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ABSTRACT
The struggle between sail and steam is a long-standing theme in economic history.
But this technological competition story has only partly tackled, since most studies
have appreciated the rivalry between the two alternative modes of commercial sea
carriage in the late 19th century while the early period has remained relatively
under-analysed. This paper models the early dynamics between the two capital
goods using a vector autoregression approach (VAR) and a Multivariate Markov
Chain approach (MMC). We find evidence that the relationship was nonlinear, with
a strong indication of complementarities and cross-technology learning effects.

KEYWORDS
economic history, technological competition, sailing ships, steamships, vector
autoregression, multivariate Markov chains.

1. Introduction

At least since Schumpeter, modernisation carries the connotation of ”creative destruc-
tion”. The superior newcomer technology makes the old one redundant. In economic
history technological competition has been epitomised by the replacement of sail by
steam (see, e.g., Craig 2004; Geels 2002). This momentous change in the profile of
mercantile marine paved the way to the rise of the west and the triumph of industrial
progress.

Most studies, however, have covered the process of transformation of sea-related
activity in the late 19th century, when the steamer was already a stand-alone fully
viable alternative (see Pollard and Robertson (1979), Mohammed and Williamson
(2004)). Since the classic findings of North (1958), through the insights of Harley
(1971) to the most recent work by Pascali (2017), steam navigation has been taken to
be a major driving force behind the sharp reduction of transport times and costs that
ushered the first era of globalisation.

Less known is the period before machinery and metallurgy reined supreme, when
accommodation was the main feature of a maritime world in transition. This paper
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looks into this earlier period so as to unpack the dynamics of technological co-existence
between the two alternatives until the time in which they became clear substitutes
(1860s onwards). This empirical work assesses the first five decades of ascendancy of
the insurgent, but still experimental technology of steam when sail dominance was
overwhelming and yet advancing its performance.

We find that while a vector autoregression approach would be an obvious choice
for modelling structural relationships in multivariate processes the results are quite
unsatisfactory. Additionally, there is no trace of Granger causality. One reason for
these failures to identify interactions may have to do with the presence of non-linear
dynamics. To investigate this hypothesis a multi-variate Markov chain approach is
applied, to check if density functions (not only first moments) are time-dependent
between variables. This modelling strategy succeeds in picking up directional powers
between the historical paths of sail and steam. In particular, we detect that while
the insurgent (steam) does not impact the incumbent (sail) some effects are produced
from the incumbent (sail) to the insurgent (steam) technology. However paradoxical,
this finding makes sense in the light of the existing literature on technical change in
maritime history.

2. Argument and approach

The industrial revolution at sea is a relatively little explored issue. Clearly, it was a
slow process at first. On the one hand, the old technology was more efficient than
is usually assumed: sailing ships were pushing ahead in terms of speed and strength
comparing with their immediate predecessors (Solar 2013; Kelly and O’Grada 2018).
On the other hand, steamships were not competing on established trades and routes
as they were handicapped by difficulties of range and efficiency (Allen 2011), see also
Mendonça (2013).

Surely both technologies advanced over time; what is less clear is how they influ-
enced each other in this early period in which sail was a dynamic incumbent and
steam was still an uncertain insurgent. One way to investigate this issue is by apply-
ing conventional time-series techniques that inquire causality and interdependencies
between variables, and by taking into consideration a proxy of economically useful
ship sophistication (average tonnage). Here we focus on the British merchant sail and
steam fleets between 1814 (the earliest datapoint) and 1865 (a cut-off point generally
taken to mark the beginning the of the end of sail and the end of the begging of steam;
see, e.g. Harley (1971)).

3. Modelling the interactions between old and new technologies

3.1. Metrics and materials

In this paper, we start by proposing a vector-autoregression approach to model the
evolution of the two technologies between 1814 and 1865. We then try to get extra
leverage through a multivariate Markov chain approach. The aim is to characterise
the key features of sail-steam dynamic interdependencies.

The dataset is taken from Mitchell (1988), a source that makes available for histo-
rians long series of economic and technological statistics. Although providing yearly
information about number and tonnage for both British-built sail and steamships,
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this source has remained under-exploited. This study takes the average net tonnage of
the sail and steam fleets as a comparative indicator of economically useful technical
progress and monitors growth rates over time. As shipbuilding is highly sensitive to
the business cycle and to the expansion of trading opportunities British real GDP is
taken as a control variable (the Maddison Project is the source here).

It should be pointed out that, given the non-stationary nature of the processes, we
considered the log-difference of series (growth rates) of the average tonnage of sail and
steam vessels. This is intended to enforce stationarity (both in mean and in variance)
as it is confirmed by augmented Dickey-Fuller tests.

3.2. A Vector Autorregression Approach

In applied econometrics the joint dynamics of variables invites the development of a
vector autoregression (VAR) methodology. Since the Sims critique (Sims 1980) that
modelling K−dimensional multivariate stochastic process {(yt) , t = 1, 2, 3, · · · } in the
VAR framework has established itself as a standard tool in econometrics.

VAR models explain a multivariate set of endogenous variables uniquely by their
own history, exploring the dynamics of the linear interactions between such variables.
Therefore, this approach provides a systematic way to capture linear dynamics in
multivariate processes. Past shocks to the growth rate in the average tonnage of one
type of ship may impact the performance of the other, and/or vice-versa, with years of
delay. It may be that Granger-type causality flows from one sort of technology to the
other, but not the other way around. In many respects, impulse-response analysis seems
an apt perspective through which to conduct causal inference. In order to investigate
the dynamics of the relationship between sail and steam in the earlier part of the 19th

century, we consider the standard detection and modelling procedures.
Mathematically speaking, a VAR model of order p can be defined as

yt = c +

p∑
j=1

Φjyt−j + εt

where yt = [y1t, · · · , ykt]′ is a K−dimensional vector of random variables; c is a
fixed K−dimensional vector of intercepts controlling for a non-zero mean possibility;
Φj are K ×K coefficient matrices (for j = 1, · · · , p) and εt is a K−dimensional white
noise process such that E [εt] = 0k, E [εtε

′
t] = Σ (a nonsingular matrix), and, for v 6= s

E [εvε
′
s] = 0

In order to deploy this linear estimation apparatus on the first moments of the
time-series we start by establishing the length of the time-lag. Lag length is usually
selected using formal statistical criteria like the likelihood ratio (LR), log-likelihood
(LogL), Akaike’s information criterion (AIC), Schwarz’s information criterion (SIC),
Hannan-Quinn (HQ), or the Final Prediction Error (FPE). The diagnostic tests point
to a restricted model using a minimally-lagged VAR since the LR, FPE, AIC and HQ
tests suggest just one time period (1 year) as lag. It is reassuring that many criteria
are convergent, as a single criterion is a weak basis from which to judge a model, and
that the AIC and the FPE, which are more appropriate when observations are small
(60 or less), point in the same direction. LogL and SIC provide conflicting results, but
not convergent. Table 1 displays the conventional lag length criteria tests.

Table 2 reports the Granger linear causality tests. We find that no causality is
detected in either direction. That is, no pattern of cross-influence emerges: the null
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Table 1. Lag Lenght Criteria

Lag LogL LR FPE AIC SIC HQ

0 147.6038 NA 9.87e-06 -3.012579 -2.932443* -2.980187
1 162.9642 29.44080* 8.64e-06* -3.145088* -2.824544 -3.015519*
2 170.9529 14.81242 8.83e-06 -3.124020 -2.563068 -2.897274
3 177.7178 12.12040 9.27e-06 -3.077455 -2.276096 -2.753532
4 185.2677 13.05495 9.58e-06 -3.047243 -2.005477 -2.626144

hypothesis of ”no Granger causation” is not rejected either for steam being influenced
by events in sail in the previous period or vice-versa. This lack of statistical success
in picking up the effect the past technological events of one technology on the other
may be due to two reasons. First, no connection exists and hence it is not detected.
Second, it does exist but is not being modelled correctly.

Finally, Table 3 summarises the VAR estimation results. The development of
steamship technology, i.e. the growth is ship size, is highly correlated with itself but
nothing else. Results for the other variables are void. Overall, little is learnt from these
(linear) exercises. The stage is now set for proposing another (non-linear) probabilistic
approach to capture and model a latent structure of interdependencies as a stochastic
process.

3.3. Multivariate Markov Chain Methodology

A Markov chain is a sequence of random variables St, St−1, ..., S0, defined into a count-
able space state E = {1, 2, ...,m}, that is characterised by the Markov property that
given the present, the future does not depend on the past as follows:

P (St = k0| Ft−1) = P (St = k0|St−1 = k1) (1)

Where Ft−1 is the σ− algebra generated by the available information until t− 1. The
multivariate stochastic process {(S1t, · · · , Sst) ; t = 0, 1, 2, ...} is said to be a multivari-
ate Markov chain process (MMC) if an only if

P (Sjt = k| Ft−1) = P (Sjt = k|S1t−1 = i1, · · · , Sst−1 = is) (2)

Despite its limited usage, this approach configures a substantial advantage with respect
to alternative econometric methods; estimating a MMC tout court is an impossible
task because the total number of independent parameters grows exponentially with the
number of categorical series (following ms(s − 1)). To address this issue the mixture
transition distribution model (MTD) (Raftery 1985) has been proposed. Some im-
provements to this model have been proposed in the literature, notably by Chen and
Lio (2009); Ching, Fung, and Ng (2002); Ching and Ng (2006); Lèbre and Bourguignon
(2008); Raftery and Tavaré (1994); Zhu and Ching (2010).

A salient model is the MTD-Probit model (Nicolau 2014; Damásio and Nicolau
2013). The quantity P (Sjt = io|S1t−1 = i1, · · · , Sst−1 = is) is taken as a nonlinear
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combination of bivariate conditional probabilities as follows:

P (Sjt = io|S1t−1 = i1, · · · , Sst−1 = is)
Φ ≡

Φ [ηj0 + ηj1P (Sjt = io|S1t−1 = i1) + · · ·+ ηjsP (Sjt = io|Sst−1 = is)]∑m
k=1 Φ [ηj0 + ηj1P (Sjt = k|S1t−1 = i1) + · · ·+ ηjsP (Sjt = k|Sst−1 = is)]

(3)

∑m
k=1 Φ [ηj0 + ηj1P (Sjt = k|S1t−1 = i1) + · · ·+ ηjsP (Sjt = k|Sst−1 = is)] is a nor-

malising constant. The estimation technique is a two-step procedure. The quantities
Pjk ( i0| i1) , k = 1, , ..., s are estimated nonparametrically through the consistent esti-

mators P̂jk ( i0| i1) =
ni1i0∑n

i0=1 ni1i0

where ni1i0 represents the number of transitions from

Sk,t−1 = i1 to Sjt = i0. The parameters ηjk are thereafter estimated using the maxi-
mum likelihood method. For the variable Sjt the MLE is

logL =
∑

i1i2...iis i0

ni1i2...iis i0 log
(
PΦ
j ( i0| i1, ..., is)

)
. (4)

It can easily be proved that P̂jk is a consistent estimator of Pjk and then it is straight-

forward to show that η̂jk
p→ ηjk.

The parameters ηjk represent the weights of the nonlinear combination: the higher
the coefficient, in absolute value, the higher the importance of the respective variable
P (Sjt−1 = k). As the model is estimated through the ML estimator the inference
problem is addressed. This means that the relevance of a specific bivariate probability,
that depicts a concrete variable, can be tested from a statistical point of view.

As we will show in the next sub-section, the multivariate Markov chain methodology
and the MTD-Probit specification can be used to capture the multivariate relationships
and dependences between two technologies. In fact, unlike some traditional paramet-
ric econometric techniques, such as vector autorregressions that only capture linear
relationships between variables, the purpose of nonlinear methodologies is to capture
complex relationships that go beyond the first moment (conditional mean) or even
the second moment (conditional variance) as in multivariate GARCH family models.
Notice that the absence of parametric assumptions and constrains (the MTD-Probit
model is completely free of super-imposed restrictions) underlying the model allows
us to capture a wide range of associations between a set of variables that can only be
captured using nonparametric approaches.

3.4. Modelling the dynamic relationship between incumbent and
insurgent technologies in the early days of steam

Let y1t and y2t denote respectively the yearly growth rates of the average tonnage (the
ratio tonnage/number of ships) of sail and steam. Let also y3t represents the UK gdp
annual growth rate. The MMC process was reconstructed accordingly to the following
rule:
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Sjt =



1 if yjt ≤ q20

2 if q20 < yjt ≤ q40

3 if q40 < yjt ≤ q60

4 if q60 < yjt ≤ q80

5 if yjt > q80

where ql represents the l − th percentile of the process yjt. Regarding the two
technologies, the rationale behind this transformation is as follows. Each technology
is labeled into five categories or states of innovation accordingly to its development
prowess: 1- very slow movement, 2 - slow movement, 3 - standard movement, 4 -
fast movement, 5 - very fast movement. The same rationale can be applied to the
GDP to economic contraction (state 1 and 2), economic stabilisation (state 3) or
economic expansion (states 4 and 5). The main interest here is to analyse the rela-
tionships between these two technologies: sail and steam. Information regarding GDP
was considered as control and to accommodate the forces that give context to the in-
terdependence pattern that governs the bivariate dynamics under scrutiny. Therefore,
Ft−1, the σ − algebra generated by the available information until period t − 1 was
expanded. For each period the model for the j − th, j = 1, 2, 3 category is

P (Sjt = io|S1t−1 = i1, S2t−1 = i2, S3t−1 = i3)Φ ≡
Φ [ηj0 + ηj1P (Sjt = io|S1t−1 = i1) + ηj2P (Sjt = io|S3t−1 = i2) + ηj3P (Sjt = io|S3t−1 = i3)]∑3
k=1 Φ [ηj0 + ηj1P (Sjt = k|S1t−1 = i1) + ηj2P (Sjt = k|S3t−1 = i2) + ηj3P (Sjt = k|S3t−1 = i3)]

(5)

Therefore, the space state is E = {1, 2, ..., 5}, m = 5 and s = 3. It should be pointed
out the fact that, here, a fully parameterised MMC involves ms(s − 1) independent
parameters, circumstance which, in our case, leads to 500 independent parameters
which is an untractable problem due to our data span.

The quantities ηjl, j = 1, 2, 3; l = 0, 1, 2, 3, 4 represent the contribution of each past
variable for the j−th variable current state. For instance, suppose that we are analysing
sail technology. The dependent variable

P (S1t = io|S1t−1 = i1, S2t−1 = i2, S3t−1 = i3) (6)

is a nonlinear function of sail, steam and gdp past states:

ηj1P (Sjt = io|S1t−1 = i1) + ηj2P (Sjt = io|S3t−1 = i2) + ηj3P (Sjt = io|S3t−1 = i3)
(7)

If we fail to reject the null H0 : η12 = 0 but we reject H0 : η11 = 0 this means
that sail does not depend on steam and, moreover, the current power of sail is not
determined by steam’s power and thus sail is a dominant technology, given that the
current performance of sail only depends on its own past performance. The intercepts
ηj0, although they have no interpretation, are included in the model as they have
been shown to improve fit (Nicolau 2014, p.1127), so the respective estimates η̂j0 are
reported.
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4. Estimation Results

This section depicts the estimation results of the equation 5 for the period 1814-1865.
Table 4 points out that the estimates η̂j1 and ηj2 measure, respectively, the impact of
sail’s and steam’s past power on the technology j current power.

On the one hand, it can be noticed that the dynamics that governs sail technology
is characterised by a dependence on its own past states (η̂11=6.7794, significant at
the 5% significance level, indicating a strong persistent behaviour) and an absence of
influence by what has been going on before in steam (η̂12 not significant at any of
the traditional significance levels). On the other hand, steam technology is strongly
shaped by prior events in sail (η̂21 is high and significant). This effect happens to be
even stronger (both statistically and substantially) than the influence of steam’s own
past dynamics on itself (η̂22 is lower and only significant at the 10% level). Both sail
and steam dynamics appear to be coordinated with the general economic environment.

Therefore, one may infer an asymmetrical technological relationship. Against heroic
or linear representations of innovation, leadership during the rise of the ”insurgent”
technology was on the side of ”incumbent”, that is, the vintage solution of sail. Sail’s
performance does predict steam’s, and this circumstance implies a (statistical) domi-
nant influence of the old on the newcomer. The transfer of leadership to steam, in the
sense of the impact of the new technology on the old technology, would only occur
beyond the period under analysis, and with devastating consequences for sail (Craig
2004; Mendonça 2013). At the core of the transformation of transport there was a
complex relationship between contending technologies, a switch later amplified by the
continuous investment in invention (see Ferreiro and Pollara 2016) and deployment of
new infrastructures (see Gray 2015).

5. Conclusions

This paper addresses, analyses and comments the intriguing relationship between sail
and steam at the dawn of globalising industrial capitalism. This paper presents evi-
dence that improvements in the incumbent and insurgent technologies appear interre-
lated. Statistical results suggest that the mix of technologies in the British merchant
marine had co-evolutionary characteristics from early on. That a multivariate Markov
chain approach brings some fresh and history-friendly insight is testimony to the need
for experimenting with new empirical approaches and for keeping the methodological
toolbox plural.

Contrary to explanations that would see sail technology reacting to the competing
threat posed by steam, we see that technological relations do not simply appear to be
zero-sum. Positive, synergic relationships emerge with the arrival of steam to a mar-
itime world dominated by sail. Moreover, the dynamics was not symmetrical. Evidence
is somewhat elusive but tentatively points to a major influence from sail to steamship
performance (as measured by average carrying capacity). That steam received an in-
direct payoff from its co-existence with sail resonates with maritime economic history
and systemic visions of technical change. These views have emphasised the importance
of technological complementarities: the old/incumbent technology, which was in fact
quite alive in terms of innovation, re-invigorated the possibilities of the new/insurgent
technology (see, e.g. Rosenberg (1972); Madureira (2010); Mendonça (2013). Such a
stylised fact should be remembered by industrial policy analysts.
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Table 2. Granger Linear Causality Tests

H0 : does not Granger Cause
Variable Steam Sail GDP

Steam − 0.9421 0.0149
Sail 0.5934 − 0.7915

GDP 0.2456 0.4891 −
Joint Wald 0.4732 0.7851 0.0514
p-values are reported

Table 3. VAR Model

Variable Coefficient (Std. Err.)

Equation 1: Steam
Steam(-1) -0.395∗∗ (0.127)
Sail(-1) 0.489 (0.404)
GDP(-1) 0.643 (1.155)
Intercept 3.473 (4.856)

Equation 2: Sail
Steam(-1) -0.003 (0.046)
Sail(-1) -0.081 (0.146)
GDP(-1) -0.301 (0.418)
Intercept 2.028 (1.756)
Estimates are presented, se’s between parentheses.

∗∗ denotes statistical significance at the 5% level

Table 4. MTD Probit Estimation

Equation η̂j0 (Intercept) η̂j1 (Sail) η̂j2 (Steam) η̂j3 (GDP) Mean LL

1 Sail −4.6688∗∗∗
(1.6422)

6.7794∗∗
(3.3522)

7.9404
(4.9772)

5.2054∗∗
(2.3467)

−0.0864203

2 Steam −5.7473∗∗∗
(1.8180)

10.2751∗∗
(4.7123)

5.8173∗
(3.1724)

9.3844∗∗
(3.9230)

−0.0901025

Coefficient estimates are presented, standard errors between parentheses.

Mean LL represents the mean of the log-likelihood function.

∗∗∗,∗∗ and ∗ indicates the statistical significance level, respectively, for 1%, 5% and 10%
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