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ABSTRACT Supporting spontaneous low-latency machine-type communications requires fast synchro-
nization and channel estimation at the receiver. The problems of synchronizing the received frame and
estimating the channel coefficients are often addressed separately with the later one relying on accurate
timing acquisition. While these conventional approaches can be adequate in flat fading environments, time
dispersive channels can have a negative impact on both tasks and severely degrade the performance of
the receiver. To circumvent this large degradation, in this paper, we consider the use of a sparse-based
reconstruction approach for joint timing synchronization and channel estimation by formulating the problem
in a form that is closely related to compressive sensing framework. Using modified versions of well-known
sparse reconstruction techniques, which can take into account the additional signal structure in addition to
sparsity, it is shown through numerical simulations that, even with short training sequences, excellent timing
synchronization and channel estimation performance can be achieved, both in single user and multiuser

scenarios.

INDEX TERMS Channel estimation, time synchronization, compressive sensing, sparse signal recovery.

I. INTRODUCTION

Fast and accurate timing synchronization is important to
enable reliable communications in modern wireless systems
and has a fundamental role within the context of extreme
low-latency machine type communications [1]. Additionally,
accurate channel estimation is crucial for enabling coherent
data detection. Typically, both problems are handled sepa-
rately, as in [2]-[5], and while reliable channel estimation
methods depend on accurate timing acquisition, the latter is
not guaranteed in time dispersive channels. Still, there have
been a few attempts to address synchronization and channel
estimation using a joint approach. Fechtel and Meyr [6]
proposed algorithms for joint frame synchronization, fre-
quency offset estimation and channel acquisition. One of the
algorithms employed a data dependent approach and was
capable of very good performance. However, its complexity
grows exponentially with the length of the channel which
limits its use to short time dispersions. Larsson et al. [7]
presented a simple joint synchronization and channel

estimation algorithm based on Maximum Likelihood (ML)
estimation and Generalized Akaike Information Criterion
information (GAIC). However, the proposed algorithm was
designed specifically for the OFDM packet structure of the
IEEE 801.11 WLAN standard. Zhang et al. [8] proposed
an algorithm based on the shift delay characteristic of the
synchronization sequence revealed in the channel estimation
process. This was shown to reinforce the performance of fine
timing synchronization and mean channel estimation error of
OFDM systems.

Compressive sensing (CS) is a well-known signal pro-
cessing paradigm that allows the efficient reconstruction
of a signal with fewer samples than the Nyquist sampling
theory requires, as long as it is sparse in a known trans-
form domain [9], [10]. Several CS techniques have been
proposed in the literature [11] with the greedy orthogo-
nal matching pursuit (OMP) algorithm and ¢;-minimization
being two of the most well-known approaches. Although
£1-minimization enables good reconstruction performance,
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it was shown in [12] that reweighting the £; norm of the
transformed object allows reducing the number of measure-
ments needed for exact recovery of the original signal. CS has
found a widespread adoption in many different fields with
several applications already proposed for wireless commu-
nications [13]. One of the earliest and notable examples of
CS adoption is within the context of channel estimation [14]
which, amongst other advantages, can allow the reduction
of the number of pilots required on multicarrier systems
by exploiting the ‘““delay-Doppler sparsity” [15]. A closely
related problem which has not been so thoroughly addressed
yet but which could also be dealt with CS techniques is in joint
channel estimation and synchronization. Still, a method was
recently proposed in [16] which exploits the sparsity of the
equivalent channel vector. It is based on the direct application
of OMP but assumes the transmission of training frames
that are larger than data frames. Motivated by this, in this
paper, we formulate the joint channel estimation and timing
synchronization problem in a form that is closely related to
CS framework. We then propose modified versions of sparse
reconstruction techniques that allow the channel impulse
response (CIR) to be obtained simultaneously to the symbol
timing offset. These sparse methods are modified in order to
handle the additional signal structure in the form of a bounded
maximum distance between the positions of the first and last
occurring nonzero elements. We also extend the proposed
approach to underdetermined multiuser scenarios such as the
ones that often arise in random access based networks where
one spontaneous transmission can occur, originating from a
set of several possible transmitters. Through numerical simu-
lations we verify that the proposed schemes can achieve good
performances both in terms of channel estimates and timing
offset accuracy even when using short training sequences.

Notation: Matrices and vectors are denoted by uppercase
and lowercase boldface letters, respectively. The superscripts
()T and (-1 denote the transpose and conjugate transpose
of a matrix/vector, |||, is the £,-norm of a vector, |||y is
its cardinality, supp (x) returns the set of indices of nonzero
elements in x (i.e., the support of x), diag (-) represents a diag-
onal matrix whose elements are contained in the argument
vector, I, is the n x n identity matrix and 1 is an all-ones
column vector.

The remainder of the paper is organized as follows:
section Il introduces the signal model and formulates the joint
synchronization and channel estimation problem. Section III
presents several CS based algorithms adapted to the time
synchronization and channel estimation tasks. Performance
results obtained with these algorithms are then shown
in section IV followed by the conclusions in section V.

Il. SIGNAL MODEL AND PROBLEM FORMULATION

Let us assume that, for timing synchronization and
channel estimation purposes, a training sequence s =
[sos1 -+ sN(_l]T of length N, is transmitted, followed by
a guard period as shown in Fig. 1. The guard period has
the purpose to help deal with the time dispersive nature of
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FIGURE 1. Frame structure and synchronization strategy.

the channel and can consist of either empty symbols or of a
repetition of the initial part of the training sequence (which
can alternatively be seen as a cyclic prefixed preamble).
Although not addressed in this paper, the latter case can
be useful for estimating and correcting the frequency off-
set in OFDM-based systems [2]. The signal is transmitted
through the channel which is assumed to be represented by a
finite impulse response filter h = [hg by --- hz_1]7, where
h; € C and L is the maximum expected channel length, i.e.
lhilp < L. Note that not all &; are necessarily nonzero
and, in fact, the effective channel length (unknown at the
receiver) can be much smaller than L. If the signal arrives
at the receiver with an unknown delay of Ty (in samples)
then it can be written as the linear convolution of the delayed
tralmng sequence with the channel impulse response, i.e., as

Zhls, To—l + 1, With 0 < r < M — 1. M is the

1=0
number of observation samples and n; represents noise. The
received signal can be rewritten in a convenient form using
matrix/vector notation as

y = Sh®' +n, )

where S is an M x N Toeplitz matrix. For the case of empty
guard periods (where s, = O fort < Oort > N, — 1),S is
defined as

™ S0 0 o]
50
_ | SN.—1
S=1"0" o : ©)
0

with N being the size of the search window (not necessarily
equal to the size of the observation window M). Vector h*
corresponds to the channel impulse response augmented with
several zeros namely, T zeros preceding the effective channel
response followed by further N — L — T zeros. This extended
vector can be written as

T
e = |o...0 h7 09 . (3)
T, N—-L-Ty
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The search window N can be defined around an initial coarse
synchronization period flagged from some power measure-
ment and threshold decision [6]. It can also be set accord-
ing to the maximum expected propagation delay for a user,
when a downlink control signal is present for timing uplink
transmissions. It is important to note that the signal model
just described is general in the sense that it can be applied
to both single carrier and multicarrier systems, provided that
they employ training blocks for estimation purposes.
Conventional approaches for accomplishing synchroniza-

tion and channel estimation rely on performing both tasks
separately. First, and assuming that the first channel tap is the
strongest, an estimate of Ty can be obtained using a simple
cross-correlation based metric:

A 2

Tp = argmax ‘SHYt:t+NC—1 ‘ 4

0<t<M—N,

After acquiring the timing of the first replica, the channel can
be estimated using conventional least squares

-1
I QH g QH
h=(378)  §"y5.5.n 1 )

where S =Sz 4 N1 FoFyrL—1°

The conventional separate approach can be adequate for
several scenarios, as long as the time dispersion caused by
the channel is not large and the training sequence has near
zero off-peak autocorrelation values (which often requires
using long lengths). When these conditions are not satisfied,
it can be seen from (4) that, even for time offsets that do
not coincide with the beginning of a received replica, parts
of other delayed replicas can be caught inside the corre-
lation window. This will generate a nonzero result whose
contribution is not only due to noise but also due to the
nonzero correlations of the training sequence. The larger
these correlation values, the higher the probability that the
time offset maximizing (4) will be wrong, compromising also
the subsequent channel estimation step. In order to improve
the performance and attain higher reliability in a wider range
of time dispersive scenarios, the synchronization and channel
estimation problem should be addressed jointly and the prior
information about the maximum expected channel length
should be applied inside the process. Therefore, in the fol-
lowing we take this approach. Using signal representation (1)
and integrating the prior information, the channel estimation
and synchronization problem can be written as

min f (h) £ [y —Sh* |3 ©)

subject to max {li R £ 0 R £ o} <L

which corresponds to a maximum a posteriori probability
(MAP) estimator when the noise follows an uncorrelated
zero-mean circularly symmetric Gaussian distribution.
Assuming the typical scenario where the size of the search
window N is large compared with L, or equivalently
Hhm “0 « N, it is possible to see that this formulation
is closely related to sparse signal reconstruction problems
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and CS framework, since (7) restricts the cardinality of the
solution h®*, However, this constraint is stronger than a sim-
ple cardinality one since it also imposes additional structure
in the form of a bounded maximum distance between the
positions of the first and last occurring nonzero elements.

IIl. JOINT TIMING AND CHANNEL ESTIMATION

Solving problem (6)-(7) directly requires an exhaustive
search with combinatorial computational complexity. There-
fore, alternative approaches that are computational feasible
for problems of practical sizes must be used. Formula-
tion (6)-(7) is related to cardinality constrained and minimiza-
tion problems in CS framework. In fact, relaxing (7) into the
simpler constraint

e, = L ®)

allows the application of CS reconstruction techniques in
order to recover h®’ and, indirectly, Ty and h. However,
improved performance can be possible if the additional struc-
ture imposed by the exact constraint (7) is considered dur-
ing the reconstruction process. In the following we propose
several modified versions of sparse reconstruction techniques
that can cope with problem (6)-(7).

Algorithm 1 Constrained Length OMP
1: {nput:y, S,LLN
2h =0,r=y,Q=0,A=0,To =N —1, tmax = 0.
3:for/=0,1,...L — 1do
4: h* « Sfr.,

5: repeat
6: Ipest <— arg max }sz"’ .
t¢A
E A<~ AU ﬁ‘best}-
8 until oy — L+ 1 <tfpey <L —1+Tp

9: <« QU {tbes,}.l

10: hg" < (SGSqe) Sy

11: r <y — Sghg’.

12: tmax < max (2), Top < min (2).

13: end for

14: h < h%"'
To:To+L—1

as 0)

15: Output: fo, h.

(consider small magnitude elements

A. CONSTRAINED LENGTH OMP

The first proposed approach follows a greedy strategy
approximation and is based on the well-known OMP algo-
rithm [10], which we modify in order to cope with the maxi-
mum channel length constraint (7). Algorithm 1 summarizes
the main steps of the constrained length OMP (CL-OMP)
method. In each iteration, the algorithm selects one new
element for the support set 2. Lines 5-8 and 12 represent
the added modifications, which limitA the addition of a new
candidate position to the support of h® if it will not result
in the violation of (7). At line 10, the presented algorithm
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adopts a conventional least squares (LS) approach for the
computation of the channel estimates h&’ at the support
positions (required for the residual r).In line 14, small mag-
nitude elements of heTx’ Forr—1 2T set to 0 using the following
criterion which compares the magnitude of each candidate tap

with the strongest one,
2 ext 7 ext I ext
A g, [t | = |

b g, = ) o ©)
0’ h;?xt <7 ‘ hext

’

where f"o <i< f"o + L — 1 and > O (in the simulation
results, we employed 1 = 1072).

B. REWEIGHTED ¢;-REGULARIZED OPTIMIZATION

The second approach for solving the reconstruction problem
follows a strategy based on convex relaxation where the
problem is replaced by a related £; minimization problem,
allowing the use of convex optimization techniques. Since
these techniques often require the objective function to be
analytic in its argument, they cannot be directly applied to
real functions of complex variables like f (hex’ ) In order to
use these methods, the common approach is to convert the
problem to the real domain by treating the real and imaginary
parts of the optimization variables as independent ones. With
this purpose, we rewrite (1) as

—~—~ext

y=Sh +n, (10)
with
S — Re{S} —Im{S} ~ | Re{y}
“[ms}  Rets} |° YT iy
~ext _ Re [h& - Re {n}
o ) A T T

Note that while this representation increases the sizes of
the matrices and vectors, the increase in the computation
complexity is smaller than what one might expect, since all

the operations become real-valued. We can then estimate
~ext

h by minimizing the Euclidean distance plus an £{-norm
weighted regularization term (which is in fact related to the
cardinality constraint of the problem)

__ext||? ‘ —ext

y — Sh A |[Wh

min —‘

(12)
ht.”X[

2 1

where A is a positive penalizing parameter and W =
diag ([ - WaN—1 ]) is a weighting matrix. These weights

can be used for balancing the higher penalization imposed
~ext

on larger coefficients of h by the £1-norm, when compared
to the £gp-norm (cardinality). Adopting an approach similar
to the one used in [19] for basis pursuit denoising (BPDN),
we can rewrite (12) as

- = ~1Tu]l? . [W  07[u

min 5 v _S][v} S [0 W]|:v:|
(13)

subjecttou >0, v=>0, (14)
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Algorithm 2 Constrained Length Reweighted ¢;-
Regularized Optimization

—_—

:Input: y, S, L, Ne, Q

2:h =0,Q=0,To=N — 1, tyax =0
3wi=1,i=0,...,2N — 1.

4:forqg=0,1,...0 — 1do

5:  Solve the quadratic problem (13)-(14) and obtain u, v.
6: Wi=;mi=0,...,2N —1

7: end for

8:h® «— w1 — Von—1+1i(uyon—1 — VNoN—1)

9: A <« supp he ) (consider small magnitude elements

as 0)
10: while A # @ and f;,2x —
il;?xt

To<L—1
11:  tpeyy < arg max
reA N

12: iftpax —L+1 < thog <L—-1+4+Tpdo R «

QU {tbest}

130 A < A\(e)

14:  tmax < max (2), Ty < min (2).

15: end while

16: h < h%,
To:To+L—1

as 0)

17: Output: fo, h.

(consider small magnitude elements

which is a convex quadratic program Note that in this for-
~ext —~ext

mulation h = u— v and |h | = u; +v;, withi =
0,...,2N — 1. Instead of simply solving (13)-(14) once
with a fixed weighting matrix we can try to obtain improved
performance through the use of an iterative reweighting
procedure, following an idea similar to [12]. In this case,
the weights in the diagonal of W are 1nversely proportlonal

to the magnitude of the coefficients of h (where |h | =
u;+v;) from the previous iteration plus a stabilizing parameter
& > 0 that avoids near zero divisors. This approach can
successively improve the estimation of the nonzero posi-
tions by making the regularization term to better approxi-
mate the £g-norm. Algorithm 2 summarizes all the steps of
the proposed constrained length reweighted ¢;-regularized
(CL-IR-£1) approach. It consists in solving the quadratic
problem (13)-(14) Q times using weights defined according
to the solution of the previous iteration (line 6). Lines 10-15
are applied in order to force the solution to be feasible accord-
ing to the maximum channel length constraint (7). If these
lines are not used then the algorithm simply generates a
generic sparse solution. In line 16, the same criterion defined
in (9) can be applied to set the small magnitude elements
hee . as 0. Also note that when only one iteration
To:To+L—1
is employed, i.e., O = 1, then W is the identity matrix
and the approach becomes closely related to BPDN [19].
We will refer to this special case as CL-BPDN. Regarding the
penalizing parameter A, [19] suggests the following choice

A =o04/2log (N). (15)
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Problem (13)-(14), which is stated in line 5 of Algorithm 2,
is a linear inequality constrained quadratic optimization prob-
lem. These types of problems can be efficiently addressed
using a family of algorithms referred to in the litera-
ture as interior-point method (IPM) [17]-[19]. With these
methods, the inequality constraints are encoded using a
(self-concordant) logarithmic barrier function, which is sub-
tracted from the objective function, in the case of the primal
problem, and added to the objective, in the case of the dual
problem. The goal is to obtain an approximate formulation
of the original inequality constrained problem as an equal-
ity constrained one [18], [19]. Then, Newton’s method can
be directly used for solving the resulting modified Karush—
Kuhn-Tucker (KKT) equations (i.e. the first order conditions
for simultaneous optimality in the primal and dual barrier
problems). In this case, a Newton step equation system is built
and solved repeatedly using a varying barrier parameter until
the algorithm converges to the required tolerances. There are
several forms of interior-point algorithms, with the primal-
dual interior-point methods often being more efficient due to
the better than linear convergence [18].

C. £,-REGULARIZED OPTIMIZATION

While usually not employed for obtaining sparse solutions,
the reconstruction problem can also be addressed through
£,-norm regularization, as explained in [11], [19]. Using this
approach, the problem can be formulated as

min [y = Sh 3+ [0 (16)

where the £1-norm regularization term has been replaced by
and £;-norm term. It is easy to verify that this formulation has
the following closed form solution

het = (SHS n )»IN>7] stly. (17)

Regarding the penalizing parameter A, a value similar to
the one used in BPDN, (15), can also be adopted [19].
To constrain the final estimate according to (7), the proce-
dure matching lines 9 to 16 of Algorithm 2 can be directly
applied which results in a constrained length £,-regularized
algorithm (CL-£3).

D. POLISHING

After using an ¢;—based heuristic (CL-BPDN or CL-IR-¢;)
for obtaining an initial candidate solution for the original
joint synchronization and channel estimation problem (6)-(7),
a final polishing step can be applied in order to possibly
find an improved candidate solution. This step is imple-
mented using the initial candidate for fixing the sparsity
pattern(support)and then computing the LS solution of the
restricted problem. This procedure can be expressed as

h— (SHS)’1 §ty, (18)

where S = S. A, ie., itis a reduced system matrix compris-
ing only the columns of S matching valid positions of the
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estimated support A = supp (ﬁex’). Note that this final step

only improves the channel estimates, h.

E. EXTENSION TO MULTIUSER SCENARIOS

The proposed joint synchronization and channel estimation
approach can be directly extended to multiuser scenarios such
as those that arise in random access based networks. In these
scenarios, a spontaneous transmission can occur originating
from an unknown user within a set of N,, possible candidates.
In this case, besides estimating the symbol timing offset and
CIR, the receiver also has to detect the active user. To deal
with the additional difficulty, we can adopt the following
augmented definitions for S and h®":

S=[So--SN,-1] (19)
and
b = [ng” - hf\),if_lT]T . (20)

Each M x N matrix S, (withu = 0,..., N, — 1) follows
the same structure as in (2), i.e., its columns comprise shifted
versions of the u" user specific training sequence. The N x 1
vector h%" represents the augmented channel impulse of
user u which, can either be an all-zero vector if the user is
inactive, or have the same structure defined in (3). Using
these redefined matrices/vectors, the received signal can still
be expressed as (1) and the recovery algorithms described
previously can be applied directly. Note that since matrix S
has a size of M x NN, and the observation window has a
maximum length of N 4+ N, — 1, the scenario is usually
underdetermined (i.e., M < NN,). This extended model can
also match a multiple input multiple output (MIMO) system
with N, transmitter antennas by simply making each user
correspond to an antenna and having all the antennas active.
In this case, there is no need to detect the active antennas as
these are assumed to be known.

F. COMPLEXITY

In Table 1, we present the complexities in terms of real-valued
floating-point operations (flops) of the proposed algorithms.
To arrive at these expressions, we considered that complex
valued sums count as 2 flops and complex valued multiplica-
tions count as 6 flops. We assume that in any of the methods,
and as long as it is viable, all operations (multiplications,
inverses, etc.) involving solely matrix S are precomputed.
When precomputation is difficult to employ, as happens with
CL-OMP due to the operation over a reduced system matrix
dependent on an expanding estimated support, savings are
still possible since only N, consecutive elements are nonzero
inside each column of S. For CL-BPDN and CL-IR-£; we
assume the use of a general-purpose IPM as in [19] (Qipm
is the number of iterations used inside the IPM), although it
could be possible to derive a specifically tailored IPM that
takes into account the special structure of S and save on the
overall computational complexity.
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TABLE 1. Number of real flops for different algorithms.

Detector Complexity

Conventional

(correlation+LS) (8N, =2) NN, +4L + I (4M +15)+ L(12M -5)

LNN, (8N, +1)+ I (L+1)’ +é(4Nu +15)(20+30° + L)

CL-OMP 1
—(18N, +2M -5)( +L
+2( '+ )( +)

CL-\, (8M —2) NN, +4L + > (4M +15)+ L(12M —5)
[ NN, (48M +58+24N,)

CL-BPDN . .
+8M° +10M” + M (32N, 32N, +15)-8N, +8|0,,
6NN,Q+Q[ NN, (48M +58+24N,)

CL-IR-\;

+8M° +10M° + M (32N,” - 32N, +15)-8N, +8}Q,,,M

IV. PERFORMANCE RESULTS

In this section, we evaluate the performance of the pro-
posed approaches for joint synchronization and channel esti-
mation. For the training sequences, we used Zadoff-Chu
sequences [20] normalized as |s;| = 1, for 0 < t < N,.
In most of the results, the observation window, M, used
was M = N + N, — 1 which is the minimum valid size
without truncating the training sequence in the last taps.
The maximum expected channel length is L=10. The initial
delay Ty of the first arriving multipath is randomly selected
from the set {0,..., N — L} according to a uniform distri-
bution. After the first multipath (which is always nonzero),
each of the following L-1 positions in the channel impulse
response h are selected as zero-valued with a probability
of 0.5. Regarding the nonzero channel coefficients, these
are chosen as independent and identically distributed, zero-
mean, circularly symmetric, unit variance complex Gaussian
random variables, i.e., E[||i;]|?] = 1/|h|lo when &; # 0
(for 0 < [ < L). The noise samples in n € CM>1 are
independently selected according to a zero-mean circularly
symmetric Gaussian distribution with covariance 26-2I;. The
channel estimation performance is evaluated in terms of nor-
malized mean squared error (NMSE)

NMSE =E | —2 |, 1)

The synchronization is evaluated through the timing error rate
(TER) which is measured as the average number of incorrect

positions in supp (ﬁm ) The results are plotted as a function

of the noise level 10log; (1/202). For all the algorithms,
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including the unmodified conventional ones, we applied the
criterion defined in (9) for setting the small magnitude ele-

ments of h&¥ . as 0.
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FIGURE 2. Timing error rate performance for OMP and CL-OMP (N¢ = 15).
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FIGURE 3. NMSE performance for OMP and CL-OMP (N¢ = 15).

A. SINGLE USER

Considering only one known active user, Fig. 2 and 3 show
the NMSE and TER performances of the conventional OMP
and CL-OMP algorithms in two different scenarios: a small
one, with N = 64 and M = 78, and a larger one, with
N =512 and M = 526. A short training sequence of length
N, = 15 was applied. It can be seen that the modification
added to the OMP algorithm, which forces the solution to
be feasible according to (7) instead of the conventional car-
dinality restriction (8), results in better performance both in
terms of synchronization and channel estimation, achieving
gains around 3 dB for the small scenario and 5 dB for the
larger scenario. It is important to highlight that, for OMP,
wrongly positioned taps can be spread quite far from the
correct ones while for CL-OMP they will all be located close
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FIGURE 4. Timing error rate performance of CL-IR-¢; with different
number of iterations (N¢ = 15, N = 128 and M = 142).
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FIGURE 5. NMSE performance of CL-IR-¢; with different number of
iterations (N¢c = 15, N = 128 and M = 142).

to the real taps which reduces the negative impact on the time
synchronization.

Fig. 4 and Fig. 5 illustrate the results obtained with the
CL-IR-£¢1 method using different configurations, namely dif-
ferent number of iterations and the possible use of polishing.
The scenario considered in this case was set as N = 128
and M = 142, with the same short training sequence of
length N, = 15. The curve with Q = 1 corresponds to the
CL-BPDN, while the curve with ‘conventional’ label refers to
a conventional reweighted £; method whose generated solu-
tion is forced to satisfy the simpler cardinality constraint (8)
only. Fig. 5 also includes an Oracle LS curve which repre-
sents an ideal case where the exact tap positions are known
(i.e. perfect synchronization is assumed). It is visible that after
only two iterations, the reweighted approach can result in
substantial gains in terms of synchronization performance.
After two iterations the improvements become small. The
results also show a large gain of the modified CL-IR-¢;
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FIGURE 7. NMSE performance for different joint timing synchronization
and channel estimation methods (N¢ = 15, N = 128, M = 142).

over the conventional method. Regarding the NMSE results,
the CL-IR-¢; method suffers a small degradation compared
to CL-BPDN. However, the degradation can be suppressed
through the use of polishing, which results in a performance
almost identical to the oracle LS for low noise levels.

Fig. 6 and Fig. 7 compare the performances of several
synchronization and channel estimation methods also for the
scenario with N, = 15, N = 128 and M = 142. The
‘Corr 4+ LS’ method corresponds to the conventional corre-
lation approach (4) followed by LS estimation (5). For the
CL-IR-¢1 method, a total of Q = 4 iterations were applied.
Regarding the synchronization results, CL-IR-¢; outperforms
the other methods, while the correlation approach clearly
has the worst behavior with a high irreducible TER floor.
Although ¢>-norm based reconstruction tends to produce
solutions which are not rigorously sparse, constraining the
final estimate according to (7) allows the CL-£, method
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to achieve results in this scenario which are not far from
CL-OMP. In terms of NMSE, the correlation approach has
clearly the worst performance, having a high irreducible
NMSE floor. Regarding the remaining methods, all have
similar performances, with a small loss for CL-£,, and with
CL-IR-¢; achieving the best results. For low noise levels,
CL-OMP, CL-BPDN and CL-IR-¢; achieve performances
nearly identical to the ideal Oracle Least Squares.
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FIGURE 8. Timing error rate performance for an underdetermined
scenario (N¢ = 127 with a cyclic prefix length of 126, N = 160 and
M = 128).
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FIGURE 9. NMSE performance for an underdetermined scenario
(Nc = 127 with a cyclic prefix length of 126, N = 160 and M = 128).

Fig. 8 and Fig. 9 illustrate the behaviour of all the
methods in an underdetermined scenario where the obser-
vation window, M, is smaller than the search window N.
In this case, we assume the transmission of a cyclic pre-
fix consisting of the last N, — 1 training symbols (which
could represent a multicarrier transmission with repeated
training blocks for accomplishing frequency offset correc-
tion [2]). The corresponding measurement matrix can be
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written as
) SN.—1 0 ]
50 S1
SN.—1
0 SN.—1 SN.—1
SN.—1
0

The scenario was configured as N, = 127, N = 160 and
M = 128. Looking at the results it can be seen that the per-
formance of CL-£, and CL-OMP clearly degrade and exhibit
high irreducible error floors in the synchronization and chan-
nel estimation results. As for CL-BPDN and CL-IR-¢;,
despite the difficult underdetermined scenario, both methods
are still capable of achieving very good performances.

B. MULTIPLE USERS

In this subsection we present performance results for a more
difficult scenariowhere there is one uknown active user from
a set of N, = 6 possible transmitting candidates (the general-
ization to more than one unknown active users is straightfor-
ward). The search window has a length of N = 80 while the
observation window is stil M = N + N, — 1.

107! T T

-
<
N

Timing Error Rate

N
]
A

Corr +LS
[ . CL-I2 reg.

— © = CL-BPDN + polish. Q
CL-IR-I, + polish. N

—— CL-OMP oo
0 5 10 15 20 25 30 35 40 45 50
10 log, (1/20%) [dB]

10

FIGURE 10. Timing error rate performance for an underdetermined
scenario with 6 possible users (N¢ = 15, N = 80, Ny = 6, M = 94).

Fig. 10 and Fig. 11 compare the TER and NMSE perfor-
mances of the different methods when the training sequences
have lengths of N, = 15 which, clearly corresponds to
an undetermined system (94 observations for estimating a
vector with 480 elements). Similarly to what was observed
in the previous results, the best performance is achieved by
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FIGURE 11. NMSE performance for an underdetermined scenario with
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FIGURE 12. Active user detection error rate for an underdetermined
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CL-IR-¢; and CL-BPDN, followed by CL-OMP and CL-£5.
The correlation approach has the worst performance for low
noise levels, where it exhibits high irreducible TER and

53188

10! T T r
= = =Oracle Least Squares
Corr + LS
100k [, CL-I2 reg. i
w — © = CL-BPDN + polish.
(2] CL-IR-I, + polish.
S 1
z —&— CL-OMP
9 10-1 L
[
£
»
11}
© 102 ¢
c
c
©
c
O
10%
10

NC (Pilot length)

FIGURE 14. NMSE versus pilot length (N¢) in a multiuser scenario
(N =80, Ny = 6, M = 79 + N, 10log; (1/2«2) = 25dB).

10° '
- - ©
- -0
pa—
108 F eooe—e‘—_o‘——e CL-R, | 7
[cle>) !
e0® - © —CL-BPDN
™ —&— CcL-OMP
5— 107k weerdmens CLAl roQ. ||
=
ht Corr + LS
2
3
2 6
108 ¢
§
o
10% F E
104 L 1 ! L 1 L L
0 10 20 30 40 50 60 70 80

N, (Pilot length)

FIGURE 15. Complexity in flops versus pilot length (N¢) in a multiuser
scenario (N =80, Ny =6, M =79 + N¢).

NMSE floors. It is also interesting to look at the active user
detection error rate (empirical probability of the active user
being correctly detected) shown in Fig. 12. These results
follow a trend similar to the TER and NMSE, with CL-IR-¢;
and CL-BPDN clearly outperforming the other methods.
In order to evaluate the impact of the training sequence length,
Fig. 13 and Fig. 14 present the TER and NMSE as a function
of N, for a fixed noise level of 10log;, (1/202) = 25dB.
It can be seen that while longer training sequences benefit
all the methods, sparse based reconstructions algorithms and
in particular CL-IR-£; and CL-BPDN, are able to maintain
low TER and NMSE using shorter sequences than the con-
ventional correlation approach. Looking at the corresponding
computational complexity presented in Fig. 15, it is visible
that the best performing methods, CL-IR-£; and CL-BPDN,
have the highest complexity cost. The conventional corre-
lation approach has the lowest cost but, as previously seen,
has the worst performance. The CL-OMP algorithm presents
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itself as a good compromise between performance improve-
ment and complexity cost.

V. CONCLUSIONS

In this paper we have addressed the problem of achieving fast
time synchronization and channel estimation in frequency
selective environments. To accomplish this, we formulated
the channel estimation and synchronization problem in a form
that is closely related to CS framework. We then applied
modified versions of well-known sparse reconstruction tech-
niques that, besides the sparsity, can also take into account the
additional signal structure in the form of a bounded maximum
distance between the positions of the first and last occurring
nonzero elements. Simulation results confirmed that, even
with short training sequences, excellent performance can be
achieved, both in single user and multiuser scenarios, when
compared with the conventional method based on time corre-
lation and LS channel estimation.
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