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Abstract— Surveillance of public spaces is often conducted 

with the help of cameras placed at elevated positions. Recently, 

drones with high resolution cameras have made it possible to 

perform overhead surveillance of critical spaces. However, 

images obtained in these conditions may not contain enough 

body features to allow conventional biometric recognition. This 

paper introduces a novel gait recognition system which uses the 

shadows cast by users, when available. It includes two main 

contributions: (i) a method for shadow segmentation, which 

analyzes the orientation of the silhouette contour to identify the 

feet position along time, in order to separate the body and 

shadow silhouettes connected at such positions; (ii) a method that 

normalizes the segmented shadow silhouettes, by applying a 

transformation derived from optimizing the low rank textures of 

a gait texture image, to compensate for changes in view and 

shadow orientation. The normalized shadow silhouettes can then 

undergo a gait recognition algorithm, which in this paper relies 

on the computation of a gait energy image, combined with linear 

discriminant analysis for user recognition. The proposed system 

outperforms the available state-of-the-art, being robust to 

changes in acquisition viewpoints. 

Keywords—Shadow Biometrics; Gait Recognition. 

I.  INTRODUCTION 

Biometric traits such as fingerprint, iris, etc. are widely 
used in recognition systems, as they are unique to a user. 
However, they do not perform well in surveillance 
environments, as they require active user cooperation. A more 
limited set of biometric traits can be used to perform 
recognition over a distance and without user cooperation. A 
popular example among them is gait [1]. In the literature, gait 
recognition is performed following either a model-based, or an 
appearance-based approach. 

Most model-based methods try to fit a model to the body or 
observed user motion. Examples include the construction of 
3D models using information from multiple 2D video cameras 
[2] or from sensors capturing 2D video and depth information 
[3]. Other methods model the user’s motion using key points 
such as the hip, knee and ankle positions [4], [5] or the head 
and feet positions [6]. These recognition methods rely on the 
use of additional information such as depth, external and 
internal camera parameters, floor position, etc. They also rely 
on an accurate detection of key points, which is not always 
possible, e.g., due to occlusions. These limitations often 
restrict the usage of model-based methods to controlled 
environments. 

Appearance-based methods perform user recognition using 
spatiotemporal information obtained directly from observed 
gait sequences, thus being better suited for recognition in 
surveillance environments. Examples include methods that use 
gait representations, such as gait energy image (GEI) [7], 
Radon transform-based energy image [8] or feature vectors 
obtained by applying singular value decomposition to GEIs [9] 
[10]. If the viewing point changes, these methods either 
compute transformations by optimizing low rank textures of a 
gait texture image (GTI) to correct the view [11], or split the 
recognition process into two steps. The first step involves view 
identification by learning the leg region of a GEI [12], gait 
entropy image (GEnI) [13], perceptual hash of the GEI leg 
region [14] or feet positions in a GTI [15]. The second step 
applies user recognition for the identified view. 

Gait-based recognition is effective in environments where 
the camera captures the entire body of the user, while it 
becomes harder or even impossible when the surveillance 
camera is carried by a drone or placed at a high position. For 
overhead cameras, body self-occlusions hide gait features, 
seriously hampering the performance of recognition systems. 
In such scenarios, however, there are often shadows cast from 
the user, which can provide an alternative for gait recognition, 
as Fig.1 illustrates. The shadow cast on the ground under a 
focused source of illumination, such as the sun (on a clear day) 
or a street lamp, also depicts the appearance of a user. Gait 
features can thus be obtained from the shadow, thus allowing 
successful user recognition. The use of shadows to obtain 
features to perform gait recognition was first suggested by 
Stoica, in 2008 [16]. 

 
Fig. 1. Example of image captured by overhead camera (from pixabay.com). 

The work by Iwashita and Stoica [17] performs user 
recognition using features called gait stripes, obtained from 
shadow silhouettes under the presence of the sun. The method, 
however, implies the manual separation and normalization of 
shadow silhouettes, and considers a fixed camera view and a 
fixed time of the day. Further work by Iwashita et al. [18] 
introduces an automatic shadow segmentation method, 
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applying principle component analysis (PCA) to a GTI and 
computing the sum of intensities along the first principal 
component direction. The point of separation between the 
body and the shadow silhouettes corresponds to the highest 
sum value. They also proposed a method for shadow silhouette 
normalization [19], which requires manually setting a large 
number of parameters, but for producing results they instead 
used a fixed view and timestamps, to avoid the need for 
normalization. The same team used shadow contours as a 
feature for recognition [20], and further improved recognition 
results by combining contour and gait stripes features [21]. 

User recognition using shadows can also be performed in 
indoor environments as long as a focused source of 
illumination is used. The work of Iwashita et al. [22] uses two 
infrared illumination sources to cast two shadows, 
perpendicular to each other, captured by an overhead camera. 
A GEI, without any shadow separation, is used for recognition 
employing affine moment invariant features. The method is 
further improved, making it robust to appearance changes, by 
using a weighting technique [23]. Robustness to changes in 
view is addressed using a 3D model to synthesize the shadow 
of a user [24]. These methods use a fixed illumination source 
and capture shadows from a fixed viewpoint, requiring 
information about the illumination source position, thus 
limiting their use, e.g., in the presence of the sun. 

The work discussed above introduced the use of shadows 
for gait recognition, but faces several limitations especially for 
outdoor operation, in the presence of an illumination source, 
such as the sun. Most of these methods either use entire 
silhouettes or separate the shadow silhouettes manually. When 
shadow separation is performed automatically [18], the results 
may not be accurate in some circumstances, as discussed in 
section II.A. Since the appearance of the shadow depends on 
the position of the sun and the camera, the shadow silhouettes 
should be normalized before attempting recognition. The 
orientation of the shadow is altered based on the position of the 
sun. However, a simple rotation of the shadow silhouette does 
not provide acceptable results, as shadows also suffer a 
perspective change caused by the varying position of the 
camera (i.e., change in viewpoint). Thus, to normalize the 
shadow silhouette, a homographic transformation is needed 
which rectifies the perspective and orientation of the shadow 
silhouette before considering it for user recognition. The 
methods considered in the literature typically require manually 
setting a large number of parameters to rectify the changes due 
to different camera viewpoints and shadow orientations. 

This paper presents a system with two main contributions 
to address the above problems: (i) automatic shadow 
segmentation; and (ii) automatic shadow silhouette 
normalization. The system performs shadow segmentation by 
identifying the user’s feet position, from the silhouette’s 
contour orientation analysis. The feet positions obtained over 
the entire gait sequence are then used to identify a line that 
separates body and shadow silhouettes. Shadow silhouette 
normalization is then performed by applying a homographic 
transformation, obtained by optimizing the low rank textures 
of the shadow silhouettes’ GTI. The optimization process 
transforms the GTI into a canonical view, providing the 
desired normalizing of the shadow silhouettes, correcting them 

for orientation and viewpoint variations. For recognition 
purposes, GEIs are constructed from the shadow silhouettes, 
followed by linear discriminant analysis (LDA). The proposed 
system highlights the strength of gait recognition from 
shadows; also, it is robust to changes in viewpoint. 

The rest of the paper is organized as follows. Section II 
presents the proposed system and section III discusses the 
experimental results. Section IV provides conclusions and 
suggests directions for future work. 

II. THE PROPOSED SYSTEM 

The proposed system for gait recognition using normalized 
shadows uses as input a set of binary foreground masks. They 
are obtained using robust principal component analysis [25] to 
identify the user and the shadow silhouettes as foreground. 
Automatic shadow segmentation is then applied to achieve the 
desired shadow separation, followed by shadow silhouette 
normalization. 

A. Shadow Segmentation 

Iwashita and Stoica [18], performed user body and shadow 
silhouette separation by summing the intensity values along 
the first principal component direction (aligned with the x-axis 
in Fig.2) of a GTI, and selecting the highest sum of intensities 
as the point of separation. That method assumes the highest 
overlap between body and shadow silhouettes to occur at the 
feet position. However, as illustrated in Fig. 2 (b), this is not 
always the case, notably due to changes in shadow orientation 
resulting from the camera and illumination source positions. 

  
   (a)           (b) 

Fig. 2. The shadow separation method in [18]: Example of a GTI (a) and 

sum of its intensity values along the first principal component (b). 

The proposed overcomes this limitation by splitting the 
shadow segmentation process into two steps. The first step 
identifies the feet position in individual foreground masks by 
analyzing the relative orientation of the shadow and the user 
body silhouettes – see example in Fig. 3(a). The second step 
then uses the feet positions obtained along the gait sequence to 
fit a line that separates the shadows and the user body 
silhouettes – see Fig. 3(b). 

1) Individual feet position identification 
Since the shadow silhouette is projected onto the ground, 

connecting with the body silhouette at the feet position, the 
main orientation of the body silhouette differs from that of the 
shadow silhouette (except when the illumination source is 
perfectly aligned with the user). Thus, the feet position can be 
identified as the foreground mask’s contour point that exhibits 
a sudden orientation change. By considering only the lower 
part of the foreground mask contour, i.e., the bottom-most non-
zero values of the contour image, as illustrated with blue “*” in 



Fig. 3 (a), the proposed method selects the contour point with 
highest y coordinate value as the feet position. This assumption 
is true during the double support phase of the gait cycle. 
However, along the gait cycle, especially during mid stance, 
the arm or knee positions may in some cases be incorrectly 
identified as the desired feet position, as shown in Fig 3(a). To 
overcome this possible problem, the proposed method 
computes the difference between two consecutive y coordinate 
values among the selected part of the contour. This difference 
is represented by a red “.” in lower part of Fig. 3 (a). The 
differences corresponding to the shadow part of the contour are 
typically low, while the difference corresponding to the knee 
or hand position of the contour is high and thus can be 
discarded from the selected part of the contour. Here, the 
threshold is empirically set to 50. 

     
          (a)              (b) 

Fig. 3. Proposed shadow separation method: Feet position selection (a),  

line fitting using RANSAC (b). 

2) Shadow separation 
Once the feet positions for the entire gait sequence are 

obtained, the proposed method applies a line fitting algorithm 
to those feet positions obtained over the entire gait sequence. It 
then classifies the part of the silhouette below the line as the 
shadow silhouette. 

Notice that for the cases when the illumination source is 
perfectly aligned with the user, there is no change in the 
orientation of the shadow with respect to the body of the user. 
In such cases, the previous step may incorrectly identify the 
feet position, selecting a random point along the contour. To 
make the proposed method robust against such errors, the 
proposed method uses the iterative random sample consensus 
(RANSAC) line fitting algorithm [26]. 

RANSAC assumes that the input contains outliers, i.e., feet 
positions which do not vote consistently for a single line fit, 
and rather looks for a sufficient number of values that “agree” 
on the same line. To perform shadow separation, RANSAC 
randomly selects two feet positions and considers the line that 
passes through them. It then identifies other feet positions 
consistent with the model, classifying the rest as outliers. It 
iterates through the available feet positions until a sufficient 
number of samples agree with a single model. The resulting 
line is used to separate the shadow from the body silhouettes. 
As seen in Fig. 3(b), RANSAC successfully fits a line even in 
the presence of uncertainties in the identification of feet 
positions, allowing a successful shadow separation. 

B. Shadow Silhouette Normalization 

The obtained shadow silhouettes typically contain 
significant changes in orientation and perspective along the 

gait sequence, due to the relative position of the illumination 
source, causing the shadows, and that of the camera, with 
respect to the moving user – see Fig. 4. As a consequence, 
shadow silhouettes obtained at the start and at the end of the 
same gait sequence cannot be matched even though belonging 
to the same user. Therefore, normalization of the shadow 
silhouettes is needed for user recognition. 

 
Fig. 4. Shadow silhouettes at different instants for the same gait sequence. 

The shadow silhouette normalization method proposed in 
this paper uses a transformation obtained by optimizing the 
low rank textures of a GTI constructed from the shadow 
silhouettes. In this paper, the optimization of the low rank GTI 
texture is performed by applying the transform invariant low-
rank textures (TILT) method [27]. TILT needs images 
containing regular symmetric patterns to obtain the desired 
transformation. This is the case for a gait cycle: silhouette 
shapes in the first half of the gait cycle roughly repeat in a 
symmetric way in the second half. Therefore, a GTI possesses 
the symmetry property expected from TILT inputs. When 
dealing with shadow silhouettes, the GTI can be obtained by 
vertically flipping the binary images containing the shadow 
silhouette and averaging all the resulting 𝐾 binary images 
𝐼(𝑥, 𝑦, 𝑡) belonging to the entire gait sequence, according to 
equation (1). 

𝐺𝑇𝐼(𝑥, 𝑦) = ∑ 𝐼(𝑥, 𝑦, 𝑡) 𝐾⁄𝐾
𝑡=1 

The model assumed by TILT is that a given 𝐺𝑇𝐼 results 
from a transformation 𝜏−1 applied to the sum of a low rank 
texture 𝐺𝑇𝐼𝑂 with a sparse error 𝐸, according to (2). 

𝐺𝑇𝐼(𝑥, 𝑦)  =  (𝐺𝑇𝐼𝑂(𝑥, 𝑦)  + 𝐸). 𝜏−1

The representation in equation (2) can be used to construct 
the optimization problem described in equation (3). 

min𝐺𝑇𝐼𝑂,𝐸,𝜏 𝑟𝑎𝑛𝑘 (𝐺𝑇𝐼𝑂) + 𝛾‖𝐸‖0 ,   𝐺𝑇𝐼. 𝜏 = 𝐺𝑇𝐼𝑂 + 𝐸

where ‖𝐸‖0 denotes the number of nonzero entries in 𝐸. The 
weighting parameter 𝛾 is a tradeoff between the rank of the 
𝐺𝑇𝐼 and the sparsity of error 𝐸. 

The aim of the optimization problem is to find the lowest 
possible rank of 𝐺𝑇𝐼𝑂, while at the same time having the 
fewest possible nonzero entries in 𝐸, that agree with the 
observed 𝐺𝑇𝐼 up to the domain transformation 𝜏. Since the 
optimization problem in (3) is nonconvex, TILT uses the 
convex relaxed form expressed in equation (4) and solves it 
via successive convex programming, as detailed in [26]. 

  min𝐺𝑇𝐼𝑂,𝐸,𝜏  ‖𝐺𝑇𝐼𝑂‖∗ + 𝜆‖𝐸‖1 ,   𝐺𝑇𝐼. 𝜏 = 𝐺𝑇𝐼𝑂 + 𝐸

where ‖ ‖∗ denotes the nuclear norm, and ‖ ‖1 denotes the 
l
1
-norm. 

The transformation 𝜏 obtained represents the geometric 
projection to be applied to the 𝐺𝑇𝐼 for normalization of the 
shadow silhouettes into a canonical view – see Fig. 5(b), (c). 



Therefore, along with changing the orientation of the 
silhouettes, the domain transformation also rectifies the 
alterations caused by viewpoint changes. 

       
        (a)                             (b)                                  (c)                  (d) 

Fig. 5. Proposed Shadow Silhouette Normalization method: Flipped shadow 

silhouette (a), GTI (b), GTIO (c), Normalized shadow silhouette (d). 

C. User Recognition 

The transformation of a shadow silhouette into the 
canonical view has some limitations. Notably, it cannot 
recover the self-occluded parts of the silhouette, with only the 
visible part being transformed into its canonical view. 

To minimize the impact of having an incomplete shadow 
silhouette, this paper performs user recognition using features 
reflecting the dynamics of gait. For this, GEIs are obtained by 
averaging the 𝑁 available cropped shadow silhouettes 
 𝐼𝑐(𝑥, 𝑦, 𝑡) belonging to a given gait cycle, according to (5).  

 𝐺𝐸𝐼 = ∑ 𝐼𝑐(𝑥, 𝑦, 𝑡) 𝑁⁄𝑁
𝑡=1  

User recognition can then be performed by applying PCA 
for dimensionality reduction and data decorrelation, followed 
by LDA. LDA identifies a projection matrix ∅ onto a 
subspace that maximizes the ratio of intra- to inter-class 
scatter, using Fisher’s criterion. 

Given k classes with centroids �̅�𝑘 and a test GEI 𝑧, the 
system computes the Euclidean distance 𝑑(, ) in a transformed 
space, and selects the class with the lowest distance, 
according to equation (6). 

 𝑎𝑟𝑔 min𝑘 𝑑(𝑧∅, �̅�𝑘∅) 

III. EXPERIMENTAL RESULTS 

Since there are no publicly available gait shadow 
databases, the proposed system performance is tested using a 
database consisting of 12 users, created especially for this 
purpose. The database was captured outdoors, with users 
walking along a straight line, from point A to point B, as 
shown in Fig. 6 (a). For each user, 2 acquisition sessions were 
performed on different days, with a significant change in 
appearance in some cases, as illustrated in Fig. 6 (b). 
Acquisition was done between 12:30 and 14:30, acquiring 3 
walking sequences per user in each session. 

                       
         (a)          (b) 

Fig. 6. Gait shadow sequences acqusition: acquisition location (a), example 

of appearance changes for the same user on different days (b). 

Two tests were conducted to analyze the performance of 
the system in terms of recognition and robustness to viewpoint 

changes. In these tests, two sequences of each session are used 
for training and one for testing, following the leave one out 
methodology. This gives a total of 4 training and 2 testing 
sequences for each user. For each sequence, two GEIs are 
computed, one from a complete gait cycle in the beginning and 
the other from a complete gait cycle at the end of the gait 
sequence. Each of these GEIs gathers silhouettes with distinct 
shadow orientations and viewpoint. 

For the first test, complete gait sequences containing the 
two GEIs are used for training. Thus the system is trained for 
orientation and view changes, as illustrated in Fig. 4. Table I 
shows results obtained with the proposed method, without and 
with the proposed shadow normalization step. Also, results for 
the state-of-the-art gait stripes method are included; the 
method requires knowing the light source and user position for 
the suggested manual normalization step, absence of which 
significantly hampers its performance. 

The first test is repeated for the proposed system by using 
the sequences obtained from one session for training and the 
other for testing. The correct recognition rate in this case 
reduces from 95% to 72%. However, this decrease in 
performance can be attributed to appearance changes as shown 
in Fig 6 (b), addressing which is beyond the scope of this 
work.  

TABLE I.  CORRECT RECOGNITION RATE  

Methods Correct Recognition Rate (%) 

Gait Stripes [17] [18] [19] 70% 

Proposed 

system 

Non nornalized GEIs 86% 

Nornalized GEIs 95% 

The second test highlights the importance of the proposed 
shadow normalization for robustness against viewpoint 
changes. Training is done using GEIs obtained from the first 
gait cycle, while testing is performed considering GEIs of the 
second gait cycle, i.e., this test considers significant changes in 
shadow orientations and viewpoint between the training and 
the testing sequences. 

TABLE II.  CORRECT RECOGNITION RATE WITH VIEWPOINT CHANGES 

Methods Correct Recognition Rate (%) 

Gait Stripes [17] [18] [19] 53% 

Proposed 

System 

Non nornalized GEIs 31% 

Nornalized GEIs 89% 

The results in Table II show that in face of shadow 
orientation and viewpoint changes, attempting recognition 
without shadow normalization is not a good option. In these 
conditions, also the gait stripes method performance is poor. 
Since the proposed normalization method transforms the 
shadow silhouettes to a canonical view, the proposed system 
becomes robust to such changes, highlighting the need for 
shadow silhouette normalization. 

Another option for gait recognition would be to use the 
body silhouettes. However, with the acquisition setup used, 
with a complex background, the quality of obtained body 
silhouettes was poor. In fact, for most of the body silhouettes, 
large parts of the legs or torso were missing. Nevertheless, for 
the 6 users for whom relatively complete body silhouettes 
could be obtained, the 2 tests were repeated, now with GEIs 



computed from the body, instead of the shadow, silhouettes. 
Recognition rates of 84% and 56%, respectively for the first 
and second tests were obtained. For the same 6 users, the 
correct recognition rate using the shadow silhouettes was 98% 
and 94%, respectively. These results show the usefulness of 
the proposed system in situations where good quality user 
body silhouettes cannot be obtained. 

IV. CONCLUSION 

The paper presents a novel system that performs gait 
recognition using shadows obtained in the presence of the sun. 
The method includes a contribution for shadow silhouette 
segmentation, separating it from the user body silhouette by 
identifying the feet positions along time. A line is then fitted to 
these positions using RANSAC, in order to be robust against 
feet position identification errors that are prone to occur in 
some parts of the gait cycle. The shadow silhouettes then 
undergoes normalization, by optimizing the low rank textures 
of a GTI. The proposal made allows correcting the shadow 
silhouette orientation, while making the system robust to 
changes in camera observation viewpoints. The GEIs obtained 
from the normalized shadow silhouettes can now be used for 
recognition purposes. The results obtained show that the 
proposed system outperforms the state-of-the-art. 

The system is currently tested on a database of only 12 
users. To better evaluate the system, a bigger database is 
needed. Thus, future work includes testing the system on a 
larger database, also including more covariate factors, such as 
the time of the day, changes in walking direction and change in 
appearance caused due to use of coat, bags, etc. 
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