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Abstract 

This paper proposes a biometric system for personal recognition 

(identification) based on three biometric characteristics from a single body 

part: the hand. Features are extracted from the palmprint, finger surface and 

hand geometry, in order to create a single template. A protection scheme is 

applied to guarantee the template's revocability, security and diversity 

amongst different biometric systems. An error-correcting code (ECC), a 

cryptographic hash function (CHF) and a binarization module are the core of 

the template protection scheme. Since the ECC and CHF operate on binary 

data, an additional feature binarization step is required. 

This paper proposes: (1) a novel identification architecture that uses hand 

geometry as a soft biometric to accelerate the identification process and 

ensure the system's scalability; and (2) a new feature binarization technique 
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that guarantees that the Hamming distance between transformed binary 

features is proportional to the difference between their real values. 

The proposed system achieves promising recognition performance and speed 

on two publicly available hand image databases. 

 

1 Introduction 

Biometrics are an attractive and convenient solution for private data 

protection, time and attendance control, controlling the access to restricted 

areas, online banking or identity authentication. Traditionally, this is solved 

using something a person knows (e.g., password) or possesses (e.g., 

identifying document, smart card). However, these methods present some 

serious disadvantages, becoming less reliable in a world where security 

threats are escalating (e.g., identity theft). 

The idea behind biometric systems is to recognize individuals, using pattern 

recognition algorithms on one or more biometric traits, being the latter called 

multimodal biometrics. Such systems can operate in verification or 

identification modes. In verification mode, the person presents the biometric to 

a sensor and claims an identity (via, e.g., a password); a one-to-one 

comparison with the stored template is performed to decide if the person is 

who she claims to be. In identification mode, the biometric presented to the 

sensor is tested by comparing the acquired template with all registered 

templates and the person is authenticated if a match is found. 

Identification can be extremely time-consuming as many comparisons may be 

required, unless some criteria are used to reduce the search space. The first 

steps in biometric sample classification were given by Ratha et al. [1], who 
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proposed a method to reduce the search space when performing fingerprint 

identification, by assigning a fingerprint sample to a specific class according to 

its texture. A probe biometric sample is then categorized into the 

corresponding class and only the templates in the same class are used for 

matching. A similar classification technique has been applied to iris and 

palmprint identification [2,3] using, in the latter, the number of principal lines 

as a classification criterion. 

An alternative to the above classification schemes is database indexing, 

where an index value is assigned to every biometric template in the database. 

In indexing systems, the identities whose indices are similar to the index value 

of the probe sample are retrieved. The probe sample is only matched against 

the retrieved identities, reducing the identification time and, potentially, the 

identification error rate. An iris database indexing method has been proposed 

in [4], where a hash is generated from a specific region of the template and 

used as an index value. 

The above mentioned techniques either extract values from the biometric 

template for database indexing or use implicit features in the biometric sample 

to divide the database into categories. 

This paper proposes the usage of the hand's geometry as a soft biometric to 

sort the list of identification candidates according to the similarity scores and 

use this sorted list to index the template database. The hand's geometry is not 

known to be very distinctive between individuals [5] and the issue of its 

uniqueness is still somewhat controversial [6]. Recent research studies [7,8,9] 

have shown high recognition rates, but the datasets used in these studies 

were acquired in highly controlled environments. Thus, even if the hand's 
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geometry is unique amongst a large population, it might not be feasible to 

extract accurate features in a rather unconstrained environment [6]. 

Nevertheless, it is suitable to perform a coarse first approach to the main 

problem faced by a biometric identification system – "who can this person 

be?" – and let the most likely candidates in the database be compared to in 

the first place. 

In the proposed system, the final identification decision is taken based on 

palmprint (PP) and finger surface (FS) matching, which are two well studied 

modalities. Several PP verification/identification systems have been proposed, 

using different feature extraction techniques, such as 2-D Gabor filters 

[10,11,12,13,14], 2-D Gaussian filters [15], finite Radon transform [16] and 

Discrete Cosine Transform (DCT) [17,18]. Subspace-based approaches are 

also commonly employed to perform feature extraction through Principal 

Component Analysis (PCA) [19,20,21], Linear Discriminant Analysis (LDA) 

[13,20,22,23] and Independent Component Analysis (ICA) [20,24,25]. 

Although FS recognition systems are not commonly found in the literature, 

this biometric trait is usually associated with PP in multimodal systems 

[14,19,22]. 

Besides the risk of authenticating an impostor, biometric systems present 

other potential vulnerabilities. The need to store a biometric template on a 

database is considered to be the main vulnerability amongst biometric 

systems because, unlike other authentication methods, a person cannot 

change a biometric if it is compromised due to a security breach in the 

recognition system. Jain et al. [26] mentioned that one of the most potentially 

damaging attacks on a biometric system is against the template database. A 
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secure template storage scheme should be employed in order to protect 

users' identities and guarantee their privacy. This scheme must, however, 

deal with the acquisition noise, also called intra-user sample variability [27], 

which may be caused by: environmental variability (e.g., non-uniform 

illumination), sample presentation variability (e.g., placing the hand at a 

different angle), intrinsic biological variability (e.g., elastic skin deformation) or 

acquisition losses/errors introduced by the sensor. 

Several schemes that provide secure template storage and deal with sample 

variability have been proposed, typically using ECC to handle the intra-user 

variations. Juels and Wattenberg [28] proposed the fuzzy commitment 

scheme, where a hash function is used to ensure the privacy of the biometric 

data together with an ECC to deal with intra-user variability. Juels and Sudan 

[29], proposed the fuzzy vault scheme, which consists in securing a secret   

under a set  1 2
, ,..., ,

t
A a a a

 
where 

1 2
, ,...,

t
a a a

 
are the features of a biometric 

template. A single variable polynomial p(x) is selected such that its 

coefficients have the secret   embedded in some way. Treating the elements 

of A as x-values, the values of 
1 2

( ), ( ),..., ( )
t

p a p a p a
 
are computed. This method 

relies on polynomial reconstruction using a Reed-Solomon ECC. More 

recently, Vetro et al. [30] proposed a technique that allows secure template 

storage based on a Low-Density Parity-Check (LDPC) code and a CHF. 

In this work, the adopted secure template storage technique is similar to the 

one proposed in [30], but with a different approach concerning the ECC, a 

different architecture (identification instead of verification) and a novel 

binarization technique to convert real-valued features into binary strings. 
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Despite resulting in a more complex and challenging architecture, 

identification is chosen over the verification mode because one of the main 

advantages of biometrics is to allow personal recognition without any 

additional information that can be forgotten or lost.  

The remainder of the paper is organized as follows: Section 2 provides an 

overview of the system's architecture and details of the pre-processing 

(Section 2.1) and feature extraction (Section 2.2) modules. Section 3 presents 

the proposed secure template storage scheme. Details about the template 

binarization module and the Log-Likelihood Ratio (LLR) initialization method in 

the LDPC decoder are presented in Sections 3.1 and 3.2, respectively. The 

enrolment and identification procedures are explained in Sections 3.3 and 3.4. 

Section 4 presents the test conditions and experimental results. Finally, 

conclusions and future work are discussed in Section 5. 
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2 System Overview 

The proposed system architecture is illustrated in Figure 1 and Figure 2, for 

the enrolment and identification stages, respectively. In both cases, the 

acquired sample undergoes the same processing until the template 

binarization module. 
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Figure 1 – Proposed system architecture: enrolment stage. 
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Figure 2 – Proposed system architecture: identification stage. 

 

Although score-level fusion is the most commonly used fusion technique [31], 

the proposed system combines PP and FS at feature-level. This is because 

score-level fusion cannot be applied to the proposed architecture, where only 

an encrypted (and non-invertible) version of the template is stored in the 

database, for which it is meaningless to compute matching scores. 

 

2.1 Pre-processing 

The pre-processing module computes the hand's contour and the regions of 

interest (ROI), which are the palm and the index, middle, ring and little finger 

regions. The thumb is discarded because its texture is typically not completely 

visible in the acquired images due to its sideways positioning. 
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The major pre-processing steps are illustrated in Figure 3. In the first place, 

the input image is converted to greyscale and resized to a lower dimension in 

order to reduce the computational burden in further processing. The resized 

image is binarized using Otsu's method [32] and the contour is traced. Then, 

the fingertips  1 5,...,ft ft  and finger-webs  1 4,...,fw fw
 
are detected using a 

combination of two commonly used techniques: radial distance to a reference 

point and contour curvegram [7]. Let 1ft  always correspond to the little finger's 

tip and 1fw  to the finger-web between the little and ring fingers and so on. In 

order to segment the ROIs from the input image, two reference points, 1rp  

and 2,rp  are also computed. These points are determined by discovering, for 

the little and index fingers, which contour point, p, satisfies the following 

conditions: 

 

 
    

    
1 1 1 1

2 4 3 4

: , , ,

: , , ,

rp p d ft fw d ft p

rp p d ft fw d ft p

 

 
 (1) 

 

where d denotes the Euclidean distance. Since there may be multiple contour 

points that satisfy these conditions, the search for 
1

rp  and 
2

rp  should begin in 

the fingertips and follow the contour until the target distance has been found. 

The obtained point should be matched against the already known finger-webs 

to check if the contour tracking was done in the correct direction. For hand 

geometry feature extraction purposes, an additional reference point for the 

thumb, 3,rp  is computed in the same manner. 
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Finally, the ROIs are detected and segmented using the previously calculated 

points and are then resized to a standard size. The palm area is defined as a 

square region where two of the vertices, 1v  and 2,v  are computed as 

 3 21 1
1 2, .

2 2

fw rpfw rp
v v


   (2) 

The remaining vertices are derived from 1v  and 2v
 
by selecting the square 

that lies inside the contour. The fingers' areas are defined as the largest 

rectangles that lie inside the finger contours, which are the contour segments 

delimited by the fw  and rp  points, depending on the finger. 

 

 
(a) 

 
(b) 

 
(c) (d) 
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(e) 

 
(f) 

 
(g) 

Figure 3 – Major pre-processing steps: (a) – input image; (b) – binarization 

and contour tracing; (c) – fingertip (circles) and finger-web (squares) 

detection; (d) – additional reference points computation (diamonds); (e) – 

palm segmentation; (f) – finger segmentation; (g) – extracted ROIs. 

 

Before feature extraction, the palm and finger ROIs are resized to 16x16 and 

32x8 pixels, respectively. 

 

2.2 Feature Extraction 

Palmprint and  finger surface features are extracted using LDA, which projects 

the ROI vectors into a subspace where the between-class variations are 

maximized and the within-class variations are minimized [23]. This property is 

very useful for the proposed binarization scheme (see Section 3.1) which, in 

turn, has good properties for the initialization procedure in the LDPC decoder 

(see Section 3.2). A total of 64 features are extracted from the PP and from 

each finger, out of which, only the features with smaller intra-class variations 

are selected and merged into a final template. The merged template contains 

140 features: 40 PP features and 100 FS features (20 for each finger). 
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Besides improving the recognition performance, limiting the number of 

features is also a way of assigning weights to each biometric characteristic, 

i.e., the more discriminative it is, the more features are used to represent it in 

the template. 

Hand geometry features are measures, in pixels, computed from the hand 

contour, namely: twenty finger widths (four from each finger), five finger 

lengths, five finger perimeters and five intra-palm distances (see Figure 4). 

 

 

Figure 4 – Hand geometry features. 

 

3 Secure Template Storage 

A CHF is an effective way to encrypt data for it is a non-invertible transform. 

However, due to its dispersive nature, it has completely different outputs for 

similar inputs. This is a major disadvantage when dealing with biometric data, 

because two measurements of the same user are never exactly equal and so 
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will not be the encrypted data, transformed by the CHF. This is different from 

what happens in password-based systems. To deal with this issue, an LDPC 

code is used, which cancels the acquisition noise by correcting the errors in 

biometric templates. When a user attempts to be recognized, the errors (i.e., 

differences) in the newly acquired template will be corrected (up to a certain 

extent) to match the template that was acquired when the user was registered 

in the biometric system. 

To use ECC and CHF, these secure template storage schemes require a 

fixed-length binary representation of the biometric sample, referred to as a 

binary feature vector [33] or binary template. 

 

3.1 Template Binarization 

The binarization module transforms the features in the real-valued template t 

into binary strings, which are then concatenated to form the binary template b. 

Each real-valued feature has its own feature space, which is an interval  , ,c d  

where c and d are the minimum and maximum observed values of that feature 

in the training set (defined in Section 4). A quantizer is then applied to each 

feature space, dividing it into N equiprobable intervals to guarantee that the 

probability of a feature falling in any interval is the same and equal to 1/ .N  

According to Chen et al. [34], having the same probability mass in all intervals 

is beneficial for the users' privacy, as it yields independent output bits. Each 

interval is then associated with a binary string that is used to code a feature if 

its value is comprehended between the interval's boundaries. This process is 

illustrated in Figure 5, where a histogram containing the frequency of the 
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observed values for a given feature is represented, as well as a fitted 

Gaussian curve for a clearer perception of the equiprobable intervals. 

 

 
Figure 5 – Equiprobable interval division of feature space, for N=8. 

 

The binary coding of each feature space uses N binary strings of length 1,N   

that are generated by the following algorithm: 

 for i=1;i<N;i++ { 

  b[i] = 1; 

 } 

 binary_coding[1] = b; 

 for i=2;i<=N;i++ { 

  b = b >> 1; /* Bitwise shift right by 1 position */ 

  binary_coding[i] = b; 



15 
 

 } 

Let  : 1,2,...,
i

i N    represent the set of binary strings used to code the 

intervals. For 8,N   the resulting binary coding is   {0000000, 0000001, 

0000011, 0000111, 0001111, 0011111, 0111111, 1111111}. The 

equiprobable intervals are coded in this manner to satisfy the following 

condition: 

 ( , ) ,
i i j

HD j 


  (3)
 

where HD is the Hamming distance between the two binary strings. This 

condition maintains larger Hamming distances between binary strings used to 

encode further apart intervals, which guarantees that the distance between 

two real-valued features is reflected in the Hamming distance computed on 

the transformed binary features. 

The above proposed template binarization scheme produces fixed-length 

binary templates with ( 1)
features

T num N    bits. 

 

3.2 LDPC Decoder 

The LDPC codes were first introduced by Gallager in 1962 [35], but remained 

unused for 30 years due to the high computational requirements. It was only 

with the appearance of turbo codes, in 1993, that the application of LDPC 

codes was made technologically possible and popularized [36]. 

The LDPC code is suitable for biometric systems due to its granularity and 

correcting power, i.e., by varying the number of parity bits used, the correcting 

capacity can be very finely adjusted while maintaining a steep slope curve. 

This is of high importance because when used in a biometric system, the 

objective of an ECC is not to correct all bit errors (to avoid correcting impostor 
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templates), but to correct binary strings with, at most, a determined bit error 

rate (BER). In this work, BER is defined as the bit error rate measured 

between two binary templates at the decoder's input side rather than the 

output side. 

The LDPC decoding process is iterative and done by belief propagation [35]. 

In the proposed system, the number of iterations is limited to 20 because 

experiments revealed that a larger number of iterations degraded the 

recognition speed while not bringing significant improvements on the 

correcting capacity. The decoder’s inputs are not the binary template and 

parity bits, but their associated LLR instead, which is given by: 

 
( 0 | ) 1 ( 1| )

( | ) log log ,
( 1| ) ( 1| )

i i i i

i i

i i i i

P b b P b b
LLR b b

P b b P b b

      
     

     
 (4) 

where ( 1| )
i i

P b b  is the probability of the i-th bit in b being 1, given the 

observed value in .
i

b  Since there is no model for the intra-user sample 

variability, an easy but less effective way to deal with this issue would be to 

set the initial LLR to a random or fixed value, for example, 0   if the bit is 1 

and 0   if the bit is 0. However, this would be a poor choice of the initial 

LLR values as it would not give any information to the decoder about the 

certainty of the bit's value. 

In the proposed system, these probabilities can easily be estimated due to the 

interval coding used in the proposed template binarization module. To do this, 

the first step is to divide the probe binary template into strings with length 

1,N   to treat each feature separately. The next step is to match the feature’s 

value in the coding table, as illustrated in Table 1. Assuming that the feature's 

value corresponds to ,
i

  the binary strings in the range  ,
i i 
 

 
 are selected 
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and the probabilities for each bit are estimated based on the observed 

frequencies. In the proposed system,   is set to 2. 

Interval 
Coding 

(b1b2b3b4b5b6b7) 
  

1 
1

0000000 
 

 
1

( 1) 0 / 5 0P b   
 

2 
2

0000001 
 

 
2

( 1) 1/ 5 0.2P b   
 

3 
3

0000011 
 

 
3

( 1) 2 / 5 0.4P b   
 

4 
4

0000111 
 

 
4

( 1) 3 / 5 0.6P b   
 

5 
5

0001111 
 

 
5

( 1) 4 / 5 0.8P b   
 

6 
6

0011111 
 

 
6

( 1) 5 / 5 1P b   
 

7 
7

0111111 
 

 
7

( 1) 5 / 5 1P b   
 

8 
8

1111111 
 

  

 

Table 1 – Probability estimation for interval 5 with 8N   and 2.   

 

If ( 1| ) 1
i

P b b 
 

or ( 1| ) 0,
i

P b b   the corresponding LLR would be 

 or + ,   which would prevent the decoder from correcting that bit, as 

happens with 
1 6
,b b  and 

7
b  in Table 1. For this reason and because the 

probabilities are only an estimate, the value 1 is changed to 0.95 and the 

value 0 is changed to 0.05. As for the parity bits, they are not affected by the 

acquisition noise and are assumed to be uncorrupted, so the LLR is 

 or +   if the parity bit is 1 or 0, respectively. 

 

3.3 Enrolment 

In the enrolment stage (see Figure 1), the binary template, ,b  is processed by 

the LDPC encoder, which computes a set of parity bits, ,p  that are stored in 
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the template database; b  is also processed by a XOR module, which 

computes the bitwise exclusive disjunction between b  and a randomly 

generated binary string, w, to output a result x. This is done for two reasons: i) 

to guarantee that two templates from the same person are different in distinct 

biometric systems and ii) to ensure that if a template is compromised, a new 

one can be issued just by changing w. 

Since w is stored in the database, it would be trivial to recover b from x and w, 

so x is transformed by a CHF to guarantee its privacy. The result, ( ),H x  is 

also stored in the database. The user's template is stored as the triplet 

 , ,p w H  and is associated with an ID, which is an automatically generated 

number. The same ID is associated with the template ,HGt  which is stored in 

the hand geometry database. 

 

3.4 Identification 

The goal is to determine whether a probe binary template, ,b  belongs to a 

registered user or not (see Figure 2). First, the probe template HGt   is 

compared to all registered templates in the hand geometry database and the 

similarity scores are computed using the Euclidean distance and then sorted. 

Let 1id  be the ID with the highest similarity score. The data associated with 

1id in the template database,  , , ,p w H  is retrieved and the parity bits, p, 

extracted from b are used in the LDPC decoder to correct .b  If the number of 

bits in b  differing from b is less than the correcting power of the LDPC code, 

then b b H H    and the user is authenticated. Otherwise, the 

identification algorithm takes the next ID in the sorted list, retrieves the 
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respective stored data and the process is repeated. If no more IDs are 

available, the user is not authenticated. 

 

4 Experimental Results 

The proposed system operates in a semi-constrained environment. The 

distance between the acquisition device and the user's hand must be 

approximately constant. Also, the background must be of a colour that 

contrasts with the skin. However, the user can place his hand freely within the 

sensor's field of view. 

Recognition performance tests were carried out on two publicly available hand 

image databases that satisfy the abovementioned requirements: the UST [37] 

and GPDS [38] hand image databases. Although [37] and [38] report a 

database size of 100 and 109 users, their latest versions, [39] and [40], 

contain 287 and 150 users, respectively. The well-known PolyU palmprint 

database [10] is not suitable to test the proposed system because its images 

do not include the fingers. 

The UST database is composed of 5740 images, captured with a digital 

camera, from both left and right hands of 287 users (10 images per hand). For 

recognition performance tests, each hand is treated as a different user. 

Therefore, a total of 574 identities is considered. The GPDS database 

contains 1500 images, acquired with a desk scanner, of 150 users' right 

hands (10 images per user). 

For both databases, training and test sets were built. The training set contains 

five randomly chosen templates from every user, which are registered in the 

database, and the test set contains the remaining five templates. 
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Recognition performance tests consist in comparing each template in the test 

set with all the templates in the training set to generate a matching score (in 

this case, the Hamming distance is used). Therefore, each test template 

generates 5 genuine and ( _ 1) 5num users    impostor Hamming distances. 

The number of genuine and impostor comparisons are presented in Table 2. 

 

 Genuine Impostor 

UST 14,350 1,644,510 

GPDS 3,750 111,750 

Table 2 – Number of genuine and impostor comparisons in the UST and 

GPDS databases. 

 

Recognition results can be depicted in the form of receiver operating 

characteristic (ROC) curves, as illustrated in Figure 6, where the results for 

PP, ring, middle and index fingers, as well as the four finger surfaces' feature-

level fusion (FSF) and PP+FSF fusion are presented. It is clear that the 

recognition accuracy of the multimodal fusion is better than any of the 

biometric characteristics, when used separately. Another form of presenting 

the recognition results is through genuine and impostor distributions (see 

Figure 7) and the most common measure to evaluate these distributions is the 

decidability index [41]. It reflects how well separated the two distributions are 

and is given by: 
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 2 2
,

2

g i

g i

d
 

 


 


 (5) 

 

Where , ,
g i g

    and 
i

  are the means and standard deviations of the 

genuine and impostor distributions, respectively. 

 
Figure 6 – Recognition results for PP, Ring, Middle and Index Fingers, FSF 

and PP+FSF fusion on the UST database. 

 

The number of intervals used in the binarization module is 8,N   as it was 

found to yield the best recognition results. This leads to a template length of 

( 1) 140 7 980
features

T num N       bits. 

Since the two databases have slightly different correcting capacity 

requirements, two LDPC codes were used: a (980,880) code and (980,890) 
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code, which will be referred to as code 1 and code 2, respectively, from now 

on. These LDPC codes were designed to correct templates with a BER of, at 

most, 26% and 27%, respectively. The parity-check matrices have a fixed 

number of 3 ones per column and a variable number of ones per row:

1,4
0.6966, 

1,5
0.3034, 

2,4
0.6591   and 

2,5
0.3409   represent the ratio 

of rows that contain 4 and 5 ones in code 1 and code 2, respectively. As 

expected, the LDPC codes have a filtering effect on the genuine/impostor 

distributions, as illustrated in Figure 7 (a) and (b). 

 

 
(a) 

 
(b) 

 

 
(c) 

Figure 7 – Recognition performance results: genuine (left) and impostor (right) 

distributions overlaid with the LDPC correction curve on (a) UST database 
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and (b) GPDS database; (c) hand geometry cumulative rank curve on both 

databases. 

 

The resulting Equal Error Rates (EER) are 0.43% and 0.047% and the 

decidability index values are 6.36 and 7.89 for the UST and GPDS databases, 

respectively. The extent to which the LDPC decoder corrects the probe 

templates is what defines the system's operating point, in terms of False 

Acceptance Rate (FAR) and False Rejection Rate (FRR). Since a secure 

biometric system is proposed, a low FAR is chosen over a low FRR to prevent 

impostor access. Using code 1 and code 2, the results are a 0.01% FAR and 

2.63% FRR on the UST database and a 0% FAR and 0.95% FRR on the 

GPDS database. 

In Figure 7 (c), a hand geometry cumulative rank curve is presented. As 

expected, the smaller population in the GPDS allows better recognition results 

and the images also produce more reliable hand geometry features because 

they were acquired using a desk scanner, so the hand is placed on a stable, 

fixed surface. As a result, the genuine user is sorted out in the first place 

85.95% of the times, against the 71.51% in the UST database. Using the 

hand's geometry as a soft biometric in the proposed system proves to be 

advantageous because it reduces the number of LDPC decoding attempts, 

which is a costly process. A comparison is presented in Table 3. 

  



24 
 

 
Without Soft Biometrics With Soft Biometrics 

UST GPDS UST GPDS 

Pre-process and 

Feature Extraction 
40 ms 40 ms 40 ms 40 ms 

Template 

Binarization 
1 ms 1 ms 1 ms 1 ms 

Similarity Score 

Computation 
N/A N/A 4 ms 1 ms 

LDPC Decoding 1.56 s 614 ms 29ms 17ms 

Total Identification 

Time 
1.601 s 655 ms 74ms 59ms 

 
Table 3 – Comparison of average identification time with and without using 

soft biometrics. The LDPC decoding time is computed as the average time 

until a positive match is found (see Figure 2). 

 

The probability estimation scheme, presented in Section 3.2, allows an LDPC 

decoder to achieve greater correction capability with the same amount of 

parity bits. In other words, an LDPC decoder requires a smaller amount of 

parity bits to achieve the same correction capacity as an LDPC decoder with 

no knowledge about the probabilities (see Figure 8). 
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Figure 8 – Correcting performance of an LDPC code using fixed and 

estimated LLR values. 

 

Parity bits are the result of the linear modulo-2 equation: ,
LDPC

p H b   where 

LDPC
H  is the parity-check matrix and b is the binary template. If b has length T 

and p length k, there are k equations and T unknowns, .T k  Operating on a 

binary field, there are 2T k

 possible solutions [42]. According to [30], the 

security metric in an ECC-based secure biometric system is the number of 

security bits, given by .T k  

Summarizing, the proposed LLR initialization method provides the system 

with more security, measured with the metric described above. 
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5 Conclusions and Future Work 

This paper proposes a fast multimodal identification system that achieves 

good recognition accuracy while securing the stored data. 

Feature-level fusion is used because, as mentioned in Section 2, score-level 

fusion is not feasible. Another commonly used fusion strategy, at the decision 

level, was not used in the proposed system because the recognition based on 

each finger is not very accurate, as shown in Figure 6. Using decision-level 

fusion on PP and FSF would also not be very wise, since there would be an 

even number of decisions. Other levels of fusion (e.g., rank- or sensor-level) 

are also not applicable to the proposed system [31]. 

The proposed database indexing technique presents some advantages over 

previously proposed classification and indexing methods. Unlike classification 

techniques, no errors are introduced in the system due to misclassification of 

the input image and unlike the previous indexing techniques, no candidates 

are excluded. If only a given number of top candidates were considered, the 

hand's geometry would limit the recognition accuracy. Thus, the proposed 

system is able to perform faster without affecting the FAR and FRR. Also, the 

usage of hand geometry as a soft biometric makes the system scalable 

because the computation of similarity scores is a fast process and, since the 

similarity scores are sorted, the average number of decoding attempts can be 

considered independent of the number of registered users. 

The downside of storing hand geometry templates in the clear for fast 

comparisons is that it exposes some information about the user. This does not 

affect the proposed system because the final decision does not rely on hand 
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geometry; however, it may compromise other biometric systems where this 

trait is used. In the future, this problem will be addressed. 

The proposed binarization technique is a high-level and general method that 

can be applied to other biometric traits (e.g., face). The interval coding was 

specifically designed to provide a good estimate of the initial LLR value, which 

improves the system's security by reducing the number of parity bits that need 

to be stored along with the hashed version of the template. 
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