ZAS - ASPECT-ORIENTED AUTHORIZATION SERVICES

Paulo Zenida, Manuel Menezes de Sequeira, Diogo Henriqueesterao
ISCTE - Instituto Superior de €ncias do Trabalho e da Empresa
Av. das Forcas Armadas, Lisboa, Portugal
Paulo.Zenida@iscte.pManuel.Sequeira@iscte,idiogo.Henriques@iscte.pCarlos.Serrao@iscte.pt

Keywords: JAAS, RBAC, authorization, Java, AspectJ, AOBsZ

Abstract: This paper proposesag, a novel, flexible, and expressive authorization mechanism far Zas has been in-
spired by Ramnivas Laddad'’s proposal to modularize Java Auth&atiGnd Authorization Services (JAAS)
using an Aspect-Oriented Programming (AOP) approachs’ Zims are to be simultaneously very expres-
sive, reusable, and easy to use and configuas. &lows authorization services to be non-invasively added to
existing code. It also cohabits with a wide range of authentication mechgnism
Zas uses Java 5 annotations to specify permission requirements to cameehed resources. These require-
ments may be changed directly during execution. They may also be d¢attiha client supplied permission
classes before each access to the corresponding resourceféidiases, together with several mechanisms for
permission propagation, expression of trust relationships, depttte$acontrol, etc., makeds, we believe,
an interesting starting point for further research on the use of AORufbpazation.

1 INTRODUCTION Expressiveness requires code which is as clear and
simple as possible. We do not want to tangle busi-
This paper proposes a novel, flexible, and expressiveness code with code related to the checking of user
authorization mechanism. Its advantages stem mainlypermissions. We also do not want permission check-
from the fact that an AOP approach is used, allowing ing code scattered all over the application, in every
it to address some of the problems found in indus- method requiring verification of authorized access. In
try standards like JAAS (Lai et al., 1999; @pR006; other words, we want to modularize, into aspects, the
Oaks, 2005). Aspect] (Aspect] Team, 2006) has beercrosscutting concerns related to authorization. On the
used to develop the proposal. other hand, the programmer should be able, though
AOP is strong in terms of reduction of code scatter- not required, to guide the application of the autho-
ing and tangling, provides for the separation of cross- rization concerns to his own code. In this sense, one
cutting concerns from the core code, and nicely inte- might say that one of the tenets of AOP, viz. obliv-
grates with the expressiveness of Java 5 annotationsjousness (Filman and Friedman, 2005), is violated.
This, together with our practical interest in authoriza- However, annotations may be though of as allowing
tion services for Java applications, led us to attempt the programmer to express in the code its required se-
to develop a new, aspect-oriented authorization mech-mantics, still oblivious of the exact way in which this
anism, called Zs. Our aims were to makeag si- semantics will actually be implemented.
multaneously very expressive, allowing programmers  According to (Clifton and Leavens, 2002), aspects
to state very clearly what they mean, and indepen- can be divided into two categories: assistants and
dent from the business context, though being possi- spectators. They suggest that assistance should be ex-
ble to make it business aware, allowing the separation plicitly accepted by a module. Once a module accepts
of particular permission specifications from the au- assistance of an aspect, then the aspect is allowed to
thorization concerns embedded into the code by pro- advise that module. Annotations can be seen as a way
grammers. Another of our goals was to make the ap- to express assistance acceptance. Authorization an-
plication of Zas to already existing code as simple as notations, as proposed byag, will thus acknowledge
possible and, if necessary, totaly non-invasive. specific semantics for, say, a method, and implicitly



accept (or rather, require) assistance of a correspondimplements everything from scratch, to complete so-
ing aspect implementing that semantics. lutions like JAAS, and from OOP approaches to ap-
In (Recebli, 2005), Recebli proposes a different proaches where the power of AOP is leveraged.
classification related to the role of aspects in soft- Our main interest while studying existing authen-
ware systems from a higher-level engineering point tication and authorization mechanisms was JAAS,
of view. He proposes the division into integral and at- since it is a standard for authentication and authoriza-
tachable aspects. According to him, we can say thattion services in Java (Sun Microsystems, Inc., 2006)
the aspects within our approach are attachable, sinceand an integral part of the JDK.
they can be removed from an application, without in ~ JAAS is not as flexible as we would like it to be. Its
any way changing the correctness of its business im- Us€ requires considerable configuration effort (Oaks,
plementation (except, of course, in what concerns au-2005). For example, security policy files have to be
thorization). used in order to specify the prlnc_lpals and what they
The JAAS authentication service, based on are perm|t_ted .to do. For example:
PAM! (Samar and Lai, 1996), provides an abstraction 9" ant Pri nci pal o . .
layer that greatly simplifies changes in the actual au- S2™P! €. principal . Principal "user® {
thentication method used. However, since this work }: perm ssion test.Perm ssion “pernt;
was motivated by the need to add authorization to ~’
the Helbpolis Web applicatioR,which already pos-
sessed its own authentication code, our main focus
was solely on authorization concerns. Nevertheless,
the developed solution can be seamlessly integrated®™~"* | : ;
with a wide range of authentication mechanisms. ~ during the operation of the system. It is possible to
This work was inspired by Laddad’s proposal (Lad- US€ @ database for this task, as in the example pro-
dad, 2003) to use AOP to modularize JAAS-based au- Vided in (Co&, 2006), increasing the flexibility of the
thentication and authorization. The main interest of SyStém by allowing the privileges of the principals to
his proposal, at least from our point of view, is related be specified at runtime. However, such a solution re-
to the authorization concerns. Our work is thus based 9uires the use of a specific database model that, for
in Laddad's, extending further the modularization of &/ready existing systems, may not be easy to accom-
authorization concerns, thus reducing code tangling PiSh-

: : d - The original JAAS model is implemented with an
and scattering, and reducing the configuration effort 00 approach, thus being prone to the common prob-

required from the programmers. lems of code scattering and tangling: code must be
_ This paper is structured as follows. The next sec- added to the business classes in order to implement
tion will review some of the existing Java-based au- gythorization.

thorization mechanisms. It is followed by a detailed public class MWC ass {

description of the requirements that have been used” pyplic void busi nessMet hod() {

Besides, and importantly, the permissions can not
be changed at runtime. This is a serious restriction for
dynamic applications, where an administrator must be
able to add users and their corresponding permissions

as guidelines to developag. And finally, conclusions AccessControl | er. checkPer i ssi on(
will be drawn and some possible directions for further new MyPer mi ssi on(" aPer i ssi on")
work will be pointed to. )

/1 business code

The Zas source code and related projects can
be downloaded from https://svn.ci.iscte.pt/zenida,
namely the As source code and the Web application id main(Stiri
used as a case study for this research. Further details VO}/ gﬁ't E(en: [::gtg| iggi%)e {
about Zs, its implementation and the case study re- MO ass a = new M/ ass():

sults can be found in (Zenida et al., 2006). Subj ect aut hent i cat edSubj ect =

I c. get Subject();
Subj ect . doAsPri vi | eged(

public static

aut hent i cat edSubj ect,

2 AUTHORIZATION SOLUTIONS o B Vi eoedAt ton() {

IN JAVA public bject run() {

a. busi nessMet hod() ;
Authorization is not a new research topic. There are }
many different proposals and tools readily available, 1];“ |
ranging from ad hoc solutions, where the developer )
!Pluggable Authentication Modules }

}

2See http://heliopolis.iscte.pt/ (the source code uses Z

and is available in https://svn.ci.iscte.pt/Heliopolis/trunk/). Clearly, the authorization code is entangled with

business code, both in the code requesting access to



the resource (the caller code) and in the resource codé. It should be independent and compatible with the

itself (the callee code). Moreover, authorization code
will be scattered through the application, since it must
be used wherever access control is required. Both

problems can be fixed using AOP, as shown in (Lad-z-
dad, 2003). Laddad proposes an aspect-oriented ap-

proach to the application of JAAS that significantly
simplifies the code required for access control, though
only at the caller:

public class MyCl ass {

/'l as before 3

public static

void main(String args[]) {
M/ C ass a =
a. busi nessMet hod() ;

}
}

We still need to call thecheckPer i ssi on()

method in the business methods. This can be avoided
if we use the expressiveness of Java 5 annotations ang,

modularize that call into an aspect responsible for au-
thorization verification:

@\ccessControl | ed(
requi res = "aPerm ssion",
pernm ssiond ass = MyPerni ssion. cl ass

6.

)
public voi d busi nessMet hod() {
/1 business code

new Myd ass(); 4.

simultaneous use of JAAS, especially with its au-
thentication services.

Its authorization services should require no more
from the application model than access to the cur-
rent principal’s permissions. It should thus support
the RBAC (Ferraiolo et al., 2006; Sandhu et al.,

1996) model, though never dealing directly with

roles itself.

. It should greatly simplify the code of client appli-

cations, as compared with alternative solutions.

It should be as non-invasive as possible, allowing

business code to concentrate on the business logic,
allowing the programmer to specify access require-

ments within the code, if she so desires, but also to

completely separate access control from the busi-

ness logic code.

It should require less configuration effort than the
alternatives.

It should allow dynamic changes to the resources’
access requirements.

Since ZAs was meant to be a Java/Aspect]J library

of classes and aspects for use in Java applications, the
requirements above were further refined into the fol-
lowing detailed requirements:

} 1. The access requirements for each such resource

The use of annotations clearly improves the qual-
ity of the code, augmenting its expressiveness while

reducing scattering and entanglement. However, by

itself it does not decrease the required configuration
effort nor makes access control dynamié@sZas will
be seen in the next sections, does.

3 REQUIREMENTS

Originally, the implementation of authorization in
Helibpolis was a clear case of a simplistic implemen-
tation of Yoder's “Limited View” pattern (Yoder and

Barcalow, 1997), where appropriate menu options -

were hidden from non-authorized users. Our aim was
thus to solve the authorization problem not by merely
limiting the view of each user to whatever she is al-
lowed to view or manipulate, but mainly by making

sure, at the business layer itself, that no user can eveg,

gain unpermitted access to any resource that is out-
side the privileges associated with his roles within the
system.

For the reasons stated in the previous section, wi
were not satisfied with the available solutions to this
problem. Zs, as described in this paper, was thus de-
veloped as a non-ad hoc solution to the authorization

problem fulfilling the following broad requirements: 8.

should be specifiable using Java 5 annotations.

The resources whose access should be controlled
are represented by constructors, methods, and at-
tributes.

3. Itshould be possible to force the propagation of the

access requirements of a resource to all its mem-
bers. For instance, from a package to all its types
and nested packages, and from a class to all its
(non-private) methods and attributes.

4. It should not be possible to propagate access con-

trol specification to resources explicitly marked as
having no access control.

It should be possible to define access requirements
either next to the corresponding resource defini-
tion (invasive usage), centralized in a single or in
several access requirement definition aspects (non-
invasive), or both.

It should be possible to use outside sources of per-
mission requirements, such as property files. Per-
mission requirements should be possible to change
dynamically.

It should allow the definition of access require-
ments using boolean expressions involving permis-
sion names.

It should allow the quantification of the definition
of access requirements using wildcards.



9. It should allow the specification of the required package pt.iscte.ci.zas. authorization;
depth of access control as either deep or shallow. public class Pernission {
10. When shallow access control is required, it should puglt'riCnSt ring getRequirenent s(
. g v g current Requirenents,
be possible to specify the degree of suspiciousness Joi nPoi nt j oi nPoi nt ,
of aresource. Joi nPoi nt . Stati cPart
11. Special cases should be provided to bypass access encl osi ngStaticPart) {
control, viz. using privileged methods and trusted return currentRequirements;
classes.
12. It should be easy to add authorization features t0 gefore each access to a protected resource, this

existing projects. method shall be passed the current access require-
The next sections go through several of these re- ments, which the default implementation will simply
quirements, exemplifying their impact in the client return, as well as the execution context of the access,
code, and thus clarifying the importance of the re- including the caller and callee objects.
quirements themselves. Notice, however, that at the It should be possible to provide access control spec-
current state not all requirements have been imple- ifications with client classes extendimgr mi ssi on
mented and some are only partially implemented. The @nd overridingget Requi r ement s() :
status of development will be stated wherever appro- Package nypackage;

priate.

3.1 ANNOTATIONS (1 AND 2)

Zas should allow the programmer to guide the appli-
cation of aspects through the annotation of the non-

private’ resources where access control is required:

i mport pt.iscte.ci.zas.authorization.*;
public class Myd ass {
@\ccessControl | ed(
requires "aPer m ssi on"

)
public void foo() {}
}

The previous code explicitly states that ac-
cess to methodf oo(), that is, calling permis-
sion, is restricted to principals having permission
aPer i ssi on. When not specified in the annotation,
the access requirements correspond to a single per
mission whose name is the signature of the method
without the return typé. Hence, the permission re-
quired to callf oo() as defined in

package nypackage;

public class Myd ass {
@\ccessControl | ed
public void foo() {}

}

is mypackage. Myd ass. foo() .

It should also be possible to annotate attributes,
similarly to what happens for methogls.

Access requirements should always be filtered by
n?ethodget Requi rement s() of the Per mi ssi on
class:

3Private “resources’” are implementation details.

4Using complete signatures as permission names guar-
antees that overloaded resources are distinguished.

5The current version of & does not distinguish be-
tween sets and gets, as it should.

public class MyC ass {
@\ccessControl | ed(
per m ssionC ass = MyPerni ssi on. cl ass

)
protected void foo() {}

}

Hence, arbitrary client code may be executed during
access control, making it possible to add business spe-
cific access control methods t@g

3.2 PROPAGATION (3 AND 4)

Zas should provide a mechanism allowing access con-
trol specifications to be propagated to members of the
corresponding resource, if any. For instance, in
@\ccessControl | ed(

requi res = "aPermn ssion",

dept h Dept h. SHALLOW

public class Myd ass {

public void foo() {}

@\ccessControl | ed

public void bar() {}

@Not AccessControl | ed

public void baz() {}

}

foo() would inherit its access control specifications
from classMyCl ass: the permissioraPer ni ssi on

and the depth (see Section 3.6) verification as shal-
low. Howeverpar (), while access controlled, would
not inherit required permissions fronyd ass, and
baz() would remain free of any access controls.

By default, non-private resources should not be
access controlled, except when propagation is being
used.

Notice that there should be two different effects
in propagation. The first one is static, and leads to
all non-private members of an access controlled re-
source, with the exception of those marked with an-
notation@ot AccessCont r ol | ed, to also be access



controlled. The second one is dynamic, and leads to public void foo(String s) {}
all non-private members of an access controlled re-}
sourcethat have not been explicitly marked as being specifies thatf oo is access controlled and ini-
either access controlled or not access controlted  tially requires permissiomypackage. Myl ass.
dynamically inherit the required permissions fromthe foo(String). It should be possible to change the
enclosing resource (see Section 3.4). required permission using a properties file:

The current version of & still does not provide  npypackage. Myd ass. foo(String) = foo
the same mechanisms in the case of attributes. This In this case, after loading the properties file, the

problem will be solved in the near future. required permission for callingoo() is no longer
Also, since the current version of AspectJ (Aspectd nynackage. MyQ ass. f oo( String), butfoo. Of

Team, 2006) does not allow the capture of package course, the same effect should be obtained by directly
annotations, s still does not provide the inheritance calling a permission changing method disZ

mechanism for packages from the source cbde. i mport pt.iscte.ci.zas. aut hori zati on;

3.3 LOCATION (5) AccessCont rol | er. addAccessCont r ol (
"mypackage. Myd ass. foo(String)",
Usually resources requiring access control are di- "f00"

rectly annotated as such, i.e., their definition is di-
rectly annotated. This requires source code invasion The use of external sources of permission require-
and leads to scattering the meta-information related to ments allows them to be provided at the appropriate
access control concerns, which in some cases may bgranularity level. For example,
considered a bad practiée. nypackage. MyCl ass. foo() = foo || bar

It is possible to use Aspect] ITP# inject anno- nypackage. My/Cl ass. * = bar
tations in types, methods, attributes, etc. Hence, it "ypackage. () = foo

is possible to modularize all access control Specifica— which m|ght be found in an access control prop-
tions in a single aspect, solving the problem of scat- erty file, states that all access controlled methods
tering meta-information. without any parameters within packaggpackage
Just as Java prohibits double annotations, As- will require permissiorf oo, with the exception of
pectJ prohibits the injection of an annotation already those within classwd ass, which require permis-
present in the source code, next to the resource defini-sionbar . Again, methodwd ass. f 0o() is an ex-
tion. Hence, the two approaches may be used togetheteption, since it requires either permissiaro or per-
without any problem: the compiler will issue an error missionbar (see Section 3.5). The order is relevant
in case of a collision. because #s will always look for the first occurrence
of a matching signature and load the corresponding

3.4 DYNAMIC PERMISSIONS (6) permission specification.
Access control specifications should spediftial 3.5 EXPRESSIONS (7 AND 8)

permissions, changeable at runtime. That is, permis-
sion requirements should be dynamic, while the ac- It should be possible to compose Boolean permis-
cess control character of resources should be static. sion expressions, both in-code as initial permission
In conjunction with the ability to use wildcards (see requirements, and dynamically (e.g., inside property
Section 3.5) both to specify permissions and to spec-files). For instance, in the access control specifica-
ify the resources to which the permissions apply, this tion
requirement makes it possible to dynamically load @ccessCont r ol | ed(
permissions specification from a generic input stream
(connected to, e.g., access control property files), thus
allowing permissions to be changed dynamically and )
easily by a system operator. For instance, bublic void foo() {}
Bﬁg:‘?gecgggc@%eéss { f[he permissi_on expression reqqire_s any principal call-
@ccessCont rol | ed ing f oo() elthgr to have permissioaPer ni ssi on
- or to lack permissiomanot her Per ni ssi on.
®However, we will soon open an Aspect] feature re-  Currently, Zs supports operatolg (“or’), &&
quest. (“and”), and! (“not”), as well as the use of paren-
"The authors consider this use of annotations to be ad- theses to control evaluation order.
visable, however, since it leads to improved source expres- Regu|ar expressions should also be possib|e in per-

siveness without hampering abstraction. missions expressions. For example, using
8Inter-Type Declarations

requires =
"aPerm ssion || !anotherPerm ssion"



@\ccessControll ed(requires =
public void foo() {}

any call tof oo() would require a principal having
at least one permission whose name starts psthm
(e.g.,per mor per ni ssi on). Notice that regular ex-
pressions introduce a form of quantification intasZ

"perm") public void foo() {

new B(). bar();

Using shallow access control should generally be
considered dangerous. Hence, a mechanism should
be devised to short-circuit the consequences of shal-
: : ‘ : e low access control. If a given method declares itself to
In this case they introduce existential quantifiers into be suspicious, its access control specification should

permission requirements. . . not be turned off in the flow of a shallowly access
Wildcards should also be possible when dynami- ¢ontrolled method. For instance, in

cally specifying permission requirements, of course.
In this case, however, they can also be used to specify
multiple resources in a single step, as shown in the last
example of Section 3.4. This introduces the notion of
universal quantifiers into as.

3.6 DEPTH (9 AND 10)

public class A {
@\ccessControl | ed(
dept h = Dept h. SHALLOW

public void foo() {
new B(). bar();
new C().baz();

}

By default, access control should be applied for aII bl i | B

accesses to access controlled resources, regardless & @\'Cg egsgfn r ol{l ed

the context. Regardless, namely, of the controls which o1 i ¢ void bar() {

have already been performed in upper levels of the new C() . baz();

current call stack. This is usually the safest option }

and thus the most desirable default. However, occa-}

sionally it may be necessary to turn off access control publ i ¢ class C {

in the control flow of a given method execution. @ccessControl | ed(suspicious = true)
The @ccessControl | ed annotation’s element public void baz() {}

dept h represents the level of access control. In a way }

reminiscent of copy depth, access control is applied a call tof oo() will fail if the principal does not have

to method execution either in@ept h. SHALLOWor permissionC. baz(): it is not sufficient for him to

in a Dept h. DEEP manner. Shallow access control have permissioA. f oo(), sincebaz() is suspicious.

means that if access to a method is granted to a prin-On the other hand, permissi@bar () is not neces-

cipal, it will also be granted to its complete flow of sary when the call is performed in the flow of control

control, effectively turning off access control during of f oo(), sincebar () is unsuspecting andoo() s

its execution. On the contrary, if access to a method access control is shallow.

specifying deep access control, which is the safe de-

fault, is granted to a principal, it withot be automat-

ically granted to all other accesses to resources in the

method’s control flow.
For example, in

public class A {
@\ccessControl | ed
public void foo() {
new B(). bar();

public class B {
@\ccessControl | ed
public void bar() {}

}

a call tofoo() will be possible only if the prin-
cipal has both permissioA. f oo() and permission
B. bar () . Changing the depth tept h. SHALLOWin
the annotation of oo(), access control wilhot be
applied during the execution 6bo() :

@\ccessControl | ed(
depth = Dept h. SHALLOW
)

3.7 BYPASSES (11)

Zas should provide two methods to bypass access
control. The first is more dangerous, and should be
used with care: it should be possible to annotate some
methods as privileged, i.e., as turning off access con-
trol to calls within their control flow. The difference
between calling a privileged method and calling a
method with shallow access control is that the first
call always succeeds, while the success of the second
one depends (solely) on the current principal having
permission to make the call.

The second required bypassing mechanism, trust, is
more disciplined and less dangerous. Instead of being
used in a method to bypass access control during its
entire execution, regardless of the access control spec-
ifications of the intervening resources, trust in speci-
fied classes is explicitly acknowledged by the callee
method. For example, given

public class A {
@\ccessControl | ed(
requi res = "aPerni ssion",



trusts = { B.class } i mport pt.iscte.ci.zas.authorization.*;

) public aspect MyController
public void foo() {} ext ends AccessController {
} private User user;
public class B { public Set<String>
@\ccessControl | ed( current Princi pal Permi ssions() {
requi res = "anot her Per m ssi on” /1 get and return perm ssions
) /1l fromthe roles of "user".
public void bar() { }
new A().foo(); before() :
accessToControl | edResour ces(
} AccessControlled
. . — . ) {
any gall tobar () Wlll_req_uwe a principal with per- /1 if necessary, authenticate user.
missionanot her Per mi ssi on, as usual, but the call }

to f oo() from within bar () will not be subject to
access control, sindeoo() declared its trust in class
B. Notice, however, that calls from within the flow of
control off oo() will in general be access controlled,
since trust does not propagate. This will improve even 4 CONCLUSIONS
further the safety of trust relationships.
A new aspect-oriented authorization packagés,Z
3.8 EASE OF USE (12) has been proposed which leverages AspectJ to make it
possible to add authorization concerns to existing ap-

plications in a simple, non-invasive way. The model
used is both independent of the authentication mecha-
nism used, and of the specific way permissions are at-
tached to principals. Hence, while supporting RBAC,
Zas is not strictly speaking RBAC-based.

Even though in its early stages of developmeidis Z

Zas should be easily integrated into an existing
project. Indeed, if the requirements illustrated in the
previous sections are fulfilled, particularly the ability
to use ITDs to modularize access control specifica-
tions, little or no changes will be required in existing

code. . ;
Zas integration shall simply require has showp thg potential of aspec't—orlented a_pproaches
i i o to authorization concerns, making them simpler to
1. addingtheas. j ar Javaarchive into the class path  jmplement, support, and configure.aZis also dy-

of the application; namic, allowing runtime changes to the permission
2. defining a concrete aspect that extends the providedrequirements associated with access controlled re-
abstract aspe@ccessControl | er; and sources. The use ofag, which builds on a previ-

ous proposal by Laddad (Laddad, 2003), greatly re-
duces the scattering of authorization code and its en-
tanglement with business code. The use of Java 5

3. adding the access control specifications either di-
rectly to the resources requiring authorization, or

gzggdgilzzdcfoncentrated in, €.g., the concrete as gnnotation's'led to a mode'l Wheréli c!ient che
is not explicitly guiding advice introduction (Clifton

These steps are quite straightforward, with the pos- and Leavens, 2002), but augmenting the expressive-
sible exception of the definition of the concrete as- ness of the code by annotating it with authorization
pect. Access control is only possible if the cur- meta-information that is then taken into account by
rent principal’s set of permissions is available. How- 7as’ aspects. If this is deemed unacceptable, or if it
ever, Zas should be as independent as possible bothjs impossible in practice, then authorization concerns
of the authentication mechanism used in the ap- can be concentrated in a single module, thus free-
plication, and of the roles existing in the appli- ing business code not only from authorization-related
cation and their corresponding permissions. How codebut alsofrom scattered meta-information.
and where to find the permissions associated with  z3s s, in certain cases, a good alternative to JAAS:

(the roles of) the current principal is no&Z prob- jt behaves much like JAAS, though with some impor-
lem. AccessControl |l er simply declares an ab- tant limitations. For instance, unlike JAAS, it can not
stract methodur r ent Pri nci pal Per mi ssi ons() be used to add access control concerns to resources in-
which the concrete aspect, defined in the client code, side JDK classes, since AspectJ does not allow ITDs
should implement. to add annotations to code inside JDK’s archi¥es.

For example, the definition of the concrete aspect ———— _ _ ]
for a simple desktop application should be as simple ~ °Aninteresting extension point ford& would be the cre-
as: ation of an alternative to annotations to be used in such sit-

package pt.iscte.ci.nyapp, uations.



However, As’ aim is not to replace JAAS, sinc&¥ Clifton, C. and Leavens, G. T. (2002). Spectators and as-
can be used together with JAAS-based authorization sistants: Enabling modular aspect-oriented reasoning.

and, in a future version,& may even leverage JAAS Technical Report 02-10, lowa State University, De-
authorization services. partment of Computer Science.

Even though 3s is still in its infancy, we plan to  Coté, M. ([April 16th, 2006]). JAAS book: Java authenti-
revise and improve it regularly. Some possible next cation and authorization. Originally written for publi-
steps to the improvement oBZ are described next. cation by Manning, http://www.jaasbook.com/.

Ferraiolo, D. F., Kuhn, D. R., Chandramouli, R., and
41 FURTHER WORK Barkley, J. ([8th March, 2006]). Role Based Access

Control (RBAC). http://csrc.nist.gov/rbac/.

In the near future we intend to improvég, especially  Filman, R. E. and Friedman, D. P. (2005). Aspect-

taking into account the insight gained by its use in a oriented programming is quantification and oblivi-

large scale Java-based Web applicatin. ousness. ImAspect-Oriented Software Development
Nevertheless, some points requiring further re- chapter 2, pages 21-35. Addison-Wesley, Boston,

search have already been identified. Should the ba- ~ Massachusetts.

sic concepts of authorization be extended such thatLaddad, R. (2003).Aspect] in Action Manning, Green-

each domain object is considered a principal, with its wich, Connecticut.

own set of permissions and its own set of trust rela- Lai, C., Gong, L., Koved, L., Nadalin, A., and Schemers,
tionships with other objects? What is the connection R. (1999). User authentication and authorization in
between trust and the composition, aggregation, and  the Javd"platfom. InProceedings of the 15th Annual
association relations? Should a distinction be some- gﬁ;‘glfr’]lgerSeCU”WAPP“Cat'O“S Conferen@oenix,

how drawn between query and modifier methods, in
the same way we need to distinguish sets and gets inNakajima, S. and Tamai, T. Formal specification and analy-
the case of attributes? How do contracts relate to au- ~ Sis of JAAS framework. IrProceedings of the 2006
thorization and access control? What does this tell International Workshop on Software Engineering for
us regarding the relation between the runtime permis- Secure Systems

sion requirements of a method and the method it over- Oaks, S. (2005)Java Security O'Reilly, 2nd edition.

rides? What if other crosscutting concerns of the ap- Recebli, E. A. (2005). Pure aspects. Master’s thesis, Uni-
plication are implemented using aspects? How do we versity of Oxford, Computing Laboratory.

P'ea' with pOt_ent[ial Conflicts_ Fhat may qrise (includ- Samar, V. and Lai, C. (1996). Making login services in-
ing the possibility of overriding authorization con- dependent of authentication technologies. Piro-
trols)? Nakajima anO_I Tamall(Nakallma and Tamai, ceedings of the SunSoft Developer's Conference
) proposed an analy5|_s te_chmqu_e _to assess th(_—:- co_her- http://java.sun.com/security/jaas/doc/pam.html.

ence between authorization policies and apphcatl_on Sandhu, R., Coyne, E. J., Feinstein, H. L., and Youman,
code. The proposal, however, assumes the authoriza- - g (1996). Role-based access control modEEE
tion policies are static. How could their analysis tech- Computey 29(2):38-47.

nigue be applied in the case of dynamic policies, as Sun Microsystems, Inc. ([April 16th, 2006]). Java

allowed by Zs? technology:  Security and the Java platform.
http://java.sun.com/security/.

Yoder, J. and Barcalow, J. (1997). Architectural patterns for
5 ACKNOWLEDGEMENTS enabling application security. IRLOP'97, Proceed-
ings of the 4th Conference on Patterns Language of

Special thanks to Professor Dulce Domingos for her Programming

important suggestions and for trying to make sure we Zenida, P., Menezes de Sequeira, M., Henriques, D.,

would not miss the most important authorization ref- and Sergo, C. (2006). Z&s - Aspect-Oriented
erences. Authorization Services (first take). Technical Re-

port CI-2006-01, CI, ISCTE, Lisboa, Portugal.
http://ci.iscte.pt/publicacoes/relatoritecnicos/Cl-
2006-01.pdf.

REFERENCES

Aspectd Team ([April 16th, 2006]). The AspectJ project at
Eclipse.org. http://www.eclipse.org/aspectj/.

¥Namely  FenixEDU®, See http://
feni x- ashes.ist.utl.pt/FrontPage/.



