

Repositório ISCTE-IUL

Deposited in Repositório ISCTE-IUL:
2018-07-20

Deposited version:
Post-print

Peer-review status of attached file:
Peer-reviewed

Citation for published item:
Bendas, D., Saari, L., Coutinho, C., De Juan Marín, R., Gisbert, J. B. & Lopes, L. (2017). Distributed
software development of a cloud solution for collaborative manufacturing networks. In 23rd
International Conference on Engineering, Technology and Innovation, ICE/ITMC 2017. (pp. 741-749).
Funchal: IEEE.

Further information on publisher's website:
10.1109/ICE.2017.8279959

Publisher's copyright statement:
This is the peer reviewed version of the following article: Bendas, D., Saari, L., Coutinho, C., De Juan
Marín, R., Gisbert, J. B. & Lopes, L. (2017). Distributed software development of a cloud solution for
collaborative manufacturing networks. In 23rd International Conference on Engineering, Technology
and Innovation, ICE/ITMC 2017. (pp. 741-749). Funchal: IEEE., which has been published in final
form at https://dx.doi.org/10.1109/ICE.2017.8279959. This article may be used for non-commercial
purposes in accordance with the Publisher's Terms and Conditions for self-archiving.

Use policy

Creative Commons CC BY 4.0
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in the Repository

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Serviços de Informação e Documentação, Instituto Universitário de Lisboa (ISCTE-IUL)
Av. das Forças Armadas, Edifício II, 1649-026 Lisboa Portugal

Phone: +(351) 217 903 024 | e-mail: administrador.repositorio@iscte-iul.pt
https://repositorio.iscte-iul.pt

https://dx.doi.org/10.1109/ICE.2017.8279959

Distributed Software Development of a Cloud
Solution for Collaborative Manufacturing Networks

Dan Bendas, Leila Saari
Data-Driven Solutions

VTT Technical Research Centre of Finland Ltd.
Oulu, Finland

{Dan.Bendas | Leila.Saari} @vtt.fi

Rubén de Juan Marín, Josep Bernabé Gisbert
Distributed Systems

Instituto Tecnológico de Informática, ITI
Valencia, Spain

{rjuan | jbgisber} @iti.es

Carlos Coutinho
Instituto Universitário de Lisboa (ISCTE-IUL), ISTAR-IUL,

Caixa Mágica Software, CMS
Lisbon, Portugal

carlos.coutinho.phd@gmail.com

Luís Lopes
Research & Development

Caixa Mágica Software, CMS
Lisbon, Portugal

luis.lopes@caixamagica.pt

Abstract— Distributed software development poses extra
difficulties in terms of communication, coordination and
awareness. Those difficulties usually imply more time
consumption that causes productiveness reduction deriving finally
in delays. So, projects where such kind of development is needed
have to deal with them in order to ensure the success of the project.
The case project has adopted this development approach due to its
nature. The main goal of the project is to develop a cloud solution
for enhancing collaboration and transparency between
manufacturing companies forming a collaborative network. In
order to implement it, the overall solution has been divided into
several pieces, having many interdependencies among them. Thus,
different working teams geographically spread from different
organizations have participated in the implementation,
integration, verification and validation tasks. This paper explains
how the case project has organized the working teams,
infrastructure, procedures and practices to guarantee the success
of the project.

Keywords—distributed software development, development
environments, cloud software development, working teams,
infrastructure, procedures and practices, micro service architecture

I. INTRODUCTION

The evolution and widespread adoption of ICT technologies
during the last years have triggered what is widely recognised as
a new industrial revolution in the manufacturing industry world.
This process is leading to the development of more complex
information system where different ICT technologies are
integrated for providing more advanced features to industries.
This usually implies the participation of many people, with
expertise in different areas, belonging to different companies
that habitually are geographically distributed; in other words
distributed software development. Even if one single third party
contractor is in charge for the entire solution, still certain
components will need to be connected with IoT devices or
proprietary legacy systems, which are physically bound to
certain locations, leading to distributed development activities.

Building solutions based on this paradigm implies an added
effort to coordinate the evolution of the different teams and to
evaluate the quality of the produced code. Moreover, when the
multiple pieces of software get together to build the applications
and solutions, there is the need to ensure their proper
interconnection, binding and interoperability of the composed
solutions. Often this task is hard because of differences in the
paces of development of the different teams, or there are
different interpretations of the requirements, or simply the
modules have different integration needs or semantics. This is
commonly due to communication problems between the various
parties involved in the development and deployment of
solutions.

This paper explains how the common distributed software
development problems have been addressed in the case project
execution through work organization, used infrastructures and
procedures and practices established. The paper is organized as
follows: Section I introduces key motivation factors for this
research. Section II describes the state of the art of distributed
software development research. Section III presents the context,
both i) the external trends and technologies that made the case
project possible, and ii) the case project itself as well as its
solution architecture, platform and developers. Section IV
introduces the actual development process applied, highlighting
partitioning of work, inter-team coordination practices, and also
cloud-specific software development tools. Section V discusses
observations from the process and section VI concludes.

II. DISTRIBUTED SOFTWARE DEVELOPMENT RELATED WORK

Distributed software development is associated with
difficulties stemming from both human and technical factors.
Jiménez et al. [1] identifies the most reported ten challenges of
distributed software from a systematic literature review:
communication, group awareness, software configuration
management, knowledge management, coordination,
collaboration, project and process management, process support,
quality and measurement, and risk management.

The research leading to these results is ongoing in the “Cloud
Collaborative Manufacturing Networks” (C2NET) project, which received
funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 636909.

Gutwin et al. [2] analysed the impact of group awareness for
distributed software development in the context of open source
projects, finding that adequate levels of coordination can be
achieved by using text based tools like email lists, chat tools, and
source code management logs.

Ramesh et al. [3] discuss the challenges of applying agile
development methods in distributed project, noticing that
practices in three areas need to be adapted: communication,
control and trust. Several findings reflect those of this paper, for
example the benefits of on-site visits and need for enhanced
coordination mechanisms.

Grinter et al. [4] presents a thorough characterization of
forces involved in geographically distributed R&D projects of
large industrial companies. They identify four co-location
models: by functional area of expertise, by product structure, by
project steps and “customization work”.

Paasivaara and Larssenius [5] studied several industrial
cases of globally distributed software development, one finding
being that inter-personal relationships and face-to-face meetings
are essential for project success. In [6] Pesola and colleagues
discuss advantages of early verification and validation and how
to apply such techniques in distributed projects. From the point
of view of the solution to be obtained [7] describe a software
application similar to the C2NET solution in terms of numerical
methods and application domain.

III. CONTEXT

This section introduces the overall trends and technologies
that influence the distributed software development activities in
the case project. Also the project is introduced as well as its
solution architecture, platform and developers.

A. General trends and technologies

The evolution and widespread adoption of ICT technologies
during last years have enabled a new industrial revolution. This
revolution based on the massive adoption of ICT by industries
in order to improve their efficiency being promoted by
governments and private organizations under different
initiatives. These initiatives have been coined under different
terms, like Industrial Internet in United States, Industrie du Futur
in France, Industria Conectada 4.0 in Spain, or the most well-
known in Europe, Industry 4.0 (Industrie 4.0) in Germany [8].

One enabler is Internet of Things (IoT) defined here as the
interconnection of physical objects using common Internet
technologies. Production and distribution chain entities like
manufacturing machinery, vehicles, containers, warehouse
equipment, etc. are connected to Internet and real-time data
about their availability, location, operational status, technical
condition, etc. is provided. In comparison with previous
technologies like industrial networks or SCADA, IoT uses open
protocols, mass-produced hardware, and wireless networking
thus considerably lowering the threshold for adaptions in terms
of cost, technical difficulty and vendor lock-in. One challenge in
IoT adoption is the vast amount of data resulting from devices
deployed in the field - data that needs to be collected, filtered,
stored, analysed and utilized.

One proposed solution for managing such vast amount of
data is cloud computing, which refers to a style of providing
computing resources for networked services in form of virtual
environments. Cloud vendors control large pools of physical
hardware (possibly distributed over several geographical
locations), partition those dynamically using virtualization
technologies, and rent computing capabilities (like CPU power,
database storage, disk storage, content delivery, specialized
environments, etc.) to their customers, usually in a flexible, pay-
per-use manner. In turn, this allows cloud customers to offer
computing-intensive, responsive, and reliable services at
reduced costs. Savings result from efficient utilization of
resources, on-demand up and down scalability, and reduced
equipment investments.

In the cloud paradigm, there are different ways of classifying
solutions from different perspectives: i) level of application
domain flexibility, and ii) deployment type. Firstly, based on
their level of application domain flexibility services can be
classified into Infrastructure as a Service (IaaS), Platform as a
Service (PaaS) and Software as a Service (SaaS). Solutions for
Industry 4.0 are usually of SaaS type, making use of existing
PaaS and/or IaaS services. Secondly, cloud deployments can be
public, private or hybrid. Private clouds have the hardware
located in the premises of a single organization and its services
are available only for internal usage. This configuration may be
favoured by customers with privacy and data protection
concerns. Hybrid cloud deployments combine elements hosted
in a private cloud (for security reasons) with elements running
in a public cloud (for benefits of cost, and performance).

At the same time, manufacturing industry is fighting with
constant, radical and global changes. Companies need to re-
think their business models, from innovative business
collaboration networks, and adopt efficient ICT tools to survive
the changes [9]. Also, [10] lists totally eleven success factors of
an SME, where the top three are: digital solutions, industrial
internet solutions and new business models. For the small- and
medium size enterprises the investment is expensive and risky
to do alone [11] as they have to face many barriers like: i)
Factory floor automation and robotics, ii) Manufacturing IT
systems, and iii) Digitalization of processes – Cyber Physical
Systems (CPS) in Table I [10]. Joint efforts and increased
collaboration are needed to overcome such difficulties

Table I. BARRIERS OF DIGITALISATION IN MANUFACTURING SMES

ADOPTED FROM [10]
Factory floor

automation and
robotics

Manufacturing IT
systems

Digitalization of
processes – Cyber
Physical Systems

(CPS)
No “of the shelf”
technology available –
no business case

Investment risk – costs
vs benefit

Too low technology
readiness level

Lack of specialized
development resources

Process fit – need of
integration and
tailoring

Interoperability of
systems and devices

Investment risks – no
experimentation
possibility

Lack of applied
standards, legacy
systems

Investment risk –
speculative benefits

This is why collaborative networks become one of the most
natural ways for SMEs to take benefit of digitization while
decreasing the risks and barriers they have to face with. The
collaborative network has a variety of heterogeneous entities
that are geographically distributed [11] The nodes of this
network are willing to co-operate to achieve a mutual win-win
situation. Camarinha et al. [12] present the interaction maturity
level matrix having four building blocks: Networking,
Coordinated networking, Co-operation, and Collaboration. In
their matrix the interaction maturity level increases when the
integration level increases from communication and information
exchange though complementary goals and alignment of
activities for mutual benefits towards joint goals and
responsibilities.

The collaborative networks ensure constant feedback circuit
and unbroken communication between product designers,
engineers, manufacturing facilities and customers [11]. Thus, for
the manufacturer the collaboration provides shorter delivery
times, better speed and consistency of schedules, higher usage
of production resources and even energy savings.

B. The Project

The case project is Cloud Collaborative Manufacturing
Networks (C2NET), an EU H2020 project funded from
Technologies for Factories of the Future in 2014 [13]. The
project creates a cloud-based platform that will enable
collaboration between the members of a supply chain network.
This collaboration is achieved through: i) the supply network
optimization of manufacturing and logistic assets based on
collaborative demand, purchasing-, production- and delivery-
plans, and ii) monitoring the current situation of the agreed plan
comparing it to expected situation, notifying about significant
deviations and suggesting most appropriate actions.

In this way, the C2NET solution integrates several features
allowing: i) the data collection from company facilities
including both legacy systems as ERPs or IoT devices and data
homogenization according to the C2NET reference meta-model,
ii) optimization of plans through using an optimization
algorithm suggested by the platform through a wizard process
(selected from a battery of near 100 algorithms), and iii)
situation monitoring through model comparison of the expected
situation according to the agreed plan and the real situation and
agility suggesting actions in front of relevant deviations. This
enables the members of a supply chain to collaborate within the
cloud-based platform for improving the efficiency of their entire
value chain.

The C2NET has four different industrial pilots around
Europe to cover various needs of industries. The main goals of
the pilots are summarized in Table II. The automotive pilot has
a supply chain of first and second tier manufacturer producing
car parts to their customer. The dermo-cosmetics pilot is a global
actor having several production and logistics sites. In Portugal
the SME network is willing to increase collaboration of
purchases and transportation. The manufacturer of hydraulic and
lubrication systems will add transparency to both its suppliers
and customers.

Table II. MAIN GOALS OF THE C2NET PILOTS
Pilot Focus

Automotive in
Spain

Optimisation of the production sequencing plan,
considering unforeseen changes in the customer
demand plans.

Dermo-Cosmetics
in France

Prevent and manage replenishment shortages in a
collaborative process using on-line production
and deliveries data.

Metalworking
SME Network in
Portugal

Production costs optimization through
collaborative logistics and raw material
purchases.

OEM of Hydraulic
and Lubrication
Systems in Finland

Production planning with increased transparency
to customers and suppliers.

All the pilots expect to have positive business impacts.
Optimization of production will save material costs, organize the
usage of production resources (both people and machines), and
enable on-time delivery for the customer. Joint purchases will
decrease both material and transportation costs. Manufacturer
will gain efficiency and customer experience will improve
because of product deliveries in-time.

C. The Architecture

The architecture of the C2NET solution is composed by
several elements: i) the C2NET middleware that is located in the
company facilities for collecting information from legacy
systems and IoT devices and sending them to the C2NET cloud-
based platform, ii) the C2NET cloud-based platform that
provides the business logic of the system (i.e., data
homogenization, plan optimization and monitoring capabilities),
and iii) external applications that can connect with the cloud-
based platform for enabling user interaction in a smooth way.
Fig. 1 depicts the elements of this solution. The overall
architecture of the C2NET solution is presented in [14] and [15].

The C2NET cloud-based platform is the core element of this
solution as it is in charge of providing the key features of the
solution. It is important to highlight that a cloud based approach
has been adopted because it allows to: i) have access to large IT
resources when needed, especially for optimization algorithm
execution, while preventing companies to make high
investments in IT infrastructure, and ii) access from everywhere
at any time to those features. Those two benefits are quite
relevant for SMEs companies, the main customer target of this
solution.

Fig. 1. The C2NET Solution Schema

The C2NET cloud-based platform is mainly developed as a
Software as a Service that runs on top of the ECloud Platform as
a Service (PaaS) [16]. ECloud is a PaaS designed to manage the
life cycle events of services deployed on it in an automated way.
Thus the elastic services are adapting to varying running
conditions with minimal effort and expense on the part of the
C2NET developers, letting them focus on the development of
the service itself, without getting bogged down by the details of
service management tasks. The counterpart is that the C2NET
developers have to follow the ECloud specification.

Sharing data between the partners is essential as without
sharing data you cannot collaborate. In the C2NET there are four
different types of pilots having several SMEs, some large
customers and one huge manufacturing company. The
companies are not willing to give access to their legacy systems.
In order to retrieve sufficient data two optional legacy system
(LS) hubs are provided. Thus companies have the control over
their data. Also it has been agreed that each pilot will have a
differently configured service instance and each company will
have own encrypted database although they are using the
common C2NET cloud service. In addition to this, both IoT and
LS hub use https and certification.

D. The Platform for Elastic Cloud

The ECloud PaaS has been selected in front of other
approaches (IaaS and other PaaS solutions) because: i) it hides
the management of the underlying IaaS (being able to run on top
of most used IaaS like Amazon EMC2 or OpenStack), and ii) it
automates the Service Level Agreement (SLA) fulfilment. This
latter characteristic is the one that really makes ECloud different
to other existing solutions. In this way, based on a machine-
readable SLA, ECloud is able to monitor the fulfilment of the
SLA, and scale up and down resources in order to meet workload
peaks and free resources when they are no more needed without
human intervention.

The ECloud approach is to force service applications to fit a
set of architectural patterns. In a nutshell, the ECloud
specification [16] considers a service application as a set of
interconnected components, each one playing a different role
(micro-service) within the service. Those roles are scaled up and
down at runtime by the ECloud instance in order to guarantee
the agreed SLA.

Components contain both the code that implements their
logic, as well as a description (component manifest) of how they
can be connected to other components through the
communication channels they require and provide. Those
communication channels are the only one mechanism that the
ECloud provides components (roles) to interact among them at
runtime. For doing so, at service definition time (service
application manifest) the service provider has to specify for each
channel role to which other channel role is connected, just
ensuring that required channels are linked to provided channels
and detailing the kind of connector used (i.e., load balancer).
Using the ECloud communication channels hide to component
developers the complexity associated to handle at runtime a
number of varying instances of each role (live instance of a
component), just relying in the ECloud instance.

At runtime, once this service is deployed (through a service
deployment manifest) in an ECloud instance, this instance
makes use of the different facilities provided by the underlying
IaaS solution in order guarantee the SLA without considering
human interaction.

As it can be seen, the ECloud makes usage of different
manifests. Those files provide information to ECloud instance
to manage the whole life cycle of the service: creating and
launching the instances of the roles (components) that
compound them, and connecting them as detailed in order to
provide the service functionality.

E. Developers

The group of SW development people in the project is quite
heterogeneous. It is composed by members from 10 different
organizations located in four countries (two from Finland, two
from France, two from Portugal and four from Spain), in three
different time zones. Moreover, their backgrounds and expertise
are very different moving from IT companies, to technology (in
production or ICT) research centres or university departments.
For example, not all members were aware about the different
aspects to be considered when developing for a cloud
environment. All those factors have implied really different
software development practices and ways of working that have
emerged when aligning works and coordinating activities.

Thus, the project has had to deal with such heterogeneity
trying to find out a delicate trade-off between ensuring that all
of them were comfortable enough while ensuring the right
progress of the development activities.

F. Summary of Context

The C2NET project generates a cloud based solution that
enables supply chain collaboration from the source, make and
deliver plan optimization points of views, and monitoring of the
real execution on the agreed plans in the supply chain. A cloud-
based approach has been selected because this solution is mainly
intended for SMEs so usage of low cost solutions with reduced
investment in IT infrastructure is required. The core business
logic is implemented as a SaaS, more specifically a SaaS to be
run on top of the ECloud PaaS.

As collaborative manufacturing networks are composed of
multiple companies, it is expected that software development for
associated collaborative solutions is distributed across
geographical sites and organizational boundaries. Even if one
single third party contractor is in charge for the entire solution,
still certain components will need to be connected with IoT
devices or proprietary legacy systems, which are physically
bound to certain locations, resulting in distributed development
activities. Software development is considered to be distributed
if developers are situated in distinct locations (even as close as
different parts of a large building), and when the locations are in
different countries the process is considered to be “globally”
distributed [17].

IV. DISTRIBUTED SOFTWARE DEVELOPMENT IN C2NET

The work organization, methods and tools have been
defined, selected and aligned in order to minimize the problems
existing in distributed software development during the C2NET
solution development. The next subsections provide more
information about the working teams, infrastructure, and
procedures and practices utilized while the solution was
developed.

A. Working Teams

In order to facilitate development activities, the developers
were organized in small teams avoiding a very hierarchical
organization. The co-location model [4] adopted has been a mix
of product structure and project steps. This organization was also
used for adapting to the distributed characteristic of the project
partners. In this way, several working teams were set up:

• Component development teams: each component had
at most developers from two different partners. This
allows more agile developments at component level.

• Module integration teams: four different teams were
established for ensuring the right integration of the
components composing each of the C2NET modules.
Those teams took as inputs the components generated
by previous teams releasing properly integrated
components in a per module basis.

• Service integration team: this team was in charge of
integrating in a single service all the components
previously integrated by module integration teams.

• Validation teams: two teams are in charge of
performing validation using the service prepared by
the service integration team: one from a technical point
of view, the other from a pilot point of view.

• Supervision team: this team is in charge of monitoring
the evolution of component development and
integration.

• Pilot teams: there is one team per industrial pilot and
are representing the industrial end users and thus
providing the requirements, preparing data and
validation scenarios, and assessing the implementation
of pilot services.

Although those groups usually work in their own (remote
and distributed) locations, using mail and on-line meetings to
coordinate their activities, from time to time Integration Camps
(IC), from 3 to 5 days of length, have been organized. In these
IC, the different teams have been able to solve together pending
issues and fostering the development activities.

Besides, several development facilities were available to all
(Git repositories, ticket system, blogs and wikis). Moreover,
several integration and testing environments were prepared for
facilitating those tasks. Also, several procedures and practices
were agreed for coordinating their activities ensuring smooth
integration of their works, and enabling at the same time, that
each of those teams organized internal activities in the way they
feel more comfortable.

B. Infrastructure

1) Project Repository

The C2NET developing source code is being hosted at the
OpenSourceProjects.eu (OSP) web portal [18] developed in the
EU-cofunded FP7 project called PROSE. The fundamentals of
the portal strategy are similar than the ones seen in other portals
like GitHub or Sourceforge, and it is based on Apache Allura
technology [19]. Likewise, besides having as its main features
the ability to create multiple code repositories (Git or SVN) [20]–
[22], the portal provides a framework of collaborative resources
and tools such as wikis, ticketing systems, blogs, forums and
external links. The structure of the portal allows the creation of
context-related projects, each permitting its own definition of a
user list and the assignment of these users to a set of roles, which
include a set of base roles e.g., administrator, developer, tester,
user, but also allows the creation of new specific roles, which
will be useful for the establishment of policies for controlling the
access control to the project data. Each project can include one
or more sub-projects, where each has its own set of related tools,
but all are ruled and accessed by the same user set defined in the
main project. Every sub-project and every tool in the portal can
have its own access defined, determining which roles have rights
to administrate, create, write or read its information.

The strategy for building the C2NET project in OSP was to
split the project development progressively into modules, sub-
modules and ultimately in components (tree-based
development), where each module/component has its own
hierarchical sub-project in the OSP. Each sub-project has a
common structure, which includes a wiki with the sub-project
title, a dedicated ticketing system for dealing with the matters of
the scope of that sub-project (which can be used to raise issues
and defects, but also suggestions, or even management of the
sub-project), and if the project is a component (developing
project which includes code), it has also one or more Git code
repositories. For the C2NET project, a new project was created
in the OSP [23] including Git code repositories. The project
structure follows the structure of C2NET modules, see Fig. 2.
Besides those, the project also includes a fifth sub-project
"Support" which is targeted to help the C2NET developers to
use transversal tools and policies, e.g., how to work with the own
OSP, Configuration Management policies, Build policies,
repository management, or Development Management.

Fig. 2. C2NET Repository [23].

The C2NET project in the OSP has additionally some more
collaborating tools, like a ticketing system for the user
community to provide suggestions and support on the whole
project scope, links for the official C2NET Homepage and a
special ticketing system for Development Management. This
ticketing system provides a ticket-based reporting supervision to
the project.

2) Integration and Testing Environments

Different environments have been prepared in order to
integrate the components and test/run the cloud service. The idea
has been to provide to developers, integrators, and testers
different ways to check that the software being developed fits
the specified requirements. This section lists the four
environments moving from the one that is equivalent to the real
scenario (cloud infrastructure) to a distributed one that simulates
the ECloud behaviour (Fig. 3). The environments are ordered for
how close they are to the real working environment.

a) ECloud Stamp
This environment is a real ECloud running instance specially

used for testing purposes. The idea is to use it as the final step
before promoting a new version of a component to the official
C2NET cloud service, testing in a real deployment. Moreover,
in this case the developers and testers can interact directly with
the deployed service.

b) Automated Testing Framework
This environment is based on a testing infrastructure and

methodology for supporting the automatic testing of the
generated service. This scenario is similar to the previous one in
the fact of using an ECloud stamp. The main difference is that
the service is tested by a test-service provided by the
developer/testers that is also executed in the ECloud stamp, and
there is no direct interaction by developers/testers. In such case,
no executing infrastructure is needed in the developer/testers
side. The testing infrastructure apart of the ECloud running
instance is composed by a test repository, a script for launching
the execution of requested tests, log (test results repository) and
a log viewer.

c) Local Stamp
In order to speed up the integration and testing of new

component features, a framework that facilitates local
integration and testing was provided.

This environment named Local Stamp runs locally in a
single PC and allow components of a service to interact using
the communication channels of a real ECloud running instance.
In this way, developers can check that component interaction
behaves as expected in a fast way and solve detected issues. But,
this emulation tool, as it runs in a single PC, does not provide
emulation of cloud elastic capabilities (that is scaling up and
down the number of instances of each component in order to
guarantee the SLA for the service).

Fig. 3. Environments for Integration and Testing

d) Integration Façade
An even more lightweight testing tool was provided to

enable developers interact directly with their components.
Named “Integration Façade” (IF), it differs from the previously
presented solutions (a, b and c) by allowing the execution of
individual components, and not complete services.
Communication channels are exposed as HTTP connections.
Developers can run explorative testing sessions accessing
component API’s with a simple HTTP POST client. Several
components running in IF (locally or remotely) can be inter-
connected for small-scale interoperability testing. Mechanisms
are included to provide mock-ups of the real ECloud facilities
such as logging and service entry point. While the emulation of
the ECloud environment is not completely accurate, the benefits
of IF are reduced deployment and start-up time, and operational
simplicity.

C. Procedures and Practices

As commented several procedures and practices were agreed
for coordinating team activities, while trying to ensure a smooth
integration of the components leading to the C2NET cloud
service. Next subsections provide some details about those
procedures and practices organized per type of activity.

1) Development and Development Management

Each working team can organize their internal works in the
way they prefer in order to use the practices they are most
comfortable with. Anyway, several practices and procedures
were agreed for development purposes in order to facilitate
traceability and support among different development teams.
Those are: i) to follow the agreed generic component structure
in order any partner has a basic knowledge when looking other
components, ii) to ensure that the latest stable code version of

their component is available in the master branch of the
component Git repository, iii) to tag each stable version they
generate in order to have an easy access to previous stable
versions, and iv) to document the channels the component
provides and requires, and the components (and channels) they
are expected to be linked with facilitating in this way the process
of connecting and using different components.

From a development management point of view, a
representative of each component development team
participates in the bi-weekly supervision meetings, and updates
the component evolution status discussed in there supervision
meetings. This component evolution status is reported through
the OSP tickets in the Development Management ticketing
system. These tickets include some special fields like "%
Complete" and a set of tags that allow the navigation through the
modules scope. Upon updating the % complete and maybe
including some specific comments, the supervising team only
needs to quickly go through all tickets (usually spending around
2 minutes per ticket) and check the difference between actual
completion and planned completion and the justification in the
comments of the responsible. This method has a great advantage
which is to store in the tickets history the whole evolution of the
development pace.

2) Testing

The testing teams were suggested to perform unit tests at
component level, component integration tests (using any of the
provided environments) when checking the proper integration of
different components, and service tests for testing the whole
service. Each team can use the techniques and environment they
prefer for testing. Moreover, it was also recommended to
development teams not promote new version of components to
their Git master branch until this new version has not passed all
the related tests.

3) Verification and Validation

Verification and validation activities are carried out by
several work teams in order to ensure the quality of the
developed software (verification) and that it meets the end user
specification (validation).

Verification and validation activities are performed at two
levels: technical and functional. Technical verification assures
that all components composing the service satisfy their technical
requirements so that a) they can be deployed, b) they can
intercommunicate and c) they respect the correct
communication protocols at every connection point. Currently
this is done manually by deploying a “generic” configuration of
the service in a local stamp or in the ECloud stamp, verifying
that certain activities can be performed through the graphical UI
and by inspecting system logs. An automatic method is currently
planned, which will use a continuous integration server (like
Jenkins [24]) to rebuild, deploy and test the service whenever
the source code of any component is updated.

Functional validation is performed by pilot teams by running
the C2NET service configured for that particular pilot through a
number of pre-defined scenarios. These validation scenarios

specify step-by-step activities to be performed by end-users with
the expected results. Test data or real company data can be
utilized. Each scenario step is mapped to a particular component,
which enhances traceability between functional requirements
and technical implementation.

V. LESSONS LEARNT

As stated previously, the distributed software development
has been addressed through: i) small independent work teams
with high level of autonomy, ii) a set of tools and environments
for supporting their work and information sharing, and iii)
several mechanisms and recommended practices for ensuring
basic coordination among them using the defined
infrastructures. After nearly one year and a half of distributed
software development activity, the main lessons learnt are
discussed in the following paragraphs.

A. Working teams

The observed efficiency and efficacy of the small working
teams has shown certain variability, mainly derived from
different member background and expertise than to the
distributed nature of the project. But, overall working teams
efficiency has been jeopardized due existing interdependencies
among them while being distributed. In this way, this has
required extra coordination that has reflected in more exchanged
mails and the organization of many online conferences, which
has reduced their productiveness. Besides, as mail and online
conferences are not the best mechanism for discussing about
complex topics it has been necessary in most occasions to devote
more time – in terms of mails and more or longer conferences –
than the initially expected.

These interdependencies among working teams has also
provoked delays, when waiting for inputs from other working
teams, implying a slower working pace. In this way, the IC
organized (3 up to the moment, and 2 more planned) have
revealed as one of the most valuable practices in order to
coordinate and synchronize the different working teams,
especially, the different development and integration teams in
order to foster the generation of C2NET solution.

B. Infrastructure

In regard to infrastructure, the hierarchical organization of
the C2NET project inside the OPS (with nested and self-
contained OPS subprojects for modules and components)
resulted in some difficulties finding the information in order to
be aware about other working team activities, especially when
monitoring the ticket evolution (feature implementation and
component evolution). In other words, the initial
compartmentalization having isolated working islands for the
different working teams has shown generally speaking to be
counterproductive in terms of facilitating partner awareness
about development works, which is one of the main problems in
distributed environments. To avoid this, a ticket reorganization
was performed putting all them in the same ticketing system in
order to facilitate pilot and supervision teams to control ticket
evolution.

Considering integration and testing environments,
developers have preferred to work on local environments (Local
Stamp) that are more agile and faster than remote ones

(Automated Testing Framework). However, it has to be noted
down that probably this has caused by some extra configuration
steps that developers have to perform when using this remote
environment.

C. Procedures and practices

From a point of view of procedures and practices, the
ticketing system has not been used as much as expected,
especially by the component development teams. The same has
happened with the suggested tagging and code promotion
policies. Thus, generally speaking the suggested procedures and
practices have not been used as much as desired even when they
would have been beneficial for the working teams in the long
term. In fact, this has implied some extra coordination work
among working teams performed mainly by email.

In this context, using the ECloud PaaS as the backbone
platform to run the C2NET cloud part has helped to make
component integration activities smoother. This is because cloud
components are forced to follow the ECloud specification
(which can be seen as a mandatory practice for development and
integration working teams) imposing therefore its structure for
integration activities. Nevertheless, the learning curve for many
developers has been harder than expected. In regard to
supervision, the initial supervision procedure based on a
component coarse grain value although agile has not been able
to reveal some existing delays due to natural trend to optimistic
considerations. In order to face this, a new supervision strategy
based on component features grain is being put in place.

VI. CONCLUSION AND FUTURE WORK

Experiences learnt in the daily work have shown that part of
the working team organization, some infrastructures (tools) and
procedures and practices have not worked as expected to
overcome common problems in distributed software
development. The main reasons that prevented some of them to
be useful enough are due to: i) they are complex to use (e.g.,
Automated Testing Framework) or time consuming (e.g.,
tickets) and members do not see a clear return of investment in
the short term and/or have other alternatives (e.g., Local Stamp
or mails respectively), ii) procedures with subjective and coarse
grained rules (e.g., supervision mechanism), and iii) being some
of them just recommendations but without investing enough
time to convince about their benefits. In some cases, this has
forced to rethink how they should be used (ticketing system and
supervision mechanism), make its usage easier, and
communicated (tagging and testing practices) in order members
are more committed to use them.

Other aspects have shown to be very fruitful in order to
overcome those issues. On one hand, IC can be considered one
of the best mechanisms to solve those problems. In order to
maximize their worthiness they were planned in a regular basis
(specifying a clear high-level goal for each one of them) but
spacing them in such a way that working teams had time to
advance in-between with their activities. Two or three weeks
before each IC, participants agreed its specific agenda according
to the pre-planned high-level goal and current issues preventing
this goal to be achieved. If needed parallel tracks and sessions
were planned according to the number of participants and issues
to be solved. Then, in the face-to-face meetings, developers were

together during a whole week: to solve issues that can be hardly
addressed in teleconferences and to foster integration activities.
It was also important to nominate coordinators at IC and for each
session to lead work, and especially for encouraging
participation and ensuring liveliness in brainstorming and
discussion sessions. On the other hand, selecting the ECloud
PaaS as the C2NET base runtime has implied that its
specification became a mandatory practice facilitating the
integration works of cloud components.

As future work in the C2NET project context in order to
master the distributed software development problems three
following main actions can be highlighted. First, to use and
validate the procedures and practices presented in this paper as
well as some new ones proposed. Secondly, to think
mechanisms and communication strategies that makes
participants more eager to follow the recommended practices
and apply them. Third, to analyse which practices have to be
promoted from recommendations to mandatory and ensure its
adoption in other European projects.

VII. REFERENCES
[1] M. Jiménez, M. Piattini, and A. Vizcaíno, “Challenges and

Improvements in Distributed Software Development: A Systematic
Review”, Adv. Softw. Eng., vol. 2009, pp. 1–14, 2009.

[2] C. Gutwin, R. Penner, and K. Schneider, “Group awareness in distributed
software development”, in Proceedings of the 2004 ACM conference on
Computer supported cooperative work - CSCW ’04, 2004, p. 72.

[3] B. Ramesh, L. Cao, K. Mohan, and P. Xu, “Can distributed software
development be agile?”, Commun. ACM, vol. 49, no. 10, p. 41, Oct.
2006.

[4] R. E. Grinter, J. D. Herbsleb, and D. E. Perry, “The Geography of
Coordination: Dealing with Distance in R&D Work”, in Proceedings of
the ACM Conference on Supporting Group Work, 1999, pp. 306–315.

[5] M. Paasivaara and C. Lassenius, “Collaboration practices in global inter-
organizational software development projects”, Softw. Process Improv.
Pract., vol. 8, no. 4, pp. 183–199, Oct. 2003.

[6] J.-P. Pesola, H. Tanner, J. Eskeli, P. Parviainen, and D. Bendas,
“Integrating early V&V support to a GSE tool integration platform”, in
Proceedings - 2011 6th IEEE International Conference on Global
Software Engineering Workshops, ICGSE Workshops 2011, 2011.

[7] Y. Liu, X. Xu, L. Zhang, L. Wang, and R. Y. Zhong, “Workload-based
multi-task scheduling in cloud manufacturing”, Robot. Comput. Integr.
Manuf., vol. 45, pp. 3–20, 2017.

[8] “Industrie 4.0 , Smart manufacturing for the future”, Berlin, 2014.

[9] P. Ahokangas, H. Alila, H. Helaakoski, V. Kyllönen, T. Lehtimäki, I.
Peltomaa, V. Seppänen, and H. Tanner, Collaborative Business
Networks of the Future, vol. 2. 2015.

[10] J. Paasi, Ed., Towards a new era in manufacturing, VTT Tecnol. VTT
Technical Research of Finland Ltd, 2017.

[11] B. Andres, R. Sanchis, and R. Poler, “A Cloud Platform to support
Collaboration in Supply Networks”, Int. J. Prod. Manag. Eng., vol. 4,
no. 1, p. 5, Jan. 2016.

[12] L. M. Camarinha-Matos, H. Afsarmanesh, N. Galeano, and A. Molina,
“Collaborative networked organizations – Concepts and practice in
manufacturing enterprises”, Comput. Ind. Eng., vol. 57, no. 1, pp. 46–60,
2009.

[13] “C2NET Project Site”, 2017. [Online]. Available:
http://cordis.europa.eu/project/rcn/193440_en.html. [Accessed: 01-
May-2017].

[14] C2NET “D2.8 – 3rd detailed components design and APIs”, 2016.

[15] R. Peña-Ortiz, B. Ramis-Ferrer, E. Miedes, A. Nieto, R. de Juan-Marín,
and J. L. Martínez -Lastra, “Towards a cloud-based platform for enabling
supply chain collaboration”, in Cloud Collaborative Manufacturing
Networks Workshop (hosted in I-ESA 2016 conference), 2016.

[16] SLAP team, “Building Services for the ECloud PaaS”, Valencia, ES,
2016.

[17] J. D. Herbsleb and D. Moitra, “Global software development”, IEEE
Softw., vol. 18, no. 2, pp. 16–20, 2001.

[18] “OSP” 2016. [Online]. Available: https://opensourceprojects.eu.
[Accessed: 01-Nov-2016].

[19] “Apache Allura” 2017. [Online]. Available: https://allura.apache.org.
[Accessed: 01-Apr-2017].

[20] J. Loeliger and M. McCullough, Version control with Git, 2nd ed.
O’Reilly Media, 2012.

[21] S. Chacon and B. Straub, Pro Git, 2nd ed. Apress, 2014.

[22] C. M. Pilato, B. Collins-Sussman, and B. W. Fitzpatrick, Version control
with subversion, 2nd ed. O’Reilly Media, 2008.

[23] “C2NET repository home,” 2016. [Online]. Available:
https://opensourceprojects.eu/p/c2net [Accessed: 01-Oct-2016].

[24] “Jenkins,” 2017. [Online]. Available: https://jenkins.io/. [Accessed: 01-
Apr-2017].

