proess isontinued reursively until no hanges are made. The hanges, however, are only allowedto happen inside the wide knowledge-based mask in Figure 4.8(b). This operator �llssmall holes inside the speaker's silhouette.2. All ative MBs having no more than one ative 4-neighbor are set to inative in a reursivemanner. This operator lears erroneously deteted MBs due to noise or struture in thebakground.3. The onneted omponents of the ative part of the MB ativity matrix are identi�ed. Allonneted omponents, exept the largest, are leared. The largest onneted omponentis kept beause it is deemed to orrespond to the speaker's silhouette. The onneted
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(a) Narrow mask.

(b) Wide mask.
Figure 4.8: Knowledge-based heuristi masks.
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omponents are de�ned in terms of a 4-neighborhood struture superimposed to the MBativity matrix.4. The onneted omponents of the inative part of he MB ativity matrix are identi�ed.They orrespond to the bakground. All bakground onneted omponents with less than10 MBs are set to ative. Larger onneted omponents are only set to ative if they donot inlude any MB whih touhes the border of the image. I.e., of the larger bakgroundonneted omponents only those whih are holes are leared.

Class 4The same operators as for lasses 1 to 3 are applied, but they are preeded by:
1. The onneted omponents of the ative part of the MB ativity matrix are identi�ed. Allonneted omponents, exept the largest, are leared, but only if these onneted ompo-nents do not have any MBs inside the narrow knowledge-based mask in Figure 4.8(a). Thelargest onneted omponent is kept beause it is deemed to orrespond to the speaker'ssilhouette. Unlike the similar operator whih is applied in the ase of sequenes of lasses 1to 3, more than one onneted omponent may result, sine onneted omponents touh-ing the areas where the user may be with a high probability are not leared. The onnetedomponents are again de�ned in terms of a 4-neighborhood struture superimposed to theMB ativity matrix.2. Inative MBs with three ative 4-neighbors are set to ative. This �lling, however, avoids�lling the nek of the speaker using the same tehnique as in the �ltering part of resolutiononversion.3. Strutures with shapes that are unlikely to belong to a real speaker's silhouette are leared.The operator searhes for suh strutures on the left and right sides of the estimated headposition. The shapes onsidered invalid are those orresponding to large regions onnetedto a side of the head by a small or highly bent isthmus of ative MBs.4. Inative MBs between lines (at least two MBs long) of ative MBs are set to ative. Thisoften joins together the head and body whih would otherwise remain separated.

Nek loalizationBefore quality estimation, the segmentation result is analyzed so as to try to estimate theposition of the line separating head and body, the nek line. The algorithm developed for thispurpose uses geometrial, knowledge-based reasonings. It also uses feedbak from the estimatesobtained in previous images in order to avoid large hanges from image to image aused byerrors in the segmentation results.The nek position estimation algorithm tries to estimate the head width and then searhes fromtop to bottom for the �rst pair of MB lines whose width exeeds 1.7 times the head width.These lines will likely orrespond to the speaker's shoulders. Sine the speaker's hin often
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prolongs somewhat below the line of the shoulders, the �rst of these shoulder lines is deemedto belong to the head and the seond to the body.The estimated shoulder line is only allowed to hange by one MB line per image, so as to averageout errors during its estimation.The ative MBs are then lassi�ed as either belonging to the body (those below the shoulderline) or to the head. If the shoulder line was not found, no suh distintion is made.
Knowledge-based quality estimationThe quality estimation algorithm tries to asertain whether the ative MBs, whih identifythose parts of the image (in MB resolution) where the speaker is believed to be, orrespond toan appropriately sized and positioned speaker in a typial head-and-shoulders videotelephonesene. It �rst ounts the total number T of deteted MBs and the total number TK of detetedMBs inside the narrow knowledge-based mask (see Figure 4.8(a)). Then:1. if T > 300, the speaker size is onsidered very large, and the segmentation is disarded;2. otherwise, if T > 200, the speaker size is onsidered large,11 and hene the segmentationis disarded and the ativity resolution onversion threshold is inreased (this hangea�ets only the subsequent image);3. otherwise, if TK < 0:5T or if T < 60, the speaker position is onsidered displaed orits size too small, and thus the segmentation is disarded and the ativity resolutiononversion threshold is redued (a�ets the subsequent image);4. otherwise, the quality is aeptable, hene the segmentation is aepted and no thresholdadjustments are done.The quality estimation desribed so far was developed mainly for segmentation quality ontrolpurposes, though it does rejet low quality segmentation results.A di�erent quality assessment proedure is also used, although this time only for the aep-tane/rejetion proess. It uses geometri knowledge-based riteria to deide whether the seg-mentation result, in term of the attained head and body shape, is aeptable. It is based on theratio between head height and visible body height in typial videotelephone senes. If the bodyis wider than about 90% of the image width and the head height is smaller than 56% of thevisible body height, then the shape is delared disproportionate, the segmentation is deemedinvalid and its results are rejeted.Whenever quality estimation leads to rejetion, the segmentation matrix is �lled with the valuerepresenting bakground everywhere. This situation often happens during the �rst few imagesafter a sene ut or a large pan or zoom. Suh rejetion of segmentation results, in the frameworkof �rst-generation video oding tehniques, is not too problemati, unless it ours often: it justmeans that no quality disrimination will be made during a rejetion. Sine quality tends toinrease and derease slowly in time when temporal predition is used in typial �rst-generationodes, the subjetive impat of rejetion of segmentation results is small.11Always onsidering CIF format. The number of MBs in CIF is 396, hene 200 orresponds to ativity in alittle above half the image area.
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When the segmentation results for a given image are onsidered unaeptable (region too large,too small, or displaed) and hene rejeted, the segmentation of the next image is also rejeted.Sine often rejetion stems from sene uts or large hanges, this method allows for somereovery time before segmentation is aepted. The rationale being that it is better to have nosegmentation than to have a bad segmentation.
Quality ontrolThe segmentation algorithm uses delayed quality ontrol: the estimated quality of the urrentsegmentation a�ets only the segmentation of future images. This method has the advantagethat is keeps the omputational requirements of the algorithm small.Quality ontrol is done in two ways:

1. If the estimated segmentation quality leads to onsidering the speaker size very large,the inertia matrix is reset, thus eliminating partly eliminating inuene of the past intothe future. This makes sense beause most rejetions of segmentation ourring for thisreason take plae at sene hanges, where the sequene harateristis vary onsiderablyand hanges from one image to the next are very large. In the ase of lass 2 sequenes,however, memory is not reset, as it would thus lead to the slow rebuilding of the segmen-tation based solely on 3D operators. The memory is reset only when the estimated lasshanges.2. The resolution onversion thresholds are hanged aording to the estimated quality in away whih depends on the urrent image lass:Classes 1 and 3The threshold is initially 13 pixels (about 20% of the pixels of a blok). When thespeaker size is deemed very large, the threshold is inreased by 6 (but limited to amaximum of 26, or 41%). When the speaker size is onsidered large, the threshold isinreased by 3 (again limited to a maximum of 26, or 41%). When the speaker sizeis too small or its position displaed, the threshold is redued by 6 (but limited to aminimum value of 13, or 20%). Nothing hanges otherwise.Class 2The threshold is initially 6 pixels (about 9% of the pixels of a blok). When thespeaker size is deemed very large, the threshold is inreased by 6 (but limited to amaximum of 26, or 41%). When the speaker size is onsidered large, the threshold isinreased by 3 (again limited to a maximum of 26, or 41%). When the speaker sizeis too small or its position displaed, the threshold is redued by 6 (but limited to aminimum value of 1, or 2%). Nothing hanges otherwise.Class 4The threshold is initially 110 pixels (about 43% of the pixels of a MB). When thespeaker size is deemed very large, the threshold is set to its initial value of 110 pixels.When the speaker size is onsidered large, the threshold is inreased by 20 (butlimited to a maximum of 173, or 68%). When the speaker size is too small or its
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position displaed, the threshold is redued by 15 (but limited to a minimum valueof 95, or 37%). When the speaker size and position are aepted, the threshold isredued by 15, but only if it is larger than 125.

4.4.3 Computational e�ortA thorough omputational e�ort analysis of the algorithm has not been done. However, ompileroptimized12 ode segmenting the \Foreman" sequene (a 25 Hz sequene onsisting mostly oflass 4 images) in a Sun Spar 10 spent about 40% of its time in the purge operator, whihinvolves just omparisons and memory addressing operations. Also, the operation intensiveSobel, requiring (with non-optimized ode) 11N sums and 4N multipliations by 2 (shift lefts),where N is the total number of pixels, ontributed to about 10% of the time. Hene, the restof the proessing, though more involved from an algorithmi point of view, did not aountbut to about 50% of the time. These �gures hint that the ode eÆieny an be inreased byoptimization and/or hardware implementation of the bit-level operators.
4.4.4 ResultsSeveral standard videotelephone test sequenes were used:
\Foreman" (25 Hz)Most of the time a lass 4 sequene.\Carphone" (25 Hz)Most of the time a lass 4 sequene.\Claire" (10 Hz)A typial lass 1 sequene.\Miss Ameria" (10 Hz)Also a typial lass 1 sequene.\Trevor" (seond shot only, 10 Hz)A typial lass 2 sequene.\Salesman" (30 Hz)Also a lass 2 sequene.
The \Claire", \Miss Ameria" and \Trevor" sequenes used are all part of a single 10 Hz imagerate sequene named \VTPH" (for videotelephone).The results obtained were good, as an be seen in the representative images in Figure 4.9.Comparable results were obtained repeating the above experiments for the same sequenesdownsampled to 5 Hz image rate (downsampling by image dropping). Notie that the �rst12Using a g 2.* ompiler.
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image of the sequenes is not segmented by the algorithm, sine there is no past image to beused by the 3D operators.

(a) \Foreman" image 2 (b) \Carphone" image 2

() \VTPH" image 2 (\Claire" image6) (d) \VTPH" image 126 (\Miss Amer-ia" image 125)

(e) \VTPH" image 143 (\Trevor" im-age 96) (f) "Salesman" image 10
Figure 4.9: Knowledge-based segmentation results for several videotelephone sequenes.
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4.4.5 ConlusionsA new MB level knowledge-based segmentation algorithm for videotelephone sequenes hasbeen developed whih is able to ope with a wide range of sequenes. It was developed has anevolution of the algorithms in [160, 166℄. The algorithm demands relatively low omputationalpower, sine most of the proessing is done at MB level, whih has 256 less elements than theoriginal images.The algorithm is a good andidate for integration in very low bitrate �rst-generation videooders. The estimation of the speaker's position an be used to improve the subjetive qualityof the enoded sequene by inreasing the objetive quality of the image at the speaker's faeand body at the expense of a redued objetive quality in the bakground (whih is subjetivelyless important).A lassi�ation of videotelephony sequenes has been proposed. Aording to it, sequenes anbe lassi�ed as belonging to lasses 1 and 3|uniform bakground|, lass 2|non-uniform but�xed bakground|, and lass 4|non-uniform moving bakground.
4.5 RSST segmentation algorithms
This setion presents a new image segmentation algorithm whih is based on the RSST onept[134℄ and on split & merge (with elimination of small regions) [72℄. Unlike [72℄, the regionsare merged by order of similarity (or uniformity of the result), and the elimination of smallregions is but an intermediate step of the proess. Unlike [134℄, the problem of small regionsis dealt with. Also, a mathematial morphology image simpli�ation tehnique is proposedfor appliation before segmentation, whih is typially used in Watershed algorithms suh asthe one in Sesame [30℄. The resulting algorithm has a performane omparable to the RSSTalgorithm in [194℄, although with a slightly less elegant formulation. This algorithm is the resultof olletive work, and was �rst proposed in [32, 33℄.The new algorithm presented is ompared with the RSST algorithm proposed in [194℄, andwith its extension using an aÆne, instead of at, region model. The performane of these otheralgorithms is also assessed when the image simpli�ation pre-proessing and the split phase ofthe new algorithm are added.The outline of the new algorithm is as follows. Images are �rst simpli�ed using a mathematialmorphology operator, whih attempts to eliminate less pereptually relevant details. The sim-pli�ed image is then split aording to a QPT and the resulting regions are then merged usingone of three riteria: merge, elimination of small regions and ontrol of the number of regions.The split phase generally produes an over-segmented image, its interest stemming from the re-dution in the total number of regions, whih leads to a redued omputational e�ort, espeiallywhen ompared to the typial region merging solutions, where eah pixel is initially onsideredas an individual region.The merge riterion merges suessively the most similar adjaent regions resulting from the
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split step, thus removing the false boundaries introdued by the QPT struture used.The elimination of small regions riterion removes a large number of the small, often less rel-evant, regions whih typially result when the merge riterion starts to fail. If not eliminated,small regions lead frequently to an erroneous �nal segmentation, sine they have a large on-trast relative to their surroundings. Small regions are eliminated by merging them to their mostsimilar neighboring regions.The ontrol of the number of regions riterion is similar to the merge step. However, thisriterion fails when a ertain �nal number of regions is attained (or, alternatively, when athreshold of region dissimilarity is exeeded).At eah step the algorithm produes segmented images with one less region. Hene, it anbe seen as originating an image hierarhy with inreasing simpli�ation levels. There are twosoures of image simpli�ation in the algorithm. Firstly, simpli�ation in a pre-proessing step,whih eliminates details whih are deemed irrelevant before applying the three other steps of thealgorithm: merging, eliminating small regions, and ontrolling the number of regions. Seondly,the segmentation itself an be seen as suessively simplifying the image, by approximating itwith the same region model (in the ase the at region model) over larger and larger regions.
4.5.1 Pre-proessingSine more often than not images are meant to be appreiated by humans, the eonomy ofrepresentation mandates that details whih are pereptually less relevant from the HVS pointof view should be eliminated as muh as possible. This proess is labeled simpli�ation. It isdone in part by the segmentation algorithm itself, but it may be advantageous to simplify theimage before performing segmentation proper. The purpose of the pre-proessing stage is thusto simplify the original image in order to eliminate at least part of the less relevant information.Inidentally, this may also redue the omputational load of the subsequent segmentation steps.A typial method of simplifying an image is by using low pass �lters with an appropriate regionof support (typially a �nite window, so that FIR �lters an be used). However, these �lters tendto attenuate the olor transitions orresponding to physial edges. Some may even modify theirposition. These e�ets an have a very negative impat on the segmentation results, espeiallyin terms of boundary loalization.Tools without the aforementioned problems have been proposed in [176℄, namely the opening-losing by reonstrution operator '(re)(n)(�)'(re)(n)(I) = '(re)(n)((re)(n)(I))and the losing-opening by reonstrution operator '(re)(n)(�)'(re)(n)(I) = (re)(n)('(re)(n)(I));both of whih produe omparable (if di�erent in general) results. These mathematial mor-phology operators [181, 180℄ are based on geodesi erosion and dilation operators as spei�edin [34℄ (see also [33℄ for details).
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These opening-losing and losing-opening operators by reonstrution eliminate both brightand dark details without orrupting thin edges and without a�eting edge positioning. Fig-ure 4.10 exempli�es its appliation to image 50 of the \Table Tennis" sequene. In this work,simpli�ation was always performed by �rst onverting the sequene to R0G0B0 olor spae andthen simplifying eah olor omponent of the image separately. This is arguably not an optimalsolution, sine the simpli�ations are thus introdued independently in eah omponent. How-ever, these non-linear operators do not translate easily into a non-salar world and, besides, theresults obtained in pratie seem to be aeptable.In simpli�ation there is a trade-o� between omputational load and �nal segmentation quality.Inreasing too muh the simpli�ation redues the omputational load, but an also dereasethe �nal segmentation quality. On the other hand, an adequate simpli�ation degree may infat improve the segmentation results by reduing the e�et of undesirable image features, suhas noise and less relevant details.
4.5.2 Segmentation algorithmThe segmentation algorithm onsists of two phases: the split phase and the merge phase.
SplitDuring the split phase, the image is reursively split into smaller regions aording to a QPTstruture. At eah step a region is analyzed and, if it is onsidered inhomogeneous, it is split intofour. The adopted homogeneity riteria was the dynami range, sine the use of the varianeor the use of the similarity between the average olors of the four sub-regions both were foundin [33℄ to lead to worst results. Hene, for an image i[�℄ to segment, a retangular region R issplit if maxv2R i[v℄�minv2R i[v℄ � ts, where ts is the split threshold.The main purpose of this step is to redue the omputational load of the merge step and heneof the overall algorithm: the smaller the initial number of regions for the merging steps, the lessmemory is used. There is a ompromise between omputational e�ort and segmentation quality:the higher the threshold, the lower the number of regions and hene omputational osts, but thehigher the inhomogeneity of the resulting regions. In order to avoid ompromising segmentationquality, the split threshold is typially set to a low value, so that after the split step the regionshave a nearly onstant grey level. In this work a threshold of ts = 12 has been hosen empiriallyso as to lead to aeptable results for a wide range of test sequenes.
MergeMerging is atually based on three riteria, whih are tried in sequene at eah step of thealgorithm. First, an attempt to merge by order of region similarity is performed: the two mostsimilar adjaent regions are merged, but only if their olor distane is small enough. If theprevious riterion fails, the smallest region, if onsidered small enough, is merged to its mostsimilar neighboring region. If that also fails, then the two most similar adjaent regions are
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(a) Original.

(b) Simpli�ation of eah R0G0B0 omponent with theopening-losing by reonstrution operator using a 3�3struturing element.
Figure 4.10: \Table Tennis" image 50.
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merged, but now only if the number of regions in the partition still exeeds the number ofrequired regions. These three riteria will be detailed in the following.
Merge by similarity
This is the �rst riterion of the merge phase of the algorithm. Merging, in this ase, is based onthe distane between the average olors of the pairs of adjaent regions, as in [134℄. In [33℄ twodi�erent homogeneity riteria were tested, namely the dynami range and the variane of theolor on the union of the two regions. Both alternatives were disarded sine they onsistentlyled to worst results. As in [134℄, regions are merged in non-dereasing order of similarity. Inthis ase, however, the merge takes plae only if the olor distane of the two regions to bemerged is below the so-alled merge threshold tm.
Elimination of small regions
This is the seond riterion of the merge phase of the algorithm. Many small, pereptuallyless relevant, regions tend to remain after the merge step. These regions are usually ontrastedwith their surroundings, and hene are not easily merged into the larger, more pereptuallyrelevant, neighbors by the merge by similarity riterion of the previous setion. These smallregions, if not dealt with adequately, usually lead to erroneous �nal results. It is ommon, ifsmall regions are not eliminated, that the majority of the �nal regions are small and more oftenthan not irrelevant, while the most pereptually relevant regions are merged together or intothe bakground.In this step, any region not larger than 0:004% of the total image area (4 pixels in a CIF image)is eliminated. Afterwards, regions smaller than 0:02% of the total image area (20 pixels in a CIFimage) are eliminated by inreasing size, but only while the overall area of eliminated regionsis not larger than 10% of the total image area. In ase of size ties, the similarity betweenthe small regions and any of their neighbors is used to deide whih of the small regions toeliminate. The thresholds were hosen empirially so as to lead to reasonable results for awide variety of test images. This algorithm outperforms the one in [134℄, sine the problemof small regions was not onsidered there. An evolution of the algorithm in [134℄, presentedin [194℄, minimizes ontributions to the global approximation error, and yields results whih aregenerally better. It has the additional advantage that it does not reur to empirial thresholdsand ad-ho elimination of small regions.The elimination, in the algorithm proposed here, is always done by merging the small regionsto the most similar adjaent region. When merging a small region into a larger neighbor, thealgorithm does not hange the larger neighbor parameters (e.g., grey level average, variane,et.). Thus, small regions do not \pollute" the average olor of the larger regions they aremerged to.
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Control of the number of regionsThe objetive of the third riterion of the merge phase is to ontrol the segmentation result interms of the �nal number of regions. It is equal to the merge step, though now the proessstops when the required number of regions is attained. Sine this step suessively produessegmented images with a dereasing number of signi�ant regions, it an be seen as originatingan image hierarhy with inreasing simpli�ation levels.In omparison to the algorithm in [194℄, where a maximum global approximation error an beused to deide when to stop the algorithm (using a single threshold), either the �nal numberof regions or the maximum olor distane of the regions have to be used, both of whih have amuh less lear relation to the global segmentation quality.
4.5.3 Results and disussionThe algorithm proposed in the previous setions is ompared with the RSST algorithm presentedin [194℄, whih uses a at region model, and with the RSST algorithm in [194℄ updated to usethe aÆne region model. These algorithms will be referred to as new RSST, at RSST, and aÆneRSST, respetively, even though the last two are atually the same algorithm using di�erentregion models. The last two algorithms were also tried with an initial split phase, so as toobserve the hanges in results in terms of quality and omputational eÆieny.The next setion desribes the experimental onditions, and the ones following it present anddisuss the results. First the new RSST algorithm will be disussed. Then, it will be omparedto the at RSST algorithm. Finally, the strengths and weaknesses of the aÆne region model willbe assessed by omparing the at and aÆne RSST algorithms. These omparisons all assumealgorithms without a split phase. The advantages of the split phase will be dealt with in aseparate setion.
Experimental onditionsThe new RSST segmentation algorithm was run always with ts = 12 (when a split phase wasused) and tm = 10. These spei� thresholds were hosen empirially, sine it was observedthat they led to reasonable results for a wide range of images.The test images are the �rst images of some of the sequenes desribed in Appendix A. Allexperiments were run until a �nal number of 25 regions was attained, with a few exeptionswhere, in order to show some speial feature of an algorithm, a smaller number of regions wasused. Sine a �xed number of regions was used, the results should be ompared aording tothe overall uniformity, or approximation quality. Notie that the inverse proedure might beused, i.e., establishing a �nal quality and omparing the number of regions required. However,sine the new RSST algorithm does not aim expliitly at maximizing quality, this would om-pliate the stopping ondition of the algorithm needlessly. In pratie, on the other hand, bothobjetives (a given quality with the smallest possible number of regions, or the highest possiblequality for a given number of regions) may make sense depending on the appliation.
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The test images are all either CIF of QCIF (Quarter-CIF) in terms of spatial resolution. Re-gardless of the size of the image to segment, however, and before the split phase (when it exists),the image has been unonditionally split into 32� 32 bloks, instead of starting with the wholeimage.13 In those ases where the split phase is not used, the image is initially divided intobloks of a given size, typially with a single pixel.When simpli�ation is used, a 3 � 3 (n = 1) struturing element (see Figure 4.10) was hosenempirially, sine it produed good results for a wide range of images.The segmentation results are presented in the form of a piture where the region borders aredrawn in blak and the region interiors are drawn aording to the estimated parameters of theparametri model used (i.e., either the at region model, for the new and at RSST, or theaÆne region model, for the aÆne RSST) or with the texture of the original image.
The new RSST algorithm
Image simpli�ation and elimination of small regions
Figure 4.11 shows the same test image segmented with the new RSST algorithm. The resultusing both pre-proessing (image simpli�ation) and elimination of small regions an be seento be aeptable. However, neither elimination of small regions nor image simpli�ation bythemselves yield aeptable results (remember that the four results have exatly 25 regions).Image simpli�ation, on the one hand, has a limited power in removing detail: if a windowlarger than 3�3 is used, and even though the morphologial �lter used tends to preserve edges,the boundary positioning su�ers. On the other hand, small region removal, being based solelyon region size, an hardly solve the problem in a totally generi way. The ombination of thetwo, however, yields an algorithm whih is muh more robust, even though somewhat inferiorto the at RSST, as will be seen in the next setions.Notie that, without either simpli�ation or removal of small regions, a onsiderable proportionof the total number of regions is rather small and pereptually irrelevant. They exist as separateregions beause they have a strong ontrast to their surroundings. None of the RSST algorithms(new, at, and aÆne) fully solves the problem of seleting regions aording to their pereptualrelevane. However, it will be seen that at and aÆne RSST partially solve the problem byimpliitly assuming larger regions to be more relevant than smaller ones, instead of relyingsolely on ontrast, as does the new RSST when small regions are not removed.Also notie that, without removal of small regions and without the split phase, the new RSSTalgorithm is essentially the same as the RSST algorithm in [134℄.The results presented in the following setions for the new RSST algorithm assume that imagesimpli�ation and removal of small regions are indeed performed.13For images whose size is not a multiple of 32, whih is the ase of the QCIF test images, the top-leftmostblok is always 32�32, whih means the bloks along the bottom and right border of the image may be retangles.
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(a) Without small region removal, without sim-pli�ation. (b) Without small region removal, with simpli�-ation.

() With small region removal, without simpli�-ation. (d) With small region removal, with simpli�a-tion.
Figure 4.11: \Claire" image 0: segmentation into 25 regions using the new RSST algorithm(without the split phase).
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Control of the number of regions
This step ontrols the �nal number of segmentation regions, hene impliitly ontrolling the �nallevel of detail of the segmentation. Figure 4.12 shows the results of the new RSST algorithmwith 20 to 5 regions. It an be learly seen that these segmentations form a hierarhy ofdereasing detail.

(a) 20 regions. (b) 15 regions.

() 10 regions. (d) 5 regions.
Figure 4.12: \Claire" image 0: segmentation into 20 to 5 regions using the new RSST algorithm(without the split phase).
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The at RSST algorithm
Image simpli�ation
Image simpli�ation, as a pre-proessing step, does not yield signi�ant improvements in thease of the at RSST algorithm. An example an be found in Figure 4.13, where the \Carphone"sequene is segmented with and without simpli�ation. This insensitiveness to the e�ets ofsimpli�ation are due to the fat that, in algorithms attempting to redue the global approxi-mation error, as is the ase of the at RSST algorithm, small regions tend to be merged sooner.Hene, segmentation itself an be seen as a simpli�ation proess, whih eliminates suessivelythe details of the image, and a simpli�ation pre-proessing step is redundant.Sine simpli�ation, for algorithms attempting to minimize the global approximation error,is performed by the algorithm itself, the results presented in the following for both the atand aÆne RSST algorithms assume that no image simplifying pre-proessing is done prior tosegmentation.
Comparison with the new RSST algorithm
Figure 4.14 shows segmentation results of four di�erent test images using the new and the atRSST algorithms. The same segmentation results are shown in Figure 4.15 superimposed onthe original images, so that the boundary auray an be assessed more easily.For all but the \Flower Garden" sequene the results attained are omparable, if slightly betterin the ase of the at RSST. Flat RSST seems to yield regions whih are globally more signi�ant,even though it tends to eliminate small details whih are semantially relevant but whih donot ontribute muh to the global error. It is the ase of the eyes of \Claire" and the shadesin the ball in \Table Tennis". However, it must be remembered that these details are takeninto aount in the new RSST algorithm not beause of their semantial relevane, but simplybeause they are ontrasted to their surroundings. Also, at RSST tends to produe morefalse ontours, i.e., region boundaries neither orresponding to transitions in the image nor tophysial edges in the sene. However, these false ontours stem not so muh from the algorithmas from the model used. As will be seen in the next setion, more sophistiated region modelstend to solve the false ontour problem. Other methods for removing false ontours an befound in [194℄.In the ase of the \Flower Garden" sequene the at RSST algorithm greatly outperformsthe new RSST algorithm. This is due to the fat that the new RSST algorithm relies ona somewhat ad-ho method for removing small regions, whih are very abundant in suh atextured image. The parameters (thresholds) used in the elimination of small region riterionwere hosen empirially so as to yield aeptable results in general. The fat that there aresequenes suh as \Flower Garden" where the new RSST algorithm fails (unless the thresholdsare adjusted in a rather ad-ho way) and the fat that the at RSST yields aeptable resultsalso for these problemati sequenes, proves that the at RSST algorithm is indeed more generithan the new RSST algorithm.



4.5. RSST SEGMENTATION ALGORITHMS 163

(a) Without simpli�ation

(b) With simpli�ation
Figure 4.13: \Carphone" image 0: segmentation into 25 regions using the at RSST algorithm.
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Figure 4.14: \Carphone", \Claire", \Flower Garden", and \Table Tennis" (image 0): segmen-tation into 25 regions using the new RSST algorithm (left) and the at RSST algorithm (right).No split phase was used.
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Figure 4.15: \Carphone", \Claire", \Flower Garden", and \Table Tennis" (image 0): segmen-tation into 25 regions using the new RSST algorithm (left) and the at RSST algorithm (right).No split phase was used. Boundaries superimposed on the original.
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Using an aÆne model
The RSST algorithm proposed in [194℄, whih uses the at region model, was adapted to usethe aÆne region model. Figure 4.16 shows the results of segmenting a few test images with suhan algorithm.It must be notied here that the images segmented in Figure 4.16 are QCIF size. This is due tothe fat that the region model parameters oupy onsiderable more memory for the aÆne regionmodel than for the at region model, whih rendered segmentation of CIF images impratialwhenever a split phase was not used. However, the implementation of the algorithms did notattempt to minimize the required memory. With a suitably optimized implementation, CIFimages and beyond might well be within the powers of a normal PC.The results show onsiderable boundary raggedness. The reason for this raggedness is thatthe aÆne model adjusts with error zero to any region with up to three pixels (in 2D). Hene,when starting from one-pixel regions, the �rst merges are essentially random, sine all mergesontribute zero to the global error, and the algorithm does not speify what to do in ase of ties.Despite this fat, it an be seen that the model is powerful enough to represent shaded areas,for instane in the building in the bakground of \Foreman" or in the arm of \Table Tennis".
Comparison with the at RSST algorithm
Figure 4.17 shows the omparison of the aÆne model to the at model (both in the frameworkof a global error minimization RSST, i.e., at and aÆne RSST), when the image is initiallysplit into 2 � 2 bloks. An area of four was hosen to avoid the problem desribed above ofover adjustment of the model to the data inside very small regions, whih leads to boundaryraggedness. Sine the initial number of regions is divided by four, the results are presentedfor CIF sized sequenes, whih have the same memory requirements. The same segmentationresults are shown in Figure 4.18 superimposed on the original images, so that the boundaryauray an be assessed more easily.The use of initial 2 � 2 bloks leads to inevitable loss of resolution in boundary positioning.However, when the at region model is used in the same irumstanes, the aÆne region modelleads to an eonomy of representation whih is not possible with the at model. See for instanethe red sleeve or the ball in \Table Tennis", whih are now well represented with a smallernumber of regions. Also, the use of more powerful region models leads to less false ontours, asan be seen in the bakground of \Table Tennis" and \Claire".The use of 2 � 2 bloks has other drawbaks, besides lost resolution in boundary positions. Ablok may fall in a transition whih is two pixels thik, thus reating a new region whih maynever again be merged to either side. Both these problems might be solved by an improvedalgorithm where the resulting regions might be split wherever neessary and then re-merged, orsimply by post-proessing the boundaries pixel by pixel, deiding whether they should belongor not to any of the adjaent regions [146℄.
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Figure 4.16: \Carphone", \Claire", \Foreman", and \Table Tennis" (QCIF, image 0): segmen-tation into 25 regions using the aÆne RSST algorithm; boundaries superimposed over the oloraording to the estimated region model parameters (left) and over the original image (right).No split phase was used.
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Figure 4.17: \Carphone", \Claire", \Flower Garden", and \Table Tennis" (image 0): segmenta-tion into 25 regions using the at RSST algorithm (left) and the aÆne RSST algorithm (right).Images initially split into 2� 2 bloks.
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Figure 4.18: \Carphone", \Claire", \Flower Garden", and \Table Tennis" (image 0): segmenta-tion into 25 regions using the at RSST algorithm (left) and the aÆne RSST algorithm (right).Images initially split into 2� 2 bloks. Boundaries superimposed on the original.
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Advantage of using a split phaseFigure 4.19 shows the segmentation of the �rst image of the QCIF \Carphone" using the aÆneRSST with and without a split phase.

(a) Without split.

(b) With split.
Figure 4.19: QCIF \Carphone" image 0: segmentation into 25 regions using the aÆne RSSTalgorithm.These results show learly that the use of a split phase, aside from leading to onsiderableinrease of omputational eÆieny and redutions in memory requirements, has a very pos-itive impat on the performane of the algorithm. This performane an also be assessed inFigure 4.20, whih ompares the at RSST algorithm (without split) with the aÆne RSST al-
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gorithm using the split phase, this time applied to the CIF \Carphone". Notie that, as will beseen in the next setion, the split phase does not yield signi�ant improvements in segmentationquality in the ase of the at RSST. In fat, the aÆne RSST is the only algorithm whose seg-mentation quality improves with a split phase. This e�et is easily explained by the fat that,using a split phase, the attained regions are seldom small, thus avoiding the over adjustmentdesribed previously.

(a) Flat RSST without split.

(b) AÆne RSST with split.
Figure 4.20: \Carphone" image 0: segmentation into 25 regions.It may be argued, and probably very rightly so, that the results might be further improved ifsplitting were done also using the aÆne model; for instane, by splitting regions while the averagesquared approximation error is above a threshold. This issue, as well as the more interesting
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problem of reeting in the split phase the objetive of minimizing the global approximationerror, have been left for future work.
The split phaseImpat on segmentation qualityIt was shown previously that using a split phase in the aÆne RSST algorithm is a good wayof avoiding the over adjustment problems for small regions harateristi of the aÆne model.Figure 4.21 shows results of applying the new and at RSST algorithms with and without asplit phase to the �rst image of \Claire".The quality of the new and at RSST algorithms' results are not strongly a�eted by the splitphase. This fat may be on�rmed for a wide range of test images. The strongest negativeimpat of split in the appearane of arti�ial shapes in false ontours, as an be seen in thebakground of the at RSST result (the new RSST algorithm is more robust to false ontours).It is only the shapes of false ontours whih are a�eted by the split phase, not false ontoursthemselves, whih exist with or without it. However, it may be argued that, sine they are falseontours anyway, their shape is not too relevant and they an be removed by post-proessing,as done in [194℄. Also, the use of more powerful models leads to less false ontours and heneto a less negative visual impat of the split phase. All in all, it may be said that, sine split haseither a positive or a slightly negative impat in segmentation quality, it will be amply justi�edif it leads to signi�ant savings in either or both omputational time and memory requirements.
Impat on running timesThe exeution times of the new and at RSST algorithms is given in Table 4.2.14 The �rstthing to notie is that the new RSST algorithm is slower than the at RSST algorithm. This isdue to the fat that merges in new RSST are done aording to three di�erent riteria, whihimply two di�erent orderings of the graph ars: one aording to the olor distane, anotheraording to the size of the regions. On the ontrary, the at RSST (and the aÆne RSST, forthat matter) require only a single ordering of the graph ars. A similar omparison is performedin Table 4.4 between the at and aÆne RSST algorithms, though with a minimum blok size of2�2. Notiing that the segmentation algorithm in at and aÆne RSST is atually the same, theperformane di�erene is due essentially to the inreased aÆne model omplexity, whih impliessolving a linear least squares problem for alulating the weight of the graph ars. Both tablesalso show the onsiderable speed gains when using a split phase, with the exeption of two ases:\Salesman" and \Table Tennis" for the at and aÆne RSST algorithms, in whih the addedomputational omplexity of the split phase outweighs the savings in the merge phase. This isprobably due to the fat that the implementation used alulates the region model parametersduring the split phase. Sine the split phase, as implemented, does not use the region model,these alulations would be better postponed to the end of the split phase. This was not done,14Results on a Pentium 200 MHz, with 64 Mbyte RAM, running RedHat Linux 5.0 (kernel 2.0.32), programsompiled with g 2.8.1 and full ompiler optimization (-O3), times obtained with gprof 2.8.1.
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(a) New RSST without split. (b) New RSST with split.

() Flat RSST without split. (d) Flat RSST with split.
Figure 4.21: \Claire" image 0: segmentation into 25 regions.
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sequene no split split\Carphone" 29.52 8.56\Claire" 24.20 3.29\Flower Garden" 34.16 19.06\Foreman" 29.44 9.46\Miss Ameria" 25.81 3.88\Salesman" 29.11 12.45\Table Tennis" 35.71 11.99\Trevor" 27.71 5.42average 29.46 9.26(a) New RSST algorithm.

no split split13.83 6.3913.48 2.2522.64 13.2514.76 6.4013.70 3.9414.49 9.4115.34 12.7813.85 5.5715.26 7.50(b) Flat RSST al-gorithm.
Table 4.2: Exeution times (in seonds) of 4.2(a) new RSST and 4.2(b) at RSST for CIFsequenes (image 0).
though. Table 4.3 shows the exeution times of the aÆne RSST when applied to QCIF images,whih also on�rms the advantages of the split phase.It should be notied, though, that the performane improvement due to the split phase maybe redued if the merge phase is further optimized, and vie-versa. Hene, as both phases areoptimized, an eye should be kept on the global result so as to assess whether or not the splitphase is really advantageous.Finally, these results, and espeially the averages, should be taken with a grain of salt, sine,even though the test images used form an aeptable sample for testing generi algorithms, theresults may be di�erent if other images are used.

Sequene no split split\Carphone" 31.05 17.73\Claire" 34.03 9.33\Foreman" 32.53 19.29\Grandmother" 31.70 17.19\Miss Ameria" 30.94 9.46\Mother and Daughter" 31.45 17.40\Salesman" 31.64 23.55\Table Tennis" 33.68 24.25\Trevor" 34.10 14.28average 32.35 16.94
Table 4.3: Exeution times (in seonds) of aÆne RSST for QCIF sequenes (image 0).
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sequene no split split\Carphone" 3.62 3.32\Claire" 3.33 1.23\Flower Garden" 4.93 3.73\Foreman" 3.81 3.29\Miss Ameria" 3.59 3.10\Salesman" 3.24 3.88\Table Tennis" 3.49 4.50\Trevor" 3.18 3.23average 3.65 3.29(a) Flat model.

no split split37.13 33.2834.32 13.1447.15 41.6937.25 34.7133.00 27.7134.07 37.3037.90 45.4840.29 32.1137.64 33.18(b) AÆne model.
Table 4.4: Exeution times (in seonds) of 4.4(a) at RSST and 4.4(b) aÆne RSST for CIFsequenes (image 0) using a minimum blok size of 2� 2.
4.5.4 Conlusions
Three segmentation algorithms have been ompared: the new RSST [32, 33℄, the at RSST [194℄,and the aÆne RSST, whih is the same algorithm as in [194℄ extended so as to use an aÆneregion model. The last two algorithms have been tested also with optional image simpli�ationpre-proessing and a split phase. The at RSST was shown to be more generi than the newRSST, even though it is less robust relative to false ontours. The at RSST was shown to berelatively insensitive, in terms of segmentation quality, to the use of image simpli�ation, whihis essential in the new RSST, and to the use of a split phase. The aÆne RSST has shown a greatpotential, even though some problems still need to be solved. In the ase of the aÆne RSST,the split phase was shown to have a positive impat on segmentation quality, sine it tends tominimize the negative e�ets of the over adjustment of the model for small regions. In termsof omputational requirements, the split phase was shown to provide onsiderable savings, evenif its implementation still requires optimization. The algorithms proposed in the next setions,whih deal with supervised segmentation and oherene of temporal segmentation, make use ofthe at RSST with a split phase and no image simpli�ation.
4.6 Supervised segmentation
4.6.1 RSST extension using seeds
The global approximation error minimizing RSST algorithms, either using the at or the aÆneregion models, may be stopped either when the error exeeds a ertain threshold, or when arequired number of regions has been attained. These algorithms provide no means for on-trolling the position of the resulting regions or for speifying seeds around whih the regions of
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interest should be obtained, as happens in region growing algorithms (suh as watersheds [105℄).However, they an be easily extended with suh features, as mentioned previously, and as �rstproposed in [119℄.Consider a label image with the same size as the original image. Let label zero denote unseededpixels and seed s, with s 6= 0, be the set of all pixels with label s (whih may or may not beonneted). The set of existing seeds plus the set of unseeded pixels an be seen as a partitionof the image. The label images may be restrited to those having onneted seeds, but this isnot neessary. The RSST algorithms an be extended suh that an initial labeling is taken intoaount during segmentation. During the split phase (if there is one) the regions are foredto be split if they ontain pixels belonging to di�erent seeds. During the merge phase, whensearhing for the next two adjaent regions to merge, one may simply say that regions withpixels of di�erent seeds should be merged last, if ever, or that regions with the same seed shouldbe merged �rst. Further, whenever an unseeded region is being merged with a seeded region,the resulting region will inherit the seed of the seeded one. If adjaent regions with di�erentseeds are prevented from being merged, the �nal partition respets the seeds, in the sense thatall regions ontain at most pixels of one seed.Oasionally, however, it may be aeptable to merge regions with di�erent seeds. If thishappens, the resulting region may inherit either the highest (or lowest) label or the label of thelargest region, for instane.
4.6.2 ResultsFigures 4.22(b) and 4.22() show the result of segmenting the �rst image of the \Grandmother"sequene with the at RSST algorithm and targeting at six �nal regions. Figures 4.22(d)and 4.22(e) show the result of segmenting the same image though with the seeded at RSSTalgorithm, and resorting to the set of seed pixels represented by rosses in Figure 4.22(a). Sixdi�erent seeds were used: bakground, plant, sofa, hair, fae and body. The pixel seeds on thehair belong all the the hair seed, the same thing happening with the rosses on the fae and thebakground. The seed loations were hosen in an empirial way, until the desired result wasattained.
4.6.3 ConlusionsIt is obvious, from the example in Figure 4.22, that, by simple mouse liks, a human ansupervise the segmentation algorithms of the previous setions to improve the results, i.e., byimposing semantial meaning. In a way, thus, a seond-generation, mid-level vision tool isbeing helped to attain high-level vision results. It may be argued that unsupervised third-generation algorithms may also be attained by developing new segmentation algorithms whihinorporate semantial information from the very start. However, it may be more natural to relyon algorithms of the lowest levels and to �nd good automati supervision algorithms, sine thismakes the problem muh more amenable. This was already reognized, in a way, by Pavlidisin [154, p.91℄, whih alled supervision \interpretation guided editing."
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(a) Original image with pixel seedsrepresented by rosses.

(b) Without using seeds. () Without using seeds, over the orig-inal.

(d) Using seeds. (e) Using seeds, over the original.
Figure 4.22: Segmentation of \Grandmother" image 0 with the at RSST algorithm (using asplit phase with ts = 12) targeting at six �nal regions and with the same algorithm equippedwith six di�erent seeds: bakground, plant, sofa, hair, fae, and body.
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The simple extension of the RSST algorithms proposed here an also be used, as will be seen inthe next setion, to e�etively segment a set of images in an image sequene in a time reursivefashion, and so as to maintain oherene between the segmentation results along time.
4.7 Time-oherent analysis
In the framework of moving image analysis, viz. for image oding, the time oherene ofsegmentation is important for at least two reasons. The �rst one has to do with manipula-tion/interativity: when the user/spetator of the information is allowed to interat with thesene, it must be possible for him to selet, zoom, rotate, or hange any sene objets. Thisimplies that objets must be identi�ed, and this identi�ation must be oherent along eah ofthe images of the sequene in whih the objets our. Hene, if the user deides to hangethe olor of a given ar whih he selets in a partiular image of the moving sene, that ar'solor must be hanged along the whole set of images in the sequene. The seond reason has todo with oding eÆieny: segmentation oherene is important beause it allows for improvedtime predition tools to be used.This setion extends the RSST segmentation algorithms so as to deal with moving images.This extension makes use of the extension of the RSST algorithms using seeds to perform atime-reursive segmentation. Time reursion is introdued by using the previously segmentedregions as seeds for the segmentation of groups of images, suh that the previous segmentationresults are projeted into the urrent image. Projetion of segmentation results is not a newidea, having been proposed in [105℄ and in its preursor [154, p.92℄ whih states that \... inmoving senes where the segmentation of a previous frame may be used as an initializationfor the urrent frame." However, its use in onjuntion with the RSST algorithms is, to theknowledge of the author, original, and was �rst proposed in [119℄.
4.7.1 Extension of RSST to moving imagesThe extension of the RSST algorithms to moving images is simple: stak the suessive 2Dimages of a sequene into a 3D image, onsider the 3D 6-neighborhood, and leave the rest of thealgorithms unhanged. If the image sequene grid is retangular, this is its natural extensioninto three dimensions, assuming, of ourse, a progressive sequene format. Of ourse, the splitphase, if there is one, now proeeds aording to an otal piture tree, instead of a QPT. Also,it is now less than lear whether the aÆne region model (for 3D) should be used, and what itsmeaning is. The at model an and will be used without hange, though.
RequirementsWhen segmentation of long sequenes of 2D images is the aim, simply segmenting the 3Dimages obtained by staking a few 2D images at a time may ause problems. The �rst problemis that the aim is to obtain a sequene of 2D partitions. For instane, a perfetly aeptable
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3D partition with onneted regions may lead to some 2D partitions ontaining disonnetedregions.15 Also, if an objet has undergone a large movement from one image to the next, it willresult in two objets in 3D segmentation. It should, however, result in a single objet whoseloation in two suessive images does not overlap.Another problem has to do with the number of images that should be staked before performing3D segmentation. Clearly, the ideal would be to stak as many images as possible. However,this an easily result in both an overwhelming amount of data to proess (segmentation an bevery memory demanding) and unaeptable delays when segmentation is to be performed inreal time, beause segmentation annot proeed until all images are available. Also, no matterhow many images one staks before 3D segmentation, there will always ome a time when thenext stak of images will have to be proessed. The oherene between the previous and thenext partitions of staks of images will then be lost, unless other measures are taken.Conluding, 3D segmentation algorithms should be able to trak regions along time, shouldnot demand too muh omputational power, and should introdue small delays for real-timeappliations.
Time reursivenessA solution for the problem of maintaining temporal oherene in segmentation is desribedin [105℄, even though the idea is learly a variation of the one exposed in [154, p.92℄. The ideais to perform 3D segmentation on staks of images that overlap along time, and use partitionsobtained in the past segmentations as seeds for the present segmentation, thus introduing timereursiveness. The minimum on�guration providing time reursiveness thus onsists of staksof two images, maintaining a time overlap of a single image. Sine the RSST segmentationalgorithms tend to onsume a large amount of memory, the use of pairs of images is amplyjusti�ed by implementation onsiderations.When the past partitions are grown into the present through 3D segmentation, a onneted3D region in the obtained partition may turn to be disonneted if restrited to a smaller timerange. For instane, in the pairwise 3D segmentation sheme suggested above, the 2D partitionorresponding to the present image in a just segmented pair of images may have disonnetedregions. This problem is solved easily if,16 after the 3D segmentation involving all the images inthe stak, the segmentation proeeds using only the present images. Before that, however, theregions whih were split into more than one onneted omponent will be unseeded, with theexeption of one of its onneted omponents. Usually the largest onneted omponent retainsthe label of the originating seed in the past. This simple solution thus may reate regions withnew labels.Using time reursiveness, some regions may not grow into the present, and hene regions, andthe orresponding seed labels, may disappear when no orrespondene is found from the past15However, in some ases this may atually be desirable. For instane, when the 2D projetion of an objet issplit into two disjoint regions by another objet loser to the observer. In this ase it is arguable that the twodisjoint regions are one and the same objet.16Again, this is only a problem if the lasses in the partitions are required to be onneted, whih is often thease.
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to the present. Further, some regions in the present may not orrespond to any region in thepast, and hene new labels may also appear this way.The problem with time reursiveness using the desribed methods is that the number of regionstends to grow. This is aused beause of illumination e�ets whih often reate new (arti�ial)regions, no matter how omplex the region models are, and beause regions seldom disappear,even when a stopping riterion based on the global approximation error is used. Hene, it isdesirable to omplement the segmentation steps explained above with a further step in whihthe segmentation no longer respets the seeds, some di�erently labeled regions being allowed tomerge.
CodingThough this hapter does not address diretly the partition oding problem, it should be notedthat information about the relation between the urrent and the past lass labels should besent along with the lass shape information. This information may, for instane, state whihlasses in the past images eased to exist, whih new lasses were reated, and whih lasseswere split or merged. The relation between urrent and past lass labels may also be of helpfor the enoding of ontours, of olor (the inside of the regions), and even of motion.
4.7.2 ResultsFigure 4.23 shows the results of segmenting the �rst image of the QCIF \Table Tennis" sequeneusing the at RSST algorithm with a split step in whih ts = 12. The target root mean squareolor distane used was 22 (orresponding to a PSNR of 21.3 dB). A low PSNR target washosen in order to obtain a �nal number of regions whih would be meaningful on printedpaper. The simple at region model used aounts for the false ontours in the bakground andalso for the division of the sleeve into regions of di�erent shading.The time oherene of the TR-RSST segmentation algorithm an be seen in Figure 4.24, whihshows the time evolution of ten lasses of the segmented sequene orresponding to the arm,hand, and raket of the player. These ten lasses orrespond to only nine labels, sine label ten(gray), used initially for the border of the raket, is later reused in the lower part of the arm.The algorithm introdues new regions when the approximation error is not good enough, as anbe seen in the lower part of the arm from the eighth image on.
4.7.3 ConlusionsThis setion desribed an extension of the at RSST algorithm whih deals with sequenes ofimages while maintaining oherene of the obtained partitions from image to image. The resultsobtained are reasonable and show that the method is interesting for use in seond-generationvideo odes.
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Figure 4.23: Segmentation of QCIF \Table Tennis" image 0 using at RSST.
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Figure 4.24: Segmentation of images 0 to 9 of QCIF \Table Tennis" with the TR-RSST algo-rithm. Ten lasses are shown in di�erent olors: hand (three lasses, brown, dark blue, anddark green), raket (one and two lasses, blak and gray), sweater u� (one lass, violet), sleeveand shoulder (three and four lasses, light blue, light green, red, and gray).



Chapter 5
Time analysis

Todo o Mundo �e omposto de mudan�a,Tomando sempre novas qualidades.Lu��s Vaz de Cam~oes
There is a onsiderable interdependene between motion estimation and segmentation, i.e., be-tween time and spae analysis of moving images. Estimation of motion, even at pixel level,requires regularization, sine otherwise the results will not be likely to orrespond to the 2Dprojetion of real 3D motion (due to the aperture problem [70℄). On the other hand, if reg-ularization is impliit in some motion model (with some physial meaning), then that motionmodel must be applied to individual regions: it is extremely unlikely that a single set of modelparameters an desribe the motion of all the pixels in a moving image: the real world senesusually onsist of rigid or semi-rigid objets with independent motion. Hene, segmentation intozones with di�erent motions must be performed. The question that remains is whih shouldbe performed �rst: motion estimation (i.e., estimation of the model parameters) or segmenta-tion? The obvious response seems to be to perform both simultaneously, but that is not aneasy task. This was the issue of disussions in the MotSeg (Motion Segmentation) group of theMAVT (Mobile Audio-Visual Terminal) projet (haired by the author), see [135, 115℄. It willnot be further disussed here.Camera movement introdues global motion, that is, motion whih is independent (or nearlyso) of the ontents of the sene. Nevertheless, this motion may be superimposed into motion ofthe objets in the sene, so that segmentation is an important issue even in amera movementestimation. This hapter presents the amera movement estimation algorithm �rst publishedin [122℄ and also proposes an improvement based on the Hough transform whih is similar to theone proposed in [4℄. The improvement stems from the segmentation part of the algorithm, whihis based on a Hough transform lustering segmentation tehnique, even if, in the sequel, it isinterpreted, more in the light of robust estimation methods, as an outlier detetion mehanism.Note that lustering segmentation tehniques whih make no use of topologial restritions, suh183
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as onnetedness of the attained lasses, do make sense in the framework of amera movementestimation, sine these movements introdue global motion whih is independent of the seneontents. The zone in the image whose motion orresponds to amera movement is that inwhih the sene is stati from one image to the next. Modeling the shape or onnetedness ofthis zone would probably not lead to improved amera movement estimation.The proposed amera movement estimation algorithms deal with two types of movement: pan(whih also enompasses tilt) and zoom. These algorithms, and espeially the one based on theHough transform, an be used for both ompensation of amera movements, in the frameworkof video oding, or for image stabilization in the ase of vibration or small pan movements origi-nated in hand-held video ameras, for instane in mobile videotelephony. Both an be lassi�edas transition to seond-generation tools, sine they make use of more strutured informationextrated from the image sequene. The �rst tool, amera movement ompensation, will bedealt with in the next hapter, and the seond one, image stabilization, in Setion 5.5.The algorithm based on the Hough transform is a natural evolution of the one in [122℄, whihin turn stemmed from earlier work by the author [129, 127, 130, 128, 113℄. It an also be seenas a simpler version of the algorithm in [4℄.
5.1 Camera movements
Two types of amera movement will be onsidered: panning and zooming. Panning orrespondsto the usual movement used to apture a panorami view. In this setion, however, it will betaken to mean any rotation of the amera about an axis parallel to the image projetion plan,so that it inludes pan and tilt as partiular ases. Rotations of the amera around the lensaxis will not be onsidered. In a pure pan movement, the axis of rotation is taken to passthrough the optial enter of the amera objetive.1 The e�et of a pure pan is approximatelya translation of the projeted image. The deviations from a true translation are due to severalfators, of whih the most important are that the in fous plan hanges (objets whih were infous are now out of fous and vie versa) and that the perspetive of the projeted image alsohanges (formerly parallel projeted lines are now onvergent and vie versa). The �rst e�etmay be redued by reduing the objetive aperture, whih results in a larger depth of �eld, i.e.,it inreases the maximum distane to the in fous plan where objets have an apparently sharpimage in the projetion plan by reduing the area of the orresponding irles of onfusion. Theapproximation to a true translation, however, is good provided the rotation performed by thepan movement is small. Notie that, if two pan movements in objetives with di�erent foallengths (or the same zoom lens at two di�erent foal lengths) result in translations of the imagewith the same magnitude, the approximation to a pure translation is better for the larger foallength. This happens beause the orresponding amera rotation is smaller.Zooming orresponds to the ontinuous hange of the foal length of the amera while keepingthe originally foused plane in fous, i.e., with a sharp image in the projetion plan. In a purezoom movement, the optial enter of the lenses does not hange its position. Even if the optial1 Atually, the axis of rotation is taken to pass through the prinipal point of the lens system loser to theobjet.
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enter does hange, it is usually by a very small distane, espeially when ompared with thedistane between the amera and the viewed objets. Zooming orresponds thus approximatelyto a proportional saling, an isometri transformation of the projeted image. If the zoom isnot pure, then this is only partially true, sine the hange in the position of the optial enterof the lens introdues perspetive hanges in the projeted image, whih annot be desribedby a simple saling. For the same aperture (or pupil), a hange in the foal length whih isaompanied by a orresponding hange in the projetion plan position so as to keep the in fousplane unhanged, results in a hange of the blurriness (i.e., the area of the irle of onfusionorresponding to a given point) by approximately the same fator as the projeted sizes, andhene seems to orroborate that zooming orresponds to a simple saling of the image. But,sine inreasing the foal length usually also implies augmenting the objetive aperture, theirles of onfusion are enlarged more that the image itself (i.e., the depth of �eld is redued).It will be assumed in this hapter that a retangular sampling lattie is used to sample themoving images, and that the spatial ative area of this lattie (orresponding to the domain ofthe digital image) is entered around the lens axis. Thus, zooming orresponds to an isometrisaling around the enter of the ative area. This assumption, however, is not fundamental: ifthe enter is not on the lens axis, a �titious pan movement will be estimated along with thezoom to ompensate for the o�set. This must be taken into aount when analyzing the results,though.The degree to whih a pan or zoom movement results in approximate translations and salingsof the projeted image is beyond the sope of this thesis. The reader is referred to any goodtextbook on optis dealing with lens systems, the usual optial aberrations, and amera tehnol-ogy (a simpli�ed treatment an be found in [102℄). However, it may be said that the non-lineare�ets of panning and zooming are small for small movements. Also, sine these movementswill be estimated (using the algorithms desribed in this hapter) from one image to the next inan image sequene, they orrespond to frations of movement lasting typially from 160 to 125 ofa seond. These intervals are generally short enough (or the amera operators slow enough) forthe frational movements to be small from image to image. However, these e�ets do beomemore evident when integrating the inremental movements over an entire sequene. Again, theywill be negleted in this thesis, exept as a (partial) justi�ation for the umulative errors ofthe estimated movement fators along a sequene.Panning movements have an immediate equivalent in the HVS: hanges of gaze diretion througheye or, to a ertain extent, head movements. Our eyes, unfortunately, have no zooming apabil-ities. The equivalent of zooming is performed by the upper levels of the HVS, by onentratingmore or less the attention to the part of the image near the fovea. In the ase of the HVSseveral position and attitude feedbak mehanisms (from the eye and nek position, and fromthe equilibrium sensors in the inner ear) simplify the brain's task while performing a math be-tween suessive images.2 The role of amera movement estimation then is to perform a similarfuntion in the absene of position feedbak. It should be notied that zoom movements, beingrelated diretly to lens positions, might be sensed, quantized, digitized and stored or fed bakfor eah image with little ost, thus rendering estimation useless. As to pan movements, the2Images in the retina are formed in a ontinuous way, of ourse, but the hanges in gaze diretion are performedthrough saadi eye movements, whih render hanges almost disrete. Besides, there is evidene that the visualfuntion is e�etively suppressed during these saadi movements.
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same proess might be done, though the sensing devies would probably be ostlier. In pratie,none of these movements is aptured along with the images, and hene has to be estimated.
5.1.1 Transformations on the digital imageImage and pixel oordinatesThe notation de�ned in Setions 3.2.2 and 3.2.3 will be slightly extended. As before, s usuallyorresponds to a lattie site (i.e., a oordinate in the image plan), addressed by the digital imagepixel v. That is, s = �u0 : : : um�1� v:This equation may be simpli�ed by speifying a retangular sampling lattie in R 2 (i.e., m = 2,u0 = �0 �b�T , and u1 = �a 0�T ) s = � 0 a�b 0� v:Using the usual notation for the oordinates of lattie sites and pixelss = �xy� = � 0 a�b 0� v = � 0 a�b 0� �ij� :However, the real sizes of a and b (as well as the relation between image size and real size ofthe imaged objets), are immaterial for the purposes of ompensation of amera movement orimage stabilization. Hene, the oordinates of the sampling lattie sites will be expressed inpixel width units, whatever they are, i.e.,s = � 0 1�b=a 0� v = � 0 1� 1� 0� v;where � is the pixel aspet ratio orresponding to the sampling lattie used.The domain of digital images sampled with a retangular lattie is usually taken to onsist ofL lines of C pixels, where line 0 is the topmost line (and line L � 1 is the bottommost), andolumn 0 is the leftmost olumn. In this ase it will be useful to enter the orresponding lattiesites around the origin, whih is taken to be the point where the lens axis intersets the imageplan. Hene, the previous equation is hanged to ompensate for this o�sets = � 0 1� 1� 0��v � �L�12C�12 �� = � 0 1� 1� 0� �i� L�12j � C�12 � ;or x = j � C � 12 , andy = � 1� �i� L� 12 � : (5.1)
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Expressing the pixel oordinates v in terms of the image oordinates s, the following equationresults v = �0 ��1 0 � s+ �L�12C�12 � ;or i = ��y + L� 12 , andj = x+ C � 12 : (5.2)
Aording to the notation introdued in Setion 3.2.3, in equations (5.1) and (5.2) s = �x y�Tshould be taken to belong to R 2 and v = �i j�T to Z = f0; : : : ; L�1g�f0; : : : ; C�1g � Z2 . Bya slight abuse of notation, however, v will be taken to belong to R = [0; L�1℄� [0; C�1℄ � R 2 ,in whih ase they an be thought of as representing sites in the analog image expressed inthe usual pixel oordinates. Hene, s oordinates are image entered, oriented as usual (x-axisrightwards and y-axis upwards), and isotropi (in the sense that they express real distanes, insome unit, in both diretions), while v oordinates have origin in the enter of the top-leftmostpixel, the �rst oordinate growing downwards and the seond rightwards, and are generally notisotropi, sine the pixel aspet ratio is not taken into aount. These last oordinates however,translate niely into pixels.
Pan and zoom movementsPan movementA pan movement, as seen, orresponds to a translation of the image. Let ds = �dsx dsy�T be thetranslation vetor orresponding to the pan movement. Then, a site s = �x y�T will be takeninto s0 = s� ds = �x� dsxy � dsy�after the pan movement. Notie the sign of the translation vetor: its diretion reets theamera movement, sine a rotation of the amera to the right will translate the image to theleft.3
Zoom movementA zoom movement, as seen, orresponds to a saling of the image about the lens axis. LetZ > 0 2 R be the saling fator orresponding to the zoom movement. Then, a site s = �x y�T3Of ourse, this is only true after reversing the diretions in the image, sine the lens projets an invertedimage.
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will be taken into

s0 = Zs = �ZxZy�after the zoom movement, where Z > 1 means zoom in, Z < 1 means zoom out, and Z = 1means no zoom.
Combined pan and zoom movementsIf a saling is performed before a translation, the result is reproduible by performing an ap-propriately saled translation before the saling. Hene, it is immaterial whih of the pan andzoom movements is performed �rst (if they are not performed simultaneously). But the ameramovement estimation equations will be rendered simpler if a ombined movement is modeled asa saling after a translation. Hene, after a translation by ds and a saling by Z, site s = �x y�Twill be taken into

s0 = Z(s� ds) = �Z(x� dsx)Z(y � dsy)� : (5.3)
If the opposite question is asked, viz. where did s0 ame from, the following equation results

s = s0Z + ds = "x0Z + dsxy0Z + dsy# :
The vetor whih takes from s0 to s is given by

s� s0 = s0Z � s0 + ds = ( 1Z � 1)s0 + ds = zs0 + ds = �zx0 + dsxzy0 + dsy� ;where z = 1=Z � 1 will be known heneforth as the zoom fator.Converting this equation to pixel oordinates
M(z; d)[i; j℄ = v � v0 = �0 ��1 0 � (s� s0) = �0 ��1 0 � (zs0 + ds)

= z�v0 � �L�12C�12 ��+ d = � z �i� L�12 �+ diz �j � C�12 �+ dj� ; (5.4)
where d = �di dj�T is the translation vetor expressed in pixel oordinates. The quantityM(z; d)[i; j℄ is usually known as the bakward motion vetor at v0 = �i j�T orresponding tothe amera movement fators z and d, sine, if the amera movement ourred from image n�1to image n in a sequene, �i j�T +M(z; d)[i; j℄ tells where pixel �i j�T (of image n) was onimage n� 1.
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Division of the image into bloksLet L = BLLb and C = BCCb, i.e., the digital images an be divided into BL � BC bloks ofLb � Cb pixels eah. Let bmn be the blok at the mth line of bloks (topmost is 0) and at thenth olumn of bloks (leftmost is 0). Eah blok an be seen as a small image. The pixel atoordinates �i j�T of blok bmn has pixel oordinates�mLb + inCb + j�in the overall image, as an be readily veri�ed. Hene, its orresponding amera movementmotion vetor isM(z; d)[m;n; i; j℄ =M(z; d)[mLb + i; nCb + j℄ = �z �mLb + i� L�12 �+ diz �nCb + j � C�12 �+ dj� ;from whih the average amera movement motion vetor of blok bmn an be alulated as

Mb(z; d)[m;n℄ = 1LbCb Lb�1Xi=0 Cb�1Xj=0 M(z; d)[m;n; i; j℄ = 2664z
�m� BL�12 �Lb + diz �n� BC�12 �Cb + dj

3775 : (5.5)
5.2 Blok mathing estimation
Motion ompensation was a breakthrough tehnology in video oding. It relies on two generalfats: the projeted sene tends to hange little from image to image, and hene the previousimage may be a good predition for the urrent one, and hanges are mostly due to ameramovements and/or motion of the imaged objets. Both types of movements an be estimated,and the estimated motion, or the estimated motion model parameters an be used to improvethe predition of the urrent image given the previous one. Hene, motion estimation is ofparamount importane to video oding. Despite the fat that numerous algorithms have beenproposed for motion estimation in the literature [5, 190, 169℄, the blok mathing algorithm,and its variants, is still the most used and the one for whih hardware implementations aremore readily available.The rationale for blok mathing is simple. Motion annot be estimated in a purely loal fashion:if the losest math to a pixel is searhed in the previous image, the attained motion vetor�eld, that is, the set of motion vetors obtained for all pixels, is extremely nonuniform, evenif restritions in the searh range are introdued. This is undesirable for two reasons. Firstly,if motion analysis aimed at sene understanding, a highly nonuniform motion vetor �eld isunlikely to orrespond to the projetion of the real 3D motion in the sene: real motion tendsto be reasonably uniform. The physial world is mostly onstituted of semi-rigid objets, andthus the usual motion models used assume that the motion vetor �eld has few disontinuities,whih typially our at the boundaries of the imaged objets. This is related to the fat thatestimating a motion vetor �eld from a pair of images (i.e., omputing the so-alled optial ow)
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is an ill-posedness problem [9℄, and hene some type of regularization must be used, typiallythrough the use of additional onstraints foring the motion vetor �eld to be uniform almosteverywhere. Seondly, if motion is to be used for enoding, then the savings obtained through abetter predition should not be smaller than the ost of enoding the motion vetor �eld. Thislast reason, together with engineering onerns about the pratiality of its implementation inreal odes, led to a ompromise. In the now lassial video odes, motion is estimated at amuh lower resolution than the image resolution: motion vetors are estimated for eah Lb�Cbblok of pixels, where Lb and Cb divide respetively L and C (the digital image size), as in theprevious setion. Typial values for the blok sizes are 8� 8 and 16� 16.The estimate ~Mb[m;n℄ of the motion vetor of blok b[m;n℄ of image fn relative to image fn�1is alulated by minimizing some measurement of the predition error suh as (see [143℄)

E[m;n℄(Mb[m;n℄) = Xv2b[m;n℄D(fn[v℄; fn�1[v +Mb[m;n℄℄); (5.6)
where D is some distane on the olor spae, and where the minimization is performed overa restrited set of possible values for the motion vetor. The motion vetor is usually allowedonly to take values on a small retangular window entered on the null (no motion) vetor,e.g., Mb[m;n℄ 2 f�dimax ; : : : ; dimaxg � f�djmax ; : : : ; djmaxg, whih restrits the range of imagemotion with whih the algorithm an ope. This window is usually further redued at the imageborders so that the referene blok stays within the previous image, though methods have beenproposed whih prefer to extrapolate the previous image out of its borders. The values used fordimax and djmax in this hapter are 32 and 30, whih are a good ompromise between the rangeof aeptable image motion and implementation eÆieny, at least for full searh algorithms(see below) over CIF images. The values also happily ompensate the pixel aspet rate of theimage sequenes used, see Setion A.1.1.Regularization in this ase is impliit, sine all pixels of a blok are assumed to share a singlemotion vetor. In a sense, thus, the motion vetor �eld is only allowed to have disontinuitiesat the blok boundaries, whih are rather unlikely to oinide with real objet boundaries.However, when a blok ontains (parts of) objets with di�erent motions or ontains unoveredparts of objets, the minimum predition error attained is likely to be large, and hene anbe used as a rough indiation of the validity of the motion vetor. Sequenes with pure panand/or zoom amera movements do not su�er from these problems (exept possibly at unoveredborders), but are extremely rare in pratie (and uninteresting).If the motion vetorsMb[m;n℄ in (5.6) are allowed to take values in R 2 instead of in Z2 , thenmotion estimation is said to have sub-pixel auray. Suh estimations are rendered amenableto implementation by restriting the values of the motion vetors to submultiples of the pixel,typially to half or quarter pixels. In any ase, methods must be devised to interpolate imagefn�1 at suh inter-pixel positions, whih an be done by standard linear �ltering methods(see [150℄) or simply by using bilinear interpolation.
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5.2.1 Error metrisThe olor spae metris used in pratie for motion estimation simply neglets the hromatiinformation in the image, relying thus only on the luma of the image. This approah is sound,in pratie, beause images are usually available with onsiderable blurred hromati ontent.In most ases, the hromati omponents are even subsampled relative to luma.The usual Eulidean distane is not used in pratie, beause it requires multipliation, renderingits implementation more ostly, and beause the ity blok distane, i.e., the sum of absolutevalues, besides onsiderably simpler, in pratie yields almost equivalent results [143℄.
5.2.2 AlgorithmsSeveral algorithms have been proposed to �nd the motion vetor yielding the minimum pre-dition error. The rationale for not using an exhaustive searh (or full searh) was the heavyomputational requirements. Suh algorithms searh only an appropriately seleted number ofmotion vetors, at the ost attaining non-optimal estimations, and are desribed in standardtexts on image ompression, e.g., [143℄.The use of the full searh algorithm has the advantage of, at the ost of some extra memory,being able to store the predition errors of all possible motion vetors of a blok (instead ofjust a small subset), whih may be useful for motion vetor �eld smoothing or for estimatingthe ovariane matrix of the motion vetor, as will be seen in the sequel. Notie, however,that the alulation of predition errors for all tested motion vetors is inompatible with astandard aeleration method for blok mathing algorithms, whih, for eah motion vetor,sans the blok line by line and, at the end of eah line, heks whether the sum exeeds theurrent minimum predition error. If it does, then the urrent motion vetor annot possiblyyield a lower predition error, the sum is stopped, and the error is not fully alulated. Thismethod, usually named short-iruited estimation, yields onsiderable savings in omputationalrequirements.Finally, it should be mentioned that while minimizing (5.6), when more than one motion vetorleads to the same minimum predition error, the smallest motion vetor is preferred in thealgorithms proposed in this hapter. Other hoies, suh as the motion vetor loser to somealready estimated neighbor, may help introdue more regularity in the motion vetor �eld.
5.3 Estimating amera movement
Motion estimation, of whih amera movement estimation an be seen as a partiular ase, reliesheavily on robust estimation methods, that is, methods that remain reliable in the presene ofseveral types of noise. Good reviews of suh methods, as applied to omputer vision in generaland motion estimation in partiular, an be found in [111, 57℄.The basi requirement imposed to the amera movement estimator algorithms developed was
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that they should be robust in the presene of outliers, whose detetion will be seen in Se-tion 5.3.2. For reasons having to do with tradition and ease of omputation [111℄, the moreoften used estimation method is least squares, whih is a type of M-estimator. However, thismethod is not robust: it has a breakdown point of 0, meaning that a single outlier may forethe estimates outside an arbitrary range [111℄.Even though the algorithms proposed here are based on the least squares estimator, robustness ispursued in di�erent ways: the �rst algorithm relies on iterative Case Deletion [57℄ to suessivelyremove data points (motion vetors) deemed to orrespond to outliers, while the seond relieson the Hough transform to perform a lustering of the data points. This lustering an beseen either as a simple form of segmentation or as method for removal of outliers. This lastmethod is essentially a simpli�ation of the method proposed �rst in [4℄.4 However, the proposedalgorithms inlude an intermediate motion vetor smoothing step in the iterations whih reduesthe number of outliers that stem from the aperture problem, thus improving the estimates byinreasing the number of motion vetors on whih the least squares amera movement estimationis based.The algorithms proposed here for estimating amera movement were designed so that theywould be easily implementable. As suh, they rely on blok mathing to obtain an initial, lowresolution, sparse motion vetor �eld, whih is then used to estimate the amera movementfators z and d. Camera motion is thus estimated from an estimated motion vetor �eld. Thisis similar to the methods of motion estimation and segmentation whih rely on the optialow [4℄, though in this ase the motion vetor �eld is very sparse.
5.3.1 Least squares estimation
If the estimated blok motion vetors ~Mb[m;n℄ are assumed to have an independent 2D Gaus-sian distribution around the motion vetors Mb[m;n℄(z; d) given by the model of (5.5), withovariane matrix C[m;n℄, then the maximum likelihood estimated values of the amera move-ment fators minimizeBL�1Xm=0 BC�1Xn=0 ( ~Mb[m;n℄�Mb[m;n℄(z; d))TC�1[m;n℄( ~Mb[m;n℄�Mb[m;n℄(z; d)); (5.7)
whih is obtained by taking the logarithm of the probability of the estimated motion vetorsaording to the distribution model.SineMb[m;n℄(z; d), given by (5.5), is linear on z and d, the minimization atually orrespondsto the least squares solution of a linear equation (whih an be derived from (5.7) by usingKroneker operators), whose properties have been introdued when disussing the at andaÆne region models in Chapter 4.4Hough transform-based estimation algorithms are related to the LMedS (Least Median of Squares) robustestimation method, see [111℄.
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Simplifying the estimationThe ovariane matrix C[m;n℄ of the motion vetors ~Mb[m;n℄, estimated in this ase throughblok mathing, may be important for obtaining aurate estimates of the amera movementfators. Here, however, the ovariane matrix is simpli�ed. The estimation and use of a fullovariane matrix remains as an issue for future work.Instead of estimating the ovariane matrix, we build one whih intuitively makes sense, andwhih gives appropriate results in pratie. There are two soures of errors for the least squaresestimator if the ovariane matrix is simpli�ed to C[m;n℄ = �2I2, with I2 the identity matrix:

1. bloks whih do not orrespond to amera movement, i.e., bloks enompassing one orseveral moving objets, or bloks ontaining unovered areas (without a orrespondenein the previous image), are given the same weight as bloks orresponding to ameramovements; and2. badly estimated motion vetors, namely those where the minimum error is in a very atvalley (shallow or wide) of the predition error surfae, are given the same weight as blokswith good motion vetors, where the minimum error is in a deep trough of that surfae(this is related to the aperture problem already mentioned).
The �rst problem is related to motion vetors whih most de�nitely do not have the Gaussiandistribution around the model, as taken in the previous setion: they are outliers. Outlierremoval will also be attempted in the omplete algorithm, but some outliers are likely to remaineven after suh removal. Fortunately, the ases orresponding to the �rst problem, whihare missed by the outlier detetion mehanisms, usually result in a large predition error, atleast larger than for bloks with pure amera movement. Hene, if the predition error isused in plae of the variane, better estimates result. The ovariane matrix will thus beC[m;n℄ = ~E[m;n℄I2, with ~E[m;n℄ = E[m;n℄( ~Mb[m;n℄) (see (5.6)). In pratie, however, sine~E[m;n℄ may be zero in oasions, and C[m;n℄ annot be singular, the ovariane matrix istaken to be C[m;n℄ = (1 + ~E[m;n℄)I2.The seond problem has not been addressed here diretly. A numerially sound approah mightbe to �t a paraboloid (with ellipsoidal setion, and axes in any diretion) to the error surfae,entered in the minimum error, and take the parameters of a setion of the paraboloid at a�xed height as the elements of the ovariane matrix,5 possibly saled up or down aording tothe minimum predition error, as in the previous paragraph. This would allow the algorithmto ope appropriately with narrow valleys of the predition error by allowing the model of theestimated motion vetors to inlude a ovariane, o� diagonal, element. This approah was notfollowed, for questions related to the omputational ost of the algorithms, and remains as anissue for future work.5Remember that the equation of an ellipse may be written as�x y�C�1 �xy� = r;with C positive de�nite.
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Finally, it must be remembered that, by assigning the same variane to both omponents of theestimated motion vetors, as in C[m;n℄ = (1 + ~E[m;n℄)I2, the pixel aspet ratio is not takeninto aount, so that, when the pixels are not square, one diretion is given more weight in theminimization than the other. To solve this problem, the ovariane matrix will be taken to be

C[m;n℄ = (1 + ~E[m;n℄) ��2 00 1� :

If, as proposed before, the full ovariane matrix is estimated by �tting a paraboloid to thepredition error surfae, this orretion is obviously not neessary.Sine any positive de�nite orrelation matrix C of a 2D random variable an be rendered to theform C = �2I2 by transforming the random variable by a rotation � and a saling s of its (say)y axis, and thus an be desribed by �, �, and s, the approximation used here orresponds tosetting � to 0, s to the inverse of the pixel aspet ratio, and �2 to the predition error (plusone).

Masking the bloks
As said before, not all bloks orrespond to amera movements, and as suh an essential stepis the removal of outliers. Suh a step an be taken as produing a mask matrix M , with BLlines and BC olumns, whih is zero if blok b[m;n℄ is an outlier and one otherwise. Using thismask, together with the approximation of C[m;n℄ proposed in the last setion, the expressionto minimize an be written as
BL�1Xm=0 BC�1Xn=0 M [m;n℄1 + ~E[m;n℄� ~Mb[m;n℄�Mb[m;n℄(z; d)�T ���2 00 1� � ~Mb[m;n℄�Mb[m;n℄(z; d)�:(5.8)
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Solution and its uniquenessLet
A = BL�1Xm=0 BC�1Xn=0 M [m;n℄1 + ~E[m;n℄���2��m� BL � 12 �Lb�2 + ��n� BC � 12 �Cb�2�;
Bi = BL�1Xm=0 BC�1Xn=0 M [m;n℄1 + ~E[m;n℄�m� BL � 12 �Lb;
Bj = BL�1Xm=0 BC�1Xn=0 M [m;n℄1 + ~E[m;n℄�n� BC � 12 �Cb;
C = BL�1Xm=0 BC�1Xn=0 M [m;n℄1 + ~E[m;n℄���2�m� BL � 12 �Lb ~Mbi [m;n℄ + �n� BC � 12 �Cb ~Mbj [m;n℄�;
Di = BL�1Xm=0 BC�1Xn=0 M [m;n℄1 + ~E[m;n℄ ~Mbi [m;n℄;
Dj = BL�1Xm=0 BC�1Xn=0 M [m;n℄1 + ~E[m;n℄ ~Mbj [m;n℄, and
S = BL�1Xm=0 BC�1Xn=0 M [m;n℄1 + ~E[m;n℄ ;

where ~Mb[m;n℄ = � ~Mbi [m;n℄ ~Mbj [m;n℄�T . Then, if S(AS���2B2i �B2j ) 6= 0, the minimumof (5.8) is unique and found at
~z = CS � ��2BiDiAS � ��2B2i �B2j ; (5.9)
~di = SADi +BiBjDj �B2jDi � SBiCS(AS � ��2B2i �B2j ) , and (5.10)
~dj = SADj + ��2(BiBjDi �B2iDj)� SBjCS(AS � ��2B2i �B2j ) : (5.11)

If S(AS � ��2B2i � B2j ) 6= 0, then either S = 0 and/or AS � ��2B2i � B2j = 0. But S = 0only if the mask M is all null (sine ~E[m;n℄ � 0), in whih ase there is no data, only outliers,rendering estimation impossible. On the other hand, if AS � ��2B2i � B2j = 0, the solutioneases to be unique. The standard least squares algorithms, in ases of non-uniqueness, oftenreturn the smallest possible solution. In this ase, however, the fators z and d do not have thesame units, and hene suh a solution is meaningless. Two interesting (possible) solutions areas follows:
1. Choose z as zero (no zoom), and �nd the orresponding pan fator. In this ase the
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solution is ~z = 0;~di = DiS , and~dj = DjS :

2. Set z to its extrapolation ẑ from the estimates of the previous images and solve for d~z = ẑ;~di = Di �BiẑS , and~dj = Dj �Bj ẑS :
This solution attempts to maintain zoom movements as smooth as possible, sine in pra-tie zoom movements are slower than pan movements, espeially for hand-held ameras,where vibration an be quite strong and zooming is performed through a motor, whih istypially quite slow.

The former solution is the one used in the proposed algorithm. The latter has been left forfuture work.The next setions show how the least squares estimation may be improved by using appropriateoutlier detetion methods and motion vetor �eld smoothing algorithms.
5.3.2 Outlier detetion
As said before, the motion vetor �eld of an image relative to the previous one may ontainmotion vetors whih do not orrespond to amera movement, either beause they ontainobjets with independent motion, or beause they ontain areas with no orrespondene in theprevious image.
Unovered areas
Given an initial estimate of the amera movement fators, it is easy to lassify those bloksthat ontain unovered zones beause of the amera movement. Simply reonstrut the motionvetors of eah blok (and round them to integer oordinates), using the initial estimate ofthe amera movement fators, and mark as ontaining unovered bakground those for whihthe motion vetor takes the referene blok outside of the previous image. Sine those motionvetors are likely to be wrongly estimated, this is a reasonable step to take.
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Loal motion
As to the bloks ontaining objets (or parts thereof) with independent motion, two di�erentmethods will be ompared. The �rst method relies on simple omparison of the estimatedmotion vetors with the ones predited by the estimated amera motion fators, was alreadyproposed in [122℄. The seond method is based in the onept of the Hough transform. Whilethe �rst method may be seen as an iterative Case Deletion method for inreasing the robustnessof the least squares estimator [57℄, the seond performs a lustering of the data points in theHough transform parameter spae, from whih a rough segmentation of the data points intotwo disjoint sets (valid data points and outliers) an be obtained. It is a simple version of themethod proposed in [4℄.
A distane based approah
This method uses a simple thresholding tehnique for lassifying bloks as possessing loalmotion or not. Given the initial estimates ~z and ~d of the amera movement fators, the es-timated motion vetors ~Mb[m;n℄ are ompared with the ones predited by the model, i.e.,with M[m;n℄(~z; ~d). If k ~Mb[m;n℄ � M[m;n℄(~z; ~d)k=kM[m;n℄(~z; ~d)k > t, where t is a giventhreshold, then the blok is deemed to possess loal motion and lassi�ed as suh. WhenkM[m;n℄(~z; ~d)k = 0, the test is performed not on the relative size of the di�erene betweenthe motion vetors but on the absolute size of the estimated motion vetor itself, i.e., ifk ~Mb[m;n℄k > t2, where t2 is another threshold, the blok is deemed to possess loal motion.The threshold t2 is taken, in the algorithm, to equal 10t, so as to render the method dependentof single parameter. This relation between t2 and t was hosen empirially and gives aeptableresults in pratie.Finally, it should be mentioned that, in both ases, the norms are alulated on the motionvetors expressed in site oordinates, so as to take the pixel aspet ratio into aount.
A Hough transform approah
This approah is very similar to the one in [4℄, even though muh simpler and adapted to theamera movement model used in this thesis, and thus more eÆient.The algorithms for amera movement estimation proposed make a simple assumption aboutthe movement, as will be seen: if more than 40% of the bloks in an image an be desribedadequately by a set of amera motion fators and no other larger group of bloks exists inthe same irumstanes, then those bloks are taken to represent stati bakground and theestimated fators to represent the atual amera movement. This assumption an obviously failat times, but it is simple and gives good results in pratie. However, the method desribedpreviously an have some diÆulties with this assumption, sine the initial fators are estimatedbefore outlier removal, and thus an fall midway between two di�erent motions in a sene,probably resulting in the lassi�ation of nearly all bloks as outliers. In order to solve thisproblem, a di�erent proedure is used here, whih in fat intertwines a rough estimation with
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outlier detetion. It uses the onept of Hough transform, whih an be found on any imageproessing textbook [56℄.Let the spae of the possible amera movement fators be bounded and divided into aumulatorells, here alled bins for simpliity. Sine the pan fator omponents di and dj are diretlyrelated with the motion vetors in ase of a zoomless movement, they will be bounded to[�dimax ; dimax ℄ and [�djmax ; djmax ℄, respetively. As to the zoom fator, it will be bounded to[�0:2; 0:2℄, based on empirial evidene about the range of typial zoom movements (and alsobeause, for CIF images, used in this hapter, these values result in motion vetors for the outerbloks whih exeed the maximum horizontal displaement of djmax = 30 used). The numberof bins was hosen so as to divide this bounded region into bins small enough to provide arough estimate of the fators, and large enough to render the Hough transform approah useful,by allowing the Hough transform of estimated motion vetors orresponding to a single set ofamera movement model parameters to onentrate in a single bin. The following empirialvalues where found to yield good results: 41 bins for z, and 42 bins for both di and dj , totalling72324 bins. If an initial estimate of the amera movement fators is available, these bins areo�set so that the motion vetors generated by these initial fators all oinide in the enter ofa single bin. This ontributes to avoid errors due to a dispersion of the Hough transformedmotion vetors among two, four, or even among eight bins.Let H be a 3D aumulator array with 41 planes of 42 � 42 bins. For eah estimated motionvetor ~Mb[m;n℄, the zoom fators z orresponding to the enter of eah bin are tried. Giventhe model (5.5) this results indi = ~Mbi [m;n℄� z�m� BL � 12 �Lb, anddj = ~Mbj [m;n℄� z�n� BC � 12 �Cb:
The bin in H orresponding to the zoom fator being urrently tried and to the pan fatoromponents alulated above is inremented. After proessing all estimated motion vetors, theenter of the bin ontaining the largest value (whih an be traked dynamially while �lling H)is taken as a rough estimate of the amera movement fators. Bloks whose estimated motionvetors ontributed to that bin or to a bin loser than a given threshold th (using a hess-boarddistane, i.e., the maximum of the absolute values, expressed in number of bins), are deemed toagree with the estimated amera movement fators. Even though a rough estimate is alulatedby this method, it is disarded, sine the mask of valid bloks will be later used to estimate,with the least squares estimator, more aurate values for those fators.Those bloks whih where deemed to ontain unovered areas are not a�eted by the proedureabove.Zones of the image, enompassing more than one blok, and possessing motion whih annot bedesribed by the assumed model will tend to disperse their ontribution to the Hough transformthrough a large number of bins in H. On the ontrary, zones whose motion is desribable bythe model will tend to onentrate on the bin orresponding to the model parameters. Byseleting the maximal bin, the largest of these model ompliant zones will be hosen. If no suhzone exists, the hosen maximum will be small, leading to a mask with few valid bloks. Later
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parts of the algorithm will detet this and either attempt to relax the threshold th or quit theestimation, if further relaxation is not aeptable.Finally, it should be notied that if pan movements only are being estimated, this methodredues to seleting the maximum of the histogram of motion vetors, whih was proposedin [110℄.
5.3.3 SmoothingWhenever there are zones with a relatively uniform olor or pattern, e.g. two olors separatedby a straight boundary, the motion vetors estimated by the blok mathing algorithm will tendto be erroneous. This is the so alled aperture problem. Suh ases might be partially dealt withby estimating the ovariane matries C[m;n℄ and using them in the least squares estimation.As this has not been done, for reasons of eÆieny, some other method of dealing with theseerrors has to be used. It is true that part of these errors would probably be aptured by theoutlier detetion part of the algorithm, but at the ost of estimates for the amera movementfators whih would be based on a smaller number of data points. In some situations, that mighteven render estimation of amera movement impossible, for lak of enough bloks to performthe estimate (40% of the total).In order to solve these problems, a simple method for regularizing the estimated motion vetor�eld has been devised. Given estimates ~z and ~d of the amera movement fators, a orrespondingmotion vetor �eld is onstruted, as in equation (5.5), though rounded to integer oordinates.Let �Mb[m;n℄(~z; ~d) be that vetor �eld. Then, of the set of possible motion vetors Mb[m;n℄whih are loser to �Mb[m;n℄(~z; ~d) than ~Mb[m;n℄ is, and whose predition error is small enough,namely E[m;n℄(Mb[m;n℄) � ( ~E[m;n℄ + 1)(1 + ts), the one whih is loser to �Mb[m;n℄(~z; ~d)is hosen as the new, smoothed estimate. If there is a tie, the motion vetor with the smallerpredition error is hosen. If again there is a tie, the one loser to the original estimate ~Mb[m;n℄is hosen. If no suh vetor is found, the estimate is left as is.The smoothing threshold ts ontrols how muh inrease in the predition error is allowablewhile manipulating the estimated motion vetor. An empirial value of 6% has been used inthis thesis. As to the sum of 1 to the minimum predition error, it allows some smoothing toour even if the minimum predition error is zero.A di�erent approah to motion vetor smoothing, using a Gibbs model, an be found in [185℄.
5.4 The omplete algorithms
Two algorithms are proposed here. The �rst, see Algorithm 1, is based on the original proposalof [122℄. It will be alled the \old algorithm", and it uses the distane based approah to thedetetion of outliers. The seond, see Algorithm 2, is an improvement whih uses the Houghtransform approah to outlier detetion. It will be alled \new algorithm".Both algorithms use two loops. The inner loop performs amera motion estimation and outlier
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Algorithm 1 Estimation of the amera motion fators using the old algorithm (based on [122℄).Require: t0 � 0 finitial outlier detetion thresholdgRequire: �t � 0 foutlier detetion threshold inrementgRequire: tmax � t0 fmaximum outlier detetion thresholdgRequire: ts � 0 fsmoothing thresholdgRequire: 0 � ta � 1 famera movement detetion thresholdgRequire: imax > 0 fmaximum inner iterationsgRequire: � > 0 fpixel aspet ratiogRequire: Lb > 0 fnumber of lines per blokgRequire: Cb > 0 fnumber of olumns per blokgRequire: BL > 0 fnumber of lines of bloksgRequire: BC > 0 fnumber of olumns of bloksgRequire: ~Mb has BL �BC motion vetorsRequire: j ~Mbi [m;n℄j � dimax ;8m 2 f0; : : : ; BL � 1g;8n 2 f0; : : : ; BC � 1gRequire: j ~Mbj [m;n℄j � djmax ;8m 2 f0; : : : ; BL � 1g;8n 2 f0; : : : ; BC � 1gEnsure: either \found" is false, and no amera movement has been found, or ~z and ~d areestimates of the amera movement fatorst = t0 finitialize outlier detetion thresholdgrepeatMb  ~Mb fopy estimated motion vetor �eldgE  ~E fopy predition errors orresponding to ~MbgM  1 f�ll M with ones (valid)gborder(M) fborder bloks are set to zero (outlier) in M (improves initial estimates in aseof a zoom out or a non-null pan)gi 0 finitialize number of inner iterationsgrepeat~z; ~d lse(Mb; E;M;Lb; Cb; �) festimate zoom and pan fators using least squaresgbuild �Mb(~z; ~d) fbuild rounded motion vetor �eld from ~z and ~dgMb  smooth( ~Mb; �Mb(~z; ~d); ts) fsmooth ~Mb towards �Mb(~z; ~d) with threshold tsghanges;M  outliers(M; �Mb(~z; ~d); �; t) fmark unovered bloks inM and loal motionbloks (distane based approah), set \hanged" aording to whether any blok had itsmask hangedgi i+ 1until not hanged or i = imaxfound (valid(M) > taBLBC) fset \found" aording to whether there are enough valid(non-outlier) bloksgt t+�t finrement outlier detetion thresholdguntil found or t > tmax



5.4. THE COMPLETE ALGORITHMS 201
Algorithm 2 Estimation of the amera motion fators using the new algorithm.Require: thmax � 0 fmaximum outlier detetion thresholdgRequire: ts � 0 fsmoothing thresholdgRequire: 0 � ta � 1 famera movement detetion thresholdgRequire: imax > 0 fmaximum inner iterationsgRequire: � > 0 fpixel aspet ratiogRequire: Lb > 0 fnumber of lines per blokgRequire: Cb > 0 fnumber of olumns per blokgRequire: BL > 0 fnumber of lines of bloksgRequire: BC > 0 fnumber of olumns of bloksgRequire: ~Mb has BL �BC motion vetorsRequire: j ~Mbi [m;n℄j � dimax ;8m 2 f0; : : : ; BL � 1g;8n 2 f0; : : : ; BC � 1gRequire: j ~Mbj [m;n℄j � djmax ;8m 2 f0; : : : ; BL � 1g;8n 2 f0; : : : ; BC � 1gEnsure: either \found" is false, and no amera movement has been found, or ~z and ~d areestimates of the amera movement fatorsth  0 finitialize outlier detetion thresholdg~z  0 finitial estimate: no zoomg~d 0 finitial estimate: no pangrepeatMb  ~Mb fopy estimated motion vetor �eldgE  ~E fopy predition errors orresponding to ~MbgM  1 f�ll M with ones (valid)gborder(M) fborder bloks are set to zero (outlier) in M (improves initial estimates in aseof a zoom out or a non-null pan)gi 0 finitialize number of inner iterationsgrepeathanges;M  hough(Mb; E; ~z; ~d; Lb; Cb; th) fperform outlier detetion, set \hanged"aording to whether any blok had its mask hangedg~z; ~d lse(Mb; E;M;Lb; Cb; �) festimate zoom and pan fators using least squaresgbuild �Mb(~z; ~d) fbuild rounded motion vetor �eld from ~z and ~dgMb  smooth( ~Mb; �Mb(~z; ~d); ts) fsmooth ~Mb towards �Mb(~z; ~d) with threshold tsghanges;M  unovered(M; �Mb(~z; ~d); �; t) fmark unovered area bloks (outliers) inMand set \hanged" to true if any blok had its mask hangedgi i+ 1until not hanged or i = imaxfound (valid(M) > taBLBC) fset \found" aording to whether there are enough valid(non-outlier) bloksgth  th + 1 finrement outlier detetion thresholdguntil found or th > thmax
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detetion until the mask of valid bloks remains unhanged or until the limit number of inneriterations is attained. In both ases the mask is not guaranteed to onverge, hene the needfor a limited number of iterations. Notie that the order of estimation and outlier detetion isinverted: in the old algorithm estimation is performed �rst, while in the new algorithm outlierdetetion is performed �rst. Of ourse, as notied before, outlier detetion in the new algorithmatually involves roughly estimating the movement parameters before deteting outliers, so that,for eah inner iteration on the new algorithm, two estimations are performed. The advantageis that the outlier detetion using the Hough transform is muh more robust, sine it expliitlyselets the most probable bin. The use of the least squares estimation to obtain the �nal resultsis due to the lak of preision of the Hough estimator. This lak of preision is due to the fatthat the parameter spae of the Hough transform has been oarsely quantized to guaranteemeaningful results for the relatively small number of data points used: the amera movementestimates are based on blok mathing results on a oarse 16� 16 grid.The outer loop heks whether the number of valid bloks on whih the estimate is based issuÆient to onsider that amera movements are present in the urrent image (relative to theprevious). If not, it inrements the threshold over whih bloks are onsidered outliers in outlierdetetion (but only the part relative to loal motion, not to unovered areas), thereby relaxingthe requirements until either amera motion is onsidered present or the maximum relaxationis attained. With this outer loop, it is possible to estimate amera motion fators as auratelyas possible, by starting with stringent requirements and �nishing with more relaxed ones. Ifthe maximum relaxation is attained before amera movement is deteted, the algorithms fails.Sine even images possessing zero pan and zoom fators an be lassi�ed as having ameramovement, the algorithm failure may mean, in both ases, that the sene is too omplex forthe algorithms or that a sene ut has been reahed (the urrent image is unrelated with theprevious).Both algorithms su�er from an inherent limitation of auray: both are based on pixel levelblok motion vetors. The results are thus likely to su�er from errors, espeially for very smallpan movements without any zooming, whih may in fat be estimated as no movement at all.The auray may be improved by using blok mathing methods with sub-pixel auray. Thiswas not tried here, however.
5.4.1 Results
Experimental onditionsThe algorithms have been tested with the parameters shown in Tables 5.1(a), 5.1(b) and 5.1().
Estimating zoom o�setThe \Table Tennis" sequene onsists of two shots. The seond, from image 131 on, ontains noamera movement, and thus will not be of great interest here. From images 0 to 130, though,there is a zoom movement. It starts slowly around image 20, inreases its speed, then slowly
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L 288 CIF linesC 352 CIF olumns, or pixels per lineLb 16 pixelsCb 16 pixelsBL 18 bloksBC 22 bloksdimax 32 pixelsdjmax 30 pixels� 1:0(6) 16/15 (see Setion A.1.1)(a) Common format parameters.
t0 0:1 10%�t 0:1 10%tmax 0:5 50%ts 0:06 6%ta 0:4 40%imax 15 iterations(b) Old algorithm.

thmax 1 Hough aumulator binsts 0:06 6%ta 0:4 40%imax 15 iterations() New algorithm.
Table 5.1: Algorithms parameters.
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dereases towards its end, around image 107. The zoom movement is only lear, though, fromimages 24 (23 to 24) to 106 (105 to 106). Note that this zoom movement is not aompaniedby any pan movement, as an be readily seen by diret observation of the sequene.Figures 5.1 and 5.2 show the estimated amera movement fators of the \Table Tennis" sequeneusing the old and the new algorithms, respetively.In Figures 5.1(b) and 5.2(b) it an be seen that, despite the fat that there is no panning inthe original sequene, non-zero pan fator omponents were deteted. It should be notied,however, that in the ase of the new algorithm these fators are non-zero only when there iszooming in the sequene. In the ase of the old algorithm, some spurious zoom and pan fatorsour out of the 24 to 106 image range, but this is due to the lower quality of its estimation.Thus, from the results of the new algorithm, in Figure 5.2(b), it an be inferred that the enterof saling of the zoom is o�set from the enter of the image.Let the enter of zoom be o�set from the enter of the image. Let dsz be this o�set. After a purezoom with saling fator Z o�set by dsz, a site s in the image hanges its position to s0, wheres0 = Z(s� dsz) + dsz = Z�s� �1� 1Z �dsz�: (5.12)
Comparing with (5.3), it an be seen that this o�set zoom is equivalent to a pan plus zoomwith saling Z and translation ds = (1 � 1=Z)dsz. Converting to the usual amera movementfators z and d d = � �0 ��1 0 � zdsz = �zdz;where dz is the o�set expressed in pixel oordinates.Hene, the estimated pan fator should vary linearly with the zoom fator. By observingFigures 5.2(a) and 5.2(b), it an be seen that this behavior is approximately true, espeiallyfor the di omponent of the pan fator, whih attains larger values, and hene su�ers less fromestimation errors.Using linear regression, it is possible to estimate the zoom o�set in pixel oordinates dz fromthe estimated values of z and d for images 24 to 106. The value obtained for dz wasdz = � 10:3116�4:16089� ;whose estimated standard deviations (see [165, x15.2℄) are 1:34175 and 1:03135, respetively.These values agree reasonably well with diret observation, whih yielded approximately dz =�7 �3:5�T . It an be onluded that, even though amera movement estimation is basedon blok mathing results, with pixel auray, it does yield estimation results with sub-pixelauray (at least when there are strong zoom movements). An issue whih remained for futurework is the quanti�ation of the errors in the amera movement fators estimated.Given the estimated zoom and pan fators and using (5.3) repeatedly, it is possible to estimatethe position in eah image of a point originally in the enter of the image plan. Figure 5.3
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(a) Zoom fator.
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(b) Pan fator (di solid line, dj broken line).

Figure 5.1: \Table Tennis": amera movement estimation results (old algorithm). Cameramovement has not been deteted in image 131, where a sene ut ours.
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(a) Zoom fator.
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(b) Pan fator (di solid line, dj broken line).

Figure 5.2: \Table Tennis": amera movement estimation results (new algorithm). Cameramovement has not been deteted in image 131, where a sene ut ours.
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shows this estimate, together with the same estimate using (5.12) with the value obtained fordz by linear regression. It an be seen that the fators estimated do lead to an approximatelylinear evolution of the enter, whih further orroborates the hypothesis that the pan is due toan o�set in the enter of zoom.

x

y

0-0.5-1-1.5-2-2.5-3-3.5-4-4.5

0-1-2-3-4-5-6-7-8
Figure 5.3: \Table Tennis": evolution of the enter of the image plan from image 23 to image106 using (5.3), solid line, and (5.12), broken line. Fators estimated using the new algorithm.Figure 5.4 shows the result of transforming the �rst image of the \Table Tennis" sequene usingthe omposition of all estimated amera movement fators up to images 60, in the middle of thezoom movement, and 124, well after the end of the zoom movement. The result of these twotransformations of the �rst image is then overlapped with the original images 60 and 124. It islear that the size of the transformed images seems to agree very well with the orrespondingoriginal image. There is, though, a slight displaement in its position, of the order of one ortwo pixels. The good agreement in image size seems to indiate that the zoom fators are beingaurately estimated (it must be remembered that the transformations integrate about 36 and80 frational zoom fators, respetively). The slight o�set in position an be seen to be of theorder of the error between the two lines in Figure 5.3.
Comparison of the algorithmsSene utsAs said before, the failure of detetion of amera movement an our for several reasons, one ofthem being the ourrene of a sene ut. The robustness of the algorithms an be asertainedby heking their ability to detet real sene uts, and by heking the number of false seneut detetions generated.
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(a) Overlap with image 60.

(b) Overlap with image 124.
Figure 5.4: \Table Tennis": overlap of the original images with image 0 transformed aordingto the amera movement fators estimated by the new algorithm.
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Several sequenes have been tested, namely \Carphone", \Coastguard", \Flower Garden",\Foreman", \Stefan", \Table Tennis", and \VTPH". Of these sequenes, only \Table Ten-nis" and \VTPH" ontain sene uts. In \Table Tennis" two shots of a game are shown, thesene ut taking plae from image 130 to image 131. In the ase of \VTPH", two sene utsour from image 79 to image 80 and from image 130 to image 131. In the following, sene utswill be identi�ed by the number of their seond image.Tables 5.2(a) and 5.2(b) show the ourrene of erroneous detetions (i.e., detetion of ameramotion at sene uts) or non-detetions (i.e., failure to detet amera movement at normal,non-sene ut images) of amera movement in the test sequenes.

detetions non-detetions\Carphone" 203, 312, and 314\Flower Garden" 62\Foreman" 47, 49, and 153 to 157`Stefan" 2, 9, 65, 66, 85, 133, 141, 171, 172, 211, 214, 216, and 286\VTPH" 80 86, 93, 102, 103, 110, and 111(a) Old algorithm.
detetions non-detetions\Foreman" 156, 191, and 192(b) New algorithm.

Table 5.2: Camera movement erroneous detetions and non-detetions.The superior performane of the new algorithm is lear. The old algorithm frequently fails todetet amera movement where there is no sene ut. But it also fails to detet a true seneut at image 80 of the \VTPH" sequene. Hene, it an be said that its results would notbe improved by allowing further relaxation on the outer loop, sine this would lead to lesserroneous non-detetions but also to further erroneous detetions. On the other hand, the newalgorithm orretly lassi�es the three sene uts and only fails to detet amera movementat three normal images of the \Foreman" sequene. In image 156, this failure is due to themovement of the hand in front of the amera. In images 191 and 192, it seems to stem froma badly estimated motion vetor �eld, whih is due to a strong pan movement with motionblurring.
AurayBoth algorithms are based on the same least squares estimator, so the auray of the resultis strongly dependent on the outlier detetion mehanism used. The previous results learlyshow that the outlier mehanism of the old algorithm leads to frequent erroneous detetionsor non-detetions of amera movement. But even in ases where amera movement is present
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and deteted, the outlier detetion mehanism an lead to poor quality estimates. Figures 5.5and 5.6 show the amera movement fators estimated by both algorithms for the \Stefan"sequene.The regularity in the time evolution of the fators for the new algorithm is not a oinidene. Itis not imposed by the algorithm itself, sine the algorithm operates independently for eah imageof the sequene. Hene, it an only stem from the regularity of the true amera movements (itis a TV sequene, and TV operators usually try to ahieve smooth amera movement, espeiallywhen shooting sport images). The onlusion an only be that the results of the old algorithmare muh worst, sine the estimated fators have a quite rough time evolution.In order to asertain the auray of the new algorithm, the estimated amera motion fatorswere integrated along time and the integrated values were used to move a box whih was handpositioned over a partiular feature of the sene present on the �rst image. Figures 5.7 and 5.8show the box in the �rst image of the test sequenes used (in this ase \Coastguard", \FlowerGarden", \Foreman", and \Stefan"), and the same box displaed and saled aording to theintegration of the estimated amera movement fators in a posterior image (lose to the lastimage where the feature is visible in the sequene and before any non-detetions of ameramovement). The positioning of the box relative to the orresponding feature an be used as ameasure of the auray of the estimation, remembering that estimation errors are aumulatedin the integration proedure.For the \Coastguard" sequene, the box position o�set is approximately 20 pixels horizontallyand 10 pixels vertially. Taking into aount that the box has been positioned aording tothe integration of the amera movement fators obtained for eah image with referene to theprevious, and also taking into aount that this o�set is obtained after 200 images, the resultan only be lassi�ed as good. Besides, the sequene is not trivial, sine it ontains two objetswith independent motion (the two boats), and the water with its random motion.As to the \Flower Garden" sequene, the o�set is of about 20 pixels in both diretions for arange of 125 images. In this ase, though, the amera movement is neither a pan nor a zoom:it is a traveling movement, in whih the amera hanges its positions. Hene, the motion in theprojeted image annot be desribed by the model used and depends on the relative distaneof the objets: objets whih are loser move faster and objets whih are farther move slower.This justi�es the horizontal o�set, sine the algorithm takes the whole image into aount. Also,some objets an have a projeted vertial motion even if the amera moves horizontally. Thisis the ase of window, and it justi�es the vertial o�set in its position. Nevertheless, it an besaid that the algorithm performs reasonably well even when the true amera movement doesnot truly onsist of zooming and panning.In the \Foreman" sequene the o�set is very small. The sequene is not simple sine it an beseen to possess a omposition of pan movements with small rotation movements about the lensaxis whih a�ets the estimation algorithm.Finally, the \Stefan" sequene ontains two diÆult parts for the algorithms: small movementsin the spetators, and the rather uniform game oor, for whih blok mathing yields erroneousresults. Nevertheless, the position o�set after 244 images is small, of the order of 20 pixelshorizontally, and negligible in the vertial diretion.
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Figure 5.5: \Stefan": amera movement fators estimated by the old algorithm (shown only forimages with deteted amera movement).
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Figure 5.6: \Stefan": amera movement fators estimated by the new algorithm.
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(a) \Coastguard" image 0. (b) \Coastguard" image 200.

() \Flower Garden" image 0. (d) \Flower Garden" image 124.
Figure 5.7: Pseudo-feature traking apability of the new algorithm.
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(a) \Foreman" image 0. (b) \Foreman" image 150.

() \Stefan" image 0. (d) \Stefan" image 243.
Figure 5.8: Pseudo-feature traking apability of the new algorithm.
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Computational requirements
The total running time for the estimation of amera movement for every image, exept the �rst,of the \Stefan" sequene, whih has 300 images, was of about 9500 seonds for both algorithms.6However, full searh blok mathing aounts for about 98.5% of this time. Exluding full searh,for whih hopefully there are fast hardware implementations available, the old algorithm spent133.07 seonds and the new algorithm 129.02 seonds estimating 299 amera movement fators.I.e., both algorithms take about half a seond to run for eah image. The algorithms are thusessentially equivalent in omputation time, though the memory requirements are larger for thenew algorithm, sine it requires use of the matrix of Hough aumulator ells H for outlierdetetion.
5.5 Image stabilization
Image stabilization, be it mehanial or eletroni, is an important feature of today's videoameras [102℄, whether they are hand-held or part of a videotelephone. It is important beauseit improves the quality of moving images by reduing disturbing image vibrations aused byan unsteady hand. Sine image stabilization is performed before storage or transmission, theompression ratio is also improved, sine images are more easily predited from the previousones.
5.5.1 Viewing window
Let the digital image available from a amera after sampling have L � C pixels. Let also theneeded output image have Lw � Cw, with Lw � L and Cw � C, and the same pixel size. Let�L = L�Lw2 and �C = C�Cw2 . The Lw�Cw image an be extrated from the amera image byplaing its enter, with site oordinates sw, within a retangle [��C ;�C ℄� [� 1��L; 1��L℄. Theretangle of width Cw and height 1�Lw entered at sw will be alled the viewing window. Theoutput image an be obtained from the amera image by seleting the orresponding ameraimage pixels, if vw (sw in pixel oordinates) has integer oordinates, or by using some typeof interpolation if the oordinates of vw an take non-integer values. In this setion bilinearinterpolation will be used for simpliity. Bilinear interpolation introdues a linear �ltering tothe amera image whose frequeny response depends on the frational parts of the oordinatesof vw. For instane, for null frational parts of the oordinates of vw, no �ltering is performed(at frequeny response), while for half-pixel oordinates (frational parts of 0.5), the pixelsof the output image are the average of four pixels in the amera image, orresponding to alow-pass �ltering of the amera image. This is learly not a desirable e�et, but the use of moreappropriate interpolation methods remained as an issue for future work.6On a Pentium 200 MHz, with 64 Mbyte RAM, running RedHat Linux 5.0 (kernel 2.0.32), programs ompiledwith g 2.8.1 and full ompiler optimization (-O3), times extrated with gprof 2.8.1.
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5.5.2 Viewing window displaementSmall amera pan movements an be eliminated from the output image by displaing the viewingwindow, relative to its previous position, in the diretion of the deteted amera movement,thereby stabilizing the output image [192, 122℄. Sine the viewing window must always �t insidethe amera image, the amount of movement that an be eliminated is limited, of ourse.The objetive of the displaements of the viewing window is to maintain the point whih wasat its enter in one image also entered in the in the next image, even in the presene of ameramovement. Let sw[n℄ be the position of the enter of the viewing window at image n, and Z[n℄and ds[n℄ the amera movement fators (in site oordinates) from image n�1 to image n. Thena point at the enter of the viewing window in image n�1 will be moved to Z[n℄(sw[n�1℄�ds[n℄)in image n, aording to equation (5.3). Hene, if this movement is to be eliminated from theoutput image, the enter of the viewing window has to be moved aordingly tosw[n℄ = Z[n℄(sw[n� 1℄� ds[n℄): (5.13)
If the oordinates of sw ever fall outside the retangle [��C ;�C ℄ � [� 1��L; 1��L℄, then theamera movement annot be fully aneled out, i.e., the image annot be stabilized as required.The evolution of the enter of the viewing window will thus be desribed by�swx [n℄swy [n℄� =

24 min�max�Z[n℄(swx [n� 1℄� dsx[n℄);��C�;�C�min�max�Z[n℄(swy [n� 1℄� dsy[n℄);� 1��L�; 1��L�
35 :

With this equation, after a large panning, say, to the right, the viewing window will be saturatedat the left of the amera image. Even after the panning stops, it will remain there, e�etivelyreduing the apabilities of image stabilization in that diretion. Hene, some mehanism forreturning the viewing window to its rest position, viz. the enter of the amera image, mustbe devised. This is aomplished through the introdution of a loss fator �(Z[n℄; ds[�℄) in theevolution of the enter of the viewing window�swx [n℄swy [n℄� =
24 min�max�Z[n℄((1� �(Z[n℄; ds[�℄))swx [n� 1℄� dsx[n℄);��C�;�C�min�max�Z[n℄((1� �(Z[n℄; ds[�℄))swy [n� 1℄� dsy[n℄);� 1��L�; 1��L�

35 : (5.14)
The loss fator is usually zero, but when the pan fator ds is small enough for a given numberof images, the loss will be set to a non-zero, small value, whih will slowly revert sw to theenter of the amera image. When the zooming is very strong, the same thing happens, thoughwith a larger loss, so as to reset the viewing window position faster. When amera movementestimation fails, whih is likely to our at sene uts, the enter of the viewing window is resetimmediately. Hene, the evolution of sw is governed by�swx [n℄swy [n℄� =

8><>:equation (5.14) if amera movement was deteted,"00# if amera movement estimation failed; (5.15)
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where

�(Z[n℄; ds[�℄) = 8><>:0:1 if jz[n℄j > 0:02 (where z[n℄ = 1Z[n℄ � 1),0:01 if jz[n℄j � 0:02 and kds[n� i℄k � 0:1 for i = 0; : : : ; 4, and0 otherwise. (5.16)
The values used in (5.16) were derived empirially. The loss fators of 0.1 and 0.01 were hosenbeause they reset the viewing window position in respetively 20 to 30 images (about 1 seondfor 25 Hz sequenes) and in 220 to 230 images (about 9 seonds for 25 Hz sequenes). Thus, ifthe amera stops, it takes 9 seonds for the viewing image to enter, while if a large zoom in orout ours, the viewing window is reset in 1 seond. The use of a loss only after �ve small panmovements preludes it from a�eting e�etive image stabilization in the presene of vibration.
5.5.3 ResultsFigures 5.9, 5.10, 5.11 show the evolution of the enter of the image as given by (5.13), forthe CIF sequenes \Stefan", \Foreman", and \Carphone". Atually, the oordinates have bothbeen inverted so that the �gures show the movement of the amera. The �gures also showthe residual amera movement, i.e., the amera movement that remains after adjustment ofthe viewing window position aording to (5.15) and (5.16). The output image size used is268� 328, that is Lw = 268 (or �L = 10) and Cw = 328 (or �C = 12).These results show that the method e�etively stabilizes the output image, as an be seen bylooking at the residual amera movement, provided the amera movement fators have beenwell estimated.In order to asertain the e�etiveness of the stabilization, whih depends on the quality of theamera movement estimation, the output image sequenes have to be viewed in real time. Thevisualization of the results shows that the stabilization of the \Stefan" and \Foreman" sequeneswas very e�etive. In the ase of the \Carphone" sequene, the results are not as good. Thisresults essentially from the following:

1. the amera vibration is rather small, often smaller than one pixel;2. the stati bakground in rather uniform, whih makes the blok mathing motion vetorsless reliable; and3. the speaker and the landsape seen through the window, both with motion independentof the amera, oupy a signi�ant part of the images.
The net result is that sometimes the estimated fators reet the motion of the speaker, notthe one of the bakground. Figures 5.12 and 5.13 show the di�erenes between images 5 and6, and between images 26 and 27, with and without anellation. The �rst ase shows thatthe estimated amera movement has been \polluted" by the speaker, so that the di�erenesin the window frame, to the right of the speaker, whih are due to horizontal pan movements,
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Figure 5.9: \Stefan": amera movement.
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Figure 5.10: \Foreman": amera movement. Note that the position of the amera is resetwhenever amera movement is not deteted (at images 156, 191, and 192).
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Figure 5.11: \Carphone": amera movement.
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have not been aneled. The vertial estimate, however, is quite preise, as an be seen in theredued di�erenes obtained in to the left of the speaker. In the seond ase the estimatedamera movement is orret, sine the stati bakground has been mostly aneled out. Theoverall results are quite aeptable.

(a) Images 5 and 6. (b) Images 26 and 27.
Figure 5.12: \Carphone": di�erene between suessive images without stabilization. The lumadi�erenes are saled by 5 and o�set by 125.5 (half way the luma exursion in Y 0CBCR), andthe hroma di�erenes are saled by 5 and o�set by 128 (zero hroma in Y 0CBCR).

(a) Images 5 and 6. (b) Images 26 and 27.
Figure 5.13: \Carphone": di�erene between suessive images with stabilization. See note inFigure 5.12.Figures 5.14, 5.15 and 5.16 show the omparison between the PSNR of eah image relative to
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the previous in the original sequenes (but restrited to a entered window of 268 � 328) andin the stabilized sequenes. The improvements in PSNR are quite good, even when the viewingwindow is saturated in one diretion. When it is saturated in both diretions, as around image200 of the \Foreman" sequene, the results are quite similar, as expeted.
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Figure 5.14: \Stefan": PSNR between eah pair of suessive images. PSNR without stabi-lization, dotted line, with stabilization saturated viewing window position, broken line, withstabilization and no saturation of window position, solid line.Finally, it must be stressed here that the results of image stabilization on the \Stefan" sequeneare valid for heking the validity of the proposed method, even though (eletroni) imagestabilization is of little or no use in professionally shot sequenes, whih often make use ofspeially onstruted devies to guarantee stability of the image, and where the amera operatorwants omplete ontrol of the sequene being shot.
5.6 Conlusions
Two amera movement estimation algorithms have been proposed, the seond of whih an beseen as a simpli�ation of the method in [4℄. However, both methods integrate a motion vetorsmoothing intermediate step whih tends to redue the number of outliers and thus to improvethe amera movement estimate. A method for image stabilization has also been proposed,whih is similar to the one in [122℄, but whih inludes the zoom fator into the equations forthe viewing window position, thereby improving its performane in ase of zoom movements.The amera movement estimation algorithm based on the Hough transform and the imagestabilization algorithm have been shown to perform quite well by using several sequenes withand without amera movement. This last Hough transform-based amera movement estimationalgorithm was also shown to perform quite well as a sene ut detetor.
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Figure 5.15: \Foreman": PSNR between eah pair of suessive images. The peaks at images156, 191, and 192 are due to the non-detetion of amera movement at those images, whihleads to a reset of the viewing window position. PSNR without stabilization, dotted line,with stabilization saturated viewing window position, broken line, with stabilization and nosaturation of window position, solid line.
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Figure 5.16: \Carphone": PSNR between eah pair of suessive images. PSNR without sta-bilization, dotted line, with stabilization saturated viewing window position, broken line, withstabilization and no saturation of window position, solid line.
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Chapter 6
Coding

\Niholas, I saw you wink at Elaine. What didyou tell her?" Niholas Negroponte
Visual information is usually obtained in an unstrutured way, by a sampling and quantizationproess. Several problems must be solved for e�etive transmission and/or storage of thisunstrutured information. Firstly, it must be �t into a more strutured model, whose parametersrepresent the sene impliit in the original unstrutured data as faithfully as neessary. Thehoie of an appropriate model or models is alled modeling. Seondly, the parameters ofthe given model must be estimated. This estimation is alled analysis. Finally, the modelparameters must be enoded, so as to ahieve the typial goals of oding: high ompressionratio, high quality, low ost, and easy aess to the strutured ontent.A ode ontains analysis bloks and enoding bloks, as in Figure 2.1. The design of a om-plete ode enompasses hoosing appropriate models, building the analysis algorithms, andonstruting appropriate enoding methods. Analysis has been dealt with in the previoushapters. This hapter proposes enoding methods. Setion 6.1 presents a amera movementenoding method for lassial odes (a transition to seond-generation tool), and Setion 6.2disusses a taxonomy of partition types and representations whih will be used in Setion 6.3 tooverview possible partition oding tehniques. Finally, Setion 6.4 develops a fast ubi splineimplementation method with appliations on parametri urve partition oding.
6.1 Camera movement ompensation
The development of amera movement detetion and estimation algorithms in [129, 127, 130,128, 113, 122℄ led to a proposal for amera movement ompensation in lassial, �rst-generation225
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odes. In partiular, a proposal was made for the extension of the H.261 standard whihwould take into aount amera movements with minimum syntax hanges. This proposal waspublished in [122℄, and is desribed briey in this setion.It should be notied that the ideas herewith presented an be applied without hange to othervideo oding standards, suh as H.263, MPEG-1, MPEG-2, and MPEG-4.This setion is divided in four parts. The �rst studies natural ways to quantize the zoom fator,whih should be of generi use. The seond presents the proposed H.261 extensions. The thirdpart desribes how an enoder may make use of the proposed extensions. The fourth and lastpart presents some results and disusses them.
6.1.1 Quantizing amera motion fatorsQuantization is the proess by whih a ontinuous quantity is rendered disrete for storing ortransmission. The zoom fator estimated by the algorithms in Chapter 5, equation (5.9), is arational quantity. In all pratial ases, it will already be \quantized" to �t into some �xedlength oating point register. It is neessary to further quantize it so that it an be eÆientlyenoded.Sine most sequenes do not have zoom and H.261 uses motion vetors deteted at pixel level,it seems reasonable to round the pan fator omponents to integers. Besides, no movementslarger than 15 pixels per MB are possible, as spei�ed in the H.261 reommendation. So thequantization of the pan fator omponents, whih are given by (5.10) and (5.11), is based simplyon rounding to the nearest integer and limiting the result to the interval [�15; 15℄. This resultsin �ve bits enoding with a FLC (Fixed Length Code).As to the zoom fator, it is assumed that the largest and smallest zooms allowed are the onesleading to -15 or 15 of either motion vetor oordinates, alulated aording to (5.4), in one ofthe MBs at the border of the image. This leads, after some simple alulations, to the followinglimits: (�15=168 � z � 15=168 for CIF, and�15=80 � z � 15=80 for QCIF.Notie that the maximum allowable zoom is larger in QCIF than in CIF, beause the QCIFpixels are also larger than the orresponding ones in CIF.Within the limits presented above for z, there is a �nite number of distint motion vetor pat-terns in the rounded motion vetor �eld �Mb[m;n℄(z; d) for any given d. Eah of these patternsmay be lassi�ed by an integer number, thus resulting in a natural quantization harateristifor z. The boundary values of z where the motion vetor pattern hanges have been alulatednumerially. The results are presented in Figure 6.1 in the form of a quantization harateristifor z with 135 quantization levels for CIF resolution|8 bit enoding with a FLC|and 79 levelsfor QCIF resolution|7 bits with FLC.Notie that several of the values for z around zero orrespond to almost all motion vetors ofzero length, exept for a few on the boundaries of the image having small amplitudes. As suh,
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Figure 6.1: The quantization harateristis of the zoom fator z.
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it makes sense to inlude a dead zone in the z quantization harateristi. This may redue thenumber of quantization levels below 129, thus allowing for a seven bit FLC for the quantizedzoom fator for CIF images.It should be notied that similar quantization harateristis may be obtained for di�erent imagesizes, di�erent maximum values of the orresponding motion vetor �eld, and even if half- orquarter-pixel (or any fration of the pixel, for that matter) motion vetors are admissible formotion ompensation. The presented harateristi was developed with the H.261 extension inmind.
6.1.2 Extensions to the H.261 reommendationThe extensions of the H.261 reommendation so as to provide means for amera motion om-pensation are of two types: syntatial and semantial. The former hanges are small, but thelatter ones are more substantial. Both will be addressed below.
Syntatial extensionsThe neessary syntatial extensions to the H.261 reommendation [62℄ are few:1. Bit 5 of the PTYPE (Piture Type) means: 0 no amera movement is used, 1 ameramovement is used.2. When there is amera movement, the �rst three PEI (Piture Extra Insertion Information)bits will be set to 1 and PSPARE (Piture Spare Information) will ontain the pan andzoom fators:First byteHorizontal omponent of pan fator (�ve bits).Seond byteVertial omponent of pan fator (�ve bits).Third byteQuantized zoom fator (eight bits).The previous hanges imply that amera movement ompensated image will have an overheadof 27 bits. Appropriate VLCs (Variable Length Codes) for the pan and zoom fators may bedeveloped in order to redue this small overhead.These extensions make use of reserved bits in the H.261 reommendation, and thus are totallyompatible with existing H.261 ompliant enoders and deoders.
Semantial extensionsThe semantial extensions to the H.261 reommendation are the following:
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1. Let there be a rounded amera movement motion vetor �eld generated from the trans-mitted quantized pan and zoom fators, aording to (5.5).2. When there is amera movement present (�fth bit of PTYPE), the following interpreta-tions will apply to inter MBs:� A MB is MC (Motion Compensated): this means that it is loal motion ompensated.Its MVD (Motion Vetor Data) is obtained from the MB vetor by subtrating thevetor of the preeding MB or by subtrating the orresponding vetor of the roundedamera movement vetor �eld if:(a) evaluating MVD for MBs 1, 12 and 23 (left edge of GOB (Group of Bloks));(b) evaluating MVD for MBs in whih MBA (MaroBlok Address) does not repre-sent a di�erene of 1; or() the MTYPE (Maroblok Type) of the previous MB was not MC.� A MB is not MC: this means that it is amera movement ompensated. It willbe ompensated using the orresponding motion vetor from the amera movementmotion vetor �eld.Thus, all MBs are predited using the transmitted amera movement, exept those with loalmotion. But even these will make use of the amera movement motion vetor �eld by improvedpredition of their motion vetors.Similar shemes may be used in other standards, suh as H.263. In H.263, where the preditionof motion vetors is more involved and eÆient than in H.261, the motion vetor of the ameramovement �eld may be used to obtain improved predition.

6.1.3 Enoding ontrolGiven the extensions to the H.261 reommendation, there is still some information laking abouthow to put them all to work in a fully funtional extended H.261 ode.A possible enoding proedure extends the one proposed in RM8 (Referene Model 8) [21℄:
1. Take the urrent original image and the previous deoded image and perform full-searhblok mathing motion estimation.2. From the results of the previous item detet whether or not there is amera movement,and estimate it if there is. If no amera movement was estimated, proeed as in RM8. Ifamera movement was estimated, build a rounded amera movement motion vetor �eldfrom the deteted pan and zoom fators, aording to (5.5).3. Classify eah MB as in RM8, exept that non-motion ompensated MBs should be pre-dited using the orresponding amera movement motion vetor. Smoothing, as desribedin the previous hapter, may be used in motion ompensated MBs to approximate theorresponding motion vetor to the amera movement motion vetor or to the preedingMB motion vetor, whihever is more appropriate. This redues the number of bits spent
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transmitting motion vetors, though the predition error may inrease in a ontrolledfashion.4. Proeed as in RM8, but enode aording to the semantial extensions proposed.

6.1.4 Results and onlusionsCamera movement ompensation, as presented, aims essentially at the redution of redundanyin the �eld of motion vetors. This is somewhat misleading, �rstly beause H.261 alreadyodes the motion vetors in a DPCM (Di�erential Pulse Code Modulation) way whih removespart of the �eld redundany, and seondly beause, for very low bitrates, sine some qualitydegradation must be aepted, the motion vetor �eld shows little uniformity, partiularlyfor mobile sequenes. Figure 6.2 shows a typial vetor �eld out of the sequene \Foreman"(enoded by RM8 at 24 kbit/s and 5 Hz image rate and using QCIF resolution) where thisnon-uniformity an be learly seen.

Figure 6.2: Typial motion vetor pattern for \Foreman" at 24 kbit/s, 5 Hz image rate andQCIF resolution.The overall weight of the motion vetors in terms of spent bits per image, though larger forsmaller bitrates, is still small. For instane, using RM8 to enode the sequene \Foreman" at 24kbit/s, with an image rate of 5 Hz and using QCIF resolution, the average number of bits perimage spent enoding motion vetors and DCT oeÆients is, respetively, 690 and 2866. Themotion vetors aount only for about 20% of the total. This means that, even if substantialredution in the former were obtained, the gains in terms of quality, for the same target bitrate,would be somewhat small.Two experiments will help to larify matters. In the �rst, an ordinary RM8 oder was used.In the seond, a modi�ed oder whih, when performing bitrate ontrol, assumes that motionvetors are transmitted \magially", i.e., without spending any bits. Both experiments wereperformed though the enoding of \Foreman" with a target of 24 kbit/s, using 5 Hz image rate
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and at QCIF resolution. The resulting average luma PSNR obtained was respetively 23:94 dBand 24:38 dB. The gains in PSNR an be seen to be small. Using a realisti amera movementompensation approah, one whih results in atual bits being spent, the results will foribly beworst: an average PSNR of 24:01 dB was obtained using the amera movement ompensationmethod proposed before. For this experiment, the average number of bits per image spentenoding the motion vetors and the DCT oeÆients was, respetively, 649 and 2916. Thetransfer of bits from motion vetor to DCT oeÆients is small due to the non-uniformities ofthe motion vetor �eld, whih redues the gain of amera movement ompensation.One way to attempt to solve the non-uniformity problem is through the use of smoothing.However, sine smoothing introdues larger predition errors, some, if not more, of the bitsspared transmitting the motion vetors will be wasted ompensating this worst predition. Afterexperimenting amera movement ompensation with smoothing under the same onditions asbefore, an average luma PSNR of 23:99 dB was obtained, showing a little loss in terms ofobjetive quality. In this ase the bit distribution obtained was 607 for motion vetors and 2966for DCT oeÆients.The results, though obtained for the H.261 standard, are expeted to be valid also in moremodern standards as H.263 and MPEG-4. This does not mean that the amera movement isuseless in video oding. Its importane, as well as the importane of the sene ut detetion,are onsiderable, for instane, if metadata is to be extrated from the sequenes, i.e., if \dataabout the data" is neessary. This seems to be the ase in video database indexing appliations.
6.2 Taxonomy of partition types and representations
Image analysis algorithms usually produe partitions of the senes into 2D (or 3D) regions.These partitions usually have to be oded during the image and video representation proess.It has been reognized that partition information will aount for a signi�ant perentage of thebit stream (e.g., [61℄). It is thus very important to develop eÆient partition oding tehniques.The omparison of tehniques proposed in the literature has often been haunted by the lak ofsystematization of the subjet. This setion attempts to �ll this gap by proposing a taxonomyof partition types and representations. The proposals made in this setion and the overviewontained in Setion 6.3 have already been published in [120, 121℄, and stem from preliminarywork published in [31℄.The two main levels of the taxonomy, partition type and partition representation, an be seen toorrespond to the �rst steps taken when developing a partition oding tehnique: the identi�a-tion of the problem to be solved orresponds to the identi�ation of the partition type addressedby the oding tehnique, and the seletion of the partition representation orresponds to se-leting the kind of data the oding tehnique will manipulate. Thus, di�erent representations,usually leading to di�erent tehniques, an be used for the same type of partitions.During the desription of the taxonomy tree levels, square brakets will be used to speify theodes representing the possible branhes at eah tree node.
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6.2.1 Partition typeThe partition types an be organized in a tree with the following levels:

1. SpaeAre partitions 2D [2D℄ or 3D [3D℄?2. LattieWhat sort of sampling lattie was used for digitizing the images from whih the partitionswere obtained (e.g., retangular [R℄ or hexagonal [H℄)?3. GraphWhat kind of graph is super-imposed on the partition (usually a neighborhood system isspei�ed [Nn℄)?4. ClassesAre partitions binary [B℄ or mosai [M℄?5. ConnetivityAre the lasses onneted [C℄ or an they be disonneted [D℄ (on the hosen image graph)?
Figure 6.3 shows the partition type levels of the taxonomy tree. The leaves of the taxonomy treeorrespond to di�erent types of partition. Eah type of partition an be spei�ed by answeringthe �ve questions listed above. For instane, the following answers: 1. 2D [2D℄, 2. hexagonal[H℄, 3. 6-neighborhood [N6℄, 4. mosai [M℄, and 5. onneted [C℄, (or, with odes, 2DHN6MC);de�ne a type of partitions that lie in a 2D spae, that orrespond to digital images sampledaording to an hexagonal lattie, that are strutured aording to the hexagonal graph, thatan have more than two lasses, and where all lasses are onneted (the onepts of lass andregion are equivalent in this ase).Notie that the branhes under \3D" in the �gure are not drawn, sine 2D partitions are thefous of this setion. At the partition representation level, however, 3D partitions will beonsidered in more detail (see the next setion).
6.2.2 Partition representationThis setion introdues more levels of detail into the taxonomy tree, related with the represen-tation hosen for the partitions. 2D and 3D partitions will be dealt with separately.
2D partitionsThe �rst important deision to be made regards mosai partitions:

1. HandlingShould the mosai partitions be handled as suh (a single mosai partition) [M℄ or should
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Figure 6.3: The partition type taxonomy tree (in bold, the example given in the text).  standsfor either C (onneted lasses) or D (disonneted lasses).
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they be separated into a olletion of binary partitions (eah one orresponding to adi�erent lass in the original mosai partition) [B℄?

As will be disussed later, the handling of mosai partitions as olletions of binary partitionsis often of paramount importane. For instane, when lasses should be readily aessible fromthe oded bit stream, a olletion of binary partitions may allow an easier aess to the variousobjets in a sene than the original mosai partition.It has been seen that a partition an be represented in two di�erent ways: either by the labelsof eah pixel, or by ontour information plus region-lass information.1 When lass equivaleneis the aim, the latter representation provides information about the lustering of regions into aertain number of lasses.Hene, the next level in the taxonomy will be:
2. HowHow should the partition be represented? With pixel labels [L℄ or with ontours [C℄?

For the ase of partitions represented with ontours, other hoies have to be made: How torepresent the ontours? What sort of neighborhood system has the ontour graph? Thesequestions lead to two other levels of partition representation in the taxonomy tree:
3. WhereWhere should ontours be de�ned? On the image graph or on the line graph? That is,should the ontour be de�ned on pixels [P℄ or on edges [E℄?4. GraphWhat is the kind of neighborhood system of the graph from whih the ontour is a sub-graph [Nn℄?

Figure 6.4 shows the partition representation levels of the taxonomy tree for the 2D ase.The 2DHN6M partition type with a representation separated into binary lass partitions, usingontours de�ned on edges, whih have a N3 neighborhood system, is oded as 2DHN6M-BCEN3or:
Partition type2D, hexagonal lattie, N6 graph, mosai, lasses onneted or disonneted aording towhether  is C or D.Partition representationMosai treated as independent binary partitions, ontours, edges, N3 graph.1Similarly, [38℄ divides shape representation methods into boundary-based, and area-based.
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Figure 6.4: The partition representation taxonomy tree for the 2D ase (in bold, the examplegiven in the text).  stands for either C (onneted lasses) or D (disonneted lasses).
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3D partitionsAs an be seen in Figure 6.5, for 3D partitions two representations may be onsidered: stikto three dimensions [3D℄, or slie the partition along the time domain and use 2D methods[2D℄. Predition of the 2D partition slies an be used [Inter℄, otherwise the 2D partitionsare onsidered independent [Intra℄. When predition is used, it may [M℄ or may not [F℄ usemotion ompensation (the 'M' stands for \motion" while the 'F' stands for \�xed"). Themotion information may be either estimated from the 3D partition [61℄ or input from externalsoures (e.g., from a motion estimator working with the original 3D image). Notie that thesliing to two dimensions establishes a onnetion to one of the 2D branhes at the top ofthe representation taxonomy shown in Figure 6.4, depending on the type of the resulting 2D(possibly predited) partitions. from the leaves of the 3D branhof the type taxonomy tree

approah:(3D or 2D)
predition:(intra orinter)
ompensation:(motion ompensatedor �xed) to top of 2D representationtaxonomy

3D 2D

FM
intra inter

Figure 6.5: The partition representation taxonomy tree for the 3D ase.
6.2.3 Representation propertiesChoosing the representation for the partitions (of a given type) depends on the properties ofeah representation and how adequate they are for the task at hand. Pros and ons relatedwith some of the levels of the 2D partition representation taxonomy tree are listed below:
� Handling (only for mosai partitions):MosaiA single onneted ontour graph an separate several regions, whih leads to oding
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eÆieny when a ontour representation is used; however, aess to a single lassshape is not easy, sine the regions (and lasses) are not represented individually.BinaryThe lasses are represented independently, and thus easy aess to eah lass isprovided, though at the expense of less eÆient oding eÆieny.� How:LabelsIn this ase, the identi�ation of the lass to whih eah pixel in the partition belongsis very simple, though the shapes of the lasses are not diretly represented.ContoursThe shapes of the lasses are diretly represented, albeit at the expense of requiringsomewhat involved algorithms to asertain the lass of a given pixel [155, 182, 6℄.� Where:PixelsRepresenting ontours on pixels poses a number of problems, espeially in the ase ofmosai partitions, sine using all border pixels leads to unneessary repetition at bothsides of a border; when the problem is avoided by using only one side of eah border,other problems arise: e.g., how should one pixel wide regions or parts of regionsbe distinguished from borders of thik regions. Although the problems assoiatedwith these representations have solutions, often somewhat involved, oding ontourson pixels does not seem to ahieve higher ompression than oding ontours onedges [31℄.EdgesThis is usually a more elegant way of representing ontours, whih in addition typi-ally provides more ompression than pixel based ontours [31℄.

6.3 Overview of partition oding tehniques
One the type of partitions to ode has been asertained and a partition representation seleted,aording to the taxonomy de�ned in the previous setion, there are usually a number of avail-able oding tehniques. This setion overviews some of these tehniques. Speial attention willbe payed to 2D partitions.
6.3.1 Lossless or lossy odingThe question of whether to use lossy partition oding tehniques is an important one. Itis true that some tehniques that are inherently lossy, suh as parametri urves, an yieldgood ompression [73℄. However, it may be diÆult, for some appliations, to establish soundpartition oding quality riteria. Also, when the sene objets (orresponding possibly to lasses
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or sets of lasses) are to be manipulated individually, e.g., pasting an objet into a di�erentsene, the e�ets of lossy partition oding an be very important, sine piees of the real objetmay be lost, piees of the bakground an be introdued, and even objet deformation mayour. This seems to indiate that lossless partition oding tehniques are preferable, andthat simpli�ations should be introdued into the partitions arefully during the segmentationproess, before partition oding.However, if lossy oding is aeptable, the losses are usually onstrained so that there is:

1. lass topologial equivalene, i.e., the lasses should be maintained in number and adja-eny relations|the CAG should not be altered (a stronger onstraint an be imposed ifthe RAG, or even the RAMG, is not allowed to hange); and/or2. small displaement of borders, i.e., the borders between the regions should hange aslittle as possible, aording to some error riterion (other onstraints may be imposed, forinstane on errors assoiated with the area and position of the regions).
6.3.2 Mosai vs. binary partitionsWhen easy aess to the ontents of the video sequene is required, the shapes of the variousobjets (e.g., a lass or a set of lasses in a partition) will have to be oded independently. Thisrequirement an be imposed even if the segmentation proess resulted in a mosai partition,reduing the problem to the oding of a series of binary partitions (see the handling level inFigure 6.4).The independent oding of binary partitions also arises naturally when a layered sene represen-tation, as proposed by Wang and Adelson [195℄, is used. Layered representations of the senesare also used in MPEG-4 [77℄: eah layer orresponds to a 2D objet of arbitrary shape, whosetime snapshots are alled VOP (Video Objet Plane). The shape of the objets representedby VOPs an be assoiated to binary partitions.2 However, if the ontent of the VOPs wereoded through region based tehniques (as would happen if the Sesame [30℄ proposal had beeninluded in MPEG-4), then mosai partitions would also be neessary within eah VOP.Thus, both oding of binary and mosai partitions may be important issues when easy aessto the ontents of the video sequenes is required.
6.3.3 Partition modelsThe oding eÆieny always depends on the harateristis of the partitions being oded. Mostof the tehniques aim at generiness, though this is a somewhat hard to de�ne property. Bygeneriness it is often meant that the tehniques perform well on average. The problem withthis de�nition is that often little is known about the statistis of the partitions whih need to be2Atually the shapes of the VOPs an be spei�ed in MPEG-4 using \binary shape," i.e., a binary partition,or \grey sale shape," whih is an alpha plane speifying the transpareny of eah pixel.
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oded. This is a general problem in image proessing: is there a statistial model for the imagesto proess? In the ase of partition oding, the statistial haraterization of input partitionsdepends both on the original images and on the segmentation algorithm used upstream. Hene,most tehniques do not address a spei� model of input partitions, making only some generalassumptions suh as:3

1. the regions tend to ontain a signi�ant amount of pixels, i.e., small regions are improbable;2. the lasses tend to ontain a small amount of regions;3. the ontours (borders between regions) tend to be simple (not ragged); and4. the region interiors tend not to ontain too many small holes.
6.3.4 Class odingClass oding is neessary when:

1. lass equivalene is enough;2. the partitions used have disonneted lasses (see onnetivity level in Figure 6.3); and3. the expliit labels of the partition pixels have not (yet) been oded (it is the ase afterontour oding tehniques and some label oding tehniques).
The objetive of lass oding is to establish whih regions are grouped in the same lass. Thisissue will not be disussed at length here. However, note that the oding methods used shouldtake into aount that:

1. the expliit lass labels are not required, sine lass equivalene is enough; and2. adjaent regions annot belong to the same lass, for otherwise they would be a singleregion (this an help redue the amount of data to transmit).
If partition equality is required, then the lass labels should be oded expliitly for eah region inthe partition. When the lasses are onneted, the fat that a given label appears only one anbe used to redue the amount of data to transmit, sine the degrees of freedom keep reduinguntil zero when the next-to-last label is transmitted.
6.3.5 Label odingLabel oding tehniques ode partitions whose representation is based on pixel labels. The asesof binary and mosai partitions will be addressed separately in the following.3See for instane Chapter 10 of [68℄.
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Binary partitions
Binary partitions an be seen as binary (or two-tone) images. Therefore, the tehniques availablefor oding binary images are good andidates for oding binary partitions. While losslesstehniques an be applied without any problems, lossy tehniques often do pose some problems,sine the type of losses they allow does not generally take into aount the onstraints typiallyused for lossy partition oding.Reviews on binary image oding an be found in [90, 74℄ and, spei�ally for fax, in [76℄. Thelossless oding standards ITU-T T.4 and T.6 (Group 3 and Group 4 fasimile) [45, 46℄ andITU-T T.82 JBIG [82℄ use tehniques with inreasing ompression eÆieny:
T.4 uses one-dimensional RLE (Run-Length Enoding) and, optionally, also the 2D MREAD(Modi�ed Relative Element Address Designate) odes, both followed by VLC. In the 2Dmode, eah k line is oded with RLE (k is set to 2 for low resolution images and to 4 forhigh resolution images), while all the other lines are oded with MREAD.
T.6 is similar to ITU-T T.4, though the 2D mode is always used and k is set to in�nite, so thatonly MREAD is used. The resulting odes are alled MMREAD (Modi�ed MREAD).
T.82 uses the arithmeti Q-Coder [159℄ to ode the pixel values. The probabilities for theQ-Coder are estimated using a loal ontext (a template) for the urrent pixel. SineJBIG uses resolution layers for progressive oding, two types of templates exist: the �rstis used in the lowest resolution layer and inludes only pixels already transmitted in thatlayer, while the seond is used for all the other layers and inludes not only pixels fromthe urrent layer but also from the layer immediately below in resolution.
A tehnique based on a modi�ed MMREAD ode, on 16 � 16 bloks, has been proposed forthe oding of binary alpha maps in the framework of MPEG-4 [188℄. This tehnique hasbeen adopted in VM3 [2℄ after a round of ore experiments on binary shape oding [140℄. Twotehniques with relations to JBIG [11, 12℄ have also been evaluated during the ore experiments.Both use arithmeti odes with probabilities estimated from a loal ontext around the pixel tobe oded. The tehnique whih was later approved for inlusion in the MPEG-4 CD (CommitteeDraft) [77℄ is of this latter type.Among all the other tehniques that have been proposed for binary partition oding, mor-phologial skeletons [103℄ (and more reently [83℄) are espeially relevant, mainly beause thistehnique has evolved lately to eÆiently over also mosai partitions [14℄. This tehnique rep-resents the shape of a region by a set of skeleton points and a so-alled quenh funtion: theregion is the union of struturing elements (of a ertain shape) entered on the skeleton pointsand saled aording to the value of the quenh funtion at that point.Sine binary partitions are a speial ase of mosai partitions, tehniques developed for thelatter may also be applied to the former, either diretly or with simplifying hanges, despite thefat that they do not take into aount the speial harateristis of binary partitions.
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Mosai partitions
The ase of mosai partitions is more omplex. The oding of mosai partitions has reeivedless attention than the oding of binary partitions (however, see [14, 13, 191℄). It is possible,nevertheless, to use binary partition oding tehniques by �rst onverting the mosai partitionsinto bit planes. For instane, using the FCT (see Setion 3.4.3), the regions in a partitionan be perfetly identi�ed by painting them with only four olors. Hene, eah region an beidenti�ed by a two-bit label, and thus two bit-planes are suÆient for representing the partition.Eah of the two bit-planes an be oded independently using (lossless) binary partition odingtehniques. Notie that some borders are present in both bit-planes, so this method annotyield optimal results.A tehnique using the onept of geodesi skeleton, where the regions are desribed by a set ofskeleton points and a quenh funtion [14℄, was reently proposed. This tehnique is, in a sense,an extension of the tehnique proposed in [103℄ for binary partitions. The authors laim that\the geodesi skeleton is preferable to hain ode whenever there are many isolated and shortontour ars to be oded," whih seems to be the ase when 3D...-2DInterM (motion predited2D partitions orresponding to time slies of a 3D partition) partition representations are used.A method whih is also related to geodesi skeletons has been proposed in [191, 171℄. It rep-resents regions as a union of struturing elements with appropriate translations and salings.Both tehniques ([14, 191℄) allow the struturing elements to overlap already oded regions,thus avoiding dupliate oding of borders and reduing the required bitrate. Both tehniquesare lossy and, again, an be used for mosai and binary partitions. Inidentally, it may benoted here that the problem of �nding the minimum number of retangles overing a given setof elements in a matrix an be show to be NP-omplete, see [51, SR25, p.232℄.Another interesting tehnique, based on Johnson-Mehl tessellations, has been proposed in [13℄(whih ontains a good review of partition oding tehniques). The idea is to �nd germs (andtheir germinating time) for eah region suh that the original partition is reprodued well whenthe germs are allowed to grow until reahing other growing germs. Though the tehniqueproposed is lossy, it an easily be made lossless. Aording to the authors, the tehniqueperformed worse than the other tehniques studied (straight line and polygonal approximation,hain odes, and geodesi skeletons).
6.3.6 Contour oding
At least three breeds of ontour oding tehniques an be distinguished:
Chain odesThe ontour graph is oded by a string of symbols representing the diretion of the \hain"onneting a vertex to the next vertex on the ontour. Eah of these strings is alled ahain ode. Symbols may also represent diretion hanges, whih makes the hain odesdi�erential.
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Parametri urvesThe ontours are approximated by parametri urves, whose oeÆients are then oded;the most ommon examples are approximations by straight lines and by splines (in general,by polynomials).Transform odesThe ontours are represented as parametri urves whih are oded using transform meth-ods, in a one-dimensional equivalent of transform oding for images.
All these tehniques involve two steps: �rst the representation is hanged by transformingthe ontours into strings of symbols (e.g., hanges in hain diretion, spline parameters, ontrolpoints or transform oeÆients|possibly quantized) and then these symbols are entropy oded.For ontours de�ned on pixels, it is also possible to use tehniques developed for binary imageoding. The idea is to paint blak, against a white bakground, all the border pixels in thepartition and then use one of the binary label oding tehniques already disussed. Notie,however, that lossless tehniques should in general be used, sine lossy tehniques were notusually developed with partition oding in mind.
Chain odes
The ontour graph is a subgraph of either the line graph (for ontours de�ned on edges) or theimage graph (for ontours de�ned on pixels), and usually onsists of a olletion of trails on theoriginal graph. Eah ontour trail an thus be represented by a string of symbols representingwhih of the neighbors of the urrent graph vertex belongs to the ontour trail or, whih is thesame, the diretion of the \hain" onneting it to the next vertex on the ontour trail: thesestrings are alled hain odes [49, 50, 201℄. When the symbols represent diretion hanges, thehain odes are said to be di�erential [42, 58℄. The simplest partitions are those for whih theontour graph is onstituted of disonneted losed trails.Binary partitions are generally simpler to ode than mosai partitions. The main di�erenestems from the fat that, for binary partitions, all verties in the ontour graph (at leastfor edge ontours graphs) have an even number of neighbors: two verties for the N3 linegraph orresponding to the N6 image graph (used for hexagonal sampling latties), and two orfour verties for the N4 line graph orresponding to the N4 image graph (used for retangularsampling latties). That is, the onneted omponents of suh graphs have Euler trails, i.e.,they an be \drawn without lifting the penil".Mosai partitions with ontours de�ned on edges require speial treatment, sine the existeneof juntion verties (verties with degree 3, see Figure 3.12) preludes the de�nition of ontoursas disonneted losed trails. There are at least two ways of dealing with this problem:

1. Ignore juntions and rossings. Selet one of the exits and leave the others for odingas separate ontours; sine initial ontour points are ostly to ode, this solution is notoptimal.
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2. Code juntions and rossings expliitly [106℄. Selet one of the exits but ode also informa-tion about the juntion or rossing so that later one an \return" and ontinue followingthe remaining exits (one in the ase of a juntion, two in the ase of a rossing).

When juntions and rossings are expliitly oded, or when retraing of ontour segments isallowed, the ompression obtained when oding a onneted omponent of a ontour dependsstrongly on the way the onneted omponent is followed: where to start, whih exit to follow�rst at eah juntion or rossing, et. The problem of oding an then be seen as a problemof minimizing the bitrate given a ertain syntax of representation. This problem is similar toChinese postman problem, i.e., to the problem of making a line drawing without lifting thepenil and minimizing the length of the redrawn lines, whih is solvable in polynomial time. Itssolution an be aelerated if the drawing shedule is determined in the RBPG of the partitionwhere eah ar has an appropriate weight. The advantage stems from the fat that the RBPGhas a smaller number of verties and ars. Eah ar in the RBPG, whih orresponds to aomplete border on the partition, should have a weight whih is proportional to the numberof bits required to enode it using hain odes. A rough approximation would be to makethe weight proportional to the number of edges in the border. Otherwise the weight might beestimated from statistis obtained of previous enodings.When ontours are de�ned on pixels, the onepts of juntion and rossing require a moreinvolved de�nition and treatment [101, 31℄. In the ase of binary partitions, the problem maybe solved by again ignoring the presene of verties of degree larger than two in the pixel ontourgraph. Another problem of ontours de�ned on pixels is posed by one pixel wide regions or partsof regions, whih make it diÆult to use a stopping ondition as simple as \Stop when the initialvertex of the ontour is attained", whih is often used when oding ontours de�ned on edges.Suh regions may also require the existene of a turning bak (180Æ) diretion in the hain odes,rarely used, whih may ause some VLCs to be ineÆient (for instane Hu�man).4In general, hain odes orrespond to the spei�ation of a subgraph, onsisting of a set of trails,in the underlying image or line graph. A ontour onneted omponent onsists of a set of trailslinked at juntions and rossings. Eah trail an be represented by:
1. a position for the �rst vertex of the trail, maybe impliitly indiated in a previous rossingor juntion information; and2. a string of symbols, the hain odes, whih may inlude rossings and juntions informa-tion.

Both the �rst vertex position and the hain odes are then entropy oded. The onstrution ofthe hain odes may also inlude ontour simpli�ation proedures.Several tehniques have been proposed in the literature for entropy oding the initial vertiesand the hain odes:4Consider an alphabet onsisting of two symbols A and B with equal probabilities 0.5: the orrespondingHu�man ode will have one bit per symbol. If a third, improbable but possible, symbol C is added, and theprobabilities are p(A) = 0:495, p(B) = 0:495, p(C) = 0:01, the number of bits per ode word will be 1, 2, and 2,respetively. The average number of bits per symbol will be 1:505, 40% worst than the minimum of 1:071.
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1. zero order Hu�man and arithmeti oding (adaptive or not) [133, 106℄, whih tend to beineÆient, sine region borders are usually very di�erent from a Brownian random walkthrough the image or line graph;2. nth order Hu�man and arithmeti oding (adaptive or not) [31, 133, 42℄;3. Ziv-Lempel (or Ziv-Lempel and Welsh) oding [202, 197℄, whih is a form of \ditionary-based oding" [90℄; and4. run-length oding, whih groups hain odes into runs of related symbols [86, 133℄, usuallyorresponding to straight line segments [93, 10, 133℄ (and hene onstituted either of asingle symbol or of two symbols, with adjaent diretions, whih verify the onditionsde�ned by Rosenfeld in [173℄).In the framework of the MPEG-4 ore experiments on binary shape oding [140℄, extensionsto basi or di�erential hain odes have been proposed. In [52, 140℄ a lossy multi-grid hainode is proposed whih, aording to the authors, redues by an average of 25% the odingost with respet to di�erential hain odes. In [196℄ a method is proposed whih deomposesa (di�erential) hain ode into two hain odes with half the resolution, plus additional odesif lossless oding is desired.

Parametri urvesThese tehniques approximate ontours (or ontour segments) by parametri funtions, usuallypolynomials. The funtions an usually be represented by either a set of oeÆients or a set ofontrol points [175, 43℄. The oeÆients or the oordinates of the ontrol points are quantizedand then entropy oded. Notie that when polynomials of degree one are used (with retangu-lar oordinates), the ontours are approximated by polygons. The use of ontrol points [152℄simpli�es the quantization proess, sine it is simpler to ontrol the errors introdued by quan-tizing the oordinates of ontrol points than the errors introdued by quantizing the oeÆientsof a polynomial. In the ase of mosai partitions, the rossings and juntions of ontours arefrequently seleted as ontrol points [43, 97℄.One of the most important problems in parametri urve representation of ontours is errorontrol. Iterative tehniques are ommonly used whih suessively split the ontour until asuÆiently small approximation error is obtained for eah resulting segment [43, 97℄. The erroris frequently alulated from the geometrial distane between the parametri urves and thereal ontours [97, 53℄, but some researhers propose the use of the ontrast aross the ontours,assuming it is available [43℄. Methods have also been proposed whih follow the split phase bya merge phase [157, 154℄. Suh split & merge methods for polygonal approximation of ontourswere the preursors of similar methods used later in image segmentation.When ontrol points are used, their di�erenes along the ontour graph are usually entropyoded. These methods deal with juntions and rossings in a very similar way to hain odingtehniques.As part of the MPEG-4 ore experiments on binary shape oding [140℄, parametri urve teh-niques have also been evaluated [53, 148, 89, 25℄ (some of these tehniques stem from the
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earlier [73℄). These tehniques approximate the ontours with polygons or splines using a setof ontrol points hosen again with a split algorithm. The seletion of whih approximationmethod to use is either done for eah ontour segment (between ontrol points) or for eah ob-jet. The proposed tehniques also take advantage of time redundany between ontrol pointsalong the suessive partitions. One-dimensional transform oding methods, some of whihmulti-resolution, are proposed to ompensate the residual error between the parametri urveapproximation and the atual ontours (see the next setion).

Transform odes
The ontours are represented �rst as parametri urves taking values in R , if the ontour (orontour segment) being oded an be represented by a polar funtion entered somewhere in theimage, or in R 2 for other kinds of ontour (or ontour segments). These parametri urves (stilla lossless representation) are then oded using transform methods [22℄, in a one-dimensionalequivalent of the transform oding used in image oding (e.g., DCT), i.e., the parametri urvesare transformed and the resulting oeÆients are quantized and entropy oded.Transform odes have also been under srutiny in the MPEG-4 ore experiments on binaryshape oding [140℄, both for ontour oding proper and for oding the residual error after usingparametri urve methods.The �rst tehnique onsidered in the ore experiments uses a polar representation of the on-tour [24℄. The ontour is represented by a funtion of the polar angle, whose value is thedistane between the entroid and the ontour in the diretion de�ned by the angle.5 The one-dimensional DCT of the distane funtion is alulated and then its oeÆients are quantizedand VLC oded. Some ontours annot be properly represented by a parametri funtion of thepolar angle (sine more than one ontour point may our for a single angle). Hene, parts ofthe ontour may have to be left out. These parts are handled separately using hain odes. Thistehnique an also take advantage of the temporal redundany between suessive partitions.The other transform oding tehniques tested on the MPEG-4 ore experiments use either theone-dimensional DST or DCT to ode not the ontour itself, but the residual error (distane)between a parametri urve approximation and the atual ontour [148, 89, 25℄. In [25℄ thedistane between the approximate and atual ontours is alulated either horizontally or verti-ally, depending on the slope of the line between the ontrol points of the ontour segment beingenoded. This substantially redues the alulations relative to the usual orthogonal distanemethod. In [148℄ a multi-resolution version of the DST is used, so as to provide ontour (objet)salability.

5The entroid is the point whose oordinates are the average of the oordinates of all the pixels in the regionenlosed by the ontour.
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6.4 A quik ubi spline implementation
Splines are a form of parametri approximation of ontours. In the framework of the COST211ter projet, the SIMOC1 referene model [39℄, made use of a mixture of polygonal andubi spline approximation [26℄ to the ontours of a binary partition (a hange detetionmask). Among several proposals made by the author related with that referene model,namely [116, 114, 79, 78℄, an improvement on the original spei�ation of ubi splines anda fast implementation method are espeially relevant.The improvement stems from onsidering ontinuity of �rst and seond derivatives at all nodesof the spline, sine the spline is being used to approximate a losed urve (a ontour), given anumber of ontrol points. The determination of the spline oeÆients is similar to the usualubi spline, exept that the matrix whih needs to be inverted as part of the algorithm has atype of symmetry whih makes it suitable for eÆient implementations.
6.4.1 2D losed spline de�nitionGiven a sequene of n ontrol points in R 2s0; s1; : : : ; sn�1, with sj = �xj yj�T ,the aim is to �nd n ubi polynomials Pj(t) = �pxj (t) pyj(t)�T from t 2 [j; j + 1[ (uniformparameterization) to R 2 , with j = 0; � � � ; n� 1, whih result in a smooth interpolation.To ahieve the desired smoothness, the same set of onstraints (6.2) is imposed for eah om-ponent of the polynomials, pxj (�) and pyj(�), in the sequel referred to generially as pj(�). Letalso fj be xj or yj aording to whether pj(�) = pxj (�) or pj(�) = pyj (�).Eah polynomial is de�ned by the four parameters aj , bj , j , and djpj(t) = aj + bj(t� j) + j(t� j)2 + dj(t� j)3 with j = 0; : : : ; n� 1. (6.1)
The onstraints impose ontinuity up to the seond derivative at eah node6pj(j) = fjpj(j + 1) = fj+1p0j(j + 1) = p0j+1(j + 1)p00j (j + 1) = p00j+1(j + 1) with j = 0; : : : ; n� 1, (6.2)
where j = j mod n and p0j(�) and p00j (�) are respetively the �rst and seond derivative of poly-nomial pj(�).From (6.1) it an be seen that 4n oeÆients must be found by the spline algorithm, using the4n restritions given by (6.2).6Notie that the seleted restritions do not generally assure smoothness of the �nal 2D urve, only of theindividual parametri urves!
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6.4.2 Determination of the spline oeÆientsSubstituting (6.1) in (6.2), one obtainsaj = fjaj + bj + j + dj = fj+1bj + 2j + 3dj = bj+12j + 6dj = 2j+1 with j = 0; : : : ; n� 1.
Simple algebrai manipulations (see [26℄) lead to the following solutionaj = fjdj = j+1�j3bj = aj+1 � aj � 2j+j+13 with j = 0; : : : ; n� 1,
and 266666666664

01...j...n�2n�1

377777777775
= A�1n 3

266666666664

a1 � 2a0 + an�1a2 � 2a1 + a0...aj+1 � 2aj + aj�1...an�1 � 2an�2 + an�3a0 � 2an�1 + an�2

377777777775
;

where An is the n� n matrix
An =

2666664
4 1 11 4 1. . .1 4 11 1 4

3777775 :
6.4.3 Approximate algorithmThe main part of the spline algorithm is the inversion of matrix An (n�n). If observed arefully,matrix An has a speial kind of struture, originated in the imposed spline restritions whihtreat all nodes equally: eah line (olumn) of An may be obtained by rotating the previous oneto the right (down), the last element of the line (olumn) being rotated bak to the beginning.Another interesting harateristi of An is that eah line (olumn) is symmetri around itsdiagonal element.It turns out, as an be proved analytially, that the inverse of An has exatly the same struture.This means that A�1n an be onstruted from the knowledge of the �rst half of its �rst line,viz. n===2 + 1 elements where === stands for trunating integer division. Let those elements



248 CHAPTER 6. CODINGi0 1 2 3 4 53 0.2777777778 -0.05555555564 0.2916666667 -0.0833333333 0.04166666675 0.2878787879 -0.0757575758 0.01515151526 0.2888888889 -0.0777777778 0.0222222222 -0.01111111117 0.2886178862 -0.0772357724 0.0203252033 -0.0040650407n 8 0.2886904762 -0.0773809524 0.0208333333 -0.0059523810 0.00297619059 0.2886710240 -0.0773420479 0.0206971678 -0.0054466231 0.001089324610 0.2886762360 -0.0773524721 0.0207336523 -0.0055821372 0.0015948963 -0.000797448211 0.2886748395 -0.0773496789 0.0207238762 -0.0055458260 0.0014594279 -0.000291885612 0.2886752137 -0.0773504274 0.0207264957 -0.0055555556 0.0014957265 -0.000427350413 0.2886751134 -0.0773502268 0.0207257938 -0.0055529485 0.0014860003 -0.0003910527
Table 6.1: The �rst 6 qi(n) for n = 3; : : : ; 13.

be q0(n); : : : ; qn===2(n) (the value of the elements depends on n, of ourse). Table 6.1 showsthe evolution of these elements. Notie that it is assumed that n � 3, sine n = 1 and n = 2ondue to degenerate splines. Notie also that, for i � 2, element qi(n) only exists if 2i � n.An example may larify the struture of the matries. Suppose the inverse of A6 is to bealulated. The �rst step is to opy the elements in row 6 of Table 6.1 to the �rst half of the�rst line of A�16
A�16 =

26666664
0:28889 �0:07778 0:02222 �0:01111 37777775 :

The seond step is to reet the elements of the �rst line around the diagonal element
A�16 =

26666664
0:28889 �0:07778 0:02222 �0:01111 0:02222 �0:07778 37777775 :

Finally, the remaining lines are �lled by suessive rotation of the �rst line
A�16 =

26666664
0:28889 �0:07778 0:02222 �0:01111 0:02222 �0:07778�0:07778 0:28889 �0:07778 0:02222 �0:01111 0:022220:02222 �0:07778 0:28889 �0:07778 0:02222 �0:01111�0:01111 0:02222 �0:07778 0:28889 �0:07778 0:022220:02222 �0:01111 0:02222 �0:07778 0:28889 �0:07778�0:07778 0:02222 �0:01111 0:02222 �0:07778 0:28889

37777775 :



6.4. A QUICK CUBIC SPLINE IMPLEMENTATION 249i0 1 2 33 0.2777777778 -0.05555555564 0.2916666667 -0.0833333333 0.04166666675 0.2878787879 -0.0757575758 0.01515151526 0.2888888889 -0.0777777778 0.0222222222 -0.01111111117 0.2886762360 -0.0773524721 0.0207336523 -0.0055821372n 8 0.2886762360 -0.0773524721 0.0207336523 -0.00558213729 0.2886762360 -0.0773524721 0.0207336523 -0.005582137210 0.2886762360 -0.0773524721 0.0207336523 -0.005582137211 0.2886762360 -0.0773524721 0.0207336523 -0.005582137212 0.2886762360 -0.0773524721 0.0207336523 -0.005582137213 0.2886762360 -0.0773524721 0.0207336523 -0.0055821372
Table 6.2: The approximate elements q̂i(n) for n = 3; : : : ; 13.

Hene, one method for inversion of matries An orresponds to storing the �rst half of the �rstrow of A�1n in a lookup table for several values of n and to apply the steps above. Should thismethod be too memory demanding for the given appliation, an approximation an be used asderived below.One interesting fat about the elements qi(n) (see Table 6.1) is that they are negligible for highenough i. In partiular for i � 4, sine jqi(n)j < 0:003 (8n and i � 4) whih is very smallompared to jq0(n)j (always about 0:29). It is thus possible to approximate the inversion of Anby onsidering all qi(n) elements to be zero for i � L (e.g., L = 4).The elements qi(n) form a rapidly onvergent suession with n, for eah i. Hene, a goodapproximation to all qi(n) with i < L and n > N is qi(M), provided M (� N) and N are largeenough numbers.Having the desribed behavior in mind, the following approximation was implemented:
q̂i(n) = 8><>:qi(n) if n � N ,qi(M) if n > N and i < L, and0 if n > N and i � L;with L set to 4, M to 10 and N to 6. The approximate element values q̂i(n) an be seen inTable 6.2.The approximation presented is quite good, though the degree of auray of the algorithm maybe further improved by inreasing L, N and/or M .

ImplementationThe inverse of a matrix an be alulated as its transposed adjoint divided by its determinant
A�1 = adjT (A)det(A) :
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The alulation of the adjoint and the determinant of a matrix involves only sums and multipli-ations, hene, if the elements of An have integer values, det(A) and the elements of adj(A) willalso have integer values. This is the ase for the partiular An onsidered in this work. Sinethe values fj also have integer values, the spline algorithm an be implemented using solelyinteger arithmeti. See Algorithm 3.
6.4.4 Exat algorithmThe matrix to invert as part of the spline algorithm is a speial ase of a more generi lassof matries. Matries whose olumns an be obtained by suessively rotating the left olumnupwards (or downwards) are alled olumn irulant matries. Matries whose rows an beobtained by suessively rotating the top row rightwards (or leftwards) are alled row irulantmatries. Row irulant matries an be transformed into olumn irulant matries simply bytransposition. If a matrix is both row and olumn irulant, then it is also symmetri.An eÆient way of inverting a irulant matrix an be easily devised using the DFS (DisreteFourier Series), or its fast algorithmi version, the FFT (Fast Fourier Transform).Let A be a n�n non-singular downwards olumn irulant matrix with �rst olumn a (# is thedownwards rotation operator) A = �a a#1 � � � a#n�1� ;with

a = 264 a0...an�1
375 :

Let b = F(a), where F(�) is the DFS, and also let
 = 264 0...n�1

375 = 264 1b0...1bn�1
375 ;

then A�1 an be alulated as A�1 = �d d#1 � � � d#n�1� ;where d = F�1(), with F�1(�) the inverse DFS.In the ase of the spline algorithm,
a =

266666664
410...01

377777775 ;
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Algorithm 3 Fast losed ubi spline algorithm (in C)./** word and dword are signed integer types with 16 and 32 bits.* af orresponds simultaneously to the f vetor of points to interpolate* and to the a vetor of spline parameters.* n is the number of nodes in the spline.* det3 is det(A)/3.* b, , and d are saled output vetors of spline parameters.* b and d should be divided by det(A)=det3*3 and  by det3 to obtain the* orresponding spline parameters.*/void spline(dword *b, dword *, dword *d, dword *af, dword n, dword *det3){ word j;dword a0, a1, a2, a3, a4, a5, b0, b1, b2, b3, b4, b5, det;/* d will temporarily store the RHS of the matrix equation: */d[0℄ = af[1℄ - (af[0℄ << 1) + af[n-1℄;for(j = 1; j < n-1; j++)d[j℄ = af[j+1℄ - (af[j℄ << 1) + af[j-1℄;d[n-1℄ = af[0℄ - (af[n-1℄ << 1) + af[n-2℄;/* Effiient and approximate matrix inversion, alulation of : */if(n == 3) {*det3 = 6;[0℄ = d[0℄ * 5 - d[1℄ - d[2℄;[1℄ = d[1℄ * 5 - d[2℄ - d[0℄;[2℄ = d[2℄ * 5 - d[1℄ - d[0℄;}else if(n == 4) {*det3 = 64;a0 = d[0℄ << 4; a1 = d[1℄ << 4; a2 = d[2℄ << 4; a3 = d[3℄ << 4;[0℄ = d[0℄ * 56 - a1 + (d[2℄ << 3) - a3;[1℄ = d[1℄ * 56 - a2 + (d[3℄ << 3) - a0;[2℄ = d[2℄ * 56 - a3 + (d[0℄ << 3) - a1;[3℄ = d[3℄ * 56 - a0 + (d[1℄ << 3) - a2;}else if(n == 5) {*det3 = 22;a0 = d[0℄ * 5; a1 = d[1℄ * 5; a2 = d[2℄ * 5; a3 = d[3℄ * 5;a4 = d[4℄ * 5;[0℄ = d[3℄ - a4 + d[0℄ * 19 - a1 + d[2℄;[1℄ = d[4℄ - a0 + d[1℄ * 19 - a2 + d[3℄;[2℄ = d[0℄ - a1 + d[2℄ * 19 - a3 + d[4℄;[3℄ = d[1℄ - a2 + d[3℄ * 19 - a4 + d[0℄;[4℄ = d[2℄ - a3 + d[4℄ * 19 - a0 + d[1℄;}else if(n == 6) {*det3 = 30;a0 = d[0℄ * 7; a1 = d[1℄ * 7; a2 = d[2℄ * 7; a3 = d[3℄ * 7;a4 = d[4℄ * 7; a5 = d[5℄ * 7;b0 = d[0℄ << 1; b1 = d[1℄ << 1; b2 = d[2℄ << 1; b3 = d[3℄ << 1;b4 = d[4℄ << 1; b5 = d[5℄ << 1;[0℄ = b4 - a5 + d[0℄ * 26 - a1 + b2 - d[3℄;[1℄ = b5 - a0 + d[1℄ * 26 - a2 + b3 - d[4℄;[2℄ = b0 - a1 + d[2℄ * 26 - a3 + b4 - d[5℄;[3℄ = b1 - a2 + d[3℄ * 26 - a4 + b5 - d[0℄;[4℄ = b2 - a3 + d[4℄ * 26 - a5 + b0 - d[1℄;[5℄ = b3 - a4 + d[5℄ * 26 - a0 + b1 - d[2℄;}else {*det3 = 418;[0℄ = d[n-3℄ * -7 + d[n-2℄ * 26 - d[n-1℄ * 97 + d[0℄ * 362 - d[1℄ * 97 + d[2℄ * 26 - d[3℄ * 7;[1℄ = d[n-2℄ * -7 + d[n-1℄ * 26 - d[0℄ * 97 + d[1℄ * 362 - d[2℄ * 97 + d[3℄ * 26 - d[4℄ * 7;[2℄ = d[n-1℄ * -7 + d[0℄ * 26 - d[1℄ * 97 + d[2℄ * 362 - d[3℄ * 97 + d[4℄ * 26 - d[5℄ * 7;for(j = 3; j < n - 3; j++)[j℄ = d[j-3℄ * -7 + d[j-2℄ * 26 - d[j-1℄ * 97 + d[j℄ * 362 - d[j+1℄ * 97 + d[j+2℄ * 26 - d[j+3℄ * 7;[n-3℄ = d[n-6℄ * -7 + d[n-5℄ * 26 - d[n-4℄ * 97 + d[n-3℄ * 362 - d[n-2℄ * 97 + d[n-1℄ * 26 - d[0℄ * 7;[n-2℄ = d[n-5℄ * -7 + d[n-4℄ * 26 - d[n-3℄ * 97 + d[n-2℄ * 362 - d[n-1℄ * 97 + d[0℄ * 26 - d[1℄ * 7;[n-1℄ = d[n-4℄ * -7 + d[n-3℄ * 26 - d[n-2℄ * 97 + d[n-1℄ * 362 - d[0℄ * 97 + d[1℄ * 26 - d[2℄ * 7;}det = 3 * *det3;/* Calulation of b and d: */for(j = 0; j < n-1; j++) {b[j℄ = (af[j+1℄ - af[j℄) * det - ([j℄ << 1) - [j+1℄;d[j℄ = [j+1℄ - [j℄;}b[n-1℄ = (af[0℄ - af[n-1℄) * det - ([n-1℄ << 1) - [0℄;d[n-1℄ = [0℄ - [n-1℄;}
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so i is i = 14 + 2 os(i2�n ) :Hene, the exat omputation requires only the alulation of one FFT, whose run time isO(n lnn).
6.4.5 ResultsIn order to assess the auray of the approximate algorithm, a few simple experiments weredone:

1. Generate 100 sets of n random ontrol points eah �tting into a window slightly smallerthan QCIF: xj 2 [10; 165℄ and yj 2 [10; 133℄.2. Solve the spline problem for eah of the 100 sets of nodes using the approximate algorithmand a non-approximate algorithm.3. For eah set, alulate the maximum error between the two versions of the spline. Thiserror is alulated independently in x (ex) and y (ey).4. Calulate an upper bound for the error between the two lines7: qe2x + e2y.5. Calulate the maximum of the upper bounds alulated for eah set.
The above experiment was repeated for di�erent numbers of nodes. Sine the algorithm usedis exat for n � 6, the experiments were done only for n > 6, viz. n = 7, 8, 9, 10, 15, 20, 40,and 100. The maxima of the upper bounds (whih an be onsidered as estimates of the errorupper bound for eah number of nodes) are shown in Table 6.3.Observation of the error table leads to the onlusion that the approximate algorithm produeserrors of at most 1=3 of a pixel when working on ontrol points loated in a window of aboutQCIF size. Hene, it is a good andidate for eÆient implementation.
6.5 Conlusions
A amera movement ompensation method was presented in Setion 6.1. The method has beenshown to lead to small improvements in lassial odes suh as H.261. As disussed, this doesnot render amera movement estimation useless, sine it is important information to be around7This is an upper bound for two reasons. The �rst is that the maximum errors in x and y usually do not ourfor the same t. The seond is that the error between two lines should atually be alulated as the maximum ofthe distane between any point in one of them to the nearest point in the other.



6.5. CONCLUSIONS 253n error upper bound7 0:1017758 0:3047619 0:11603810 0:23029815 0:27095320 0:2858140 0:283622100 0:299161Table 6.3: Table showing the evolution with n of the estimated error upper bound.
for the end user to use in its manipulations of the ontents of video sequenes, besides being ofuse for indexing and amera stabilization.A systematization of the �eld of partition oding has been proposed in Setion 6.2. It hasthe form of a taxonomy tree whih is divided in two main levels: partition type and partitionrepresentation. The proposed systematization is believed to simplify the omparison betweenpartition oding tehniques, by establishing learly whih type of partitions a given partitionoding tehnique addresses, and whih partition representation that tehnique is based on.An overview of the partition oding tehniques available for eah partition type and the orre-sponding partition representations has been presented in Setion 6.3.Finally, some suggestions for eÆient approximate implementations of losed ubi splines havebeen proposed in Setion 6.4, whih may be of use in parametri urve partition oding teh-niques.
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Chapter 7
Conlusions: Proposal for a newode arhiteture
In the previous hapters a series of analysis and oding tools were developed. Spatial analysistools were developed in Chapter 4 and disussed in the uni�ed framework of SSF and relatedgraph theoretial onepts. Time analysis tools were developed in Chapter 5, where ameramovement estimation algorithms and image stabilization methods have been proposed. Codingtools were developed in Chapter 6, whih additionally proposed a systematization of the �eldof partition oding. The logial onlusion for this thesis is a proposal for a ode arhiteturethat might integrate most of these tools. The next setion ontains suh a proposal, whih isfollowed by suggestions for future work and by the list of the thesis ontributions.
7.1 Proposal for a seond-generation ode arhite-ture
This setion proposes an arhiteture for a four-riteria (bitrate, distortion, ost, and ontentaess e�ort) seond-generation video ode. This work as already been published in [117℄, andit owes muh to the fruitful disussions between the author and the Image Proessing Groupof the UPC (Universitat Polit�enia de Catalunya), whih later made their own ontributionthrough the Sesame veri�ation model proposal to MPEG-4 [30℄.Possible soure models for odes with the proposed struture are disussed in this setion.The main bloks of the ode, namely image and motion analysis, are also disussed and somepossible solutions proposed.From the point of view of this proposal, the MPEG-4 funtionalities [139℄ onsidered are thoseaddressing ontent aess and improved oding eÆieny. The objetive is thus to minimizerate, distortion, and ost (i.e., maximize oding eÆieny) as well as to minimize the ontentaess e�ort (the \fourth riterion" [162℄). Notie, however, that ontent manipulation is notaddressed here. A simpli�ed objetive was deemed to be the provision for means to aess easily255
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the ontent of a video stream.The main bloks of the proposed arhiteture are desribed from a funtional point of view,and the requirements eah blok must ful�ll are presented.

7.1.1 Soure model
The soure model seleted is not new [40℄: exible 2D+1/2 objets. That is, objets areunderstood as 2D regions that an hange shape over time (exibility), and that an overlapeah other. This is the same model used in Sesame. Eah objet's motion an be desribed by asingle set of motion model parameters. The motion model used an be translational, aÆne, ormore omplex. As to textures, no expliit assumptions are made, exept that motion boundariesshould oinide with texture boundaries (exept in pathologial ases).Aording to the adopted soure model, objets are de�ned as a set of regions with oherentmotion. Hene, image analysis, within this framework, is based essentially on motion analysis.This means that objets an be, and usually will be, inhomogeneous in terms of texture.The approah taken by MPEG-4 has been di�erent [77℄. Essentially, MPEG-4 is an extensionto previous MPEG standards providing \sequenes" with arbitrary shapes, viz. VOs (VideoObjets). Usually the VOs orrespond to objets with some semantial meaning. MPEG-4 also provides a strutured sene desription as an ayli graph of nodes speifying bothsyntheti and natural objets. In the later sense, MPEG-4 is also an extension of the VRMLstandard. Nevertheless, the inside (olor or texture) of the VO, and its time evolution, isspei�ed with tehniques whih stem diretly from the previous MPEG standards and H.261and H.263 [136, 137, 62, 63℄, even if some more modern approahes, suh as sprites, meshes andfae objets, are used. Notie, however, that the insides of sprites are also still enoded withtehniques whih an be lassi�ed as low-level vision, and that fae objets, whih orrespondto a 3D sene desription, an hardly be onsidered generi, sine they apply only to a verypartiular type of sene. It an be said that MPEG-4 video is lassial texture oding onarbitrarily shaped objets. Even if it indeed an be lassi�ed as a good step towards seond-generation video oding, it is still in the transition. The Sesame [30℄ proposal to MPEG-4,whih was not aepted due to its weaker performane, ould, on the other hand, be lassi�edas truly seond-generation.It is expeted that MPEG-4 version 2, through its provision for programmable terminals, willallow more sophistiated arhitetures, suh as the Sesame one or the one proposed here, tobe developed independently and blended into the tool set of MPEG-4 to provide extendedfuntionalities or apabilities.In the following, the word image may be replaed by VOP, thus allowing the proposed arhi-teture to be used for enoding of arbitrarily shaped sequenes.
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7.1.2 Code arhitetureFigures 7.1 and 7.2 show the proposed arhiteture for the ode. The main blok is \Imageanalysis", whih partitions eah image into its omposing objets, eah with an estimated set ofmotion parameters. Motion parameters are (di�erentially) enoded by the \Motion parameterenoding" blok. The \Partition enoding" blok enodes the image partition di�erentiallyusing the estimated motion for ompensating the partition of the previous image. After \Motionompensation" of the previous deoded image, new objets and unovered areas of the imageare enoded using an intra mode. The \Detetion of MF (Model Failure) areas" blok detetsareas in the image where the underlying soure model fails. Those areas are then enoded bythe \Enoding of MF partition" and \Enoding of MF texture" bloks.
The interfae signalsSome interfae signals have been de�ned in the blok struture:
P , E Denote the image partition and the extra partition parameters. These signals representthe urrent partition and extra parameters related to its spatial and temporal struture.P may be simply a partition image, where eah lass label orresponds to an objet,some speial values being used to identify unovered parts of objets. Notie that noonstraint on the onnetivity of objets was mentioned: an objet an onsist of aolletion of disjoint onneted regions (disonneted lasses). E onsists of some of thefollowing extra information about the partition: number of lass labels in use, maximumlabel in use, graph of olusions, that is a graph speifying whih regions overlap whih,and information regarding the temporal evolution of objets, that is whih lasses arenew and whih no longer exist, or whih lasses where split or joined together.PMF Denotes the MF partition (see disussion below).M Denotes the motion model parameters. A vetor of motion model parameters for eahobjet in the sene (new objets may lak this information, though). These parametersmay be translational parameters, aÆne motion parameters, or parameters of some othermore omplex motion model. It may also inlude parameters of a given amera movementmodel used, used to ompensate global motion in the sequene.I Denotes an image.
Image analysisThe purpose of the \Image analysis" blok is to desribe the sene in terms of its omponentobjets, aording to the soure model de�ned. As a �rst approah to the problem, this analysisis supposed to be done in a ausal way and by looking at no more than two images at a time.This approah has been seleted beause real time and low delay video ommuniations areenvisaged. One should keep in mind, however, that for appliations suh as storage, theserestritions do not neessarily apply.
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Image analysis is required to segment the urrent image (using also the previous image, theprevious partition information, and the previous motion parameters) into a set of onnetedregions, grouped into (not neessarily onneted) objets: a partition. Often the detetedobjets will onsist only of parts of the real objets in the sene, e.g., in the ase of olusion byother objets. These objets will mostly be related to objets present in previous images, thoughnew objets are likely to appear from time to time. This partition is additionally required toontain information about unovered regions. Unovered regions should be labeled as belongingto one of the adjaent regions. For all pratial purposes, new objets are unovered areas thatare not deemed to belong to any of the adjaent objets.Objets should have oherent motion, i.e., all visible (non-unovered) parts of an objet shouldbe represented by a single set of (bakward) motion model parameters, also obtained by thisblok. The partition should desirably be oherent with the underlying texture. For that, spatialanalysis may have to be used, as disussed in Chapter 4.If there is amera movement in the sene, the image analysis blok should estimate its parametersaording to a given amera movement model, as disussed in Chapter 5.Finally, the image analysis blok is required to take into aount the evolution of the objetsin the sene. That is, segmentation should also be oherent in time. This is why the previouspartition information and the previous motion parameters are fed bak into the image analysisblok.
Partition enodingThe \Partition enoding" blok should enode the urrent image partition and the extra pa-rameters as eÆiently as possible. It seems reasonable to expet that onsiderable savings inbitrate may result from enoding partitions di�erentially using motion ompensation. Notie,however, the following problems:

1. in order to motion ompensate (projet) objets from the previous image into the urrentimage, forward motion must be available; and2. the motion parameters of an objet are usually enoded with respet to the objet'sshape and position, and the objet's shape and position are preditively enoded usingthe objet's motion.
Hene, apparently, problem 1 makes it neessary to invert motion estimation from bakwardto forward, whih would reate additional problems when ompensating the inside (texture)of regions, viz. the possibility of gaps appearing, while problem 2 reates a hiken and eggdilemma.However, if motion models suh as aÆne are used, the problems are easy to solve. As toproblem 1, aÆne motion is almost always invertible, so it is simple to obtain forward motionfrom the bakward motion parameters. Regarding problem 2, one an always enode the aÆnemotion parameters with regard to the objet shape and position in the previous image.
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The graph of olusions from the previous partition image is used here to deide whih objettakes preedene over whih in ase several ompensated objets overlap.As to the graph of olusions itself, its topology often does not need to be enoded, sine it isimpliit in the deoded partition. Hene, both oder and deoder are able to build the sameundireted graph, given the urrent image partition. By making the graph direted, olusionsmay be represented. If an ar is undireted, the regions do not olude eah other. If itis direted, the diretion spei�es whih region oludes whih. Diretion information mustbe enoded for eah ar in the impliit undireted graph. If mutual olusions our, thenmultigraphs may have to be used, eah parallel ar speifying a segment of boundary betweentwo regions with given olusion harateristis. This extra information may also be built ontop of the impliit undireted (simple) graph.The predition error of the motion ompensated partition an be enoded using the tehniquesdisussed in Chapter 6.Finally, some means of enoding the temporal evolution of objets, in terms of split and mergedobjets and of disappeared and newly appeared objets, must be devised.
Motion parameters enodingMotion model parameters are a very sensitive type of information. Motion enoding errors anhave onsiderable reperussion in the quality of motion ompensation and hene on the qualityof the predited image obtained by motion ompensation. Thus, motion parameters shouldprobably be enoded losslessly or at least with high auray. Some sheme for di�erentiallyenoding the motion parameters for eah objet will probably be of use.Often the best way of enoding the parameters of some model (of texture or of motion) ina given region is to send samples of the region values whih are suÆient for the deoder toestimate aurately the original model parameters. Often the loation of these samples anbe inferred by the deoder with the available information, whih may or may not inlude theregion shape. The advantage of this sheme over shemes where model parameters are enodeddiretly stems from the fat that, if the model is well behaved (and typial models are), thee�ets of quantization on the deoded region are more learly understandable if this operationis performed on the funtion samples than if it is performed diretly on the model parameters.A typial example is aÆne motion models, whih are very useful for representing region motion.For 2D images, the parameters of aÆne motion of a region an be represented by three non-ollinear sample motion vetors.1 The errors of the motion vetors within the triangle limitedby the three samples will always be smaller than the quantization errors of the quantized samplemotion vetors, for eah motion vetor omponent. A reasonable hoie for the sample positionsseems to be the verties of a triangulation of the objet (e.g., the enveloping triangle with thesmallest area). Sine this triangulation may be done both at enoder and deoder, one needsonly to enode the values of the sample motion vetors of all regions, maybe in raster order,using predition as in H.263 [63℄.1If the region itself onsists of ollinear pixels, then this restrition may be relaxed. Two non-oinidentsamples are suÆient. Similarly for the trivial one-pixel region.



262 CHAPTER 7. CONCLUSIONS: PROPOSAL FOR A NEW CODEC ARCHITECTURE
As already mentioned in the previous setion, motion model parameters will be enoded beforeenoding the urrent partition, so that the partition of the previous image an be motionompensated. The above referred triangulation is thus based on the previous position andshape of the objets.
Motion ompensationOne the image partition is known and motion model parameters are available for eah objet,motion ompensation onsists simply in projeting the previous image into the urrent oneaording to the motion vetor �eld rereated from the motion parameters. If referenes fromthe future are allowed, as in MPEG-2 and MPEG-4, projetion an also be performed from thefuture, and thus also for new objets. This requires, nevertheless, anhor intra images, whereobjets are enoded without any referene, or anhor images predited only from the past. Sineinterpolation may be needed to obtain the orresponding pixel in the referene (deoded) image,progressive smoothing of the objets' texture may result. This may be solved by building anobjet store, and by ompositing the motions between suessive images in order to feth thetexture from this store. This method was originally proposed in COST211ter's SIMOC1 [39℄,and is similar to the one used for sprite update in MPEG-4.
Intra enoding of unovered textureUnovered areas are those with no orrespondene in the previous (deoded) image. They mayorrespond to new objets or to unovered areas of existing objets. These areas have to beoded in intra mode. There are several possibilities, from shape adaptive DCT and relatedmethods [184, 84, 54, 88, 87℄ to VQ (Vetor Quantization) [59℄. However, other methods maybe attempted, suh as VQ using the part of the objet that was not unovered (if it exists) asa odebook, in the ase of textured areas, or some kind of extrapolation plus predition errors,in the ase of smooth areas.For new objets, it might be useful to use texture based segmentation oding shemes, sineit would reate a smooth evolution path towards hierarhial soure models. In that ase, thespatial analysis tools proposed in Chapter 4 may prove useful, as well as the partition odingtools disussed in Chapter 6.
Model Failure bloksNo matter how omplex the motion models, there will always be some objets (or parts thereof)undergoing movements whih do not �t them. In suh ases either these objets are split intosmaller, and thus easier to model, objets, whih may be extremely inonvenient from the pointof view of ontent-based funtionalities, or motion ompensation errors, i.e., MFs [40℄, will haveto be allowed.The \Detetion of MF areas" blok uses riteria based on motion ompensation errors. Thisblok should take into aount the urrent image partition in order to produe a oherent MF
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partition. This MF partition is then enoded by the \Enoding of MF partition" blok.Finally, the \Enoding of MF texture" blok enodes the texture of the MF areas using shape-adaptive tehniques.
7.1.3 Conlusions
A new seond-generation ode arhiteture has been proposed whih may use some of the toolsdeveloped in the previous hapters. The next setion disusses how this arhiteture and thetools proposed may be improved.
7.2 Suggestions for further work
7.2.1 Code arhiteture
Regarding the proposed ode arhiteture, the �rst issue that remained for future work wasits full implementation making use of the analysis and oding tools proposed in the previoushapters.
Soure model
The seleted soure model may be improved in several ways. One of the possibilities is to allowthe objets to have memory [167℄. That is, objets an be suessively �lled from the partialinformation available at eah image. This would orrespond to the layered approah of Adelsonet al. [3℄. In his model, eah objet is represented by a mask, speifying the known shape ofthe objet, and by the objet's texture. One diÆulty with this sheme is the representationof mutually overlapping objets, though this might be solved by adding disriminating depthvalues to the objet's mask (at the expense of some extra bitrate).Other approahes inlude more realisti 3D models of the sene, though experiene has shownthat this task is tremendous, exept when a priori knowledge about the sene is available (e.g.,fae objets in MPEG-4).Finally, sine failitating the manipulation of video ontent is one of the aims of modern odes,it seems that the de�nition of objets as zones with oherent motion may not provide enoughontent aess disrimination: for instane, a stati bakground will be onsidered as a singleobjet, though the user might be interested in manipulating individual objets (suh as a paint-ing on a wall). This may lead to the de�nition of a hierarhy of objets: at the lowest levelobjets are de�ned by homogeneous texture and at the highest level by homogeneous motion.This has been the step taken by Sesame [30℄.
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Image analysis
Several tehniques an be used for image analysis:
Shape from texture (and motion from shape)Firstly segmentation is arried out using texture information only (though with provisionsto keep temporal ohereny), as in Chapter 4. Then motion is estimated for eah region.Finally objets are built from regions with motion desribable by a single set of motionparameters. Hene, time analysis is performed after a �rst step of spatial analysis.
Shape from motionOptial ow (2D projetion of the real 3D motion) is estimated �rst. Then the obtainedvetor �eld is segmented (maybe using texture for aurate boundary loalization). Fi-nally, the motion model parameters orresponding to eah region are omputed. Notiethat some optial ow algorithms detet motion boundaries that an be used to help seg-mentation. In this ase time analysis is performed �rst. In order to obtain a hierarhy ofobjets, the partition may then be re�ned based solely on spatial analysis. Hene, spatialanalysis is performed only after a �rst step in time analysis.
Simultaneous shape and motionSimultaneous motion estimation and image segmentation are attempted. These tehniquessometimes orrespond to iterative versions of the shape from motion andmotion fromshape approahes. In this ase, it is also possible to use texture information for aurateboundary loalization.
The most promising of these approahes is the last one, simultaneous analysis of shape andmotion, sine it takes into aount a basi ontradition in image analysis: a good motionestimation requires aurate segmentation of the image into objets with di�erent motion and,simultaneously, an aurate segmentation requires a good motion estimation.Apart from the desired ohereny of motion segmentation results with the underlying textureboundaries, another important point for investigation is the maintenane of temporal oherenyalong suessive image partitions. Some interesting ideas an be found in [153℄, whih havealready been applied to the spatial analysis tools proposed in Chapter 4.
Motion models
As to the motion models used, experiene has shown that translational motion is learly insuf-�ient, sine it annot desribe but the simplest types of projeted 3D motion. However, aÆnemotion models, though ertainly not enough to model the perspetive projetion of the motionof all rigid 3D surfaes, have shown to be reasonably good in most situations and relativelysimple to manage [41℄ (6 parameters per objet, instead of 2 for translational models).
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Content aess e�ortThough the proposed ode arhiteture and soure model seemmore appropriate for minimizingthe ontent aess e�ort than lassial video oding algorithms, the improvement must still bequanti�ed: standard ways of measuring the ontent aess e�ort must be devised.Other issues requiring attention are how to manipulate objets whose desription is spread alongthe enoded video stream and how to periodially refresh objet desriptions.
7.2.2 Graph theoreti foundations for image analysisAn issue whih remained for future work was the study of the theory of ell omplexes and thereformulation of the SST foundations of image analysis in their framework.An interesting question whih also remained for future work is the heking of whether anyspanning k-tree suh that eah of its onneted omponents is a SST of the orrespondingsubgraph orresponds to a SSSkT of the graph for some set of seeds. If this is true, it wouldbe interesting to relate the result to the skeletons in mathematial morphology. The assertionis obviously true if eah seed an onsist of more than one vertex: simply selet as a seedall verties of the orresponding onneted omponent. In this ase one may ask what is theminimal number of vertex seeds with the required property.
7.2.3 Spatial analysisRegion- and ontour-oriented segmentation algorithmsThe extension of all the notions to 3D, whose treatment in this thesis is only partial, and thestudy of segmentation tehniques, also with a graph theoreti framework, but now using theonepts of ow on graphs [200℄, remained for future work.Another issue requiring further work is the study of multiple solutions to the SSF or SSTproblems and their impat in the multiple solutions of the region growing, region merging, andontour losing segmentation algorithms.Finally, the development of faster implementations of the globalized segmentation algorithmsusing SST-based onepts also remained for future work.
A new knowledge-based segmentation algorithmThe lassi�ation of sequenes an be improved. A re�nement of Class 4 is possible by intro-duing information about the kind of movement in the bakground:Class 4AUniformly moving bakground, i.e., the whole bakground su�ers the same motion (a-
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ording to a given motion model) from one image to the next (e.g., \Foreman" has thiskind of bakground movement). Usually the bakground motion is due to amera move-ments.

Class 4BNon-uniformly moving bakground (e.g., \Carphone" has a non-uniformly moving bak-ground, sine the landsape seen through the windows moves independently of the bak-ground).
Assuming a translation plus isometri saling motion model, lass 4A orresponds to sequeneswhere movement in the bakground is due to amera operations suh as pan, tilt and zoom(amera vibrations an be onsidered to onsist of small pan and tilt movements). The segmen-tation of this lass of sequenes might be attempted using the same algorithms as for Class 3 ifimage stabilization is performed �rst (see Setion 5.5). Image stabilization may also be useful inthe ase of lass 4B sequenes, sine these senes usually have a dominant motion in the bak-ground (e.g., in \Carphone" the vibration, if orretly estimated, would be aneled and theonly remaining motion in the bakground would be due to the moving landsape seen throughthe window). The ombination of image stabilization and knowledge-based segmentation hasnot been attempted, and remained as an issue for future work.
RSST segmentation algorithms
The major drawbak of the desribed algorithms is that they do not deal well with textures.This drawbak, however, does not seem to be related as muh to the algorithms themselves, asto the region models used. Hene, a subjet requiring further study is region models whih anappropriately represent textured regions. As to the algorithms, the basi algorithm behind atand aÆne RSST needs to be improved to avoid over adjustment for small regions. A possibilitymight be a more thorough integration of the split and merge phases of the algorithm.A related subjet requiring further study is that of split using models, instead of the simpledynami range used in this work. Also, a formalization of the impat of split in memory andomputational power required should be performed. Finally, a memory eÆient version of thealgorithms should be implemented so as to allow pratial segmentation of larger images.
Supervised segmentation
An issue whih remained for future work is the development of supervision algorithms whihan substitute, at least partially, human intervention. Issues whih also remain for future workare the optimization of the RSST algorithms with seeds (viz. the global error minimizing ones)and the test of the region growing algorithm (for �nding the SSSSkT) with amortized lineartime exeution proposed in Setion 4.3.3.
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Time-oherent analysis
Three issues remained as the subjet for future work. The �rst is the introdution of betterregion models (e.g., aÆne), in order to avoid the false ontours, and of illumination models,to avoid the arti�ial separation of regions whih semantially are one only (see the arm inFigure 4.24). The seond is the introdution of motion ompensation so as to improve theprojetion of past partitions into the future, whih has already been done with suess in thewatershed algorithms, see [105℄. Finally, the study of region models apable of modeling boththe 2D textures and their motion from one image to the next, for instane aording to an aÆnemodel of motion.
7.2.4 Time analysis
Several issues remained for further work:1. introdution of sub-pixel aurate blok mathing, so as to improve estimation of smallpan movements;2. quanti�ation of errors in blok mathing estimates, viz. the estimation of the ovarianematrix of the motion vetors;3. quanti�ation of errors in amera movement estimates;4. introdution of rotation around the lens axis as a possible amera movement;5. improvement of interpolation of pixel values in the algorithm for image stabilization; and6. integration of motion vetor �eld smoothing with the Hough outlier detetor.
7.2.5 Coding
A few issues remained for future work:1. the extension of the partition tree to inlude a branh for line drawings or \ontoursthat may be open" (whih are not the dual of some partition); this is of interest sineontour-based oding, or image reonstrution from edges [58, 19, 37, 43℄, with its longhistory, still seems to have a large potential in image oding;2. the implementation of optimized hain oding using algorithms solving the Chinese post-man problem; and3. the extension of the taxonomy tree with a systematization of partition oding tehniques,besides partition types and representations.
7.3 List of ontributions
This setion lists the ontributions of the thesis aording to the orresponding hapter.
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7.3.1 Graph theoreti foundations for image analysisIn this ase the results are new in the framework of image analysis.1. A thorough disussion of seeded SST algorithms (viz. SSF, SSkT, SSSkT, and SSSSkT).2. An asymptotially linear amortized time algorithm for obtaining multiple SSSSkTs, fordi�erent sets of seeds, of the same graph.3. A disussion of the relation between the SSF and dual graphs, whih plays an importantrole in proving that basi region merging and basi ontour losing are one and the samealgorithm, solving the same problem.
7.3.2 Spatial analysis1. A proposal for hierarhizing the segmentation proess.2. A disussion of region- and ontour-oriented algorithms using the ommon framework ofSSTs and related onepts from graph theory.3. A disussion, in the same framework, of the main di�erenes and similarities betweenregion merging, region growing, and ontour losing, namely the duality between ontourlosing and region merging.4. A desription of the watershed algorithm as a SSSSkT problem.5. An appliation of the asymptotially linear amortized time SSSSkT algorithm for obtain-ing multiple region growing segmentations of an image, e.g., in a supervised segmentationenvironment.6. First ideas regarding globalization of information in the basi segmentation algorithms,whih may lead to a more thorough theoretial foundation for segmentation in the future.7. A knowledge-based mobile videotelephony segmentation algorithm, able to ope withvibration and amera movement.8. Extensions of the RSST algorithms, namely the new RSST, the at RSST with an addedsplit phase, and the use of aÆne models in the aÆne RSST.9. Extensions of the RSST so that seeds are used, and its use for supervised segmentation.10. Use of the seed extensions of the RSST algorithms for time-reursive segmentation ofmoving images.
7.3.3 Time analysis1. Two amera movement estimation algorithms based on blok mathing, using least squaresestimation with removal of outliers (see also [4℄), though both using motion vetor smooth-ing as an intermediate step in order to improve estimation.2. An image stabilization method making use of the estimated amera movement fators.
7.3.4 Coding1. A amera movement ompensation method for lassial odes (whih is also appliableto more modern ones, suh as those ompliant with the forthoming MPEG-4 standard).
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2. A systematization of partition types and representations in the form of a taxonomy tree.3. A suggestion for improving hain odes of mosai partitions through the solution of theChinese postman problem or related problems.4. A new fast (approximate) losed ubi spline algorithm.
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Appendix A
Test sequenes

When we look at a television program, we seemore than ikering dots: we see people.Douglas R. Hofstadter
This appendix disusses briey the formats under whih digital video sequenes are available,and then proeeds to desribe the test sequenes used in this thesis.
A.1 Video formats
Digital video sequenes usually ome in the format spei�ed by the ITU-R ReommendationBT.601-2 [20℄ or a derivative thereof. That is, in the Y 0CBCR olor spae, with an interlaedsampling lattie, where the hroma signals are horizontally subsampled by a fator of 2 relativeto the luma signal, and the hroma samples are o-sited with the even luma samples (assumingthe �rst luma sample in eah line is sample 0). This format is referred to as 4:2:2. The numberof samples is 720 horizontally and 288 vertially (for eah �eld) for the luma signal, for 625 lineTV systems (European), and 720 and 240 for 525 line TV systems (Amerian).In digital video oding, however, two di�erent formats are typially used: CIF (Common In-termediate Format) and QCIF (Quarter-CIF). Both have a 4:2:0 sampling, meaning that thehroma signals are also vertially subsampled by a fator of 2 relative to the luma signal, andboth are progressive. The number of samples in CIF is 352 horizontally and 288 vertially forthe luma signal. In QCIF it is 176 horizontally and 144 vertially for the luma signal. Theimage rate in both ases is 30 Hz. Both formats were hosen as intermediates between theEuropean SIF (Standard Interhange Format) format, with 25 Hz image rate and 352 by 288samples, and the Amerian SIF format, with 30 Hz image rate and 352 by 240 samples (bothresult in the same total number of samples per seond). It is an intermediate format beause271
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it requires time resampling to go from European SIF to CIF, and spae resampling to go fromAmerian SIF to CIF. In pratie, though, European SIF sequenes are often used as if theywere CIF. Hene, in the list of test sequenes in Setion A.2, the image rate is always indiated,if available. This inonsisteny has very little impat on the performane of the algorithmspresented in this thesis, though.Another inonsisteny has to do with the relative sample loations between luma and hromasamples. The de�nitions of CIF and QCIF in H.261 and H.263 [62, 63℄ speify that hromasamples are loated in the middle of the orresponding four luma samples in eah 2� 2 blok.However, MPEG-4 [77℄ spei�es that hroma samples are loated in the middle of the twoleft luma samples in eah 2 � 2 blok, whih is ompatible with the format spei�ed by theITU-R Reommendation BT.601-2 [20℄. Hene, in the list of Setion A.2, sequenes whihare oÆial MPEG-4 test sequenes are indiated expliitly. Those sequenes have the ITU-RReommendation BT.601-2 positioning of samples, while the other sequenes are believed tohave the H.26x positioning of samples. Again, this small inonsisteny has very little impaton the performane of the algorithms presented in this thesis.Some algorithms in the thesis, notably the segmentation ones in Chapter 4, make use of theR0G0B0255 olor spae, where all olor omponents have the same number of pixels (no subsam-pling), and the samples of the three olor omponents have the same loations. Conversion fromthe Y 0CBCR CIF and QCIF format to R0G0B0, with the same number of samples as the lumasignal, has been performed in two steps. In the �rst step, the hroma signals have been upsam-pled by a fator of 2 horizontally and vertially through simple repetition (sample-and-hold).Then, the following olor spae transformation has been performed for eah pixel:R0255 = �596 � (Y 0 � 16) + 817 � (CR � 128)�==9;G0255 = �596 � (Y 0 � 16)� 201 � (CB � 128)� 416 � (CR � 128)�==9, andB0255 = �596 � (Y 0 � 16) + 1033 � (CB � 128)�==9;where ==9 means rounded division by 29 = 512. The alulations have thus been performed ininteger arithmeti. The transformation was taken from [164℄, but an extra bit of preision wasadded.
A.1.1 Aspet ratiosSequenes in the ITU-R Reommendation BT.601-2 format are obtained through sampling ofTV signals with a piture aspet ratio of 4/3. The CIF and QCIF sequenes are typiallyobtained by subsampling sequenes in the ITU-R Reommendation BT.601-2 format. Hene,the proedure for obtaining a CIF sequene from a ITU-R Reommendation BT.601-2 Europeansequene is:

1. Drop the seond �eld in eah frame. The result is a 25 Hz sequene with 288 lines of 720luma pixels and 360 hroma pixels.2. Subsample both the luma and hroma signals by a fator of two horizontally (the �ltersfor the hroma signals are di�erent aording to the desired sample positioning: H.26x
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or MPEG-4). Eah result image will thus have 288 lines with 360 luma samples and 180hroma samples, orresponding to an image area with 4/3 aspet ratio.3. Subsample the hroma signal by a fator of two vertially. The resulting images thus have288 lines of 360 luma pixels and 144 lines of 180 luma pixels.4. For eah luma line, drop the �rst and the last four pixels. Also drop the �rst and the lasttwo pixels of hroma. The result will have the CIF spatial format, though with a 25 Hzimage rate.5. Resample the images in time to go from 25 Hz to 30 Hz.

The onversion to QCIF is usually performed from the CIF sequenes and involves only sub-sampling.Hene, it an be easily onluded that the aspet ratio of the CIF and QCIF pixels is 43603288 , whihis 16=15. However, some authors mention a slightly di�erent value of 128=117 (f. 16=15 =128=120), arguing that not all of the 720 samples, only 702, are viewable in the 4/3 sreen [168℄.
A.2 Test sequenes
In this thesis the only formats used are CIF and QCIF, though with the nuanes mentioned inthe previous setion. Sequenes may be quali�ed by the aronym of their format, suh as CIF\Carphone" or QCIF \Foreman". When they appear without any quali�er, the format shouldbe understood to be CIF, unless it is lear from the ontext that the format is QCIF. Theimages in the sequenes are numbered from zero, i.e., the �rst image is image 0. The sequenesused are desribed below (the �rst images of eah sequene are shown in Figures A.1 and A.2).The onept of lass, de�ned in Chapter 4, is used in the desriptions:
\Carphone" (CIF and QCIF, 25 Hz, 382 images)Videotelephony sequene on a mobile, ar mounted devie. The sequene exhibits ameravibration and bakground motion (the landsape seen through windows). Most of thetime it is a lass 4 sequene. [Shot by Siemens, Germany, for the CEC RACE MAVTprojet.℄\Claire" (CIF and QCIF, 25 Hz, 494 images)Videotelephony sequene on a studio with a �xed and relatively uniform light bakground.The bakground, however, is quite noisy, making it hard for motion estimation. It is atypial lass 1 sequene. [Shot by CNET, Frane.℄\Coastguard" (CIF and QCIF, 25 Hz, 300 images, MPEG-4)Outdoors sene showing part of a river with two moving boats and water movement, andshowing also the bank of the river.1 It has several panning amera movements.1Images 277 and following are orrupted, so \Coastguard" has really 277 images.
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\Flower Garden" (CIF only, 25 Hz, 125 images)Camera traveling movement over a sene with a sloping garden and a row of houses. Inthe �rst plane, though out of fous, the trunk of a tree.\Foreman" (CIF and QCIF, 25 Hz, 300 images, MPEG-4)Videotelephony sequene on a mobile, hand-held devie. Small panning amera move-ments our, together with some rotation of the amera around its lens axis. The �nalpart is a large panning movement in whih the speaker disappears from the image. Inthis last part the amera rotation movements are more prominent. Most of the time it isa lass 4 sequene. [Shot by Siemens for the CEC RACE MAVT projet.℄\Grandmother" (QCIF only, 25 Hz, 870 images)Videotelephony sequene with a �xed bakground, ontaining parts of a sofa and leavesof a plant against an uniform wall.\Miss Ameria" (CIF and QCIF, 30 Hz, 150 images)Videotelephony sequene on a studio with a �xed and uniform dark bakground.2 It haspoor ontrast between the bakground and the speaker, notably beause of the dark hair.It is a lass 1 sequene.\Mother and Daughter" (QCIF only, 25 Hz, 961 images)Videotelephony sequene with a �xed bakground ontaining parts of a sofa and a pitureagainst an uniform wall.\Salesman" (CIF and QCIF, 30 Hz, 449 images)Videotelephony sequene in a home or oÆe environment with a �xed, highly non-uniformand strutured bakground. The speaker sometimes nearly stops. It is a typial lass 2sequene.\Stefan" (CIF and QCIF, 25 Hz, 300 images, MPEG-4)Sports TV sequene with a tennis player on a rather uniform tennis �eld and with tex-tured publi in the seats. The sequene has strong panning movements and some zoommovements.\Table Tennis" (CIF and QCIF, 25 Hz, 300 images, MPEG-4)Television sequene of a table tennis game. It has two di�erent shots with a lear sepa-ration. The �rst shot has a lean zoom movement approximately between images 20 and107. The bakground is �nely textured. [Shot by CCETT, Frane.℄\Trevor" (CIF and QCIF, 25 Hz, 150 images)Videoonferene sequene on studio with �xed but non-uniform bakground.3 It is dividedin two shots, the �rst merging through an average image (image 59) to the seond. The�rst shot is a vertially split two-view videoonferene sene in a studio, with severalpersons in eah view. It has 59 images (0 to 58). The seond shot (Trevor, one maypresume) is a typial head and shoulders sene with 90 images (60 to 149), whih may beseen as videotelephoni. The seond shot is lass 2. In the text, only the seond shot isused. [Shot by BTRL, UK.℄2The CIF version of \Miss Ameria" has really 360 pixels per line.3The CIF version of \Trevor" is available only as part of the \VTPH" sequene, see below.
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Additionally, there is a sequene alled \VTPH" (reated by CSELT, Italy) whih was editedfrom \Claire", \Miss Ameria", and \Trevor". It has 160 images (0 to 159), the �rst 80 omingfrom the beginning of \Claire" (with a temporal subsampling of 3, so that only every thirdimage are extrated, from 0 to 3 � 79), the next 51 (80 to 130) oming from the beginning of\Miss Ameria" (also with a temporal subsampling of 3),4 and the last 29 (131 to 159) omingfrom \Trevor", starting at image 60 (also with downsampling of 3, from 60 to 60+3�28). Thesequene is thus a onotion whih simulates a hypothetial videotelephony onferene talkshot at 10 Hz.5

4It should be notied that the \Miss Ameria" part of the sequene su�ers from two problems, whih in noway invalidate the results of the simulations. Firstly, the images are missing 12 lines at its top (orrespondingto bakground), and have the same number of lines of noise in the bottom. Seondly, image 100 of the \VTPH"sequene is a repetition of image 99, i.e., images 19 and 20 of the \Miss Ameria" shot are equal (both orrespondto image 57 in the original \Miss Ameria" sequene).5Rigorously speaking, the \Claire" and \Trevor" parts are 25=3 Hz.
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(a) \Carphone" image 0. (b) \Claire" image 0 (image 0 of\VTPH").

() \Coastguard" image 0. (d) \Flower Garden" image 0.

(e) \Foreman" image 0. (f) \Grandmother" image 0.
Figure A.1: The test sequenes.
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(a) \Miss Ameria" image 0 (image80 of \VTPH"). (b) \Mother and Daughter" image 0.

() \Salesman" image 0. (d) \Stefan" image 0.

(e) \Table Tennis" image 0. (f) \Trevor" image 60 (image 131 of\VTPH").
Figure A.2: The test sequenes (ontinued).
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Appendix B
The Frames video oding library

It has been often said that a person does not re-ally understand something until after teahing itto someone else. Atually a person does not re-ally understand something until after teahing itto a omputer ... Donald E. Knuth
The Frames library of ANSI-C funtions was developed to simplify the task of writing videooding and image proessing algorithms:1. Frames is free, it is under the GPL (GNU General Publi Liene) of the FSF (FreeSoftware Foundation);2. Frames's urrent version is 3.2;3. the Frames doumentation an be found in [118℄, though the doument reets version 2of the library; and4. Frames will soon be put into an FTP (File Transfer Protool) site; for the time being opiesof Frames an be asked from the author by sending email to Manuel.Sequeira�iste.pt.Frames was started in July 1992, and has been evolving ever sine. It had small but signi�antontributions made by Carlos Arede, Diogo Dias Cortez Ferreira, Paulo Correia, and, speially,Paulo Jorge Louren�o Nunes. The bug reports of many users of the library were also a greathelp.The next setions briey desribe the Frames library.

279
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B.1 Library modules
This library is omposed of several modules, eah of whih de�nes data and funtions withrelated purposes. A list of the orresponding header (interfae) �les and a brief desription ofeah is given below (the pre�x of funtions, maros, types and global variables is shown betweenbraes). The modules are always desribed through their header �les.

1. Basi header �les:frames.h { inludes all headers from the library, thus giving aess to all its data stru-tures, maros, and funtions.types.h { de�nes several basi types and maros; all other header �les inlude this one.errors.h { fERRg implements onsistent error proessing aross the library.io.h { fIOg basi input/output funtions (partially substitutes stdio.h).matrix.h { fMg de�nes (3D) matrix data types and a wealth of funtions whih operatewith them.mem.h { fMEMg memory alloation module.sequene.h { fSg implements data strutures and funtions for dealing with video se-quene �les.2. Main header �les:arguments.h{ fARGg tools for ommand line argument proessing.bitstring.h{ fBSg module dealing with strings ontaining only haraters '0' and '1', whihare interpreted as numbers in binary representation.buffer.h{ fBg general bu�er tools (urrently de�nes a bit bu�er �le designed for bit-levelreading and writing).h.h{ fCHCg tools for Cooperative Hierarhial Computation analysis of images [16℄.olorspae.h{ fCSg tools for olor spae spei�ation and onversion.ontour.h{ fCg tools for ontours and partition matries.dt.h{ fDCTg funtions for alulating the DCT.draw.h{ fDg funtions for drawing on image matries.filters.h{ fFg disrete 2D or 3D image �lters and operators.
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fstring.h{ fFSg module de�ning a speial type of harater string, ompatible with all ANSI-Cstring funtions, whih an be made to grow automatially as needed when funtionsfrom this pakage are used.getoptions.h{ fGOg tools for proessing ommand line arguments. It performs a similar funtionto arguments.h, though it is simpler and easier to use.graph.h{ fGg tools for proessing simple graphs.heap.h{ fHPg implementation of heaps, i.e., eÆient hierarhial (or priority) queues.list.h{ fLg implementation of simple lists.mahine.h{ mahine dependenies �le (generated during installation).mmorph.h{ fMMg mathematial morphology operators (but no watersheds...).motion.h{ fMDg tools for motion detetion and estimation.options.h{ fOPTg funtions to use together with arguments.h for ommand line option pro-essing.parse.h{ fPg a simple parser of option �les.qsort.h{ fast maros for sorting vetors (faster than using the ANSI-C library funtionqsort()).random.h{ fRANDg pseudo-random number generators.selet.h{ fast maros for seleting the nth largest element of a vetor.spiral.h{ fSPg funtions dealing with spirals and distanes in latties.spline.h{ fSPLg funtions for alulating the oeÆients of splines.splitmerge.h{ fSMg framework for segmentation algorithms with a split phase and three mergephases (see [33℄).string.h{ funtions working on strings whih omplement the ANSI-C libraries.vl.h{ fVLCg tools for VLCs.
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A brief desription of the most important modules (header �les) is given in the setions below.
B.1.1 types.h
Digital images have usually well de�ned sizes, in bits, for storing eah olor omponent of thepixels. Being so, it is very important for an image proessing library to de�ne appropriate typeswith �xed, mahine independent sizes. It is the main purpose of this module. It de�nes integertypes with 8, 16, and 32 bits, signed and unsigned. If the mahine does not support suh a setof integers, the library will not ompile. It also de�nes a boolean type whih is missing in C.For reasons of onsisteny, this module also de�nes oating point types, though with mahinedependent sizes and preisions. Several general purpose maros are also de�ned in this module.
B.1.2 errors.h
Error onditions are dealt with in a onsistent way aross this library. Usually funtions wherea fatal error ours return an error indiation (in the form of a speial return value) and storeinformation about the error in variables internal to the errors.h module, the so-alled errorags. The user may then hek for errors and proeed appropriately, e.g. by aborting exeutionand printing an error message. If maro DEBUG is de�ned in this module at ompile time, thenerror messages are printed immediately as they our. The same behavior an be obtained usingthe one of the module funtions. In any of these ases, the program will be said to be in debugstate.There are three lasses of events: errors, warning and diagnosti. Non fatal events (i.e., warningsand diagnostis), do not set the error ags. Messages are printed only if the program is in debugstate for the orresponding lass of events, otherwise nothing is done. There are funtions forhanging the debug state of eah of the event lasses. It is also possible to lear error onditionsand to ask for a string desribing the urrent error.
B.1.3 io.h
This module de�nes types and funtions whih deal with basi input/output. It ontains basi-ally substitutes for the ANSI-C stdio.h funtions and types. As with some of the funtionsof mem.h, this was done to provide onsistent error heking aross the library. It also ontainsprovision to attah a debug output stream to any given output stream. This allows printingommands to print to the two streams. This may be used to send to the terminal all the textthat is also printed in a given �le.
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B.1.4 mem.hThis module provides the same funtionality as the memory management funtions of ANSI-C,though with error proessing onsistent with the rest of the pakage (see Setion B.1.2). It alsoadds a few funtions simplifying the task of dealing with 2D and 3D dynami arrays of anytype.
B.1.5 matrix.hThe matrix module de�nes types and funtions dealing with matries (3D arrays of elementsof the basi types). Even though all matries are really 3D, and hene organized into planes,lines, and olumns, the user may use them as 2D matries almost transparently. Matries anbe either temporary or permanent. The validity of permanent matries is not a�eted by anyfuntions in this module exept for the memory freeing funtions. Temporary matries are usedto store intermediate results of matrix operations and are destroyed immediately after beingused.For funtions whih require a matrix to store the operation result, a null return matrix passedas an argument will fore the reation of a temporary matrix. Temporary matries are freedautomatially when passed as operands (and not as result matries) of matrix funtions (exeptfor output funtions and exept for self operating funtions). Temporary matries an be setpermanent and vie versa.Aside from permanent or temporary, matries an also be ategorized as:1. sub-matries vs. �rst-hand,2. ontiguous vs. non-ontiguous,3. stati vs. dynami,4. restrited vs. full.Sub-matries are just like regular matries exept that the data they refer to belongs to anothermatrix. Sub-matries an be used to refer to part of matrix (e.g., only even lines) withoutworrying about indexing issues. Changing the original matrix will hange orrespondingly thesub-matrix (sine their data is the same), and vie versa.Contiguous matries have their planes and lines stored one after another in memory withoutgaps. This means their data an be aessed as a large vetor having the same number ofelements as the matrix itself. Contiguousness an onsiderably inrease the speed of somematrix funtions. Usually sub-matries are also non-ontiguous.Regular matries are dynami, and are reated by funtions of this module. However, somefuntions allow you to \fool" the library by masking an existing matrix so that it looks like alibrary matrix. These matries are named stati beause their data is not freed by funtions ofthe Frames pakage.Also, eah matrix an be in restrited mode. In this mode, the number of planes, lines, andolumns of the matrix are set as if the matrix were smaller then its real size. This allows
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funtions to operate on a small window of the real matrix without having to use speial funtionsor worrying about indexing issues. It also allows the remaining elements of the matrix to beaessed using otherwise invalid indies. Restriting is reentrant and reversible: a matrix maybe restrited any number of times and then unrestrited suessively.This module ontains a large number of funtions operating on matries. Speial versions ofthe funtions are also usually available. Funtion with names ending in S store the result in the�rst operand matrix, and thus do not have a result argument. Funtions with names ending inS use as seond operand a salar value instead of a matrix. Funtions with names ending inSS use as seond operand a salar value instead of a matrix and store the result in the �rstoperand. Funtions with names ending in P work only on a 3D sub-matrix (for 2D matries thesuÆx R may be used). Of ourse, ombinations of P or R with S and S are possible.
B.1.6 sequene.hThis module de�nes funtions and types whih simplify reading and writing the �les orrespond-ing to sequenes of images. At present only the IST sequene format is supported (see [118℄for a desription of the format). The reading and writing funtions are apable of automatiolor spae onversion. Support for pixel aspet ratios, di�erent bits per pixel formats, et. isprovided. Images are read and written using matries (see previous setion). Use of 3D matriesallows several images to be read or written at the same time.
B.1.7 ontour.hThis module deals with ontours and partitions. It ontains funtions dealing with partitionmatries, ontour matries, ontours, et. Funtions for alulating the onneted omponentsof label images are also provided.
B.1.8 dt.hThis module ontains funtions for alulating the DCT and its inverse. The funtions werebuilt speially for 2D DCTs over retangular regions. The alulations are performed in inte-ger arithmeti with a preision spei�ed by the user. Provision for heking whether a givenpreision omplies with the IEEE (The Institute of Eletrial and Eletronis Engineers, INC.)standard 1180-1990 is also inluded. Compliane with that standard is required by most videooding standards.
B.1.9 filters.hThis module ontains funtions that �lter matrix images in several ways. Essentially two typesof funtions exist: those whih operate on isolated pixels (salar �lters) and those whih oper-



B.1. LIBRARY MODULES 285
ate over windows or neighborhoods (windowed �lters). In general the size of the windows orneighborhoods is enoded in the funtion name.The fat that the value of a pixel depends on the values of a surrounding window poses someproblems near the borders of the images. By default, the funtions adapt to this situation byreduing the number of pixels available for alulation. When other solutions are used theyare expliitly enoded in the funtion name by means of a post�x. Currently, the only post�xavailable is M, when the value of inexistent pixels beyond the image borders are obtained byreetions of the existing pixels (mirror e�et).Two other post�xes exist (unrelated to windowing e�ets near borders, though): T and Tr. The�rst is used when the �lter result is thresholded so that the output is either 1 or 0 aordingto whether the result is larger than the threshold or not (the threshold is passed as the lastargument of the funtion). Tr is used when the �ltered result is alulated using trunationinstead of rounding (of ourse, this only make a di�erene for integer matries).Yet another ategory of �lters exists: those whih interpret the images as being binary. Forthese funtions a zero is a zero, anything di�erent from zero is seen as a one. Instead of beingpre�xed by F these funtions are pre�xed by Fb.With some exeptions, the funtions in this module are very similar to the ones of the matrixmodule. When an input matrix in temporary, it is freed. When the output matrix does notexist, a temporary matrix is reated.
B.1.10 graph.hThis module deals with simple graphs. It will soon be extended to deal also with pseudographs.It was implemented so that:1. user data is easily assoiated with both verties and ars;2. verties and ars have an assoiated label and weight;3. when ertain operations are done over a graph or one of its ars or verties, appropriateuser funtions (alled hooks) are invoked;1 and4. even if it implies additional memory expenditure and redundany, the data struturerepresenting a graph is easily aessible in several ways (there is a list of all ars, a list ofall verties, and eah vertex ontains a list of its own ars).Funtions are available for inserting and removing verties and ars to and from a graph, forperforming mergings and splits of verties, for oloring a graph, et.
B.1.11 heap.hOften image proessing tasks suh as segmentation, edge detetion, and motion estimation,require the minimization of ost funtionals. Some of the optimization tehniques whih an be1In a sense, this allows users to sub-lass the graph data struture.
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used to solve suh a minimization problem require that one keeps trak of the element of a sethaving the minimum value, where the set an vary along the optimization.This module de�nes a data struture and funtions whih help to trak very eÆiently theminimum value in a hanging set of elements, eah with an assoiated value. The module isvery eÆient provided that:1. after eah hange in the set, the number of eliminated elements is small ompared withthe ardinal number of the set; and2. eah set hange should a�et the values of a small number of set elements;where a set hange means the total hanges required so that the next iteration of the algorithman proeed, that is, all the hanges until the new minimum value in the set is required.Traking of minima is done by assoiating a heap tree struture to the user data strutureontaining the elements from whih the minimum is to be found.The heap trees de�ned in this module are basially binary trees with N leaves, where N is thenumber of elements of the set from whih the minimum is to be traked. Eah node, exeptthe leaves, has two hildren (branhes). The leaves store (as generi pointers) the user dataassoiated to the elements of the set. All other non-leaf nodes, when the heap tree is arranged,store the smallest of their hildren's value. Hene, in an arranged heap tree, the root nodealways stores the smallest value of the set. More about heaps (of a slightly di�erent type) anbe found in [28, 165℄.
B.1.12 motion.hThis module deals with motion detetion and estimation. The funtions urrently de�ned dealonly with blok mathing motion estimation. Several funtions are available, allowing for anumber of variations of the basi blok mathing algorithm. Pixel masks and lists of validmotions an be provided to the funtions. It is also possible to use short-iruited alulationwhih onsiderably dereases running time. When two or more motion vetors yield the sameminimum error, the full searh funtions in this module are guaranteed to return the smallestof those motion vetors in terms of the usual Eulidean norm (but without pixel aspet ratioorretion), exept when a list of valid motion vetors is provided, in whih ase the �rst ofthe motion vetors in the list leading to the minimum error is seleted. This allows n-stepalgorithms, or even pixel aspet ratio orreted Eulidean distanes, to be used.
B.1.13 splitmerge.hThis module deals with RSST segmentation algorithms, despite its name. The user ontrolsthe merging and splitting riteria and shedule, so the module is fully on�gurable. It makesuse of the graph.h and heap.h modules. The results of all RSST segmentation algorithms inChapter 4 were obtained by software using this module. Full support for 3D segmentation isprovided.



B.2. AN EXAMPLE OF USE 287
The user on�gures the segmentation by providing the data to segment, usually some images,and by providing points to hook funtions to be alled in partiular plaes of the algorithm.Hene, the user an speify what happens when two regions are merged or split, when anadjaeny ar is hanged, whether to regions should be merged or split, whih regions shouldbe merged �rst, et. The module also makes an aounting of region areas (or volumes) andborder lengths (or areas) to whih the user an refer whenever neessary.
B.2 An example of use
Sine this appendix only ontains a very brief desription of the Frames library, an example ofuse follows whih an make the apabilities of the library more lear.



288 APPENDIX B. THE FRAMES VIDEO CODING LIBRARYAn example of use of the Frames library:/** Program: rsst** Desription:* Segmentation as speified in the Vlahos and Constantinides* paper (1993), but with an initial split phase (whih an be* eliminated). See my PhD thesis for details.** Authors:* Manuel Menezes de Sequeira, IST.** History:* Author: Date: Notes:* MMS 1998/8/28 first release** This file is part of the frames library: a library of C funtions* for video oding and image proessing.** Copyright (C) 1998 Manuel Menezes de Sequeira (IT, IST, ISCTE)** This library is free software; you an redistribute it and/or* modify it under the terms of the GNU Library General Publi* Liense as published by the Free Software Foundation; either* version 2 of the Liense, or (at your option) any later version.** This library is distributed in the hope that it will be useful,* but WITHOUT ANY WARRANTY; without even the implied warranty of* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU* Library General Publi Liense for more details.** You should have reeived a opy of the GNU Library General Publi* Liense along with this library (see the file COPYING); if not,* write to the Free Software Foundation, In., 675 Mass Ave,* Cambridge, MA 02139, USA.*/#inlude <frames/splitmerge.h>#inlude <frames/mem.h>#inlude <frames/matrix.h>#inlude <frames/sequene.h>#inlude <frames/getoptions.h>#inlude <frames/errors.h>/* Global information about a segmentation: */typedef strut fMatrixub R, G, B; /* the image data (matries ofunsigned bytes). */ubyte maxDR; /* maximum region dynami range. */dword maxRegs; /* maximum final number ofregions. */g segmentation;/* Region data: */typedef strut fdfloat avgR, avgG, avgB; /* average of olor omponents. */ubyte minR, minG, minB; /* minimum of olor omponents. */ubyte maxR, maxG, maxB; /* maximum of olor omponents. */g region;/* Border data (atually, set of borders to the same adjaentregion): */typedef strut fdfloat errContr; /* ontribution of border elimination(region merging) to globalerror. */g border;

/* When a new region is reated: */stati void *newRegion(SMregion *smreg, SMpartition *part)f segmentation *seg = part->data; /* get segmentationinformation. */SMpppd p = *smreg->pppds; /* to get retangular region size. */region *reg; /* pointer to new region. */reg = MEMallo(sizeof(region)); /* reate new region. *//* Calulate average of olor omponents in region: */reg->avgR = MsumubP(seg->R, p.p, p.l, p., p.np, p.nl, p.n) /smreg->size;reg->avgG = MsumubP(seg->G, p.p, p.l, p., p.np, p.nl, p.n) /smreg->size;reg->avgB = MsumubP(seg->B, p.p, p.l, p., p.np, p.nl, p.n) /smreg->size;/* Calulate dynami range of olor omponents in region: */reg->maxR = MsmaxubP(seg->R, p.p, p.l, p., p.np, p.nl, p.n);reg->minR = MsminubP(seg->R, p.p, p.l, p., p.np, p.nl, p.n);reg->maxG = MsmaxubP(seg->G, p.p, p.l, p., p.np, p.nl, p.n);reg->minG = MsminubP(seg->G, p.p, p.l, p., p.np, p.nl, p.n);reg->maxB = MsmaxubP(seg->B, p.p, p.l, p., p.np, p.nl, p.n);reg->minB = MsminubP(seg->B, p.p, p.l, p., p.np, p.nl, p.n);return reg;g/* When a region is freed: */stati boolean freeRegion(SMregion *smreg, SMpartition *part)f MEMfree(smreg->data);return ok;g/* When a new border is reated: */stati void *newBorder(SMadjaeny *smadj,SMregion *smreg1, SMregion *smreg2,SMpartition *part)f region *reg1 = smreg1->data; /* get first region data. */region *reg2 = smreg2->data; /* get seond region data. */border *bord; /* pointer to new adjaeny. */bord = MEMallo(sizeof(border)); /* reate new border. *//* Calulate ontribution to global error: */bord->errContr = (sqr(reg1->avgR - reg2->avgR) +sqr(reg1->avgG - reg2->avgG) +sqr(reg1->avgB - reg2->avgB)) *smreg1->size * smreg2->size / (smreg1->size + smreg2->size);return bord;g/* When a border is freed: */stati boolean freeBorder(SMadjaeny *smadj, SMpartition *part)f MEMfree(smadj->data);return ok;g
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/* When two regions are merged: */stati boolean mergeRegions(SMregion *smreg1, SMregion *smreg2,SMadjaeny *smadj,boolean bysize, SMpartition *part)f region *reg1 = smreg1->data; /* get first region data. */region *reg2 = smreg2->data; /* get seond region data. *//* Calulate the olor omponent averages for the mergedregions and store them in the first region (reg1), whih isthe one remaining after the merge (reg2 is freedeventually): */reg1->avgR = (smreg1->size * reg1->avgR +smreg2->size * reg2->avgR) /(smreg1->size + smreg2->size);reg1->avgG = (smreg1->size * reg1->avgG +smreg2->size * reg2->avgG) /(smreg1->size + smreg2->size);reg1->avgB = (smreg1->size * reg1->avgB +smreg2->size * reg2->avgB) /(smreg1->size + smreg2->size);return ok;g/* When a border needs realulation (one of the orrespondingregions hanged): */stati boolean realulateBorder(SMadjaeny *smadj,SMregion *smreg1, SMregion *smreg2,SMpartition *part)f region *reg1 = smreg1->data; /* get first region data. */region *reg2 = smreg2->data; /* get seond region data. */border *bord = smadj->data; /* get border data. *//* Calulate ontribution to global error: */bord->errContr = (sqr(reg1->avgR - reg2->avgR) +sqr(reg1->avgG - reg2->avgG) +sqr(reg1->avgB - reg2->avgB)) *smreg1->size * smreg2->size / (smreg1->size + smreg2->size);return ok;g/* Deide whether to split a retangular region: */stati boolean shouldSplit(SMregion *smreg, SMpartition *part)f segmentation *seg = part->data; /* get segmentationinformation. */region *reg = smreg->data; /* get region data. *//* Should split only if the dynami range of some omponentexeeds the maximum allowable: */return ((reg->maxR - reg->minR > seg->maxDR) ||(reg->maxG - reg->minG > seg->maxDR) ||(reg->maxB - reg->minB > seg->maxDR));g/* Verify whether a border should be eliminated before another: */stati boolean eliminateBefore(void *smadj1v, void *smadj2v,void *dummy)f border *bord1 =((SMadjaeny*)smadj1v)->data; /* get first border data. */border *bord2 =((SMadjaeny*)smadj2v)->data; /* get seond border data. *//* The first border should be eliminated before the seond onlyif its ontribution to the global error is smaller: */return bord1->errContr < bord2->errContr;g

/* Deide whether two regions should be merged together: */stati boolean shouldMerge(SMadjaeny *smadj, SMsize nregs,SMmergePhase phase, SMpartition *part)f /* Get segmentation information: */segmentation *seg = part->data;swith(phase) fase SMbyThresh:ase SMbySize:/* The RSST segmentation algorithm of Vlahos andConstantinides has only one merge phase: */return false;ase SMbyNumber:/* Merge if the number of regions is larger than theallowable maximum: */return nregs > seg->maxRegs;gg/* For segmenting an image: */statiboolean segmentImage(Matrixdw labels, /* output partition. *//* input image matries: */Matrixub R, Matrixub G, Matrixub B,ubyte maxDR, /* maximum dynami range. */dword maxRegs, /* maximum number regions. */dword blokSize) /* initial split blok size. */f /* The partition used by the split and merge module funtions: */SMpartition *p;/* Pointer to new segmentation information. */segmentation *seg;/* Create new segmentation: */seg = MEMallo(sizeof(segmentation));/* Store image data: */seg->R = R;seg->G = G;seg->B = B;/* Store information for split and merge riteria: */seg->maxDR = maxDR;seg->maxRegs = maxRegs;/* Initialize segmentation by performing split. The hookfuntions are passed to ustomize the algorithm: */p = SMsplit(R->npla, R->nlin, R->nol, blokSize,no, /* borders are not 3D. *//* hook funtions (user funtions): */eliminateBefore, /* border ordering in merge bythreshold and merge by number (inthis ase only the latter phaseis used). */NULL, /* border ordering in the merge bysize phase (not used). */newRegion, newBorder, /* new regions and borders. */freeRegion, freeBorder, /* real frees. */freeRegion, freeBorder, /* simple removals. */realulateBorder, /* realulating a border. */mergeRegions, /* region merging. */NULL, /* border merging (not used). */NULL, /* broken border (not used). */shouldSplit, shouldMerge, /* split and mergeriteria. */NULL, NULL, /* printing regions (not used). */NULL, /* labeling regions (not used). */seg, /* our segmentation information. */NULL); /* report (not used). *//* Perform the merge steps: */while(SMmergeStep(p) != SMnoMerge)ontinue;/* Fill partition matrix with the attained partition: */SMlabel(labels,NULL, /* no number of regions neessary*/p,1); /* same resolution as input image. */SMfree(p); /* free partition. */MEMfree(seg); /* free segmentation information. */return ok;g
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/* Configuration variables for the segmentation: */stati ubyte maxDR; /* maximum dynami range. */stati dword maxRegs; /* maximum number of regions. */stati dword blokSize; /* initial split blok size. *//* Configuration variables for reading the sequene: */stati har *path; /* where to read sequenes from. */stati har *opath; /* where to write files to. */stati dword first, period, total;/* images: first, period, total. *//* For segmenting a sequene using the onfiguration above: */void segmentSequene(har *partitionName, har *sequeneName)f Sfile in; /* input image sequene. */IOfile out; /* output partition file. */dword n, last; /* image ounter, last plus one. */Matrixub R, G, B; /* input image matries. */Matrixdw labels; /* output partition matrix. *//* Open input image sequene: */if((in = SopenFile(path, sequeneName)) == NULL)exit(EXIT_FAILURE);/* Create input image matries: */if(!SreateRGBBuffers(in, &R, &G, &B))exit(EXIT_FAILURE);/* Create output partition file: */if((out = IOreatePath(opath, partitionName)) == NULL)exit(EXIT_FAILURE);/* Create output partition matrix: */if((labels = Mreate2Ddw(R->nlin, R->nol)) == NULL)exit(EXIT_FAILURE);last = first + (total == 0 ? in->pages : total) * period;/* Cyle images: */for(n = first;n < last && Sseek(in, n) && SreadRGB(in, R, G, B) == 1;n += period) f/* Segment urrent image (n): */segmentImage(labels, R, G, B, maxDR, maxRegs, blokSize);/* Write partition matrix to partition file: */Mwritedw(out, labels);gSfreeBuffers(R, G, B); /* free input image matries. */Mfreedw(labels); /* free output partition matrix. */Slose(in); /* lose input image sequene. */IOlose(out); /* lose output partition file. */g/* Main program: */int main(int arg, har **argv)f GOoptions *options; /* for reading ommand line. *//* Enumeration of ommand line options: */enum fDYNRANGE, REGIONS, BLOCKSIZE,HELP, ENV, DEF, PATH, OPATH, FIRST, PERIOD, TOTALg;/* Table of ommand line options definitions: */har *table[℄[GO_MAX_SYNONYM℄ = f/* Segmentation options: */f"-mdr", "--maxdynrange", "&12", /* default is 12. */"%argument is maximum dynami range."g,f"-mr", "--maxregions", "&10", /* default is 10. */"%argument is maximum number of regions."g,f"-bs", "--bloksize", "&16", /* default 16x16. */"%argument is initial split blok size."g,/* Help options: */f"-h", "--help", "%shows help and finishes."g,f"--env", "%show environment variables in help."g,f"--def", "%show default values in help."g,/* Sequene reading options: */f"-p", "--path", "FRAMESPATH","%argument speifies where to searh for sequenes."g,f"-op", "--outputpath", "FRAMESOPATH","%argument speifies where to write reated sequenes."g,f"-f", "--first", "&0","%argument is the first image to read."g,f"-i", "--inrement", "&1","%argument is the time period of read images."g,f"-t", "--total", "&0","%argument is the total of images to read (0 means all)."g,

g;/* Number of ommand line options: */dword n = sizeof(table) / sizeof(table[0℄);/* Help information: */GOhelp help = f"rsst","segments a sequene aording to the Vlahos and"Constantinides paper (1993), but with an initial split""phase.","1.0","August 1998","Manuel Menezes de Sequeira","1998 IT/IST/ISCTE","[options℄ partition sequene"g;boolean showEnv = no, showDef = no;har *partition = NULL;har *sequene = NULL;dword totalArgs = 0;/* Initialize option interpreter: */if((options = GOnew(table, n, argv, help)) == NULL)return EXIT_SUCCESS;/* Interpret options and arguments: */forever fswith(GOnext(options)) f/* Segmentation options: */ase DYNRANGE:maxDR = atoi(GOgetParameter(options));break;ase REGIONS:maxRegs = atol(GOgetParameter(options));break;ase BLOCKSIZE:blokSize = atol(GOgetParameter(options));break;/* Interpretation events: */ase GOargument:totalArgs++;if(partition == NULL)partition = GOgetArgument(options);elsesequene = GOgetArgument(options);break;ase GOend:if(totalArgs == 2) fsegmentSequene(partition, sequene);return EXIT_SUCCESS;gERRprint("Must suply two arguments! (-h for help)");return EXIT_FAILURE;ase GOinvalid:ERRprint("Invalid option! (-h for help)");return EXIT_FAILURE;/* Sequene options: */ase HELP:GOshowHelp(options, showDef, showEnv);return EXIT_SUCCESS;ase ENV:showEnv = yes;break;ase DEF:showDef = yes;break;ase PATH:path = GOgetParameter(options);break;ase OPATH:opath = GOgetParameter(options);break;ase FIRST:first = atol(GOgetParameter(options));break;ase PERIOD:period = atol(GOgetParameter(options));break;ase TOTAL:total = atol(GOgetParameter(options));break;ggreturn EXIT_SUCCESS;g
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