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ABSTRACT 

Sometimes, because of an atypical situation, an important mandatory association between 
classes in a UML Class Diagram must be replaced by an optional one. That semantic and 
functional impoverishment happens because the mandatory constraint must have a boolean 
value. In this paper we analyze the use of soft constraints in the UML Class Diagram, and their 
automatic repercussion in the corresponding Relational Model. The soft (deontic) constraints 
allow the formal representation of requirements, which ideally should always be fulfilled, but 
can be violated in atypical situations. In this paper we enrich a previous deontic approach, by 
introducing the ability to explicitly represent the so called Contrary-To-Duties requirements, 
i.e., domain integrity requirements that emerge as a consequence of an unfulfilled mandatory 
constraint. We support our approach with the UML/OCL language. 

Keywords: UML, Contrary-To-Duties, Relational Model , Deontic Constraints  

1. INTRODUCTION 

The paper addresses the formal representation of soft constraints in database 
applications. More specifically, the paper deals with a relational model enrichment 
that allows a flexible notion of the mandatory property in foreign key field. We have 
chosen to have a formal and a high level approach, and for that reason we have 
adopted the UML [1] notation together with the representation of OCL constraints 
[2]. 

In this paper we follow the intuitions and some of the work presented in [3].  In 
[3] the author has already proposed a relational model enrichment that allows a more 
flexible notion of mandatory fields (e.g., foreign keys fields). The motivation was to 
help the database designer in situations where a mandatory foreign key would be the 
natural solution, but cannot be implemented due to minor, although unavoidable, 
atypical situations.  

The boolean mandatory attribute is adequate for requirements that must hold 
unavoidably, but is not adequate to deal with requirements that ideally should always 
be fulfilled, but can be violated in atypical situations. If those violable requirements 
are explicitly represented it is possible to maintain both the requirement and its 
violation and, consequently, recur to monitoring procedures for violation warnings. 
Without that explicit representation, the designer must always choose a non 



 
 

mandatory value if there is a chance, even if a small one, that in an atypical situation 
the field will not be filled. 

Consider the following real example1 concerning the overtime hours control in an 
organization where sometimes the employees work for several days outside the 
organization (in the client’s organization). 

An organizational rule states that all overtime hours must be authorized by the 
employee hierarchic superior. Using a workflow system the employee fills in a 
requirement form that, if authorized by his superior, will be stored in a table record in 
which the ID of the superior must be filled in. However, sometimes the need for 
overtime hours is only detected when the employee is working outside the 
organization. A problem may arise if the employee is outside during a change of 
month (the problem is related with technical issues regarding the total amount of 
monthly overtime hours). When the employee is working outside with his superior 
the usual procedure consists of the employee sending a fax or an email (and then 
someone fills the requirement form for him) and his superior making a phone call or 
sending a fax authorizing the overtime hours. Due to security organizational 
procedures no one can electronically authorize overtime hours without a proper 
password. When the superior is outside and cannot access the system, the system 
cannot accept overtime hours. The solution adopted by the organization was to 
remove the requirement, which stated that all records of the overtime hour 
authorization table should always have the superior’s ID. 

The important aspect of the previous example is that, because of one atypical 
situation (which nevertheless happens several times) an important requirement was 
abandoned (the overtime authorization control is now made manually, where 
previously it was validated by the database). That happened because the requirement 
was inflexible. In [3] the flexible mandatory requirement is introduced in the Unified 
Modelling Language (UML) Class Diagram. The author also provides some 
guidelines about the automatic generation of the corresponding relational model 
(basically suggesting the utilization of triggers, but not providing guidelines on how 
to do it).  

In this paper we strongly enrich the approach presented in [3] (deontic approach), 
enhancing its ability of application to real systems.  The examples presented in [3] 
only consider situations where the violations of soft constraints (called deontic 
obligations) don’t have consequences to the application behavior. When a soft 
constraint isn’t fulfilled the system only has to report it. If we think in terms of the 
relational model, in those situations it is only necessary to maintain a set of views that 
reports the records where the “mandatory” fields aren’t fulfilled. In this paper we 
present three new enrichments: 

 First we introduce in the UML Class Diagram the ability to explicitly represent 
the new constraints that emerge as a consequence of the violations of deontic 
obligations (Contrary-To-Duties constraints). We enrich the Class Diagram in order 
to allow the representation of sub-ideal states, i.e., situations where deontic 
obligations are violated and consequently new constraints (obligations) arise to deal 
with that undesired but tolerated situation.  

Secondly we support our approach with the standard UML constraint language, 
the OCL language.  In [3] the OCL representation of the constraints is completely 
missing and, consequently, a solid automatic mechanism to generate a corresponding 

 
1 The author worked as a consultant in the organization where the example comes from.  



 
 

relational model was impracticable. 
Finally we provide some rules and objective guidelines for the automatic 

generation of trigger and views that support the database integrity maintenance.  
The reason to focus our attention on the relational model is the fact that Object 

Databases Management Systems aren’t yet an efficient solution for demanding 
applications. The object-oriented paradigm is becoming the main background for 
system modeling, but unfortunately the object-oriented databases don’t progress at 
the same speed, making relational databases the standard for data storing. The reason 
for choosing UML is the fact that it has become a standard language for design and 
conception of systems.  

The paper is organized as follows: in section 2 we present and motivate the 
deontic approach presented in [3], providing also a corresponding OCL 
representation. In section 3 we present our extension, e.g., the ability to represent in a 
UML diagram (and using OCL) the domain integrity requirements that emerge as a 
consequence of an unfulfilled boolean mandatory constraint. In Section 4 we focus 
our attention on the Relational Model generation. Some concluding remarks are 
presented in the last section. 

2. DEONTIC CONSTRAINTS 

In the relational model the attribute mandatory property is specified through a 
boolean value: required or not required. That binary representation is enough for 
most situations. The requirement that states that all Invoices must have a date means 
that the attribute date must be always fulfilled, i.e. it should be impossible to have an 
invoice without a date. That restriction is also valid in the real world, i.e., invoices 
without a date are illegal.  

However, that simple approach is not always sufficient to capture some properties 
of the world. For example, let us consider the following requirement: “All students 
must have a zip code address”. That requirement exists due to the fact that the 
university regularly needs to send correspondence to the student. However, is that a 
requirement that intends to capture an ideal situation or a requirement that the 
database should always fulfill? What will be the procedure if one student tries to 
register himself in the school and has forgotten his zip code? If we want to 
conditionally accept his registration (telling him that he must supply the zip code as 
soon as possible) then the requirement is about an ideal situation that sometimes 
doesn’t happen (neither in the real world nor in the database). Blocking the 
registration could be a wrong choice because, apart from the fact that all data already 
inserted in the application form will be lost, the school will convey an unpleasant 
image of unnecessary bureaucracy. The zip code will be indispensable in the future, 
but during a short period of time the zip code is dispensable. 

 The previous example intends to distinguish two kinds of requirements:  
(i) requirements that ideally should always be fulfilled, but can be violated 

in atypical situations and;  
(ii) requirements that must hold unavoidably.  

The boolean mandatory attribute is adequate for the requirements covered by the 
second situation, but is not adequate to deal with ideal but violable requirements.  



 
 

Violable requirements, i.e., requirements that should hold but sometimes do not, 
must be represented differently from other requirements. Otherwise, requirement 
violations will originate an inconsistent database state. If the violable requirement is 
explicitly represented it is possible to maintain both the requirement and its violation 
and, consequently, recur to monitoring procedures for violation warnings. 

Consider the student/zipcode example in which the relational model is represented 
with predicate calculus sentences and zip code is a student attribute: 

a) Requirement: ∀x ∃y (student(x)→ zipcode(y,x)) 
b) Facts: student(ann), ¬∃y zipcode(ann,y) 

In order to avoid an inconsistent database (i.e., zipcode(ann,x) and ¬ zipcode(y,x)) a) 
should be replaced by: 

a’) Requirement: Ideally (∀x ∃y (student(x)→ zipcode(y,x))) 

If we consider that a violation occurs if Ideally(Φ) and ¬Φ, we can have a 
deduction system to automatically infer all the violations.  

In the UML graphic notation the mandatory property is only represented in the 
associations’ cardinality. In the UML Class Diagram, the cardinality lowest limit in a 
relation between classes usually takes the value 0 (Not Mandatory) or 1 (Mandatory). 
Consider the examples of Figure 1.  

In the first example the several zip codes are represented as objects of the Zip 
Code Class. In the situations described before the constraint may be too strong, i.e., 
all students must always have a zipcode. 

In the second example of Figure 1, regarding a DVD Store, given the cardinality 
relation, a DVD must always be associated to a Category (in order to be consulted by 
the clients in a computer). That relation represents a typical situation, i.e., all movies 
have at least a category. However, sometimes that strong restriction can be 
inconvenient, or even impossible to keep. Consider the situation where a set of 
movies has just arrived to the store. A plausible situation will be that an employee 
immediately registers the new movies in the database. Afterwards, another employee 
(probably someone with more knowledge about movies) updates the database in order 
to assign categories to the movies. In that scenario, during a period of time the movie 
isn’t associated to any category. Blocking that situation could have unnecessary and 
undesirable consequences in the process flow (not allowing the immediate 
registration of movies in the database).  

One may argue that, given the desired functionality, a different association should 
be chosen, i.e., cardinality with a zero lower limit (0…*). However, that solution can 
hide important properties of the reality (e.g., that a DVD has at least one category).  
Also, if that solution was to be adopted, it would be impossible to detect the 
“violations” of the desired situations.  

 

0..*

1..1

0..*

1..*

Student ZipCode
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Figure 1 Mandatory Relations 

In [3] it is proposed to incorporate the notion of ideality in the UML associations. By 
ideality we mean a constraint that is not mandatory, but whose violation must be 
registered in the database.  

Going back to the examples of Figure 1, the diagram should explicitly say that all 
DVDs must have a category (and students a zipcode), but that constraint can be 
violated. Also, it should become explicit that those violations must be registered. 

The reason why the registration of the violations should be explicit in the diagram 
is because that feature should be a database built-in feature and not implementation 
dependent. Like integrity constraints are part of the relational model, this notion of 
ideality became part of our automatically generated relational model mentioned in the 
last section. 

To represent the ideality mandatory constraint (called “Obligation” in the figure 
label) the diagrammatic representation depicted in Figure 2 is proposed. Notice that no 
new symbols or concepts are introduced in the UML diagram. 
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Figure 2 Deontic Constraint (Obligation) Representation 

The expression ‘Obligation’ comes from the deontic logic. There are already several 
works on deontic logic applied to databases [4]. In [5] and [6] the authors introduce 
the notion of Deontic Constraints (also called Soft Constraints). By deontic constraint 
they mean “constraints which express norms that indicate how things are in ideal 
worlds, how things ought to be. […] such constraints are violable”. In their approach 
all information and knowledge is represented through mathematical logic. They do 
not consider the relational model or diagrammatic representations of any kind.  

In [3] the author doesn’t present a clear semantics to the Class Violation of Figure 
2 (it’s only presented as a set of violations). In this paper we adopt the approach first 
presented in [8]. Deontic rules are represented with violation constants: the previous 
expression Ideally(Φ) (or Obligation(Φ)) is represented as  ¬Vi→Φ, in which Vi 
represents a violation constant. The authors consider a finite set of violation 
constants, each of them associated to one deontic rule. The semantics is intuitive: 
¬Vi→Φ means that if rule i isn’t violated then Φ is a fact (in other words, rule i states 
that there is an obligation to ensure Φ). We consider that the Class Violation 
corresponds to the finite violation constants ΔV (∀i Vi ∈ ΔV). 

The disjunction (XOR) means that if the student does not have a zip code then a 
violation will be associated with the student2. Several classes can be associated with 

 
2 Notice that this representation is ambiguous. Since the relation is bidirectional, it may represent that there 
is an obligation to have a zipcode associated to all students (the intended meaning) or, there is an obligation 



 
 

the Violation Class, as exemplified in Figure 4 (ideally all students should have a zip 
code and all degrees should have a Coordinator Professor). Each violation object is 
associated only with one object. 

In order to simplify the diagrams, in Figure 3 and Figure 5 an abbreviation is used 
to represent the Deontic Constraint (Deontic Association): the underlined zero 
represents the obligation / ideality concept.  
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Figure 3: Deontic Constraint Representation Abbreviation (Deontic Association) 
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Figure 4 More than one constraint representation in a diagram 
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Figure 5 Abbreviation of the diagram of Figure 4 
 
In [3] the OCL representation of the constraints is completely missing and, 
consequently, a solid automatic mechanism to generate a corresponding relational 
model is impracticable. Object Constraint Language is a declarative language to 

                                                                                                                                           
to associate all zipcodes to students (a non intended meaning). This situation can be avoided with the UML 
navigation association name [1] or with OCL expressions like the one we present further on. 



 
 

describe constraint rules that apply to UML models. OCL syntax is intuitive enough, 
therefore we won’t present its syntax in this paper.  

Each OCL expression is written in the context of an instance of a specific class. 
Our deontic constraints can be represented as invariant conditions. An OCL 
expression is an invariant of the class and must be true for all instances of that class at 
any time. 

The following expression represents our proposal to model the obligation depicted 
in Figure 3 (that is an abbreviation of Figure 2). The context is the Student Class 
(ST_ZC and Viol-ST_ZC are the role names of the right side of the associations 
between Student and Zip Code and Student and Violation, respectively) 

Inv Oblig-Sudent_ZipCode: 
    ST_ZC->isEmpty() implies Viol-ST_ZC->notEmpty() 

The previous representation is a specific instance of the more general schema: on the 
left side of the material implication we have the role of the ‘deontic association end’, 
and on the right side the violation-side role of the association between the class and 
the Violation Class. 

3. CONTRARY-TO-DUTIES 

In this paper we introduce in the UML Class Diagram the ability to explicitly 
represent the new constraints that emerge as a consequence of the violations of 
deontic obligations. We enhance the Class Diagram in order to allow the 
representation of sub-ideal states, i.e., situations where deontic obligations are 
violated and consequently new constraints arise to deal with that undesired but 
tolerated situation.  In the deontic literature [7] those new constraints are called 
Contrary-To-Duties constraints. 

Consider an application that supports the budget control of a building company3.  
Every building project has its own budget. The budget is disaggregated into several 
items. When the project leader adjudicates a new work to a supplier, he fulfills a 
Purchase Order (PO) (to be delivered to the supplier) and also fulfills a Withhold 
Request (WR) (to ensure that the money will be available when the payment takes 
place). The Withhold Request (WR) is only allowed by the application if there is 
enough money in the corresponding budget item (a PO regards a specific item). In 
order to control the budget the following rule is implemented in the application: 
every PO must be associated to a WR. Consequently, POs are only allowed if there 
is enough money available in the budget item.   

However there are situations where adjudications must take place (the PO must be 
created) even if there is no budget (for example, unpredictable works). In such 
situations the standard procedure is to request a budget rearrangement (for example, 
to exchange values between items). That request takes some time (even days) to be 
analyzed and sometimes the urgency of the work forces the project leader to violate 
the control rule (for example, an imminent land falling that requires a sustentation 

 
3 The example illustrates a real implementation done by the author for a building company. 



 
 

wall). In order to allow the violation of the rule, the application must accept that 
sometimes a PO is not associated to a WR. Given that flexible interpretation, what the 
rule really states is that ideally every PO must be associated to a WR. 

In order to ensure a rigorous budget, when the rule is violated (a PO is not 
associated to a WR), apart from the Budget Rearrange Request (BRR), the project 
leader must organize a work meeting to elaborate a formal minute that justifies the 
decision to adjudicate the new work (in this kind of meeting a third party entity – 
surveillance company - is always present). Notice that ‘new obligation’ (to have a 
minute signed by the three entities: the project leader, the supplier and the third party 
company) also represents an ideal situation. Sometimes (rare situations) the 
adjudication must occur before the meeting takes place.  So, when the first rule is 
violated (a PO is not associated to a WR) two new situations arise that can be 
expressed with two new rules: 

1. If a PO is not associated with a WR then a BRR is necessary; 
2. If a PO is not associated with a WR then the PO must be associated with a 

Minute Meeting (MM). 

The first rule must always be fulfilled, which means that the application always 
rejects a PO that is not associated with either a WR or a 
BRR. The second one represents an ideal situation, which means that the application 
allows a PO that isn’t associated either with a WR or with a MM.  This second rule 
has the same semantics of the initial one; both represent obligations whose violation 
is accepted by the application.  

Contrarily to the first example (Zip Code), in this example, from the violation of 
one obligation new constraints are derived. Those new constraints are called 
Contrary-To-Duties in the Deontic Logic Literature.  Following this literature we will 
use the term Necessity to represent the first constraint of the example (situations that 
must necessarily occur). For the second constrain we will continue to use the term 
Obligation since it has the same meaning of the original rule (and the rule of the first 
example).  

In the diagram of Figure 6 we propose the use of the UML Dependency Relation 
to capture the notions of Necessity and Obligation. The stereotypes must be read as 
follows: “the PO Rearrangement: PO_BRR Necessity and the Minute Meeting PO: 
PO_MM Obligation depends of the PO_WR violation”. The OCL dependency 
constraint is described in Table 1. As we presented earlier, the diagram of Figure 6 is 
an abbreviation of the diagram of Figure 7 (in where we explicitly represents the 
Violation Class). 



 
 

 
Figure 6 Purchase Order Example 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 7 Purchase Order Example (non abbreviated version) 

Notice that the derived obligation cannot be represented as illustrated in Figure 8. 
That representation means the following:  ideally every PO must be associated to 
an MM. But that isn’t the case in the example. The association must only ideally 
occur if the PO isn’t associated with a WR. 

 
 

PO_WR

Minute 
Meeting PO

PO  
Rearrangement 

0..* 

0..1
PO_MM

<<Necessity>> 

<<Obligation>>

0..*

0..1

1..1 

0..1
PO_BRR 

Purchase Order

Budget Rearrangement Request

Minute Meeting

PO_WR

XOR

<<Necessity>>

<<Obligation>>

Minute 
Meeting PO

PO 
Rearrange 

0..* 

0..1
PO_MM

0..1

0..1

0..* 0..1

1..1 

0..1
PO_BRR

Purchase Order
Withhold Request  

Budget Rearrangement Request 

Minute Meeting 

Violation 

Withhold Request 



 
 

 
 
 
 
 
 
 
 

 

Figure 8 An erroneous representation of the derived obligation 

 
 
 
 
 
 
 
 
 

Table 1 OCL Constraints for the Purchase Order Example 

In the current database domain, in the presence of Contrary-to-Duties scenarios, a 
different kind of constraint may arise: constraints, which state that a specific data 
association is forbidden until some constraint (‘obligation’) is fulfilled. We propose 
using a stereotyped dependency relation called Forbidden. Consider the following 
example: 

CL_ZC

<<Forbidden>> 

0..*
0..1

1..1

0..*
CL_PO

Client
Zip Code

Purchase Order       

 

Figure 9 Forbiddingness in a UML Class Diagram 

The dependency relation stereotype called “forbidden” means that “the association 
‘Client P Order’ cannot occur until the association ‘Zipcode Client’ happen (clients 
without the zip code cannot place orders). In OCL: 
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Inv Oblig-PO_WR: 
     PO_WR->isEmpty() implies Viol-PO_WR->notEmpty() 
Inv CDutie_Necessity-PO: 
     Viol-PO_WR->notEmpty() implies PO_BRR ->notEmpty()  
Inv CDutie_Obligation-PO: 
     Viol-PO_WR->notEmpty() implies  (PO_MM->isEmpty() implies Viol-PO_MM-
>notEmpty()) 



 
 

 
 
 
 

 

Table 2 OCL Constraints for the Client Purchase Order Example 

4. MAPPING UML DEONTIC CONSTRAINTS INTO RELATIONAL ONES 

As mentioned earlier, our main goal is to, taking the UML Class Diagram as a 
starting point, automatically generate the corresponding relational model and its 
constraints. Since we want to keep the deontic constraints in the database, triggers are 
the best choice to implement them. Using Before and After action triggers it is 
possible to ensure that all constraints are fulfilled. The procedure for monitoring the 
obligations fulfillment can be easily achieved using relational views. For each 
constraint (OCL invariant) we can generate a SQL view, which retrieves the records 
that don’t satisfy it. That’s, for example, what the Dresden Toolkit does (one of the 
few OCL-SQL generator, [9]). However, trigger and view generations aren’t enough 
if we want to help the database administrator to maintain the data integrity. If the set 
of deontic constraints is only represented in code (SQL), it becomes very difficult to 
maintain it and understand it. We consider that, apart from trigger and view 
generation, a relational table should be created to store the obligations. That table 
would hold all the deontic associations (obligations) and the new constraints 
(dependency relations stereotypes) that arise as a consequence of their violation. 

The Deontic Table has seven attributes: 

• a distinctive identifier (the table primary key);  

• the name of each table that implements the association (for example, Student 
and Zip Code in the first example, or, Client and Purchase Order in the last 
example);  

• the name of the foreign key (two attributes, one for the table name and the 
other for the foreign key name), which relates the table that implements the 
class with the deontic constraint4 (Client in the first example and Purchase 
Order in last example5) to the associated one (Zip Code in what regards the 
first example and Client in what regards the last example); 

• one attribute to classify the kind of deontic relationship (i for Ideal6, f for 
Forbidden, o for Obligatory and n for Necessity) and;  

• a last one for the dependency relations, i.e., to relate a Forbidden or 
Obligatory or Necessity with the corresponding Ideal relation (the link is 
made using the primary key attribute).  

 
4 The table whose records are subject to constraints. 
5 The table Purchase Order is the owner of the foreign key that has the constraint. New POs can only be 

assigned to clients that have a zipcode (the constraint regards the Client ID in the PO table). 
6 The primary obligation. 

Context: Client 
Inv CDutie_Forbidden-ZC: 
     Viol-CL_ZC->notEmpty() implies  CL_PO->isEmpty()  



 
 

In Figure 10 we illustrate the data structure that supports the table and in Table 3 
the previous examples are represented. 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 10 The table structure 

1 Student ZipCode Student Zipcode_fk i  
2 Client ZipCode Client Zipcode_fk i  
3 Client Purchase Order Purchase Order Client_fk f 2 
4 Purchase Order 

 
Withhold Request 
 

Purchase Order Withhold_fk i  

5 Purchase Order 
 

Minute Meeting  
 

Purchase Order 
 

minute_fk o 4 

6 Purchase Order 
 

Budget Rearrange 
Request  

Purchase Order 
 

Budget_fk n 4 

Table 3 Deontic Table: Examples of Deontic Table values 

In the example, the second record means that there is an ideality (column 6) deontic 
relation between the tables Client and ZipCode (columns 2 and 3) that is implemented 
in the Client (column 4) Zipcode_fk (column 5) foreign key attributes. Notice that 
columns 2 and 3 are redundant because they can be obtained from columns 4 and 5. 
However, they are very useful to ensure an efficient and readable generation program. 

The third record means that there is a forbidden (column 6) deontic relation 
between tables Client and Order (columns 2 and 3 ) associated to the previous ideality  
deontic relation (column 7). 

Tables that implement the UML classes that are arguments of deontic associations 
(only classes located on the opposite side of the underlying zero abbreviation) will 
have a foreign key for each deontic association. The foreign key domain is the 
distinctive identifier of the Deontic Table (the foreign key represents the association 
between the class and the Violation Class). That foreign key will only assume a Null 
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value when a violation occurs. For example, given the previous diagrams, the tables 
Student, Client and Purchase Order will have one foreign key each. Furthermore, 
each of the previous tables will also have one more foreign key for each 
<<Obligation>> dependency relation that represents a Contrary-To-Duties scenario of 
the previous deontic association. For that reason the Purchase Order table will have a 
second foreign key. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4 Examples of Triggers7 and Views for OCL constraints in Table 1 and Table 2 

In order to facilitate the trigger generation and maintenance, the Foreign Key 
Referential Integrity Strategies for all foreign keys related to the Deontic Table 
should be Restricted. If we do so, we strongly restrict the number of triggers 
necessary to ensure all deontic constraints. Throughout the paper we present four 
different types of deontic constraints: Ideal, Obligatory, Forbidden, and Necessary. 
The first two constraints don’t need any trigger support (Obligatory needs trigger 
support if arises as a consequence of a Contrary-To-Duties scenario). Views are 
sufficient to monitor violations.   

 
7 For the sake of clarity we use an informal and simple trigger syntax  

Views for violation warnings 
OCL Inv Oblig-PO_WR: (Ideal) 
Select * from Purchase_Order, Deontic_Table where  
Deontic_Table.idconstraint= 
Purchase_Order.POWR_iddeonticconstraint  
 
OCL Inv CDutie_Obligation-PO: (Obligation) 
Select * from Purchase_Order, Deontic_Table As DT1, 
Deontic_Table As DT2 Where 
DT1.idconstraint=Purchase_Order.POMM_iddeonticconstraint and 
DT2.idconstraint=DT1.CDTiddeonticconstraint 
 
Trigger for integrity maintenance 
Inv CDutie_Necessity-PO: (Necessity) 
Before insert Purchase_Order 
if (new.BRRID is null and new.POWR_iddeonticconstraint is 
null) then return CancelEvent 
 
Inv CDutie_Fordidden-ZC: (Fordidden) 
Before insert Purchase_Order 
Select ClientID from Client into ClientFlag where 
new.ClientID=Client.ClientID and 
Client.ZC_iddeonticconstraint is not nul  
if (ClientFlag is not null) then return CancelEvent 
 
OCL Inv Oblig-PO_WR: (Ideal) 
After insert Purchase_Order 
if (new.WHID is null) then POWR_iddeonticconstraint=4 
 
OCL Inv CDutie_Obligation-PO: (Obligation) 
After insert Purchase_Order 
if (new.WHID is null and new.MMID is null) then 
Purchase_Order.POMM_iddeonticconstraint =5 
 



 
 

In order to ensure the Necessity constraint it will be necessary to generate a Before 
Insert trigger. That trigger will cancel the insertion if a violation associated with the 
new record exists and the ‘necessary record’ in the opposite table doesn’t exist.  

In order to ensure the Forbidden constraint it will be necessary to generate a Before 
Insert trigger. This trigger will cancel the insertion if a violation exists and the new 
record will be connected with a record of the forbidden table.  

5. FINAL REMARKS AND RELATED WORK 

In this paper we have extended our previous work in order to introduce in a UML 
representation the ability to explicitly represent the so called Contrary-To-Duties 
requirements, i.e., domain integrity requirements that emerge as a consequence of an 
unfulfilled boolean mandatory constraint. We only used standard UML notation 
together with UML stereotypes (Obligation, Forbidden, Necessity) to capture all the 
notions we needed. We supported our approach with the standard UML constraint 
language, the OCL language.  

This approach, together with the deontic table and the SQL guideline generation 
presented in the last section, provides us with a framework that will support an 
automatic generation of the extended relational (deontic) model (based on the 
extended  Class Diagram).  

Borgida, in his work with exceptions in information systems (originally in [10] 
with further extensions, e.g., [11]) considers that exceptional situations arises when 
some constraints are violated, and that exceptions are considered as violations. In his 
proposal, the occurrence of a violation is signaled by the creation of an object in a 
class called ANY_VIOLATION. The author proposes an exception handling 
mechanism to specify failure actions. As Borgida, we also represent explicitly in the 
object model the constraints violations. Borgida uses two classes, one for the 
violations itself and another for the violation constraints. We only use the second one 
because the violations itself are represented by the foreign keys. Apart from these 
similarities, the approaches are considerably different. Borgida proposes a much more 
general mechanism to deal with exceptions handling in object oriented programming 
languages. Our approach, apart from been only oriented on one particular constraint 
(that Borgidas work doesn’t treat), is focused on the database generation. Borgida, 
contrary to us, explicitly rejects triggers approached because he wants to maintain the 
control in a middleware software level. What we call Contrary-To-Duties constraints 
aren’t treated by Borgidas work. 

In the future it will be critical to automatically obtain the views and the triggers. 
In this paper we have provided some concrete guidelines, but we haven’t yet 
implemented the automatic procedure.  

Furthermore, in the near future it will be necessary to cover more complex 
situations like relations with more than two arguments and composite obligations like 
the ones depicted in Figure 11. 
Given the diagram we can infer that all courses should be associated to a degree and 
all courses should be associated to a coordinator. But it could be the case that the two 
obligations must only be treated as a conjunction and not separately (i.e., the 
obligation to be assigned to a coordinator disappears if the course isn’t assigned to a 
degree). 



 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 11 CompositeObligations 
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