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ABSTRACT  

Light field imaging based on a single-tier camera equipped with a microlens array – also known as integral, holoscopic, 

and plenoptic imaging – has currently risen up as a practical and prospective approach for future visual applications and 

services. However, successfully deploying actual light field imaging applications and services will require developing 

adequate coding solutions to efficiently handle the massive amount of data involved in these systems. In this context, self-

similarity compensated prediction is a non-local spatial prediction scheme based on block matching that has been shown 

to achieve high efficiency for light field image coding based on the High Efficiency Video Coding (HEVC) standard. As 

previously shown by the authors, this is possible by simply averaging two predictor blocks that are jointly estimated from 

a causal search window in the current frame itself, referred to as self-similarity bi-prediction. However, theoretical analyses 

for motion compensated bi-prediction have suggested that it is still possible to achieve further rate-distortion performance 

improvements by adaptively estimating the weighting coefficients of the two predictor blocks. 

Therefore, this paper presents a comprehensive study of the rate-distortion performance for HEVC-based light field image 

coding when using different sets of weighting coefficients for self-similarity bi-prediction. Experimental results 

demonstrate that it is possible to extend the previous theoretical conclusions to light field image coding and show that the 

proposed adaptive weighting coefficient selection leads to up to 5 % of bit savings compared to the previous self-similarity 

bi-prediction scheme. 

Keywords: Light field coding, plenoptic, holoscopic, HEVC, weighted bi-prediction 

 

1 INTRODUCTION 

Light Field (LF) imaging based on a single-tier camera equipped with a Microlens Array (MLA) – also known as 

holoscopic, plenoptic, and integral imaging – has recently become a prospective imaging approach for providing richer 

content capture, visualization, and manipulation, being applicable in many different areas of research, e.g., 3D television1,2, 

biometric recognition3, and medical imaging4. 

Recognizing the potential of this emerging technology, as well as the new challenges that need to be overcome for 

successfully introducing LF applications into the consumer market, novel standardization initiatives on LF image and 

video coding standardization are also emerging. Notably, the Joint Photographic Experts Group (JPEG) committee has 

recently started the JPEG Pleno standardization initiative5 that addresses representation and coding of emerging new 

imaging modalities. In addition, the Moving Picture Experts Group (MPEG) group has also recently started a new work 

item on coded representations for immersive media (MPEG-I)6. The challenge to provide a LF representation with 

convenient spatial and angular resolutions requires handling a huge amount of data and, thus, efficient coding becomes of 

utmost importance. In this context, although standardized LF representation and coding solutions are still in an early stage 

of development, various LF coding solutions have been already proposed in the literature. 

Several Light Field Coding (LFC) solutions in the literature try to take advantage of the particular planar intensity 

distribution of the LF image. Notably, as a result of the used optical system, the raw LF image can be represented as a 2D 

array of Micro-Images (MIs), and significant cross-correlation exists between these MIs in a neighborhood, which may be 

exploited for improving compression efficiency. Alternatively, Viewpoint Images (VIs) (a.k.a., subaperture images), or 

higher resolution views can be extracted/rendered from the LF content to represent the LF data as a set of views and to 

exploit the inter-view redundancy for LF coding. Additionally, other LF data representations can be also designed by 

extracting the depth/disparity information, as well as information on the intensity and direction of each light ray (i.e., the 
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ray-space) from the captured LF image. Essentially, previous LFC solutions can be then categorized in the following four 

main approaches, depending on the representation format and coding schemes that are adopted: 

i) LFC based on non-local spatial prediction7–12, which relies on a non-local prediction technique to exploit the 

redundancy between MIs in a spatial neighborhood when encoding the entire raw LF image; 

ii) Transform-based LFC13,14, which uses a Discrete Cosine Transform (DCT) or a Discrete Wavelet Transform 

(DWT) to exploit the redundancy between stacks of MIs or VIs; 

iii) LFC based on inter-view prediction15–20, in which a set of MIs, VIs or high resolution views are extracted and 

coded as a Pseudo-Video Sequence (PVS) or as multiview content; and 

iv) Disparity-assisted coding21–23, in which the disparity information is derived from the LF content and encoded 

along with a sparse set of texture information. 

This paper is focused on LFC solutions based on non-local spatial prediction. These solutions are less dependent on a very 

precise calibration pre-process and are mainly advantageous for applications in which the LF content is consumed by the 

end user in a format similar to the captured format, or is consumed by using a proprietary LF rendering algorithm that 

makes use of the same (raw) 2D format. In this context, the authors’ previous work has shown that significantly better 

coding performance can be achieved compared to the state-of-the art High Efficiency Video Coding (HEVC) coding 

standard by using the concept of Self-Similarity (SS) compensated prediction7–9. Similarly to motion estimation, this is 

possible by simply averaging two predictor blocks that are jointly estimated (based on block matching) from a causal 

search window in the current frame itself, referred to as self-similarity bi-prediction (Bi-SS)9. Motivated by these results, 

this paper proposes to experimentally analyze if there is still room for improving the Bi-SS prediction by making use of 

different weighting coefficients for combining the two jointly estimated predictor blocks. While theoretical motivations 

for weighted motion compensated bi-prediction has been previously presented and analyzed in the literature (e.g., in 

Girod24), its Rate-Distortion (RD) performance has not been analyzed yet for LF image coding. Therefore, this paper 

presents a comprehensive study of the RD performance for HEVC-based LF image coding when using two different 

weighted Bi-SS prediction schemes, namely: i) using a fixed set of weighting coefficients that are different from the 

averaging coefficients previously adopted for Bi-SS prediction; ii) using an adaptive algorithm that is here proposed for 

estimating the optimal set of weighting coefficients for each prediction block. 

The remainder of this paper is organized as follows: Section 2 reviews the relevant work on LFC solutions based on non-

local spatial prediction; Section 3 describes two weighted Bi-SS prediction schemes with fixed and adaptive weighting 

coefficients; Section 4 presents the test conditions and experimentally analyzes these two weighted Bi-SS prediction 

schemes; and, finally, Section 5 concludes the paper. 

2 RELATED WORK 

In the context of LFC based on the non-local spatial predictive approach, previous work of the authors 7–9 showed that 

further improvements are still possible for LF images with respect to the state-of-the-art for 2D image coding using the 

HEVC Main Still Picture profile25,26 by using the concept of SS compensated prediction. 

The SS estimation (depicted in Figure 1) is used to exploit the cross-correlation existing in an MI neighborhood (see Figure 

1a) by estimating the prediction block with the highest similarity (according to appropriate criteria) to the current block in 

the previously coded and reconstructed area of the current picture itself (the SS reference, as seen in Figure 1b). Hence, 

the relative position between the current and the ‘best’ candidate block is signaled by an SS vector, 𝒗0, (see Figure 1b). 

Similarly to the conventional HEVC inter P frame prediction, the best SS vector, 𝒗0
𝑏𝑒𝑠𝑡 , for the SS prediction can be found 

in terms of Rate-Distortion Optimization (RDO) by minimizing the Lagrangian cost function in (1) 27, 

 𝐽𝑈𝑛𝑖−𝑆𝑆
𝑏𝑒𝑠𝑡 = min

𝒗0

‖𝐼(𝒙) − 𝐼(𝒙 − 𝒗0)‖
1

+ 𝜆 𝑅(𝒗0) (1)  

where 𝐼(𝒙) is a matrix variable representing the current block at position 𝒙 = (𝑥, 𝑦) in the LF image; 𝐼(𝒙 − 𝒗0) represents 

a candidate block in the SS reference, 𝐼, with 𝒙 − 𝒗0 ∈ 𝐖 (see Figure 1b); 𝑅(𝒗0) corresponds to an estimated number of 

bits for encoding the SS vector 𝒗0 (i.e., the estimated number of bits necessary to encode the motion vector difference 

between 𝒗0 and its predictor); and 𝜆 is the Lagrangian multiplier. In addition, the ℓ1-norm (or Sum of Absolute Differences 

(SAD)), ‖ ‖1, is used and a limited causal search window W is adopted. Finally, the SS predictor block, 𝐼(𝒙), is derived 



as 𝐼(𝒙 − 𝒗0
𝑏𝑒𝑠𝑡). As done in HEVC reference software version 14.028, when SAD is used as the distortion measure, 𝜆 is 

given by √𝜆𝐼𝑛𝑡𝑟𝑎, where 𝜆𝐼𝑛𝑡𝑟𝑎 is the Lagrangian multiplier computed for prediction mode selection in intra-coded frames. 

Notice that the SS estimation process in (1) only considers a single compensated signal for prediction of the current block, 

as firstly proposed by the authors7,8, and for this reason will be hereinafter referred to as Uni-predicted Self-Similarity 

(Uni-SS) compensated prediction. An MI-based vector prediction scheme has been also proposed by the authors8 to take 

advantage of the particular characteristics of the SS prediction data. In this case, three MI-based vector prediction (MIVP) 

candidate vectors, is included into the HEVC Advanced Motion Vector Prediction (AMVP) and merge candidate lists29 to 

further improve the RD performance. 

Although not targeting LF image coding, another prediction scheme similar to the Uni-SS compensated prediction7,8, 

known as Intra Block Copy (IntraBC)30, has been recently proposed in the literature in the context of Screen Content 

Coding (SCC)30. In this case, the prediction estimation is performed considering only integer pixel accuracy and the search 

window is expanded to the entire Coding Block (CB) row or column, or to the entire previously coded area of the picture 

by using a hash-based search30. 

To further improve the performance of the Uni-SS compensated prediction8, a jointly estimated Bi-SS estimation and 

compensation scheme has been also proposed by the authors9 that is based on the generic concept of superimposed 

prediction 31, which allows bi-prediction using samples from the same search area. Therefore, these predictor blocks can 

be located in the same MI and in overlapped pixel positions as illustrated in Figure 1b. Moreover, instead of simply 

combining two (independent) best uni-predicted candidate blocks for bi-prediction, the locally optimal rate-constrained 

algorithm32 is used for jointly estimating these two predictor blocks. More specifically, two possible candidate predictors 

are derived from the same search area, 𝐖 (Figure 1b), to predict the current block, namely: i) the Uni-SS candidate, and 

ii) the Bi-SS candidate. 

The Uni-SS candidate predictor corresponds to the previous solution7,8, in which the predictor block is found by 

minimizing the Lagrangian cost function in (1). Differently, for the Bi-SS candidate predictor, the iterative algorithm in 

  
(a) (b) 

Figure 1 SS prediction: (a) inherent MI cross-correlation in a light field image neighborhood; (b) Bi-SS estimation process 

(example of a second candidate block and SS vector for bi-prediction is shown in dashed blue line). 
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Initialization:    𝑘 = 0,     ℎ0 = ℎ1 = 1/2,     𝑣0
(𝑘)

= 𝑣0
𝑏𝑒𝑠𝑡,    𝐽𝐵𝑖−𝑆𝑆

(𝑘)
= 𝐽𝑀𝐴𝑋 

   do 

        𝐽𝐵𝑖−𝑆𝑆
𝑏𝑒𝑠𝑡 = 𝐽𝐵𝑖−𝑆𝑆

(𝑘)
 

        𝑝 = (𝑘)mod(2), 𝑞 = 1 − 𝑝 

         𝐽𝐵𝑖−𝑆𝑆
(𝑘+1)

(𝒗𝑞
(𝑘+1)

|𝒗𝑝
(𝑘)

) = ‖𝐼(𝒙) − [ℎ𝑞 ∙ 𝐼(𝒙 − 𝒗𝑞
(𝑘+1)

) + ℎ𝑝 ∙ 𝐼(𝒙 − 𝒗𝑝
(𝑘)

)]‖
1

+ 𝜆 ∙ [𝑅(𝒗𝑞
(𝑘+1)

) + 𝑅(𝒗𝑝
(𝑘)

)] 

        𝒗𝑞
(𝑘+1)

= arg min
𝒗𝑞

(𝑘+1)
  𝐽𝐵𝑖−𝑆𝑆

(𝑘+1)
 

        𝑘 = 𝑘 + 1 

    while 𝑘 ≠ 𝐾 or 𝐽𝐵𝑖−𝑆𝑆
(𝑘)

< 𝐽𝐵𝑖−𝑆𝑆
𝑏𝑒𝑠𝑡  

Figure 2 Algorithm for jointly estimating the two predictor blocks 𝐼(𝒙 − 𝒗0) and 𝐼(𝒙 − 𝒗1) for the Bi-SS candidate predictor. 

The index 𝑞 defines which of the two vectors (𝒗0 or 𝒗1) will be optimized in a particular iteration 𝑘, while the index 𝑝 defines 

the vector that will be kept fixed. 

 



Figure 2 is used to jointly estimate two predictor blocks, which are then linearly combined using the average weighting 

coefficient 𝒉 = (
1

2
,

1

2
). This algorithm avoids searching through all possible combinations of two candidate predictor 

blocks 𝐼(𝒙 − 𝒗0) and 𝐼(𝒙 − 𝒗1) inside 𝐖. For this, in each algorithm iteration, 𝑘, an optimal SS candidate vector 𝒗𝑞
(𝑘+1)

 

(with index 𝑞 ∈ {0,1}) is found by minimizing the Lagrangian cost function, 𝐽𝐵𝑖−𝑆𝑆
(𝑘+1)

, conditioned to the optimal SS 

candidate vector found in the previous iteration 𝒗𝑝
(𝑘)

 (with 𝑝 ∈ {0,1}). Therefore, the algorithm is focused on finding an 

optimized vector 𝒗1 conditioned to a known vector 𝒗0 in even iterations, and vice versa in odd iterations. The maximum 

number of iterations, 𝐾, defines a tradeoff between complexity and RD performance and can be adjusted according to the 

system constraints. Similarly to (1), the Lagrangian cost function shown in Figure 2 is used to find the optimal SS vector 

in each iteration, where 𝜆 is computed as √𝜆𝐼𝑛𝑡𝑟𝑎 28 and 𝑅(𝒗𝑞
(𝑘+1)

) + 𝑅(𝒗𝑝
(𝑘)

) corresponds to the estimated number of bits 

for encoding the SS vectors 𝒗0 and 𝒗1 given in each iteration, i.e., the estimated number of bits necessary to encode the 

motion vector difference between the SS vectors and their predictor vectors and for signaling the vector predictor using 

AMVP. Finally, the best prediction between Uni-SS and Bi-SS candidates is chosen in terms of conventional RDO27 by 

comparing the associated Lagrangian costs 𝐽𝑈𝑛𝑖−𝑆𝑆
𝑏𝑒𝑠𝑡  and 𝐽𝐵𝑖−𝑆𝑆

𝑏𝑒𝑠𝑡 , respectively found in (1) and Figure 2. Regarding the 

achieved coding efficiency, it was shown9 that jointly estimating the two candidate blocks for Bi-SS prediction led to 

further RD improvements when compared to the case7,8 in which only one candidate block is estimated. 

An LFC solution similar to the Bi-SS solution9 has been also proposed in the literature10 to extend the SS prediction 

concept by using HEVC inter B frame bi-prediction LF image coding. However, in this case, to guarantee that the two 

prediction signals came from two different MIs, the search area was proposed to be separated into two non-overlapping 

parts10 to perform the prediction estimation as in conventional HEVC bi-prediction. For this reason, this solution is referred 

to here as LFC Restricted-SS10 solution. 

3 WEIGHTED BI-SS PREDICTION 

Motivated by the authors’ previous results7–9, two different weighted Bi-SS prediction schemes are proposed in this section 

aiming at improving the Bi-SS prediction RD performance by considering different weighting factors for bi-prediction. 

These are: i) Weighted Bi-SS prediction with fixed weighting coefficients; and ii) Adaptive weighted Bi-SS prediction. 

3.1 Weighted Bi-SS Prediction with Fixed Weighting Coefficients 

This represents the simplest solution – referred to as LFC Weighted Bi-SS (Fixed) – in which a fixed set of weighting 

coefficients, 𝐡 = (ℎ0, ℎ1 = 1 − ℎ0) (see Figure 2), are used for combining the two predictor blocks for Bi-SS prediction. 

The goal of this Weighted Bi-SS (Fixed) solution is to analyze if there is a better balance between the two predictor blocks 

for jointly estimated bi-prediction that leads to a better RD performance compared to the averaging coefficients that has 

been adopted in the previous LFC Bi-SS solution9. 

For this, the HEVC weighted prediction signaling 33 is used. Basically, the usage of explicit weighted prediction in HEVC 

is activated by a flag in the Picture Parameter Set (PPS), and different integer weighting factors, 𝑤𝑝, and offset values, 𝑜𝑝, 

can be assigned for prediction in each slice 33. 

The resulting predictor block 𝐼(𝒙) for weighted bi-prediction can be then derived by 33: 

 𝐼(𝒙) = ⌊
𝑤0 ∙ 𝐼(𝒙 − 𝒗0) + 𝑤1 ∙ 𝐼(𝒙 − 𝒗1) + (𝑜0 + 𝑜1 + 1) ∙ 2𝐿𝑊𝐷

2 ∙ 2𝐿𝑊𝐷
⌋ (2)  

where 𝐿𝑊𝐷 is a log weight denominator rounding factor 33 used to normalize the integer weighting factors and the sub-

sample interpolation filtering process 34. These weighting parameters (i.e., 𝐿𝑊𝐷, 𝑤0, 𝑤1, 𝑜0, and 𝑜1) are then coded in the 

slice header using variable length codes (notably, using zero-order Exponential-Golomb coding) and sent to the decoder. 

Therefore, the following four LFC Weighted Bi-SS (Fixed) solutions are considered, which are analyzed in terms of their 

RD performance in Section 4.2: 

 LFC Weighted Bi-SS (𝐡 = (
7

8
,

1

8
)) – In this case, weighted Bi-SS prediction is used with weighting coefficients 

ℎ0 =
7

8
 and ℎ1 =

1

8
. In (2), this corresponds to having 𝑤0 = 7, 𝑤1 = 1, 𝐿𝑊𝐷 = 2, and 𝑜0 = 𝑜1 = 0. 



 LFC Weighted Bi-SS (𝐡 = (
3

4
,

1

4
)) – In this case, weighted Bi-SS prediction is used, where the average weighting 

coefficients in Figure 2 are replaced by ℎ0 =
3

4
 and ℎ1 =

1

4
. In (2), this corresponds to having 𝑤0 = 3, 𝑤1 = 1, 

𝐿𝑊𝐷 = 1, and 𝑜0 = 𝑜1 = 0. 

 LFC Weighted Bi-SS (𝐡 = (
1

4
,

3

4
)) – In this case, weighted Bi-SS prediction is used, where the average weighting 

coefficients in Figure 2 are replaced by ℎ0 =
1

4
 and ℎ1 =

3

4
. In (2), this corresponds to having 𝑤0 = 1, 𝑤1 = 3, 

𝐿𝑊𝐷 = 1, and 𝑜0 = 𝑜1 = 0. 

 LFC Weighted Bi-SS (𝐡 = (
1

8
,

7

8
)) – In this case, weighted Bi-SS prediction is used with weighting coefficients 

ℎ0 =
1

8
 and ℎ1 =

7

8
. In (2), this corresponds to having 𝑤0 = 1, 𝑤1 = 7, 𝐿𝑊𝐷 = 2, and 𝑜0 = 𝑜1 = 0. 

3.2 Adaptive Weighted Bi-SS Prediction 

The adaptive weighted Bi-SS solution proposed in this section – referred to as LFC Weighted Bi-SS (Adaptive) – is 

motivated by the theoretical analysis proposed for motion compensated prediction by Girod24, which suggests that further 

RD performance improvements for bi-prediction can be achieved by adaptively estimating the weighting coefficients for 

each block being coded. Therefore, this Weighted Bi-SS (Adaptive) solution is used to experimentally analyze if it is 

possible to generalize the theoretical assumptions from Girod24 for HEVC-based LF image coding using jointly estimated 

Bi-SS prediction. 

For this, the Weighted Bi-SS (Adaptive) prediction is evaluated for all CB sizes (i.e., from 64×64 down to 8×8). Moreover, 

to perform the weighted Bi-SS estimation, each CB can be further split into smaller Prediction Blocks (PBs) considering 

all partition patterns defined for HEVC inter coding33. Similarly to the LFC solutions discussed in Section 2, the 

Lagrangian formulation in (3) can be used for finding, for each PB partition, the set of optimal predictor parameters 
{𝒗0, 𝒗1, 𝒉} that minimizes the prediction error in the weighted Bi-SS prediction subjected to the number of bits, 𝑅(𝒗0) +

𝑅(𝒗1) + 𝑅(𝒉), necessary for signaling each of these predictor parameters to the decoder. 

  𝐽𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐵𝑖−𝑆𝑆(𝒗0, 𝒗1, 𝒉) = ‖𝐼(𝒙) − [ℎ0 ∙ 𝐼(𝒙 − 𝒗0) + ℎ1 ∙ 𝐼(𝒙 − 𝒗1)]‖
1

+ 𝜆 ∙ [𝑅(𝒗0) + 𝑅(𝒗1) + 𝑅(𝒉)] (3)  

Given the very large number of coding possibilities of HEVC (e.g., due to the very flexible PB partition patterns and sizes, 

estimation considering quarter-pixel precision, and using an optimized set of vector predictors) and to avoid significantly 

increasing the complexity for solving the optimization problem in (3), the iterative algorithm in Figure 3 is proposed to 

derive a Weighted Bi-SS candidate predictor, which considers a limited set of five possible weighting coefficients, 

ℋ =  {(
7

8
,

1

8
) , (

3

4
,

1

4
) , (

1

2
,

1

2
) , (

1

4
,

3

4
) , (

1

8
,

7

8
)}. Therefore, the set of coefficients, 𝒉𝑖 ∈ ℋ, that minimizes the locally optimal 

constrained Bi-SS solution in Figure 2 conditioned to 𝒉𝑖  –  i.e., 𝐽𝐵𝑖−𝑆𝑆 (𝒗0, 𝒗1 | 𝒉𝑖) indicated in Figure 3 – is chosen as the 

best weighting coefficients, 𝒉𝑏𝑒𝑠𝑡 , and the Weighted Bi-SS candidate predictor is then found by using the weighted linear 

combination of the corresponding jointly estimated predictor blocks 𝐼(𝒙 − 𝒗0
𝑏𝑒𝑠𝑡) and 𝐼(𝒙 − 𝒗1

𝑏𝑒𝑠𝑡) (Figure 3). 

Initialization:    𝐽𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐵𝑖−𝑆𝑆
𝑏𝑒𝑠𝑡 = 𝐽𝑀𝐴𝑋 

for each 𝒉𝑖 ∈ ℋ do 

        Find the optimal jointly estimated predictor blocks according to Figure 2:   

                𝐽𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐵𝑖−𝑆𝑆(𝒗0, 𝒗1, 𝒉𝑖) = argmin
𝒗0,𝒗1

 𝐽𝐵𝑖−𝑆𝑆 (𝒗0, 𝒗1|𝒉𝑖) 

        If  𝐽𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐵𝑖−𝑆𝑆 < 𝐽𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐵𝑖−𝑆𝑆
𝑏𝑒𝑠𝑡   then 

                𝐽𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐵𝑖−𝑆𝑆
𝑏𝑒𝑠𝑡 = 𝐽𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐵𝑖−𝑆𝑆,     𝒗0

𝑏𝑒𝑠𝑡 = 𝒗0,     𝒗1
𝑏𝑒𝑠𝑡 = 𝒗1,     𝒉𝑏𝑒𝑠𝑡 = 𝒉𝑖  

        end 

    end for 

Figure 3 Iterative algorithm used for solving the problem in (3) and determining an optimized weighted Bi-SS predictor. 

Essentially, the set of weights, 𝒉𝑖, that minimizes the locally optimal constrained Bi-SS solution conditioned to 𝒉𝑖, 

𝐽𝐵𝑖−𝑆𝑆(𝒗0, 𝒗1|𝒉𝑖), is chosen as the best weighting coefficients, 𝒉𝑏𝑒𝑠𝑡, and the Weighted Bi-SS candidate predictor is found by 

using the weighted linear combination of the corresponding jointly estimated predictor blocks 𝐼(𝒙 − 𝒗0
𝑏𝑒𝑠𝑡) and 𝐼(𝒙 − 𝒗1

𝑏𝑒𝑠𝑡). 



It should be noticed that the Weighted Bi-SS (Adaptive) prediction proposed in this paper aims at experimentally analyzing 

if there is room for improving the jointly estimated Bi-SS prediction efficiency for LF image coding by using an optimal 

set of weighting coefficients 𝒉𝑏𝑒𝑠𝑡 as theoretically suggested for motion compensated prediction24. For this reason, and 

since the choice of 𝒉𝑏𝑒𝑠𝑡 is highly dependent on how efficiently these sets of weighting coefficients are entropy encoded, 

the number of bits 𝑅(𝒉) in (3) are not considered when iteratively solving the problem in Figure 3 and are not accounted 

for in the RD performance of the proposed LFC Weighted Bi-SS (Adaptive) solution. 

Nevertheless, Figure 4 gives some insight into the RD performance bounds for LF image coding using the proposed 

Weighted Bi-SS (Adaptive) prediction. For this, an estimation of the minimum bitrate increase for entropy coding the 

chosen set of weighting coefficients, 𝒉, for each PB partition is presented in Figure 4 for all tested LF images (see Section 

4) considering five different Quantization Parameter (QP) values. This rough estimation is considered when experimentally 

assessing the RD performance of the proposed Weighted Bi-SS (Adaptive) prediction in Section 4. 

As an alternative to the Weighted Bi-SS (Adaptive) prediction, an SS-skip mode can be also used for coding a CB that 

contains only a single PB, and in this case, all predictor parameters {𝒗0, 𝒗1, 𝒉} are directly derived using the HEVC merge 

technique33. Therefore, only an index is signaled which identifies the chosen predictor parameters from a list of merge 

candidates. In this work, the merge candidate list is derived as follows: 

 Spatial merge vector candidates – Up to four spatial candidates from the set of five29 neighboring blocks that 

were coded with Weighted Bi-SS mode are included. In this case, the set of weighting coefficients, 𝒉, is directly 

derived from the set of weighting coefficients adopted by these spatial neighboring blocks, where 𝒉 ∈ ℋ. 

 MI-based vector candidates – The maximum size of the merge candidate list is signaled in the slice header 

syntax (being equal to five as defined by default in HEVC standard29). After selecting the spatial candidates, up 

to three MIVP merge candidates, as previously proposed by the authors8, are included into the merge candidate 

list until the maximum number of candidates is reached. In this case, the set weighting coefficients is set to 

𝒉 =  (
1

2
,

1

2
). 

 Additional merge candidates – Furthermore, if the merge candidate list is still not fully populated, bi-predicted 

candidates can also be derived by combining two existing candidates from different reference picture lists. When 

the list is still not completely filled, zero motion candidates are included to complete the list. In both cases, the 

set weighting coefficients is set to 𝒉 = (
1

2
,

1

2
). 

It should be noticed that the HEVC merge technique can be also used to extend the concept of the direct modes from 

H.264/AVC standard35. Thus, this merge mode is evaluated for almost all PB partition patterns as an alternative to the 

Weighted Bi-SS prediction estimation. In this case, the index of the chosen merge candidate is encoded and transmitted 

along with the residual block. 

 
Figure 4 Estimated bounds for entropy coding the chosen set of weighting coefficients when coding each LF image considered 

in Section 4 (see Figure 5) using the proposed Weighted Bi-SS (Adaptive) prediction for five different QP values: 22, 27, 32, 

37, and 42. The percentage of bitrate increase is calculated as −𝑛𝑃𝐵 ∑ 𝑝(𝒉𝑖) ∙ log2 𝑝(𝒉𝑖)/𝑇𝑏𝑖𝑡𝑠, where: − ∑ 𝑝(𝒉𝑖) ∙ log2 𝑝(𝒉𝑖) 

is the minimum average number of bits needed for signaling the chosen set of weighting coefficients, 𝒉𝑖, for each PB partition; 

𝑝(𝒉𝑖) is the probability of usage of 𝒉𝑖; 𝑛𝑃𝐵 is the number of PB partitions that make use of the proposed Weighted Bi-SS 

(Adaptive) prediction; 𝑇𝑏𝑖𝑡𝑠 is the total number of bits for encoding the entire LF image (without weighting coefficients 

signaling). 

 



Finally, the encoder will choose the best, among Weighted Bi-SS, SS-skip and conventional HEVC intra prediction, in an 

RDO manner. 

4 PERFORMANCE ASSESSMENT 

This section assesses the performance of the two weighted Bi-SS prediction schemes proposed in this paper, i.e., LFC 

Weighted Bi-SS (Fixed), and LFC Weighted Bi-SS (Adaptive) solutions. For this purpose, the test conditions are firstly 

introduced in Section 4.1 and, then, the obtained results for each proposed solution are presented, respectively, in Sections 

4.2 and 4.3. 

4.1 Test Conditions 

The test conditions to experimentally evaluate the performance of the proposed LFC Weighted Bi-SS solutions can be 

summarized as follows: 

 Test Images – Five light field images are considered to obtain representative RD results. These are36 (see Figure 

5): Vespa, Ankylosaurus_&_Diplodocus_1, Fountain_&_Vincent_2, Color_Chart_1, and ISO_Chart_12. These 

images were acquired using a Lytro Illum camera36 and have resolution of 7728×5368 (with 15×15 MIs). The 

(raw) LF test images were converted to the Y’CbCr 4:2:0 color format before being encoded. 

 Codec Software Implementation – The reference software of HEVC version 14.028 was used as the benchmark, 

as well as the base software for implementing the proposed LFC solutions with weighted Bi-SS prediction. 

 Search Range – A search window with size w=128 as depicted in Figure 1b was adopted for all tested LF images. 

 Search Strategy – The full search algorithm with the HEVC quarter-pixel accuracy was used. 

 Coding Configuration – The results are presented using the Main Still Picture profile29 and five QP values are 

considered, i.e., 22, 27, 32, 37, and 42. 

 RD Evaluation – The objective quality evaluation was performed in terms of the luma PSNR of the raw LF 

image. The rate is presented in bits per pixel (bpp), which is calculated as the total number of bits needed for 

encoding all scalable layers divided by the number of pixels in the LF raw image. The results are shown using 

Bjøntegaard Delta (BD)37 metric in terms of rate (referred to here as BD-Rate). 

4.2 RD Performance for Fixed Weighting Coefficients 

This section experimentally analyzes the RD performance of the LFC Weighted Bi-SS (Fixed) solution when different 

sets of weighting coefficients, ℎ0 and ℎ1 (see Section 3.1), are used for the jointly estimated Bi-SS prediction. For this, the 

RD performance achieved by each of the four LFC Weighted Bi-SS (Fixed) solutions presented in Section 3.1 are 

compared against the LFC Uni-SS8 and the LFC Bi-SS9 solutions (see Section 2). 

   

(a) (b) (c) 

  

(d) (e) 

Figure 5 Example of a central view rendered from each LF test image: (a) Vespa, (b) Ankylosaurus_&_Diplodocus_1, (c) 

Fountain_&_Vincent_2, (d) Color_Chart_1, and (e) ISO_Chart_12. 



Since the results and the conclusions are consistent for all tested LF test images in Figure 5, and to avoid significantly 

increasing the size of this paper, Figure 6 illustrates RD performance only for the LF image Vespa (Figure 5a). From these 

results, it can be seen that the LFC Bi-SS solution using the average weighting coefficients always outperforms all the 

LFC Weighted Bi-SS (Fixed) solutions. Moreover, the more equally distributed the weighting coefficients are, the better 

the RD efficiency of the Bi-SS prediction is shown to be. In addition, in all cases, the LFC Weighted Bi-SS (Fixed) 

solutions always outperform the LFC Uni-SS solution. 

Additionally, comparing the achieved RD coding performance with the prediction statistics observed when coding the LF 

image Vespa, as presented in Table 1, it can be seen that the worse RD performance achieved when a more unbalanced set 

of weighting coefficients is adopted (e.g., when ℎ0 =
7

8
 and ℎ1 =

1

8
.) is always associated to a further increase in the 

percentage of usage of the HEVC Intra prediction and the Uni-SS candidate predictor. 

4.3 RD Performance for Adaptive Weighting Coefficients 

This section experimentally analyzes the RD performance of the LFC Weighted Bi-SS (Adaptive) solution compared to 

the following benchmark solutions (as reviewed in Section 2): i) HEVC28; ii) HEVC SCC30; iii) LFC Uni-SS8; iv) LFC 

Restricted-SS10; and v) LFC Bi-SS9. The results are then shown in Table 2 in terms of the BD-Rate metric 37 with respect 

to these benchmark solutions. 

 

Figure 6 RD performance of the proposed LFC Weighted Bi-SS solution considering different sets of weighting coefficients 

that are fixed for coding the entire LF image. The results are illustrated for coding the LF test image Vespa using five QP 

values (i.e., 22, 27, 32, 37, and 42) and are compared to the author’s previously proposed LFC Uni-SS8 and LFC Bi-SS9. 

Table 1 Prediction statistics for coding the LF image Vespa using the LFC weights Bi-SS with fixed weighting coefficients 

compared to the previous LFC Bi-SS solution9 (for QP value 22) 

LFC Solution 
Prediction Mode Statistics SS Prediction Statistics 

Intra SS SS-skip Uni-SS Bi-SS Merge 

Bi-SS (ℎ0 = ℎ1 = 1 2⁄ ) 29.9% 65.6% 4.5% 14.0% 9.9% 76.1% 

Weighted Bi-SS (ℎ0 = 7 8⁄ , ℎ1 = 1 8⁄ ) 39.0% 57.8% 3.2% 28.2% 8.8% 63.1% 

Weighted Bi-SS (ℎ0 = 3 4⁄ , ℎ1 = 1 4⁄ ) 33.4% 62.5% 4.1% 14.7% 13.1% 72.1% 

Weighted Bi-SS (ℎ0 = 1 4⁄ , ℎ1 = 3 4⁄ ) 32.7% 63.2% 4.1% 16.2% 11.9% 71.9% 

Weighted Bi-SS (ℎ0 = 1 8⁄ , ℎ1 = 7 8⁄ ) 38.2% 58.5% 3.2% 28.0% 9.4% 62.6% 

 



From these results, it can be seen that the proposed LFC Weighted Bi-SS (Adaptive) solution is able to further improve 

the RD performance for jointly estimated Bi-SS prediction leading to up to 5.5 % of bit savings when compared to the 

previously proposed LFC Bi-SS solution9, without considering the extra bits for signaling the set of weighting 

coefficients, 𝒉, for each PB partition. 

To infer the impact of signaling these weighting coefficients, Table 3 presents the same kind of RD results of Table 2 

adjusted by the entropy of these weighting coefficients as depicted in Figure 4. In this case, the proposed LFC Weighted 

Bi-SS (Adaptive) still presents significant bit savings of up to 5.1 % compared to the LFC Bi-SS solution. This shows that 

it is possible to extend the theoretical conclusions presented in the literature for motion compensated bi-prediction to LF 

coding with the jointly estimated Bi-SS prediction. 

In addition, it is important to notice that, for all tested solutions shown in Tables 2 and 3, improved RD performance comes 

with the price of additional computational load. Generally, the coding solutions in Tables 2 and 3 can be ordered in terms 

of encoding complexity as: LFC Weighted Bi-SS (Adaptive) > LFC Bi-SS > LFC Restricted-SS > LFC Uni-SS > HEVC 

SCC > HEVC (intra coding). Therefore, for use cases in which the computation complexity is not an issue, the proposed 

LFC Weighted Bi-SS (Adaptive) is able to achieve significant bit savings of up to: 83.4 % with respect to HEVC; 67.8 % 

with respect to HEVC SCC; 37.2 % with respect to LFC Uni-SS; and 17.6 % with respect to LFC Restricted-SS. 

To complement this analysis, Table 4 summarizes some statistics of relevant coding results when using the proposed LFC 

Weighted Bi-SS (Adaptive), such as: percentages of prediction mode usage, SS bi-prediction usage, and usage of each set 

of weighting coefficients 𝒉 ∈ ℋ. From these results, it can be seen that for all tested LF images, the average weighting 

coefficients are still the most used for Bi-SS prediction. However, comparing the results of the first row of this table (for 

the LF image Vespa) with the results presented in the first row of Table 1 for coding using the LFC Bi-SS solution, it can 

be observed that the better RD performance of the LFC Weighted Bi-SS (Adaptive) solution is directly related to a 

significant increase in the percentage of usage of the Bi-SS prediction candidate predictor – i.e., from 9.9 % when using 

the LFC Bi-SS in Table 1, to 20.6 % when using the LFC Weighted Bi-SS (Adaptive) – and a consequent decrease in the 

Uni-SS candidate predictor usage. 

Table 2 RD Performance for the proposed LFC Weighted Bi-SS (Adaptive) for each LF image in Figure 5 in terms of BD-

Rate metric37 with respect to each benchmark solution 

LF Image 
BD-Rate w.r.t. 

HEVC28 

BD-Rate w.r.t. 

HEVC SCC30 

BD-Rate w.r.t. 

LFC Uni-SS8 

BD-Rate w.r.t. 

LFC Restricted-SS10 

BD-Rate w.r.t. 

LFC Bi-SS9 

(a) -51.6 % -41.2 % -22.7 % -14.9 % -2.5 % 

(b) -83.4 % -68.0 % -37.5 % -14.5 % -5.5 % 

(c) -52.2 % -31.1 % -18.4 % -12.1 % -2.4 % 

(d) -67.6 % -39.0 % -18.4 % -20.2 % -4.0 % 

(e) -61.1 % -44.1 % -23.0 % -18.0 % -2.7 % 

Average -63.2 % -44.7 % -24.0 % -16.0 % -3.4 % 

 

Table 3 RD Performance for each LF image in Figure 5, considering the performance bounds illustrated in Figure 4 for entropy 

coding the set of weighting coefficients, 𝒉, chosen for each PB partition. Results are shown in terms of BD-Rate metric37 with 

respect to each benchmark solution 

LF Image 
BD-Rate w.r.t. 

HEVC28 

BD-Rate w.r.t. 

HEVC SCC30 

BD-Rate w.r.t. 

LFC Uni-SS8 

BD-Rate w.r.t. 

LFC Restricted-SS10 

BD-Rate w.r.t. 

LFC Bi-SS9 

(a) -51.4 % -40.9 % -22.4 % -14.6 % -2.1 % 

(b) -83.4 % -67.8 % -37.2 % -14.1 % -5.1 % 

(c) -52.0 % -30.9 % -18.2 % -11.9 % -2.1 % 

(d) -67.5 % -38.8 % -18.2 % -20.0 % -3.8 % 

(e) -60.8 % -43.8 % -22.5 % -17.6 % -2.2 % 

Average -63.0 % -44.5 % -23.7 % -15.6 % -3.0 % 

 



Furthermore, comparing the percentage of usage of the set of weighting coefficients 𝒉 ∈ ℋ in Table 4 with their 

distribution along the raw LF image, as illustrated in Figure 7 for the LF image Vespa, it can be observed that although 

the percentage of usage of each 𝒉 ∈ ℋ is not uniformly distributed, these different weights seem to be equally distributed 

along the encoded raw LF image. 

5 FINAL REMARKS 

This paper presented a comprehensive study of the RD performance for HEVC-based LF image coding when using 

different sets of weighting coefficients for Bi-SS prediction. For this, two Weighted Bi-SS prediction schemes were 

proposed and analyzed, namely: i) using a fixed set of weighting coefficients that are different from the averaging 

coefficients previously adopted for Bi-SS prediction; ii) using an adaptive algorithm for estimating the optimal set of 

weighting coefficients for each PB partition. Regarding the first solution, experimental results suggests that the more 

equally distributed the weighting coefficients are, the better the RD efficiency for Bi-SS solution is shown to be, showing 

that the averaging coefficients is the one that leads to the better RD coding performance. Regarding the second Weighted 

Bi-SS solution, it was observed that further RD performance improvements can be achieved when adaptively choosing the 

set of weighting coefficients for each PB partition, leading to up to 5% of bit savings compared to the previous Bi-SS 

solution. Moreover, statistical analysis of the coding process show that this improvement is mainly due to an increase in 

Bi-SS prediction efficiency, significantly increasing its percentage of usage for LF image coding. Therefore, this paper 

Table 4 Prediction statistics for coding each LF image in Figure 5 using the proposed LFC Weighted Bi-SS (Adaptive) solution 

(for QP value 22) 

LF 

Image 

Prediction Mode Statistics SS Prediction Statistics Weighted Bi-SS Prediction Statistics 

Intra SS SS-skip Uni-SS Bi-SS Merge h=(
7

8
,

1

8
) h=(

3

4
,

1

4
) h=(

1

2
,

1

2
) h=(

1

4
,

3

4
) h=(

1

8
,

7

8
) 

(a) 25.5% 69.9% 4.6% 7.8% 20.6% 71.5% 3.2% 21.2% 69.9% 4.8% 0.9% 

(b) 12.0% 87.3% 0.7% 3.2% 23.6% 73.3% 1.3% 15.4% 76.8% 6.1% 0.5% 

(c) 36.8% 61.4% 1.8% 5.5% 17.1% 77.5% 4.6% 21.2% 69.6% 4.2% 0.4% 

(d) 17.0% 78.1% 4.9% 4.3% 21.7% 74.1% 2.3% 17.2% 74.0% 5.8% 0.7% 

(e) 16.5% 80.9% 2.7% 6.0% 29.9% 64.2% 2.8% 20.6% 69.3% 6.5% 0.8% 

 

 
Figure 7 Example of the weighted Bi-SS vectors distribution along the (raw) LF image when coding the LF test image Vespa. 



has extended the previous theoretical assumptions showing that the adaptive weighting coefficient selection is 

advantageous for improving the performance for jointly estimated Bi-SS prediction. 

Finally, future work will include to propose a better iterative algorithm for estimating the best weighting coefficients and 

to design an efficient entropy coding scheme for signaling the chosen weighting coefficients for each PB partition. 
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